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Eu/apiaTÎEÇ

Exp SidpKeia icov xpôv©v nou xpeiaoxpKav péxpi va cpxdoei p oxiypp va ypacpxoôv auxéç oi ^éÇeiç, pou 
npoocpép0pKe unoaxppiçp anô nokXéç Kaxeu0ôvoeiç. H napouoa Siaxpipp, p onoia ÇeKivpoe oxo  
I Iavemoxppio City xou AovSivou, xpppaxoSoxp0pKe ev pépei péo© unoxpocpiaç nou pou yoppypoG xo xpppa 
'Epeuvaç Kai AvanxuÇpç xou EOv ik o u  Euoxppaxoç Yyeiaç (AovSivo) Kai xouç eipai euyvœpcov yia xr|v
OIKOVOpiKp U7IOOXt]piÇ1|.

Hapà/Âp/.a 0a pOe/,a va emoppdv© xp Pop0eia nou pou 7ipooé(pepav ouyKeKpipéva npôaoma as Sidcpopeç 
Xpovucéç nepiôSouç. 0 a  p0eÀ,a va euxapioxpo© xov Ka0pypxp David Cox xou Nuffield College xou 
I lavemoxppiou xpç OÇcpôpSpç yia xiç KaxeuOuvoeiç xou as pepucéç 0epeta©8eiç yia xp SiaxpiPp npyéç Kai xa 
no/Txipa ayôkm xou, Kai xp ÀÔKxopa Eleejung Bang xou navemoxppiou xou Harvard yia xiç 8ieuKpivpoeiç 
xpç oyexiKd pe Kd7toiouç anô xouç eKxvppxéç (estimators) 7iou yppaipoTuoioûvxai oxo KGcpdÂaio 4. Euxapiox© 
87ilopç xouç Ka0pypxéç Alastair Gray k u i Rury Holman xou nav87uoxppiou xpç OÇcpôpSpç yra xp 
ouveiocpopa xouç oxo apyiKÔ oxdSio xpç napoûoaç epyaoiaç péo© xpç ouppexoxpç xouç oxpv UK 
Prospective Diabètes Study anô ônov avxÂpOpKav xa SeSopéva nou XPpoipo7toioûvxai oxp SiaxpvPp auxp. 
ISiaixepa unoxp£©pévp 6p©ç voi©0© anévavxi oxov Ka0pypxp Robert Turner, yopiç xov 07toio p UK 
Prospective Diabètes Study 8ev 0a siys yvœpioei xo Pa0pô emxuxiaç 7tou yvcupiae xeÀXKd, ôxi pôvo yia xpv 
ev0appuvop Kai unooxppiçp xou oxo çsKÎvppa xr|ç SiaxpiPpç akkâ Kupicoç yia xpv niaxp Kai xpv 
epnioxoouvp nou pou éSei^e Ka0’ôXo xo ypoviKÔ Siaoxppa nou SoûAei|/a unô xpv Ka0oSpypop xou.

H SieKîrepaiœop xpç napoûoaç epyaoiaç nppe no/a> Kaipô Kai ex© xpv aio0pop ôxi noXXoi U7iécpepav raxa 
xp SiapKeia. AeSopévou ôxi oxepf]0pKav eniXoypç éKavav 6,xi KaÀûxepo pnopoûoav yia va pe unooxppiÇouv 
ôka auxà xa xpôvia Kai xo Axyôxepo nou pnop© va Kdv© eivai va 7i© euxapiox©. Ek eîv o ç  nou unécpepe xo 
nepiooôxepo eivai o Ka0pypxpç Alistair McGuire, o onoioç avayKdoxpKe va avanxûÇei axodXiva veûpa Kaxa 
xp SiapKeia xpç ôÀpç SiaSiKaoiaç akkâ napépeive 6p0ioç péxpi xo xéA.oç. Aev unàpxouv /,éçeiç 7iou va 
a7io8i8ouv xo péyeOoç xpç eiocpopaç Kai xpç unopovpç xou. napôA,o îio u  xpcidoxpKe va xou ôiôdiç© noXkâ 
Kaxa xp 8iapKeia xpç SiaxpiPpç, pa0aivei yppyopa Kai pnopei va emSeiÇei açiocppeÎMxeç ucavôxpxeç 
avxt/vpi(/pç Kai Kaxavôpcpç Kaxd 7iepi68ouç - av Kai ôxi iSiaixepa ouxva. Mapd xiç ouyKpoûoeiç Kai xouç 
xoaK©pouç 8ev 0a pnopoûaa va éx© sXniasi as Kaüuxcpo “enipA.én©v” KaOpypxp. noAAd e7riopç xp©oxa© 
oxpv oiKoyéveia pou 7iou pe avéxexai aKÔpa pexa a7tô xôoa xpôvia (o’euxapiox© Apppxpp 7iou pe Çunvaç 
Ka0e 7ip©i, Eippvp 7iou eioai o Sû o k o à o ç  eauxôç oou Kai Kaxepiva îio u  rânoieç cpopéç eioai 7iio ©pipp anô 
péva). Av Kai oi napandv© U7iécpepav xa nepiooôxepa, unppÇav Kai aXXoi nou pe oxppiçav pe Sidcpopouç 
xpônouç - Kupi©ç péo© ppaSucuv oivo7tooiaç Kai KoviaK. ISiaixepo euxapiox© avpKei oxov Edward 7tou 
7idvxa nioxeue ôxi 0a xa Kaxacpép© Kai xou 07ioiou p unooxppiçp Kaxd Kaipoûç éKave xp Siacpopd, oxo 
Tidwp yia xiç nupepPoÂéç xou as oxiypéç Kpiopç Kai oxo 0eio pou Avxrovp îio u  laxupiÇexai ôxi 0a énpene 
eniopç va euxapioxpo© xouç Karl Marx Kai Vladimir Lenin - av Kai p eKnôvpop xpç SiaxpiPpç 8ev pou 
acppoe xpôvo va uvaKa/,ûi(/© xo yiaxi.

Av oi /vé^ciç “aqnep©pévo as” oppaivouv Kaxi, xôxe 8ûo eivai eKeivoi 7iou npsnsi va xiç aKoXouOpoouv. O 
Robert Turner, xo 7ip©xo pou “aipevxiKÔ” xpv anouoia xou ot t oîou éx© aio0av0ei noXksç cpopéç Kai o Alistair 
McGuire, a/.p0ivôç cpiloç 7iepiooôxepo anô ercipAémov Ka0pypxpç nou pxav ôinka pou os Kads Pppa an’xpv 
apxp péxpi xo xé/.oç.
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Abstract

This thesis is concerned with two specific cost measurement issues commonly raised within the context of 
economic evaluation of health care interventions. Both these issues arise due to limited availability of cost 
information from medical studies. The first relates to the process of cost data collection while the second 
relates to the statistical analysis of cost data. Investigation of this subject matter is undertaken with reference 
to clinical trials although this setting does not restrict the generality of the findings. The typical pattern of 
cost collection records volumes of resource use at the patient level but not resource unit cost in the treatment 
centre where the resource was utilised. The calculation of treatment cost then is normally based on some 
average unit cost estimate obtained from a variety of sources as opposed to centre specific unit cost 
information. The question arises as to whether the source of unit cost information has an impact on the 
calculated total treatment costs. This is addressed using a simulation setting and assuming specific 
underlying production and cost relations which determine the behaviour of treatment centres in delivering a 
health outcome. The results show that assuming the treatment centres operate in a manner consistent with 
economic theory, using average instead of centre specific unit cost information will lead to biased estimates 
of the total cost of treatment. The issue of primary concern in the thesis relates to the incompleteness of cost 
infonnation for analysis due to censoring. Censoring occurs whenever patients are not observed for the full 
time to event and affects both effectiveness and cost data. Any analysis of such data that fails to account for 
the presence of censoring will result in biased estimates of the statistics of interest. This issue has only 
recently been addressed in the literature within the context of cost analysis and a well established 
methodology for dealing with this problem is lacking. There are a limited number of parametric and non- 
parametric estimators which have been proposed in an attempt to adjust cost estimates for censoring all of 
which are considered here. A subset of those lack theoretical justification and as such lead to erroneous 
inferences, while those whose use is justified on theoretical grounds have not been empirically assessed 
under conditions of heavy censoring using real medical data. This is undertaken in the present analysis using 
a clinical trial dataset which displays extreme levels of censoring. Although the theoretical investigation 
shows that under specific assumptions the approaches provide consistent estimators of mean cost while 
accounting for the loss of information due to censoring, the analysis reveals various performance patterns 
ranging from generally stable estimators under the conditions considered to estimators which become 
increasingly unstable with increasing levels of censoring.
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Chapter  1

Introduction

The necessity of adopting economic evaluation in the health care sector arises because the market 

fails to fulfil the conditions required to ensure efficient allocation of resources. Economic 
evaluation then provides a method for determining the point of efficiency, that is the point at which 
the allocation of resources leads to maximisation of social welfare. In the process of achieving the 

optimal resource allocation, alternative states have to be evaluated each one associated with 

different individual welfare levels. Given that any alternative state o f resource allocation will 
normally result in an improvement in welfare for some individuals and a deterioration for others, 

interpersonal comparisons of utility have to be made in order to determine whether there is a net 
gain in social welfare. The choice becomes then either to consider situations in which unambiguous 

welfare improvements are possible or to consider a wider range of situations by making 
interpersonal comparisons. In the former case, evaluation of alternative states is undertaken based 

on the Pareto principle according to which welfare improvement occurs if  resource allocation is 

such that an individual is made better off without making another individual worse off. In the latter 

case, value judgements must be made to determine whether there are net gains in welfare. Given 
that evaluations based on the Pareto optimality criterion do not encompass value judgements and 

interpersonal comparisons of utility levels, the Pareto principle has to be accompanied by the 

implementation of the Hicksian compensation test which leads to efficiency being defined in terms 

of potential Pareto improvement.

In this context cost-benefit analysis is implemented specifically as a means of achieving Pareto 

welfare. The method itself is consistent with the Pareto principle and does not encompass 
interpersonal comparisons in determining the optimal resource allocation state. It can however be 

accompanied by information on individual welfare changes resulting from implementation of the 
alternative under consideration determined based on the Hicksian compensation criterion. As such 
cost benefit analysis in conjunction with the compensation criterion can in theory provide a 
mechanism for determining optimal resource allocation patterns consistent with the maximisation of 

social welfare. In the health care sector where the monetary valuation of outcomes is complex cost- 
effectiveness commonly replaces cost-benefit analysis as a method of identifying patterns of health 

care resource allocation. If relative valuations can be attached to health states then cost- 
effectiveness may encompass cost-utility analysis. All these methods, cost-benefit, cost- 
effectiveness and cost-utility analysis, have specific problems of implementation which have long 
been discussed in the welfare economics literature. Most recently three particular themes have come 
to dominate the literature in health economics.
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First there has been increasing consideration of the specific technical conditions under which cost- 

effectiveness and cost-utility analyses relate to cost-benefit analysis whose objective is to identify 

Pareto optimal states consistent with the maximisation of social welfare. Under the assumption that 

consumers and producers are utility maximisers and the health care sector is budget constrained, a 
range of models have been developed each specifying a utility function based on specific 

underlying assumptions. These are then used to reveal the specific conditions under which patient 

preferences, normally represented in the model by some quality adjusted life year concept, can be 

related to cost-benefit analysis and traditional notions of welfare economics (Garber, 2000). 
Weinstein and Stason (1976) and Weinstein and Zeckhauser (1973) discuss the relationship of cost- 
effectiveness to cost-benefit analysis through the use of linear programming techniques.

Secondly there has been growing criticism of the traditional definition of welfare as based on Pareto 

optimality and utility maximisation (Williams and Cookson, 2000; Tsuchiya and Williams, 2001). It 

has been suggested that the definition of welfare ought to take account of concepts that are not 

solely utility based. The justification for this approach derives from Sen’s argument that welfare is 
not only defined by means of utility but is also related to fundamental attributes, which he refers to 

as basic capabilities (Sen, 1982). On this basis, proponents of the notion of extra-welfarism have 
suggested that efficiency may be defined with regards to the maximisation of health and not utility 

per se. As such these capabilities may be related to cardinal measurements of health benefit 

allowing the problems imposed by interpersonal comparisons to be overcome. Within this context 
the role of economic evaluation is not to determine the optimal allocation of health care resources 
that will maximise utility-based welfare, but rather to supply the relevant decision makers with 

information that assists their assessment of the appropriate allocation of health care resources. That 

is, interpersonal comparisons are considered through the explicit cardinal measurement of health 

benefit, using for example QALYs, but ultimately it is the decision maker who defines the trade-
offs across individuals in specifying the social welfare function. Under this interpretation cost- 

effectiveness and cost-utility analyses are not necessarily related to cost-benefit analysis as there is 
no attempt to follow Paretian notions of efficiency. Cost-effectiveness and cost-utility analyses 

become appropriate allocative tools in their own right.

The third theme that has dominated the literature has dealt with measurement issues given that any 

economic evaluation involves measurement of the costs incurred by and the benefits derived from a 
health care intervention. Particular emphasis has been given to the measurement of the benefits 

derived from a given health outcome partly reflecting the fact that the various types of economic 
evaluation adopt different definitions of the health outcome. Cost-benefit values health outcomes by 
a monetary metric, cost-utility by a measure of relative value of health states and cost-effectiveness 

more generally by some appropriate physical quantity. A considerable literature has addressed the 

issue of how monetary measurements of health states may be obtained more recently concentrating 

on the techniques of conjoint analysis (Deiner et al, 1998). At the same time there is a sizeable 

literature that considers the measurement of the relative valuations of health states using non-
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monetary values (Dolan, 2000, 2001). Here the topics analysed include the mathematical properties 

required to elicit relative valuations using a variety of instruments including the visual analogue 
score, the time trade-off method and the standard gamble. A directly related literature considers the 

relative strengths and weaknesses of the various measures. A different component of the literature 

has concentrated on the issue of data uncertainty with the largest part of this literature addressing 
the question of how the uncertainty surrounding the incremental cost-effectiveness ratio statistic 

should be handled (Briggs, 2001). Consideration of the appropriate methodology for calculating 

confidence intervals for this ratio statistic constitutes another substantial part o f this literature 
followed by investigation of alternative ways in which the ratio may be presented as for instance in 
the case of the net benefit approach which essentially results in a transformation of the incremental 
cost-effectiveness ratio. Other measurement related issues that have received some attention in the 

literature include adjustments for missing data, the measurement of indirect costs and the 
transferability of findings across different regulatory environments.

This thesis relates to the general aspect of measurement issues. Having focussed on measurement 
problems raised within the context of analysing health outcome data, the literature has generally 

given less attention to the issues that arise in the analysis of cost data. With respect to cost the 

matter most commonly addressed is the definition and measurement of indirect costs (Sculpher, 
2001). The measurement of direct costs has received less attention. There is a relatively small 

literature which considers the appropriate definition of direct costs and their relationship to 
opportunity costs and charges (Brouwer et al, 2001; Dranove, 1996). There is limited consideration 
however of the impact that different data collection methods and different methodological 

approaches employed in analysing cost data have on the estimates of cost statistics.

The limited information available with regards to direct cost measurement in general and the lack of 
a well-established methodology in dealing with particular statistical issues arising in the analysis of 
treatment costs are themselves a justification for the subject matter that follows. However the 

emphasis placed on the analysis of treatment cost is also due to another growing tendency within 

the cost-effectiveness literature. This is the increasing adoption of economic analysis alongside 

clinical trials. Undertaking an economic evaluation alongside a clinical trial presents specific 
analytical problems due to the experimental design itself. A clinical trial is designed to test a 
hypothesis of a clinically important difference between two alternative treatments. As a result data 
collection is primarily concentrated on accumulating the necessary clinical information possibly at 
the expense of economic data requirements. In addition to being of secondary importance, recording 
cost information on every cost generating event may also be a relatively demanding process. 
Consequently, it is commonly the case that only the minimum amount of cost data is available from 
the trial itself. A further consequence o f the nature of the experimental design is that the study will 
end once the difference in the clinical endpoint between the trial arms is attained. This means that 
the study will terminate prior to every patient reaching the prespecified endpoint, a condition 
referred to as censoring, resulting in information on some patients not being available for the whole
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duration of interest. Any statistical analysis should account for this information loss, an issue well 

recognised within the context of time to event data analysis. The same concerns arise in the analysis 

of cost data where the censoring mechanism results in similar loss of information.

As an extension to this literature, two specific cost measurement issues are addressed in this thesis. 

The first relates to the collection of cost data and the second to the treatment of censoring in the 

statistical analysis of costs. Both issues are considered within a clinical trial setting although this 
setting does not restrict the generality of the findings. The issue relating to cost collection is 
investigated using a simulated dataset whereas investigation of the condition of censoring, which 

constitutes the major objective of the thesis, is undertaken using a dataset drawn from a prospective 

randomised clinical trial briefly described below.

The data were drawn from the UK Prospective Diabetes Study (UKPDS 33, 1998). A total of 5102 

newly diagnosed type 2 diabetic patients defined as having fasting plasma glucose (fpg) greater than 
6mmol/l on two occasions, aged 25-65 years (mean age 53) were recruited to 23 UK study centres. 
After initial diet treatment a total of 4209 had fasting plasma glucose between 6.1 mmol/1 and 15 

mmol/1 without symptoms of hyperglycaemia and were followed-up. O f these, 342 overweight 

patients were randomised to metformin leaving 3867 individuals who entered the main 
randomisation and were allocated either to conventional policy (1138 patients) achieved primarily 

through diet or to intensive policy (2729 patients) based on either insulin (1156) or sulphonylurea 
(1573). The aim of the conventional policy was to maintain patients free o f diabetic symptoms and 
with a fasting plasma glucose of less than 15 mmol/1, whereas the aim of the intensive policy was to 
achieve a fasting plasma glucose concentration of less than 6mmol/l. Figure 1.1 shows the main 

randomisation process.

5102
newly-diagnosed diabetic patients (fpg >6 mmol/1) 

diet for 3 months

Main Randomisation («=3867)
symptom-free and 

6 mmol/l<fpg<15 mmol/1

Primarily diet \

Sulphonylurea
Insulin
Metformin (obese)

«=1138 «=2729

aim: to maintain patients aim: to achieve basal
free of diabetic symptoms normal normoglycaemia
and with fpg< 15 mmol/1 (fpg<6 mmol/1)

Figure 1.1. The UKPDS main randomisation
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The major clinical endpoints analysed were death or the development of diabetic complications 
including coronary heart disease, cerebrovascular disease, amputations, laser treatment for 

retinopathy, cataract extraction and renal failure. All analyses and comparisons were performed on 
an intention-to-treat basis. The trial started in 1978 and ended in 1998 with a median follow-up to 

death, the last date at which clinical status was known or to the trial end of 10 years.

For each patient in the study data were collected at 3 monthly clinic visits on the doses of all agents 
used for the treatment of diabetes as well as all other co-medications and the number of home blood 

glucose tests. Data on the date and duration of each hospital admission were collected at every 
clinic visit. These were coded using ICD-9 and ICD-10 classifications for prime cause of admission 

and OPCS-4 codes for all procedures undertaken. In addition a separate record was maintained of 
all angiograms, angioplasties and bypass grafts for coronary or peripheral vascular disease. Data on 

non-inpatient health care resource use were collected from all patients in the trial using a 
questionnaire distributed at routine clinic visits between January 1996 and September 1997 and by 
post to those who had not attended a clinic during that period. This questionnaire collected 
information on all home, clinic and telephone contacts with general practitioners, nurses, 
chiropodists, opticians, dieticians, eye and other specialists over the preceding four months. These 

cross-sectional data were analysed using multiple regression techniques to estimate for each patient 
the annual non-hospital resource use adjusted for significant variables including age, gender, body 

mass index, duration of diabetes and time from a non-fatal diabetes-related endpoint. Unit costs for 

all resources used by the trial patients were obtained from national statistics and from centres 

participating in the trial. These unit costs were then combined with the resource volumes to obtain a 

cost per patient over their time in the trial.

The data on non-inpatient costs were not included in the analysis undertaken in the thesis as the 
underlying resource use data were not collected during the trial for all patients but were estimated 

from a regression model. In addition all costs used and reported in subsequent chapters are in 1997 

UK £s and are not discounted as the analysis is concerned with assessing the differences among 
alternative methods in accounting for censoring and not the difference in the costs between the trial 
arms. For these reasons the cost estimates reported in subsequent chapters are not directly 

comparable to those reported in the UKPDS economic paper (UKPDS 41, 2000).

The clinical trial reported that the intensive blood glucose control policy significantly reduced the 
risk of any diabetes related endpoint by 12% (P=0.029), but did not significantly reduce diabetes 
related deaths or all-cause mortality. The diabetes related endpoints were myocardial infarction, 
congestive heart failure, stroke, renal replacement therapy, amputation, cataract extraction, vitreous 

haemorrhage and death from any cause. With respect to the analysis undertaken in the thesis the 
failure event was death by any cause. Figure 1.2 presents the Kaplan-Meier estimates for the 
survival probabilities by randomisation group and shows graphically the lack of clear difference in
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mortality between the conventional and intensive policy populations as reported by the trial 

(UKPDS 33, 1998).
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Figure 1.2. Kaplan-Meier estimates for the survival probability by randomisation group

The thesis is structured as follows. Chapter 2 presents an overview of the literature that addresses 

the methodological issues concerned with the collection and analysis of cost data alongside clinical 

trials. This review is not systematic, indeed it is not intended to be given the existence of a number 

of recent reviews in this area, but is meant to provide the necessary background information as a 

means of introduction to the analysis presented in the subsequent chapters and in particular to the 

analysis of censored cost data. Emphasis therefore is given to the various statistical issues that arise 
in the analysis of cost data and the respective methodologies that have been proposed to address 
these issues. The main findings suggest that in general in medical studies and in particular in 

clinical trials cost data will typically present analytical problems due to a number of reasons relating 
both to the specific application under consideration but more importantly to the complexity of the 

cost distributions in general. Censoring appears to be the most commonly encountered feature of 
cost data drawn from a clinical trial and given the experimental design of such studies it is likely 
that it will continue to be so. The importance of successfully handling the presence of censoring in 
deriving estimators for the statistics of interest has been long established in the context of time to 

event data but only recently in the context of cost data. Consequently the number of the proposed 
approaches that attempt to deal with the bias induced by censoring in the cost estimates is limited. 
Moreover some of these approaches lack theoretical justification and have been erroneously 

recommended in the literature. Finally the recently developed methodologies whose use is justified
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in the context of censored cost data analysis on theoretical grounds have not been empirically 

assessed under conditions of heavy censoring using real clinical data.

An appendix to chapter 2 (Appendix A.2.1) presents a systematic review of the economic literature 

relating to type 2 diabetes. The motivation for undertaking this review was that as stated above the 

dataset used in analysis in the later chapters was drawn from a clinical trial in type 2 diabetes. 

Although this review was undertaken primarily for completeness, as the methodology studied in the 
subsequent chapters is not dependent on the disease area, it served to indicate that although type 2 
diabetes is a major disease area the number of relevant economic analyses is limited. Most of the 
studies are either cost-of-illness studies or pure modelling studies. The most important cost- 
effectiveness analyses undertaken to date appear to be the ones accompanying the UKPDS.1 

Moreover, while these studies provide essential information to the understanding of the costs 

associated with type 2 diabetes and its complications and to the assessment of the cost-effectiveness 

of the proposed treatment interventions, it is revealed that no individual study in this disease area 

has addressed the issue of censoring in the cost data.

Chapter 3 considers an issue raised within the UKPDS economic analysis and liable to arise in any 

multi-centre study relating to the collection of costs rather than their statistical analysis. The typical 
pattern of cost data collection within a multi-centre study involves recording volumes of resource 

use at the patient level but not the recording of unit cost information from the individual 

participating centres. As such the available cost information reflects centre-specific resource 

utilisation but not centre-specific unit costs. In these circumstances, the unit cost attached to the 

resource volumes is some average unit cost obtained either from a sample of the participating 
centres or from a number of published sources. The question then arises as to whether using such an 

average unit cost in the calculation of total treatment cost instead of the unit cost in the centre where 
the resource was utilised has an impact on the cost estimates. This question is addressed using a 

simulation setting where an underlying production function is assumed which determines the 

behaviour of treatment centres in delivering a health outcome. Under a formal specification of the 
production and cost relations the simulation exercise considers a number of specific interactions 

between unit cost and resource volumes and compares the estimates of treatment costs resulting 

from the various assumptions employed within the simulation setting. The results show that under 
the assumption that treatment centres operate in a manner consistent with economic theory as 

assumed by economic evaluation, ignoring the underlying production-cost relations will lead to 
biased estimates of treatment costs.

Chapters 4 and 5 concentrate on the impact of censoring on the estimates of cost statistics. Chapter 
4 investigates the theoretical properties, underlying assumptions and empirical performance of a 
number of non-parametric estimators of average cost which attempt to account for the loss of

1 The author of this thesis was a member of the UKPDS economic group and was involved in a number of the 
individual economic analyses associated with the UKPDS.
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information imparted by censoring. The estimators are studied within the counting process and 

martingale framework given that their asymptotic properties have been established using this theory 

as applied to survival analysis. The development of the theory of counting processes, stochastic 
integration and martingales is therefore presented but only to the extent required for the applications 
of interest. The proposed estimators are then assessed under extreme censoring conditions using the 

UKPDS data which exhibits 82% censoring by the trial end. The analysis shows that of the 

estimators expected from the theory to provide consistent estimates of average cost in the presence 

of censoring, only two appear to do so under heavy censoring conditions. Furthermore, both these 
adequately performing estimators require information on individuals’ cost history recorded at 

intermediate points in time over the study period.

Chapter 5 addresses the same issue as chapter 4 but with reference to semiparametric and 

parametric approaches. Being of a semiparametric or parametric nature, the set of estimators 

considered in this chapter involve additional assumptions with regard to the distribution of costs 

relative to the non-parametric estimators of the preceding chapter. On the other hand such 

estimators, if they perform adequately, will allow extrapolation of within study estimates to 

different populations or to points in time beyond the end of the study. The estimators’ asymptotic 
properties are again investigated using the counting process and martingale theory when required 

and when the idea underlying their development originates from the study of time to event data, the 
approach is first considered within this context and the extension to the analysis of cost to event 

data follows. The proposed estimators are empirically assessed under the same censoring conditions 
as the non-parametric alternatives using the UKPDS data and the resultant estimates are compared 
to the best performing estimators identified in the preceding analysis. This comparison shows that 
of the parametric methodologies whose use in the analysis of censored cost data is theoretically 

justified, only one appears to perform adequately under the circumstances considered in this 

analysis. Moreover this estimator shares the two most important features of the best performing 
non-parametric estimator, namely both these approaches use intermediate cost information on each 

individual in the study and in both cases censoring is accounted for using the same type of 

adjustment in the estimating equations.

A final chapter considers the central themes investigated in the thesis concentrating on the main 
results of the analysis and concluding on the implications of the findings for the study o f medical 

costs under conditions of censoring.
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Chapter 2

Review of methodological issues in the collection and analysis of cost data

2.1. Introduction

The objective of this chapter is to present some of the fundamental methodological issues arising in 

the collection and analysis of cost data generated from a clinical trial and to highlight specific 

statistical issues of concern. The purpose of addressing these methodological issues is to set the 
context for the subsequent chapters which are concerned with various aspects of cost collection and 
analysis both from a theoretical viewpoint as well as from an empirical one, the latter being 

undertaken using clinical trial data. This chapter therefore provides the general background to the 
substantive contents of the thesis and while reviewing the relevant literature is not a systematic 

review. More specifically, chapter 3 investigates the impact of different levels of cost data 

collection on estimates of total treatment costs. Accordingly, while the introduction to chapter 3 

makes specific reference to the literature that addresses data collection issues, this chapter provides 
an overview of the arguments various investigators have forwarded on which costs ought to be 

collected and how specific these should be. Chapters 4 and 5 consider a number of non-parametric 

and parametric estimators of mean treatment cost under conditions of censoring and assess the 

estimators’ performance using data collected alongside a clinical trial. This condition occurs 

frequently in medical studies and affects both measures of cost and effectiveness. The importance 

of ignoring the presence of censoring when deriving estimates of medical costs is increasingly 

acknowledged. This issue is addressed in great detail in the subsequent chapters and is therefore 

only briefly discussed in this review chapter. In addition, censoring was the most prominent feature 

of the trial data used for the analysis in this thesis whereas the remaining of the potentially 
problematic issues presented below were either almost absent or completely absent from these data.

An appendix to this chapter (Appendix A.2.1.) presents a systematic review of the economic 
literature relating to type 2 diabetes. The review of this disease specific literature was undertaken 
for the sake of completeness as the empirical analysis in later chapters uses data from a prospective 

randomised controlled clinical trial in type 2 diabetes. This review was deemed of secondary 
importance on the grounds that at no point was it expected that the results of the analysis presented 

in the subsequent chapters would be disease-specific. On the contrary, the explored analytical 

methods are completely independent of the disease area considered and consequently their 

applicability is in no way restricted by the nature of the clinical area the data analysed are drawn 

from.
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The chapter therefore is structured as follows. As a means of introduction a short discussion of the 

role of economic analysis alongside clinical trials is given highlighting points o f concern raised in 

the literature. This is followed by a discussion of the problems commonly encountered in collecting 

and analysing cost data together with the methodology employed in an attempt to overcome these 

difficulties.

2.2. Economic analysis alongside clinical trials

A number of studies have considered cost data issues in the context of economic evaluation 

alongside clinical trials. Johnston et al (1999) give an overview of the issues. Given the existence of 
this review the findings are not replicated here. Instead a summary of the aspects which are of 
relevance to the issues addressed in the thesis is presented. There is a related literature which 
assesses the relative advantage of economic evaluation undertaken alongside a clinical trial over 

evaluation based solely on modelling techniques (Buxton et al, 1997; Morris, 1997; Kuntz and 

Weinstein, 2001). Again only the main points are stated here. In the recent collection edited by 

Drummond and McGuire (2001) costing issues are also considered in a number of chapters and the 

main relevant points are included in the exposition below.

Data for the purposes of economic evaluation can be obtained from a number of sources including 

clinical trials and a variety of models or a combination of the two instruments. There are a number 

of advantages and disadvantages associated with each data source, though generally clinical trials 
are preferred to modelling approaches largely because they are believed to give a better indication 

of cost-effectiveness given their reliance on real albeit experimental data. Under certain 
circumstances however modelling is unavoidable either because economic data have not been 
collected alongside the trial or more commonly because there is an interest in generalising the trial 

results to different population settings or to points in time that exceed the duration of the clinical 
study. Modelling therefore can be useful in situations where the trial data present limitations with 

respect to a number of factors such as the length o f the study duration, the range of assessed 

outcomes or the experimental design itself. In these situations modelling allows for example 
extrapolation from intermediate clinical endpoints to final outcomes, the linking of disease-specific 

measures of health state preference values to a standard utility value and generalisation of the 

findings to standard clinical practice settings. Moreover there are situations where use of a 

statistical model provides the only means for analysis due to specific data problems as is the case 
for instance when some data are missing or the variable of interest is censored. Clinical trial based 

economic evaluations and economic evaluations based on modelling approaches are therefore not 

necessarily mutually exclusive analytical techniques.

In comparisons between the two instruments however the established view is that clinical trials 

provide the most powerful means of assessing the efficacy of health care interventions. Assessment
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of an intervention’s efficacy requires that all confounding factors be controlled for to the largest 

possible extent through the experimental design and patient entry criteria. From the perspective of 
an economic evaluation however the outcome of interest is not efficacy but effectiveness. Assessing 
an intervention in terms of effectiveness requires that the health outcome derived from the 
intervention represent a relative gain compared to an alternative under conditions of a standard 

clinical practice setting. By contrast, an intervention is deemed efficacious if there is a relative 

clinical benefit attributed to the intervention under the controlled ideal conditions defined by the 
experimental study design. It is important therefore that efficacy information derived from clinical 

trial data be adjusted to reflect standard clinical practice conditions for the purposes of economic 

evaluation. Otherwise, given the ideal conditions specified by the trial design, efficacy will 

normally represent the upper bound of effectiveness.

Aside from the efficacy issue, the randomised controlled trial is of relatively limited use to 

economic evaluation for the following related reasons. Randomisation, while it tends to balance 

prognostic factors across the study groups is at the same time linked to a number of exclusion 
criteria on the basis of which the groups are defined. As a result the generalisability of the findings 

to different population settings is limited. In addition clinical trials are typically undertaken in 

specialist settings and use the most recent medical equipment. A strict protocol is often followed 
and treatment as well as disease progression are carefully monitored with every effort being made 

to ensure that both patients and clinicians comply with the trial requirements. Consequently the 
treatment pattern observed within a trial setting is likely to be substantially different from the 
pattern corresponding to a standard practice setting. This discrepancy will lead to difficulties in 

assessing not only the effectiveness of the intervention but also its cost. In an attempt to reflect real 

clinical practice more closely, some clinical trials follow a naturalistic protocol in the sense that the 

study patients are relatively typical of the normal caseload, the intervention being assessed is 
compared with current standard practice, the setting used and the physicians involved are fairly 

representative of the population and the trial protocol is flexible. Such pragmatic studies are 

normally based on a cohort study design and attempt to provide information both on the incidence 

of disease and the impact of the intervention under consideration. Naturalistic studies however are 
normally time-consuming, often require large sample sizes, incur significant loss of follow-up, are 
costly to undertake and consequently relatively uncommon. Moreover, while naturalistic studies 
attempt to reflect real conditions and are by definition less tightly controlled than randomised 

controlled trials, they are still restricted by the settings in which they are conducted and the 
population involved and therefore they are not entirely generalisable.

The concerns raised above though important should not be interpreted as undermining the 

usefulness of the experimental design for the purposes of economic evaluation. Furthermore 
modelling approaches can be employed to overcome some of these difficulties. Given that the 

objective of a clinical trial is different from the objective of the economic analysis conducted 

alongside it, that is the trial will normally be set up to test a hypothesis of clinical importance as
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opposed to one of economic importance, it is important that this discrepancy be accounted for. This 

is another reason why modelling techniques are increasingly used within such an analytical setting.

2.3. Cost collection

Concentrating on resource use and cost issues it appears that the number o f studies that have used 
patient level resource and cost data alongside a clinical trial is limited although increasing. Briggs 

and Gray (1998) identified a number of such studies as part of a wider systematic review concerned 
with the handling of uncertainty in the cost-effectiveness literature. They reported on 368 published 

studies up to the end of calendar year 1995 which were identified as cost-effectiveness or cost- 

utility studies. O f these, only 22 studies had used patient specific data collected alongside a 

randomised controlled trial and a further 19 studies had used such data collected within another 
form of clinical study. That is, only 11% of the identified studies in their review had analysed 

patient specific resource/cost data drawn directly from the clinical study. O f this total, only 3.3% 

reported some conventional measure of variance. In other words the vast majority of economic 

evaluations appear not to be utilising the information required to perform statistical analysis of cost 

data drawn from a clinical study, and even where such information was reported only a subset 

derived measures of variation associated with the estimates of the average cost of treatments. This 

finding is consistent with the conclusion reached by Barber and Thompson (1998). They identified 
45 randomised clinical trials published in the year 1995. They reported that while each o f these 
trials was believed to have recorded cost data at the individual patient level, less than 20% reported 
standard measures of variability although 56% performed statistical tests to compare resource costs 

across the treatment groups.

Issues generated by the cost data collection process alongside a clinical trial have been addressed in 

a number of publications (Drummond, 1994; Drummond and Davies, 1991; Drummond and 

Stoddart, 1984; Buxton et al, 1997; Glick et al, 2001). Aside from addressing the question of how to 
integrate cost collection into the trial design, these studies also consider whether power calculations 

ought to be undertaken on the economic endpoints, whether clinical trials which generally measure 

efficacy can appropriately define effectiveness, whether the population selected for inclusion into 

the trial through controlled entry and design is appropriate for consideration by an economic 
evaluation as the population in a trial is normally more homogeneous than the heterogeneous 

population faced by decision makers, whether the selection of the control arm forms an appropriate 

comparator for the purposes of an economic evaluation and what forms the most appropriate 

methodology for the analysis of the collected data.

A small number of studies have addressed the specific question of which particular cost components 

are relevant to the estimation of treatment cost within an economic evaluation (Brouwer et al, 2001; 

Gold et al, 1996). Glick et al (2001) outline a general strategy for designing an economic evaluation
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to be undertaken alongside a clinical trial. With regards to the question of what proportion of total 
costs ought to be collected as part of the trial they offer the rather simplistic answer that as many 

components of cost as possible should be measured. Their rationale is that minimising the loss of 

information reduces the likelihood that cost differences among the competing treatments will be due 

to study artefacts although they also note that there are no a priori guidelines. There have been a 

limited number of studies which have addressed this question empirically. Whynes and Walker 
(1995) analysed costs collected alongside a trial for colorectal cancer on 360 patients over a 3-year 

period during which individuals could have up to 14 individual cost generating events. The authors 

undertook a detailed costing exercise on an individual patient basis incorporating all 14 cost 

generating events and compared the resultant cost estimates with costs derived by using the same 
information at a more aggregate level. Their results indicated that estimating costs based on 4 
specific cost categories rather than 14 accounted for approximately 92% of total costs on average 

but this finding held for only 44% of individual patients. On this basis the authors recommend 

collecting cost data at a patient level as this information reveals differences in cost patterns among 
individual patients which would not have been identified if an aggregate costing exercise had been 

undertaken. A similar study in the area of mental health (Knapp and Beecham, 1993) concluded that 

of the 21 identified cost categories, 5 accounted for approximately 95% of total cost while 10 

categories accounted for 98% of total cost. The findings from these studies suggest that while 

aggregation of cost elements into categories is possible with direct implications for the process of 

cost data collection, it would be difficult to identify important cost categories at the outset of the 

study both due to the variation in the distribution of cost across individual patients and due to the 
variation in the distribution of cost across disease areas.

Graves et al (2002) assess the quality of the methods used to derive patient level cost in economic 

evaluations conducted alongside clinical trials. They review the same 45 studies reported by Barber 

and Thompson (1998) referred to above. The quality of the methods employed by the studies was 

assessed using twelve criteria that covered general costing issues, the methods used to identify and 
quantify the resource elements and the reporting of data. The results indicated that the vast majority 
of the reviewed studies failed to attain acceptable levels of quality as specified by the authors’ 

criteria. The authors therefore concluded that although the statistical analysis of cost data collected 
alongside a clinical trial is fundamental to the evaluation of health care technologies, the process of 
cost collection and collation is equally important and as the title of their article states “No amount 

of statistical analysis can compensate for poor quality cost data” (op. cite).

Once the relevant data have been collected the issue becomes to determine the most appropriate 

method for analysis. In situations where information on resource use is not available from the trial 
economic analysis is based on some modelling approach and the necessary information is typically 
obtained from published sources. In these circumstances statistical analysis of the distribution of 

treatment cost based on the observed trial population sample is not possible. Uncertainty 

surrounding the cost estimates may then be assessed by univariate or multivariate sensitivity
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analysis techniques in which model parameters vary over a specified range of values and the effect 

on the cost estimates is considered. If however the collection of patient level resource use data is 
incorporated within the trial design, statistical analysis of the trial data allows estimates of the 
parameters of the distribution of cost to be derived based on the observed population sample. Issues 

of concern then relate to whether tests of statistical significance should be performed at all or 

whether ranges should be presented instead given that although the clinical trial is considered a 

means of hypothesis testing, an economic evaluation undertaken alongside it will generally not be. 

That is, the trial is designed and powered to test a null hypothesis of no difference in effect but not 

an analogous hypothesis of no difference in cost between the alternative treatments even though the 

study design might incorporate cost data collection. Another concern relates to whether statistical 

tests, if performed, should be undertaken on the individual resource quantities, unit costs or both as 
each of these elements may be responsible for different degrees of variation in cost. Finally, a large 
literature has considered the methodology employed in calculating confidence intervals for the cost- 
effectiveness ratio statistic (see Briggs, 2001 for an overview of this literature).

The main finding which emerges from the preceding discussion is that although economic 
evaluation is increasingly undertaken alongside clinical trials, the proportion of economic studies 

that analyse data collected alongside a clinical trial in a manner that allows statistical inferences to 
be made regarding the distribution of cost is low. The primary reason why this is the case appears to 
be the lack of available cost data collected alongside a trial. Nevertheless, there are indications of an 

increasing tendency towards an incorporation of requirements for the collection of data on 

economic variables into the trial design. In these circumstances the issue becomes one of data 

analysis rather than data collection.

2.4. Cost analysis

Within the context of cost analysis a number of statistical problems arise, some of which require 
treatment by a specific statistical methodology while others stem from more general concerns. 

Before discussing the specific methodological problems most commonly encountered in the 
analysis of cost data drawn from a clinical trial, an important issue of a more general nature relates 
to the representativeness of a typical clinical trial population. Mullahy and Manning (1996) state for 
instance that even with randomisation there may still be selection bias arising from the individual’s 
decision to participate, that eligibility criteria may lead to inappropriate exclusion of subsets of 
patients and that there may be selective compliance of treatments. For all these reasons the patient 

sample studied by the trial may not be representative of the true underlying treatment population. 

This is undoubtedly an important potential problem in any experimental design. A related issue 

raised by the same investigators is concerned with the omitted variables problem which imparts bias 
in the estimates. Viewed within a linear regression setting, the authors argue that the randomisation 

process must appropriately account for confounding variables. In other words, for the bias due to
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omitted variables to be avoided, randomisation must ensure orthogonality between the regressors 

(i.e. the trial variables) and the unobservables (the confounding variables).

The statistical methodology employed in the analysis of cost and effectiveness trial data assumes in 

general that the process of randomisation both controls for confounding factors and ensures the 
representativeness of the trial population. Under this assumption the objective of the statistical 

analysis is to derive estimates of cost and effectiveness for the alternative interventions which are 

typically combined to form a ratio statistic defined as

R = i t  C l  Md )

(Me \ ~ Me2 )

where /uC{ and pic2 are the average total costs of the two competing interventions (interventions 1 

and 2) respectively, /uEl and juE2 denote the respective average total effects, and the ratio R 

referred to as the incremental cost effectiveness ratio (ICER) represents the incremental cost per 

unit of additional health outcome and is derived as the difference in the average total cost between 

the two alternative interventions relative to the difference in the average total effectiveness. As 
O ’Brien et al (1994) state in circumstances where the sample is randomly drawn from the true 
underlying patient population, the ICER statistic can be estimated by replacing the unknown 
population parameters by their sample estimators and is given by

fc_: (Act -M a )
(Aei -M,n)

The issue then becomes to obtain appropriate estimators for the mean values appearing in the 

expression above. The most obvious estimator would be the one based on the assumption of 

normality of the distribution of costs (and similarly of effects). However the assumption of 

normality for the distribution of costs is rarely valid. As a result such estimators of cost statistics 

will typically result in biased estimates. As the following sections show cost distributions tend to be 
particularly complex and their pattern depends to a substantial extent on the specific application. 

Consequently deriving estimators for the parameters of interest may be more appropriately achieved 
using an approach that does not impose specific distributional assumptions on cost. The choice of 
the estimator depends on a number of issues of a statistical nature the most common of which are 

presented below.

A regression framework is adopted as this provides a useful analytical device that allows 
elaboration of the problems and their proposed solutions. Thus considering a typical dataset which 
includes measurements on a set of covariates X  the classical regression model relates cost to these 

covariates as follows
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C = j3'X + £

where C is the random variable denoting cost, /? is a p  x 1 vector of unknown regression 

parameters and e is a zero-mean error term assumed normally distributed with constant variance 

cr2 . Letting i identify individuals the model for individual i is

C, =P'Xi +si , i = \,...,n

The estimator for mean cost is then

C = fi'X

where ¡3 is the vector of the estimated regression parameters resulting from the least squares 

normal equation and X  denotes the covariates vector evaluated at the mean values of the 

covariates. Being parametric, a regression approach may be preferred to a non-parametric estimator 

if for example there is interest in the extrapolation of costs beyond the end o f the trial period or if 

interest is in assessing covariate effects on cost or in deriving cost predictions for different patient 

populations. On the other hand, a parametric approach typically imposes a particular distributional 
form on cost, in this case a normal distribution, which may not be justified. Additional concerns 

which influence the choice of the analytical methodology relate to the pattern of the observed cost 

data and include positive skewness in the cost observations, a substantial proportion of zero costs, 
censoring, missing data and lack of independence in the cost observations in situations where each 
individual in the sample contributes multiple data points over time. Each of these problems is 

considered in turn below. Heyse et al (2001) and Lipscomb et al (1998) cover similar ground. In 

what follows interest lies in deriving estimates of mean cost over the duration of the study as this 
forms the objective of the analysis in subsequent chapters.

2.4.1. Skewness in the cost data

The distribution of costs is typically positively skewed with a small number of patients incurring 

very high costs which implies that methods that assume a normal distribution and constant 
variances, such as the classical linear regression model may not be appropriate. In addressing this 
issue Briggs and Gray (1998) investigated the distributional properties of five datasets in detail. 

They found that all exhibited non-normality. To account for non-normality the authors considered a 

number of transformations, namely the log transform, the square root transform and the reciprocal 

transform. They state that although the data allow such transformations to be performed 

interpretation problems arise, an issue also raised by Manning (1998). The reason why such 
difficulties arise is that with transformed dependent variables, the mean response is not equal to the 

response of an individual with mean covariate values, but it equals the mean of the retransformed
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estimate of the dependent variable which depends on the distribution of the covariates and not just 

their mean. Hence the property of the ordinary least squares regression estimates where the mean 

response equals the mean covariate values multiplied by the estimated regression parameters thus 

implying a straightforward interpretation for the coefficients disappears when the dependent 

variable is transformed. Despite these general problems, transformations are useful in regression 

problems and under conditions of positively skewed cost data the most commonly employed 

transformation is the logarithmic. This model is defined by

ln (C ,+ l) =

where s i is normally distributed with mean 0 and constant variance a 1, so that the unexplained part 
of C, is now assumed to be lognormally distributed and the value of 1 (or any small positive value) 
is added to the observed costs to ensure that the logarithmic function is defined when there are zero 
cost observations in the data. The corresponding mean cost is

C , . = e x p ( M . ) - l

If however the errors s i in the above model are not normally distributed the above expression will 

lead to biased estimates of mean cost (Duan, 1983; Manning, 1998). To correct for this bias, Duan 

(1983) proposed a nonparametric alternative referred to as the smearing estimator, considered in 

detail in chapter 5, which provides consistent mean estimates even when the error distribution in the 

above model is normal. In addition the smearing estimator can also be used to account for this bias 

in the mean estimates for transformations other than the logarithmic.1 The mean cost with smearing 
is then given by

C, = [e x p (^ X ,.) ]5 - l

1 ”
where S = — V  ee‘ is the smearing estimator, £. is the ordinary least squares residual for the cost

n ,=i
observation Ci and n is the total sample size.

2.4.2. Zero costs

Another issue arising in studies of treatment cost is that it is possible that a substantial number of 
patients have zero costs recorded as a result of the treatment lowering the probability of a cost 
generating event occurring. An estimator of average cost not taking account of this issue such as the

1 The smearing estimator does not account for heteroscedasticity. If the error terms in the model
ln(C, + 1) = /?' X i + Sj do not exhibit constant variance cr2 a heteroscedastic smearing estimator is recommended
(Manning, 1998).
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simple arithmetic average would result in an underestimate of the mean cost. Similarly, a regression 
model including the zero cost observations would result in biased estimates. Duan et al (1983) and 

Lipscomb et al (1998) consider two-part models to address the problem generated by zero cost 

observations. The first part fits a logistic or probit model to the dichotomous variable defined by 
whether the patient incurred costs or not and thus predicts the probability that the patient has any 
cost generating events. The second part fits standard linear models to the cost data (possibly 
transformed) for those patients whose costs are positive. Expected values for individual patients are 

then derived by multiplying the two components together. The two-part model is given by

[ 0 with probability p {
{P'Xi + ei with probability (1 -  /?,.)

where p t = 1
l + exp[-(7 'X,.)]

with 7 being a vector of logistic regression coefficients and X  being the same explanatory 
variables used in the cost regressions. The corresponding estimator for the individual’s mean cost is

' l + exp(77’X ;)

where the error terms in the regression model using the positive costs are zero-mean with constant 

variance a 1. Applying the logarithmic transformation to the positive cost observations, the two- 

part model results in the following estimator for mean cost

£  exp (fi'X,)
' l + e x p tf '* ,)

and with smearing, the two-part estimator of mean cost is

£  _ [exp(0'X,)]S  
‘ l + exp(/7% )

where the smearing factor S is defined above. With or without smearing, the logistic model 

component of the two-part model remains the same. Two-part models therefore allow consideration 
of factors which might affect both the probability of an individual having a cost generating event 

and the level of cost incurred given that there was a cost generating event. The importance of not 

accounting for a high proportion of zero costs in the data when estimating average cost can be seen 

by the following example. If a treatment lowers the probability that a patient has a cost generating
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event but does not lower the level of incurred cost, ignoring the first issue might result in the 

treatment appearing to reduce the costs on average.

2.4.3. Censoring

There has been a long history of concern with censored data in analysing the effectiveness of 

treatment interventions within a clinical trial setting. More recently censoring has also been 

considered within the context of cost analysis. This section merely gives an introduction to the issue 

as the problem of censoring and the relevant literature are investigated in detail in chapters 4 and 5. 

Censoring arises because a number of observations fail to reach some pre-specified clinical 

endpoint, for instance death, before the end of the study period.2 Until recently the problem of 
censored cost data had not received much attention and the analysis was based on the following two 

“naive” estimators. The first, referred to as the uncensored cases estimator, only uses the 

uncensored cases in the estimation of mean cost while the second, referred to as the full-sample 

estimator, uses all cases but does not differentiate between censored and uncensored observations. 
Both these estimators will always be biased. The full-sample estimator is always biased downward 
because the costs incurred after censoring times are not accounted for whereas the uncensored-cases 

estimator is biased toward the costs of the patients with shorter survival times because larger 

survival times are more likely to be censored (Lin et al, 1997).

Censoring within the context of time-to-event data analysis has been dealt with using survival 

analysis techniques some of which make specific assumptions about the distribution of time-to- 

event while others are completely free of distributional assumptions. Initial attempts to account for 

censoring in the estimation of censored cost statistics applied parametric and non-parametric 
survival analysis methodology to cost (Dudley et al, 1993; Fenn et al, 1995, 1996). Underlying all 

the standard survival analysis approaches within the context of time to event data analysis is the 

assumption of independence between time to event and time to censoring. This implies that

2 Although interest in this thesis is restricted to consideration of censoring in the analysis of cost data a more general 
point arises from the relationship between censoring and the alternative definitions of treatment effect. Within the 
context of an economic analysis conducted alongside a clinical trial the treatment effect is normally based on efficacy 
data drawn from the randomised controlled experiment. For the purposes of an economic analysis however the 
treatment effect should reflect the health gain attributable to the intervention under consideration as based on the 
general population likely to receive the treatment. In the treatment effects literature there are three basic parameters of 
interest. The local average treatment effect which is the average effect of treatment in the compliers, the global average 
treatment effect estimated based on the entire study population -i.e. including compliers and non-compliers- and the 
intent-to-treat parameter which is the average effect of treatment assignment (e.g. Angrist, Imbcns and Rubin, 1996; 
Robins and Greenland, 1996). These alternative definitions of treatment effect could lead to differing levels of 
generalisability of the results of the economic analysis as well as differing levels of censoring and/or different censoring 
mechanisms. For example if the treatment is responsible for non-compliance and non-compliers are withdrawn from the 
study this will imply a non-random censoring mechanism requiring different estimation strategies for the parameters of 
interest from the ones employed under random censoring. In this case the mechanism that causes censoring might need 
to be explicitly modelled. As stated later in the thesis in most medical studies censoring is assumed to arise completely 
at random and consequently all estimators examined in chapters 4 and 5 have been developed based on the assumption 
of random censoring.
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censored individuals do not constitute a particularly high or low risk subgroup so that removal of 

certain observations from the sample due to censoring leaves the remaining event times of the 

individuals who are still under observation having the same joint distribution as if  there had been no 

censoring. A case of dependent censoring will arise for example if high-risk individuals tend to be 

censored because then the remaining individuals in the sample will represent a low risk population 

and the estimated hazard will underestimate the true hazard. In the context of cost analysis the 

independence assumption is translated into independence between the cost at event and the cost at 

censoring. Such an assumption would only be valid if all individuals accumulate cost at the same 

rate over time which implies a one-to-one mapping between time t and cost accumulated by time t. 
Typically however the rate of cost accrual varies amongst individuals with those in poorer health 
states using more resources and therefore incurring higher costs per unit of time. This means that 

individuals with a higher rate of cost accumulation will incur higher costs both at failure time and at 
the censoring time inducing positive correlation between cost at failure and cost at censoring. The 

assumption of independence between the variable of interest and its censoring variable is therefore 

violated and on this basis all traditional survival analysis techniques are inappropriate for estimating 

censored cost statistics (Lin et al, 1997; Etzioni et al, 1999).

Lipscomb et al (1998) applied the stratified variant of the Cox proportional hazards model with 

time being the stratification variable in deriving estimates of patient cost within each stratum and 

although censoring was not present in their data, they suggested use of this model under censoring 

conditions on the basis that stratification by time circumvents the problem of dependent censoring 
as this specification imposes no constraint as to how cost varies over time within a given time 
period. Etzioni et al (1999), as presented in detail in chapter 5, criticise this approach on the basis 
that the accrual of costs at different rates across individuals will result in dependent censoring 

within the subgroups defined by the covariate levels even when the stratified variant of the 
proportional hazards model is adopted. An additional criticism relates to the proportionality 

assumption underlying the validity of the Cox regression model and as Etzioni et al (1999) show 

this assumption will not generally hold in circumstances when individuals accumulate costs at 

different rates.

As a result of the inappropriateness of the standard survival analysis techniques for censored cost 
data analysis, a number of alternative methods have been introduced all of which are considered in 

detail in chapters 4 and 5. Their main difference lies in that some are completely non-parametric 

whereas some make distributional assumptions about how cost varies with time or given a set of 3

3 The non-stratified Cox proportional hazards model was used to analyse censored cost data by Dudley et al (1993) who 
also used the Weibull regression approach in the context of assessing the effect of clinical factors on the cost of 
coronary artery bypass graft surgery using alternative models. However their primary concern was not to address the 
issue of censoring as this was present in only 2.6% of the total number of observations in their data. Nevertheless they 
commented that these models could be used to account for higher levels of censoring although they expressed their 
concern with regards to the potential bias imparted by dependent censoring. Hay (1989) introduced the notion of using 
the non-stratified Cox proportional hazards model, as well as the Kaplan-Meier estimator, in estimating censored 
medical costs but did not proceed to estimation.
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covariates. Lin et al (1997) proposed two non-parametric approaches in estimating censored cost 

statistics. The first uses only the individuals’ total costs at the last contact dates while the second 

requires information on individual cost histories.4 Both methods partition the study period into 

subintervals and derive an estimate of mean cost over the study period by weighting an estimate of 
interval-specific mean cost with an interval-specific Kaplan-Meier probability of survival or death 

depending on the method. Both estimators are shown to be consistent under the assumption that the 

censoring distribution is discrete. An alternative methodology was proposed by Bang and Tsiatis 

(2000) who introduced a class of non-parametric estimators that do not depend on the pattern of the 
censoring distribution. Of the two main estimators presented by these authors, like the Lin et al 
estimators, the first uses information on total costs whereas the second requires information on 
individual cost histories. These are supplemented by a further two estimators that attempt to 

improve efficiency by recapturing information lost due to censoring. Aside from the non-parametric 
methods mentioned above, a number of parametric regression models for estimating cost statistics 

under conditions of censoring have been introduced. Carides et al (2000) proposed a two-stage 
estimator which involves explicit parameterisation of the relationship between cost and failure time. 

Lin (2000) introduced a regression technique which directly assesses the effect of a set of covariates 

on cost whilst adjusting for censoring in the cost observations through use of a probability weight in 

the estimating equations. This approach can be used both when only total costs are available and 

when individual cost histories are recorded. In the latter case the technique addresses the issue of 

censoring while at the same time accounting for the correlation amongst repeated observations for 

the same subject. Furthermore the approach can accommodate covariate dependent censoring.

2.4.4. Missing data

In many applications data could be missing for a number of reasons. With specific reference to 
medical studies, measurements on some important prognostic factors could be missing for a subset 
of patients either for reasons unknown to the analyst and unrelated to the other observations in the 
sample being complete or for a reason relating to the nature o f the factor, e.g. when obtaining the 

measurement requires some invasive and costly medical procedure as in the case of biopsy 
compared to a blood sample, or for a reason relating to the design of the study, e.g. when 
measurement on the variable requires visits to clinics at fixed points in time and therefore the 

availability of the data is determined by the timing of the visits specified in turn by the design of the 

study. If data are missing for reasons unrelated to the completeness of the remaining observations in 
the sample, the problem is referred to as the ignorable case because if efficiency is not the primary 
concern the estimation can be undertaken by ignoring the problem, that is by analysing the complete 
cases only (Griliches, 1986). If however the missing data are related to the phenomenon being

4 Etzioni et al (1996), who was also one of the co-authors on the paper by Lin et al (1997), introduced one of these 
estimators, which was referred to as the Kaplan-Meier sample average (KMSA) estimator, but the authors did not study 
the estimator’s statistical properties.
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studied then analysing the information of the complete cases alone will result in estimators both 

biased and inefficient.

Rubin (1976) considered various mechanisms that may cause missing data and identified the 
weakest conditions under which it is appropriate to ignore the process that causes missing data. In 

situations where this process cannot be ignored modelling of the process is required. Assuming that 

interest lies in making statistical inferences about the parameter 0 of the data with cp being the 

parameter of the missing data process, Rubin (1976) defines the weakest conditions under which it 

is appropriate to ignore the process that causes the missing data as follows. If statistical inference 

means sampling distribution inference,5 then the process causing missing data can be ignored if the 

missing data are missing at random and the observed data are observed at random. “The missing 
data are missing at random if for each possible value of the parameter (p, the conditional probability 

of the observed pattern of missing data given the missing data and the value of the observed data is 

the same for all possible values of the missing data. The observed data are observed at random if for 
each possible value of the missing data and the parameter cp, the conditional probability of the 

observed pattern of missing data, given the missing data and the observed data, is the same for all 

possible values of the observed data. If statistical inference means direct-likelihood or Bayesian 
inference,6 then the process responsible for the missing data can be ignored if the missing data are 
missing at random and the parameter cp is distinct from 6 . The parameter (p is distinct from 0 if 
there are no a priori ties between (p and 6 either via parameter space restrictions or prior 

distributions.” (Rubin, 1976, p.582).

Methods for handling missing data are related to the mechanism that causes the missing values. For 

example, this mechanism could be independent of the data, could depend on the value of the 
corresponding covariate for the case with the missing value or could depend on the value of more 

than one covariates. In most cases missing data are analysed based on the assumption that the 

missing data are missing at random in the sense of Rubin (1976) as stated above or on the stronger 

assumption that the missing data are missing completely at random, that is the process that causes 
the missing data does not depend on the values of the variables of interest in the data. A test statistic 

for testing whether the data are missing completely at random has been proposed by Little (1988). 

Under either of the above assumptions the mechanism causing the missing data can be ignored. If 

this is the case, which implies that the missing data mechanism is not modelled, the main 
approaches to analysing such data are briefly presented below.

5 A sampling distribution inference is inference resulting solely from comparing the observed value of a statistic with 
the sampling distribution of that statistic under various hypothesised underlying distributions. Within the sampling 
distribution inference context, the parameters 0 and (p have fixed hypothesised values.
6 A direct-likelihood inference is inference resulting solely from ratios of the likelihood function for various values of 
the parameter. Within the context of direct-likelihood inference, the parameters 6 and (p take values in a joint 
parameter space. A Bayesian inference is inference resulting solely from posterior distributions corresponding to 
specified prior distributions. Within the Bayesian inference context, the parameters 6 and (p are random variables

whose marginal distribution is specified by the product of the prior densities p(0) p{(p\9) .
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Assuming the classic linear regression model given by

E{Y\X) = /?0 + /?' X , where var(F|A) = a 1

the problem is to derive estimates of the parameters and their associated variance when some of the 
data are missing. Although missing data could be present both in the outcome variable Y as well as 
the regressors X , the methods discussed below concentrate on the case of missing X ’s but this 

does not restrict the outcome variable which could have some missing values as well. The main 

approaches for handling the problem of missing data for some of the regressors now follow.

The complete case analysis is a least squares method that results from minimising the sum of 

squared residuals with respect both to the parameters and the missing values. This is performed by 

assigning a zero residual to any incomplete case with missing values which effectively results in the 

removal of that case from the estimation of the regression parameters. Completely discarding the 
cases with missing values in this manner leads to loss of information which could be a substantial 

problem if the proportion of cases with missing values is high. On this basis the approach has been 

deemed useful only for providing a baseline method for comparisons. Another method is first to 
impute the missing X  values and then to perform the regression of Y on X  using the imputed X  
values either by ordinary least squares or by a weighted least squares regression that attaches lower 

weights to the incomplete cases. A simple approach for imputing the missing X  values is to replace 
the missing X  ’s by their unconditional sample means. This method will result in poor estimates if 

there is substantial correlation in the data. Assuming for example a positive correlation between Y 
and X  such that high values of X  are associated with high values o f Y , if every missing X  
observation is replaced with its unconditional sample mean, then high values of the imputed X  do 

not imply higher values of Y . An improvement is to use information on the observed X  ’s in a case 

to impute the missing X  ’s. This can be achieved by imputing for a missing X  value for a 
particular case by linear regression on the observed X  ’s in that case estimated from the complete 

cases. Another method is to impute the missing X  by using both Y and the observed X ’s for 

imputation. Another approach is to assume a joint distribution for Y and X , a typical choice being 

a multivariate normal distribution, and to estimate the parameters of this distribution by maximum 
likelihood (Beale and Little, 1975). The estimates of the distribution parameters are then substituted 
into the regression model yielding maximum likelihood estimates of the regression parameters.7

The imputation methods stated above could result in low standard error estimates because errors in 

the imputations are not taken into account. A solution to this problem was proposed by Rubin 
(1978, 1978a) and is referred to as multiple imputation. According to this approach instead of

7 For small sample inference a Bayesian approach could be preferable, according to which a prior is added to the 
likelihood and inference is based on the posterior distribution. Some applications of the Bayesian approach to 
multivariate problems with incomplete dependent variables are referenced by Little (1992) but application of the 
approach to regression problems with missing X ’s is limited.
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imputing a single mean for each missing value, N >2 values are drawn from the predictive 

distribution of the missing values given the remaining covariates and Y and then complete data 

analysis are repeated N  times once with each imputation substituted. The final estimate of the 

parameter is then the sum of the parameter values obtained for each imputation divided by the 

number of imputations. Multiple imputation has the advantage that once the imputations are 
constructed analysis proceeds by complete-data methods. Multiple imputations could be predictions 

based on an explicit model or they could be based on an implicit model for the missing values. An 

example of the latter case is the hot deck imputations which match incomplete cases to complete 
cases using information on covariates and then impute values from the complete cases. All the 
above approaches assume data missing at random in the sense defined above and therefore do not 
model the missing data mechanism. Little (1992) covers similar ground as discussed above but in 
greater detail.

Robins, Rotnizky and Zhao (1994) proposed a class of estimators to account for a subset of 

regressors having missing values either by design or happenstance. Their estimating equations make 

use of the inverse of the probability of non-missingness and the estimators for the regression 

parameters of the conditional mean model are consistent under the following conditions. The data 

are missing at random in the sense of Rubin (1976) as defined above which implies that the 

probability of an observation being missing for individual i may depend on subject /’s observed data 

including the outcome variable Y{ but not on the missing data, the probabilities of missingness are 

bounded away from zero and the probabilities of missingness are known or can be estimated 
parametrically. Comparisons between estimators belonging to their general class and estimators 

previously proposed to account for missingness, of which the main ones are given above, showed 
asymptotic equivalence between the estimators being compared each time but their respective 
estimators were always more efficient. Efficiency was improved by retrieving information lost due 

to missingness from subjects with incomplete data, an approach also adopted by Dagenais (1973), 
Gourieroux and Montfort (1981), Beale and Little (1975), Pepe and Fleming (1991), and Carroll 

and Wand (1991). Compared with the latter set of estimators, the estimators proposed by Robins et 

al (1994) are again more efficient.

Censoring and missing data are of the same nature as both these issues imply incomplete 
information. Consequently a large part of the statistical theory developed for handling missing data 

can also be applied to the problem of censoring. There are obviously circumstances in which the 

problem of missing data on some of the covariates can arise alongside the problem of censoring of 

the dependent variable. For example, Lin and Ying (1993) have considered this issue within the 
context of the Cox proportional hazards regression model where time to failure forming the 

outcome variable is subject to censoring. Under conditions where some of the regressors have 
missing values and although the model adjusts for censoring of the dependent variable, the authors 

state that not appropriately accounting for the missing covariate values will result in biased and 
inefficient parameter estimates. More specifically, they argue that discarding cases with missing
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covariate values could result in considerable reduction in efficiency especially if the discarded cases 

correspond to uncensored failure times, including in the model only the covariates with complete 

measurements on every subject could distort the partial likelihood based inference, and imputing the 

missing values can impart considerable bias into the parameter estimators. They propose an 
estimator for the regression parameters which is consistent and asymptotically normal under the 

assumption of the data missing at random which is shown to be more efficient than the complete 

case analysis estimator especially when failures are infrequent. This illustrates the point that there 
may be situations in which missingness affects both the outcome variable, in this case through the 

censoring mechanism, and the covariates. Given that censoring is a missing data process the 
statistical theory for analysing missing covariate values can be applied to censored outcome 

variables. For example, the idea of using the inverse of the probability of non-missingness 
mentioned above has been used in applications where the outcome variable is censored (Koul et al, 
1981; Robins & Rotnitzky, 1992; Robins, Rotnitzky & Zhao, 1994). In this context the weight is the 
inverse of the probability of an observation not being censored which is used in the estimating 

equations to derive consistent parameter estimates adjusted for censoring. Moreover, as will be 

shown in detail in chapters 4 and 5, the same idea underlies a number of approaches which attempt 

to provide unbiased and consistent estimators of cost statistics in the presence of censoring.

2.4.5. Dependency among multiple measurements on the same subject

An issue inherent in longitudinal data, that is data consisting of repeated measurements of the 

variables of interest on each individual usually obtained at various points in time, is the dependency 

among the repeated measurements for any subject. In such circumstances ordinary least squares 

regression is not an appropriate estimation procedure as the assumptions concerning the error terms 

are no longer valid.8 The general procedure to analysing such data in the econometric and statistical 
literature is to adopt an alternative model to ordinary least squares, referred to as the generalised 

linear regression model, which accommodates more general patterns for the distribution of the 

disturbances.

In this context a class of generalised estimating equations for the regression parameters has been 
proposed by Liang and Zeger (1986) which result in consistent estimates of the regression 
parameters and their variances without requiring specification of the joint distribution of a subject’s

8 Partly in an attempt to resolve the problem of dependency among the multiple observations for each subject, 
Lipscomb et al (1998) used the stratified variant of the Cox proportional hazards model, as stated above, with time 
being the stratification variable in deriving estimates of patient cost within each stratum. They argue that a great 
advantage of this model is that it does not make any assumptions about the distributional form of the error terms, and as 
such it is likely to be amongst the best alternatives when interest lies in modelling complex distributions such as 
distributions of cost. In addition, they suggest that this model overcomes the problem of dependency between multiple 
observations on the same individual, as it assumes different baseline hazards for cost across different strata. Given 
however the criticism of this approach mentioned above and presented in detail in chapter 5, it seems unlikely that such 
a methodology would be useful.
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observations. This approach has wide application if interest is in modelling the dependence of the 
outcome variable on the covariates and not in the pattern of change of the outcome variable over 

time. If this is the case, the approach models the marginal expectation of the outcome variable as a 
function of the covariates at each point in time whilst accounting for the correlation among the 

repeated measurements for a given subject by treating the time dependence among repeated 

measurements for an individual as a nuisance. When the time dependence is o f primary importance 

then, as stated by the authors, models for the conditional distribution of the outcome variable given 
its past values would be more appropriate. The authors argue that if observations gained from 
different subjects are independent, the estimates of the regression parameters will be consistent even 

if the correlation structure is misspecified provided that the model for the marginal means of the 

outcome variable at each point in time is correctly specified.

More importantly, this approach can also be adopted in the event of some observations being 

missing, in which case the same results hold provided that data are missing completely at random in 

the sense of Rubin (1976). Within this framework of generalised linear regression Lin (2000) 

derived estimators for the regression parameters when repeated measurements on the outcome 
variable were obtained within the context of censored cost analysis. The approach is considered in 
detail in chapter 5.

2.5. Concluding remarks

The emphasis in this overview of the literature has been on the problems most commonly 

encountered in the collection and analysis of cost data generated from a clinical trial. These 

difficulties are partly due to the trial design and partly due to the general nature of cost data. The 

specific issues arising in any given analysis will also depend on the cost pattern observed in the 

particular application considered. In the case of the UKPDS data described in chapter 1 for instance, 

of the problems discussed above, censoring was the prominent feature of the data. Although this 

clinical dataset exhibits extreme levels of censoring reaching 82% by the trial end, it is likely that 

censoring will be a common if not the most common characteristic of cost data drawn from any 

clinical trial. The loss of information due to censoring leads to biased estimates of the statistics of 
interest. In the context of time to event data analysis a number of alternative estimators provide 
consistent estimates of failure time statistics under censoring conditions. In the context of cost to 
event data development of estimators attempting to adjust the estimates for censoring has been 

much more limited and very recent. Recently proposed estimators are investigated in detail in 

chapters 4 and 5 and their performance is empirically assessed under extreme censoring conditions 

using the UKPDS data. Prior to addressing the impact of censoring, the next chapter considers an 
issue relating to the collection rather than the statistical analysis of cost data.
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C h a p te r  3

Cost collection: Centre specific versus average unit costs in multi-centre studies

3.1. Introduction

The analysis of cost data has received little attention compared to the discussion of the various 
applications of different forms of economic evaluation or the analysis o f effectiveness data. As 

emphasised earlier the estimation of treatment costs is a crucial element in the calculation of an 

incremental cost-effectiveness ratio and yet there has been relatively limited examination of the 

concepts underlying the estimation procedure, measurement problems or the impact that reliance on 
different cost data has on the estimated level of cost. As noted in the review chapter a small number 
of studies have recently started to address these issues. This chapter considers some specific aspects 
of the collection of cost data and uses a simulation model to assess the impact that different levels 
of aggregation in the collection of unit cost data have on the estimation of treatment costs.

Dranove (1996) argues that identification of the relevant cost components to be included in a given 
study and their measurement will be determined by the perspective adopted for the analysis. In the 
vast majority of clinical trials the cost elements are confined to costs directly related to the 

treatment but as Dranove states these may also include social care or non-medical patient related 

costs. For a societal based analysis he points out that all cost elements must be identified. The 

analysis in this thesis is based on data collected alongside a clinical trial which only recorded cost 

information on the components directly related to the treatment being assessed. As such discussion 
is focussed on direct treatment costs from a health care providers perspective. This is not to 

diminish the other categories of cost that may be included in the incremental cost-effectiveness 

estimation, for example productivity costs, but rather reflects the general pattern o f cost collection 

alongside a clinical trial according to which treatment cost is the major cost component. Assuming a 
multi-centre trial setting in which information on resource use is collected on a patient level, the 
question arises as to what would constitute the optimal unit cost measurement to be subsequently 
attached to the resource volumes in order to derive an estimate of the cost of treatment. More 
specifically the question addressed in this chapter is whether unit cost data should be collected on 

an individual trial centre basis or whether an average unit cost provides an adequate measure in the 
estimation of treatment cost.

Treatment costs are normally estimated in two stages (Johannesson, 1996). First the volumes of 
resource use attributable to the intervention under study are quantified and then the unit costs of the 

resources are attached to the resource volumes to derive estimates of treatment cost. Although in 
general the data could be obtained from a number of sources, within a trial design it is common that
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resource use information is collected prospectively on a per patient basis. It is then necessary to 

identify the source of the unit cost data for the various resources utilised (Drummond, 1994). In 
theory unit costs could also be collected prospectively but in practice data restrictions lead to 

limited capture of economic data alongside a trial. This partly reflects the priorities set by the 
clinical investigators with respect to the data being collected within a trial design where recording 

of clinical information is the primary objective. Of the economic data required to enable economic 

assessment of the treatment under consideration unit costs are usually deemed of secondary 

importance and as such this data is normally obtained from alternative sources. In support of 
concentrating on volumes of resource use as opposed to resource unit costs in the prospective 
collection of data, it has been argued that for the purposes of making statistical inference on 

economic variables variation in total costs will be generally due to variation in resource volumes 

across treatment centres reflecting variation in clinical practice while unit costs are not expected to 
vary substantially across centres (Spiegelhalter et al, 1996). This however appears to represent an 
extreme view. Hospital charges such as Extra Contractual tariffs or Health Resource Groups (HRG) 
costs are known to vary across treatment centres and assuming that such charges to an extent reflect 

costs this information provides contrary evidence to the point stated above.

From a theoretical perspective the distinct consideration of resource volumes and unit costs may be 

seen as a useful analytical device in relating the concepts of production and cost functions. The 
production function represents the transformation of volumes of input into outcomes, while the cost 

function provides the relationship between total costs (input volumes multiplied by unit costs) and 

outcomes. A clinical trial may be characterised as an evaluation of the transformation of inputs (that 
is the bundle of resource volumes that make up the individual treatments) into outcomes (that is the 

health outcome) in an attempt to assess efficacy. In practice however if unit costs are subsequently 

attached to resource volumes in abstraction from consideration of the production relations this may 

lead to a miscalculation of total costs. Different types of production units may have different unit 
costs, for example teaching hospitals generally have higher unit costs than non-teaching hospitals. 

The scale of production may also give rise to different unit costs. Ignoring the relationship between 

resource volumes and unit costs may thus introduce bias into the total treatment cost calculations.

Moreover in theory cost ought to represent the true opportunity cost of the resource. Under perfectly 
operating markets this opportunity cost would be the minimum price required to keep the resource 
in its current use rather than some alternative usage. Such perfectly constructed prices are not 
available in the health care sector and a number of proxies are used. Dranove (1996) gives a useful 
discussion of the problems which arise in using such proxies covering such issues as the use of 

charges, the allocation of fixed costs and the difficulties imposed by the existence of joint products. 
Johannesson (1996) covers similar ground but also discusses the distortion introduced due to the 

existence of monopoly.
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Such theoretical considerations complicate the process of collecting cost information. In identifying 

which costs ought to be included in an economic evaluation Gold et al (1996) argue that ease of 

measurement is not a justifiable criterion. Glick et al (2001) suggest, as noted in chapter 2, that 

pragmatism should dictate which costs ought to be collected within a trial. As they state “The best 

approach is to measure as many services as possible, because minimising the services that go 

unmeasured reduces the likelihood that differences among them will lead to study artefacts. 

However there are no a priori guidelines about how much data are enough, nor are there data on the 

incremental value of specific items in the economic case report form” (op. cite., p. 121). Johnston et 

al (1999) on the other hand suggest that it is enough to identify the key cost generating events with 
the aim of minimising data collection while maximising the ability to measure the difference in 
cost. This would imply concentrating the costing exercise on the major components of total cost by 
studying the expected frequency of occurrence of different events and identifying resources 

associated with a high unit cost. Johnston et al (1999) also suggest that it may be possible to rely on 
a sub-sample of patients if it can be assumed that this will be truly representative of the full sample 
population.

Having identified the cost generating events to be included in the analysis the issue then becomes to 
specify the unit costs of the resource elements entering the cost estimation process particularly if the 

data under consideration are obtained from a number of individual settings possibly reflecting 

variations in clinical practice and consequently variations in resource use and unit costs. A major 
benefit of conducting a multi-centre study is that sample size requirements can be met more quickly 
as the number of centres increases. On the other hand it is recognised that multi-centre studies give 

rise to issues of heterogeneity and selection of the participating centres will have an impact on the 

transferability and generalisability of any accompanying economic analysis results. A small but 

growing literature addresses such general concerns (see for example Drummond et al, 1992; Coyle, 
1996; Jonsson and Weinstein, 1997; O’Brien, 1996; Schulman et al, 1998; Wilke et al, 1998; 

Drummond and Pang, 2001). On the more specific issue of which are the appropriate data to collect 

within a multi-centre trial setting consideration has been more limited and opinions are divergent. 
For example, Johnston et al (1999) note that differences in resource use, unit costs and outcomes 

may occur and introduce economic bias and refer to Ellwein and Drummond (1996) who discuss 
the difficulty in rectifying such bias. Johnston et al (1999) also note that “In examining centre 
differences, a recognition of the potential relationship between resource use and unit cost is required 
because if unit costs are a function of resource use at individual centres, this implies that centre 
specific unit costs should be used” (op. cite., p. 18) thus highlighting the importance of the centre 
specific production and cost function relations in determining how costs ought to be collected.
Coyle and Drummond (1996) and the Australian guidelines on economic evaluation of 

pharmaceuticals (Commonwealth of Australia, 1995) both recommend that a single set of unit cost 

data, applied to centre specific resource volumes, may suffice. Glick et al (2001) give a simple 

illustrative example in which using an average of unit costs gives rise to different results compared
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to using individual centre specific costs.1 Drummond et al (1998) have argued that the costing 

process should be context specific and that there is little to discuss in terms of a general 

methodological approach.

Given the lack o f consensus on the appropriate costing methodology to be adopted within a multi-

centre trial setting, the analysis in this chapter attempts to address the issue o f cost data collection 

within such a setting by assessing the performance of two alternative approaches in estimating 

average treatment costs which differ on the basis of the unit cost information entering the estimation 
process. Aside from the general interest in identifying a methodological approach in these 

circumstances, in the present study consideration of the appropriate unit costs to be attached to the 

resource volumes in deriving cost estimates was also motivated by the fact that the empirical dataset 

used for the analysis in the following chapters was drawn from a prospective multi-centre 
randomised controlled trial which collected patient level data on resource use but not centre specific 

unit costs. Consequently estimation of treatment costs was based on the resource volumes as 
recorded within the trial while unit costs were obtained from national statistics and from a number 

of centres participating in the trial. To assess the validity of such an approach in estimating 

treatment cost the approach together with its competing alternative are theoretically considered 

within the context of economic theory assuming an underlying production function and their 

performance is empirically gauged using a simulation experiment.

3.2. General setting and method

The pattern of cost data collection most commonly encountered in multi-centre clinical trial settings 
records information on resource use for all individuals in the trial but not information on the centre 

specific unit cost of the resource element. The patient cost is then calculated by attaching a standard 

unit cost to each resource item. The mean cost per patient is subsequently estimated by averaging 
across all patients in the trial without differentiating among the participating centres. This standard 

unit cost is normally some estimate of an average unit cost based for example on a sample of the 
centres participating in the trial or on published national data. As such, the estimated average cost 
reflects the variation in volumes of resource use across the participating centres but not the potential 

variation in the unit costs. An alternative approach is to combine centre specific unit cost data with 

resource volume data for each patient to calculate a treatment cost per patient before averaging 

across patients.

Although seldom explicitly considered in this context, economic theory suggests that there should 

be some defined predictable relationship between the mix of resource volumes used in producing 
treatments and the relative costs of these resources. Theory would suggest that if operating 

efficiently, each treatment centre would define technical efficiency with regard to a production

1 This example post-dates the published paper (Raikou et al, 2000) which was based on this chapter.
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function which related factor mix to maximum output. Moreover if the treatment centre were 

operating as a cost minimising firm, it would choose the least cost input combination to produce the 

desired level of output. In other words it would operate at the point of both technical and productive 
efficiency, i.e. the point on the isoquant where the slopes of the isoquant and the isocost curves are 

equal. If there were a change in the relative input prices, economic theory would predict that there 

would be a substitution away from the relatively more expensive input which would result in a 
change in the mix of resource volumes. If such conditions were to hold across all treatment centres 
in a multi-centre trial, the centres would display different mixes of resource volumes in producing 

the same level of output (such as one successfully treated case) as a response to the differing 

relative factor input costs that they might face.

If this occurred, the estimate of average cost per treated case across different treatment centres 

based on some average unit cost applied to centre specific resource volumes would differ from the 

estimate of average cost per treated case based on centre specific unit costs applied to the 

corresponding centre specific resource volumes. The first method would lead to biased estimates of 
the cost per treated case since by using the average unit cost of inputs it fails to take into account the 

substitution of relatively less expensive inputs for more expensive ones. If however resource use at 

individual treatment centres is not responsive to unit cost changes, such that there is no relationship 
between the variation in costs and variation in resource use, no difference in the estimates of 

average cost per treated case between the methods would be expected.

The present analysis attempts to consider more closely the implications of these two different 
methods of calculating treatment costs in multi-centre studies by exploring the theoretical reasons 

which might lead to systematic differences in the estimates derived using these two alternatives and 

by addressing the question of whether any such differences are affected by specific assumptions 
concerning the change in the relative input prices. The alternative costing methodologies are 

considered within the framework of economic theory and are empirically assessed by a simulation 

experiment designed to identify potential differences in the resultant estimates of treatment cost.

The alternative approaches to cost estimation are initially explored under general circumstances 
where concern is with whether or not individual treatment centres respond to changes in the unit 

cost of resources in a manner that is consistent with economic theory. Subsequently, consideration 
is given to the response to changes in unit costs of factors when a specific change, an increase in the 
input price of one of the factors of production arising for instance from the introduction of a new 
health technology, is introduced.

With interest lying in the total costs of producing a specific level of output (say, a successfully 

treated case) across a number (n) of treatment centres the following assumptions are made. Each 
centre has only two inputs available to produce a successfully treated case, for example outpatient 
visits (denoted by Va) and inpatient days (denoted by Vf,). Each centre faces local unit costs for the 

two inputs of Ca and Q, respectively. Hence the total costs of generating a single unit of output
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could be formulated in two ways consistent with the description above. First, by calculating an 

average unit cost to attach to each centre specific resource item resulting in the following 

expression for the cost of producing a treated case (averaged across centres):

(3.1)

Alternatively total costs could be calculated by using centre specific unit costs and volumes 
resulting to a treatment cost (averaged across centres) given by

This algebraic formulation of the two methods of cost estimation highlights the potential problem.

In general the expectation of a function (equation 3.2) does not equal the function of the 
expectations (equation 3.1). The two expressions are equal only if the individual costs and volumes 
of each resource component are independent. This implies that if there is no predictable economic 

relationship between unit factor costs and volumes, no difference would be expected in the 

estimates gained from (3.1) and (3.2) above and it would be of little concern which of the two 
methods was employed. If however an underlying predictable relationship between the factor input 
volumes and their corresponding unit costs as dictated by economic theory and upheld by economic 
evaluation exists, then the two methods (3.1) and (3.2) would be expected to yield different 

estimates of the total cost per successfully treated case. Two distinct scenarios are therefore 

considered: (a) Treatment centres are assumed to operate according to the principles of economic 
theory and therefore respond to changes in the relative input prices through a predictable 

substitution of one input for the other, and (b) treatment centres operate on their production function 

but they do not respond to changes in relative input prices. These two situations are illustrated in 

terms of a typical economic model of production in Figure 3.1. The number o f outpatient visits are 

plotted on the horizontal axis and the number of inpatient days on the vertical axis.

n

(3.2)

Va

Figure 3.1. Different responses to price changes
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Assuming initially that all centres operate at the point of both technical and productive efficiency, 

the optimal combination of inpatient days and outpatient visits is at point A in the figure, where the 
isocost line (with slope equal to the ratio of initial factor prices) is tangential to the isoquant. 

Introducing a change in relative input prices, for example due to the cost of an inpatient day 

becoming more expensive, with output being held constant so that focus is concentrated purely on 

the substitution effect gives rise to the following situation. A cost minimising centre in a manner 
consistent with economic theory would substitute away from inpatient days toward outpatient visits 

to a new optimal point B where the new ratio of input unit costs is tangential to the isoquant. By 

contrast, a centre which does not respond to the change in input unit costs would continue to 

employ the same combination of resources at point A. Hence the total costs o f production for a 

centre which responds to changes in the input unit cost ratio will be lower than the total costs of 
production for a centre which does not respond to unit cost changes and that the magnitude of this 

difference in total cost will be determined by the extent of input substitution.

The elasticity of substitution provides a measure of the responsiveness of the factor input ratio 
(Vb /Va) to changes in the unit costs of the factors (Ca / Cb) and is defined (in terms of the present 

example) as

relative change in (Vb / Va)opt
< 7  — ------------------------------------------------------------

relative change in (Ca / Cb )

where (Vb /Va)opl denotes the optimal factor volume ratio at the point of both technical and 

productive efficiency and cr e [0, oo). The limiting case of a  = 0 is where the two inputs must be 

used in a fixed proportion as complements to each other. The other limiting case, with a  infinite, is 
where the two inputs are perfect substitutes for each other. If a  > 1 the elasticity of substitution is 

said to be elastic while if cr < 1 the elasticity of substitution is inelastic.

The predictions of the above theory are that where centres are assumed to respond to unit cost 
changes (scenario a) there will be a systematic difference between the two methods of calculating 
costs per treated case and the magnitude of the difference will be related to the elasticity of 
substitution. By contrast, where centres are assumed to be unresponsive to changes in the input cost 
ratio (scenario b) there will be no systematic difference between the two methods of cost 

calculation.

A simulation experiment was designed to test these predictions and to address the question of what 

degree of substitutability would generate a statistically significant difference between the two 

methods. It was assumed that the unit costs of the two inputs (Cfl and Cb) varied randomly across 
individual treatment centres. In order to determine production responses to unit cost changes in a 
manner that is consistent with economic theory a specific production function was defined across 

the treatment centres. The constant elasticity of substitution (CES) production function was chosen
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as it allows concentration on the substitution effect of the relative price change by keeping output 

constant and at the same time enables the role of the elasticity o f substitution to be studied (see for 

example Heathfield, 1971). The CES production function is defined (in terms of the particular 

example) as

Q = A $ v r + (1 -s)v ^ Y P

where A is the efficiency parameter (A > 0) and serves as an indicator of the state of technology, S 
is the distribution parameter (0 < 5 < 1) and relates to the relative factor shares in the product, and 

p  is the substitution parameter (-1 < p  * 0) and determines the value of the elasticity of

substitution such that a  = —-— . By definition therefore the elasticity of substitution remains
\ + p

constant along the same isoquant and by choosing appropriate values for p  the degree of

substitutability is varied. It should be noted that the CES production function does not allow the 
elasticity of substitution to attain a value of 1 given that the function is undefined for p  = 0 . 

Nevertheless it can be demonstrated that as p  —» 0 the CES function approaches the Cobb-Douglas 

production function which is characterised by a unitary elasticity of substitution (see for example 

Chiang, 1984) and is defined as

lim Q= A VfV a\-s

In the simulation experiment the CES production function (and the Cobb-Douglas production 

function in the special case of a  = 1) were employed to calculate the initial factor volumes for the 

centres given their initial ratio of unit costs. This guaranteed that the production process is well 

behaved with regards to satisfying the least cost input combination condition according to which the 
marginal product ratio (i.e. the slope of the isoquant) is equal to the factor price ratio.

A given percentage change was subsequently initiated in relative unit costs. In scenario a where 
centres respond to unit cost changes the new optimal position on the isoquant was calculated with 
regards to the new ratio of unit costs. Total costs were then calculated using the two methods 

described above and the difference between the two methods was recorded. In order to examine the 

influence of different distributions of factor input unit costs on the results various distributions were 
prespecified. The simulation experiment was therefore undertaken assuming that input factor unit 

costs were drawn from uniform, normal and logistic distributions. The same simulations were 

undertaken for scenario b where the treatment centres are assumed not to respond to the change in 

unit costs, i.e. centres remained on the initial point on the isoquant although facing the new relative 

input prices. Again total costs were calculated by both methods and the difference was recorded.
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For both scenarios these simulations of the difference between the two total cost estimates were 
repeated 1000 times. In this way an empirical estimate of the sampling distribution of the difference 

between the two methods was generated. Where no systematic difference between the two methods 
is expected, the distribution should be centred around zero with approximately 50% of observations 

above and below zero. By contrast, where a systematic difference is expected, the strength of that 
difference can be judged by the proportion of results that lie either side of zero. This is akin to the 
traditional p-value in hypothesis testing, such that if less than 25 observations out of 1000 (2.5%) lie 
above zero (or alternatively if less than 25 observations out of 1000 lie below zero), a 95% 

confidence interval would not include zero and the null hypothesis of no difference between the 
methods would be rejected at the 5% level. In the case under consideration here, a one-sided 

hypothesis test is more appropriate such that the null hypothesis of no difference would be rejected 

if less than 50 observations out of 1000 (5%) lie below zero.

In addition for scenario a the simulation experiment was repeated for a number of different values 

of the elasticity of substitution ranging between a  -  0.1 and a  = 10 relating to nearly perfect 

complements or highly substitutable inputs. This allowed consideration of the effect that the degree 

of input substitutability has on the significance of the difference between the two methods of 
estimating the cost per treated case. Finally, it was assumed that the centres varied in their response 
to unit cost changes in a stochastic rather than deterministic manner. A normal distribution was thus 

imposed on the centre factor volumes after they had responded to changes in relative unit costs. The 
mean of this normal distribution was the mix of the factor input volumes which would have 

emerged given the deterministic response, that is assuming no uncertainty in the response. The 

variance of the distribution was set at increasingly high levels to mimic greater degrees of 

uncertainty in the response to changes in relative unit costs.

3.3. Results

Considering first the case of independence between the ratio of the input volumes and the ratio of 

the factor costs, that is scenario b, the results of the simulation experiment showed the differences in 
the estimates being normally distributed around zero indicating that, as predicted, there is no 
systematic difference between the two methods of cost calculation. Turning to scenario a where 
factor volumes respond to changes in relative unit costs as dictated by the production function and 

the elasticity of substitution different findings are reached. Figure 3.2 outlines the results where the 
three distributions relate to those from which the unit costs are drawn and the individual centres 
factor input responses to the change in relative unit costs are at this stage deterministic. That is, 
there is no uncertainty surrounding the new optimal mix of the factor inputs. As can be seen even at 

relatively low values of the elasticity o f substitution and irrespective of the assumed underlying 
distribution for unit costs there is a significant difference between the average treatment costs 

calculated by the two methods as indicated by the p-values. These p-values are based on testing the
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mean differences in the calculated costs. In other words once it is assumed that treatment centres 
respond to changes in the unit costs of inputs in the manner dictated by economic theory, as is 

implicit in economic evaluation, the two methods of calculating treatment costs give rise to 

statistically different estimates.

elasticity of substitution

Figure 3.2. Deterministic relationship between unit costs and volumes

Concentrating on the case where the centres respond to the relative change in unit costs in a 

stochastic manner, the results are consistent with the previous findings. As shown in Figure 3.3, 
where the increasing degree of uncertainty is represented by an increasing coefficient of variation 
(cv), it can be seen that when the level of uncertainty in the response is relatively low the method of 

cost calculation appears to matter. Thus when the coefficient of variation is below 0.2 the mean 

values of the total cost are statistically different at the 10% level for all values of the elasticity of 
substitution. However as the uncertainty in the response increases, as measured by the coefficient of 
variation, there is a tendency towards a situation that replicates independence between input 

volumes and unit costs, as in scenario b, with the two methods giving similar estimates. It should be 
noted that even a coefficient of variation with a relatively small value (e.g. 0.2) expresses a wide 

dispersion around a mean response.
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Figure 3.3. Statistical significance for different values of elasticity of substitution and stochastic 
response to changes in unit costs (input unit costs drawn from a normal distribution)

3.4. Discussion

To date limited attention has been given to the identification and collection of cost data drawn from 

clinical trials for the purposes of economic evaluation. The analysis in this chapter has attempted to 

assess the impact of different methods of cost collection on the estimated treatment costs within a 

multi-centre trial setting by exploring potential differences in the resultant estimates between two 

alternative methods of cost calculation. The first alternative and the most commonly adopted in 

practice attaches an average unit cost to the individual resource volumes whereas the second 

attaches individual centre specific unit costs to resource elements. The conceptual exposition above 
shows that under the assumption that treatment centres behave in a manner consistent with 
production theory as is implicitly required by economic evaluation, attaching an average unit cost to 
the resource volumes would lead to biased cost estimates. This prediction was confirmed by the 
results of the simulation experiment for different statistical distributions of unit costs and for a 
range of degrees of input substitutability representing nearly perfect substitutes to nearly perfect 

complements. Moreover the same results were reached when the response to relative changes of 
unit costs was assumed to have a stochastic component. Only under conditions of absence of 
response to changes in relative input prices does the choice of costing methodology appear not to 

have an impact. The present analysis has not taken the output effect of a relative input price change 
into account. In reality relative price changes would give rise to both a substitution and an output 

effect. Consideration here was restricted to the former in order to isolate the impact of input
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substitutability on production responses to changes in relative unit costs and subsequently on the 

two methods of cost calculation. Focussing on the substitution effect however does not affect the 

generality of the findings.

These findings emphasise a need for more detailed information on the production process in the 

health care sector. The results reached in this chapter indicate that the method of calculating 

treatment costs that ignores the substitution effect will result in biased estimates on the assumption 

that treatment centres operate in a rational economic manner. In reality however little is known 

about the degree of factor substitution in this sector. What is known is that there is considerable 

variation in treatment patterns across centres but the sources and mechanisms of this variation are 
not well understood. A starting point in gaining better understanding of the health care production 

process could be achieved by placing greater importance on the measurement and reporting of the 

unit costs of the resources used to produce a given health outcome.
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C h a p te r 4

Cost analysis: Non-parametric estimators of treatment cost under conditions of censoring

4.1. Introduction

Increasingly cost information is collected alongside clinical trials as the basis for cost-effectiveness 

analysis. As discussed in chapter 2 a number of problems arise in the analysis of such data including 
issues concerning missing observations, skewed data and censoring. Discussion here concentrates 

on the last issue. There are various types of censoring, such as right censoring or left censoring. Left 
censoring, which is not as common in clinical trials, involves a loss of information due to individual 

observations entering the study at different points of progression to end-point. This chapter does not 
address this issue. Right censoring occurs whenever some individuals are not observed for the full 

duration of interest which results in information being incomplete for these patients. Consequently, 
estimators of statistics of interest are biased if no account is taken of censoring with the bias 
increasing as the degree of censoring increases. Parametric or non-parametric modelling approaches 
may be used to adjust the estimators for this loss of information which is observed both in 
effectiveness and cost data. Both parametric and non-parametric approaches have been applied to 

the analysis of effectiveness data when effectiveness is assessed in terms of time to event yielding 

estimators that appropriately adjust the estimates for censoring. It is only recently however that 

attention has turned to the issue of censored cost data. Given that parametric approaches involve 

explicit assumptions regarding the distribution of costs which may not be justified by the data, 

initial attempts to adjust estimators of cost statistics for censoring involved application of non- 

parametric survival analysis techniques to cost data. The Kaplan-Meier estimator was the first 

approach used in this context (Fenn et al, 1995), but this was shown to result in biased estimates of 

cost due to the violation of independence between the cost at event and the cost at censoring times 
(Lin et al, 1997; Etzioni et al, 1999). Another two estimators have also been used to provide 

estimates of mean cost in the presence of censoring which are referred to as “naive” estimators in 
the literature because the first, referred to as the uncensored cases estimator, only uses the 
uncensored cases in the estimation of mean cost, while the second, referred to as the full-sample 
estimator, uses all cases but does not differentiate between censored and uncensored observations. 

Both these estimators will always be biased. The full-sample estimator is always biased downward 

because the costs incurred after censoring times are not accounted for whereas the uncensored-cases 
estimator is biased toward the costs of the patients with shorter survival times because larger 
survival times are more likely to be censored (Lin et al, 1997).
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Lin et al (1997) acknowledge these difficulties and propose a method which attempts to resolve 

these issues. They introduce two estimators of mean cost under conditions of censoring which rely 

on the study period being partitioned into a number of subintervals such that censored observations 

occur at the boundaries of these intervals. Under such circumstances, the approach is shown to give 
consistent estimators of average cost and the associated variances are analytically derived. Hence 

the validity of the approach depends to an extent on the pattern of the censoring distribution being 

of such a form to allow censoring times to correspond to the boundaries of the intervals of the 
partition. There is no a priori reason however to expect censoring to conform to any such pattern 

and therefore in most applications consistency will be violated to some degree. This limitation has 
led to a further set of estimators proposed by Bang and Tsiatis (2000). Their estimators are shown to 

be consistent regardless of the censoring pattern and their variances are analytically derived.

All the above non-parametric estimators of cost together with their properties and underlying 

assumptions are presented in this chapter using a common analytical framework. Their performance 

is empirically assessed under extreme censoring conditions using the UKPDS data introduced in 
chapter 1. While the theoretical properties of these recently proposed estimators have been studied 

by Lin et al (1997) and by Bang and Tsiatis (2000), their performance has not been assessed under 
conditions of extreme censoring using real data. In this chapter the estimators are investigated using 

a real clinical dataset which exhibits levels of censoring of 82 per cent.

The estimators’ theoretical properties have been investigated using the theory o f stochastic 
processes as applied to the study of time-to-event data. Stochastic processes are often used to model 
clinical data collected over a period of time and in particular data counting the number of events 
over time. The standard application of the counting process approach to survival analysis is a 

powerful tool in deriving statistics of interest as well as in studying their properties in the presence 

of censoring (Gill, 1980; Fleming and Harrington, 1991; Andersen et al, 1993). As will be shown 

later in the chapter, the same approach is equally powerful when applied to the study of cost-to- 

event data under conditions of censoring as it provides the analytical framework in which the 

asymptotic properties of the estimators of cost statistics are being established. More specifically, 
use of this particular analytical approach allows the notion of the time element in the cost 

observations to be captured, censoring to be incorporated, variance estimators to be derived and 

convergence and asymptotic normality of the statistics of interest to be proven by invoking 

martingale convergence theorems. It is important therefore to present the general setting for the 
analysis viewed within the counting process framework as applied to the study of time-to-event data 
as the same concepts underlie the study of cost-to-event data as undertaken by the approaches of 

interest. Thus the following section provides a general introduction to stochastic processes, their 

relationship to counting processes and stochastic integration, as well as the general application of 

martingales to counting processes with specific reference to martingale theorems used in the study 
of the statistics of interest. This section draws on the work by Gill (1980), Fleming and Harrington 
(1991) and Andersen et al (1993). Having established the conceptual context, the set of non-
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parametric estimators of cost together with the assumptions underlying their validity are then 

presented. The main analysis, whose aim is to assess the estimators’ performance under extreme 

conditions, is presented in the following section which reports the results derived from the 

application of the cost estimators to the UKPDS dataset. A number of problems are identified 
within this part of the analysis which are subsequently investigated using subsets of the original 

data as well as an artificially generated dataset with varying degrees o f censoring. The final part of 

the analysis derives variance estimates using the bootstrap approach as an alternative to the 

theoretically derived formulae for the asymptotic variance estimators in an attempt to determine the 

validity of the underlying assumption of asymptotic normality when the estimators are applied to 
the smaller sample sizes observed in real medical data.

4.2. Analytical framework

4.2.1. General setting

The aim of the approaches to be presented later in the chapter is to derive an estimate of the mean 

total cost ju = E(M) and its variance over a specified period when the data is right censored, where 

the random variable M  denotes the total cost for a patient during some specified time T and E 
denotes expectation. The distribution of the random variable T is assumed continuous over (0, L] 
where L denotes the upper bound of T, i.e. the maximum time for which each patient is evaluated.

In that case M  is the total cost incurred by a patient up to a maximum of L units of time. If all 

patients were observed for a minimum of L units of time then complete information on M  would be 

available and the mean cost would be estimated by the average of the costs for each patient. In most 
cases however cost information is incomplete due to censoring. Defining therefore a potential time 

to censoring denoted by U and letting T denote the time to death, the observables from a study in 
the presence of censoring are X  = min(T,U) , i.e. the last contact date; 5 = I(T < U) , where /(•) is 

the indicator function taking the value of 1 when the argument is true (i.e. if the observation is 
uncensored) and zero otherwise; the cost accrued up to time X  and other intermediate cost history 

for each subject, i.e. M H (t) = {M(u), u<t) ,  where M H (t) denotes the cost history up to time t,
M = M(T ) ,  with M(u) being the known accumulated cost up to time u and u denoting points in 
time at which cost information becomes available. The observable data for n individuals are then 
the independent and identically distributed random vectors

where i identifies an individual.

Regardless of whether censoring is present or not, when studying time to event data interest lies in 
the distribution of the non-negative continuous random variable T denoting the time to event with 
cumulative distribution function F(t) given as
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F(t) = pr(T < t) = \ f(u)du
o

where f ( t )  is the associated probability density function / ( t ) = l im
A/—>0

pr{t <T <t +At) 
At

In the absence of censoring, a non-parametric estimator for F(t) would be based on the empirical 

cumulative distribution function. The associated survival function, that is the probability that the 

individual will survive at least until time t, is given as

S(t) = \ - F ( t )  = pr(T>t)

and the related hazard rate, that is the probability that the individual will die in the next short 

interval At given that he has survived until time t, is given as

= hm p r ( t< T < t  + At\T>t) = iim 1 pr[(t<T<t + A t)n{T> t) \  
a î-»o At At pr(T > t)

1 pr( t<T <t + At) 1 F{t + At) -  F(t)
A'^° At pr(T>t) A'-+° At S(t)

1 d F ( t ) _ f ( t )
S(t) dt S(t)

or

m =
1 dF(t) 

S(t) dt
1 4 l - S ( t ) ]

S{t) dt
rf[lnA(t)]

dt

which shows the relationship between the conditional probability of death and the unconditional 

probability of survival. An alternative expression for the above relationship is then derived as

In S{t) = -  \k(u)du <=> S(t) = e “ <=> A(t) = e 'A<,)
0

I
where A(t) = j/l(w)du is the integrated or cumulative hazard function for the failure time.

o

4.2.1.1. Stochastic processes and filtration

Adopting the counting process analytical framework allows the properties of failure time statistics 

to be established both in the absence of censoring and when censoring is present. Having stated the 

importance of considering this analytical framework more formally for the purpose of the study of 

cost estimators to be defined subsequently, exposition starts with the case of censored time-to-event
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data. Viewed within the counting process framework, such time to event data in the presence of
n

censoring can be modelled by the counting processes N i (t) = I{X i < t,Sj = 1) with N{t) = 2 > , w
/=1

counting the number of individuals dying over time, N. (t) = I (X i < t, St = 0) with
n

N c (t) = ^  N- (t) counting the number of individuals censored over time, and the accumulated
/=i

information over time these processes generate referred to as filtration given by

3 ^ -  ct {n (u ), N c(u ), 0 <u <t,i = 1,...,«} and representing the increasing information over time on 

the individuals’ survival or censoring up to and including time t.

To consider formally the processes and the associated filtration defined above, a convenient starting 

point is the concept of a stochastic process given that a counting process is itself a stochastic 
process. Following Fleming and Harrington (1991), a stochastic process is a family of random 

variables X  ~{X(t) \ t  e r}  indexed by a set T, all defined on the same probability space 
(Q, P ) .' The set T indexes time and is usually either {0,1,2,...} defining discrete time 

processes or [0, oo) defining continuous time processes. Given that a random variable is a function 
defined on a sample space of outcomes, Q, it follows that a random process { l ( i ) : i e T }  is a 
function of two arguments {.X(t,co),t e f f f l e Q }  . For a fixed t = tk, X(tk,co) = X k(co) is a 
random variable with co varying over the sample space Q while for a fixed sample point 

coi e Q, X(t, coi) -  X t (t) is a single function of time t, called a sample path or a realisation of the 

process. Rather than study the properties of the random variable X(t) for fixed t, the modem 

approach to the general theory of processes relies on properties of the sample path 6 T
for fixed co. The processes studied later in the chapter are limited to the index set T -  fR+ = [0,oo) 

and are denoted as {X(t):t> 0} for fixed co. When a process is said to have a particular property

1 A probability space (Q, J?~, P) consists of a space of outcomes Q  with each outcome denoted generically by CO, a 
selected a-algebra of events ,3̂ ° in £2, and a measure P defined on ¿X“ such that P(£2) = 1 where the measure P 
is called the probability. An event A is said to occur almost surely (a.s.) whenever P(A) = 1. As noted by Gihman 
and Skorohod (1974) the first fundamental assumption when formalising the notions of probability theory is that the 
results of a collection of experiments under investigation in a given situation can be described by means of a certain set 
Q . Furthermore, an experiment is completely characterised by the class of those events, subsets of Q , such that each 
time one can assert whether a particular outcome occurred or not during the given experiment. Although any arbitrary 
subset of Q forms an event, the class of events which characterises any experiment in the sense mentioned above is 
always assumed to form a a-algebra of events. A class of events is called an algebra of events if it contains the certain 
event, i.e. the space Q , the impossible event, i.e. the empty set 0 ,  and together with each pair of events A and B 
belonging to the class, i.e. A and B subsets of Q  , their sum, i.e. their union, and the contrary event of A , i.e. the 
complement of set A . An algebra of events which contains a sequence of events together with their sum is called a a- 
algebra. The space Q  along with the a-algebra of sets defined on it is called the measurable space {Q, and 
the subsets of Q  belonging to are called -measurable sets (¿^-m easurable events). With respect to the 
measurable space {í2, any given stochastic experiment is completely characterised by the class of events 

observed during this experiment and as such any stochastic experiment is determined by a certain a-algebra 3 ^  of 

-measurable events where 3 ^  represents the history of the experiment.
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such as being continuous, or left- or right-continuous, or of bounded variation, or increasing, it 
means that the set of sample paths with the corresponding property has probability one. In other 
words, almost all of its sample paths have the particular property.

As already implied central to the theory of stochastic processes is the notion of filtration or history. 

Letting (Q, ,3*“, P) be a probability space, a filtration {,3^:t e r}  is an increasing right-continuous 
family of a-algebras of ,3 ^ , that is:

3 ^  e  ,3 ^œ  3 ^  for all s < t (¿?^“is increasing)

■*7 = | > T  for all s ( J ^ is  right-continuous)
t > s

A c  B g  3*~, P(B) = 0 = > A e  ,3^  ( ,i^ is  complete)

Thus the c-algebra ,3^  contains all events whose occurrence or not is fixed by time t. In other 

words, it denotes the history of the experiment under investigation, in this case the clinical study, up 

to and including time t. The first condition expresses the fact that as time evolves, new events may 

occur, whereas the other two conditions are technical ones and hold for all filtrations considered in 

the applications of interest with the second condition implying that 3 ^  contains all ,3^  for s <t 
and the third condition extending the filtration to time zero. There is also a pre-t a-algebra 3^_, the 

smallest <7-algebra containing all .3~ s < t , which contains events fixed strictly before t. A 
filtration therefore models information that is increasing with time. A stochastic process X is said to 
be adapted to the filtration 3 ^  if X(t) is 3^ measurable for each t, that is the realised 
value X{t,co) of X{t) for a given co can be determined based on the accumulated information up to 

time t contained in 3 ^ .  A filtration can also be described as being generated by a stochastic 
process X. This means that 3 ^  is the a-algebra generated by X(s), 5 < t and this in turn implies 

that 3^_ is generated by X (s), s < t . In particular, processes all of whose paths are left-continuous 

or right-continuous as the processes studied in the applications of interest are measurable for each t 
which ensures that they are adapted to a filtration 3 ^ .  In particular, a filtration generated by a 
right-continuous jump process, as is for instance the process {N(t):t> 0} defined above, is right- 

continuous.

A counting process {A^(0 > 0} is a stochastic process adapted to a filtration {3^:t > 0} with
jV(0) = 0 and N(t) < 00 almost surely and whose paths are right-continuous with probability one, 
piecewise constant, and have only jump discontinuities with jumps of size +1. By its definition,
N(t) represents the total number of events that have occurred in the interval (0, t ], N(t) > 0 , N(t) 
is integer valued, N(s) < A^(/) if s < t , and N{t) -  N(s) equals the number of events that have 

occurred in the interval (5, t]. As such, the counting processes [N(t) : t > 0} and |a c(? ):/>  o} 
defined in the example above count the number of deaths and the number of censored individuals in 

the interval (0, t] respectively and being right-continuous they are adapted to the filtration
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ct {a (w), N c (u), 0 < u < t] which contains the increasing information over time on failure and 

censoring up to and including time t generated by the processes.

4.2.1.2. Stochastic integration

Having presented the statistical model used to express time to event data, the following sections 

address specific aspects of the theory of stochastic processes which are essential to the study of the 

properties of the statistics of interest. Counting processes as applied to survival analysis involve 
stochastic integration, that is the forming of the integral of one stochastic process with respect to 
another. Within the context of this approach, the stochastic processes X  and Y entering the integrals 
for a given a> e Q satisfy such properties that the integral jX d Y , which is a stochastic process

itself, is an ordinary Lebesgue-Stieltjes integral over a given time interval. More specifically, to
I

ensure that JX(-,co)dY(-,co) is well defined as a Lebesgue-Stieltjes integral for each co the

processes X  and Y must satisfy the following measurability and sample path properties. The sample 
path of X  for each co must be a measurable function on interval (,s,t]. The sample paths of Y for

almost all co must be right-continuous with left-hand limits and of locally bounded variation on
t

(s ,t ] , i.e. \\dY(u)\ must be finite for all t e T , for almost all co. Such a process Y is called a finite

variation process and the process ^\dY\ is its (total) variation process. Any bounded variation 

process can be written as the difference Y{ -  Y2 of two non-decreasing processes and consequently,
I

all sample path properties of the integral JXdY (considered as a function of t) follow from
s

properties of integrals with respect to non-decreasing functions. Most processes encountered within
oo

the context of survival analysis are of bounded variation on finite intervals. Any integral Ja <iY
s

over an infinite interval is also well defined as Lebesgue-Stieltjes integral as it is a limit of integrals 

over finite intervals (Fleming and Harrington, 1991).

t  co

In the applications of interest, the stochastic integrals are of the form jf(u)dN(u)  or \f{u)dN{u)
s  s

where A  is a counting process, /( • )  is some function of time and 0 < s < t < co, with A(-) and /(•)  

satisfying the properties stated above so that the stochastic integrals are well defined as Lebesgue- 
Stieltjes. By the definition of the Lebesgue-Stieltjes integral and given that A  as a step function will 
have countably many jumps at {ul,u2,...} with AN(uk) = N(uk)~ N(uk- ) > 0, it then follows that
/ t

| / ( u)dN{u) = X / K ) AN(uk).  Thus the integral J/ (u)dN(u) represents the sum of the values
 ̂ k \ s < u k < t  s
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of /(• )  at the jump times of N  in the interval (s ,f ] . If N  has a discontinuity at either s or t, it is the
t

convention to take J/(«)ÆV(w) = J f ( u k )AN(uk ) = ^ f { u k)AN(uk).
s  *  ̂ k \ s < u k <it

4.2.1.3. Martingale and predictable processes

A further analytical aspect is the decomposition of the counting processes defined above into two 
specific types of stochastic processes referred to as martingales and predictable processes both of 

which play a particularly important role in establishing the estimators’ asymptotic properties as will 

be shown below. A martingale can be viewed as a form of random noise process whereas a 

predictable process exhibits some kind of regular behaviour. In general, many stochastic processes 
can be decomposed as the sum of a martingale (random part) and a finite variation predictable 

process (systematic part). The latter is called the compensator of the process because when 
subtracted from the process, a martingale, i.e. non-systematic noise, is left.

Defined formally, a process « i^ is  a martingale with respect to a filtration ,3^  if  it is right- 

continuous with left-hand limits,2 adapted to «*7. integrable, i.e. < °o for all t e T , and

satisfies the martingale property = £%T(s) for all 5 < t , i.e. the expected value of the

process at t conditional on its history up to a previous point s will on average be same as its value at 
s. The martingale property then implies that for a right-continuous martingale E{d3^(t)\3^_} = 0 ,

i.e. given prior history strictly before t represented by the filtration # 7 »the increments of the

process have an expected value of zero. A stochastic process H  is said to be predictable with respect 
to {J^:t > 0} if when His  adapted to {,#7:/ > 0} then H{t) is ^ 7 -measurable, i.e. its behaviour

at t is determined by the information on [0, t) for all t. Predictable processes are essentially left- 
continuous processes adapted to a history .3^ and thus determined at time t by the past strictly 
prior to t, i.e. by ,3^_. Predictable processes arise as compensators in martingales and as integrands

in stochastic integrals. A martingale is therefore a process without any systematic behaviour in the 
mean: the process £%T(t) -  £%T{s) has zero mean given everything that has happened up to time 5.

In contrast, a predictable process is one whose value at time t is fixed given everything that has 

happened up to, but not including, t.

The martingale approach to statistical models for counting processes is useful in situations where 

the compensator is known or can be computed. This is the case in the applications o f interest in this

2 An example of a right-continuous process with left hand limits is the indicator process I(T  < t) where T denotes 
the time of some random event. This process is equal to zero at time zero, then jumps to one at time T when the event 
occurs and then stays at that value. That is, the process approaches zero as t approaches T from the left, i.e. has a left 
hand limit zero, and its limit equals the value of the process at T as t approaches T from the right. The point T is 
thus a point of discontinuity.
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chapter and then the martingale approach forms the basis for studying the statistical properties of 
the estimators and deriving explicit expressions for their variance estimators for large sample sizes 
with the use of the martingale version of the central limit theorem. In deriving such variance 
estimators the second moment of the martingale process appears in the stochastic

integrals. In general as considered in detail below, these stochastic integrals are of the form 
^  j7 /,d , ^ , where TV,. is some counting process and / / ,  is predictable with respect to the

i

filtration making the processes martingales. When the compensator for ¿%T2 has a simple 

form the decomposition of V̂ 2 leads to computationally appealing expressions for E { ^ r 2(t)}. 

The second moment of the martingale process is then calculated based on the following theorems.

If is a right-continuous martingale with respect to a right-continuous filtration : t > 0} and 

E{<%r2(t)} < oo for any t >0,  then there exists a unique increasing right-continuous predictable 

process called the predictable variation process of such that ¿3^)(0) = 0

almost surely, < co for each t, and \f%T2 (t) -  : / > o} is a right-

continuous martingale. Thus the predictable variation process is the predictable

compensator for £%T2 and it satisfies = E{d\,E%E2 (t) = \ar{dEM<1(t)\^_}. The

predictable variation process can be viewed as the “sum” of the conditional variance of d&T(t)  as 
time increases given information up to time t and can be used to calculate the variance e \e%T2 (/)] 
as follows: since .lW 2{t) -  is a martingale, when f ^ ( 0) = 0 almost surely, it

follows that /:{. ^ 2(l) \ = E(.£%^,£%T)(t).

The covariance between martingales can be calculated based on the following theorem. If and 
are two right-continuous martingales with respect to a right-continuous filtration : t > 0} 

and E{%r{t)}2 <oo for t > 0 with i = 1,2 , then there exists a unique right-continuous predictable 

process called the predictable covariation process, with ¿ ^ ) ( 0) = 0 and

E(d%^, < co, such that is the difference of two increasing right-continuous

predictable processes which implies that has paths of bounded variation and therefore if

it appears as the integrator in a stochastic integral the integral is well defined as a Lebesgue-Stieltjes 
integral with respect to this process, is a martingale, and

d {£ ^ , .¡W^)(t) = E{d{EM^(t)EM^(t)^JE _̂} = cov{dd%^(t), d 6 ^ ( t ) \ ^ _  }. The predictable covariation 

process can be used to calculate the covariance E{d^{t)E^{t)}  as follows: since

. ■//[■ d/l -  - ^ t )  >s a martingale, when = 0 almost surely, it follows that

E\.y/,{iy://2(D) = /•;(. f/r, .'//2){d  .

The predictable variation and covariation processes therefore allow calculation of the second 
moments of the martingale process appearing in the stochastic integrals involved in the statistics of 
interest. Existence and uniqueness of these processes is ensured by implication of the following 

theorem which primarily stipulates the conditions for the decomposition of a stochastic process into
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a compensator and a martingale. The decomposition theorem (Doob-Meyer decomposition, Meyer 
1966) states that a process H  is the compensator of X  if H  is predictable right-continuous with 

left-hand limits and finite variation process such that the process X  -  H  is a martingale zero at time 

zero. Moreover, if a compensator exists, it is unique. Expressed with reference to a counting 
process, the theorem states that given a counting process {N(t) :/ > 0} adapted to right-continuous 
filtration {, ^ \ t  > 0} with £{yV(t)} < °° for all t, then there exists a unique increasing right- 

continuous -predictable process A such that

T(0) = 0 almost surely,
E{A(/)} < oo for all t, and

= N(t) -  A(t): t > O} is a right-continuous -martingale.

The compensator A of N  is therefore a process that carries the predictable component of N  
determined at time t by the strict past, i.e. by . The above theorem implies that an arbitrary

adapted process N  always allows a decomposition = N -  A with £%T being a martingale. 

Moreover, the theorem implies that unique predictable variation and covariation processes exist so 
that £%T2 and are martingales.

4.2.1.4. The ^H d£% T martingale

As noted above, in the analysis of counting process data martingales often appear when studying the 

statistical properties of the estimators of interest. In general, many censored data statistics are of the
form ^  j where Ni -  Ai for some counting process Ni and H i is predictable with

/
respect to the filtration making the processes martingales. In addition if H i is a bounded

predictable process and < oo for all t, the processes |//,c /c^ 7  are themselves
/

martingales. That the process ^Hid , : ^  has the martingale property is shown as

= 0

( since H t is predictable) 

(since is a martingale)

If there is a common filtration : t > 0} with respect to which each H . is predictable and each 

is a martingale then the process ^  ^Htd £ ^  will be a martingale with respect to : t > 0}.
i

When is a martingale, E ^¡dEME' = 0 and when = Ni -  Ai it follows that

E [h idNi = E [H idAi thus enabling calculation of first moments for counting process statistics.
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Second moments as stated previously require the predictable variation and covariation processes. 
For arbitrary counting processes3 and locally bounded predictable//,, with = Ni -  At, i -  1,2 ,

\H tdAMr is a martingale over [0, t] if E < <x>. This in turn implies that
o

' f  ' 1 1
E \ H id.'Jir=0 and for i , j  e{l,2} E \ H id , ^ r \ l I jd . j r  = E \ h  ,.//¡d^ , ^ ) .

V o y  o

It then becomes clear that formulae for , ^ f j  are required. These are derived both for the case

of continuous compensators and when the compensators may have discontinuities. In the 
applications to be considered later in the chapter the counting processes {/V,,..., Nn} have

continuous compensators {Al,...,An} due to the continuity of the distribution of failure time. In this

case with the counting process determining whether failure has occurred and the failure time having 

an absolutely continuous distribution F(t) = 1 -  expj -  JA(u)du >, the compensator is absolutely

t  t

continuous and is given by A(t) = J7(X  > u)dA(u) = j7 (X  > u)A(u)du, where X  is the minimum
0 0

of failure and censoring time, A is the cumulative hazard for failure and A is the hazard rate for 

failure as defined on page 42. Then for statistics of the form

U(t) = J  \ H id(Ni -A ,  ) = X  )fI ,(u)d,Jr(U)
1=1 o  ¿=1 o

with Hi being -predictable and bounded on [0, oo) the following conditions hold:

1. The process U is a martingale over [0, co)

2. E{U(t)} = 0 ,0  < t < oo
n 1 , V

3. var E{U2(t)} = Y ,  \E{Hf(u)I(Xi >u)]A(u)du, 0<t<oo.4
1=1 0

In other words, when the compensator A of the counting process N  is continuous and E{A(t)} < oo 

or equivalently /s{/V(7)} < °o for all t, then

3 For the counting process martingales = Nl — At and = N2 — A2 under stricter conditions requiring that 

Nj is bounded as opposed to arbitrary, with / / ,  and H 2 being bounded and < oo, the following
relationships hold:

( ¡H'dcZir, \ H td , ^ j  = \Hfd(EMT,A%r) and l\H,d. jx ;, \ H 2d& r^  = \ H {H 2d ( ^ , ^ )

n  n  •

4 In general, var{i7 (/)} = E{U2 (t)} = j H i(u)H j (u)d (^M (, M  0 < t < OO . Condition 3 follows
i = l j =1 0

when the martingales are orthogonal for i ^  j  , i.e. ^~^j{t) = 0 for i ^  j  .
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e { ^ T 2 (/)} = E (& r, & r)  = E{A(t)\ t > 0, that is (& r, &r)(t) = A(t), and (& ?, &r]){t) = 0 for 

i * j , that is the component processes are pairwise uncorrelated i.e. orthogonal.5

Orthogonality of the corresponding martingales allows use of the martingale central limit theorem 
in establishing asymptotic distribution results for linear combinations of stochastic integrals with

n t
respect to orthogonal martingales, i.e. for statistics of the form U(t) = ^  i{u)d,E^F{u).

;=i o

4.2.1.5. A martingale central limit theorem

The martingale version of the central limit theorem gives the asymptotic distribution of statistics of
n  t

the form U(n)(t) = ^  JH ¡(u)d-FMF{u) as the sample size n-> <x> and uses the notion of weak
'=1 o

convergence or convergence in distribution of stochastic processes.6 The process U(n) is a sum of n 
orthogonal martingale transforms and the notation indicates the dependence of the process on the 
sample size n. Under certain conditions the process U{n) converges weakly to a time-transformed 
Wiener or Brownian motion process W*(t) as the number of summand martingales increases, 

where the stochastic process satisfies the following conditions:

5 In the case of a compensator A-{ with discontinuities, = j ( l  — AAt )dAt . If for each t > 0 given

, the increments of the counting processes {AjV, (t),...,ANn (/)} are independent 0,1 random variables, as is the 

case in most applications, then = 0 almost surely for Z ^  j , i.e. the component processes are

orthogonal.
n  t

Then for statistics of the form U¡{t) = S R  j (u)dE%C(u), / = 1,2 , such that H (. t is -predictable and
/=i o

i
bounded on [0,oo) and Ai = | f ( A ; > u)dA(u) , and for I,l'e {l, 2}, the following conditions hold:

o
1. U, is a martingale over [0,co)

2. E^U,{t)} = 0, 0 < / < co

3. COv{U,(t),Ur(t)} = S i  e {h ,j  (u)Hi l,(u)I(Xi > m)}{1 -  AA(zz)]t/A(u), 0 < t < co .
1=1 o

6 Weak convergence of stochastic processes generalises the notion of convergence in distribution of real-valued random 
variables. For arbitrary distribution functions on the real line F and Fn, Fn with n converges weakly to F
as n —> oo if and only if Fn (x) —> F(x) at all continuity points of F . This definition is extended to weak 

convergence for a sequence of random variables {X , X n, n =  1,..., n\ as follows. Assuming that the random variables 

all take values on the real line and letting Fn (t) = pr{Xn < /} and F(t) = pr{X  < f} , then X n is said to 

converge in distribution to X  , written as X n — — > X , if and only if Fn converges weakly to F .
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1. IT (0 ) = 0 and E^V\t))=  0 for all?
2. W \ t )  has independent increments, i.e. W*(t)~ W \u )  is independent of W* (u) for any

0 <u <t
3. W* (t) has continuous sample paths
4. W*(t) is a Gaussian process, i.e. for any positive integer n and time points tx,...,tn the joint 

distribution of ),...,W*(tn)} is multivariate normal

5. The standard Wiener or Brownian motion W(t) has variance var{W(/)} = t . A time-
t

transformed Brownian motion W*(t) has variance varjlf *(t)}= a ( t ) , where a { t ) -  Jf 2(s)ds
0

with /  being a measurable non-negative function.

The process U(n) satisfies condition 1 for all ». By the martingale property, U(n) has uncorrelated 

increments so that condition 2 is plausible for large n. If the jumps of UM become negligible as 

n —» oo then the sample paths of U{n) become continuous for large n and then conditions 3 and 4 
also hold. Also as stated above, var{f/(n)(/)} = E ( u (n), f / (n)^(t) and if ( u (n),U{n)̂ (t)— > a (i)  for

some integrand f 2, where the notation —— > denotes convergence in probability,7 then Uin) 
should satisfy var\ u {n)(t)}= a(t) as n —> oo.

Assuming that conditions 1 through 5 are true with /  being a measurable non-negative function
t

and a(t) = J / 2 (s)ds for all t > 0 , assuming further that for all t > 0 as n —> co,
o

(U(n) ,U(n)){t)—^ a { t \  that is
1=1 0 0

and that the jumps of U(n) become negligible as n —> co, then the process U(n) converges weakly to 
a time-transformed Brownian motion W*(t). This means that the process U(n) converges in

distribution to a multivariate normal distribution with zero mean and variance matrix given by the 
appropriate values of cc(t) ,8 In studying the statistical properties of the cost estimators presented

later in the chapter, the martingale version of the central limit theorem given above is used to prove

7 Let X n be a sequence of random variables indexed by the size of the sample n . Then the sequence of random

variables X  converges in probability to a limit process X , written as X n — —> X  or p lim Y n — X  if
lim pr(\Xn — X\ > £■) = 0, V f  > 0 . This means that the values that the sequence X n may take that are not closert-> oo 1
to the values of X  become increasingly unlikely as n increases.

-» N(0, cc(t)), while because of independent increments for any two pointsFor example, for any t > 0 , U(n> -
in time tv t2 > 0  the vector [ / (n)(f2)} converges in distribution to a bivariate normal with mean {0,0}

a(tx) a(tx/ \ t2)
and variance matrix

var U(n){tx)
COV

cov{t/ifl) (/, ), i / ln) (/2 )} 
var U(n){t2) a(tx a t2) « (f2)

where

tx A t2 = min(i,, t2 ) (Therneau and Grambsch, 2000, p.26)
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asymptotic convergence of the cost statistics to a normal distribution and to derive asymptotic 
variance estimators as n —> oo.

4.2.1.6. The independent censoring assumption

As the exposition above shows, one of the great advantages in modelling time-to-event data using 

the counting process and martingale framework is that censoring can be easily accommodated. The 
theory described above assumes that the underlying censoring mechanism is random, that is time to 
failure and time to censoring are independent random variables. Gill (1980) gives other examples of 

right-censoring mechanisms which may arise in medical studies and shows that for all these 

mechanisms the assumption of independence between T and U is justified. Moreover, the 

assumption of independence between T and U underlies all the proposed estimators of cost to be 
considered in this chapter. It is important therefore to investigate more closely the random 
censoring mechanism before presenting the estimators of cost. Investigation is undertaken using the 

theory presented above.

The same observed data are assumed as described earlier in section 4.2.1 and the same notation is 

adopted. Thus assuming a continuous non-negative failure time denoted by the random variable T 
and a censoring time variable with an arbitrary distribution denoted by U, where T and U are 

independent and A is the hazard function for T, the observable data for n individuals are the 

independent and identically distributed random vectors

{X¡ = min(7], £/,.), S¡ = I(T¡ < U¡)\i  = 1,...,« , where i identifies an individual.

n

The following stochastic processes are defined. N¡(t) = I(X¡ < t,S¡ = 1) with N(t) = N¡(t)
i = i

counting the number of individuals dying over time, N¡(t) = I(X¡ < t,S¡ = 0) with
n

N c(t) = ^  N . (t) counting the number of individuals censored over time, and Y¡ (t) = I(X¡ > t)
i =1

n

with Y(t) -  V  Y¡ (0  counting the number of individuals at risk over time. The associated filtration
i=i

{.J^: t > 0} is given by 3 ^=  ct {n (u ), N c (u ) : 0 < u < t, i = 1,...,«} and provides information on the

individuals who have died or have been censored up to and including time t. Due to the 

independence between T and U the hazard rate in the presence of censoring is

pr(t <T <t + A/lr > t) pr{t <T <t + A/lT >t,U >t)
A(t) = lim --------------------- 1---------= lim -----------------------1----------------

ai->o At A'->0 At

Hence pr(t <T <t + At\T >t,U>t)& A(t)At.
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Because N(-) is right-continuous, i.e. N(t~) = lim N(s) ,
s —¥ t

A(t)At « pr{N[(t + A t)-] -  N(t~) = l|T> t ,U >  t}

and since N[(t + At)-] -  N(t~) is a 0, 1 -valued random variable,9 

A{t)At « E{{N[(t + At)-] -  W(f-)}|r > t,U > t}.

The hazard rate therefore under conditions of independence between T and U, gives the average rate 
of change in N  over [t, t + At) conditional on both the survival and censoring time exceeding or

being equal to t and thus specifies the conditional rate at which At jumps in small intervals. Then the 

process A given by

t

A(t) = j7 (X > u)A(u)du
o

is a random variable at each fixed t and approximates the number of jumps o f N  over (0, t ] .

Furthermore A is the compensator of N  since A is predictable (it is continuous and adapted to a 
history and thus determined at time t by the past strictly prior to t, i.e. by ) which implies

that the process defined by

= N(t) -  A(t) = I (X  < t,S = 1 )- \ l { X  > u)A(u)du
o

is a martingale. To show that is indeed a martingale, following Fleming and Harrington

(1991), the following filtration is assumed

ct{N(u ) , I(X  < u, 8 = 0): 0 < u < j }.

Then the filtration 3^_ = ct{N(u ) ,I (X < u, 5 = 0): 0 < u < 5} represents the accumulated 

information on N(u) up to, but not including, time s.

As shown above, when T and U are independent, dN(5) denotes the change in the process N(s) 
over an infinitesimal interval (s -  ds, 5] and is one if a failure occurred at s and zero otherwise, that 
is, dN(s) is a 0, 1-valued random variable with conditional probability I{X  > s)A(s)ds of being 1 
given implying

' For a 0, 1-valued random variable X  ,
E{X) = X  Xpr(X = x) = {(X = 0 )pr(X  = 0)} + {(X = 1 )pr(X = 1)} = pr{X  = 1)
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Also

E{dA(s)| } = £{ /(X  > s)/t(s)ifr| J 7 - } = /(A  > s)A(s)ds = dA(s).

The change in the process - N  -  A over an infinitesimal interval (s -  ds, s] is

d.AM̂ (s) = dN(s) -  dA(s). If then follows from the above that E { d } = 0, that is, a

martingale with respect to ^ 7 -

The exposition above implies that when T is a continuous failure time random variable and U a 
censoring time variable with an arbitrary distribution, with X  = min(T,U) ,  5 = I(T < U), A being

the hazard function for T and

E{dN(s)|^1 }= pr{dN(s) = = /(A" > s)/l(s)iA = dA(s).

N(t) = I (X  <t,S  = 1),

N c (() = / ( X  <t,8  = 0),
ct [n {u ) , N c {u) \ 0 <u  <t ]

I
then the process given by = N(t) -  j l ( X  > u)X{u)du is a martingale ifX and  U are

o
t

independent.10 Consequently there is always an increasing process A(t) = j f ( X  > u)A(u)du such
0

that N -  A is a martingale with respect to the filtration . ^ a \ N ( u ) , N ‘(u)-.0<u<t}^

10 Counting process and martingale theory can accommodate dependency between the variable of interest and its 
censoring variable as shown in Fleming and Harrington (1991). If T and U are dependent, given the counting processes 
and filtration as defined in the random censorship model above, the associated martingale process is given as

i
&T(t) = N(t) -  | I (X  > u)A\u)du .

0
t

Thus, there is still a compensator A(t) = j7 (X  > u)/1# (u)du which makes the previous process a martingale with
o

respect to the above mentioned filtration, but the hazard rate for failure time is now X' which can be very different
from the hazard rate for failure A which holds when T and U are independent. Specification of A# requires knowledge 
of the joint distribution between T and U.
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4.3. Non-parametric estimators of cost under censoring

The preceding sections presented the counting process approach to the analysis of time-to-event 
data. As shown the approach allows such data to be modelled and analysed while accommodating 
the presence of censoring. The following sections will concentrate on the analysis of cost-to-event 

data under conditions of censoring using the same analytical framework. All non-parametric 

estimators referred to in the introduction to the chapter together with the assumptions underlying 
their validity will be presented and their statistical properties will be studied using the counting 
processes and martingale theory given above. The same general setting is assumed as given in 

section 4.2.1.

To reiterate, the aim of the approaches presented below is to derive an estimate of the mean total 

cost /u = E(M)  and its variance over a specified period when the data is right censored, where the 

random variable M  denotes the total cost for a patient during some specified time T and E denotes 

expectation. The distribution of the random variable T is assumed continuous over (0, L] where L 
denotes the upper bound of T, i.e. the maximum time for which each patient is evaluated in which 
case M is the total cost incurred by a patient up to a maximum of L units of time. To accommodate 

censoring, a potential time to censoring denoted by U is defined and letting T denote the time to 

death, the observables from a study in the presence of censoring are X  = m\n(T,U ) ,  i.e. the last 
contact date; 8  = I(T < U), where /(•) is the indicator function taking the value of 1 when the 
observation is uncensored and zero otherwise; the cost accrued up to time X  and other intermediate 

cost history for each subject, i.e. M H (t) = {M(u), u<t],  where M H (t) denotes the cost history up 
to time t, M  = M(T ) ,  with M(u) being the known accumulated cost up to time u and u denoting 

points in time at which cost information becomes available. The observable data for n individuals 

are then the independent and identically distributed random vectors

\x¡ = min(7), Ul ), 8i = I{T¡ < Ui ), M " (X ¡)}, i = 1,..., n , where i identifies an individual.

4.3.1. Kaplan-Meier and “naive” estimators

The first attempt to account for censoring in cost estimates used the Kaplan-Meier estimator (Fenn 

et al, 1995). Before outlining how this estimator has been applied in the estimation of the 
distribution of costs, it is useful to present the method as applied in the estimation of the distribution 

of failure times and study the statistical properties of the estimator within the framework of the 
theory of stochastic processes. The Kaplan-Meier estimator (Kaplan and Meier, 1958) plays a role 
for censored data similar to that of the empirical distribution function for uncensored data, that is, it 
is an estimator of the cumulative distribution function for failure F(t) based on the observations 
(X i,8i)i = 1,...,«, which reduces to the usual distribution function based on 7j ,...,Tn if 8i = 1 for 

each i, where the 7j's are independent and identically distributed with distribution function F .
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Under the assumption of independent censoring, the Kaplan-Meier estimator for the probability of 

survival to time t is given by

where the process N(t) = I (X  < t , S -  1) counts the number of failures and Y(t) = I (X  > t) counts 

the number at risk. It should be noted that different versions of the Kaplan-Meier estimator have 

been proposed to define the estimator when the largest observed time corresponds to censoring. All 
versions of the Kaplan-Meier estimator equal r L  ((l -  AN(s))/Y(s) for t < X mM , where X max

denotes the largest observed time, and they are all equal to zero for t > X max if the event at A max is 

a failure. In the original paper by Kaplan and Meier, the estimator was left undefined for t > X mm if 

A max is a censored observation. Efron (1967) set the estimator equal to zero for t > X mm even if the

last observation was censored. The version adopted here was proposed by Gill (1980) and sets the 
estimator equal to S (X mM) , that is equal to its value at the largest observed time, for t > A max even

when the last observation is censored.

The mean survival time is the area under the Kaplan-Meier curve
co

// = ^S{u)du
o

and the mean survival time over (0, t] is estimated as
t

/), = JS{u)du
o

This estimator is shown to be consistent with asymptotic variance estimated as

vâr(/),) = jj JS(u)du d\  J-
dN{u)

' Y(u)[Y(u)-AN(u)]

(4.2)

(4.3)

(see, Andersen, Borgan, Gill et al, 1993, p.279). For calculation purposes, the mean survival time 

can be written as
in

A  = £ s ( f
1=1

where trn is the largest observed point in time, and the asymptotic variance can be expressed as

m-1
vâr(Â ) -  X

1 = 1

(m-1

V j=‘______________ ,

where dj denotes deaths and ni denotes individuals at risk.
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As noted above the Kaplan-Meier estimator was the first non-parametric estimator to be applied to 

cost-to-event data in an attempt to account for censoring in the cost estimates. Table 4.1 outlines the 

main concepts underlying the approach when this is applied to time-to-event data and contrasts 

these with the analogous concepts underlying the application of the same approach to cost-to-event 

data.

Table 4.1. Kaplan-Meier estimator applied to cost versus survival

In time to event analysis In cost analysis

The random variable of interest T is time to event The random variable of interest M  is the level of 
cost incurred to the event, where the event is the 
termination of the study period

The hazard associated with a particular moment in 
time is the conditional probability of death at that 
moment, given survival until that moment

The hazard associated with a particular level of cost 
is the conditional probability that cost will not 
exceed that level, given that it has reached that level

The survival function when evaluated at time t gives 
the probability that the patient will survive at least 
until t: S(t) = pr(T > t)

The analogous cost function implied by the equation 
S(c) = pr(M > c) gives the probability that the 
cost will be at least c

An observation is right-censored at a moment in time 
if it is known only that the patient survived past that 
moment (was alive at that moment), i.e. time of 
death or even whether death has occurred is not 
observable

Right-censoring at a particular cost level within the 
study period occurs if it were known only that the 
patient's cost within that period was at least that 
great, i.e. the patient's cost behaviour across the 
complete period is not available for analysis

The Kaplan-Meier estimator for the probability of 

survival to time t is S(t) = J~J 11 -  j

The Kaplan-Meier estimator for the probability of
- T-r f, AN(lc)}

cost being at least c is S (c) = j  |  <j 1 — y(k) j
k < c

where N{t) = £ / ( * , s <,£,=  l) , 
1 = 1

Y(t) = f j I ( X i >t)

where N(c) = y i ( M l <c,Sl = 1).
i = l

Y(c) = f j I ( M i > c )
M ;=i

The mean survival time is estimated by
L

juL = jS(u)du where L is the maximum observed
o

duration in the study

The mean cost over the study period is estimated by
c

Mkm ~ j‘S{c)dc where C is the maximum observed
o

cost in the study

The variance estimator for the mean survival over 
(0, L] is given as

V  fvL  (  L

vâr(/JL ) = j  JS(u)du d\ J dN(u)
0Vv j  L0Jy (M)[y(M)-AAf(M)]j 

where u and v denote points in time

The variance estimator for the mean cost over 
(0, C] is given as

cic  V {h dN{c)
v â r ( Â x A / ) = {  \S{c)dc dl J- 

o \ h  y  [ o

where c and h denote levels of cost
Y(c)[T(c) -  AN(c)]
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In the application of the Kaplan-Meier approach to cost-to-event data, the hazard rate associated 
with a given cost level specifies the conditional probability of having “completed” that cost level, 

that is, it gives the probability of an individual dying having attained c units o f cost given that the 

individual was alive after having attained c- 1 units of cost. The probability that the cost will be at 
least c, S(c) = pr{M > c ) , is then given by the Kaplan-Meier estimator as

« ■ O l ' - w l

n

where c and k denote levels of cost, N{c) = ^  7(M,. < c, S, = 1), that is the counting process counts
i= l

the number of complete cost observations, or stated differently, the number of individuals who die
n

having reached a cost level of less or equal to c, Y(c) = I(Mj > c) is the number of individuals
;=i

who have attained a cost level of at least c, M ; denotes the observed cost for individual i and 

St = I(T; < Ui ). The estimator of the mean cost over the cost interval (0, C] is given by the area

under the Kaplan-Meier cost curve as

c

Mkm = \S(c)dc (4.5)
0

which is computed as

m
Mkm -  c«-i)

M

where cm is the maximum observed cost in the study. The asymptotic variance of the mean cost 

over (0, C] is estimated as

c Z c

vârC£/a/) = J j S(c)dc d U
0  \ h

dN(c) 1
Y (c)[T (c) -  AN (c)] I

(4.6)

where c and h denote levels of cost and is computed as

f  m-1

m-1
vâr(/^m ) = Z

1 = 1

Z 5 (c;X cv+l ~ c j ">
\Jz!_______________ ±

n,(ni - d t)

where di denotes the number of individuals who die having reached a cost level of less or equal to 

a given value and ni denotes the number of individuals who have attained a cost level of at least

that value.
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Another two estimators have also been used to estimate the mean cost in the presence of censoring 

which are referred to as “naive” estimators in the literature because the first only uses the 

uncensored cases in the estimation of mean cost and is referred to as the uncensored cases 
estimator, while the second uses all cases but does not differentiate between censored and 

uncensored observations and is referred to as the full-sample estimator. To show explicitly how 
these estimators are computed, it is convenient to present first the Kaplan-Meier estimator for cost 

as

- l + c ,) j

where n is the total number of subjects entering in the study, nk is the number of complete cost 

observations at k as defined above, rij and c . are uncensored and censored observations

respectively and j , h, and k denote units of cost.11

The uncensored cases estimator , where the mean cost is calculated with reference to the 

uncensored data alone is given as

c

-s:
1___ '

x n
l  Hky—yk-X

>

h=1 ii___
i { Hn ~ Z a M n j \

(4.7)

where nn is the total number of uncensored cases.

The full sample estimator juFS , where the mean is estimated by reference to the full sample but 

without distinction between censored and uncensored observations is given as

M f s  = Z
h=1

n
k=\

n k +  c k 
k̂-\

n ~ sL j J nJ +cjï
(4.8)

Fenn et al (1995) show that the latter two estimators impart bias with both the full-sample estimator 

and the uncensored estimator resulting in smaller estimates of mean cost than the ‘true’ Kaplan-

In a similar manner, the Kaplan-Meier estimator of the mean survival time can be given as

L

Ml  = Xt=\ n
k=\

1
n.

n - Y Ï l ( nj +cj)
where n is the total number of subjects entering in the study, nk is the number of deaths at k, rij and Cj are

uncensored and censored observations respectively and j, k, and t denote units of time. Thus juL represents the area 
under the Kaplan-Meier survival curve up to L units of time, which is the maximum observed duration in the study.
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Meier estimator. They conclude that the Kaplan-Meier is to be preferred when analysing censored 

cost data. Lin et al (1997), Etzioni et al (1999), and Bang and Tsiatis (2000) argue however that 
such a conclusion is misplaced. Their argument is based on the fact that the validity of the Kaplan- 
Meier approach relies on the assumption of independence between the variable of interest and its 

censoring variable which is satisfied with respect to time-to-event but it fails with respect to cost-to- 

event.

In the analysis of failure time data, this assumption requires independence between time to failure 
(7) and time to censoring (U) which as stated above is satisfied when the censoring mechanism is 

random. Independence between T and U can be interpreted in the following manner. Considering 

the 7)'s as lifetimes starting at time t = 0 , X f > t means that individual i is still under observation 

just after time t. Independence means that for every t, given what has happened up to and including 
time t, the remaining lifetimes of the individuals who are still under observation just after time t 
have the same joint distribution as if there had been no censoring. In particular, the fact that 

individual i has not been censored in (0, t] gives no information about his remaining lifetime 
distribution. In other words, the removal of certain observations due to censoring does not affect the 

joint distribution of failure time for the remaining observations. Stated differently, independent 
censoring implies that the probability of an individual being censored at any point in time t is not 
related to the individual’s risk of failure. As a result, the expected survival time is the same for 
censored patients as for uncensored patients. Independence between the variable of interest and its 

censoring variable within the context of cost-to-event analysis requires independence between cost 
at failure time and cost at censoring time. If this was the case, patients censored at the same time 

with the same accumulated costs would be expected to have the same total costs if they were 

followed to death and then the Kaplan-Meier estimator would provide unbiased cost estimates. In 

other words, the Kaplan-Meier estimator is inappropriate unless all patients accumulate costs at a 

common rate over time yielding a one-to-one correspondence between the survival time and total 

cost. Commonly, however, the rate of cost accumulation varies among individuals, with those in 

worse health utilising higher levels of resource and costing more per unit of time. Independence is 

therefore violated as patients who accrue costs at higher rates tend to generate larger total costs at 
both the survival time and the censoring time, which implies positive correlation between the total 

cost at failure time and the total cost at censoring time. Consequently, the removal of certain 
observations due to censoring affects the joint distribution of cost for the remaining observations, 

that is, at any point in time future cost expectation is statistically altered (from what it would have 
been without censoring) by censoring. The condition of independent censoring required for the 

validity of the Kaplan-Meier method is thus violated and this estimator is therefore inappropriate in 

the analysis of censored cost data.

Furthermore, the “naïve” estimators defined above will always be biased. The full-sample estimator 

is always biased downward because the costs incurred after censoring times are not accounted for
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whereas the uncensored-cases estimator is biased toward the costs of the patients with shorter 

survival times because larger survival times are more likely to be censored.

Lin et al (1997) acknowledge these difficulties and propose an alternative which attempts to deal 

with this bias. Their estimators are derived by partitioning the study time period into a number of 

subintervals and consistency is ensured if censoring occurs solely at the interval boundaries. Under 

such censoring conditions, the estimators are shown to be asymptotically normal and asymptotic 
variances are analytically derived using the martingale theory presented above. This censoring 
pattern essentially requires discreetness of the censoring time distribution so that censoring times 

can be confined to the boundaries of the subintervals of the partition. Failure to meet this 
requirement will result in some bias in the estimates. This limitation led to a further set of 
estimators introduced by Bang and Tsiatis (2000) which are shown to be consistent regardless of the 

censoring pattern. Asymptotic normality and consistent variance estimators are also derived using 

the counting process and martingale theory given above. These estimators together with the 
assumptions underlying their validity are considered in turn below.

4.3.2. Lin et al estimators

Lin et al (1997) present two approaches in estimating the mean total cost over the period (0, L ] . The 

first requires information on a patient’s intermediate cost history whereas the second only uses the 

observed total costs at the last contact dates. In both approaches, the entire study period (0,Z] is 
divided into K  intervals [a k, a k+x), (k = 1 , where a x = 0 and a K+i = L  . The assumptions

underlying both approaches are as follows. Independence between time to failure and censoring 

time, an extension of the independent censoring assumption to ensure that at no point in time t are 

patients censored because they accrue unusually high or low costs, continuous distribution of failure 

time and continuous or discrete distribution of censoring time. However, as stated above, 

consistency of the estimators requires that the pattern of the censoring distribution is such that the 
censoring times can be made to coincide with specific points in time corresponding to the interval 

boundaries of the partition of the study period (0 ,Z ]. This essentially imposes a discrete pattern for 

the distribution of censoring times.

4.3.2.1. Estimator of mean cost when cost histories are recorded

The authors’ first approach (referred to as Linl below) can be used to estimate ¡u = E(M ) when the 
cost histories are recorded in which case M  may be decomposed as (M K) , where M k is the

observed cost over [ak , a k+]). That is, M = M k which implies that

/' = z  E ( M , ) = £  e {e (m ,  \T > a k)} = £  p r ( T  > a t )e (m ,  |r £ a k) =
k = \  k =1 * = 1 k =1
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where Sk = pr(T > a k) and Ek = E[Mk\T > a k \  Replacing the unknown quantities Sk and Ek by 

their consistent sample estimators will result in a consistent estimator for p . The mean total cost p  

is thus estimated by

where Sk = Pr(T > ak ) is the probability of surviving to ak and it is consistently estimated by the 

Kaplan-Meier method as

W l 1'
dN(u) 
Y(u) ,

(4.10)

where the counting processes N(u) and Y(u) have been defined above, and

Ek =
I  'mYuM u

, k  = \,...,K (4.11)

where M ki is the observed cost of individual i incurred in interval k and in this case 

Yki = I (X i > a k). That is, Ek is an estimator for mean cost Ek in interval k and is derived from 

those individuals who are under observation at the start of the interval.12 In other words, Ek is the 
sample average of the observed costs over the interval [a k, a M ) conditional on survival to the start 

of the interval. Thus, Ek is an unbiased estimator of the true average cost Ek in interval k if 
censoring occurs at the end of the interval, since in that case M ki represents the cost of individual i 
over the whole interval k for all for all i s with Yki = 1, that is for all individuals who were under 

observation at the start of the interval. If censoring occurs before the end of the interval, Ek will 
underestimate Ek since it does not take into account the costs of the censored observations from the 

point of censoring to the end of the interval. The authors also suggest an alternative way of 
estimating Ek based on the exclusion of those who are censored during [a k, a k+l) from the 

calculation of the sample average Ek. The resulting estimator will be unbiased if all the patients 

who are under observation at time ak have the same probability of being censored during 
\ak, a k+[). This condition, which implies that the uncensored M ki's are representative of all the 
M ki's in the Ath interval so that exclusion of those censored in the interior of the interval would not 

impart bias in the estimates, essentially requires that censoring occur at the start of the interval on 

the basis that larger survival times are associated with higher probabilities of being censored.

12 Assuming that extended independent censoring as defined above holds, i.e. E[Mk \T > a k ) -  E(M,\x  > ak), 

implies that Ek can be estimated from those who are under observation at the start of the interval.

62



Clearly, the bias diminishes as the intervals of the partition shrink and as the authors note both 

estimators of Ek are nearly consistent for narrow time intervals regardless of the censoring pattem.

For large samples, juUN[ is shown to be asymptotically normal and its variance estimator is derived

„ y n YkiM ki
as follows. By the law of the large numbers, the estimators Ek = — — -------- (k = 1

converge in probability to E\ = E(Mk]\YkX = 1). It then follows from Slutsky’s theorem and the
K

consistency of the Kaplan-Meier estimator that fiUNl = 2^SkEk converges in probability to
k =1

Eu n\ ~ y.SkEk ■ Let Z = n [fium -  Hum )• Then
k = 1

Z = n1/2

\ k  = I k =1

( K
= n. 1/2

\  (  K
1/2+ n

k =1

Z s x
V k=\k=\ y

k=\

= Z, + Z2, say.

Due to the consistency of the Sk ’s,

k =1

\

)

z,  ( A -£,')+<>,( O
*=i

*
- 1 $’k -I 

*-1 «

- 1/2

- E „
z ; . , 4

* n= Y s k---------------------
*■> « L = .y*

+ 0 , ®

+ Op( 1)

13 The choice of the particular expression nU2 (jU -  /u) in studying the estimator’s asymptotic properties is due to the a 
frequently observed result in asymptotic statistics, namely that in general many statistics allow approximation by an 
average of the form

nU2(E-M) = n~'l2Y j y/{xi) + op (1)
i=i

where y/{xi ) is some random variable and the notation op (1) denotes a term that converges to zero in probability. In 

these circumstances, if ) has zero mean and finite second moments then by the central limit theorem 

liU2 (/} — jLl) is asymptotically zero mean normally distributed.
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where op (1) denotes an asymptotically negligible term which converges in probability to zero. By 

the central limit theorem and the law of large numbers, the random variable « “l/2 Yki(Mki -  E\ ) 

is asymptotically zero-mean normal and the random variable n~' ^ Yki converges in probability to

the constant E(Ykl) . It then follows from Slutsky’s theorem that

Zx=n -1/2 Sk Yu (Mkj ~
t r n f  E(XU)

K )
+ o ,( l) (4.12)

which is a sum of n independent and identically distributed (i.i.d.) zero-mean random variables.

To derive an i.i.d. representation for Z2 it is convenient to use the counting process and martingale 

theory presented above. The counting processes are defined as shown in sections 4.2.1.1 and

4.2.1.6, that is,

N,(t) = I(X, <t,Si = 1) = SII ( X I < t) with N{t) = X  Ni(t) ,
1 =  1

N ‘(t) = I ( X i < t,S. = 0) with N c(t) = £ n ,c(0
i= l

and the filtration these processes generate is ^ c j{n (u ) ,N c(u ) \Q<u<t] .

Due to the independence between failure and censoring time, as shown in section 4.2.1.6, the
t

processes given by (/) = (t) -  > u)dA(u) are the associated subject specific
0

martingales, where A(-) is the integrated hazard function for the failure time T. The Kaplan-Meier
A, 7 A . 1 4

estimator Sk is asymptotically equivalent to e * where A k is the Nelson-Aalen estimator for

A , = A (ak), 14

14 Assuming the random censoring model and the associated counting processes, filtration and underlying distributions
i

given above, then as stated previously the process given by = Af (t) — J l j  (s)dA(s) is a martingale for each
o

i
i with respect to . An estimator of the integrated hazard function A (t) = JA(u)du , first proposed by Nelson

o

(1969), is A (t) = j~ -  — ^~dN(u) , where the stochastic integrand is taken to be 0 when both the numerator and

the denominator vanish. Following Fleming and Harrington (1991), when no statistical model is assumed, information
i

is available only for {u Y(«) > 0} and A (t) estimates the random quantity A* (t) — j I {y(w) > 0}A(u)du . Then
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dN,(t) (4.13)A,
/=! o

since ï( l)  = ' Z , m  = ' Z n X , i t )
1 = 1 /=1

Furthermore as shown in Fleming and Harrington (1991),

» ■ " (A .-

= «

1=1 0 ^ (0

l i -i *= o n

J ^ r ( t )  + op(\)

+ o ,(l)
Y jJ W j * 0

given that

/{ y (0  > Q}
7 (0

-----  if 7 (0  > 0
7 (0
0 if 7 (0  -  0

(4.14)

By the martingale central limit theorem (section 4.2.1.5) the denominator on the right side of (4.14) 

can be replaced by its expectation, yielding

«'/2(Â* -A*) = n"'/2X J'
«* J  , :v ,

^  0 ^  0  + ° P ^
(4.15)

which is a sum of n i.i.d. zero-mean random variables. By the Taylor series expansion 15

A(0 -  A* (0  = f/{ r ( ^ > 0 W oO -  f /{ 7 (h ) > 0}A(u)du
o Y(u) o

= f7^ )  > ®\[dN(u) -  Y(u)Mu)du] 
o Y(u)

15 In general, the Taylor series expansion can be used to study the weak convergence of a function of an estimator when 
the estimator is known to weakly converge to a limit distribution. In particular, if nU~ (A — A) = Q + op (1) 
for some variable Q, then for some known differentiable function (p{A) the following approximation holds 

nl,2(<p(A)-(p(A))*(p'(A)Q + op(l).

In the present application, ^(A ) = e A = S and <p'(A) = — e A = —S . It follows therefore that

A “‘f dAMTit)
um (St - S t ) « - S t»-,I2'Z J r'>VQ+>

i=\ 0 Pr(X  -  0
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k =I 

K
=  n 1 / 2 V i ’ ’ i - V  ) n —  V  f  d ' ^ j t )-¿-I k\ Sk) 2_! J , y  > s /

*=i « ¿=i o -  0

= ^ - " Z t ^ . 7 - ^ T  + o ,0 )
i'=l i=l 0 pr(X > t)

Combination of (4.12) and (4.16) yields

« k

z = , r ' ,2Z Z i « + o i ( 1)/=! k=\

(4.16)

where

4  =
SkYki(Mki-E'k)

E(Xkl)
K S k J

ddM^jt)
pr(X > t)

(4.17)

Since for every i the random elements involved in %ki (k = \,...,K) pertain to the zth individual

only, the random variable Z is a sum of n i.i.d. zero-mean random variables and applying the central 
limit theorem it follows that Z converges in distribution to a zero-mean normal random variable 

with variance <r2 = )•'16

A natural estimator for a 2 is given by 4  = 4  E m Z L L = ,4 4  > where the 4 ' s  are obtained 

from the ¿¡kl' s by replacing the unknown quantities in (4.17) with their respective sample estimators 

as follows

g SkYkl(Mki- E k) £  * ardNj(t) -  I ( X j >t)dA(t)
s  k i  n  k  k  J  n

n-'Z n ,  »
i=1 /=1

where

16 Expressing (4.17) as E,ki ~ -e(l)4 U + 4kj} > where an4 denote the two terms on the right side of (4.17), then 

which is a representation for var(Z) = var(Z,) + var(Z2) + 2 COv(Z,, Z 2), that is the first two terms on the right

side of (**) are the variances due to the variations of the Ek 's  and the Sk 's  respectively and the third term is the
covariance. Each of the three terms accounts for the variations within the intervals and for the covariances among the 
intervals (Lin et al, 1997).
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l
dNt {t) -  I ( X i > t)dk(t) _ a\ dN . (0

J:
I (X ,> t) dN(t)

> ,)  5 "  ‘L V ^ . V ' L V « E ' . , 7«  S i >

(W ,(o

(because of 4.13)

/=l

= J
_ £ " j  I(X,>t)<INj(t)

n ' Y , J ( x , > t )  £ » V  { £ . , / ( * ,> < )

/(JT, < a ,  )<S, A  / ( * ,  ^  x , ) I ( X j  < a ,  )<S,________________y _____ ______________
Z l A X ^ X , )

Thus the variance estimator for /}iW1 is a 11 n and is given as

n K K
var (jiuN\) = I I W .

1=1 A = 1 /=1
(4.18)

where

^ x:—t n A: A: | n r> 2
■**/ j : X j ^ m m ( a k , X t )r „ i i

and

(4.19)

R , = Y . i ( x , > x , )
!= \

(4.20)

4.3.2.2. Estimator of mean cost when cost histories are not recorded

The approach for estimating mean cost when individual cost histories are not recorded (referred to 

as Lin2 below) again entails partitioning the duration of the study into subintervals [ak, a k+i), but 
now only observed total costs are being used in the estimation process. In this case the mean total 

cost n  can be given as

¡u = Y dE(M\ak < T < a k+l)pr(ak < T < a k+i)+E(M\T > L)pr(T > L)
¿=1

= Y j E(M\ak <T < a k+x )pr(ak <T < ak+])
*=1

= 2 ^ ( 5 , - S i . , )
k =1

with a K+2 = co and Ak = E{M\ak < T < ak+]). This leads to the following estimator for M
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=  00 (4.21)
K +1

Mu ni = T , A^ Sk ~ Sk+1) Wlth « K + 2
¿ = 1

where the survival probabilities S'* are consistently estimated by the Kaplan-Meier method, with 

Sk -  Sk+i being the estimated Kaplan-Meier probability o f death over the interval [ak, a k+t ), 

and

k = \,...,K (4.22)

where now Yki = I (ak < X t < a k+l, 8i = 1) and M ( is the observed total cost of individual i. That is, 

Ak is an estimator for mean cost for interval k and is derived from those individuals who are 

observed to die in the interval [a k, a k+{). If censoring occurs at the end of the interval, Ak is a 
consistent estimator of the mean cost Ak for interval k since Yki = 1 implies that M : represents the 

cost of individual i until the point of his death. If censoring occurs at the start of the interval then, 

given {Xj > ak], the failure times have the same probability of being censored in the interval 

[iak, a k+l) , and the observed deaths in [a k, a k+l) are thus a random subset of all deaths in the same 
interval which implies that Ak is still a consistent estimator of the mean cost for interval k. If 
censoring occurs in the interior of the interval, Ak is going to be biased towards the costs of those 
who die early in the interval because given the same censoring distribution larger survival times are 

associated with a higher probability of being censored.

With respect to the estimator of mean cost for the last interval of the partition [aK+{,a K+2) , this is 

defined as AK+I = E(M\T > L) and involves the observed total costs of the patients who are 

censored at L. The assumption of extended independent censoring implies AK+l = E(M\X > L) and 

hence AK+i is estimated as

AK +1 -
E l / , , I A  

Y , J k ,u
where YK+U =I(X, >L) (4.23)

As it can be seen from the above expressions estimation of the interval cost Ak (k = 1,..., K +1) 

does not require cost information on those individuals who are censored before the largest observed 

time L.

For large n, the estimator for the variance of juLIN2 is derived using the same theoretical framework 

as for the previous estimator as follows. By the law of the large numbers, the estimators 17

17 Again assuming the condition of extended independent censoring, as this implies that
Ak =E(M\ak <T < ak+l, U > a k)= E (M \X > a k,T < ak+i).
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A, =
E . L

(k -  +1) converge in probability to A\ =E(M\ak < X  < a k+l,S = 1),

(k = 1,..., AT). It then follows from Slutsky’s theorem and the consistency of the Kaplan-Meier
A' + l A A + l

estimator that jkUN2 = ^ A k(Sk -S k+l ) converges in probability to ju*UN2 = ^A*k(Sk -  Sk+l) where
k = 1

A*k+i = Ak+{ . Letting Z = nU2{fiUN2 -  ¡u*UN2), it follows that
k =1

(  K  +1

Z = n

= n

A+l / \ A.+1 t
I À L - L , ) - l 4 ' ( v - 0
k =1 k=\ J

K  +1 /  \  K +1 /  \  K + l  /  \  K +1

k=1 <t=l i=l *
K  + l /  \ /  \  K  +1 /  \  K  +1 /  \

= « ' '2Z ( ^  - L , P ,  -« » ..)
k = \ k =1 *=1

= Z, + Z 2 - Z 3, say.

Due to the consistency of the Sk ’s,

K+l ! \
z,  = » ' ' ! E ( s , - s , , , x 4 , - A ‘ )+ o , ( i )

k =1

= Z ( S , - \ J -
- 1/2

¿=1

K + l 1/2

Y "  Y MZ-it=\ i A*
~y™~Y kv Lu-r*

+ 0, ( 1)

/t=l 1V "  YZ-n=\ki
+  O p { 1)

By the central limit theorem and the law of large numbers, the random variable
n~\n Yk. (M. -  Ak) is asymptotically zero-mean normal and the random variable n~l | Yki

converges in probability to the constant E{Ykx) . It then follows from Slutsky’s theorem that

n  K + l

z , = « - ,/2£ I
i = \  k  =  l

f e  zIX m
£ ( n , )

— + o ,0 ) (4.24)

which is a sum of n independent and identically distributed (i.i.d.) zero-mean random variables. 
By the same arguments as given in the study of the large-sample properties of £ium , an i.i.d.

representation for Z 2 is given as

n  K  +1

Z2 = —n - 1/2 dcis
i =1 k = \ pr(X > t) + 0, ( 1) (4.25)
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and for Z3

v  _  „ - 1 / 2 V V  /I * C  * f  ^ ¡ V V  , „
^3 ~ n J / , ,  _ , + °p(l)

/=! i=l 0
(4.26)

where -¿^7(0 (/ = 1,...,«) are the martingale processes introduced above. Combination of (4.24), 

(4.25) and (4.26) yields

Z = n ^ i ^ ki+op( 1) 
1 = 1 * = 1

where

4 {sk - s M )ruW ' - 4 )
E ( Y J

+ a :
dA^j t)

pr{X>t)
d& XQ  }

p r{X > t) \
(4.27)

Since for every i the random elements involved in (k = 1 pertain to the z'th individual 

only, the random variable Z is a sum of n i.i.d. zero-mean random variables and applying the central 

limit theorem it follows that Z converges in distribution to a zero-mean normal random variable 

with variance o’2 = )■

As stated previously, a natural estimator for a 2 is given by a 2 = m-1^ "  £ki£n , where

the %ki's are obtained from the %ki's by replacing the unknown quantities in (4.27) with their 

respective sample estimators as follows

L  A ) -|- 4 ( C , a . u - ^ - d »i )

» " I 1»
7=1

where

7(A ; < a k )5i ^  ^7
*' D p2

A i  j \ X j lm m ( a k, X , ) J*-j

and

Hence for large n, p UN2 is approximately normal with variance estimator given as a 2 / n , i.e.

1=1 *=1 /=!
(4.28)
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where

(4.29)

(4.30)

n
R , ^ H X r >X,) (4.31)

/=1

Due to the consistency of the Kaplan-Meier estimator, the estimators p Lm and p UN2 are consistent
/V A

as long as the Ek 's and Ak 's are consistent. Their consistency as shown above is dependent on the 

censoring pattern and is ensured if censoring occurs at the boundaries of the intervals of the 
partition. If the censoring distribution is discrete, the boundaries <xk's can in theory be chosen to 

correspond to the possible censoring times and therefore the estimators are still going to be 
consistent. If the censoring distribution is continuous, the shorter the interval length, that is the finer 

the partition of the study period, the more unbiased the estimators. There is however a constraint 
associated with this point with reference to Lin et al’s second approach (Lin2), which requires that 

the length of the intervals of the partition is such that allows a reasonable number of deaths to be 

observed in each subinterval. It may not be possible however to meet this requirement while 

simultaneously ensuring that the censoring times are confined to the boundaries of the intervals of 
the partition as required for consistency.

4.3.3. Bang and Tsiatis estimators

The set of estimators proposed by Bang and Tsiatis (2000) do not impose any restrictions on the 

distribution of censoring times. The idea underlying this class of estimators is the use of an inverse 
probability weight in the estimating equations through which censoring is appropriately accounted 
for. The first estimator uses cost information from only the uncensored cases while the second uses 
intermediate cost history from all study subjects. The last two estimators build on the work of 
Robins & Rotnitzky (1992) and Robins, Rotnitzky & Zhao (1994) and attempt to improve 
efficiency by recovering information lost due to censoring.

The same notation as above is adopted here and the assumptions underlying the Bang and Tsiatis 

estimators are as follows. The distribution of failure time T is assumed continuous from 0 to L, the 
censoring distribution is assumed continuous with the random variable U denoting time to 
censoring having survivor function K(u) = pr{U > u) , i.e. the survivor function K{u) evaluated at

a point in time u gives the probability of an individual not being censored at u, and censoring is 
assumed to arise completely at random. A further assumption is that pr{Ui >L)>  0 which ensures
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that K(u) is bounded away from zero and that a number of patients are still under observation at L 
to enable calculation of the cost over the defined period (0, L].

4.3.3.1. Simple weighted estimator

All the proposed estimators originate from the weighted complete-case estimator. If complete costs

Under conditions of independent censoring, an estimator accounting for censoring using cost

The idea underlying the use of this specific probability weight to adjust for censoring is that under 
conditions of independent censoring, at time 7), K{Ti) = pr(U > 7]) is the probability that

individual i has survived to Ti without being censored. Therefore, if individual i is observed to die 

at 7 j, then he represents 1 /A(7j) individuals who might have been observed if there was no 

censoring. This is an unbiased estimator of /u as is shown below.

The unknown survivor function A(-) is estimated by the Kaplan-Meier estimator based on the data

were available for each patient, then an obvious estimator for the mean cost p  would be — V m , .
n

{A, = min(7j, U ön i = \,...,n\ as

(4.32)

where N c (u) = ^  / ( A < u, ¿f = 0) and Y(u) -  ^  / (A,. > « ) .

The simple weighted complete-case estimator is then defined as

(4.33)
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and its consistency is shown in Appendix A.4.1. Proof of asymptotic normality for this estimator 

and derivation of its variance for large samples are based on the theory o f counting processes and 

the associated martingale framework. The filtration adopted here is given by

and represents the increasing information over time on the censoring times up to time u and survival 
times and cost histories over all non-negative times. The counting process N c(u) counts the

number of individuals censored over time, and given that censoring is independent (see section 

4.2.1.6) the associated martingale is given as

(u) = a ;  (u ) -  I' /Ie (t)Y¡ (t)dt

where N . (u) = I(X¡ < u, 5¡ = 0 ), Yj(u) = I(X¡ > u) and X  (u) is the hazard function for the 

censoring distribution. In addition, (u) = (« ) . N c(«) = X Ni («) and Y(u) = '£j Y¡(u ) .

To study the large sample properties of the simple weighted estimator, the authors show that it can 

be expanded as follows

n 8  ¡M

n 5 M n S,M n 8 M

Using the following identity from Robins & Rotnitzky (1992, p. 313)

the above expression becomes

Using the martingale integral representation
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m - m
m

'ck (u - ) d ,% r c{u) 
0 K(U) Y (u)

(Gill, 1980, p. 37), where K(u~) is the left-continuous version of the Kaplan-Meier estimator for 

censoring and n~'Y(u) = K(u~)S(u~ ), with S(u) being the Kaplan-Meier estimator for 

S(u) = pr(T > u) , it follows that

. 1/2 ,  - 1 / 2  V 1 * t -VIST - | , 2 V u  \ d^ K C{u) _ 1 / 2 ^  SiM i \ \ k { u - )  d<$rC(u)
= n " ’ Z « - - »  Z / ' - "  + " Z - ^ T T  J 7  ) i t  ..A , ./=i /=i i=i o /=i Aj 7j  o Ajw  )S(u

K(u)i=l o
+ «~1/2 J

t/K (7;.)[oJ * (« ) K ( O S ( « > ,

j - i / j â T »  1 1 ^  SlM i
* ( k ) « 5 ( 0  M £(7))

“ ZW - / 0- * - n l K  O f 1+»""Z J- _fa.i=l o ^ ( W) 1=1 0 ^ ( W)

« L-r! 0//^Cd ^ c(u)~
1=1

= »-,,!z  ( « ,  -  z  -  c w . “>!
1=1 oi=l

1=1 1=1 0

i/2y  (d,^Çc(n) 
K(u)

{Mt -G(M,u)} + oP( 1)

(4.34)

where

G(M,u)

and

G(M,u)

S(u)

1 1 ^  SiM tI{Ti > u)

« 5 ( « ) w  ¿ (7 ))
(4.35)

The above expression is the sum of n elements, each one pertaining to individual i and hence they 

are identically and independently (i.i.d.) distributed. Using the martingale theorem presented on 

page 49 used in deriving the second moments for statistics of the form
n / n 1

U(t) = ]T j//,.d(A f -  Ai) = '^j J / /  ¡{ii)d.Y^{u) for the case of continuous compensators, the
/=! o <=| o

variance of the expression (4.34) is derived as

= var(M,. -ju) + E j{ M ,.-G (M ,M)}2/(7;. >u)
o

Ac(u)
K(u)

du

For large samples, the martingale version of the central limit theorem can be used to show that juWT 

is asymptotically normal with consistent variance estimator given by
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(4.36)yâr {ßwr) =
1 1 , 1 LrdN'(u)

n t t  K (Ti) n ’ K (u)
- \ ^ ^ - { g ( M \ u ) - G 2(M ,u )}n J V *■ i*i\

 ̂ n ” r\
where G(M ,u) and G"(M,w) are defined according to (4.35).

4.3.3.2. Partitioned estimator

The authors also propose a partitioned version of the simple weighted complete-case estimator 
which makes use of the cost history for the censored observations that are not used by the simple 
weighted estimator. The idea underlying the partitioned estimator is similar to that proposed by Lin 
et al (1997) but the advantage of their method is that the consistency and asymptotic normality of

the proposed estimator, unlike Lin et al, does not depend on the choice of the partition or the
18discreteness of the censoring times.

The duration of analysis (0, L] is partitioned into K  subintervals (t j , t j+l ], ( j  = 0,..., K  - 1), the

simple weighted estimator is then used to derive the estimated cost incurred in each of these K 
subintervals and the final estimate of mean cost is derived by summing across these intervals. The 
partitioned estimator is therefore given as

Up i f v
n M /=i K , ( V )

(4.37)

where for individual i: S/  = /{m in(7),r) < £/,.}, M¡(tj) is the cumulative cost up to time t j , 

k j  (7\j ) is the Kaplan-Meier estimator for the probability of not being censored based on the 

dataset \ x j , S f  ,i = !,...,/?} where X j  -  min(7)<;,U{) and 7]'J = min(7],iy) .

The advantage of this method over the simple weighted estimator is that individual i is considered 
uncensored in theyth interval whenever Ul > min(7’ ,ty) . Consequently, there is an increase in the

cost information being used by this estimator, as individuals who were treated as censored in the 
simple weighted estimator having (7, < Ti and whose cost information was thus not used in the 18

18 Recently in an unpublished paper O’Hagan and Stevens (2002) purport to show formally the link between the Lin et 
al (1997) estimator not using cost histories and the Bang and Tsiatis (2000) simple weighted estimator as well as the 
link between the Lin et al (1997) using cost histories estimator and the Bang and Tsiatis (2000) partitioned estimator. 
The authors’ aim is to “make these methods more accessible by clarifying the relationships between them and to 
facilitate the take-up of more sophisticated techniques”. However their paper has a number of weaknesses. First, in 
establishing the links between the two methodologies the authors essentially remove the assumption of a discrete 
censoring pattern which underlies the Lin et al estimators. Secondly, in deriving an alternative form for the Bang and 
Tsiatis partitioned estimator the authors express uncertainty over the equivalence of their estimator with regards to the 
original. Finally, their conclusion that “parametric modelling is more appropriate for cost-effectiveness decision 
making” does not follow from the content of their paper.
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estimation process will be now uncensored in some of the intervals of the partition in which their 

costs will contribute to the estimates.

Consistency follows by an argument similar to that used for the simple weighted estimator and 

proof of asymptotic normality for this estimator and derivation of its variance for large samples are 

again based on the theory of counting processes and the associated martingale framework. For 
asymptotic normality, the partitioned estimator is expanded as

n',2(/JP~A ) = Z
y=i /=i

■ " I k
i=i o ^ ( w)

oM )

(=1 o K(u) y=|(=1

where pij is the true mean cost in interval j, M y = M . (t j ) -  M ; (ty_,) ,

GJ(M1,u) = > m)} and Sj{u) = /?r{min(7;,iy) > wj .
Sj(ii)

Martingale theory then gives the variance of n'!2(jup -  /u) as

L.
var(M, -  /u) + E J

l 2
Z  iM ij ~ GJ (M  j ,u)}l{u< tj  )  ,
j-i * (« )

For large is approximately normal with variance estimator given by (also see Appendix 

A.4.2)

var(//P) = —

where

n ,=i K ( 7 ) )  o y=i /=i F (u)K(u)

(4.38)

, 1 1 *  d r ' M J i T r 1 > u)
GjAl(M,,u) = -  2 /

^ w ( V V/)
(4.39)

*  , 1 # 1 ,  , i i ^ s r ' M . M j i r r ^ u ) (4.40)

j  v / = max(y,/), j  a  / = min(y,/), t !j = T/ and (w) is the Kaplan-Meier estimator of 

pr{min(7] ,ty) > w}.
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4.3J.3. Simple Improved estimator

In an attempt to improve the efficiency of the simple weighted and partitioned estimators, the 

authors use the theory for missing data processes given by Robins and Rotnizky (1992), and Robins 

et al. (1994). The idea is that efficiency will be improved through use of some functional of the cost 

history which will allow recovery of information lost due to censoring.

Estimation and the study of efficiency of the proposed estimators are based on the general theory 

for semiparametric models when data are missing at random. The development of such models, 
which consist of both parametric and non parametric components, has been motivated mainly to 

address the problem of misspecification of econometric and statistical models in a number of 

applications. In addressing this issue, the semiparametric approach allows the functional form of 
some components of the model to be unknown and therefore unrestricted. Given that part of the 

model is completely unspecified, estimation of the parameters of interest requires that some 

assumptions be made or restrictions be imposed on the statistical relationship between what is 

observed and what is not observed. Assessment of the asymptotic efficiency of any given 

semiparametric estimator is performed by comparing the estimator’s asymptotic variance with a 

standard variance measure referred to as the asymptotic variance bound or the semiparametric 

efficiency bound. Efficiency bounds therefore provide a standard against which the semiparametric 
estimator’s asymptotic efficiency can be assessed and thus provide a means for measuring the loss 

of efficiency resulting from adopting a semiparametric rather than a parametric model. To ensure 
the existence of a semiparametric efficiency bound the estimators must be regular.19 The class of 

regular estimators excludes both superefficient20 estimators and estimators that make use of more 

information that is contained in the semiparametric model. Regularity conditions lead to the 
following definition of efficiency. An estimator for the parameters of interest of a semiparametric 

model is said to be efficient if it is regular and its limiting distribution is zero mean normal with the 

asymptotic variance attaining the semiparametric efficiency bound. Regularity conditions can be 

easily derived for a particular class of estimators referred to as asymptotically linear estimators. 
Furthermore establishing regularity conditions for asymptotically linear estimators not only ensures

19 An estimator a  is said to be regular if it is regular in every parametric submodel and its limiting distribution does not 
depend on the parametric submodel. Assuming that the data are generated by a parametric model that satisfies the 
semiparametric assumptions and contains the truth, such a model is referred to as a parametric submodel where the 
“sub” prefix indicates that the model is a subset of the model consisting of all distributions satisfying the assumptions of 
the semiparametric model. Assuming further that the data generating process is one where for each sample size n the

data are distributed according to a parameter 9 n with -Jn{9n — #0) bounded, an estimator a  is regular in a

parametric submodel if V 90 the limiting distribution of ^fn(a — OC(9n)) does not depend on the data generating 
process (Newey 1990).

20 This condition is required to ensure that convergence of the estimator in distribution is uniform in the true parameter 
values which in turn implies that the limiting distribution is continuous in the parameters. Typically the limiting 
distribution of superefficient estimators is discontinuous in the parameters (Newey 1990).
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the existence of a semiparametric efficiency bound but also allows calculation of the bound (Newey 

1990). An estimator a  of a 0 is asymptotically linear with influence function D if

with E(D) = 0 and E(D' D) < co. If a  is asymptotically linear, then by the central limit theorem

function are asymptotically equivalent in the sense that nU2(a(') -  cc{2)) = op( 1). Conversely, two 

asymptotically linear estimators that are asymptotically equivalent must have the same influence 
function. Hence, the asymptotic properties of such asymptotical linear estimators are directly related 

to their influence function (Newey 1990).

On the basis of the above exposition and on the premise that most estimators are asymptotically 

linear, the issue in the application of interest becomes to identify the class of influence functions for 
regular asymptotically linear estimators when the data may be censored. When there is no 
censoring, i.e. when complete cost information is available for each individual, given that the 
parameter ¡u = E(M)  is an explicit function of the distribution of the random variable M, and that 

the distribution of M  is left unrestricted, there exists only one such influence function for regular 

asymptotically linear estimators of / / ,  namely M,. - /j  (Newey 1990). This corresponds to the 
influence function of the sample average, introduction of random censoring with unspecified 
distribution makes the class of influence functions infinite. Following Robins and Rotnitzky (1992), 

Bang and Tsiatis show that the entire class of influence functions in the presence of censoring is

The estimator of mean cost whose influence function is given by (4.41) is then of the form

and Slutsky’s theorem, n'l2( a - a 0) is asymptotically normal with mean zero and variance 
E(D'D) . Furthermore, asymptotically linear estimators a (X) and a (2) with the same influence

where e{M" («)} is an arbitrary functional of the cost history and

where

G*(e{MH (u)},u) =
I 'M

(4.42)

78



Hence all consistent asymptotically normal regular estimators for mean cost are asymptotically 

equivalent to some estimator of this form. Determining therefore the optimal set of functionals of 
cost history e {M"  (w)} will result in deriving the most efficient estimator within this class. The

optimal vector of these functionals has been shown to be eopt {M,w (u)} = |M "  (u)j (Robins et

al, 1994; Laan and Hubbard, 1998). Bang and Tsiatis argue that as it is practically impossible to 
estimate this conditional expectation without imposing specific assumptions on the cost histories, an 

alternative approach to improve efficiency is to specify a fixed number of functionals 
[ex {Mh (n)},...,ej {Mh (m)}] thus restricting the class of influence functions to

M : M - } + 2 r j  \“Z 7 ~ G(e>W " <")>'")!0 K(u) f t  o K(u)
d£%Gc(u)

and determine the set of constants , j  = 1 which minimise the variance of the above

expression. Provided that the vector of prespecified functionals makes the restricted class of 
influence functions a good approximation to the entire class, the constants [y, ,...,yy ] which

minimise the variance above will result in the identification of estimators close to efficient. As 
(M (. -  /u) is independent of the other terms, the set of optimal constants y°pt ,...,y°pl are the solution 

to minimising the variance of (y. -  y xza - . . .  ~Yj Zu ) for individual i, where

y . - i0
00

= Jzu

d ^ r c(u) 
o K(u)
x J % r c(u)

K(u)

{M,. -  G(M ,u)} ,

[ej { M ? (w)}- G(ey{MH(u)},u)] , 7 = 1, . . . , / .

The optimal set of constants are then derived by formalising the above as a multiple regression 
problem as y opt = cov(y(.,Z,.) var(Z(.)_l, where Z,. is a lx jv ec to r and zy and y. are scalars. The

simple improved estimator is then given by

1 3,Mi 1 „-/-I çdNj (U) ¡TLjfH r A * / (1 ////

^  ' ( u ) )  (e {  (  >hU)]
(4.43)

where y = c6v(y,., Z i) var(Z,.) ’ , e{M" (u)} is th e /x  1 vector of the prespecified functionals 

e . {M(w (u)} which the authors suggest taking as ey {M" (w)} = M tJ (u) if  u> tj and zero otherwise, 

where AT (u) is the cost incurred in subinterval (ty_,, min(t;.,w)] and G*(e{MH (u)},w) is th e /x l  

vector of G * (ey {MH (u)},u) where G*(-) is defined by (4.42).

For large samples the variance is estimated by

79



vàr(A-mp) =

1 £  ò,(M, Mimp) + ] _ ^;u) _ ¿ 2 (M;M)J _ còv(>, }z ) vàr(Z;)-> còv(z ., Z,.)'
jy f HH \ y, J vn t t  K(T,) n > K l (u)

The yth element in the 1x7 vector of the estimator of cov(y,.,Z,.) is
(4.44)

l “rdNc(u)ran
J j}n 0J K \ u )

i j - i
» 5 (m) t r

n\
{M(. -  G(M,w)} {M..(u) -  G(M j(u),u)}I{Ti >u) (4.45)

jy

and a consistent estimator of var(Z,.) has its (/, /)th element as

dNe(u)ffli’
J Tn 0J K (u)

1 1
y

n S(u) tr {M (w) -  G(M . (m), w)} {M, (u ) -  G(M, («), u ) } ! ^  > u) (4.46)
jy

for j ,  l = 1

4.3.3.4. Improved partitioned estimator

When the same methodology is applied to improve the efficiency of the partitioned estimator the 
resultant improved partitioned estimator is given by

Mp,
1 - ^ 7 /  {M, Ctj ) -  M, 0 ) }  1 ^  ”f 7W,C (m)

' i m p - i s i
n  / = l  y = l A ,( r / )

+ - 7 2 - J-
1=1 0 £ ( m)

-[e{M,w (w)} -  G * (e{M " («)},m)] (4.47)

where y = cov(Zl, Z() var(Z;) 1, the vector var(Z(.) and the set of functionals are as defined for the 

improved simple estimator and the yth element of the 1x7 vector of cov(y,.,Z() is

1 "rdNc(u)
n J Vn J K (u)

K 1 1
I/=i

n

y
n S,(u ) m

s Nj

KU T ? 1)
■{Ma - G l(Ml,u)}{My(u ) -G (M j (u),u)}I(Tl >u) (4.48)

The asymptotic variance is estimated by

var (pPimp) =

1 - p Pimp)2

o j=i /=|n f=1 K(T:) 0 7=1 /=! Y{u)K(u)

- n  còv(y,.,Z,.)vàr(Z,.)_ cov(y,., Zf)’

(4.49)
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4.4. Methods and results

The previous sections have presented a number of approaches to estimating mean cost from 

censored data. All these estimators were applied to the UKPDS data described in chapter 1 and a 

subset were also applied to a simulated data set, described below, to test various aspects of their 
performance. The most important feature of the UKPDS data for the purposes of this analysis is the 
presence of heavy censoring in both trial arms. As a consequence, the results of the present analysis 

reflect an assessment of the various estimators under extreme censoring conditions which is the 
issue they all attempt to address. A number of secondary analyses are subsequently performed, 

some of which attempt to assess the impact of the level of censoring on the performance of the 

various estimators.

4.4.1. The UKPDS data

As stated in chapter 1, the UKPDS was a randomised controlled clinical trial whose main 

randomisation involved a type 2 diabetic population of 3867 individuals allocated either to 

conventional policy (1138) or intensive policy (2729) with the aim of assessing the effectiveness of 
improved blood glucose control. The trial started in 1978 and ended in 1998 with a median follow-

up period to death, the last date at which clinical status was known, or to the end of the trial period 

of 10 years. For each individual in the study the trial collected information on both clinical 

effectiveness and resource use. The unit costs of hospitalisation and treatment medication were 

attached to the volume of resources to calculate the total cost per patient per year directly from the 
trial data and these were then aggregated to give a total cost per patient for the whole trial period.

As noted in chapter 1 costs associated with the non-hospital resource use were excluded from the 

analysis undertaken here as these were not available from the trial on a patient level basis but had 

been estimated based on a regression approach. The analysis here aims at deriving an estimate of 

average total cost over the trial period adjusting for censoring where an observation was defined as 

censored if the patient was not observed for the full time to death.

A brief description of the data is given in Table 4.2. As can be seen there is no difference in the 
average duration of follow-up between the conventional and intensive policy population. There is 

no significant difference in the average cost when the estimates are not adjusted for censoring 

between the conventional and intensive arms but when only the uncensored cases are considered the 
conventional group incurs higher costs on average compared to the intensive population. The failure 
event was all-cause mortality, resulting in 925 censored patients [81.3% censoring] and 213 failures 
in the conventional group and 2240 censored patients [82% censoring] and 489 failures in the 

intensive group by the end of the trial. Average follow-up time was equal to 9.9 years reaching a 21

21 As such, the cost estimates reported in the thesis are not directly comparable to the reported UKPDS economic 
evaluation results.
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maximum of 18.934 years for the conventional group and 10.01 years reaching a maximum of 

19.463 years for the intensive group. The assumption of independent censoring is valid in this data 
as censoring was not related to any cost or medical reasons.

Table 4.2. Descriptive statistics of the UKPDS data

Conventional Intensive
Sample size («) 1138 2729

Censored 925 (81.3%) 2240 (82%)

Time duration of analysis 9.9 [0.01 to 18.934] 10.01 [0.05 to 19.463]
(years): mean [range]
Time duration of analysis for failures 7.66 [0.12 to 16.73] 7.71 [0.05 to 18.41]
(years): mean [range]
Time duration of analysis for censored 10.41 [0.01 to 18.934] 10.51 [0.197 to 19.463]
(years): mean [range]
Total cost of all individuals: 8348 [119 to 189242] 8070 [20 to 110,921]
mean [range]
Total cost of failures: 12586 [220 to 145549] 10857 [20 to 110921]
mean [range]
Total cost of censored: 
mean [range]

7373 [119 to 189242] 7462 [149 to 97121]

Figures 4.1 and 4.2 give an overview of the observed total cost data for each randomisation group. 
Figure 4.1 plots the data as a function of time to failure or censoring, while Figure 4.2 plots the 

observed distribution of costs on the untransformed scale and on a log transformed scale. The 

graphs in the latter figure are overlain with a normal probability density curve and show that the 

costs in all groups are positively skewed with a very small number of high outlying costs. As can be 

seen in Table 4.2 in the conventional population the uncensored individuals have a mean cost of 

12,586 ranging from 220 to 145,549. More detailed descriptive statistics showed that 75% of 
individuals have costs under 14,000; 90% have costs under 30,000; 95% have costs under 42,000; 

and 99% have costs under 75,000. The censored population in the conventional arm have a mean 
cost of 7,373 ranging from 119 to 189,242. Again the outliers are small in number: 75% of 

individuals have costs under 8,500; 90% have costs under 14,500; 95% have costs under 21,000; 
and 99% have costs under 36,500. In the intensive uncensored population the average cost incurred 
was 10,857 ranging from 20 to 110,921. Again 75% had costs under 14,000; 90% under 24,500; 

95% under 32,500; and 99% under 58,500. In the censored population the mean cost was 7,462 in a 

range 149 to 97,121, with 75% under 8,900; 90% under 14,000; 95% under 18,000; and 99% under 

35,500. Appendix A.4.3 gives some descriptive statistics of the observed annual costs for the two 
randomisation groups which reveal again a wide spread of costs within each year of follow-up.
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Figure 4.1. Total cost per patient over the study period for conventional and intensive policy groups
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Figure 4.2. Total cost per patient on the untransformed and on the log-transformed scale for 
conventional and intensive policy groups
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4.4.2. Main analysis

The purpose of the main analysis is to estimate the average total cost per patient over the UKPDS 

study period. For each individual the observables were time to death or last contact, a variable 

taking the values of 0 or 1 indicating censoring or failure respectively, the annual costs and the total 

cost from the start of follow-up to death or the last contact date. All non-parametric estimators 

considered in this chapter and summarised in Table 4.3 below were applied to these trial data within 

each arm of the main randomisation, i.e. n=\ 138 for the conventional policy over a period of (0, 

18.934] years and «=2729 for the intensive policy over a period of (0, 19.463] years. Before 

presenting the results obtained from the various estimators some methodological points with regards 

to the main analysis follow.

Table 4.3. Non-parametric estimators of mean cost

Kaplan-Meier estimator
c

M k m  =  \S(c)dc
o

where 5(c) - n i - ® U w  = É  K M l < c, S, = 1), and Y(c) = £  /(M , > c)
k < c  {  Y ( k )  j /=, i=i

vâr(Mkm )
dNjc)

T(c)[T(c)-AA(c)]

Uncensored cases estimator
jûu same as in Kaplan-Meier but only using the uncensored data 
vâr{ßu ) same as in Kaplan-Meier but only using the uncensored data

Full-sample estimator
jûFS same as in Kaplan-Meier but treating time of censoring as time of failure for the censored individuals 
vâr(/JFS ) same as in Kaplan-Meier but treating time of censoring as time of failure for the censored individuals

Lini (Using cost histories)

ßum

where S, = and k  = = K X ,  > « , )
u < a k ?(u) J E A *

K K

vâr (Mum) = wuwu
í=i *= i /= i

where Wkl =
SkYki(Mk, - E k) - -  \ I ( X l <ak)Sl~ S kEk

R.
I  ^ [ a n d  R ' ^ H X . Z X , )

j \ X j < m m ( a k , X ¡ )  l x j 1=1
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Table 4.3. Non-parametric estimators of mean cost (Contd.)

Lin2 (Not using cost histories)
K+i

M u n i  = T dAk(Sk - S k + l )  with a K+2 =  oo
k = \

where A, ■ *  k ,
V "  Y

K , with Yk¡ =I(ak < X¡ < a k+{, Si = 1)

Y "  y k +u m ¡
and Ak+1 = ^  *• —  with Yk +u  = I(X, > L)

n K + \K + \
WâV(/ùUN2 ) ~~ I . Z W .

1=1 lt=l  /=1

where Wki - + Â  i^k+l^k+lj SkDk¡) ,

D u J ( X , < ai) S , _ £  and * , = £ / ( * , > * , )
D  ¿-*'-y /=1

Simple weighted estimator
- _ 1 v  5iM i

L ^ W T  /  A A
n t 1K(T¡)

where K(t) = J~[ i 1 -
¿ A > )

vâr(/}(fr)
1

where G(M,u) =

«  ,= i

1 1 ^  8tM il{Ti > w)
y

Partitioned estimator

mp „ 2-1 2 j

var(//P) =

/=! j =1

1

y ( y )

«
7, t }' + i t  wfcw(M,M„u) - G,-A,(M, (M„„)}-yyR
« ,=! AT(7;.) o /=i m  Y(u)K(u)

where

K m O T ')

GJa ,(AÍ; M ,,U) =
1 1 ■ S r lM,JM,lI ( T Y > u )

L -
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Table 4.3. Non-parametric estimators of mean cost (Contd.)

Simple improved estimator

where
7 = c6v(^.,Z,.)var(Z,.)'1

e{M" (u )} is the Jx 1 vector of e} {M21 (u)} with ey {M” (u)} = M y (u) if  u > tj and zero otherwise, where 

My (u) is the cost incurred in subinterval (tj_l, min(/y, «)],

G * (e{M H (u)} ,u) i s the/xl  vector of G*(e .{MH (u)},u) where

G*(e{MH (u)},u) =
M '\u)}Y t(u)

Y(u)

vâr(Amp)
n

r l
■ 1 \ u ) - G 2( M , u ) \ - côv(_y(., Z, ) vâr(Z, )-' côv(^,, Z, )'

n t t  K(Ti) n • K (u)

Theyth element in the 1 xJ vector of the estimator of cov(jp(., Z() is

dNc(u)car
J vn i  K (u)

1 1 n

y
n S(u) t t m )

{Mi -  G(M,u)} {My (u) -  G(M - (u),u)}I(Ti > u)

and a consistent estimator of var(Z;) has its (j, /)th element as

•dNc(u) 1 1
n i K 2(u ) 
for j ,  l = 1 ,...J

n S(u) ,-=i

-i\

K(Ti)
{M, (u) -  G(M (u),u)} {My (u) -  G(M, (u),u)}I(T{ > u)

Improved partitioned estimator

P„ , „  = z t t ~ î f ' ( >J" )}  +  L r ± ) ^ t ± [ e { M ? ( » ) ) -  G»(e{M"(u)) ,u)]
i=l j=\ KjiT /) i = l o K(u)

where y -  cov(_y(., Z,) var(Z,) 1, the vector var(Z,.) and the set of functionals are as defined for the improved 

simple estimator and theyth element of the lxJ vector of c o v ^ ^ Z ,)  is

rdNc(u)
«o K 2(u)

K 1 1 ii
y , - d - T
t t n S , ( u ) t t

ô 'vj
KNj(T,Nj)

{ M y -G l(M,,u)}{My(u)-G(MJ(u\u)}I(T,l >u)
J y

vâr (MPimp) =

1 « J ,(m , -M Pimp)2 V
In i=i K(T,)

J É É  Wr•“ ) -  <V<< • <M- • “)}
dNc (u)

o ; = i  i=i Y(u)K(u) 

~n~] c Ôv (t ,-,Z{) vâr(Z(.)"’ côv(;p,., Z,. )’
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For each of the Lin et al estimators, two sets of results are presented. The first was obtained when 

the study duration was partitioned into yearly intervals, given that individual costs were available 

from the trial on an annual basis, while the second was obtained assuming a monthly interval length 
with the individual’s monthly cost calculated as the annual cost divided by twelve. This was 

undertaken to assess the impact that the interval length of the partition has on the estimates as the 
validity of the Lin et al approach relies on the pattern of the censoring distribution being such that 

censoring times can be confined to the boundaries of the intervals of the partition.

The Bang and Tsiatis partitioned and improved partitioned estimators are based on yearly 
subintervals for the same reason as stated above, that is, because intermediate cost history for each 
subject was available on an annual basis. Also for this reason, for both simple improved and 

partitioned improved estimators, the class of influence functions was restricted by defining a fixed 
number of prespecified functionals [e{ {MH (w)},...,ey {M11 (w)}] , where 7=19 for conventional and

7=20 for intensive, i.e. annual subintervals were assumed in the recovery of cost information lost 

due to censoring, and the set of prespecified functionals were defined in accordance to the authors’ 
suggestion as ey {M (u)} = M tj (u) if u > t j and zero otherwise, where M y (u) is the cost incurred

in subinterval ( i , min(/y ,w)].

With regards to the stochastic integrals appearing in the Bang and Tsiatis estimators presented
L  oo

above, these are of the form ^f{u)dNc{u) = J f (u )dNc(u) (or J /(u )7 A e(w)) where /(• )  is
0 °’i! 0

some function of time and 0 < L < go . Both /(■) and N c (•) satisfy the required properties stated in 

section 4.2.1.2 to ensure that the above integrals are well defined as Lebesgue-Stieltjes integrals.
n n

Moreover, given that N c (u) = = ' y j ( X i < u,5i = 0) and as a step function has countably
;=i i=i

many jumps at {w,,w2,...} with ANc(uk) = N c{uk) -  N c(uk-)  > 0 , the above integrals were 

evaluated as follows.

\ f ( u ) d N ‘(u)  =  £  \ f ( u ) d N ‘(u)
0 f'=l 0

L  L  L

= \f(u)dN;(u)+ \f(u)dNl(u) + ...+ ¡f(u)dN;(u)
0 0 0

= £ / ( “ *) AA,CK ) +  ^ f ( u k)ANc2(uk) + ...+ £ / ( " * )  AAA(u*)
k : 0 < u k < L  k : 0 < u k < L  k : 0 < u k < L

= f ( U) \u=X, and<J,=0 + f  (U) u=X, andi',=0 + ” ' + / ( W) u=Xn and<?„=0

= Z / ( « )
1=1

u = X i  and <5, =0
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L
where for each individual i, the Stieltjes integral J/ ( u)dN. (u) = ^  / ( uk )AN. (uk ) represents

0 k:0<uk<L
the sum of the values of /(• )  at the jump times (uk ) of N.(u)  in the interval (0,L] (or (0,coj) 

where the jumps of the paths of the process N- (u) are of size +1 at the time of censoring for 

individual i, i.e. at u = X { with 8i -  0.

Finally, despite the fact that the Kaplan-Meier, the uncensored cases estimator and the full-sample 

estimators are all known to be biased as concluded previously in the theoretical section, these were 

still applied to the data for purposes of comparison.

4.4.3. Results of the main analysis

Table 4.4 presents the estimates of mean cost and the associated variances for the conventional and 

the intensive policy groups over the study period as derived from application of the above non- 
parametric estimators to the UKPDS data. Programming was undertaken in Stata 7.0 and the 
programs are presented in Appendix A.4.4. for the Kaplan-Meier, the full sample and the 

uncensored cases estimators, in Appendix A.4.5. for the Lin estimators and in Appendix A.4.6. for 

the Bang and Tsiatis estimators.

Table 4.4. Results of the main analysis

Estimator Mean
Conventional

Standard error Mean
Intensive

Standard error

Kaplan-Meier ( faKM ) 38770.74 5312.02 31620.59 2034.89

Uncensored cases only ( fiu ) 11901.01 1061.36 10629.97 510.00

Full sample (/)FS ) 8181.581 305.62 8029.867 146.79

Lin et al
Subintervals in years 
Linl (/Awi) 14006.2 897.73 13172 340.55

Lin2 ( flUNj ) 12428 636.93 16910.64 1010.87

Subintervals in months 
Linl (A l ini ) 13771.35 1025.60 13078.02 365.95

Lin2 ( A u ni ) 12530.39 668.21 16926.22 1012.53

Bang and Tsiatis
Simple weighted ( ftWT) 5732.735 840.8 9737.65 3043.5

Partitioned ( juP) 14639.48 1219.4 13839.67 445.6

Simple improved ( /.Jimp ) 3668.924 398.1 1620.974 1634

Partitioned improved ( A pimp ) 334563.3 variance<0 -326298.3 varianceO
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As expected the Kaplan-Meier estimator returns very high values of the average total cost for both 

arms, that are of a different order of magnitude compared to all others (excluding the partitioned 

improved estimator which displays results outside the permitted range of values), while the full 
sample estimator gives lower estimates for both groups, also as expected, since it does not take into 

account the costs incurred past the censoring times. The uncensored cases estimator is also known 

to be biased towards the costs of the complete cases who are likely to have shorter survival times 

since it is based on this subset alone, which in the UKPDS data represent a very small proportion of 

the total number of subjects.

Concentrating on the estimates for mean cost obtained with each of the two methods proposed by 
Lin et al, the results show that the length of the intervals of the partition does not have an impact on 

the estimates returned by either the Linl or the Lin2 estimators. This finding holds for both trial 
arms.

All estimators apart from Lin2 and the Bang and Tsiatis simple weighted display higher estimates 
for the conventional group compared to the intensive. One could argue that the conventional policy 

group incurring higher costs on average is probably indicative of the “true” result, as the intensive 

policy group were known to have significantly lower hospitalisation rates. In addition, the “naive” 

estimators resulted in the same direction of difference in mean cost between the two groups which 

could be interpreted in support of the previous argument in the following manner. Despite the fact 

that the uncensored cases estimator is biased toward the costs of the individuals with shorter 

survival times as longer survival times are more likely to be censored, the trial data has not shown a 

significant difference in survival, both with respect to the proportion dying and the length of 

survival time, between the two groups and therefore one may assume that the degree of bias 

imparted in the uncensored cases estimator is similar between the two groups. Along similar lines, 

although the full sample estimator is known to be biased downward as the costs incurred after 

censoring times are not accounted for, it could again be argued that the degree of bias in the 
estimates is similar between the two arms on the basis that the trial data show the same proportion 
of censoring in the two groups and that this similarity is also maintained over time. All information 

from the trial is suggestive therefore of the conventional policy group incurring higher costs than 
the intensive policy population.

On this basis, the fact that the Lin2 and the Bang and Tsiatis simple weighted estimators display 
lower estimates for the conventional group compared to the intensive group in direct contrast to the 
results obtained from all other estimators, gives a first indication of poor performance. This 

statement may be supported by the following observations. First, there is a similarity between the 
Lin2 and the Bang and Tsiatis simple weighted estimators in that they both use only the complete 

cost observations in estimating mean cost. Lin et al explicitly state that their second approach relies 

on a “reasonable” number of deaths in each sub-interval of the partition and suggest a minimum 

number of 5 deaths in each subinterval. The number of deaths in the UKPDS data is small in the
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majority of subintervals and decreases markedly towards the end of the trial, resulting in a number 

of deaths below 5 or even zero in the last intervals of the partition. The Bang and Tsiatis simple 

weighted estimator not only displays the same pattern as stated above with respect to the direction 

of the difference in mean costs between the two arms, but it also results in low values of mean cost 
for both arms which are totally unlikely to be true since they are even lower than the respective 

mean costs estimated by the full sample estimator. Although the Bang and Tsiatis simple weighted 

estimator does not rely on the pattern of the censoring distribution and therefore the small number 

of complete cost observations does not affect the estimates in the same manner as in the Lin et al 
second approach, the authors state however that caution should be exercised when applying all their 

estimators in circumstances where there is heavy censoring in the tails of the distribution with small 

sample sizes which is precisely the case in the UKPDS data as can also be seen from Figure 4.3.
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Figure 4.3. Kaplan-Meier estimates for the probability of an individual not being censored

The Bang and Tsiatis simple improved estimator gives even lower estimates of average cost for 

both arms than the simple weighted estimator. Once again this probably reflects the heavy 
censoring experienced at the tails of the distribution. The Bang and Tsiatis partitioned improved 
estimator performs very poorly resulting in mean cost estimates of extreme magnitude including 

negative values for mean cost for the intensive arm and for variances in both arms. Furthermore, 

although the same level of censoring affects both improved estimators, the improved simple does 

not result in such extreme values as observed in the improved partitioned. This finding suggests that 

the high degree o f censoring in particular at the tails of the distribution, makes the improved 

partitioned much more unstable than the simple improved. A direct consequence of heavy censoring

90



at the tails is that the probability of an individual not being censored reaches very small values some 

of which approach zero. Thus any quantity weighted by the inverse o f such probabilities will be of 

extremely large absolute value. Partitioning the study period could amplify this problem. Noting 

that the covariance vector is the major difference between the two improved estimators, the most 
likely explanation for the observed pattern of results is that the degree of censoring especially at the 
tails leads to extremely inflated quantities within this vector and leads to the final estimator being 

extremely unstable. Given that the problem cannot be located precisely, further investigation is 
undertaken below using artificially generated data.

This leaves two estimators which may be said on first indication to perform adequately in this 

particular dataset; the Linl estimator and the Bang and Tsiatis partitioned estimator. Not only do 

they both give estimates of a similar sensible magnitude with accompanying reasonable standard 

errors, but they also display the anticipated direction of difference in mean cost between the two 

groups, with the conventional arm having higher average cost than the intensive arm. The 

similarities between these two estimators are the partitioning of the study duration into subintervals, 
the use of intermediate cost history for each subject and the use of a probability weight to adjust 

cost in interval for censoring. The difference lies in the choice of this weight and in the interval cost 
adjusted by it. In the Linl estimator the weight is defined as the probability of surviving to the 
beginning of each interval and this is used to adjust estimates of mean cost in the interval. The 
consistency of this estimator, as stated above, requires appropriate censoring conditions, so that 

censoring times correspond to the interval boundaries of the partition. By contrast, in the Bang and 

Tsiatis partitioned estimator the weight is defined as the inverse of the probability of an individual 
not being censored at a given point in time and this is used to adjust individual observed costs in the 

interval. Moreover, consistency and asymptotic normality of the partitioned estimator does not 

depend on the choice of the intervals of the partition or the distribution of the censoring times, that 

is the asymptotic properties of this estimator are independent of the censoring pattern.

Generally the results of the main analysis support - under conditions of extreme censoring - the 

findings reported by Lin et al (1997) and Bang and Tsiatis (2000). Even under moderate censoring 
conditions as are considered in these studies, the Linl estimator is reported to perform better than 

Lin2 and is clearly preferred to Lin2 at higher levels of censoring if intermediate cost histories are 
available as it uses more cost information and requires smaller sample sizes. Bang and Tsiatis show 

that the partitioned estimator performed better than their other proposed estimators with increasing 
censoring. The results of the main analysis here, however, indicate a number of potential difficulties 
which may arise when applying the estimators considered above to data with heavy censoring. 

Consequently, a number of additional analyses were undertaken to determine whether these 

difficulties arose because of the characteristics of the specific dataset or the intrinsic properties of 
the estimators and thus empirically identify conditions under which the estimators perform as 
expected from the theory.
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4.4.4. Secondary analysis and results

The additional analyses presented below investigate further the Lin et al and Bang and Tsiatis 
estimators concentrating on the specific problems raised above. The estimators are thus assessed 

under the following circumstances. First, using the same trial data but excluding the highest 

observed total costs. Secondly, using the same clinical trial data but varying the durations of 

analysis. Thirdly, using an “artificial” dataset constructed by randomly generating costs and 

survival times and varying the levels of censoring. Finally, using the bootstrap method to obtain 

estimates of the standard error for the estimators as an alternative to the analytically derived 

asymptotic variance estimators.

4.4.4.1. Sensitivity to high cost outliers

As stated previously and shown in Figure 4.2, in both trial arms the distribution o f cost was 
positively skewed with a very small number of observations having extremely high values. To 
assess whether these high cost outliers influence the estimates, the extreme high cost observations 
in each arm were excluded from the analysis and the Lin estimates o f mean cost based on these data 

are presented in Table 4.5.

Table 4.5. Lin estimators excluding the highest observed costs from each group

Estimator Mean
Conventional

Standard error Mean
Intensive

Standard error

Lin 1 13583.07 865.32 13058.34 334.46
Lin 2 12078.4 580.88 16821.76 1009.15

The resultant estimates are naturally slightly lower than the respective ones derived in the main 

analysis, but the differences are not significant and the overall pattern of results is not altered. The 
conclusions drawn from the main analysis results hold therefore regardless o f whether these 

extreme cost values are included in the analysis or not. The pattern of a positively skewed cost 

distribution with a small number of high outliers is also observed in the administrative dataset used 

by Lin et al and is likely to be a characteristic of any medical dataset. The relevant results in Lin et 
al give no indication that such a characteristic of cost has an impact on the performance o f their 
estimators which is not inconsistent with the finding reported above.

4.4.4.2. Impact of varying the duration of analysis

As mentioned previously, the main analysis results indicated that the Lin et al second approach -  

not using individual cost histories - gave inconsistent estimates with respect to the direction of the 

difference in average cost between the two trial arms. Given the reliance of this method on the



number of uncensored individuals in each subinterval and on the number who are censored at the 

largest observed time, the duration of analysis was restricted to 18, 17, 16, 15 and 12 years and both 

Lin et al estimators were applied to these data.

Table 4.6. Total number of individuals and number of uncensored cases in each interval of the 
partition

Conventional Intensive
Interval Number entering Number dying Number entering Number dying within

interval within interval interval interval

1 1138 8 2729 24
2 1125 10 2700 22
3 1112 11 2673 28
4 1097 18 2632 23
5 1076 12 2596 37
6 1050 16 2539 51
7 1017 19 2442 35
8 917 19 2233 43
9 816 20 1985 39

10 695 12 1681 37
11 561 22 1347 36
12 433 9 1062 33
13 323 16 818 30
14 214 9 556 18
15 129 7 326 13
16 69 3 187 8
17 53 2 127 8
18 32 0 70 3
19 12 0 18 1
20 2 0

As shown in Table 4.6 the number of uncensored individuals decreases towards the end of the study 
and is equal to zero for the last two intervals in the conventional group and the last interval in the 

intensive group, thus falling below the minimum of five deaths in each interval of the partition 
suggested by Lin et al (1997). In addition in both groups there is only one individual censored at the 
maximum observed time which implies that the estimate of average cost in the K + 1 interval (with 
a K+2 = oo) is determined on the basis of this one individual. Restricting the duration of analysis

effectively results in increasing the number of individuals who are censored at the upper bound of 
the analysis time, and more importantly eliminates the impact of the last intervals of the partition on 

the estimates in which the number of uncensored individuals is very small. Table 4.7 reports the 
impact of differing durations of analysis on the two Lin et al estimators.
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Table 4.7. Lin et al estimators for different durations of analysis

Conventional Intensive
Estimator Mean Standard error Mean Standard error

L=18 years 
Lin 1 13564.66 798.29 12752.36 340.01
Lin 2 15409.63 2930.63 12597.07 1118.68

L=17 years 
Lin 1 12831.22 665.14 12295.81 324.57
Lin 2 14785.19 1661.96 14031.57 842.77

L=16 years 
Lin 1 11884.79 583.97 11434.42 245.7
Lin 2 13683.87 1215.49 12206.42 583.56

L=15 years 
Lin 1 11258.03 512.54 10750.22 210.09
Lin 2 12381.43 987.25 11434.13 480.74

L=12 years 
Lin 1 8869.467 357.95 8642.844 163.97
Lin 2 9230.879 458.12 8858.892 220.52

The initial point to be made here is that the first estimator by Lin et al (L inl) remains stable for all 

different durations of analysis. That is, its absolute magnitude decreases as duration decreases since 
it is estimating average costs over a shorter time period and the rate of decrease appears to be 
reasonable in both trial arms. More importantly, as in the main analysis results, the conventional 

group is shown to incur higher costs on average than the intensive group for all time periods of 

analysis.

With respect to the second estimator by Lin et al (Lin2), the results show that when duration of 
analysis was restricted to 17 years or less, this estimator became stable resulting in the expected 
estimates, that is the estimator resulted in conventional policy having a higher mean cost than 

intensive policy. These results indicate that Lin2 is indeed sensitive to the number of deaths in the 

intervals of the partition and to the number of individuals censored at the largest observed time. 
More specifically, increasing these numbers to a “reasonable” level results in obtaining less biased 
estimates of mean cost in each of the subintervals, as the greater the number of individuals who 
contribute cost information in each interval the more representative are the estimates of mean cost 

in the corresponding interval.

With regards to the Bang and Tsiatis estimators, the problems identified in the main analysis were 
the very low estimates resulting from the simple weighted and the improved simple estimators and 

the extreme estimates resulting from the improved partitioned estimator. As the authors point out, 

very heavy censoring in the tails of the distribution may render the estimators unstable with small



sample sizes. As already stated, the trial data were very heavily censored reaching 82% in both 

conventional and intensive policy groups by the trial end. In addition, as shown in Table 4.6, 

towards the end of the study the number of individuals still under observation decreases 
substantially falling to twelve in the conventional group at the last year of follow-up and to two in 

the intensive group at the last year of follow-up. To assess the impact that an increase in the number 

of individuals being under observation at the end of the analysis time has on the Bang and Tsiatis 

estimators, the duration of analysis was restricted to 18, 17, 16, 15 and 12 years and the estimators 
were computed for the conventional policy group.

Table 4.8. Bang & Tsiatis estimators for different durations of analysis for the conventional policy 
group

Estimator Mean Standard error

L=18years (censoring 81.3%)
Simple 5732.735 840.7795
Partitioned 14639.48 1219.374
Simple improved 3668.924 398.1052
Partitioned improved 334562.5 varianee<0

L=17years (censoring 81.3%)
Simple 5732.735 840.7795
Partitioned 13410.59 731.8333
Simple improved 3668.924 398.1052
Partitioned improved mean<0 (mean=-15906.16) varianee<0

L=16 years (censoring 81.5%)
Simple 5481.435 829.8462
Partitioned 12519.31 683.966
Simple improved 5064.389 384.9361
Partitioned improved mean<0 (mean=-25535.95) varianceO

L=15 years (censoring 81.7%)
Simple 5261.124 826.0686
Partitioned 11832.58 599.1149
Simple improved 5139.35 383.5506
Partitioned improved 13705.7 variance<0

L=12years (censoring 84.5%)
Simple 2577.509 388.2635
Partitioned 9113.796 307.1622
Simple improved 4308.985 285.7729
Partitioned improved 8667.038 variance<0

The results are presented in Table 4.8 and show the same pattern as observed in the main analysis. 

That is, the partitioned estimator gives estimates of average cost very similar to the Linl estimator 

for the various time durations of analysis, the simple weighted and the improved simple estimators 

still give low estimates compared to the partitioned and Linl and the improved partitioned again 
results in extreme values. In other words, the problems identified in the main analysis do not appear
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to be resolved by restricting total analysis time. This is probably due to the fact that although the 

total number of individuals under observation towards the end of the analysis period slightly 

increases as the period is restricted, the proportion of patients who are censored remains high 
(between 81% and 82% until 15 years), even increasing slightly as duration decreases (84.5% at 12 
years). This gives a strong indication that the issue of heavy censoring especially in the tails of the 

distribution is primarily responsible for the estimators’ poor performance.

4.4.4.3. Simulation

As the level of censoring is directly related to the performance of all estimators considered and 

more specifically as Bang and Tsiatis state very heavy censoring in the tails of the distribution could 

result in their estimators becoming unstable, the performance of the various estimators was assessed 

for different levels of censoring. Both Lin et al and Bang and Tsiatis construct artificial datasets and 

vary the levels of censoring by up to 45%. In a similar manner a simulated dataset was constructed 

here to explicitly test the impact that the degree of censoring has on the estimators of interest while 

at the same time ensuring that individual costs vary in a predefined manner. As well as having the 

advantage that different levels of censoring can be set and the impact of censoring can be isolated, 
an artificial dataset also allows estimation of the “true” mean cost, that is the mean cost if censoring 
was not present in the data. A direct assessment of the performance o f the various estimators is thus 

achieved through comparison of the estimated means to the “true” mean.

The approach adopted in the construction of this dataset is similar to the one described in the Lin et 

al and Bang and Tsiatis simulation experiment, although the estimates obtained here are not based 

on replications of the data but have resulted from a single application of each approach to the 
artificial dataset once this was generated as follows. A sample size of 1138 individuals was chosen 
for this “artificial” dataset to equal the smaller sample size of the clinical trial data used in the main 

analysis - since one of the concerns for the validity of the methods is related to the sample size. 

Survival times were generated from a uniform distribution on [0, 10] years. The average 10-year 

cost is the parameter of interest, with the total cost for individual i being

10
Mi = M i(0) + biTiL +Xr,(min[{7;L - ( j - \ ) } +,l]) + d ^ T . < 10)

where M i (0) is the initial diagnostic cost, /?,. is the deterministic annual cost, rtj is the random 

annual cost for they'th year, di is the terminal death cost and a + = max(0, a ) . For the distribution 
of each cost element, M ;(0), bt , xijt di are assumed uniformly distributed on [5000, 15000],

[1000, 2600], [0, 400] and [10000, 30000] respectively. Various levels of censoring were 
considered with the censoring times being uniformly distributed on [0, 20] years, i.e. 25% 

censoring, [0, 12.5] years, i.e. 41% censoring, [0, 10] years, i.e. 51% censoring, [0, 9.5] years, i.e. 

55% censoring and [0, 9] years, i.e. 57.5% censoring. Bang and Tsiatis impose similar levels of
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censoring to Lin et al who refer to “light” censoring as censoring set at 25 to 30% and “heavy” 

censoring as censoring set at 40 to 45%. Programming was again undertaken in Stata 7.0. as shown 

in Appendix A.4.7. The components were generated independently and the simple weighted 

estimator, the partitioned estimator, the improved simple, the improved partitioned and the Linl 

estimator (which uses individual cost history) were calculated for all levels of censoring. The Bang 

and Tsiatis partitioned and improved partitioned estimators were based on yearly subintervals and 

for both simple improved and partitioned improved estimators, annual subintervals were assumed in 
the recovery of cost information lost due to censoring, and the set of prespecified e-functionals were 
defined as in the analysis of the real trial data. The Linl estimator based on annual subintervals was 
also estimated using this artificial dataset as under all circumstances considered in the real data 
analyses it remained stable and generally performed well.

Table 4.9. Estimates based on the “artificial dataset”

Estimator Mean Standard error

Censoring 25%
Simple weighted 41348.2 475
Simple improved 40452.9 433.8
Partitioned 41654.9 342.1
Improved partitioned 40876 316.2
Lin 1 39545.6 311

Censoring 41 %
Simple weighted 37228.3 1713.2
Simple improved 34724.4 854.7
Partitioned 40000.2 734.4
Improved partitioned 38575.4 366.3
Lin 1 37367.4 355.8

Censoring 51%
Sim ple weighted 29284.3 3340.4
Sim ple improved 25334.2 1627.8
Partitioned 37242.8 1306.4
Improved partitioned 34683.7 514
Lin 1 35456.3 354

Censoring 55%
Sim ple weighted 21037.6 684.6
Sim ple improved 15922.8 536.2
Partitioned 33839.1 315.2
Improved partitioned 32446.4 varianceO
Lin 1 34280 296.1

Censoring 57.5%
Simple weighted 18921.7 605
Simple improved 13361.8 549.4
Partitioned 33048 271.6
Improved partitioned 32787.7 varianee<0
Lin 1 33686 271.9

The true mean cost (no censoring) is 41144.5.
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The resultant estimates o f the average 10-year cost and its asymptotic variance based on the 

artificial data are reported in Table 4.9. The “true” average cost obtained when complete 

information was assumed on all individuals in these data was equal to 41144.50 and serves as the 

reference cost to be compared with all other estimates under different levels of censoring.
As expected, as the level of censoring increases all estimators generally exhibit higher degrees of 

bias. The Linl and the Bang and Tsiatis partitioned estimators performed well at all levels of 

censoring. The Bang and Tsiatis improved partitioned estimator performed equally well up to a 

level of censoring of 51%. It resulted in negative estimates for the variance when censoring reached 

55%. The simple weighted and simple improved estimators appear to give increasingly lower 

estimates as censoring increases, with the estimates being close to the others only up to 41% 
censoring. At 55% censoring the average cost derived by the simple weighted estimator was 
approximately half the “true” mean cost value and the one derived by the simple improved 
estimator was even lower. Overall, the findings from this analysis support the findings of the 

analysis based on the real clinical data. The Linl and Bang and Tsiatis partitioned estimators appear 

stable at all levels of censoring whereas the simple weighted and both improved estimators appear 
extremely sensitive to the level of censoring reflecting a similar pattern, only less extreme, to the 

one observed in the trial data.

4.4.4.4. Bootstrap estimates of the variances

The derivation of the standard errors for all the estimators proposed by Lin et al and Bang and 

Tsiatis is based on the large sample properties of these estimators. Study of their asymptotic 

properties as presented previously has shown that the estimators converge to a normal distribution 

and use of the martingale version of the central limit theorem allows estimators for their variances 
to be formulated. While efficiency is therefore shown to hold conceptually a potential problem 

relates to the validity o f the underlying assumption of asymptotic normality when the approaches 

are applied to any particular dataset. Although asymptotic statistics is of both theoretical and 

practical importance, it is a theory of approximations. Such approximations are particularly useful 
as shown in the preceding analysis in studying theoretically the efficiency of the statistics of interest 
but are of questionable value if the statistical procedure which has been shown to function for 
« —» co is to be applied to a finite sample. In most situations the theory itself does not provide a 
means for assessing the magnitude of the approximation errors and it is usually the case that the 
accuracy of the asymptotic results is judged by simulation studies.

To test the validity of the estimators’ asymptotic results, empirical standard errors for both Lin et al 

estimators and for the Bang and Tsiatis simple weighted and partitioned estimators were derived 
using the bootstrap method. The bootstrap estimates were obtained by drawing random samples of 
size «=1138 from the observed distribution for the conventional group and «=2729 for the intensive 

group and calculating the Lin 1, Lin 2 and the Bang & Tsiatis simple weighted and simple
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partitioned estimates of average cost across a large number of replications. All sets of bootstrap 

estimates were obtained for 200 and 1000 bootstrap replications which are deemed adequate for the 

calculation of standard errors and the relevant Stata programs are presented in Appendix A.4.8. The 

standard errors derived from the bootstrap method are reported in Table 4.10.

Table 4.10. Bootstrap estimates of the standard error

Lin et al: When the time o f  analysis was the complete follow-up period (L=18.9 years fo r  conventional 
and L -19 .5  years fo r  intensive)____________________________________________________ ____

Conventional Intensive
Replications 200 
Lin 1 823.4994 333.5156
Lin 2 8085.001 3784.319
Replications 1000 
Lin 1 927.3038 343.5167
Lin 2 7392.851 3837.986

Lin et al: When the time o f  analysis was 17 years for both conventional and intensive
Conventional Intensive

Replications 200 
Lin 1 628.704 307.9546
Lin 2 1541.102 724.1773
Replications 1000 
Lin 1 670.0437 322.9126
Lin 2 1789.984 763.5229

Bang & Tsiatis: when the time o f  analysis was the complete follow- 
conventional and L=19.5 years for intensive)

■up period (L=l 8.9 years fo r

Conventional Intensive
Replications 200 
Simple weighted 786.1384 3098.452
Partitioned 1207.907 439.8706
Replications 1000 
Simple weighted 830.2415 3132.548
Partitioned 1379.021 451.2829

With respect to the Lin et al estimators the bootstrap estimates were also derived for a duration of 
analysis of 17 years as this was the point at which the Lin2 estimator became stable. Comparison of 

the empirically derived variance estimates using the bootstrap method with their respective 
asymptotic variance estimates reported in Table 4.4 and Table 4.7 shows that for all estimators the 

bootstrap estimates of the standard error confirm those obtained from the formulae (this being the 
case for Lin2 under the conditions where this became stable as expected). This finding therefore 

supports the validity of the assumptions underlying the estimators’ asymptotic properties. 
Conversely, the bootstrap method gives reasonable approximation to the theoretically derived 

variances.
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4.5. Discussion

This chapter has concentrated on non-parametric estimators of cost statistics under conditions of 

right censoring. As such estimators are free of assumptions regarding the distribution of cost and 
can easily incorporate the presence of censoring in the cost observations they can be particularly 
appealing. The Kaplan-Meier estimator has been proven inappropriate in the analysis of cost-to- 

event data due to the violation of independence between the random variable of interest and its 

censoring variable. Consequently a number of alternative non-parametric estimators have been 

proposed recently that require independence between time-to-event and time-to-censoring but not 
independence between cost-at-event and cost-at-censoring. Although these estimators are free of 

assumptions with respect to the distribution of cost, they are not entirely free of restrictions. More 

specifically, consistency of the estimators proposed by Lin et al depends on the pattern of the 

distribution of censoring times and although the asymptotic properties of the estimators proposed by 

Bang and Tsiatis are independent of the censoring pattern, the estimators can become unstable 

under conditions of heavy censoring at the tails of the distribution. In theory, provided that their 
respective assumptions are valid, each of the Lin et al and Bang and Tsiatis estimators considered in 

this chapter will provide consistent estimators of average cost. From the theory it is also expected 

that the degree of censoring will have a direct impact on the estimators’ performance with this 
deteriorating as censoring increases although this impact will vary among the approaches. While the 

estimators’ desirable properties, that is consistency and efficiency, have been shown to hold 
conceptually the degree to which these properties are retained in practice will depend on the 
particular application. That is, establishing that an estimator is asymptotically efficient or 
asymptotically more efficient than a competing estimator does not ensure that this property holds 
for finite samples. This is the reason why simulation studies are commonly undertaken as a means 
of assessing the accuracy of the asymptotic results in a practical setting before use of the estimator 

is recommended within the specific analytic context.

Within the context of the analysis presented here the first estimator proposed by Lin et al which 
uses information on intermediate individual cost histories appeared stable under a wide variety of 

conditions as opposed to their second estimator which only uses information on total costs from 

individuals who are either observed for the full time to event or are censored at the upper bound of 
analysis time and was shown to be sensitive to the number of individuals contributing cost 

information. With respect to the set of estimators proposed by Bang and Tsiatis, the simple 
weighted estimator using only complete cost information and both improved estimators appeared 
extremely sensitive to the level of censoring and became increasingly unstable as censoring 
increased. In contrast, their partitioned estimator which uses information on intermediate individual 

cost histories performed well under all circumstances. Concentrating on the two most stable 

estimators, these are similar in that they both partition the study period into subintervals and make 

use of individual intermediate cost history within each subinterval and in that they both use a weight 

to adjust interval costs for censoring. They are different both in the choice o f this weight and in the
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interval costs that are adjusted by it. In Linl the weight is the Kaplan-Meier probability of survival 

to the start of the interval that adjusts estimates of mean cost in the interval, whereas the Bang and 

Tsiatis partitioned estimator uses the inverse of the probability of an individual not being censored 
evaluated at a given point in time to adjust individual observed costs in the interval. On the basis 

that both approaches require the same amount of cost information, but the second approach is not 
restricted by the pattern of the censoring distribution and is therefore more general, it might be 

preferred.

There is a long history related to the use of the inverse of the probability of inclusion in adjusting 

estimates for missingness. The same inverse probability weight was first used by Horvitz and 
Thompson (1952) in the context of sample surveys, by Koul et al (1981) in studying censored 

failure times using a linear regression methodology, by Robins and Rotnitzky (1992) in the context 

of recovering information missing due to censoring, by Lin and Ying (1993) in non-parametric 
estimation of the bivarate survival function under univariate censoring, by Robins, Rotnitzky and 

Zhao (1994) in adjusting estimates of regression coefficients for missingness in the data, by 
Rotnitzky and Robins (1995) in studying semiparametric regression models in the presence of 
censoring dependent on covariates, by Robins, Rotnitzky and Zhao (1995) in studying 
semiparametric regression models for repeated outcomes in the presence of censoring dependent on 

covariates, by Zhao and Tsiatis (1997) in deriving a consistent estimator for the distribution of 

quality adjusted survival time under conditions of censoring, and recently by Lin (2000) in 
adjusting cost estimates for censoring using a linear regression approach as shown in the next 

chapter. In all these applications use of this weight results in consistent estimators for the statistics 
of interest while adjusting for missingness. The same general finding emerges from the analysis 

undertaken in this chapter but at the same time the performance of the corresponding estimators 

appears to be subject to the amount of cost history information entering the estimating equations. 

This is why the simple weighted and the partitioned estimators yield such different estimates of 

mean cost. That is, although the same general definition of the probability weight underlies both 

estimators, the points in time at which the individual probabilities are evaluated differ between the 

approaches in a manner that is determined by the points at which information on individual cost 
histories becomes available. The implication is that the weight alone is not sufficient to adjust the 

estimates for the loss of information when the level of missingness is too high.

Nevertheless despite the limitations associated with the assumptions underlying the estimators’ 
validity and their dependence on the data under consideration, the present analysis has identified 
estimators whose performance is deemed satisfactory under extreme censoring conditions. 
Consequently, their application to the analysis of censored cost data is appropriate when estimates 
of mean cost over the study period are sought. When interest extends however beyond the 
maximum time for which data is available or when questions regarding the effect of covariates on 

cost arise, parametric models become a necessary alternative. It is clearly important that such 

parametric models make adjustment for censoring. Provided that censoring is appropriately

101



accounted for and that the distributional assumptions imposed by a specific parametric approach are 
justified, the within study estimates derived by such a model could be compared to non-parametric 

estimates as a means of assessing the validity of the parametric approach before this was used to 

extrapolate beyond the end of the study period or to a different population setting.
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Chapter 5

Cost analysis: Parametric estimators of treatment cost under conditions of censoring

5.1. Introduction

The primary advantage of non-parametric models is that they are free o f assumptions concerning 

the distribution of cost. There are circumstances however where parametric methods may be the 

preferred or necessary alternative. Some investigators including Mullahy and Manning (1996) as 

noted in Chapter 2, even suggest that parametric modelling is generally preferable given the 
inherent characteristics embodied in trial data. More specifically, while clinical trials attempt to 

standardise for population characteristics through randomisation, there may remain systematic 
differences in the treatment costs across subgroups of the population defined by different covariate 

values. Information on the pattern of cost accumulation may then be gained by assessing covariate 
effects on cost using a parametric approach. Furthermore, although focus in this thesis is on within 

trial estimates of average cost, it may also be desirable to derive cost estimates associated with 

benefits continuing beyond the end of the study period. Parametric models can provide an 
instrument for extrapolating estimates of costs over the study period to points in time exceeding the 

duration of the study. Censoring is again the main concern in the analysis presented in this chapter. 

Consequently the parametric approaches to be considered here all attempt to derive estimates of 

cost accounting for the presence of censoring. An additional concern common to all these 

approaches relates to the specific functional form the parametric model assumes between cost and 

the explanatory variables especially given that cost distributions are generally complex and 

therefore difficult to parameterise. It is natural to expect the difficulty of appropriately specifying 

this relationship to be increased due to the information loss induced by censoring.

As in the case of non-parametric models the earliest attempts to account for censoring in deriving 
estimates of mean cost using a parametric approach involved direct application of the classical 
survival techniques to censored cost data. The Cox proportional hazards model and the Weibull and 
exponential models were applied for example by Dudley et al (1993) and Fenn et al (1996) in 
estimating within study average cost. However, these approaches are biased for the same reason as 
the Kaplan-Meier estimator, that is due to dependent censoring between cost at event and cost at 

censoring times. The classical linear regression is also always biased when the outcome variable is 

subject to censoring as shown analytically below. A naive alternative would be to estimate the 
classical linear regression model using the complete cases only but this is always going to be biased 
as it discards the censored observations completely with the degree of bias increasing as censoring 

increases. Failure of these approaches to account for censoring in the cost estimates led to two
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recently proposed alternatives. The first adopts a regression approach where cost is modelled as a 
function of failure time and adjustment for censoring is achieved in the cost estimates through 

adjusting failure time for censoring. The second uses a linear regression methodology in which 

adjustment for censoring in the cost estimates is performed through use of the inverse of the 
probability of an individual not being censored in the estimating equations. All these estimators of 
cost together with their properties and underlying assumptions are considered below. When 

necessary, counting process and martingale theory again provides the analytical framework in 

which the statistical properties of the estimators are studied. When the estimators considered are 

based on a methodology originally used to analyse time to event data, the approach is first 
considered within this context and the extension to cost to event data follows. Although typically in 

regression problems the important inference questions are about the conditional distribution of the 

outcome variable given the covariates, the aim of the present analysis is to assess the estimators’ 

relative performance with respect to the resultant mean cost estimates over the study period under 

extreme censoring conditions using the UKPDS data. Given that the analysis in the previous chapter 

identified estimators whose performance is deemed adequate under these conditions, assessment of 

the estimators considered below is undertaken by comparison to the most adequately performing 
non-parametric estimators considered earlier.

The chapter proceeds as follows. The general setting for the analysis is first outlined and the set of 

parametric estimators for cost together with the assumptions underlying their validity are then 

presented. The proposed semiparametric regression methodology is considered first and includes 
the Cox proportional hazards regression and a proportional means regression model in which the 
mean cumulative cost forms the outcome variable. The fully parametric Weibull and exponential 

regression models are presented next and these are followed by alternative least squares regression 

approaches starting with the classical linear regression model. Extensions to the naïve ordinary least 

squares approach where adjustment for censoring enters the estimating equations are then 
investigated. This methodology allows the analysis to be undertaken both when the cost data are 
available at the individual’s death or last contact date and when these data are available at multiple 

points in time over the study duration. An alternative regression approach models cost as a function 

of time and attempts to account for censoring in cost through accounting for censoring in failure 

time. The resultant cost estimates from application of the alternative regression methodologies to 

the UKPDS data follow.

5.2. Parametric estimators of cost under censoring

5.2.1. General setting

As in the previous chapter the basic aim of the approaches presented below is to derive an estimate 
of the mean total cost /u = E(M)  and its variance over a specified period when the data is right
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censored, where the random variable M  denotes the total cost for a patient during some specified 

time T and E denotes expectation. Again the distribution of the random variable T is assumed 
continuous over (0, L\ where L denotes the upper bound of T and M is the total cost incurred by a

patient up to a maximum ofZ, units of time. The main difference between the approaches 

considered in the previous chapter and the ones considered below is that the latter attempt to derive 

mean cost estimates using a parametric model which relates cost to a set of covariates and as such 

they make specific assumptions about the distribution of cost. To accommodate censoring, a 

potential time to censoring denoted by U is defined and letting T denote time to death, the 
observables from a study in the presence of censoring are X  = min(T,U), i.e. the last contact date; 
ó = I(T < U) , where /(•) is the indicator function taking the value of 1 when the argument is true

(i.e. if the observation is uncensored) and zero otherwise; the cost accrued up to time X  and other 
intermediate cost history for each subject, i.e. M H (t) = {M(u), u <t), where M H (t) denotes the 
cost history up to time t, M = M{T) , with M(u) being the known accumulated cost up to time u 
and u denoting points in time at which cost information becomes available. Letting Z = (Zlv..,Z p)'

denote a p x l  vector of the covariates of interest, the observable data for n individuals are then the 

independent and identically distributed random vectors

[x i = min(7j, U¡), ^  = 7(7j < Í7,), J l / " ( ^ ) , z ] i  = l n

where i identifies an individual.

5.2.2. Cox proportional hazards regression

The Cox proportional hazards model falls into the category of semiparametric models. Due to its 
semiparametric nature, it allows the functional form of part of the model to be unknown and 
therefore unrestricted. The proportional hazards model assumes that the hazard of an individual 
having an event is a function of a set of individual covariates and an underlying arbitrary baseline 
hazard. Given that part of the model is completely unspecified, as stated previously in section
4.3.3.3, estimation of the parameters of interest requires that some assumptions be made or 

restrictions be imposed on the statistical relationship between what is observed and what is not 
observed. The assumption imposed by this model is that the hazard functions for any two 

individuals are proportional with a ratio determined by the covariates that is constant over time. 
Clearly if one is unsure as to the functional form of the hazard function, adopting a semiparametric 
approach could be a preferred alternative to imposing specific parametric assumptions on the 
distribution of the hazard function. The usefulness of the particular semiparametric specification is 
due to a number of reasons such as the easily understood interpretation of the idea that the effect of 

a given covariate, for instance a treatment, is to multiply the hazard by a constant factor; the 
empirical evidence in certain areas that supports the assumption of proportionality of hazards in 

distinct treatment groups; the fact that censoring and the occurrence of several types of failure are
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relatively easily accommodated within this model specification and the technical problems of 

statistical inference associated with the unknown part of the model, that is the arbitrary baseline 
hazard, have a simple solution (Cox and Oakes, 1984).

The observed data in regression problems when the time to failure is subject to right censoring are 
the independent observations of the quantities (X , 5, Z ) as defined above. The same counting

processes can be used to model such data as defined in the previous chapter, that is,

N(t) = I ( X < t , â  = 1) with N(t) = Ÿ  N, (t) where N. (t) = /(X,. < t, 5, = 1),
1=1

N c (t) = I (X  <t,S -  0) with N c (0  = £  (0  where AÇ (f) = I(X, < t, S, = 0), and
M

Y(t) = I (X  > t) with Y(t) = Ÿ j  Yi (0  where Yt (t) = I(X, > t ) .
i=i

The filtration : / > 0} generated by these processes is given by 

= cr\z,N(u), N c (m) : 0 <u <t,i = 1

and provides information on the individuals’ covariates and failure or censoring status up to and 

including time t. However interest now lies in the conditional distribution of failure time given the 
set of covariates. The conditional survival function is then S{t\Z) = pr(T > t\Z) and the conditional

hazard function is given by

Z(t\Z) = lim
1 A/->0

prit <T <t + At\T > t, Z) 

At

The proportional hazards regression proposed by Cox (1972) studies the relationship between the 

set of covariates Z and the distribution of censored failure times using a model in which the hazard 

function is

A(t\Z) = Z0(t)efi'z (5.1)

where (3 = (/?,,...,/?p)' is a p x  1 vector of unknown regression coefficients and Z0(t) is an

unknown arbitrary nonnegative function of time giving the hazard function when Z=0. As such the 

model assumes a parametric form only for the covariate effect while the baseline hazard is treated 

nonparametrically. The term proportional hazards refers to the fact that the hazard functions for 
different individuals defined according to (5.1) are multiplicatively related with a ratio that is 
constant over time. For small values of A t , the conditional hazard rate satisfies
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X(t\Z)At « pr{t <T,t + At\T > t, Z)

and can thus be interpreted as the conditional probability of a failure occurring in the interval
[t, t + At) , given Z and no failure before t. Censoring plays a similar role in the proportional hazards

model as in the case of the non-parametric hazard and the condition of independence between T and 

U now required in the presence of covariates is expressed as

p r ( t  <T <t + At\T > t,U > t, Z) = p r{t <T < t + At\T > t, Z)

Allowing the covariates to be time-dependent the hazard function for individual i is

Assuming a continuous distribution for failure time, a censoring mechanism that does not depend 
on J3 and independence between failure and censoring time, inferences about the regression 

parameters J3 are based on the partial likelihood introduced by Cox (1972, 1975) as

where the processes A(-) and T(-) have been defined above. The term partial likelihood was used 
because the likelihood expression is not dependent on the unknown baseline hazard Z0(t) but only 

on the parameters f t . The product is over all uncensored failure times and each term represents the 

conditional probability that individual i fails at time t given that one individual among those at risk 

at time t fails at time t. Cox argued that the resulting parameter estimates from the partial likelihood 
function would have the same distributional properties as the ones derived from full maximum 
likelihood estimators. Thus he suggested treating this likelihood function as an ordinary likelihood 
function for the purpose of large sample inference about (5. The log partial likelihood evaluated at

time t is given as

dNi(l)

and differentiating this expression with respect to (5 results in

(5.2)
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The solution to the partial likelihood equation U(/?, •) = 0 yields the maximum partial likelihood 

estimator.1 Estimators for the hazard function, as this is not estimated by solving the likelihood 

equations, have been suggested by Cox (1972), Breslow (1972, 1974, 1975) Oakes (1972) and
t

others. The estimator A0 for A 0(t) = |T 0(w)Jw proposed by Breslow (1974) is most commonly
0

used and is given by

M O  = M 1-------------  (5--3)
0 Y iYi(u)e/3'z'M

which reduces to the Nelson-Aalen estimator given in chapter 4 when ß  = 0 . The survival function 

conditional upon the covariates is given as

S(t\Z) = e s 0( t y Mß’z)

and can be estimated by 

S(t\Z) = e-k°0)exp(p'Z)

where A 0 is the estimator for the integrated hazard. Under circumstances in which there are

covariates whose effect on the hazard is not proportional, a stratified variant of the proportional 

hazards model is adopted. This extension leads to stratum specific hazard functions and for stratum 

s the proportional hazard function is given as

M |Z )  = 'U < )e x p (yff'Z) (5.4)

Under this specification, the subjects in the sth stratum have an arbitrary baseline hazard function 
A0s (t) and the effect of other explanatory variables on the hazard is represented by a proportional

hazards model in that stratum as given by (5.4). Hazard ratios are then computed within each 
stratum but the regression coefficients are assumed to be the same across all strata although the

The score statistic given by (5.2) can also be written as

Z,(S) -- M ---------- \d.ii
¿=1 0 ( S )

t

where .j^'Tff) = N t (t) -  ^Yj (u)eß Z , (u ) (u)du is the associated martingale process.
o
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baseline hazard functions may be different and completely unrelated. Each stratum contributes a 

stratum specific partial likelihood and the full stratified partial likelihood is obtained by multiplying 

the contributions to the likelihood with the overall log likelihood being given by

s =1

where ls (/?) is the log partial likelihood in stratum s (s = . Stratum specific survival

functions can then be estimated using the same methods as for the non-stratified model. Hence the
t

Breslow estimate for A0i(7) = j/ l0s(u)du is
o

---------------  (5 '5)

Application to cost

Adoption of the proportional hazards model in assessing covariate effects on cost could be 
appealing on the basis that the model is free of distributional assumptions concerning the hazard 

rate for cost. It could be useful therefore in modelling censored cost data which typically have 
complex distributions. In this setting the proportional hazards model relates the hazard of attaining a 

particular cost level to a set of covariates under the following specification

Z(cjZ) = A0(c)e/i'z (5.6)

where A(clZ) is the hazard of attaining a given cost level c conditional upon the set of covariates Z, 

P = (px,...,Pp)' is a p x  1 vector of unknown regression coefficients and Z0(c) is an unknown

arbitrary nonnegative function of cost giving the hazard function when Z = 0 . Although there are 

no assumptions about how the hazard rates vary with time underlying this model, the hazards rates 
for different levels of covariates must be proportional with a constant ratio over cost levels. An 

estimate of mean cost over the study period can then be derived as

M  = J{50(c)}exp(̂ )Jc
0

where S(c) = pr{M > c|Z) = {iS0(c)}exp(/?Z)] is the probability that the cost will be at least c given 

the covariates, Z denotes the covariates vector evaluated at the mean values of the covariates and
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an estimate S0(c) = e Ao(c) for 5 0(c) could be derived by applying the Breslow estimator given by

(5.3) to cost. However due to the positive correlation between cost at failure and cost at censoring 

time the resultant estimates are biased unless individuals accumulate costs at a common rate over 

time. A solution to the problem of dependent censoring suggested by Lipscomb et al (1998) is to 

apply the stratified version of the proportional hazards model with time as the stratification variable. 

The hazard function for cost in time period t is then given as

T,(c| Z) = A0,(Cy z (5.7)

where A0/ (c) is an unknown nonnegative baseline hazard function for cost in the rth stratum, that is

in time period t. The cumulative cost function gives the probability that the cost for the time period t 
will be at least c given the covariates and is

S ,(0  = pr(M, > c\l,Z,) =

where S0l (c) = exp j \  (k)dk
0

is the baseline cumulative cost function defined for each time

period t giving the level of cost when all explanatory variables are set to zero with k and c denoting 

levels of cost. An estimate for the mean cost in time period t is then given as

M, =
0

where an estimate S0l (c) = e Ao,(c) for S0l (c) could be derived by applying the Breslow estimator

given by (5.5) to cost. Lipscomb et al (1998) recommend use of this model under censoring 
conditions on the basis that stratification by time circumvents the problem of dependent censoring 

between cost at failure and cost at censoring, as this specification imposes no constraint as to how 
cost varies over time within a given time period which implies that the one-to-one mapping between 

time to failure and cost is no longer an issue.

Etzioni et al (1999) however criticise the use of the Cox proportional hazards model in analysing 
censored cost data and argue that its use within this context will generally lead to biased estimates 
on the following basis. For Cox regression to be unbiased, independent censoring is required within 

each group formed by each level of covariate ensuring that individuals who are still under 

observation are representative of the population at risk in each group. When Cox regression is 

applied to cost analysis the accrual of costs at different rates will result in dependent censoring 
within the subgroups defined by the covariate levels. Covariates that affect the rate of cost accrual 

will lead to differential dependent censoring across groups defined by different covariate values. As 

a result estimates of cost statistics will be biased. An additional concern relates to the
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proportionality assumption underlying the validity of the Cox regression model. Although the 

model does not specify the underlying cost hazard, it assumes proportionality of the cost hazards 

defined by different levels of covariates. The same assumption underlies the stratified variant for 
each stratum. Etzioni et al (1999) show that the proportionality assumption will not generally hold 

in circumstances when individuals accumulate costs at different rates as follows.

Assuming a binary covariate Z taking the values 0 or 1 and assuming that given Z = z survival is 
exponential with mean 1/Z T and costs accumulate at a rate of az per unit of time (or over a fixed 

time period) with probability p z and at a rate bz with probability 1 -  p z, the cost at event c(t) for 
an individual with Z = z would be c{t) = azt with probability p z and c{t) = bzt with probability 

1 -  p z . Under this model the probability density function for failure time t given Z = z is

f z (t) = Z, exp{- Azt} with survivor function Sz (t) = exp {-Azt)

and the probability density function for cost given Z = z is

fz WO)= exp| - y 11 1 ̂ -+ exp|" ff~l r1̂ ~ p*)

with survivor function

5z WO) = eXP1 -  \pz + eXPj -  y-i |(! -  Pz )

The hazard function for cost given Z = z is

h M O ) f M  0) 
S M O )

and the hazard ratio for cost for the different values of the covariate Z is then

\  \ ^ e x p
«. l

- i , )  
. J-p ' + ^ exp{

- i ,
.
| o - a )

a 2.,M 0 )  expi - U j
a, J■Pi + exp j - i ,

bl f”
-P \)

hz=oWO) ^0 exp-
a0 { ao .

1 ^0 
r 0 +Y  expI M ■0-A>)

exp-f - ^ - t  
{ a0 .

j A) + exPf M (1--Ao)
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It becomes clear from the above expression that the assumption of proportional hazards for different 
values of the covariates depends on the values of az, bz, Xz and p z which as the authors argue are

not generally expected to have the values required to ensure the validity of the proportionality 
assumption. The authors conclude therefore that even if the bias imparted by dependent censoring 

within the subgroups defined by the covariate levels due to the differential rate of cost accrual is not 

severe or is eliminated, use of the model will not be justified as the assumption of proportional cost 

hazards across different covariate levels is unlikely to be valid when the rate of cost accumulation 

varies among individuals. Essentially whether the assumption of proportionality is valid or not is an 
empirical question and depends on the particular application. This assumption can be tested as 
presented below both for the non-stratified model and for its stratified variant.

Assessing the proportionality assumption in the proportional hazards model

There are a number of graphical approaches for assessing the proportional hazards assumption (see 

Fleming and Harrington, 1991). An approach that provides a test statistic is due to Grambsch and 

Themeau (1994). Their approach is a generalisation of the approach by Shoenfeld (1982) who 

considered departures from proportionality with respect to one covariate only. In the context of time 

to failure data analysis, under the proportional hazards model, the intensity process for individual i 
is given as

Y ^ y ^ d A ^ t )

In general, the assumption of proportionality with respect to covariate j  means that 

J3j(t) = p  for all t

which in turn implies that a plot of fij (t) against time will have a zero slope. Under the alternative 

assumption of time-varying coefficients, the intensity process for individual i is

Yi( t y v)Ziii)d A 0(t)

Grambsch and Themeau (1994) have shown that

where ft is the estimated coefficient vector from the proportional hazards model and

r*k = [var(r*)]“' rk is referred to as the scaled Schoenfeld residual derived by scaling the Schoenfeld
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residual by an estimator of its variance.2 Expressing J3(t) as a regression on some function of time

g(t) as

fij{t) = /3j+0jgj(t)  (5-8)

where j  indexes covariates j  = 1,...,p , Grambsch and Themeau (1994) propose testing the null 
hypothesis of proportional hazards, that is, 9 . = 0 , against the alternative of coefficients which vary

over time through testing the null hypothesis of zero slope in the generalised linear regression of the 
scaled Schoenfeld residuals on functions of time. The test of zero slope is equivalent to testing that 

the log hazard function is constant over time and rejection of the null hypothesis would imply 

deviation from proportionality.

In applying the approach to testing the assumption of proportionality in the cost hazards, the 

analogous regression for covariate j  is given as

PJ(c) = PJ +9JgJ(c) (5.9)

where g.  (c) is some function of cost. Testing the null hypothesis of proportional hazards 9y = 0,

is now based on testing the null hypothesis of zero slope in the generalised linear regression of the 
scaled Schoenfeld residuals defined at cost levels c on functions of cost under the analogous 
relationship E(r*) + ¡3 ~ /? (c ). If the stratified version is adopted, it is recommended that this test

be performed on each individual stratum, the reason being that the test described above assumes 

homogeneity of variance across risk sets, an assumption which may not be justified across different 

strata.

5.2.3. Proportional means regression

A related methodology has been proposed by Lin (2000) in which the mean cumulative cost is 

modelled as a function of an unspecified baseline mean function and a set of covariates as

M(t\z)=Mo(tyz (5.io)

2 The Schoenfeld residual at event time tk is defined as

rk (J3) = Z(k ) — ——----------- ----------  where Z ((t) denotes the covariate vector of individual who has an event at

1=1
time tk. These residuals first proposed by Schoenfeld are based on the individual contributions to the derivative of the 
log partial likelihood as can be seen from equation (5.2) above.
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where ju(t\Z) = £{a *(?)|Z)} is the mean cumulative cost at time ? given the covariates with A *(?) 
denoting the cumulative cost up to time ? and //0 (?) is an unspecified baseline mean function of 

cost. The model is referred to as the proportional means regression model and is similar to the 

semiparametric Cox proportional hazards in that the baseline function is left unspecified and the 
covariates have a multiplicative effect on the mean cost. The model assumes that the underlying 
cost function is a process with positive jumps of arbitrary sizes. In the case where the process 

represents the cumulative number of some cost generating events, for example hospital admissions, 

the approach models the marginal mean for recurrent events and is in the same vein as the approach 

of modelling the marginal hazard functions for recurrent events or multivariate failure times studied 

by Lin et al (2000) and Andersen and Gill (1982) among others.

Lin argues that this specification avoids the problem of dependent censoring between cost at failure 

and cost at censoring as it models the mean cost at a point in time without assuming any 
dependence between failure time and cumulative cost or between the increments of the cumulative 
cost function A ’ (-). The underlying assumption is now the proportionality of the mean costs across

groups defined by different levels of covariates. Under random censoring the author presents the 
corresponding likelihood function incorporating adjustment for censoring, maximisation of which 

through iteration techniques leads to the estimation of the regression parameters. The estimation 

process is shown to be valid even in the case where the underlying process models accumulated cost 

expressed in monetary terms where the increments of the underlying cost function have non-
negative arbitrary values. However, deriving an estimator of average cost over the duration of 
interest requires estimation of the unknown baseline mean function jU0 (?). A consistent estimator

for /u0(t) is given by

M )  = I V dNjjs) 

o K ( s ) Y Jm/
(5.11)

where K(t) is the Kaplan-Meier estimator for K{t) = pr{U > t) defined in the previous chapter in 
section 4.3.3.1. As can be seen from the above expression, deriving an estimator for /r0(?) is only 

feasible if all sample paths of A* (•) are known which in turn requires knowledge of the amount of 
cost accrual for all individuals at every point in time .s over (0, ?] in order to determine the jumps of 
the process dN* (s) for all / ’s.3 As the author points out this is unlikely to be the case when A * (?) 

represents charges because in most applications the accumulated cost is only recorded at given 

points in time, for example at the individual’s death or last contact date, or at intermediate points in 

time corresponding to the time of the individual’s cost generating event. Under these circumstances 
and on the assumption that the mean costs across groups defined by different levels of covariates 
are proportional the approach can only be used to estimate the regression parameters.

3 The stochastic integrals appearing in the estimator for /J0 (?) are of the same form as shown in the previous chapter 

on page 87 from where it can be seen that their evaluation requires that all sample paths of A* (•) be observed.
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The mean and variance for the failure time T are then given as

E(T\Z) = jex p (-/? 'Z )r ' T(1 + Up)

var(7’|Z) = {exp(-/TZ)}-2 {r(l + 2 / p) -  r 1 (1 +1 Ip)}

Exponential regression

The exponential distribution can be viewed as a special case of the Weibull distribution for p  = 1. 

The corresponding hazard function is X{t) = X , that is the hazard is constant over time and the 

associated density function is f ( t )  = Xe~^ with survivor function given as S{t) = e~M . The mean 

and variance for the failure time T are

£(7 ,) = r T ( i  + i) = r ‘i ! = r 1

var(r) = r 2 {r(i + 2) -  r 2 (i + 1)} = r 2 (2i-i!) = r 2

Assuming the same parameterisation X = exp{- (3'Z} for incorporating covariate effects results in a 

hazard function conditional upon a set of covariates Z given by

X{t\Z) = te~p'z

The corresponding density function is / (t\Z) = te~p e~e and the survivor function is 

S(t\Z) = e~'e P . The mean and variance for the failure time T are then

E(T\Z) = {exp( - f iZ ) y '  T(1 + 1) = ep'z

var(rlZ) = {exp(-^'Z)}-2{r(l + 2 ) - r 2(l + l)} = (ep'z )2

Application to cost

Both the Weibull and exponential regression models have been applied to study the effects of 

covariates on cumulative cost and to provide an estimate of average cost over the duration of 
interest (Fenn et al 1996). In the application of such models to censored cost data, the hazard rate 
specifies the conditional probability of having “completed” a given cost conditional upon a set of 

covariates. That is, the hazard rate gives the probability of dying having attained c units of cost 

given the covariates and that the individual was alive after having attained c-1 units of cost. 
Under the Weibull regression model the hazard function for cost given a set of time independent 

covariates Z is
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¿(cl Z) = pcp- \ e p'z Y (5.12)

with density function f(c\Z) = pcp '(e  p z )pe cP{eP Y and survivor function S(c\Z) = e

If the hazard function is increasing, this implies that the likelihood of completing a given cost 
conditional upon having reached that cost level and the covariates is increasing in cost, whereas if 

the hazard function is decreasing this implies that the likelihood of completing a given cost 

conditional upon having reached that cost level and the covariates is decreasing in cost. The mean 

and variance for the random variable M denoting cost are

E(M\Z) = {exp{ - p ’Z ) Y x T(1 +1 / p) (5.13)

var(MlZ) = {exp(-^ 'Z )} '2 {T( 1 + 2 / p) -  Y2 (1 + 1 / p)} (5.14)

Similarly the cost hazard under the exponential regression model is given by

Z(c|Z) = ce~pz (5.15)

where the corresponding density function is / (c Z) = ce~p e~ce and the survivor function is 

S(c\Z) = e~ce PZ. This specification implies that the likelihood of completing a particular cost given

that the individual has reached that cost level and the covariates is independent of the cost level, i.e. 

is constant over cost levels. The mean cost and its variance are

E(M\Z) = {exp{ - p ’Z)Y'  T(1 + 1) = ep'z (5.16)

var(M|Z) = { ex p (-^Z )} '2 {r(l + 2) -  T 2 (1 +1)} = (ep'z )2 (5.17)

As in the non-parametric approach to the analysis of time to event data, the central concept in the 

semiparametric and parametric approaches considered above is the conditional probability of an 
event occurring at a given point in time given that it has not occurred until that point in time as 

modelled through the hazard functions. The additional element here is that the hazard function is 

also a function of covariates. For all these models independent censoring requires that individuals 
who are censored at time t after allowing for covariates be representative of all individuals who are 
still under observation at t. When applying these approaches to modelling cost to event data 
individuals who are censored having attained a particular cost level must be representative of all 

individuals who are still under observation having attained that cost level. This is not the case when 
the rate of cost accumulation varies across individuals and therefore all these approaches are 

generally inappropriate for the analysis of censored cost data.
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5.2.5. Least squares regression

5.2.5.1. The classical linear regression model

Under the classical linear regression model the relationship between the outcome variable Y and a 

set of covariates Z is

Y -  P'Z + £

where ft is a p x 1 vector o f unknown regression parameters and s  is a zero-mean error term 

assumed normally distributed with constant variance cr2. This model is known to give biased 
estimates when applied to censored data (Lancaster 1990, Greene 1997). Following Green (1997), 

the reason why this bias arises can be shown in the following manner. The relevant distribution 

theory for a censored random variable is similar to that for a truncated one.4 In general, for the 
moments of a truncated normal distribution the following theorem holds for the random variable x 

(Green 1977, p.951).

If x ~ N[/u, <j2 ] and the truncation point is w where w is a constant,

£(x|truncation) -  ju + oA(a)

Var(xj truncation) = cr2[l -  3(a)]

where

a = ( w -  /j)/ a ,
A(a) = 0(a) /[I -  ®(or)] if truncation is x > w ,
A(a) = -0(a)  / ® (a) if truncation is x < w ,
0(a) = A(a)[A(a) -  a] with 0 < S(a) < 1,

0(a) = i _e~a2/2 is the density function of the standard normal distribution N  [0,1] and
plK

a

®(<2) = J0(x)dx is the cumulative distribution function.
-o o

This theorem is used to derive the moments of the censored random distribution as follows. 
Assuming that the censored random variable y* follows a normal distribution with censoring

occurring at the upper part of the distribution at point w, a new random variable y  is defined from 
the original y* as

4 In the econometrics literature the distinction between truncation and censoring with respect to the regression model is 
that a censored regression model is one where the dependent variable is not fully observed whereas a truncated 
regression model is one where both the dependent and independent variables are not fully observed.
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y = w if y* >w 

y = y" if y* < w

It follows that if y* ~ N[p, a 2 ] then using the above relations, the mean of the censored random 

variable y  is

E(y) = pr(y = w) * E(y\y = w) + pr{y < w) * E{y\y < w)

= pr(y* > w) * w + pr(y* < w) * E(y* |_y* < w)

= (1 -  O) * w + ® * (p + crA)

and the variance is shown to be 

var(y) = c j20[(1 -  S) + ( a - A ) 2 (1 -  O)]

If censoring occurs at the lower part of the distribution, the same expressions apply with the roles of 
O and (1 -  ®) reversed and A defined as shown in the above theorem.

If censoring occurs from above at w = 0 and because the distribution is symmetric which implies 
(j){a) = and ® (-a )  = 1 -  0 ( a ) , the mean of the right-censored random variable is

E(y) -  <P(-p / a) * [p + <j A(- ju / cr)]

® (-/r/c r)

= [ l-®( / r /c r ) ] / r -c r^ ( / r /c r )

showing that the mean of the right-censored random variable will be lower than the mean of the 

original random variable.

Similarly, if censoring occurs from below at w = 0 the mean of the left-censored random variable is

E(y) = [1 -  ® ( - / /  / <t )] * [p + oA(-p / <r)]

^ (-/r/o -)= 0 ( p / a ) ] : p  + cr-
1 -  <£>(-p/ cr) 

= ® (/r/ cr)p + cr<f>(p/ cr)

showing that the mean of the censored random variable with censoring from below will be higher 

than the mean of the original random variable.
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Extending the above to the case of the censored regression model, also referred to as the Tobit 

model (Tobin, 195 8),5 this would be obtained by making the mean correspond to a classical 

regression model and for the case of right-censoring at w would be given as

y ] = P 'Z t +ei

y t = w if y. > w

y, = y* if y* <

e, ~7V[0,o-2] and n  = P'Z

Based on the preceding results, for an observation y t which might be right-censored,

E(y, IZ, ) = {1 -  <t[( w -  P  Z,. ) / cr]}w + ®[(w -  ¡3' Z, ) / ct P'Z,
4 , [ ( w - p z y a \

as opposed to E(yl |Z(.) =/3'Zi which would be the case if there was no censoring.

Application to cost

When the classical linear regression model is adopted to study the effect of covariates on cost, the 

relationship between cost and the set of covariates Z is

M = P'Z + s  (5.18)

where /? is a p  x 1 vector of unknown regression parameters and e is a zero-mean error term

assumed normally distributed with constant variance cr2 . Setting the first component of Z equal to 
1 makes the first component of /? correspond to the intercept. In the absence of censoring p  is

estimated by the least-squares normal equation

= 0  (5.19)
1=1

5 The Tobit model was originally defined for censoring of the lower part of the distribution with censoring occurring at 
point zero as
y l = P 'Z ,+ e l 
y, -  0 if y* < 0 

y, = /  if y* > o
Here, the analysis is modified to reflect the case of censoring of the upper part of the distribution with censoring 
occurring at point w .
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In the presence of censoring, estimation by the above equation will lead to biased estimates for the 
regression parameters as shown above. A naive approach is then to estimate the model by including 
only the uncensored cases in the estimation process. The regression parameters are again estimated 
by the least-squares normal equation but now only individuals with complete cost observations 
contribute information to the estimation process. As is the case in any similar missing data situation 
such an analysis, referred to as complete case analysis, which totally discards the cases with missing 

values leads to loss of information which could be a substantial problem if the proportion of cases 
with missing values is high. On this basis the approach has been deemed useful only for providing a

/ \  /V ~

baseline method for comparisons. The mean cost over (0, L] is then estimated as M = (i'Z , where 

Z denotes the covariates vector evaluated at the mean values of the covariates and ¡3 is the vector 

of the estimated regression parameters where only the uncensored cases have been used in the 

estimation process.

5.2.5.2. Least squares regression analysis with randomly right-censored data 

In the context of time to event data

A number of alternative approaches have been proposed to handle regression problems when the 

dependent variable is subject to censoring. In the context of failure time data analysis, a number of 
such models have been proposed to study the effect of covariates on censored failure time some of 
which assume specific parametric families for the failure time distribution such as the Weibull and 
exponential while others are free of such assumptions. Of the regression techniques that do not 

assume specific parametric families for the failure time distribution, one of which is the Cox 

proportional hazards discussed above, the ones following a least squares approach are described 

below.

As stated previously in the presence of right censoring the observables are X¡ = min(7^., Ui ) ,
S¡ = I{Ti < U¡) and a p  x 1 vector of covariates Z ¡ . The general form of the linear model when the 

dependent variable is failure time T is given as

T, = P'Z, + s¡ i = l,...,n (5.20)

where Z. is the covariate vector and i identifies individuals. Under random censorship, the error

terms are assumed to be independent and identically distributed random variables with zero mean 
and the censoring variables U/ s are independent and identically distributed random variables

which are independent of the error terms.

Miller (1976) introduced an estimator for the unknown parameters /3 which is derived by 

minimising the weighted sum of squares of the residuals with the weights determined by the
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Kaplan-Meier estimator of the error distribution based on the residuals. Assuming one covariate 

only, model (5.20) above is

F(t\Z) = F ( t - ß 0- ß {Z)

with

E(T\Z) = ß 0 + ß iZ (5.21)

The estimator proposed by Miller is derived by minimising the sum of squares

n \e2dF(e\ß0,ß ß (5.22)

with respect to ß ü, /?, where F(e\ß 0,ß ß  is the Kaplan-Meier estimator based on the data 

{ôl,êi = X - ß 0 -  ß xZ,i  = 1 that is,

where e, < e2 < ... are the distinct ordered values of e; , d(-} are the number dying at et and n{i ) 
are the number at risk strictly prior to <?,., i.e. at e(. -  . Expression (5.22) can be viewed as a

is a discontinuous function of /?,, it is difficult to locate the infimum point and hence Miller 
proposed an iterative sequence for estimating the regression parameter /?, (Miller, 1976).

Buckley and James (1979) modified Miller’s approach by basing their estimation on the censored- 

data analogue of the normal equations rather than the least squares criterion of minimising the sum 
of squares. Their estimator for the regression coefficients is based on the following relationship.

By replacing the conditional expectation E(Tl\Ti > X t) with an estimate based on the Kaplan-Meier

estimator in the expression above, estimates of the coefficients are derived by solving the usual least 

squares normal equations iteratively. Thus, the censored observations are replaced by their 

expectations and then the sum of squares is minimised.

Koul et al (1981) introduced an estimator that does not require iteration methods and applies the 

adjustment for censoring to the original observations rather than the estimated residuals. Their 

estimator is based on the following relationship

generalisation of the usual sum of squares ' ^ ( X i -  /?0 -  (3XZ)2 for uncensored data. Because (5.22)

(5.23)
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E ^ X , )  = - \ tK ( t ) d F ( t - p o -  p xZ t) for all t (5.24)

where Fj (t) = pr(Xi > t) = F(t -  /?„ -  PxZt) and K(t) = pr(U > t ) , that is, K(t) is the survivor 

function of the censoring distribution. For K(t)> 0, this yields

that is, the variables {SiX l {K(XI)} 1, i = 1,..., n\ follow a linear regression model which has the

same parameters as model (5.20) but the error terms here need not be identically distributed. Koul et 
al propose an estimator for the unknown survivor function K(t) given as

regression coefficients P  using standard least squares methods. As such, the great advantage of this 

technique is that the regression parameters are estimated without requiring iteration procedures.

Consistency of the various estimators presented in this section has also been considered and 

estimators for the covariance matrix of the regression parameters have been derived in each case. 

The idea of weighting the uncensored observations by the inverse of their probabilities of not being 

censored within the context of regression analysis which underlies the approach by Koul et al 

(1981) has been also used by Lin et al (2000) in deriving estimators of cost adjusting for covariate 

effects under conditions of censoring as will be shown below.

In the context of cost to event data 

Lin regression methodology

Assuming the general setting as defined in section 5.2.1 and defining T * = m in(r, L) with Z being 
a p x l  vector of covariates whose effect on the cumulative cost at T * one wishes to study, the 

methodology presented in this section introduced by Lin (2000) attempts to adjust the estimates 

derived by the linear model given as

M  = p Z  + s

E[S:X, ] = -  \tdF(t -  A  -  A Z, ) = A  + M

N [ â j = 0 , X j < l ]

for all t

Replacing K(t) with its estimator in the expectation E\8 ¡X t{K(X ¡)} '] allows estimation of the
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Thus

nu2 m - m  = n-u2y  V d , ^ : c(u) + oA  1)
K(0 N 0 / r l J " , / ( I J > « )  ' ’ P

which leads to the following expression for term U2 (/?)

- 1/2

By the law of large numbers and due to the consistency of i^(-)

lim ,,^  w"‘ X  I(T\ (M ' f5Z‘)Z ' = A O , where q(t) is well-defined.
1=1 n~ ' Y j . A x ; s ' W )

Thus

n -[' i c / ( / / )= ( M ' j y z ‘ + " - i ,is ) ' ? ( o ^ ( o + » „ a )
M A  ) i-1 o1=1

= » ' ,,2Z i , + o p( 1)

Because (« = 1,...,«) are n independent zero-mean random matrices, the central limit theorem 

implies that n~]l2U(j3) converges in distribution to a zero mean normal random matrix with 

limiting covariance matrix given as B = l im ,^  the Taylor series expansion,

nll2(/3 -  P) = A~ln~l/2U(J3), where A = A- f—-Z,®2 which converges in probability to
,=i

/? A
/I s  lim ^ ^  « ~ '^ Z ,02 .From  the asymptotic normality of r f x/2 U(j3), it follows that « 1/2 ( /? - /? )

i-i
converges in distribution to a zero mean normal random matrix and the limiting covariance is 

A~{BA~l .

Replacing the unknown quantities in the expressions above with their respective sample estimators, 

a consistent estimator for the covariance matrix is given as

Â-lBÂ~l (5.29)

where
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(5.30)
n

(5.31)

with ó, = 1 -  5; and

(5.32)

The mean cost over (0, L\ is then estimated as M = ¡3'Z , where Z denotes the covariates vector 

evaluated at the mean values of the covariates.

Multiple time intervals

The second approach presented by Lin (2000) extends the previous idea in situations where 

information on individual cost histories is available at various point in time over the duration of 

interest. The main purpose of this method is to increase efficiency by allowing use of cost 

information not being used by the preceding estimator. The approach draws on the methods for 

analysing longitudinal data using generalised linear models proposed by Liang et al (1986). The 

general setting for these approaches is outlined below.

Such data consist of an outcome variable and a p  x 1 vector of covariates observed at various points 

in time for each individual i. An issue inherent in longitudinal data, that is data consisting of 

multiple observations for each subject, is the dependency among the repeated measurements for any 
given subject. In such circumstances ordinary least squares is not an appropriate estimation 
procedure as the assumptions concerning the error terms are no longer valid. The general procedure 
to analysing such data in the econometric and statistical literature is to adopt an alternative model to 

ordinary least squares, referred to as the generalised linear regression model, which accommodates 
more general patterns for the distribution of the disturbances.

In general in the analysis of longitudinal data, interest lies either in studying the change over time or 

in assessing the dependence of the outcome variable on the covariates. Liang et al (1986) proposed 
a class of generalised estimating equations for the regression parameters which result in consistent 
estimates of the regression parameters and of their variance without requiring specification of the 

joint distribution of a subject’s observations. This approach has wide application if interest is in 

modelling the dependence of the outcome variable on the covariates and not in the pattern of change 

of the outcome variable over time. Under these circumstances, the approach models the marginal
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expectation of the outcome variable as a function of the covariates at each point in time whilst 

accounting for the correlation among the repeated measurements for a given subject by treating the 

time dependence among repeated measurements for an individual as a nuisance. When the time 

dependence is of primary importance, models for the conditional distribution of the outcome 

variable given its past values would be more appropriate and then the joint distribution of a 

subject’s observations would need to be specified. The authors argue that if  observations gained 

from different subjects are independent, the estimates of the regression parameters will be 

consistent, provided that the model for the marginal means of the outcome variable at each time is 
correctly specified even if the correlation structure, that is, the time dependence among repeated 
observations for a given subject, is misspecified. More importantly, this approach can also be 

applied in the event of some observations being missing, in which case the same results hold 

provided that data are missing completely at random in the sense of Rubin (1976).6 This type of 

model, that only assumes a functional form for the marginal distribution of the outcome variable at 

each time and treats the correlation structure over time as a nuisance, describes how the average 

response across individuals changes with the covariates and as a result consistency o f the estimators 

for the regression parameters depends only on the correct specification of the functional form for 
the marginal expectation of the outcome variable. Using this approach, whereby the marginal 
expectation of the outcome variable is modelled as a function of covariates, the estimated regression 

coefficients have an interpretation for the population on average rather than for any individual in 

particular.

Adopting the same framework, Lin (2000) models the marginal expectation of cost at each point in 

time for which cost information is available as a function of the covariates as follows. The duration 
of analysis (0, L\ is partitioned into K  subintervals (tk_x, tk ], (k = 1,..., K ) , with t0 = 0 and tK = L ,

and for each subinterval k the following linear model is assumed.

M ki= P'kz i + £ki k = \,...,K i = l,...,n

where for individual i M ik = M,. (tk) -  (tk_x) is the cost incurred over subinterval (tk , tk ] ,

Pk (k = 1 are p x  1 vectors of unknown regression parameters and the error terms eki's are

assumed to be independent among different subjects but allowed to be correlated within the same 
subject. By summing over all k subintervals, the linear model for the cost over the whole duration of 

interest becomes

M  i = /?'Z; + si i = \,...,n * 2

6 The missing data are missing at random if for each parameter value, the conditional probability of the observed 
pattern of missing data given the missing data and the value of the observed data is free of the missing data (see chapter
2, section 2.4.4)
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where M, = , fi = Z  A  > and s i = 2 X  . Defining ^  = m in(7;,it ) and S'kt = I(U, >Tki),
k = 1 *=1 i = l

i.e. 8*ki = /{min(7],C) < / / ,} ,  the estimating equation for fik (k = ) is given as

<=i A U fa)
(5.33)

where K(Tkj) is the Kaplan-Meier estimator for the probability o f not being censored based on the 

dataset [xki,S*ki,i = where X ki = m in (T ^t/,.).

The solution to the above estimating equation is then given as

-I
(5.34)

with

¿ - I
k=\ K(Tki) ) t t K ( T k])

" S ’
(5.35)

Comparing this estimator with its counterpart from the previous approach, the gain in cost 

information is due to the fact that here a subject contributes cost information to the estimating 

equations over all time intervals for which the individual is not censored, i.e. over all k's for which 
Ui > min(7j*,C). By contrast, in equation (5.26) an individual only contributes cost information to

the estimates if the individual’s censoring time exceeds the maximum observed time in the study.

In studying the asymptotic properties of this estimator, the same methodology as above is adopted 

and the left side of (5.33) becomes

n~"2Ut (.ßk) = n-'n Y ,  S“iM“ ß. f j)Zl ) ? ,  «)<*•»?' M  + 0,(1)
/=1 K \ J k i )  i=\ 0

- 1/2
Z X + M 1)1=1

Because Çki (n = 1,...,«) are n independent zero-mean random matrices, the central limit theorem 

implies that n~'12 { //,(/?,),...,UK(J3K)} converges in distribution to a zero mean normal random 
matrix with limiting covariance matrix between n~',2Uk (J3k) and n~ll2U,(j3,) given as

Bk, = lim  ¿ÎiaÇ'ii (k,l = 1 , . .,K) . By the Taylor series expansion,
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n' 2 (fîk -  J3k) = Ak'n l/2Uk(/3k) , where Ak =n 1 'Z®2 which converges in probability to
'=i

n
A = limn̂ M n _1̂ Z ® 2 . From the asymptotic normality of n~V2{Ul(j3l),...,UK , it follows that

i=i
1 / 2  ̂  ̂ • •n (/?, -  /?, ,...,J3k -  Pk ) converges in distribution to a zero mean normal random matrix and the 

limiting covariance between n'l2(j3k -  fik) and nU2(fî, -  fi,) is A~'BklA~].

Replacing the unknown quantities in the expressions above with their respective sample estimators, 

a consistent estimator for the covariance matrix is given as

A BA (5.36)

where

(5.37)

Â = n~'ŸuZf’2
M

(5.38)

(5.39)

K(JU) H
(5.40)

a « )  --tm>,)Z \ Kz,)Z‘
,=1 K (I k,) /  7=1

(5.41)

The mean cost over (0, L] is then estimated as M = fi'Z , where Z denotes the covariates vector 

evaluated at the mean values of the covariates.

Censoring dependent on covariates

Both approaches described above are generalised to the case of covariate-dependent censoring.
In the context of censored time failure data the issue of covariate dependent censoring has been 
addressed by Robins and Rotnizky (1992), Rotnitzky and Robins (1995) and Robins, Rotnizky and 

Zhao (1995) using a semiparametric regression methodology. The proposed estimating equations 

use the inverse o f the probability of an individual not being censored as the weight to adjust for 

missingness due to censoring and the resultant estimators are consistent when the data are missing 

at random in the sense of Rubin (1976). The model is specified based on the assumption that the 

probability of censoring at any given time t is independent of the outcome variable conditional on
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When multiple time intervals are considered the corresponding estimating equation for 
[3k (k = 1 is given as

(5.45)

whose solution is

K
with ¡3 = ¡3k , that is,

(5.46)

The asymptotic properties for both these estimators and the expressions for the limiting covariance 
matrices reported by Lin (2000) are derived adopting the same analytical framework as for the case 
of covariate independent censoring and follow as a direct generalisation of the results presented 
above for the covariate independent censoring case. The main reason for developing all the 

approaches presented in this section is to allow incorporation of a number o f discrete and 

continuous covariates in modelling costs under conditions of censoring. In addition, the methods are 

not restricted by the censoring pattern or by the number of covariates.

5.2.6. Two-stage regression (Carides et al methodology)

Carides et al (2000) proposed a parametric estimator for mean cost in which the total cumulative 

cost is modelled as a function of failure time. Their method was introduced as an attempt to 
overcome the limitation of the second Lin et al (1997) non-parametric approach, presented in the 

previous chapter, imposed by the requirement of a discrete censoring pattern to ensure the 
estimator’s consistency. Their estimator is referred to as a two-stage estimator because in the first 

stage of the estimation process the expected cost at any given point in time is estimated as a 

function of failure time and in the second stage the estimated expected costs at given points in time 

are weighted by the Kaplan-Meier probability of death at these points in time. The estimate of 

mean total cost is then derived as the sum over time of these weighted individual cost estimates. 

Under this model the mean cost is therefore given by
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v  = J«(/)|<iS(/)|
0

where g(t) = E(M\T = t) is the expected cost of an individual with survival time T and

S(t) = pr(T > /). The first stage involves deriving an estimator g(t) for g(t) = E(M\T = t) using a

regression approach. The authors suggest that the regression be performed only on the uncensored 

observations on the basis that the treatment costs of censored individuals typically differ from the 

treatment costs of uncensored individuals at the same point in time and inclusion of censored 
observations will therefore impart bias into the estimate of g(t) . The second stage of the estimation 
process involves the weighting of the estimated regression function g(t) by the Kaplan-Meier 

estimate of the probability of death at time t. The two-stage estimator of the mean cost over (0, L] 

is then given as

L
Mrs = jg ( '

0

where g(t) is an estimator for g{t) = E(M\T = t) , S{t) = J
5<t

Kaplan-Meier estimator for S(t) = pr(T > t ) . If the last observed time corresponds to censoring in 

which case the Kaplan-Meier estimator is undefined (see section 4.3.1), to ensure consistency the 

estimator can be expressed as

1 -
AA%s)l

W  J
, that is, S(t) is the

dS(t) (5.47)

where M uZL is an estimate of cost accumulated over (0, L] for patients who survive beyond L. The 

choice of the functional form for g(t) depends mainly on the data under consideration and the 

authors suggest use of either a parametric regression model or a non-parametric smoother. In the 

case of a parametric regression model the authors consider models which are, with or without some 
transformation of the data, linear in the coefficients thus allowing use of the ordinary least squares 
regression technique to derive estimates for the regression parameters.

If the parametric model for g(t) is a monotonic non-decreasing function of failure time the two- 

stage estimator can be given as

g(L)
p s m {g(0(<® 0 (5.48)
0

where Sg(T) {g(0} is the Kaplan-Meier estimator for Sg{T){g(t)} = pr{g(t) > c} , that is, the Kaplan- 

Meier estimator for the probability of the expected cost, as estimated by the model, being at least c.
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Following the definition of the Kaplan-Meier estimator for cost given in section 4.3.1 of the 
previous chapter, Sg(T){g(t)} is given by

¿,<r,<&')>= n I1-AAi{g(a)}] 
Y{g(u)} J

where A{g(W)} = £ I{g(Xi) < * ( i i ) , ,S, = 1} and K{g(«)} =
1=1 i=i

Thus, the difference between (5.47) and (5.48) is that in (5.47) the estimate for mean cost is derived 

as the sum of the expected costs as estimated from the model weighted by the Kaplan-Meier 
probability of death at the respective points in time, whereas in (5.48), the estimate for mean cost is 

derived as the area under the Kaplan-Meier cost curve as defined by equation (4.5) given in section

4.3.1. In other words, if the assumed parametric model is monotonically non-decreasing, a one-to- 
one correspondence between cost and failure time is ensured which implies that the assumption of 

independent censoring between cost at censoring and cost at failure time is satisfied thus allowing 

use of the Kaplan-Meier approach in deriving an estimate for the mean cost.

Due to the consistency of the Kaplan-Meier estimator, consistency of the two-stage estimator is 
ensured if the parametric model g(t) is consistently estimated. Although under specific parametric

assumptions the two-stage estimator is asymptotically normal with variance estimator directly 
following from the specific statistical distribution, the authors recommend that for practical 
purposes the bootstrap method be used to derive standard error estimates for the mean, as they 

argue that the assumption of asymptotic normality is unlikely to be valid in most applications. The 
issue then becomes to choose a functional form for g(t) . Many different alternative models could

be adopted in estimating this functional form. The models considered in this analysis follow the 
author’s suggestions and are presented below.

The first model assumes a linear relationship between total costs and failure times specified as

M,  =/?0+ M + * ,

where the error terms are normally distributed with zero mean and finite variance, so that the two- 

stage estimator for mean cost is

M  = Â + Â Â  (5-49>

where ß 0 and ß x are estimated from ordinary least squares regression using only the uncensored
I

cost observations and ß, = jÊ(u)du is the Kaplan-Meier estimator for mean survival time over
0
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(0,/] where S(0 = n{>-T7v l ' 7sit { •* V )̂ J

Given that the distribution of costs is commonly positively skewed, the authors consider a model in 
which the relationship between cost and survival time is specified by transforming the total costs on 
the natural logarithm scale. The regression model is then given as

InM,. = /?0 + M  +£,

where the error term is assumed lognormal distributed. Ordinary least squares regression is again 
used on the uncensored cost observations to derive estimates for /30 and . The mean cost is given

as

M  = eA+M (5.50)

where jB0 and /?, are the estimates from the ordinary least squares regression on the uncensored 

observations only and /), is the Kaplan-Meier estimate for mean survival time.

Although not considered by Carides et al (2000), under specifications where there has been some 

transformation of the dependent variable estimation of the untransformed scale expectation requires 
that retransformation to the untransformed scale be performed. As mentioned in chapter 2 a number 

of investigators including Duan (1983) have argued that when retransformation of the dependent 

variable to the untransformed scale takes place, an incorrect normality assumption with regards to 

the error distribution will lead to inconsistent estimates for the untransformed scale expectation 
although the ordinary least squares estimate for the regression coefficients is consistent and 

unbiased with minimum variance regardless of whether the true error distribution is normal or not. 

Given therefore that the error distribution in the untransformed scale is unknown, Duan (1983)

7 Although not shown by the authors this expression for the estimator of mean cost can be derived as follows. The two-

stage estimator for the unrestricted mean is ¡UTS = { ¿ ( ' M o . As shown in section 4.2.1,

m = d In S(t) ^  = e-\mdt ^  dSO) = = [_A (0]5(0
dt

and because T (t) =  ̂ , it follows that
Sit)

dt 
dSjt) 

dt

-A(0>

m
5(1)

dt

5 (0  => \dS(t)\ = f ( t ) d t .

Assuming g(t) = J30 + J3{t , the two-stage estimator is
CO 00 CO CO CO

Mrs = j V ( 0 | ^ ( 0 | =  /̂30\dS(t)\ +  \ p xt\dS(t)\ = P 0 \ f ( t ) d t  + P x \tf(t)dt = /30 + P xfit
0 0 0 0 0

Replacing the unknown parameters with their sample estimators results in the estimator for mean cost as given in
(5.49).
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suggested a non-parametric estimator for the untransformed scale expectation referred to as the 
smearing estimator derived as shown below.

Denoting the observations for the dependent variable on the untransformed scale by Yt,i = 1

and letting Z be a covariate of interest, a linear regression model relating the dependent variable on 

the transformed scale to the covariate is given by

(P{Yi) = pZi +ei

where 7, = (piYp are the observations on the transformed scale and Yt = /z(7, ) denotes the

observations after the retransformation to the untransformed scale has taken place, that is,
h = ç>~' with (p and h being monotonie and continuously differentiable. For the model
7, = p l i + s t on the transformed scale it is also assumed that the error terms have zero mean and

constant variance without being necessarily normally distributed. The smearing estimate for the 

untransformed scale expectation, that is after the retransformation, is then given by

£ (r ,)  = - î > ( f o + î , )
n m

where ft is the ordinary least squares regression estimate on the transformed scale, that is 

P = (Z 'Z ) Z '7  and = rji -  fYZi are the estimated ordinary least squares residuals. This estimator 

is shown to be consistent even when the error distribution in the above model is normal.

The estimate for the mean cost from the model \nMi = /?0 + fi]Ti. + s j after smearing is therefore

M = (5.51)

where ß {] and /?, are the estimates from the ordinary least squares regression on the uncensored 

observations only, //, is the Kaplan-Meier estimate for mean survival time and si are the ordinary 

least squares residuals.

Following Carides et al (2000), a third parameterisation for the relationship between cost and 

survival time was obtained by transforming the natural logarithm of the total costs on the log scale 

once more. The regression model is then given as

ln(ln M,.) = /?0 +/?, In 7] +£,

Ordinary least squares regression is again used on the uncensored cost observations to derive 
estimates for J30 and /?,. The mean cost without smearing is given as
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where ß 0 and ß , are the estimates from the ordinary least squares regression on the uncensored 

observations only and /), is the Kaplan-Meier estimate for mean survival time. The estimator for

mean cost with smearing is

The authors conclude that such a regression based approach where the relationship between cost 
and failure time is specified through a parametric model is advantageous compared to a non- 

parametric approach due to efficiency gains resulting from the use of such a relationship. On the 

other hand, this is only going to be the case if the parameterisation reflects the true functional form 
of cost and failure time. In the event of model misspecification, a non-parametric approach for 

estimating the relationship between cost and failure time will be preferred. Under either case 
however the degree of censoring in the data is expected to have a direct impact on the estimates of 
mean cost and the methodology presented here cannot incorporate information on individual cost 

histories which as shown by the analysis in the previous chapter could be of significant advantage 

under extreme censoring conditions.

n

(5.53)



5.3. Methods and results

5.3.1. Methods

The parametric models discussed above were applied to the UKPDS trial data as the non-parametric 

models of the previous chapter. All estimates were derived separately for each randomisation group. 

The covariates of interest were time independent and represented measurements obtained on each 
individual at the start of the study on age, body mass index (bmi), fasting plasma glucose level 

(fpg), race and sex. The descriptive statistics for each of the covariates are shown in Table 5.1.

Table 5.1. Baseline covariate values in conventional and intensive policy groups

Mean
Standard
deviation Minimum Maximum

Conventional (n= 1138) 
A ge (years) 53.40 8.69 25.62 72
Bmi (kg/m 2) 27.80 5.46 17.57 55.68
Fpg (mmol/1) 8.48 2.03 5.5 17.5
Race 1.32 0.72 1 5
S ex’* 1.38 0.49 1 2
Intensive («=2729) 
Age (years) 53.21 8.62 24.69 72
Bmi (kg/m 2) 27.49 5.07 16.59 60.61
Fpg (mmol/1) 8.61 2.14 5.4 19.9
Race* 1.31 0.70 1 5
Sex** 1.39 0.49 1 2

Frequency o f  categorical covariates
Conventional Intensive

Race*
1 = Caucasian 927 2215
2 = Afro-Caribbean 76 216
3 = Indian Asian 126 276
4 = Other 2 8
5 =  Other 7 14
Sex**
1 = male 701 1664
2 = female 437 1065

As can be seen from Table 5.1 there are no differences in the baseline covariate values between the 

two groups. These covariates were deemed clinically meaningful given that the fasting plasma 
glucose level provides the means of defining diabetes and body mass index gives an indication of 
obesity which is highly positively correlated with the risk of diabetes as is age. There is also 
evidence of racial differences in the incidence and prevalence of diabetes with for example higher 

rates in the Asian population. The fact that these covariates were deemed important explanatory 

variables for diabetes progression and complications does not imply that they will necessarily 
explain cost especially as they were only measured at the start of the study. However this represents 

the most frequent pattern of covariate measurements within a clinical trial setting where interest lies
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in recording disease specific predictive factors at the time of the individual’s entry to the study and 

in certain cases at various points in time over the follow-up period. Before presenting the results 

derived from the various estimators some specific methodological points follow.

With respect to the semiparametric methodology it is clear from the arguments presented earlier that 

the proportional hazards model will generally return biased estimates of cost for a number of 

reasons. Under the strong assumption that adopting the stratified variant of the model with time as 

the stratification variable overcomes the bias arising from dependent censoring between cost at 
failure and cost at censoring time, the issue then becomes to determine whether the assumption of 

proportional hazards holds within each individual stratum. Although based on the conceptual 

arguments given above this is not likely to be the case, the proportionality assumption was 
empirically assessed for the stratified model using the Gramsch and Themeau approach given on 

pages 112-113. The results of these tests are presented in Appendix A.5.1 and as expected they 
show violation of the proportional hazards assumption across all strata. Consequently the 

proportional hazards approach is not pursued further. The proportional means model suggested by 

Lin (2000) is not pursued either primarily because as stated above a consistent estimator of average 

cost over the study period requires derivation of a consistent estimator for the baseline mean hazard 

function. The latter can only be derived if all sample paths of the cost process are known which 
would require knowledge of the amount of cost accrual for all individuals at every point in time 

over the duration of interest. Given that this information was not available it was not possible to 

derive an estimator of mean cost using this approach.

The Weibull and exponential regression models although known to be biased were estimated for 
comparison purposes to the Kaplan-Meier estimator, the rationale being that they all share the same 
source of bias but they differ in the underlying distributional assumptions about cost, with the first 
two models imposing specific cost distributions and the latter being free of such assumptions. 
Estimation was based on equations (5.12), (5.13) and (5.14) for the Weibull and (5.15), (5.16) and 

(5.17) for the exponential regressions.

The three models proposed by Carides et al (2000) presented in section 5.2.6 were applied in an 

attempt to estimate cost conditional on failure time. All these models involve the Kaplan-Meier 
estimate of mean survival time. This was estimated using equations (4.1), (4.2) and (4.3) as 15.65 
years (se=0.21) for the conventional group and 15.96 (se=0.18) for the intensive group. Although 
the authors do not consider smearing estimators when the outcome variable was transformed, the 
analysis undertaken here derived mean estimates with and without smearing. The mean cost 

estimates were based on (5.49) for the untransformed model, on (5.50) and (5.51) for the first 

transformation and on (5.52) and (5.53) for the second transformation. An indication of the 

underlying relationship between treatment cost and study time is given by Figure 4.1 (section 4.4.1) 

which plots the observed costs against time for the UKPDS censored and uncensored populations 
for both trial arms.
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The regression methodology proposed by Lin (2000) was applied to the data both when individual 

costs were available at the last contact date or death and when multiple observations at different 
points in time were available for each individual. In the second model annual time intervals were 

assumed for each individual because as stated in the previous chapter intermediate cost history was 
available for each subject on an annual basis. The approach relating to covariate dependent 

censoring was not explored as this was not applicable given the data. Under the first model 

estimation was based on equations (5.25) and (5.27) for the regression parameters and on (5.29) to 

(5.32) for the coefficient standard errors. Under the second approach the respective estimating 

equations are given by (5.33) and (5.35) for the coefficients and by (5.36) to (5.41) for their 

standard errors.

The classical linear regression model given by (5.18) was estimated using the uncensored cases 

only as a baseline means for comparison to the alternative linear regression methodologies. All 
regression models aside from those proposed by Carides et al which used failure time as the 

independent variable, were based on the set of covariates described above.

Estimates of the variance associated with the mean estimators resulting from the above models were 
derived using the bootstrap approach with the exception of the Weibull and exponential regressions 
where the variance estimators were derived using equations (5.14) and (5.17) respectively. For the 

remaining models the bootstrap estimates were obtained from 1000 replications. The reason for 

using the bootstrap approach is that the asymptotic variance estimators for the mean cost have not 
been defined. With respect to the regression parameter standard errors for the Lin regression 

models, these were derived both using the bootstrap approach and analytically using equations 

(5.29) to (5.32) for the first approach and equations (5.36) to (5.41) for the second as described 

above.

5.3.2. Results

The results derived from the parametric approaches are shown in Table 5.2 while Table 5.3 reports 
the best non-parametric estimates (with the standard errors as derived from the asymptotic variance 

estimators) from the previous chapter as a means of assessing the parametric estimators’ 
performance. Based on the conclusions drawn in the previous chapter the first approach by Lin et al 
(1997), using information on intermediate cost histories, and the Bang and Tsiatis partitioned 
estimator were deemed to perform adequately under all circumstances considered. Given that these 

two estimators remained stable even under the extreme censoring conditions arising in the UKPDS 

data, it can be reasonably confidently asserted that the resultant cost estimates are reflecting the true 

cost values.
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Table 5.2. Parametric estimators of mean cost

Conventional Intensive
Estimator Mean Standard error * Mean Standard error*

Weibull regression 43090.52 37577.80 36502.85 28279.72
Exponential regression 54151.55 54151.55 56793.82 56793.82

Carides et al regression models 
total cost on time 20353.71 2551.99 19548.07 1228.00
ln(total cost) on time without 18086.73 2599.06 21096 1927.38
smearing
ln(total cost) on time with 16070.78 1914.10 17939.50 1368.74
smearing
ln(ln(total cost)) on time without 19080.38 3155.30 23132.24 2680.18
smearing
ln(ln(total cost) on time with 18959.67 3152.28 21626.47 2545.91
smearing

Lin regression methodology 
Complete costs 14015.82 3588.94 17573.79 1961.70
Multiple intervals 14941.14 1274.07 13789.33 452.70

Naive OLS 11708.78 1268.10 10845.21 693.58

*The standard errors were estimated using the bootstrap (1000 replications) with the exception of the Weibull and
exponential regression models were the analytic formulae were used.

Table 5.3. Best non-parametric estimators of mean cost

Conventional Intensive
Estimator Mean Standard error Mean Standard error

Linl (Lin et al 1997) {¡dum ) 14006.2 897.73 13172 340.55

Bang and Tsiatis Partitioned ( jup ) 14639.48 1219.4 13839.67 445.6

Reported in Table 4.4

With respect to the Weibull and exponential regression models the resultant estimates are high for 

both groups confirming the estimators’ bias as expected given the arguments above (estimated 
regression coefficients shown in Appendix A.5.2). Comparison with the Kaplan Meier estimates of 
38770.74 (se=5312.02) for the conventional arm and 31620.59 (se=2034.89) for the intensive arm 
reveals that the bias resulting from these parametric regressions is even greater than that of the non- 

parametric approach. The most likely explanation is that the bias in the parametric models can arise 

from both violation of the independent censoring assumption as well as model misspecification. 
These empirical results confirm once more the predictions of the theory that standard survival 

analysis techniques requiring independence between the variable of interest and its censoring 
variable are not suitable for the analysis of censored cost data and at the same time highlight the 

effect of inappropriate parameterisation.
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Turning to the Carides et al two-stage estimator, the resultant mean cost estimates are high relative 

to the non-parametric estimates for both groups (estimated regression coefficients for the various 

models and the programs for the bootstrap estimates for the standard error of the mean are shown in 

Appendix A.5.3). Moreover the difference in average cost between the treatment arms is generally 

of the wrong expected direction. Although the approach has initial appeal given that it attempts to 

model the time pattern of costs and is not restricted by assumptions concerning the censoring 

distribution, the analysis reveals the estimator’s inadequate performance in all the parameterisations 

considered. This finding holds even when smearing estimates were obtained following a 
logarithmic transformation to account for positive skewness in the cost data. While model 

misspecification is liable to be a contributory factor, the estimators’ inadequate performance is also 

likely due to the high degree of censoring present in the data. As the regression parameters are 
estimated using information from the uncensored cases alone, which in this case amounts to a mere 

18% of the total number of observations and will reflect the bias imparted from a complete case 

analysis, it is to be expected that the estimated coefficients will not reflect the true parameter values 

even assuming the relationship between cost and failure time is correctly specified.

This postulate is supported further by the results obtained when the expected costs were estimated 

by a non-parametric regression approach. Carides et al recommend use of such a regression when 

there is not enough confidence in a specific parametric relationship between cost and survival time. 

The method adopted provides smoothed estimates of cost using locally weighted scatterplot 
smoothing (lowess) according to which the smoothed values of the dependent variable are derived 
by running a regression of the dependent variable on the independent variable using for each 

estimate the data at the estimation point and a small amount of data near the point. In lowess the 

regression is weighted so that the central point each time receives the highest weight and points 

farther away receive less. A separate weighted regression is estimated for each point in the data in 
order to provide the smoothed estimates. Applying this approach resulted in estimates of mean cost 
of 5674.92 (se=853.24) for the conventional group and 9407.87 (se= 3230.63) for the intensive 
group where the standard errors were obtained from 1000 bootstrap replications. Such an approach 
for deriving expected cost estimates, being free of assumptions about the functional form between 

cost and failure time gives a strong indication that an equally important, if not more important, 

source of bias aside from model misspecification in the Carides et al estimator is the high level of 

censoring. This was to be expected based on the results obtained from the non-parametric 

estimators of the previous chapter which only used cost information from the complete cases. Both 
the respective Lin et al and Bang and Tsiatis non-parametric estimators performed inadequately 
when only complete costs were included in the estimation process and both techniques showed 

dramatic improvement when information was increased by incorporating individual cost histories 

into the estimating equations.
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Before considering the set of parametric estimators proposed by Lin (2000) the estimates derived 
from the naïve ordinary least squares regression are considered.8 The estimates derived from this 

approach are known to be biased as they are based on a complete cases analysis which ignores all 

censored observations, but as stated above, they provide a means for baseline comparisons to the 

alternative linear regression methodologies and in particular to Lin’s (2000) regression models 

which use the same set of covariates. Although the naïve least squares regression resulted in the 
expected direction of the difference between the two arms of the trial with the conventional group 
incurring higher costs on average than the intensive, the estimates of mean cost are low. This was 
anticipated as the information from censored observations is not used in the estimation process and 

it is known that the bias increases as the level of censoring increases. Comparison of the ordinary 
least squares cost estimates with the non-parametric uncensored cases estimates reported in chapter 
4 -  which were 11901.01 (se= l061.36) and 10629.97 (se=510.00) for the conventional and intensive 

arms respectively -  reveals a close similarity. This may indicate that model parameterisation does 
not provide additional information with respect to the distribution of cost and results in the same 

degree of bias as that imparted by censoring in the non-parametric naïve estimator.

With respect to Lin’s (2000) parametric approach that uses information only on the complete total 

costs, the resultant difference in mean cost between the trial arms is of the wrong expected 
direction. In addition the estimated mean cost for the intensive group is much higher than expected.9 
This pattern alters when the regression uses information on multiple cost observations on each 
patient obtained at a number of points in time.10 The latter approach results in estimates that are 

very close to the non-parametric counterparts derived from the first Lin non-parametric method 
using individual cost histories and even closer to the Bang and Tsiatis partitioned estimator which 
again uses individual cost histories. Thus the regression model which uses cost history information 

from all individuals results in a significant improvement compared to the parametric model which 
discards cost information from the censored cases. This was anticipated and confirms Lin’s 

argument that the multiple time intervals approach improves efficiency by using information which 

is ignored by the complete costs approach. However the reason why the second regression 
methodology performs adequately does not appear to be related to model specification as the 
estimates of the regression parameters reported in Table 5.4 indicate.

8 Appendix A.5.4. presents the resultant coefficients and the programs for estimating the standard error of the mean 
using the bootstrap.

9 Appendix A.5.5. presents the programs for estimating the coefficients and their standard errors using the analytically 
derived formulae as well as the program for deriving the bootstrap estimates of the standard errors for the coefficients 
and the mean.

10 Appendix A.5.6. presents the programs for estimating the coefficients and their standard errors using the analytically 
derived formulae as well as the program for deriving the bootstrap estimates of the standard errors for the coefficients 
and the mean.
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Table 5.4. Estimated regression parameters for the naive OLS and the Lin regression models

Regression
coefficients

Conventional
Standard

**ierror
Standard

**2error
Regression
coefficients

Intensive
Standard**ierror

Standard**2error

Naive OLS
const -23980.37 16190.03 13813.83 5647.46 7148.85 8007.90
age 262.47 197.58 161.68 57.55 85.66 100.61
bmi 454.01 270.10 258.15 34.84 123.74 108.39
fpg 537.43 611.44 654.39 -176.55 267.84 231.98
race 1783.51 2204.65 1990.84 146.71 954.35 998.54
sex 1545.94 2646.61 2627.59 1802.75 1250.54 1318.99

Lin complete 
costs
const -21043.55 223315.92 25522.02 32901.42 370405.18 24882.84
age 141.61 2388.67 337.58 -211.60 3100.51 315.09
bmi 596.27 4586.22 610.46 208.61 5442.36 267.38
fpg 1099.66 10597.17 1012.11 -979.99 12255.61 753.35
race 1424.06 44620.62 4309.11 1740.02 49061.19 2739.86
sex -206.40 41170.38 8907.59 -2619.76 66535.70 4142.53

Lin multiple 
intervals
const -217.49 260748.92 8723.92 12170.94** 256027.34 4883.95
age -16.99 3653.66 141.88 1.86 1830.22 41.83
bmi 127.08 6275.02 211.20 23.84 4818.33 108.31
fpg 1493.37** 13190.91 634.84 148.15 9463.72 187.03
race -247.16 45221.68 1711.94 -863.83 27533.62 630.64
sex 139.01 109954.54 3271.34 517.88 38910.15 806.28

" 1 Standard errors analytically derived by the normal equations for OLS and by expressions (5.29), (5.30), (5.31) for 
Lin using complete costs and (5.32) (5.36), (5.37), (5.38), (5.39), (5.40) and (5.41) for Lin using multiple intervals 

2 Standard errors derived from 1000 bootstrap replications 
**significant

The coefficient estimates resulting from all these regressions indicate that the covariates have low 

explanatory power. With respect to Lin’s regressions all are insignificant in the complete costs 

approach and significant only for fasting plasma glucose in the conventional group in the multiple 

time intervals approach. In the case of the naive ordinary least squares regression all coefficients are 

insignificant. In other words, the multiple time intervals approach does not exhibit a significantly 
improved model specification compared to the complete costs regression. Nevertheless the mean 
cost estimates derived from the multiple time intervals regression model are very close to the 
comparative non-parametric estimates. As both regressions use an inverse probability weight in 

attempting to account for censoring, the most likely explanation for this result is therefore the 

increased cost information used in conjunction with the particular weight by the multiple intervals 

regression. This appears to be confirmed by the results of a secondary analysis which was 

undertaken for the Lin regression models where only fasting plasma glucose was used as a 
covariate. Fasting plasma glucose was chosen on the basis that this was the only covariate
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associated with a significant coefficient even though this was only the case for one of the regression 

models. The results together with the naïve ordinary least squares estimates are shown in Table 5.5 

for the regression parameters and in Table 5.6 for the mean costs.

Table 5.5. Estimated regression parameters for the naïve OLS and the Lin regression models using 
fasting plasma glucose as the only covariate

Regression
coefficients

Conventional
Standard

**ierror
Standard

**2error
Regression
coefficients

Intensive
Standard

**ierror
Standard**2error

Naive OLS
const
fpg

7367.78
602.40

5369.69
603.33

5391.06
624.86

12142.42**
-144.15

2403.76
262.42

2171.18
232.21

Lin complete 
costs
const
fpg

-466.98
1690.44

85058.80
10737.78

9367.33
968.63

24497.55**
-891.05

142302.49
12645.16

8912.96
996.83

Lin multiple 
intervals
const
fpg

4263.38
1270.71**

97544.86
12934.45

3963.33
575.85

13220.31**
99.13

96850.40
9973.46

1948.28
203.60

Standard errors analytically derived by the normal equations for OLS and by expressions (5.29), (5.30), (5.31) for
Lin using complete costs and (5.32) (5.36), (5.37), (5.38), (5.39), (5.40) and (5.41) for Lin using multiple intervals**2 Standard errors derived from 1000 bootstrap replications 
^^significant

Table 5.6. Estimated mean costs from regression models using fasting plasma glucose as the only 
covariate

E stim a tor
Conventional Intensive
Mean Standard error* Mean Standard error*

Lin complete costs 
Lin multiple intervals 
Naive OLS

13870.84
15041.21
12477.19

7060.85
1578.42
1212.05

16821.34 2419.14 
14074.33 454.88 
10900.58 560.30

*The standard errors were estimated using the bootstrap (1000 replications)

Although the coefficient on fasting plasma glucose did not become significant in any other model, 
the mean estimates are very similar to their respective counterparts derived in the analysis based on 
the complete set of covariates. In this particular application therefore the choice of the set of 
covariates does not appear to have an impact on the resultant mean cost estimates. The inverse of 

the probability of an individual not being censored entering the estimating equations seems to be 
primarily responsible for the resultant mean estimates. However this particular weight alone is 

incapable of adequately adjusting for the loss in information when the level of censoring is too high
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as indicated by the poor performance of the complete costs regression. As was the case in the non- 

parametric analysis, the amount of available information on the cost history process proves as 

important as the probability weight which adjusts the estimates for the information loss due to 

censoring.

The fact that there was no gain associated with incorporating covariate information in the estimation 
process should not be interpreted as a general criticism of the particular regression methodology. It 

is rather the case that the covariates available in the dataset used in the present study did not provide 
any additional information with respect to cost and as such the approach did not provide further 

insight into the distribution of costs when compared to the non-parametric approaches of the 

previous chapter.

5.4. Discussion

Parametric approaches provide a necessary alternative in deriving estimates o f cost statistics in a 

number of circumstances, such as when interest lies in the assessment of individual covariate effects 

on cost or in extrapolation of estimates beyond the observed study duration or to different patient 

subpopulations. Inherent in all parametric approaches is the specification of a functional form for 

the relationship between the outcome variable and the covariates of interest. When the outcome 

variable is subject to censoring classical least squares estimation is biased and alternative models 
have been proposed, a number of which make specific distributional assumptions whereas others 

are free of assumptions regarding the underlying distribution of cost. This chapter considered a 

number of parametric methodologies which attempt to account for the presence of censoring within 
the context of cost analysis. The performance of the proposed estimators of cost was assessed under 

extreme censoring conditions using the same trial data as were used in the non-parametric analysis 

and the main findings are as follows.

The standard parametric techniques for analysing censored failure time data such as the Weibull and 

exponential regression are inappropriate for the analysis of censored cost data due to dependent 

censoring between cost at event and cost at censoring. The semiparametric proportional hazards 

approach although it could be potentially better suited for modelling complex distributions as it 

allows the functional form of part of the model to be unknown and therefore unrestricted, is also 

subject to the bias induced by dependent censoring. Ordinary least squares regression based on the 

complete cases alone is biased with the degree of bias increasing as censoring increases. The 

regression methodology proposed by Carides et al (2000) which models cost as a function of failure 
time is also sensitive to the level of censoring because although the weight providing adjustment for 
censoring is consistently estimated, the cost estimates being adjusted by it are based on regression 

parameter estimates which are in turn obtained using information on complete cases alone. 

Consequently, aside from a potential misspecification of the functional form for the relationship
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between cost and failure time, bias in the estimates is also going to arise due to the bias attributed to 

the complete cases analysis involved in the estimation process.

The regression methodology proposed by Lin (2000) adjusts the estimates for censoring through 

weighting the cost observations by the inverse of the probability of an individual not being censored 

as was the case in the Bang and Tsiatis non-parametric approach. Of the two models constituting 
the regression methodology, the one using cost information from the uncensored individuals alone 
was shown to result in biased estimates at the levels of censoring present in the particular data, 
while the second using information on individual cost histories from all individuals in the study was 

shown to perform adequately in deriving estimates of mean cost. The observed performance 
patterns however appeared to be unrelated to model specification indicating that in this particular 
application incorporation of covariate information did not improve upon the cost estimates derived 

from the best performing non-parametric estimators.

Based on these findings, it might be concluded that for the purposes of the analysis undertaken here 

whose aim was to assess the various estimators’ performance when estimates of mean cost over the 
study period are sought, there is no gain in adopting a parametric approach over a consistent non- 
parametric estimator. Moreover a non-parametric methodology is usually preferable on the basis 
that it involves fewer assumptions compared to a parametric alternative. In situations however 

where interest lies in assessing covariate effects on cost and in extrapolation beyond the study 

duration or to a different population setting, a parametric methodology becomes the necessary 

alternative. Of the proposed methodologies considered here, whose assessment was undertaken 

under extreme censoring conditions, the multiple time intervals regression proposed by Lin (2000) 

performed adequately in providing estimates of mean cost compared to the best non-parametric 

estimators even though there was no gain associated from incorporating covariate information.

This finding aside from providing a regression methodology that performs well under extreme 

censoring conditions, also confirms the general result of the previous chapter by reaching the same 

conclusion from a different analytical perspective. As was the case when the non-parametric 

estimators were considered, the present analysis established that censoring in the cost estimates is 
most successfully accounted for through weighting the complete observations by the inverse of the 
probability of non-missingness although the degree of retrieval of information lost due to censoring 

will also be determined by the amount of available information on the cost history process.

147



Chapter 6

Conclusions

This thesis has been set against a background o f increasing interest in economic evaluation of health 
care technologies and a related gradual expansion in economic analysis conducted alongside clinical 

trials. Despite the difficulties associated with its theoretical justification and implementation on 

occasions, this form of evaluation has been increasingly gaining acceptance as a useful means of 

assisting the decision-making process in the choice concerning the allocation of resources among 

competing health care interventions. It is implicit in adopting this method that efficiency in the 
health care sector is an underlying objective. Although alternative definitions of efficiency lead to 
different analytical perspectives, the objective of welfare maximisation is nevertheless maintained.

A prerequisite condition in pursuing this objective is to ensure that the outcome of such an analysis 
truly represents a relative valuation of the alternative resource allocation states under consideration. 
Fulfilment of this condition in turn requires that the methodology employed in deriving relative 

valuations is theoretically justified and that the measures it incorporates in deriving these valuations 

are appropriately specified and quantified. Assessment of alternative health care resource allocation 

patterns is then undertaken through the evaluation of the respective competing health care 
interventions by investigating the intervention specific resource costs incurred in achieving a given 

health outcome. On this basis the importance of deriving appropriate and accurate valuations of 

both cost and outcome is self-evident. It is within this context that this thesis has addressed specific 
problems relating to the collection and analysis of treatment cost data. Concentration on this 

particular subject has been motivated both by the limited consideration of the measurement of direct 
treatment costs relative to other areas of economic evaluation as well as by the recognition that the 

adoption of statistical methodology within the analysis of cost data is necessary especially in 
situations where particular data problems arise.

Having established the general setting, the analysis was preceded by an overview of the existing 

literature which served the purpose of identifying commonly encountered measurement problems 
relating to cost data, indicating their importance and revealing the current state of the development 
of solutions to these problems. O f the identified problems, the limited availability of cost data due 

to the data collection process and the incompleteness of cost information for analysis due to 

censoring were considered in detail in subsequent parts of the thesis with censoring constituting the 

major issue of concern.

Viewed within the context of a clinical trial setting the problem of limited availability of cost data 

due to the collection process arises mainly because of data constraints imposed on the economic
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variables by the trial design given that questions regarding the cost-effectiveness of a given 

intervention are normally of secondary importance relative to the testing of the clinical hypothesis 

concerning treatment efficacy that the trial considers. As a consequence of these priorities the trial 

typically records information prospectively on resource use at the patient level and leaves the unit 

costs of the resources to be determined retrospectively. Within a multi-centre trial setting this 
implies that centre specific unit cost information is not normally collected alongside the trial and 
some alternative source is thus required to provide the necessary unit cost information in calculating 

the total treatment cost. This alternative information source usually provides an average unit cost 

for each resource element. Deriving an estimate of treatment cost by combining centre specific 

resource volumes with an average unit cost estimate for each resource component results in the 

calculated treatment costs encompassing the variation in resource use across the participating 

centres but not the variation in the unit costs of the resources. The question of whether this matters 
was addressed in this thesis by a simulation experiment which assessed the difference in the 
estimates of treatment cost between two alternative estimation methods, the first using an average 
unit cost for each resource component and the second using centre specific unit cost information. 
The alternative approaches were considered within the context of economic theory assuming an 
underlying production function in specifying the relationship between inputs and health outcome 
while the relationship with the cost of producing a given health outcome was investigated by 

considering two distinct scenarios. The first assumed that treatment centres operate as dictated by 

economic theory and upheld by economic evaluation and therefore respond to changes in the 

relative prices of inputs, resulting for instance from the introduction of a new health care 

technology, by substituting the relatively less expensive inputs for the more expensive ones in a 

predictable manner, whereas the second assumed that treatment centres operate on the production 

function but do not respond to changes in relative input prices.

The analysis shows that if treatment centres respond to unit cost changes as expected from the 

theory, then the difference in the estimates resulting from the two methods of cost calculation is 

statistically significant and this result holds for a wide range of values of the elasticity of 
substitution representing conditions of near perfect substitutability to near perfect complementarity 

of the inputs entering the production process. If on the other hand treatment centres are not 
responsive to changes in input unit costs, the differences in the resultant estimates are not 
statistically significant. These results held when input unit costs were drawn from a number of 
alternative statistical distributions and under circumstances where the response to relative changes 
of input unit costs was assumed to have a stochastic component. The implication of this finding is 
that under the assumption that treatment centres operate in a rational economic manner in producing 
a given level of health outcome, as assessed by the study of a substitution effect on the production 

process, the method of cost data collection has an impact on the estimates of treatment cost. In these 

circumstances, everything else being equal, lack of centre specific unit cost information will lead to 

biased cost estimates because potential substitution effects on the production process are completely 

ignored.
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The subsequent analysis concentrated on the issue of primary concern in the thesis, namely the 

derivation of unbiased and consistent estimates of cost statistics when the data are subject to 

censoring. The objective was to investigate the theoretical justification, underlying assumptions, 

statistical properties and empirical performance of a number of alternative estimators of cost which 
attempt to account for the loss of information imparted by censoring. A distinction was made 

between non-parametric and parametric approaches reflecting the difference in the assumptions 

underlying the two groups of methodologies. Regardless of whether the estimators are of a 

parametric or a non-parametric nature, the majority are directly related to or originate from the 

theory underlying the statistical analysis of time to event data under conditions o f censoring. 

Investigation of the theoretical properties of the estimators of cost has been undertaken using the 
theory of stochastic processes as applied to the study of time to event data. This analytical approach 
allows the notion of the time element in the cost observations to be captured, censoring to be 
incorporated, variance estimators to be derived and convergence and asymptotic normality of the 

statistics of interest to be proven by invoking martingale convergence theorems.

Given the existence of consistent estimators of failure time statistics in the presence of censoring, 

initial attempts to adjust estimates of cost statistics for censoring were based on application of 
traditional survival analysis techniques to cost data. The assumption underlying the validity of these 

approaches is the one of independence between the variable of interest and its censoring variable. 

This implies independence between time to event and time to censoring when failure time data are 

considered and independence between cost at event and cost at censoring when cost data are 
analysed. In the former case the assumption is valid under the random censoring mechanism but in 
the latter case it is normally violated due to the lack of a common rate of cost accrual over time 
among individuals, as patients who are in poorer health states generate higher costs per unit of time 

and consequently are expected to generate higher cumulative costs at both the failure time and the 
censoring time. This positive correlation implies that removal of certain observations from the 
sample due to censoring affects the joint distribution of cost for the remaining observations in the 

sense that at any point in time future cost expectation is statistically altered (from what it would 
have been in the absence of censoring) by censoring. As a result any analysis that does not model 

this dependency will lead to erroneous inferences. Consequently cost estimators based on survival 
analysis approaches such as the non-parametric Kaplan-Meier, the semiparametric proportional 
hazards regression or parametric models assuming distribution families such as the Weibull and the 

exponential are all inappropriate.

Alternative methodologies have been recently introduced by a number of investigators both on the 

non-parametric and on the parametric side. Concentrating on the former, Lin et al (1997) proposed 

two estimators of average cost under conditions of censoring which under appropriate censoring 

conditions are theoretically shown to be consistent and asymptotically normal with analytically 
derived consistent variance estimators. More specifically, under both methodologies the study 

period is partitioned into a number of subintervals, an estimate of average cost in the interval is

150



derived and the estimator of cost for the whole duration of analysis is obtained by summing over the 

subintervals the interval cost estimates weighted by interval specific Kaplan-Meier probability 

estimates of time to event. The difference between the two alternatives is that the first only uses 

information on the total costs of uncensored individuals incurred up to the point of the individual’s 
death in the estimating process with the weight being defined by an estimate of the Kaplan-Meier 

probability of death in each interval of the partition, while the second uses information on 
intermediate individual cost history from all individuals and the weight is the Kaplan-Meier 
probability of survival to the start of each interval of the partition. Under the assumption of 
independent censoring, an extension of this assumption to require that the censoring mechanism is 

unrelated to cost levels, continuous distribution of failure time and appropriate censoring conditions 

both estimators are shown to be consistent and martingale theory enables consistent asymptotic 

variance estimators to be derived. By appropriate censoring conditions, it is meant that the 

censoring distribution is of such a form that individual censoring times can be made to correspond 

to the boundaries of the intervals of the partition, a condition which essentially requires a discrete 

pattern for the censoring times if consistency is to be ensured.

By contrast, the approach proposed by Bang and Tsiatis (2000) allows arbitrary censoring 

distribution patterns and in addition attempts to improve efficiency o f the proposed estimators by 

recovering information lost due to censoring through incorporation of some functionals of the cost 
history process in the estimating equations. The idea underlying all estimators in this class is the use 

of an inverse probability weight in the estimating equations through which censoring is 

appropriately accounted for. The first estimator uses cost information from the uncensored 

individuals alone while the second estimator also incorporates information on intermediate cost 
history from censored individuals. Under the first approach, the estimate of mean cost is derived as 
the average of the complete individual costs weighted by the inverse of the Kaplan-Meier 
probability of an individual not being censored evaluated at the point of the individual’s death. 
Under the second approach, the duration of analysis is partitioned into a number of subintervals, the 

first estimator is used to derive the estimated cost incurred in each of these subintervals and the 

final estimate of mean cost is derived by summing over these intervals. The advantage of the latter 
method over the former is that an individual is considered uncensored in a given interval whenever 

the individual’s censoring time exceeds the end of the interval. Consequently, there is an increase in 
the cost information being used by this estimator, as individuals who were treated as censored by 

the first approach not having failed by the end of the study and whose cost information was thus not 
used in the estimation process will be now uncensored in some of the intervals of the partition in 

which their costs will contribute to the estimates. Each of these estimators is accompanied by an 
improved alternative that attempts to increase efficiency in the estimates through use of some 
functional of the cost history process that allows recovery of information lost due to censoring. 
Under independent censoring all four estimators are shown to be consistent and variance estimators 
are analytically derived by invoking martingale convergence theorems. In addition to the theory of 

stochastic processes and martingales which provides the mathematical framework for studying the
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statistical properties of all the above estimators, the study of efficiency of the improved Bang and 

Tsiatis estimators is also based on the general theory of semiparametric models when data are 

missing at random.

Although the theoretical investigation of the estimators resulted in general justification for their use 

in deriving estimates of medical costs in the presence of censoring, varying performance patterns 

emerged when these were applied to heavily censored data. Specifically, the Lin et al and the Bang 
and Tsiatis estimators which only use cost information from the uncensored individuals displayed 
poor performance at high levels of censoring. In both cases this is due to the degree of censoring 
which has the following consequences. In the first case the high degree of censoring restricts the 
number of individuals who contribute cost information to each interval of the partition resulting in 

an estimated average interval cost that is not representative of the true expected cost in the interval. 

In the second case, the heavy censoring observed towards the end of the study period results in the 

estimated probability of an individual not being censored reaching extremely low values. 
Consequently the inverse of these probability values, which enter the estimating equations as the 

weights attempting to account for censoring, result in extremely inflated values of weighted costs 

whose impact on the final cost estimate is distortionary.

In contrast, the Lin et al and the Bang and Tsiatis estimators that use intermediate cost history from 

all individuals in the study performed adequately under the same censoring conditions. With respect 
to the improved set of estimators proposed by Bang and Tsiatis, contrary to what was anticipated 
from the theory, they both exhibited very poor performance and were completely unstable at the 
levels of censoring considered. Additional analysis investigated the impact of various levels of 

censoring on the estimators’ performance controlling for other factors and the results confirmed the 

above findings with the two adequately performing estimators remaining stable under all 

circumstances and the remaining estimators becoming increasingly unstable as censoring increased.

The idea underlying both best performing estimators is the partitioning of the study period into 

subintervals to allow incorporation of individual intermediate cost histories in the estimating 

equations, which are subsequently weighted by an estimated probability that accounts for the 
presence of censoring. The estimators differ both in the choice of this weight and in the interval 

costs that are adjusted by it. In the estimator by Lin et al the weight is the Kaplan-Meier probability 

of survival to the start of the interval that adjusts estimates of mean cost in the interval, whereas the 

Bang and Tsiatis partitioned estimator uses the inverse of the probability o f an individual not being 

censored evaluated at a given point in time to adjust individual observed costs in the interval. On 
the basis that both approaches require the same amount of cost information but consistency of the 

second estimator is independent of the pattern of the censoring distribution, the latter estimator 

becomes the preferred alternative.
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The analysis therefore identified estimators of mean cost whose performance is deemed satisfactory 

under extreme censoring conditions. Under these circumstances and given that even though such 

estimators are not assumption free they involve fewer assumptions compared to parametric 

alternatives, they are likely to be the preferred estimation technique. When interest extends however 
beyond the maximum time for which data is available or when questions regarding the effect of 
covariates on cost arise, parametric models become a necessary alternative. Clearly for such models 
to provide an appropriate alternative, censoring must be accounted for.

Naturally a first candidate in this category would be the classical linear regression model with cost 

forming the response variable but such an approach is known to yield biased estimates when the 

outcome variable is drawn from a censored distribution regardless of the application of interest. The 

naïve solution of estimating the regression parameters by completely discarding the censored cases 

from the estimation process is also biased with the degree of bias increasing as the proportion of 

censored observations increases. This together with the failure of parametric regression models 
traditionally used in the analysis of time to event data to account for censoring in the cost estimates 
due to informative censoring has led to two alternative regression methodologies within the context 

of parametric censored cost analysis.

The first of these methodologies introduced by Carides et al (2000) assumes a relationship between 

cost and failure time and involves two stages in deriving estimates of mean cost. In the first stage of 
the estimation process the expected cost at any given point in time is estimated as a function of 
failure time and in the second stage the estimated expected costs at given points in time are 

weighted by the Kaplan-Meier probability of death at these points in time. The estimate of mean 

total cost over the duration of interest is then derived as the sum over time o f these weighted 

individual cost estimates. A regression approach is used to derive the expected costs where only 

uncensored individuals contribute cost information in order to avoid the bias in the regression 

parameter estimates imparted by censoring. Alternative parametric assumptions can be made 

regarding the relationship between cost and survival time depending on the data under 

consideration. Due to the consistency of the Kaplan-Meier estimator, consistency of the proposed 

estimator is ensured if the regression model specifying the relationship between cost and failure 

time is consistently estimated.

The second parametric alternative was introduced by Lin (2000) and assumes a regression model in 

which cost is linearly related to a set of covariates of interest. The method derives estimates of the 
regression parameters accounting for the presence of censoring and is not restricted by the 

censoring pattern. Two estimators result from this approach. The first uses the individual total 

accumulated costs at the individual’s point of death or censoring while the second makes use of 
multiple cost observations on each subject obtained at various points in time over the study period. 
The main advantage of the latter estimator is an increase in efficiency by allowing use of cost 
information that is not used by the preceding estimator. In both cases the estimates of the regression
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parameters are adjusted for censoring by incorporating the inverse of the probability of an 

individual not being censored evaluated at the point of the individual observed cost in the 

estimating equations. The approach derives consistent estimates for the regression parameters and 

martingale theory provides asymptotic covariance matrix estimates.

Assessment of the estimators’ performance under the censoring conditions described above was 

based on comparing the resultant estimates with the respective estimates derived from the best non- 

parametric estimators. The Carides et al estimator resulted in biased estimates for all 
parameterisations considered for the relationship between cost and failure time. The results 
indicated that the major source of bias was the high degree of censoring rather than a potential 
misspecification of the regression model. Given that under this approach bias in the cost estimates 

arises from bias in the estimates of the regression parameters, it is not surprising that the estimated 

coefficients do not reflect the true parameter values when their derivation was based on only 18% of 

the observed data which constituted the uncensored subset. Therefore, although such an approach is 
appealing on the basis that it attempts to model the time pattern of cost, it is o f limited value at high 

levels of censoring. Given the potential value of methods that allow extrapolation of cost beyond 

the study period development of parametric models that successfully do so under conditions of 

heavy censoring appears to be a fruitful area for future research.

Concentrating on the Lin regression methodology, the approach using cost information solely from 
the complete cases yielded biased estimates of cost as expected given the limited amount of cost 

information entering the estimation process, while the approach using information on individual 

cost histories resulted in estimates that were very close to the ones derived from the best performing 
non-parametric methods which also use information on the individual cost history process. This 
result indicates that incorporation of covariate information in the estimation did not improve upon 

the cost estimates when these were compared to the ones derived from the best performing non- 
parametric estimators. Such a finding however is not meant to undermine the validity and 
usefulness of this particular regression methodology in modelling censored costs. It is rather the 
case that the covariates considered in the particular application did not provide any additional 

information in explaining cost which in turn implies the lack of any additional gain in adopting this 

methodology in deriving cost estimates compared to a non-parametric alternative. In general 

however assessment of the impact of individual covariates on cost is likely to be of major 

importance not least because it allows generalising the study results to different patient populations 
defined by different covariate values. The implication for the data collection process alongside a 
clinical trial is then that at the design stage of such a study identification of covariates likely to 

explain cost should be pursued.

Although within the context of this particular application there is no gain in adopting a parametric 
approach over a consistent non-parametric estimator especially given that a parametric 

methodology by definition involves a greater number of assumptions compared to a non-parametric
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alternative, the findings reached from the investigation of the Lin regression methodology provide 

further insight into the general issue of cost estimation in the presence o f censoring in the following 

manner. Aside from identifying a regression methodology which performs well under extreme 

censoring conditions, the analysis strengthens the validity of the main conclusion reached in the 

non-parametric analysis. That is, in general weighting the complete observations by the inverse of 

the probability of an observation not being censored in deriving cost estimates provides an effective 
means for handling the presence of censoring. Nevertheless under conditions of heavy censoring the 

success of such a method will also be subject to the amount of available information on the cost 

history process as this will in turn determine the degree of retrieval of cost information missing due 

to censoring. The implication for the design o f the clinical study is that regardless of whether the 
statistical methodology to be employed in the analysis of cost data under conditions of censoring is 
of a parametric or non-parametric nature, effort should be made to record cost information at 

intermediate points in time over the study duration. The findings derived from the preceding 
analysis provide conclusive evidence in support of this requirement with the value of the available 
information on the cost history process increasing as the degree of censoring increases.

To conclude, all aspects of the investigation undertaken in this thesis signify the importance that the 
level of cost information imparts to the study of the distribution of treatment cost. Normally cost 
information will be incomplete to differing degrees and for a variety o f reasons. The issue then 

becomes to identify the most appropriate methodology for deriving consistent estimates of cost 

when information is missing. The choice between alternative methods narrows as the degree of 
incompleteness becomes higher. At the levels of incompleteness considered in the preceding 

analysis when cost information is missing due to censoring, the general conclusion is consistent 

with that reached in similar investigations of censored data within different analytical contexts. 

However additional concerns were raised by the present analysis mainly due to the extreme 

censoring levels which were not an issue in the few existing studies of censored cost data. More 
specifically, the effectiveness of the inverse of the probability of non-missingness in adjusting 
estimates of the statistics of interest for censoring is confirmed within the context of censored cost 

data analysis. The same probability weight has been used in numerous applications in an attempt to 

adjust estimates for missingness including the study of censored failure times, adjusting regression 
coefficients for missingness in the data, studying semiparametric regression models in the presence 
of covariate dependent censoring, and estimating the distribution of quality adjusted survival time 

under conditions of censoring. In all these applications use of the inverse o f the probability of 
inclusion in the estimating equations results in consistent estimators for the statistics of interest 
while adjusting for missingness. The same general finding emerges from the analysis undertaken in 

this thesis but under conditions. When the level of censoring is too high the specific weight is 

necessary but not sufficient in adjusting the estimates for the particular type of missingness. In these 

circumstances knowledge of the history of the process under study proves a determining factor in 

the performance of the estimator. The proposed methodology then becomes both necessary and
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sufficient and derives consistent estimates of medical cost accounting for the missingness in the 
data due to censoring even when censoring reaches extreme levels.
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Appendix A.2.1. Review of the economic literature on type 2 diabetes

As stated in chapter 1 the empirical analysis in chapters 4 and 5 was based on the UKPDS trial data 
which assessed whether intensive policy delayed diabetes related mortality and the onset and 
progression of diabetic complications compared to conventional policy in a population of newly 
diagnosed type 2 diabetic patients. The aim of the review chapter was to provide general 
background information on a number of methodological issues arising in the collection and analysis 
of cost data which are considered in detail in the following chapters. Given that interest in the thesis 
is in methodological aspects of general applicability that are not restricted to a particular disease 
area, discussion of the economic literature in the area of diabetes was deemed to be of secondary 
importance. An overview of this literature is thus presented below for completeness purposes. In 
fact, as will be shown, there have been relatively few economic analyses undertaken in this clinical 
area even though this is a relatively prevalent disease. Moreover in accordance with the findings of 
Briggs and Gray (1998) discussed above, the limited degree of statistical analysis undertaken within 
economic evaluation appears to be true within this disease area. Given the overriding concern with 
censored cost data it is also important to note that none of the studies reviewed below account for 
censoring in their analyses.

The economics of screening and treatment in type 2 diabetes

Over a relatively recent period there has been a vast improvement in the understanding of the basic 
aetiology, epidemiology and treatment of diabetes mellitus. This chronic metabolic disorder which 
occurs when the body is unable to control blood glucose levels efficiently is classified into two 
main types. Type 1 diabetes, arising from chronic failure of insulin secretion and requiring insulin 
therapy, is commonly associated with children and individuals under the age of 40. Type 2 diabetes, 
common in the elderly and certain ethnic populations, is caused by defective insulin secretion and 
action and is treated through dietary control and drugs. A third and less common form is gestational 
diabetes and results from complications during pregnancy. Type 2 diabetes has the highest 
prevalence with over 75 per cent o f all diabetic patients being classified as type 2 (Harris, 1996). 
Information on all types of manifestation is difficult to acquire because of the chronic, long-term 
nature of the disease, the large range of risk factors and the many associated complications. 
Knowledge has improved with the collection of basic survey data on a range of populations 
(Alberti, 1993; Alwin and King, 1995; King and Rewers, 1993), by greater awareness of the 
attributable risks of comorbidities resulting from diabetes and through a number of clinical trials 
which have followed individuals over time to defined clinical end-points (UKPDS 1998; Ohkubo et 
al, 1995). Such trials have typically defined diabetes as a fasting plasma blood glucose level greater 
than 6mmol/l on at least two occasions.

As epidemiological and clinical information has improved, there has been a greater emphasis placed 
on the economic consequences of the disease. This is not surprising given the magnitude of the 
economic impact that this particular disease has on individuals and health systems. As the illness 
progresses the range and prevalence of complications also increase. Any therapy whose aim is to 
slow disease progression, thereby delaying the onset of complications, is therefore likely to be of 
major clinical and economic benefit. Consequently one of the main research questions is whether 
intensified management of type 2 diabetes is effective and, if so, cost-effective.

The aim here is to present a systematic review of the literature on the economics of screening and 
treatment in type 2 diabetes with emphasis on cost of illness and cost-effectiveness studies. This 
systematic review is supplemented by an overview of some of the main findings in the literature 
relating to the cost-effectiveness of treating type 2 diabetic complications. The review is structured 
as follows. A discussion of the methods employed in identifying the relevant literature and the
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criteria used for selecting the studies for inclusion is presented first. Subsequently the main findings 
of the individual studies under review are reported and these are followed by a discussion of the 
main issues identified within this literature. Finally there is a short discussion of the literature 
related to the economics of type 2 diabetic complications.

Methods

A search of the literature dating back to 1995 was undertaken. The justification for the choice of 
this date is that recent epidemiological and clinical data have had a dramatic impact on the general 
knowledge of diabetes and treatment patterns have subsequently been changing significantly. 
Moreover the incidence and prevalence of diabetes, in particular type 2 diabetes, appear to have 
been increasing over the recent past. Finally the evidence on cost-effectiveness of type 2 diabetes 
treatment interventions prior to this date was covered in a review by Gulliford (1997), specifically 
within the UK by Marks (1995) and more generally by Jonsson et al (1995). Computerised 
searches were used to identify articles on the economics of diabetes. MEDLINE and the Social 
Sciences Citation Index were the primary source databases. Search terms included “diabetes 
mellitus”, “diabetes”, “economics”, “economic evaluation”, “cost-effectiveness”, “cost” and “cost- 
benefit”. The web site http://www.pitt.edu/~tjs/costrefs.html, dedicated to referencing economic 
literature relating to diabetes, was also searched. In addition the references of each individual article 
were hand searched. While the initial search identified over 300 studies the vast majority of these 
were excluded as the analysis was not specific to type 2 diabetes or its complications. The 58 
remaining articles were then examined for duplication, lack of analytical content and general 
suitability leaving less than 20 studies forming the core of this review. The inclusion criteria were 
that all studies undertake an economic analysis of type 2 diabetes alone or that there was a clear 
distinction of the type 2 population from the general diabetic population. Exclusion criteria were 
based on whether or not the individual studies were based solely on secondary data, whether 
findings relating to type 2 diabetes could be distinguished from general results (i.e. results relating 
to diabetes mellitus in general), whether budgetary considerations alone were discussed and 
whether an economic analysis was reported. Articles were then classified into two main categories: 
those dealing with the cost/burden of type 2 diabetes and those concerned with economic 
evaluations of type 2 diabetes interventions.

The review of the economic studies relating to diabetic complications is not considered to be 
systematic as a number of articles were identified which presented results on diabetes mellitus 
generally without differentiating between type 1 and type 2 diabetes. Where a clear distinction was 
made, the findings have been included here, but this does not mean that the present overview of the 
economics of diabetic complication in type 2 diabetics is fully comprehensive.

According to the general format recommended by the U.K. National Health Service Economic 
Evaluation Database the following information was extracted, where possible and appropriate, from 
each study:

Author (s)
Year of publication
Year used for cost valuation
Country of analysis
Currency used for cost valuation
Alternative considered for evaluation (if relevant)
Cost-effectiveness measure (where relevant)
Patient population
Effectiveness data sources
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Cost elements 
Cost data sources 
Time horizon 
Discount rate
Variables included in sensitivity analysis 
Baseline results
Results from sensitivity analysis 
Author(s) conclusions

Information was extracted in this manner for ease of exposition. All costs were converted into 1999 
prices using a domestic deflator and converted into US$ using the prevailing exchange rate to allow 
comparison.

Results

The main findings are reported in Tables A.2.1.1 and A.2.1.2 with textual commentary highlighting 
methodological or additional results. The burden and cost-of-illness studies in type 2 diabetes are 
presented first (results in Table A.2.1.1). Given that the information gathered is both country- and 
time-specific the results are reported largely in a descriptive manner. Following this set of results, 
the cost-effectiveness literature is discussed (results in Table A.2.1.2). Finally a brief discussion of 
the literature on the economics of complications arising from type 2 diabetes is presented in the text 
but not in a separate table as it only attempts to be informative rather than comprehensive. More 
extensive reviews of cost studies on a number of specific diabetic complications are given by 
Ragnarson-Tennvall and Apelqvist (1997), Deerochanawong (1992), Waugh (1989) and Wood 
(1990).

Burden of illness studies

It has been reported that type 2 diabetes affected an estimated 110 million individuals worldwide in 
1995 and that this would more than double by the year 2010 due to demographic influences 
(Zimmet and McCarthy, 1995; Alberti, 1997). Such estimates however rely on susceptible 
prevalence figures. It has been estimated that at any given time up to 50 per cent of type 2 diabetic 
cases in the population are undiagnosed (Alberti, 1995). The limited although continuously 
improving prevalence and incidence data make it difficult to estimate the true patient population.

Even if disease prevalence is established, calculation of the burden of illness requires estimation of 
the attributable cost arising from associated complications. It is known that diabetes increases the 
relative risk of other diseases. The range of complications is well known: retinopathy, nephropathy, 
neuropathy and macrovascular disease are all common. The precise attributable risks of these 
diseases are however not fully established although estimates for a number of complications exist. 
The aetiology of the disease therefore makes it difficult to assess the true cost of illness of type 2 
diabetes for at least two reasons. First, costs of illness studies based solely on a primary diagnosis of 
type 2 diabetes will considerably underestimate the true resource cost given that they do not take 
account of the resource cost associated with the treatment of complications. The acknowledged 
under-reporting of type 2 diabetes in hospital and mortality statistics exacerbates such 
underestimation. Secondly and related to this, the true resource costs associated with the treatment 
of complications are best defined as the excess treatment costs incurred by the diabetic population 
over and above the costs incurred by a matched cohort population without diabetes.
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Bearing these problems in mind the most straightforward studies in terms o f methodology are those 
by Henriksson et al (2000) and Evans et al (2000). The first of these studies calculated costs based 
on questionnaires concerning resource utilisation over a six-month period within nine primary care 
centres in Sweden covering a total of 777 type 2 diabetic patients. These data were factored up to 
the Swedish population through the use of prevalence data to give an annual estimate of the cost of 
type 2 diabetes in Sweden. Prevalence and incidence data on complications were obtained from the 
questionnaires and used to estimate the cost of treating the associated complications. These rates 
were compared with rates gained from a review of the literature. Generally the study prevalence 
rates were smaller than the literature based figures making it difficult to verify the study rates. 
Overall, the results showed that hospitalisation costs dominated treatment costs amounting to 42 per 
cent of the total. Drug costs were 27 per cent of total costs. Drug costs for insulin treated individuals 
were twice as high as in those treated with oral antidiabetic agents. Complications had a varying 
impact on cost. For individuals with microvascular complications alone the annual cost was of the 
same order of magnitude as for those with no complications. For the ones with macrovascular 
complications alone the annual cost was approximately double the cost of those individuals without 
complications. Costs for individuals with both microvascular and macrovascular complications 
were approximately three fold higher than the costs in those without complications. In a similar vein 
the study by Evans et al (2000) used a patient register in a region of Scotland to identify both type 1 
and type 2 diabetic patients. Using extrapolation the authors suggest that patients with diabetes 
account for approximately 8 per cent of the UK drugs budget and of this 90 per cent of the 
expenditure is attributable to type 2 diabetic patients. The relative risk of drug usage was higher for 
type 1 diabetes (1.70 for type 2, 2.07 for type 1) but given their lower prevalence the budget impact 
was greater for type 2 diabetes.

O ’Brien et al (1998) used resource utilisation and unit costs from a wide variety of sources to derive 
their estimates. Resource use profiles were designed for a number of complications over lifetime 
with the first year costs defined explicitly and subsequent years defined as static states such that 
subsequent years were allocated the same cost for each of the complications if this was applicable. 
This is obviously a simplification likely to lead to a conservative estimate of costs since it assumes 
a constant rate of complication treatment cost over time. Five US state discharge databases were 
used to determine the prevalence of the complications based on primary diagnosis with diabetes 
recorded as a comorbidity. The event cost was dominated by the hospitalisation cost, apart from the 
case of ischaemic stroke where hospitalisation cost represented a quarter o f the event total cost. The 
formulation of the subsequent annual costs was based on treatment guidelines due to inadequate 
published observational studies. The most obvious application of this analysis would be to the 
population of the standard therapy arm of a cost-effectiveness model. The authors point out 
however that their approach has a number of limitations arising from the lack of observational 
studies on the treatment of type 2 diabetes and its complications, their assumption that the annual 
costs attributed to complications are constant over time and that as treatment technology improves 
their estimates of cost will date.

A similar method is used in two related studies (Brown et al, 1999; Brown et al, 1999) that are 
based on observational data. The first study considers newly diagnosed type 2 HMO patients 
matched with a control cohort over 8 years of follow-up. Observational data were based on clinical 
records and limited to the HMO scheme. As outpatient and other ancillary service use were not 
directly recorded, resource utilisation of these services was estimated by a regression model.
Broadly speaking the annual costs of the diabetic population were approximately double those of 
the matched case controls. After years one and two costs fell to their lowest level and then increased 
steadily over the remaining study period by 65 per cent at the end of the study compared to the 
initial year. Costs were dominated by in-patient treatment (46 per cent of the total). Cardiac and 
cerebrovascular complications were 23 per cent of total incremental costs where the increment was 
defined as costs attributable to the diabetic population over and above the matched control costs.
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An interesting finding was that hospital admissions unrelated to diabetes accounted for more than 
half of the incremental cost over the study period and consequently for most of the growth in these 
costs over time. The authors concluded that the more costly stages of treatment for diabetic 
complications occur after an 8-year lead-time. The authors also state that their cost figures are lower 
than other reported estimates and attribute this to the use of costs rather than charges and the use of 
cost-effective strategies utilised by the particular HMO.

In the second study undertaken by Brown et al (1999) a similar population was used and 
incremental costs over and above a matched control population were calculated for the differing 
stages of treatment for cardiovascular and renal complications. The estimates were based on 
regression analysis. Type 2 diabetic patients without complications had an average annual treatment 
cost of $2,263. The incremental cost for cardiovascular disease was approximately $1,210, making 
total average annual treatment cost equal to $3,472 if the patient was on drug therapy alone for 
cardiovascular disease and rising to approximately an annual total treatment costs of $8,235 if a 
major cardiovascular event was suffered. Type 2 diabetic patients with renal disease were estimated 
to have annual total treatment costs of $3,750, $4,428 and $17,445 (all 1999 prices) for early onset, 
advanced renal dysfunction and chronic renal failure respectively. These were higher estimates than 
earlier studies had reported which according to the authors was due to a better representation of 
incremental costs through the modelling approach than reliance purely on observational data on the 
basis that observational studies only attribute costs after clinical identification of the complications. 
The modelling approach, according to the authors, is better able to identify the increased costs 
incurred prior to clinical (or labelled) identification as a model provides more accurate estimates 
across the full term of treatment. Clinical understanding of the disease however did not support 
some of the model predictions. Females for instance had slightly higher predicted treatment costs in 
the model than males which is not what clinical evidence would suggest.

Economic evaluation of treatment interventions for type 2 diabetes

There are relatively few studies on the cost-effectiveness of interventions for type 2 diabetes as 
shown in Table A.2.2. This reflects as stated above the long observation time required to track 
disease progression and complications, the difficulties in establishing optimal standard therapies 
and the relatively few long-term clinical studies that assess interventions in terms of final outcome. 
The economic evaluation literature mainly addresses the following questions: is screening for type 2 
diabetes cost-effective; are there primary prevention strategies which are cost-effective; is intensive 
therapy cost-effective; is early initiation of insulin therapy cost-effective. In general, each one of 
these questions has been addressed in one study only reflecting the limited extent of the literature in 
this area.

Given the under-reporting of type 2 diabetes and the extensive range of complications, screening 
and primary prevention clearly become policy options. The Centre for Disease Control and 
Prevention of Diabetes Cost-effectiveness Group ran a Monte Carlo simulation model to estimate 
the lifetime cost-effectiveness of a one-year opportunistic screening programme (Engelgau et al, 
1998). Cost-effectiveness was estimated for a cohort of individuals aged 25 years and over. This 
opportunistic programme was compared with the current US guidelines which recommend that 
screening be initiated at 45 years of age. The model predicted that screening in the younger cohorts 
reduced microvascular complications. The health benefits were large in terms of life years gained, 
and more than doubled when measured in terms of quality adjusted life years (QALYs). Screening 
was more cost-effective when applied to the youngest age groups as they had the most QALYs to 
gain and to ethnic minorities as these have a higher incidence of the disease. The results were 
sensitive to the assumptions made and should therefore be taken as indicative rather than 
authoritative.
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Segal et al (1998) used a similar modelling approach in the analysis of primary prevention 
programmes in Australia. Given that particular populations are at higher risk of type 2 diabetes and 
that incidence increases with age this study considered whether particular prevention programmes 
would be cost-effective from a health service provider perspective. The programmes ranged from 
intensive dietary therapy and behavioural change in obese men through surgical intervention for 
obesity to a media campaign aimed at informing the general population of disease symptoms and 
progression. Transition matrices were formed across three states: normal glucose tolerance, 
impaired glucose tolerance and non-insulin dependent diabetes. The transition probabilities were 
based on a Swedish study of intensive weight loss and fitness enhancement programme for 
overweight individuals and mortality rates were obtained from epidemiological literature. Under a 
range of assumptions all primary prevention programmes considered were stated to be “highly cost- 
effective”. This result arose because the low provider incurred cost in the majority of the prevention 
programmes was recouped in cost-offsets due to delay or avoidance of complications. Even when 
success rates were reduced to relatively low levels the cost-effectiveness of the majority of 
programmes was retained. As the authors state the cost-effectiveness of these programmes would be 
improved greatly if quality of life was incorporated into the outcome measure. The model is 
characterised as relatively simple by the authors with single transition matrices used to progress 
each cohort to different diabetic states. There are only three transition probabilities which influence 
the outcomes and this does not adequately reflect the observed complex progression of the disease. 
Long-term clinical studies show that glucose intolerance is an inherently dynamic property 
associated with increasing baseline levels over time.

Until recently the standard clinical practice of treating type 2 diabetes has been based on dietary 
control initiated at diagnosis and altered to drug therapy as glucose intolerability increases and 
complications manifest. This has recently been challenged and the effectiveness and cost- 
effectiveness of intensive therapy and early introduction of insulin have been studied. Given the 
importance of dietary advice, Franz et al (1995) compared basic nutritional advice to advice based 
on formal guidelines. The cost-effectiveness of this study was based on a trial that failed to show a 
statistical difference in the clinical outcomes which were assessed in terms of fasting plasma 
glucose levels and HbAic levels. Nevertheless, the insignificant difference in the clinical outcomes 
resulted in similar cost-effectiveness ratios. The authors suggested that the lack of any conclusive 
finding might have been a reflection of the short time period (six months) considered.

At the other end of the treatment spectrum is the evaluation of insulin therapy in the type 2 diabetic 
population. The Kumamoto clinical study (Wake et al, 2000) investigated whether intensive 
glycaemic control based on multiple insulin injections (MIT) reduces the frequency or severity of 
microvascular complications compared to conventional insulin therapy (CIT) in this population. On 
entry, patients were classified into a primary prevention group who had no evidence of retinopathy 
or microalbuminuria and to a secondary prevention group with mild retinopathy and 
microalbuminuria. Over a six-year period the cumulative percentages of the development and 
progression of retinopathy and nephropathy were 7.7 per cent for the MIT group and 32 per cent for 
the CIT group in the primary prevention sub-population, and 19.2 per cent for the MIT group and 
44 per cent for the CIT group in the secondary prevention sub-population. The population was 
subsequently followed-up for a total of ten years. Generally the clinical trial results were maintained 
over time. MIT prolonged the number of years free of diabetic complications (for example 2 years 
for progression of retinopathy and 2.2 years for progression of clinical neuropathy). Associated total 
treatment costs over the ten-year period were also calculated and the MIT cost was shown to be 
$1,233 (1999 prices) less expensive than the CIT therapy due to the greater cost offsets achieved.
On this basis the authors conclude that intensive treatment appears to be justified.

A study of a more comprehensive treatment package is given by Eastman et al (1997, 1997). This is 
based on a simulation model which considered an incident population cohort of type 2 diabetic
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patients with disease progression modelled over lifetime focussing on fourteen disease stages 
encompassing microvascular and macrovascular disease. The data used to populate the model were 
taken from various US epidemiological studies. Glycaemic control was introduced through a one- 
off reduction in incidence rates and then risk gradients, taken from the Diabetes Control and 
Complications Trial study in type 1 diabetes (DCCT), were applied over time. Standard care costs 
were based on treatment patterns prior to the DCCT study and comprehensive care was based on the 
treatment patterns associated with two previously undertaken clinical trials. The measure of 
effectiveness was defined to be a QALY with life years estimated by the model and weighted by 
quality of life weights obtained from the literature. The results of the model suggest that 
comprehensive care reduces end-stage microvascular and neuropathic conditions by 67 to 87 per 
cent. Under baseline assumptions cardiovascular disease increased by 3 per cent as glycaemic 
control was assumed not to affect this disease. The incremental cost per QALY under 
comprehensive therapy was estimated to be $17,809 (1999 prices). This was sensitive to age at 
onset of disease but remained below $55,000 per QALY if age at onset was less than 50. For the 
cohort developing diabetes at 75 years of age the cost per QALY rose considerably to $248,844. 
Ethnicity also had a marked impact on the incremental cost-effectiveness ratio and when the rate of 
renal failure in the standard care arm decreased the cost-effectiveness ratio increased as cost-offsets 
in this arm were lower (a 25 per cent reduction increased the cost per QALY to $23,535). 
Consequently, the use of ACE inhibitors in reducing renal failure (with no concomitant impact on 
cardiovascular disease) while effective and inexpensive increased the cost per QALY further to 
$26,142. If glycaemic control is assumed to affect cardiovascular disease (cardiovascular disease 
attributable to diabetes falling by 20 per cent per 10 per cent reduction in HbAic) the cost per 
QALY falls to $13,097. The general conclusions reached are that cost-effectiveness is greatest in 
the younger age groups even though treatment duration is longer and in minority populations. These 
conclusions reflect the level of effectiveness and cost-offsets to be gained over time through early 
detection and targeting o f high risk sub-populations. The authors stress the conservative nature of 
their results particularly with regards to cardiovascular disease. Notwithstanding these conservative 
assumptions most sensitivity analyses show comprehensive therapy to be “in the range of 
interventions generally considered to be cost-effective” (Eastman et al, 1997).

By far the greatest improvement in knowledge concerning the treatment and progression of type 2 
diabetes has come from the UK Prospective Diabetes Study (UKPDS 33, 1998). As described in 
chapter 1, this was a prospective randomised control trial in which 5102 newly diagnosed type 2 
diabetic patients were followed over a median follow-up of ten years. After initial dietary treatment 
4209 patients with baseline fasting plasma glucose concentrations of 6.1 to 15 mmol/1 who had no 
symptoms of hyperglycaemia entered the trial. Of these, 342 overweight patients were randomised 
to metformin, with the remainder (3867) entering the main randomisation and allocated either to 
conventional policy (mainly diet, 1138) or intensive policy with insulin (1156) or sulphonylureas 
(1573). Conventional policy had the aim of maintaining patients free of diabetic symptoms and with 
fasting plasma glucose concentration below 15 mmol/1, while intensive policy had the aim of 
maintaining fasting plasma glucose concentration below 6 mmol/1. The trial results showed that 
although baseline levels of fasting plasma glucose concentration increased over time in all groups, 
intensive therapy significantly reduced the risk of any diabetes related end-point by 12 per cent. The 
trial did not show a statistically significant difference in diabetes related deaths or all cause 
mortality over the study period.

The results of the economic evaluation based on the main randomisation data reported the 
incremental cost per diabetes event free year gained, as mortality differences were not statistically 
significant (UKPDS 41, 2000). Time to first diabetes related endpoint formed the basis of this 
measure. A competing risk simulation model was used to predict the time to first event for those 
individuals who had not experienced a diabetes related endpoint over the trial period. Measurements 
of direct provider cost were based on the trial data and these were supplemented with predicted
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costs for non-inpatient resource use derived from regression analysis based on a cross-sectional 
questionnaire obtained from trial participants. The resultant cost effectiveness ratios were 
accompanied by confidence interval estimates based on Fieller’s method and were compared with 
bootstrap estimates for consistency given the skewed nature of the cost data. While some of the 
individual components of cost were found to be statistically significantly different between the 
intensive and conventional policies, the overall difference in total treatment costs was not 
statistically significant. When trial protocol driven costs were replaced with estimates of costs likely 
to be incurred in a standard clinical practice setting, the incremental cost effectiveness ratio was 
estimated to be $1,458 (1999 prices) with both costs and effects discounted at the 6 per cent rate as 
recommended by the UK government. Overall the intensive therapy appeared to be cost-effective 
over a range of assumptions. Acceptability curves reported that there was a 10 per cent probability 
that the intensive therapy was cost saving, a 50 per cent probability that the cost per diabetes related 
endpoint free year lay below (or above) $1,458, and an 80 per cent probability that the ratio was less 
than $3,132.

As noted above the UKPDS included a number of overweight patients, 342 of whom were further 
randomised to metformin and 411 were allocated to conventional policy achieved primarily through 
diet (UKPDS 51, 2000). In the conventional policy group the aim was to achieve the lowest 
possible fasting plasma glucose level attainable with diet alone and in the intensive policy group the 
aim was a fasting plasma glucose level of less than 6 mmol/1 achieved by increasing dosage of 
metformin (from 500 to 2550 mg per day) as required. If fasting plasma glucose concentration 
became greater than 15mmol/l or hyperglycaemic symptoms developed on the maximum tolerated 
dosage of metformin then glibenclamide was administered. If hyperglycaemia persisted, insulin 
therapy was initiated. Resource use data were taken from the trial but missing in-patient records for 
approximately 16 per cent of the cases meant that length of hospital stay was imputed for these 
patients. As in the main UKPDS economic evaluation non-inpatient resource use was estimated 
from a regression model based on a cross-sectional questionnaire data. The outcome measure was 
life years gained based on the differences in mortality recorded within the trial and on a model that 
simulated life expectancy in those individuals who were still alive at the end of the trial assuming 
that hazard rates were the same between the groups. While the metformin group patients were 
associated with higher treatment costs they also experienced greater cost-offsets mainly due to 
shorter length of hospital stay. This coupled with a gain in life expectancy of one year in the 
metformin group, resulted in this therapy being effective and cost saving on average. The results 
also reported the incremental cost-effectiveness ratio using acceptability curves and showed that for 
the metformin policy there was a 70 per cent probability that it is cost-saving and a greater than 95 
per cent probability that the cost-effectiveness ratio is less than $2,259. The reduction in costs of 
complications will therefore in most cases outweigh the higher treatment costs.

The UKPDS had a further randomisation trial embedded within it. The Hypertension in Diabetes 
Study (HDS) randomised a total of 1148 type 2 diabetic hypertensive patients to tight or less tight 
blood pressure control. The aim of the tight control policy was to achieve blood pressure <150/<85 
mm Hg using the ACE inhibitor captopril (25 mg twice daily increasing to 50 mg twice daily if 
required) or the (3-blocker atenolol (50 mg daily increasing to 100 mg daily if required). The aim of 
the less tight control policy was initially to achieve blood pressure <200/105 mm Hg, which was 
modified in 1992 to <180/< 105mm Hg after publication of other clinical trial findings in non-
diabetic hypertensive patients. Clinical data were analysed as in the main economic evaluation of 
the UKPDS and years free of diabetes related endpoint was the defined outcome measure (UKPDS 
40, 1998). Life years gained were also calculated based on a parametric model which predicted the 
hazard rate for fatal and non-fatal cardiac events, the hazard for fatal and non-fatal strokes and the 
hazard for all other deaths. Incremental cost-effectiveness ratios and associated confidence 
intervals, calculated in the same manner as the main UKPDS analysis, were reported and 
acceptability curves were presented. There was no significant difference in the total cost between
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the tight and the less tight blood pressure control policies even when standard practice resource use 
patterns replaced trial protocol driven patterns. The incremental cost per additional year free of 
diabetes related endpoints was $1,312 (costs and effects discounted at 6 per cent; 1999 prices) and 
the incremental cost per life year gained was $900. The acceptability curve associated with the 
incremental cost per additional year free of diabetes related endpoints showed a 33 per cent 
probability that tight blood pressure control was cost saving, a 50 per cent probability that the ratio 
lay below $1,312, and a two per cent probability that it was not cost effective. Similar results were 
reached for the cost per life year gained.

A related study by the same investigators assessed the incremental cost effectiveness of the ACE 
inhibitor captopril versus the p-blocker atenolol as the two competing tight blood pressure control 
policies in hypertensive type 2 diabetic patients (UKPDS 54, 2001). This study was based on the 
main Hypertension in Diabetes Study and performed the secondary comparisons between the two 
blood pressure control agents assessing patients on the ACE inhibitor (400 patients) and those on P- 
blocker (358 patients). A similar methodological approach as adopted in the main hypertension 
study was undertaken with costs calculated in a similar manner and life years gained estimated 
through the simulation model mentioned above. The results showed that 66 per cent of patients 
receiving the p-blocker received additional glucose lowering treatment four years after 
randomisation compared to 53 per cent in the ACE inhibitor group and that a difference was 
maintained over time. This led to the mean cost of antidiabetic drugs in the P-blocker group being 
higher over time offsetting the higher cost of the ACE inhibitor. There was also a higher cost of 
hospitalisations in the ACE inhibitor group leading to overall treatment costs being statistically 
significantly higher for ACE inhibitors than for p-blocker. There was no statistical difference in 
outcomes with the P-blocker therapy performing slightly better than the ACE inhibitor. Given no 
difference in effect but a significant difference in costs of $1201 per patient (1999 prices), the 
results of the cost-effectiveness analysis favoured p-blocker over ACE inhibitor as the preferred 
tight blood pressure control policy.

Economic evaluation of complications associated with type 2 diabetes

As stated previously the literature concerned with the cost-effectiveness of interventions aimed at 
diabetic complications in general has not differentiated between type 1 and type 2 diabetes. A broad 
conclusion is that screening and treatment of complications is cost-effective. The results reported 
below relate to studies which have either specifically targeted the type 2 diabetic population or have 
reported results within this population. As mentioned earlier, this part of the review is not 
comprehensive but rather highlights general findings using specific studies as examples.

There has been some controversy over the cost-effectiveness of screening for diabetic retinopathy. 
Early studies were criticised for utilising sub-optimal screening technologies and not using 
opportunistic screening as a comparator (Buxton et al, 1991). A recent UK study assessed the 
incremental cost-effectiveness of a systematic screening programme compared to an opportunistic 
programme (James et al, 2000). This analysis was based on an earlier clinical study and the 
incremental cost-effectiveness was calculated as the additional cost required to generate each 
additional true positive case identified after replacing the opportunistic programme with the 
systematic one. The base case results report an incremental cost-effectiveness of complete 
replacement of the opportunistic programme as being $39 (1999 prices). One of the controversies 
underlying the studies is the baseline prevalence. This study assumed a prevalence of approximately 
14 per cent while earlier studies had assumed prevalence rates to be about one third of this. This is 
important as prevalence will fall to the incidence rate over time with a systematic screening 
programme. The study reported that while the incremental cost-effectiveness ratios rose over time, 
the systematic programme was always more cost-effective than the opportunistic programme. These
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results were similar to the results of an earlier US study (Lairson et al, 1992). Javitt and Aiello 
(1996) used an epidemiological model to extrapolate screening results into treatment effectiveness 
and subsequently into the cost per QALY. Ophthalmic screening and treatment for type 2 diabetic 
patients ranged from $3,198 to $3,849 (1999 prices) per QALY compared to no treatment 
depending on whether insulin was used or not. A similar criticism may be levelled at this study, 
that is that the true alternative ought to be opportunistic screening. These results suggest that 
systematic screening alone as well as a combined screening and treatment programme are relatively 
cost-effective. A Dutch study by Crijns et al, 1999 considered the optimal timing of screening 
intervals using a simulation model to calculate the marginal cost of no screening versus screening 
once a year if diabetic retinopathy is diagnosed, twice a year if macular oedema is diagnosed and 
four times a year if proliferative diabetic retinopathy is diagnosed. Three further scenarios 
decreased the frequency of screening. Direct and indirect costs were considered for both type 1 and 
type 2 diabetic patients. The results relating to type 2 diabetes showed that the indirect costs were of 
little consequence while the direct costs per year of realised sight gained were considered low 
compared to other interventions with optimal initiation of screening associated with the youngest 
age cohort considered (35 years of age). Generally the results were similar to those gained by Javitt 
and Aiello (1996) and support that screening is cost-effective relative to other interventions.

It is estimated that between 5 and 15 per cent of diabetic patients have ulceration of their feet with 
approximately 1 to 20 per cent requiring amputation (Ragnarson-Tennvall et al, 1997; Krentz et al, 
1997; Ollendorf et al, 1998). Difficulty is encountered in defining precisely some of the conditions 
that lead to diabetic foot disorders, neuropathy in particular. It has been estimated that some 50 per 
cent of amputations are avoidable and one study has suggested that considerable savings may be 
attained through the adoption of prevention programmes (Ollendorf et al, 1998). The costs of 
treatment, particularly for amputation, (van Houtum, 1995) are known to increase considerably as 
complexity increases. Panayiotopoulos et al (1997) showed that there was no statistically significant 
difference in surgical outcome between diabetic and non-diabetic patients, although the diabetic 
patients tended to perform worse. In contrast, the diabetic population undergoing surgery had 
significantly higher costs compared to the non-diabetic population. Total cost for the diabetic 
population was $12,823 (1999 prices) compared to $8,868 for the non-diabetic population. With 
regards to less severe diabetic foot infections Eckman et al (1995) found little difference in the cost- 
effectiveness across a range o f strategies.

Recently interest has turned to the analysis of treatment of diabetic patients at risk of coronary heart 
disease. This interest stems not only from the high risk of CHD in the diabetic population but also 
from the sub-group analysis of the diabetic population undertaken within the Scandinavian 
Simvastatin Survival Study (Herman et al, 1999). In this analysis three sub-groups were identified: 
those with normal fasting glucose, those with impaired fasting glucose and those with diabetes.
Each group was analysed comparing the simvastatin arm to a placebo with direct health care 
resource utilisation defining the outcome measure. While the study did not differentiate between 
type 1 and type 2 diabetes the impaired fasting glucose group can be considered representative of a 
mild to moderate type 2 diabetic population. Concentrating on the findings for this group, the study 
reports that cardiovascular hospitalisations were reduced by 30 per cent in the simvastatin group 
compared to placebo (comparable reduction was 23 per cent in the normal fasting glucose group), 
and length of hospital stay was reduced by 38 per cent (compared to 28 per cent in the normal 
fasting glucose group). On average the impaired fasting glucose group showed a decrease in 
hospital costs of $4,600 (1999 prices) which offset 74 per cent o f the cost of simvastatin. Indeed 
there was a net cost saving for the diabetic sub-group in this respect. Building on this study, but 
using a modelling approach, Grover et al (2000) considered the cost-effectiveness of simvastatin 
use in primary prevention by comparing a diabetic population without symptomatic CVD to a non-
diabetic population who had CVD. Interest was in whether the treatment of primary prevention 
patients at high risk was as cost-effective as secondary prevention. The cost-effectiveness ratio was
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similar in male diabetic patients without CVD to CVD males without diabetes. These results held 
across several countries, largely because the cost offsets were low relative to the treatment costs. 
Grover et al (2001) also showed similar results when they stratified by different LDL cholesterol 
levels.

Banz et al (1998) analysed the impact that bodyweight gain in type 2 diabetic patients had on the 
development of CHD. They used data from a clinical trial within a decision analytic approach to 
predict the rate of CHD in individuals with weight gain of less than two kilograms over a ten-year 
period and with weight gain greater than two kilograms over the same period. The results predicted 
a significantly lower rate of CHD (30.3%) in individuals with relatively stable bodyweight 
compared to those with bodyweight gain greater than two kilograms over the study period (CHD 
rate was predicted to be 38.2%). The study compared further first-line therapy use of glibenclamide, 
which has the side-effect of increasing bodyweight, with acarbose, which does not increase 
bodyweight. Their findings suggest that although acarbose is four times more expensive than 
glibenclamide in the environment studied (Germany), approximately one-third of this increase was 
offset by the lower CHD event rate associated with acarbose. The authors state that this is a 
tentative finding as all bodyweight changes were attributed to the drug therapy.

There is limited evidence of cost-effectiveness in the treatment of type 2 diabetic patients for 
nephropathy. One study has extended the modelling of type 1 diabetic patients treated with 
captopril to type 2 diabetic patients (Rodby et al, 1996). The study reported that this treatment 
resulted in direct cost savings over lifetime. A study by Golan et al (1999) assessed the cost- 
effectiveness of screening for gross proteinuria and microalbuminuria, both assumed to be 
predictors of diabetic nephropathy, as well as the use of ACE-inhibitors. The study used a Markov 
model which simulated the progression of diabetic nephropathy. The screening strategies were 
shown to have higher cost and lower benefit compared to treating all patients with ACE-inhibitors.

Conclusions

As shown in the papers reviewed the costs associated with the treatment of type 2 diabetes increase 
over the lifetime of any individual patient. Consequently the cost-offsets arising from delaying the 
progression of the disease and the development of diabetic complications are substantial. Even 
though the more costly diabetic complications such as chronic renal failure are rare, even the less 
costly complications incur substantial expenditure given their intrusive nature. Although all these 
studies have contributed to the general knowledge of disease progression and associated 
complications to differing degrees with the UKPDS providing the most recent and extensive 
information, there is still substantial ground to be covered in reaching perfect understanding of the 
disease itself and in identifying optimal treatment patterns. Even the UKPDS after 11 years of 
average follow-up did not show a statistically significant difference in mortality between the two 
randomisation groups. A direct consequence of the lack of adequate clinical information is the lack 
of adequate information on the cost impact of the disease which will only be accentuated by 
adopting inappropriate analytical techniques or by ignoring specific data problems in the analysis.
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Table A.2.1.1. Cost of illness studies

A u th o r B row n, N icho ls , G lau b er et 
al

B row n, P edu la  and  B akst E vans, M acD onald , L eese 
et al

H en rik sson , A gardh , B erne, 
e t al

O 'B rien , S hom phe, 
K avanagh  e t al

Y ea r  o f  P ub lica tion 1999 1999 2000 2000 1998
Y ea r u sed  for cost 
v a luation

1993 1993 1995 1998 1996

C o u n try  w here analysis 
occu rred

U SA U S A U K S w eden U SA

C urrency  used  fo r cost 
va lua tion

U S  $ U S  S U K  £ S w edish  K ro n er U S $

M etho d o lo g y E xcess co st-o f-illness C o h o rt study C o st-o f-illness C ost-o f-illness C ost-o f-illness
A lte rn a tiv es  considered n.a. N o  alternatives n .a n.a n.a.
C o st-e ffec tiveness m easure n.a. n.a. n .a n.a n.a.
P a tien t popu la tion H M O  m atched  new ly  

d iagnosed  T ype 2 d iabetic  
and  non -d iabe tic  pa tien ts

H M O  T ype 2 d iabetics over 
30  years o f  age

P rev a len t d iabetic  
p o p u la tio n

T ype 2 d iabetics  from  
se lec ted  S w ed ish  health  
care  cen tres

T ype 2 d iabetics  su ffe ring  
com plica tions

E ffec tiv en ess  data  sources n.a. n.a. n .a n.a n.a.
C o st e lem en ts D irec t h ea lth  care  costs A nnual trea tm en t costs; 

co sts o f  trea ting  
card io v ascu la r and  renal 
com p lica tions

D rug  p resc rib in g  costs D irec t m ed ica l costs D irec t h ea lth  care costs

C o st d a ta  sources In ternal H M O  cost 
calcu lations. C harges for 
ou t-o f-H M O  d irec t care. 
D ischarge  d a ta  bases for 
p reva lence  o f  trea tm en t

H M O  ex pend itu res  on  in -
p a tien t stays, o u t-patien t 
stays and  p rocedures.

In te rna l H ea lth  A u th o rity  
costs

H ea lth  care expend itu res 
and  ques tio n n a ire s  from  
p atien ts  and  p rac titioners 
on  resou rce  u tilisa tion

D ischarge  databases, 
c lin ica l gu ide lines, 
g o vernm en t repo rts, fee 
schedu les, an d  lite ra tu re  
rev iew . C ost-to -charge  
ra tio s used.

T im e ho rizon up  to  8 years ave rage  5.3 years fo llow -up one y ear 6 m on ths fac to red  up to  1 
y ear

D efin ed  b y  the ep isod ic  
even t

D isco u n t ra te n.a. n.a. n .a n .a no t rep o rted
V ariab les  considered  in  the 
sen s itiv ity  analysis

n.a. n.a. n .a n .a
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Table A.2.1.1. Cost of illness studies (Contd.)

A utho r B row n, N ich o ls , G lau b e r et 
al

B row n, P edu la  and B akst E vans, M acD onald , L eese 
et al

H en rik sson , A gardh , B erne , 
e t al

O 'B rien , S hom phe, 
K av an ag h  e t al

B ase line  resu lts Increm en ta l p e r  annum  
costs av e rag ed  $2 ,930  
h igher for the T y p e  2 
d iabetic  g roup  th an  the 
non -d iabe tic  g roup  o ver the 
8 yea r p eriod . H osp ita l 
costs w ere th e  h ig h est 
com ponen t (46% ). P rim ary  
and  ou t-p a tien t care 
accoun ted  fo r an  ave rage  o f  
26%  o f  th e  cos ts an d  drugs 
20% . T o ta l co sts fo r the 
d iabetic  p o p u la tio n  w ere 
ap p ro x im ate ly  dou b le  those  
fo r the con tro l p o p u la tio n  
th ro u g h o u t th e  p eriod .

$2,263 to ta l average  annual 
trea tm en t co s t w ith  no 
com plica tions; increasing  
to  $3 ,472  w ith  m inor 
ca rd iovascu la r trea tm en t; 
and  to  $8 ,235  w ith  m ajo r 
ca rd iovascu la r 
com plication . T o ta l average 
annual trea tm en t co st for 
T ype 2 p atien ts  w ith  
abnorm al renal function  
w as $3 ,750 ; $4 ,428  for 
those w ith  advanced  renal 
d isease; and  $17 ,445  w ith  
end-stage renal d isease

P atien ts  w ith  T y p e  2 
d iabetes acco u n ted  for 
6 .6%  o f  to ta l p resc rip tio n s 
d ispensed , rep resen tin g  
7 .1%  o f  the cos t in  the 
H ea lth  R eg io n  (5 .5%  
exc lud ing  an tid iab e tic  
p resc rip tions). H igher 
p ro p o rtio n a te  d ru g  cos ts in 
nea rly  all d ru g  ca teg o rie s  
ran g in g  from  2 .6 %  h igher 
(endocrine  system ) to 
10.8%  h igher 
(ca rd iovascu la r). T ype 2 
d iab e tics  w ere 1.70 tim es 
m ore  like ly  to  b e  d ispensed  
a  d rug  item .

O vera ll d irec t costs o f  
trea tm en t w ere $613 
m illion . 42%  w ere borne  by 
the hosp ita l sector; 
am bu la to ry  care  w as 31% ; 
d rug  cos ts 27% ; in su lin  
w as ap p rox im ate ly  4%  o f  
the to tal cost

A M I ev en t co s t $ 2 8 ,920  
(su b seq u en t annua l co sts 
$2 ,983); A ng ina  ev en t cost 
$2 ,592  (su b seq u en t annua l 
costs $1 ,1 3 3 ); Isch em ic  
stroke  ev en t co s t $42 ,513  
(sub. annua l co st $9 ,687 ); 
T IA  even t $ 6 ,4 9 4  (sub. 
annua l $47); 
m ic ro a lb u m in u ria  even t 
$65 (sub. annua l co s t $15); 
g ross p ro te in u ria  ev en t $72 
(sub. annua l co s t $24); end- 
stage rena l d ia ly sis  annua l 
co s t $ 5 6 ,1 6 4 ;B ack g ro u n d  
re tin o p a th y  an n u a l co s t 
$59; m acu la r ed em a  even t 
$1,151 (sub. annua l co st 
$59); p ro life ra tiv e  d iabetic  
re tin o p a th y  ev en t $ 1,092 
(sub . annua l co s t $59); 
b lindness an n u a l co st 
$3 ,684 ; S ym ptom atic  
neu ro p a th y  ev en t $228 ; 1st 
L E A  even t co s t $ 28 ,150  
(sub. an n u a l co s t $1 ,820 ); 
2 n d  L E A  ev en t co s t 
$28 ,389)

R esu lts  from  sensitiv ity  
ana ly sis

P a tien t w ith  b o th  m acro- 
and  m icro -vascu la r 
com p lica tio n s had  
ap p rox im ate ly  doub le  the 
costs o f  those  w ithou t 
com p lica tions

n.a.
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Table A.2.1.1. Cost of illness studies (Contd.)

A utho r B row n, N icho ls, G lau b e r et 
al

B row n, P ed u la  and  B ak st E vans, M acD onald , L eese 
e t al

H enriksson , A gardh , B erne , 
et al

O 'B rien , S hom phe, 
K av an ag h  e t al

A u tho r(s) conc lu sions M ore than 60%  o f  the to ta l 
cost in hosp ita l adm issio n s 
and  m ost o f  the annual 
g row th  in costs o v er th e  8 
year perio d  w as a ttribu tab le  
to  adm issions no t n o rm ally  
associa ted  w ith d iabetes. 
H osp ita l adm issions for 
acu te  com p lica tions o f  
d iabetes and for renal, 
low er-ex trem ity , 
oph tha lm ic , h y pog lycaem ic  
and  in fec tious 
com plica tions acco u n ted  
fo r 13%  o f  increm en ta l 
hosp ita l costs. C ard iac  
d isease  con tribu ted  17%  to 
to ta l increm en tal hosp ita l 
costs. T he low  level o f  
costs com pared  to o ther 
s tud ies w as taken  as 
rep resen ta tive  o f  u sing  
costs ra ther than  charges. It 
w as an tic ipated  tha t costs 
w ou ld  increase 
d ram atica lly  over tim e.

R enal co m p lica tio n s m ost 
expensive , bu t o ccu r in 
on ly  23%  o f  T y p e  2 
p opu la tion  co m p ared  to  
ca rd iovascu la r 
com p lica tions (75%  o f  the 
popu la tion ). W o m en  have 
s ign ifican tly  h ig h e r costs. 
A ge does no t a ffec t the cost 
o f  trea tin g  co m plica tions. I f  
co -m o rb id ity  o f  d iabetes  is 
no t taken  in to  acco u n t there  
is an  u n d er-es tim atio n  o f  
cost.

In creased  d rug  u tilisa tion  is 
h igh  in T ype 1 d iabetics 
com pared  to T ype 2 
d iabetics. T ype 2 d iabetics 
are  h ighe r abso lu te  u sers as 
they  are o lder, and  the 
p reva lence  is grea ter. 
In creased  d rug  u tilisa tion  
even  in  d rug  ca tegories 
un re la ted  to  d iabetes.
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Table A.2.1.2. Cost consequence and cost effectiveness of screening and treatments for type 2 diabetes

Author Eastman, 
Javitt, Herman 
et al.

Engelau, 
Narayan, 
Thompson et al

Franz, Splett, 
Monk et al

Golan,
Birkmeyer and 
Welch

Segal, Dalton 
and Richardson

UKPDS 40 UKPDS 41 UKPDS 51 UKPDS 54 Wake, 
Hisashige, 
Katayama et al

Year of 
Publication

1997 1998 1995 1999 1998 1998 2000 2001 2001 2000

Year used for 
cost valuation

1994 1995 1993 1996 1997 1997 1997 1997 1997 1998

Country where
analysis
occurred

USA USA USA USA Australia UK UK UK UK Japan

Currency used 
for cost 
valuation

U S$ U S$ U S$ US $ Aus $ UK £ UK £ UK £ UK£ US $

Methodology Model Monte Carlo
simulation
model

Clinical trial Markov model Markov model Economic 
evaluation 
alongside 
clinical trial

Economic 
evaluation 
alongside trial

Economic 
evaluation 
alongside trial

Economic 
evaluation 
alongside 
clinical trial

Cost
consequence
analysis

Alternatives
considered

Conventional 
therapy versus 
intensive 
therapy

Opportunistic 
screening for 
diabetes versus 
current practice

Basic guidance 
on dietary 
advice versus 
practice 
guideline 
advice on diet

Screen for 
gross
proteinuria; 
Screen for 
microalbuminu 
ria; treat all 
with ACEi

Intensive diet 
and
behavioural 
modification; 
surgery for 
severe obesity; 
group
behavioural 
modification 
for men; 
General 
practitioner 
advice; media 
campaign with 
community 
support

Tight and less 
tight control of 
hypertensive 
Type 2 
diabetics

Conventional 
versus 
intensive 
glucose control

Conventional
therapy
(primarily diet) 
versus 
intensive 
therapy with 
metformin in 
overweight 
Type 2 
diabetics

Use of
Atenolol (beta- 
blocker) versus 
captopril 
(ACEi) in 
Type 2 diabetic 
patients with 
hypertension

Multiple
insulin
injection
therapy;
Conventional
insulin
injection
therapy

Cost-
effectiveness
measure

Incremental 
cost per QALY

Cost per life 
years gained; 
QALYs

Change from 
baseline fasting 
plasma glucose 
level and 
glycated 
haemoglobin

Cost per 
QALY

Life years 
gained

incremental 
cost per extra 
year o f life free 
from diabetic 
end point, 
incremental 
cost per life 
year gained

incremental 
cost per event 
free(of 
diabetic end 
point) year 
gained

Incremental 
cost per life 
year gained

Life
expectancy and 
mean cost per 
patient

n.a.
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Table A.2.1.2. Cost consequence and cost effectiveness of screening and treatments for type 2 diabetes (Contd.)

Author Eastman, 
Javitt, Herman 
et al.

Engelau, 
Narayan, 
Thompson et al

Franz, Splett, 
Monk et al

Golan,
Birkmeyer and 
Welch

Segal, Dalton 
and Richardson

UKPDS 40 UKPDS 41 UKPDS 51 UKPDS 54 Wake, 
Hisashige, 
Katayama et al

Patient
population

Incident Type 
2 diabetics

hypothetical 
cohort of 
10,000 incident 
Type 2 
diabetics

Type 2 
diabetics

Incident Type 
2 diabetics 
over 50 years 
old at risk of 
renal failure

Hypothetical
cohort

Randomised 
clinical trial 
population

Randomised 
clinical trial 
population

Randomised 
clinical trial 
population who 
had >120% of 
ideal body 
weight

Randomised 
clinical trial 
population 
with Type 2 
diabetes and 
hypertension

Randomised 
clinical trial 
population

Effectiveness 
data sources

Incidence data
from National
Health
Interview
Survey:
complications
from
Wisconsin 
Epidemiologic 
Study of 
Diabetic 
Retinopathy 
and Rochester 
Epidemiology 
Study

Clinical trial 
run in
conjunction 
with the 
economic 
evaluation

Transition
probabilities:
RCT (for Type
1 diabetics) US
Renal Data
System;
Clinical
Guidelines.
Utilities;
Beaver Dam
Health
Outcomes
Study

Survey of 
clinical trials, 
observational, 
epidemiologica 
1 and
intervention
studies

Clinical trial 
outcomes, 
based on 
frequency of 
diabetic related 
end-points

Clinical trial 
outcomes, 
based on 
frequency of 
diabetic related 
end-points

Clinical trial 
outcomes, 
based on 
frequency of 
diabetic related 
end-points

Clinical trial 
outcomes, 
based on 
frequency of 
diabetic related 
end-points

Clinical trial 
outcomes, 
based on 
frequency of 
diabetic related 
end-points

Cost elements Standard direct 
therapy costs: 
pharmacy 
costs, hospital 
costs,self-
monitoring 
blood glucose

Screening and 
treatment cost

Total cost of 
nutritional care

ACE inhibitor 
therapy, 
screening, 
treatment of 
end-stage renal 
disease

Direct health 
care
programme
costs

Direct health 
care
programme
costs

Direct health 
care
programme
costs

Direct health 
care
programme
costs

Direct health 
care
programme
costs

Direct medical 
care costs
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Table A.2.1.2. Cost consequence and cost effectiveness of screening and treatments for type 2 diabetes (Contd.)

Author Eastman, 
Javitt, Herman 
et al.

Engelau, 
Narayan, 
Thompson et al

Franz, Splett, 
Monk et al

Golan,
Birkmeyer and 
Welch

Segal, Dalton 
and Richardson

UKPDS 40 UKPDS 41 UKPDS 51 UKPDS 54 Wake, 
Hisashige, 
Katayama et al

Cost data 
sources

National
Medical
Expenditure
Survey;
National
Health
Interview
Survey; Three
studies
(DCCT,
Vetems
Administration
Cooperative
Study &
Metformin
Cooperative
Trial)

Clinical trial Medicare 
Clinical 
Diagnostic Fee 
Schedule; U.S. 
Renal Database 
System

Literature 
survey 
material, 
internal Health 
Authority 
costs, National 
Health Survey 
costs

Resource data 
from trial, unit 
costs from 
national 
statistics and 
participating 
units

Resource data 
from trial, unit 
costs from 
national 
statistics and 
participating 
units

Resource data 
from trial, unit 
costs from 
national 
statistics and 
participating 
units.

Resource data 
from trial, unit 
costs from 
national 
statistics and 
participating 
units.

Internal 
National 
Health care 
costs

Time horizon Lifetime lifetime 6-month study 
period

Lifetime lifetime 11 years and 
lifetime

11 years Lifetime Lifetime 10 years

Discount rate 3% 3% n.a. 3% 5% 6%, 3% for 
costs and 
benefits and 
0% for benefits 
reported

6% 6% 6% 3%

Variables 
considered in 
the sensitivity 
analysis

Risk of
complications;
discounting

Risk factors 95% c.i. for 
outcomes; 
inclusion/exclu 
sion of
laboratory test

Age at 
diagnosis; 
relative risk of 
disease
progression;co 
sts; quality of 
life; screening 
adherence; 
treatment 
discontinuation

Effectiveness 
rates; discount 
rate; impact of 
preventative 
programme on 
incidence of 
NIDDM; life 
expectancy; 
high risk group

Protocol driven 
resourcing 
changed to 
likely standard 
practice. 
Standard 
practice pattern 
and related unit 
costs of visits 
and tests. 
Confidence 
intervals and 
acceptability 
curves 
reported.

Protocol driven 
resourcing 
changed to 
likely standard 
practice. 
Discount rate 
varied. 
Confidence 
intervals and 
acceptability 
curves 
reported.

Increase in 
therapy costs. 
Different 
regression 
model applied 
to non-
inpatient costs. 
Confidence 
intervals and 
acceptability 
curve reported.

Cost of 
standard 
practice. Cost 
o f captopril. 
Non-hospital 
costs.

Relative risks 
in progression, 
costs, discount 
rate
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Table A.2.1.2. Cost consequence and cost effectiveness of screening and treatments for type 2 diabetes (Contd.)

Author Eastman, 
Javitt, Herman 
et al.

Engelau, 
Narayan, 
Thompson et al

Franz, Splett, 
Monk et al

Golan,
Birkmeyer and 
Welch

Segal, Dalton 
and Richardson

UKPDS40 UKPDS 41 UKPDS 51 UKPDS 54 Wake, 
Hisashige, 
Katayama et al

Baseline results Baseline cost 
per QALY 
SI 7,809. 
Sensitive to 
age of onset of 
diabetes; ICER 
< $55,000 if 
age of onset 
less than 50. If 
age of onset 
>75 the ICER 
is $248,844. 
Ethnicity had a 
major impact 
as rate of 
complications 
differ.
Sensitive to 
rate of renal 
failure. 
Sensitive to 
compliance 
rates.

Incremental 
cost of 
opportunistic 
screening of 
individuals 
aged 25 or 
older was 
estimated to be 
$252,192 per 
life-year 
gained and 
$60,420 per 
QALY.

Average cost 
per mg/dl 
change in 
fasting blood 
glucose level is 
$5.92 in the 
basic dietary 
information 
group and 
$4.67 in the 
practice 
guidelines 
nutrition care 
group. 
Difference 
statistically 
insignificant.

$7,850 per 
QALY

All primary 
prevention 
programmes 
had low cost- 
effectiveness 
ratios. Surgery 
yielded the 
largest 
reduction in 
the number of 
diabetic years, 
but was the 
most expensive 
intervention at 
$5,894 per life 
year gained; 
certain 
programmes 
were cost 
saving
(intensive diet 
& behavioural 
therapy in the 
seriously obese 
impaired 
glucose 
tolerance 
population; 
behavioural 
therapy for 
overweight 
men, & the 
media
campaign plus 
community 
support in a 
mixed 
population).

Based on 
standard 
practice 
resource use 
incremental 
cost per extra 
year free from 
end points was 
$1312(6% 
discounted 
costs and 
benefits); $543 
(costs
discounted at 
6% and effects 
undiscounted). 
Incremental 
life year gained 
was $900 (6% 
discounted 
costs and 
benefits); $364 
(6% discounted 
costs and 
benefits).

Based on 
standard 
practice 
resource use 
incremental 
cost per event 
free year was 
$1,458 (6% 
discounted 
costs and 
benefits) and 
$703 (costs 
discounted at 
6% and effects 
undiscounted).

Therapy with 
metformin is 
cost-saving 
under a range 
of assumptions

No statistical 
difference in 
life
expectancy. 
Beta-blocker 
(atenolol) was 
less expensive 
with an 
average 
treatment cost 
14% lower 
than ACEi.

Multiple 
insulin 
injection 
therapy (MIT) 
reduced the 
relative risk of 
progression to 
a diabetic end-
point for 
retinopathy (by 
76%);
photocoagulati 
on (by 77%); 
nephropathy 
(by 66%); 
albuminuria 
(100%) and 
clinical 
neuropathy 
(64%). MIT 
also prolonged 
complication 
free time. MIT 
had a lower 
ten-year cost of 
therapy than 
conventional 
insulin therapy 
due to the 
reduced costs 
o f treating 
complications - 
MIT $1,233 
less expensive
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Table A.2.1.2. Cost consequence and cost effectiveness of screening and treatments for type 2 diabetes (Contd.)

Author Eastman, 
Javitt, Herman 
et al.

Engelau, 
Narayan, 
Thompson et al

Franz, Splett, 
Monk et al

Golan,
Birkmeyer and 
Welch

Segal, Dalton 
and Richardson

UKPDS 40 UKPDS 41 UKPDS 51 UKPDS 54 Wake, 
Hisashige, 
Katayama et al

Results from
sensitivity
analysis

Opportunistic 
screening is 
most cost- 
effective in 
younger age 
groups and 
ethnic
minorities as 
these groups 
have a higher 
lifetime risk of 
major diabetic 
complications.

Results 
extremely 
sensitive to 
outcome level 
assumed to be 
achieved

> $21,000 per 
QALY if age at 
diagnosis 55 or 
over; or if 
ACEi
treatment cost 
increased by 
one-third; or 
relative risk of 
microalbiminur 
ia increased

Net cost per 
life year saved 
is sensitive to 
assumptions of 
programme 
success and 
discount rate. 
However 
prevention 
remains below 
$5,512 per life 
year gained in 
all cases.

Acceptability
curves
presented

Acceptability
curves
presented

Cost-saving 
findings robust 
to a range of 
sensitivity 
analyses

Results robust 
to sensitivity 
analysis

Author(s)
conclusions

Cost per 
QALY is 
lowest for 
those at 
greatest risk of 
complication; 
and therefore 
for ethnic 
minorities and 
those with 
higher HbAlc. 
Cost-
effectiveness
of
comprehensive 
care of 
diabetes 
appears similar 
to other 
preventative 
treatments.

Early diagnosis 
& treatment by 
opportunistic 
screening of 
type 2 diabetes 
increases costs 
but could 
reduce the 
lifetime 
incidence of 
major
microvascular 
complications 
generating 
gains in health 
benefits. The 
selection of 
target
populations for 
opportunistic 
screening 
should 
consider risk 
factors as well 
as disease 
prevalence.

Programmes 
for the
prevention of 
NIDDM are 
stated to be 
highly cost- 
effective 
relative to 
other funded 
health care 
programmes. 
Access to such 
programmes 
should be 
increased for 
the sub-
populations at 
highest risk of 
NIDDM

Evidence that 
tight control of 
blood pressure 
for Type 2 
hypertensive 
patients is a 
cost-effective 
means of 
reducing 
complications 
and improving 
health 
outcomes.

Intensive blood 
glucose control 
in patients with 
Type 2 
diabetes 
increased 
treatment costs 
but these were 
offset by 
reduced costs 
of treating 
complications 
and increased 
time free of 
complications. 
Intensive 
therapy of 
Type 2 
diabetics is 
feasible and 
economically 
supportable.

Cost-saving is 
induced largely 
through lower 
hospital in-
patient costs.

UKPDS 
supports the 
use of either 
captopril or 
atenolol on 
clinical 
grounds with 
the latter being 
the less 
expensive 
therapy.

Intensive 
glycaemic 
control can 
delay onset and 
progression of 
the early stages 
of
microvascular 
complications 
in Type 2 
diabetics. This 
reduces 
treatment costs 
and, therefore, 
MIT is a 
recommended 
strategy in 
those Type 2 
patients 
requiring 
insulin.
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Appendix A.4.1. Consistency of the Bang and Tsiatis simple weighted estimator
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The second term is bounded from above by

K(u)-K(u)
sup----------7------ max M,

u < l  K(L)K(L)

Assuming that total cost is bounded, the upper bound above converges to zero in probability due to 
the fact that sup K(u) -  K(u) = o ( « 'l/2+£) with probability one (Csbrgo and Horvath, 1983). Hence,

u < L

consistency follows by the law of large numbers.

Appendix A.4.2. Variance of the Bang and Tsiatis partitioned estimator
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where the integrand in the second term corresponds to the K variance terms and the pairwise 
covariance terms among them. Its expansion is shown below.
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For j  <1, the cross-product terms in the summand reduce to
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Table A.4.3.1. Annual cost per patient by year of randomisation for the conventional policy group

Appendix A.4.3. Descriptive statistics of the UKPDS annual cost data

Year Number of 
observations

Mean annual 
cost

Standard
deviation

Minimum 
annual cost

Maximum 
annual cost

1 1138 580.7277 1477.233 19.8 29020.4
2 1125 573.3312 1150.522 19.8 11602.4
3 1112 774.554 2847.989 19.8 74200.4
4 1097 856.332 4397.077 19.8 131010.7
5 1076 730.7807 1740.947 19.8 24692.35
6 1050 872.7527 2790.088 19.8 64387.83
7 1017 839.9952 2657.49 16.15 60169.1
8 917 832.7916 2225.708 19.8 36255.14
9 816 747.0578 1838.934 19.8 30230.81
10 695 976.0969 3139.52 19.8 57920
11 561 894.3764 1943.828 19.8 22582.6
12 433 934.465 1978.162 77.8 29271.91
13 323 1054.579 3044.994 77.8 35017.7
14 214 852.0495 1931.715 77.8 23846.85
15 129 1264.868 4680.558 77.8 45530.36
16 69 946.3403 2847.115 220.4 23856.83
17 53 1500.837 3253.058 149.1 22122.4
18 32 1222.613 3099.91 243.35 17772.29
19 12 736.0087 951.7124 80.55 3668.684

Table A.4.3.2. Annual cost per patient by year of randomisation for the intensive policy group

Year Number of 
observations

Mean annual 
cost

Standard
deviation

Minimum 
annual cost

Maximum 
annual cost

1 2729 567.4993 1375.245 19.8 45151.02
2 2700 622.5739 1241.575 16.88 19759
3 2673 660.4301 1368.677 19.8 30435.51
4 2632 715.3494 1705.962 19.8 34714.98
5 2596 681.6874 1389.174 19.8 30483.65
6 2539 750.5341 1339.22 17.975 22638.41
7 2442 891.7456 2326.112 17.975 43403.86
8 2233 802.6076 1772.513 17.975 44092.96
9 1985 914.5527 2353.804 19.8 45555.75
10 1681 948.5564 2393.213 19.8 39735.35
11 1347 906.1987 1839.467 16.15 24701.2
12 1062 890.46 1724.105 14.325 25616.9
13 818 857.7013 1564.98 16.15 22035.3
14 556 868.8157 1424.465 19.8 14481
15 326 1018.485 2224.572 33.1 28933.1
16 187 977.7186 1679.65 33.1 12498.17
17 127 1296.673 3432.144 19.8 29200.56
18 70 749.9228 854.7124 210.1895 5563.155
19 18 454.16 191.4103 233.7 1048.372
20 2 350.337 164.9496 233.7 466.9739

187



Appendix A.4.4. Program for the Kaplan-Meier estimator

Based on equations (4.4), (4.5) and (4.6)

Kaplan-Meier estimator

**mean**

stset Mi, failure (censorig==l) 
sts gen stcost_KM=s

gsort - stcost_KM Mi 
quietly gen lagMi=Mi[_n-l] 
replace lagMi=0 if lagMi==.

gen areai= stcost_KM*(Mi- lagMi) 
egen meanKMtrue=sum(areai)

**variance**

gsort -Mi
gen Aix=sum(areai)
egen Ai=max( Aix), by(Mi)

gen int const=l
gsort -Mi
gen Rix=sum(const)
egen Ri=max(Rix), by(Mi)

egen di=sum(censorig), by(Mi)
gen termi=((AiA2)*censorig)/ (Ri*(Ri-di))

egen varKMtrue =sum(termi) 
gen seKMtrue=sqrt(varKMtrue)

Full sample estimator
Same as in Kaplan-Meier but treating time of censoring as time of failure for 
the censored individuals

Uncensored cases estimator
Same as in Kaplan-Meier but only using the data for the uncensored individuals

* *
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Appendix A.4.5. Programs for the Lin et al estimators (Lin et al, 1997)

L in l : Cost h is to r ie s  recorded

Based on equations (4.9), (4.10) and (4.11) for the mean and on equations
(4.18), (4.19) and (4.20) for the variance

For Conventional (similarly for intensive) 

** Mean **

gen ak=year-l 
gen akl=year

egen Xi=min(timallde), by(ukno) 
egen di=min(censorig) , by(ukno)

stset Xi if year==l, failure(di==l)

sts gen survll38=s

gen int inttime=int(Xi)+1 if year==l 
egen mintime=min(Xi), by(inttime) 
gen st=survll38 if mintime==Xi 
egen Skx=min(st), by(inttime)

gen slx=Skx if 
gen s2x=Skx if 
gen s3x=Skx if 
gen s4x=Skx if 
gen s5x=Skx if 
gen s6x=Skx if 
gen s7x=Skx if 
gen s8x=Skx if 
gen s9x=Skx if 
gen sl0x=Skx if 
gen sllx=Skx if 
gen sl2x=Skx if 
gen sl3x=Skx if 
gen sl4x=Skx if 
gen sl5x=Skx if 
gen sl6x=Skx if 
gen sl7x=Skx if 
gen sl8x=Skx if 
gen sl9x=Skx if

inttime==l 
inttime==2 
inttime==3 
inttime==4 
inttime==5 
inttime==6 
inttime==7 
inttime==8 
inttime==9 
inttime==10 
inttime==ll 
inttime==12 
inttime==13 
inttime==14 
inttime==15 
inttime==16 
inttime==17 
inttime==18 
inttime==l9

egen sl=min(slx) 
egen s2=min(s2x) 
egen s3=min(s3x) 
egen s4=min(s4x) 
egen s5=min(s5x) 
egen s6=min(s6x) 
egen s7=min(s7x) 
egen s8=min(s8x) 
egen s9=min(s9x) 
egen sl0=min(slOx) 
egen sll=min(sllx) 
egen sl2=min(sl2x) 
egen sl3=min(sl3x) 
egen sl4=min(sl4x) 
egen sl5=min(sl5x) 
egen sl6=min(sl6x)
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egen sl7=min(sl7x) 
egen sl8=min(sl8x) 
egen sl9=min(s!9x)

gen Sk=:si if ak==0
replace Sk=s2 if ak===i
replace Sk=:s3 if ak===2
replace Sk=:s4 if ak=== 3
replace Sk=s5 if ak=== 4
replace Sk=s 6 if ak===5
replace Sk=si if ak=== 6
replace Sk=s8 if ak===7
replace Sk=:s9 if ak===8
replace Sk=slO if ak===9
replace Sk=■■sll if ak===10
replace Sk=sl2 if ak===11
replace Sk=sl3 if ak===12
replace Sk=:s 14 if ak===13
replace Sk=:sl5 if ak===14
replace Sk=:s 16 if ak===15
replace Sk=:sl7 if ak===16
replace Sk=s 18 if ak===17
replace Sk=:sl9 if ak===18

gen Yki=l if Xi>=ak 
replace Yki=0 if Yki==.

gen Cki=costyr 
replace Cki=0 if Cki==.

egen sYki=sum(Yki), by(ak)
gen YkiCki= Yki* Cki
egen sYkiCki=sum( YkiCki), by(ak)

gen Ek= sYkiCki/ sYki 
gen SkEk= Sk* Ek
egen meanlinl=sum( SkEk), by(ukno)

* *Variance* *

gen terml= (Sk* Yki*( Cki- Ek))/ sYki 
gen Xi_le_ak=l if Xi<=ak 
replace Xi_le_ak=0 if Xi>ak

gen int const=l 
gsort ak -Xi
by ak: gen Rix=sum(const) 
egen Ri=max(Rix), by(ak Xi) 
drop Rix

gen term2a=( Xi_le_ak* di)/Ri 
gen diRj2=di/(RiA2) 
gen minakXi=min(ak, Xi)

sort ak Xi
by ak: gen Slx=sum( diRj2) if Xi<= minakXi
egen Sl=max(Slx), by(ak Xi)
egen S2=max(Sl), by(ak)
replace S1=S2 if Sl==.
replace S1=0 if Sl==.

gen term2b=Sl
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gen term2=Sk*Ek*(term2a-term2b) 
gen wki=terml-term2 
egen sumwki=sum(wki), by(ukno) 
gen wkiwli=wki*sumwki

egen varlinl=sum(wkiwli)

Lin2: Cost h is to r ie s  not recorded

Based on equations (4.21), (4.22) and (4.23) for the mean and on equations
(4.28), (4.29), (4.30) and (4.31) for the variance

For Conventional (similarly for intensive)

** Mean**

egen Ci=min(Mi), by(ukno) 
egen Xi=min(timallde), by(ukno) 
egen di=min(censorig), by(ukno)

sort ukno ak

quietly by ukno: gen Skl=Sk[_n+l] 

replace Skl=0 if ak==19 

egen tmax=max(Xi)

gen Yki=l if ((ak<=Xi & Xi<akl) & di==l) | (Xi>=tmax & ak==19) 
replace Yki=0 if Yki==.

egen sYki=sum(Yki), by(ak)

gen YkiCi= Yki* Ci

egen sYkiCi=sum(YkiCi), by(ak)

gen Ak= sYkiCi/ sYki 
replace Ak=0 if Ak==.

gen AkS= Ak*(Sk-Skl)

egen meanlin2=sum(AkS), by(ukno)

** Variance **

gen terml= ((Sk- Ski)* Yki*( Ci- Ak))/ sYki 
replace terml=0 if terml==.

*  k  k  k

gen int const=l 

gsort ak -Xi
by ak: gen Rix=sum(const) 
egen Ri=max(Rix), by(ak Xi) 
drop Rix
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Appendix A.4.6. Programs for the Bang and Tsiatis estimators (Bang and Tsiatis, 2000)

Simple weighted estimator

Based on equations (4.32) and (4.33) for the mean and on equations (4.35) and 
(4.36) for the variance

For Conventional (similarly for intensive)

** Simple weighted estimator: Mean and Variance_ Conventional **

stset timallde, failure(censorig==l)

sts gen survll38=s

gen censorl=l if censorig==0 
replace censorl=0 if censorl==.

label var censorl "1:censored; 0:dead"

stset timallde, failure(censorl==l)

sts gen censll38=s

gen diMi_KTi= (censorig* Mi)/ censll38 
replace diMi_KTi=0 if diMi_KTi==.

egen sumalli=sum(diMi_KTi)

gen meansimp=(1/1138)* sumalli

**Variance**

gen MiMiu=( censorig* Mi* Mi)/ censll38 
replace MiMiu=0 if MiMiu==.

gsort -timallde

gen sMiMiu=sum(MiMiu)
egen sumMiMiu=max(sMiMiu), by(timallde) 
drop sMiMiu

gen gMiMiu=(1/1138)*(1/ survll38)*sumMiMiu

gen Miu=( censorig* Mi)/ censll38 
replace Miu=0 if Miu==.

gsort -timallde

gen sMiu=sum(Miu)
egen sumMiu=max(sMiu), by(timallde) 

drop sMiu

gen gMiu_2=((1/1138)*(l/survll38)*sumMiu)*2

gen intern2=(censorl/(censll38^2))*(gMiMiu- gMiu_2) 
replace intern2=0 if intern2==.

egen sumint2=sum(intern2)
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gen term2=(1/1138)* sumint2

gen internl= censorig*((Mi- meansimp)A2)/ censll38 
replace internl=0 if internl==.

egen sumintl=sum(internl)

gen terml=(1/1138)*sumint1

gen varsimp=(1/1138)*(terml+term2)

gen sesimp=sqrt(varsimp)

** To calculate Yu **

gen int const=l

gsort -timallde

gen Yux=sum(const)

egen Yu=max(Yux), by(timallde)

drop Yux

label var Yu "no. at risk"

* *

Partitioned  estimator

Based on equations (4.37) for the mean and on equations (4.38), (4.39),
(4.40) for the variance

For Conventional (similarly for intensive)

** Partitioned mean and variance: Conventional**

gen tj_l=year-l 
gen tj=year

gen Mij=costyr 
replace Mij=0 if Mij==.

egen Xi=min(timallde), by(ukno)

egen di=min(censorig) , by(ukno)

gen minTitj=min(Xi, tj)

gen Xij=min(minTitj, Xi)

gen dij=l if (minTitj==tj I (minTitj==Xi & di==l)) 
replace dij=0 if dij==.

stset Xij, failure(dij==0)

sts gen KjTij=s, by(tj)

and

gen intern=(dij*Mij)/KjTij 
replace intern=0 if intern==.
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egen sumintjs=sum(intern), by(ukno) 

** Variance: conventional**

gen 11=1 
gen 12=2 
gen 13=3 
gen 14=4 
gen 15=5 
gen 16=6 
gen 17=7 
gen 18=8 
gen 19=9 
gen 110=10 
gen 111=11 
gen 112=12 
gen 113=13 
gen 114=14 
gen 115=15 
gen 116=16 
gen 117=17 
gen 118=18 
gen 119=19

gen jmaxll=max(tj, 11)
gen jmaxl2=max(tj, 12)
gen jmaxl3=max(tj, 13)
gen jmaxl4=max(tj, 14)
gen jmaxl5=max(tj, 15)
gen jmaxl6=max(tj, 16)
gen jmaxl7=max(tj, 17)
gen jmaxl8=max(tj, 18)
gen jmaxl9=max(tj, 19)
gen jmaxllO=max(tj , 110)
gen jmaxlll=max(tj, 111)
gen jmaxll2=max(tj , 112)
gen jmaxll3=max(tj, 113)
gen jmaxll4=max(tj, 114)
gen jmaxll5=max(tj, 115)
gen jmaxll6=max(tj, 116)
gen jmaxll7=max(tj, 117)
gen jmaxll8=max(tj, 118)
gen jmaxll9=max(tj, 119)

gen jminll=min(tj, 11)
gen jminl2=min(tj, 12)
gen jminl3=min(tj, 13)
gen jminl4=min(tj, 14)
gen jminl5=min(tj, 15)
gen jminl6=min(tj, 16)
gen jminl7=min(tj, 17)
gen jminl8=min(tj, 18)
gen jminl9=min(tj, 19)
gen jminllO=min(tj, 110)
gen jminlll=min(tj , 111)
gen jminll2=min(tj , 112)
gen jminll3=min(tj, 113)
gen jminll4=min(tj, 114)
gen jminll5=min(tj , 115)
gen jminll6=min(tj, 116)
gen jminll7=min(tj , 117)
gen jminll8=min(tj , 118)
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gen jminll9=min(tj , 119)

gen Tijminl=min(Xi, jminll) 
gen Tijmin2=min(Xi, jminl2) 
gen Tijmin3=min(Xi, jminl3) 
gen Tijmin4=min(Xi, jminl4) 
gen Tijmin5=min(Xi, jminl5) 
gen Tijmin6=min(Xi, jminl6) 
gen Tijmin7=min(Xi, jminl7) 
gen Tijmin8=min(Xi, jminl8) 
gen Tijmin9=min(Xi, jminl9) 
gen TijminlO=min(Xi, jminllO) 
gen Tijminll=min(Xi, jminlll) 
gen Tijminl2=min(Xi, jminll2) 
gen Tijminl3=min(Xi, jminll3) 
gen Tijminl4=min(Xi, jminll4) 
gen Tijminl5=min(Xi, jminll5) 
gen Tijminl6=min(Xi, jminllô) 
gen Tijminl7=min(Xi, jminll7) 
gen Tijminl8=min(Xi, jminll8) 
gen Tijminl9=min(Xi, jminll9)

gen Tijmaxl=min(Xi, jmaxll) 
gen Tijmax2=min(Xi, jmaxl2) 
gen Tijmax3=min(Xi, jmaxl3) 
gen Tijmax4=min(Xi, jmaxl4) 
gen Tijmax5=min(Xi, jmaxl5) 
gen Tijmax6=min(Xi, jmaxl6) 
gen Tijmax7=min(Xi, jmaxl7) 
gen Tijmax8=min(Xi, jmaxl8) 
gen Tijmax9=min(Xi, jmaxl9) 
gen TijmaxlO=min(Xi, jmaxllO) 
gen Tijmaxll=min(Xi, jmaxlll) 
gen Tijmaxl2=min(Xi, jmaxll2) 
gen Tijmaxl3=min(Xi, jmaxll3) 
gen Tijmaxl4=min(Xi, jmaxll4) 
gen Tijmaxl5=min(Xi, jmaxll5) 
gen Tijmaxl6=min(Xi, jmaxllô) 
gen Tijmaxl7=min(Xi, jmaxll7) 
gen Tijmaxl8=min(Xi, jmaxll8) 
gen Tijmaxl9=min(Xi, jmaxll9)

gen dijmaxl=l if Tijmaxl==jmaxll | (Tijmaxl==Xi & di==l) 
replace dijmaxl=0 if dijmaxl==.

gen dijmax2=l if Tijmax2==jmaxl2 | (Tijmax2==Xi & di==l) 
replace dijmax2=0 if dijmax2==.

gen dijmax3=l if Tijmax3==jmaxl3 | (Tijmax3==Xi & di==l) 
replace dijmax3=0 if dijmax3==.

gen dijmax4=l if Tijmax4==jmaxl4 | (Tijmax4==Xi & di==l) 
replace dijmax4=0 if dijmax4==.

gen dijmax5=l if Tijmax5==jmaxl5 | (Tijmax5==Xi & di==l) 
replace dijmax5=0 if dijmax5==.

gen dijmax6=l if Tijmax6==jmaxl6 | (Tijmax6==Xi & di==l) 
replace dijmax6=0 if dijmax6==.

gen dijmax7=l if Tijmax7==jmaxl7 ! (Tijmax7==Xi & di==l) 
replace dijmax7=0 if dijmax7==.
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gen dijmax8=l if 
replace dijmax8=0

gen dijmax9=l if 
replace dijmax9=0

gen dijmaxlO=l if 
replace dijmaxl0=0

gen dijmaxll=l if 
replace dijmaxll=0

gen dijmaxl2=l if 
replace dijmaxl2=0

gen dijmaxl3=l if 
replace dijmaxl3=0

gen dijmaxl4=l if 
replace dijmaxl4=0

gen dijmaxl5=l if 
replace dijmaxl5=0

gen dijmaxl6=l if 
replace dijmaxl6=0

gen dijmaxl7=l if 
replace dijmaxl7=0

gen dijmaxl8=l if 
replace dijmaxl8=0

gen dijmaxl9=l if 
replace dijmaxl9=0

Tijmax8==jmaxl8 |
if dijmax8==.

Tijmax9==jmaxl9 I
if dijmax9==.

TijmaxlO==jmaxllO 
if dijmaxlO==.

Tijmaxl1==jmaxl11 
if dijmaxll==.

Tijmaxl2==jmaxl12 
if dijmaxl2==.

Tijmaxl3==jmaxl13 
if dijmaxl3==.

Tijmaxl4==jmaxll4 
if dijmaxl4==.

Tijmaxl5==jmaxl15 
if dijmaxl5==.

Tijmaxl6==jmaxl16 
if dijmaxl6==.

Tijmaxl7==jmaxl17 
if dijmaxl7==.

Tijmaxl8==jmaxl18 
if dijmaxl8==.

Tijmaxl9==jmaxl19 
if dijmaxl9==.

(Tijmax8==Xi & di= 

(Tijmax9==Xi & di= 

| (TijmaxlO==Xi & 

I (Tijmaxll==Xi & 

| (Tijmaxl2==Xi &

I (Tijmaxl3==Xi & 

I (Tijmaxl4==Xi & 

I (Tijmaxl5==Xi & 

| (Tijmaxl6==Xi & 

| (Tijmaxl7==Xi & 

| (Tijmaxl8==Xi &

I (Tij maxl9==Xi &

stset Tijmaxl, failure(dijmaxl==0) 
sts gen Kjmaxll=s, by(tj)

stset Tijmax2, failure(dijmax2==0) 
sts gen Kjmaxl2=s, by(tj)

stset Tijmax3, failure(dijmax3==0) 
sts gen Kjmaxl3=s, by(tj)

stset Tijmax4, failure(dijmax4==0) 
sts gen Kjmaxl4=s, by(tj)

stset Tijmax5, failure(dijmax5==0) 
sts gen Kjmaxl5=s, by(tj)

stset Tijmax6, failure(dijmax6==0) 
sts gen Kjmaxl6=s, by(tj)

stset Tijmax7, failure(dijmax7==0) 
sts gen Kjmaxl7=s, by(tj)

stset Tijmax8, failure(dijmax8==0) 
sts gen Kjmaxl8=s, by(tj)

stset Tijmax9, failure(dijmax9==0)
sts gen Kjmaxl9=s, by(tj)

= 1 )

di==l) 

di==l) 

di==l) 

di==l) 

di==l) 

di==l) 

di==l) 

di==l) 

di==l) 

di==l)

= 1)



stset Tijmaxll, failure(dijmaxll==0) 
sts gen Kjmaxlll=s, by(tj)

stset Tijmaxl2, failure(dijmaxl2==0) 
sts gen Kjmaxll2=s, by(tj)

stset Tijmaxl3, failure(dijmaxl3==0) 
sts gen Kjmaxll3=s, by(tj)

stset Tijmaxl4, failure(dijmaxl4==0) 
sts gen Kjmaxll4=s, by(tj)

stset Tijmaxl5, failure(dijmaxl5==0) 
sts gen Kjmaxll5=s, by(tj)

stset Tijmaxl6, failure(dijmaxl6==0) 
sts gen Kjmaxll6=s, by(tj)

stset Tijmaxl7, failure(dijmaxl7==0) 
sts gen Kjmaxll7=s, by(tj)

stset Tijmaxl8, failure(dijmaxl8==0) 
sts gen Kjmaxll8=s, by(tj)

stset TijmaxlO, failure(dijmaxlO==0)
sts gen KjmaxllO=s, by(tj)

stset Tijmaxl9, failure(dijmaxl9==0) 
sts gen Kjmaxll9=s, by(tj)

gen dijminl=l if Tijminl==jminll | 
replace dijminl=0 if dijminl==.

gen dijmin2=l if Tijmin2==jminl2 | 
replace dijmin2=0 if dijmin2==.

gen dijmin3=l if Tijmin3==jminl3 I 
replace dijmin3=0 if dijmin3==.

gen dijmin4=l if Tijmin4==jminl4 | 
replace dijmin4=0 if dijmin4==.

gen dijmin5=l if Tijmin5==jminl5 | 
replace dijmin5=0 if dijmin5==.

gen dijmin6=l if Tijmin6==jminl6 | 
replace dijmin6=0 if dijmin6==.

gen dijmin7=l if Tijmin7==jminl7 | 
replace dijmin7=0 if dijmin7==.

gen dijmin8=l if Tijmin8==jminl8 I 
replace dijmin8=0 if dijmin8==.

gen dijmin9=l if Tijmin9==jminl9 | 
replace dijmin9=0 if dijmin9==.

gen dijminlO=l if TijminlO==jminllO 
replace dijminlO=0 if dijminlO==.

gen dijminll=l if Tijminll==jminl11

(Tijminl==Xi & di==l) 

(Tijmin2==Xi & di==l) 

(Tijmin3==Xi & di==l) 

(Tijmin4==Xi & di==l) 

(Tijmin5==Xi & di==l) 

(Tijmin6==Xi & di==l) 

(Tijmin7==Xi & di==l) 

(Tijmin8==Xi & di==l) 

(Tijmin9==Xi & di==l)

I (TijminlO==Xi & di==l) 

| (Tijminll==Xi & di==l)
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gen dijminl2=l if Tijminl2==jminl12 | (Tijminl2==Xi & di==l) 
replace dijminl2=0 if dijminl2==.

gen dijminl3=l if Tijminl3==jminll3 | (Tijminl3==Xi & di==l) 
replace dijminl3=0 if dijminl3==.

gen dijminl4=l if Tijminl4==jminll4 | (Tijminl4==Xi & di==l) 
replace dijminl4=0 if dijminl4==.

gen dijminl5=l if Tijminl5==jminll5 | (Tijminl5==Xi & di==l) 
replace dijminl5=0 if dijminl5==.

gen dijminl6=l if Tijminl6==jminll6 | (Tijminl6==Xi & di==l) 
replace dijminl6=0 if dijminl6==.

gen dijminl7=l if Tijminl7==jminll7 | (Tijminl7==Xi & di==l) 
replace dijminl7=0 if dijminl7==.

gen dijminl8=l if Tijminl8==jminll8 I (Tijrainl8==Xi & di==l) 
replace dijminl8=0 if dijminl8==.

gen dijminl9=l if Tijrtiinl9==jminll9 | (Tijminl9==Xi & di==l) 
replace dijminl9=0 if dijminl9==.

replace dijminll=0 if dijminll==.

stset Tijminl, failure(dijminl==l) 
sts gen Sjllu=s, by(tj)

stset Tijmin2, failure(dijmin2==l) 
sts gen Sjl2u=s, by(tj)

stset Tijmin3, failure(dijmin3==l) 
sts gen Sjl3u=s, by(tj)

stset Tijmin4, failure(dijmin4==l) 
sts gen Sjl4u=s, by(tj)

stset Tijmin5, failure(dijmin5==l) 
sts gen Sjl5u=s, by(tj)

stset Tijmin6, failure(dijmin6==l) 
sts gen Sjl6u=s, by(tj)

stset Tijmin7, failure(dijmin7==l) 
sts gen Sjl7u=s, by(tj)

stset Tijmin8, failure(dijmin8==l) 
sts gen Sjl8u=s, by(tj)

stset Tijmin9, failure(dijmin9==l) 
sts gen Sjl9u=s, by(tj)

stset TijminlO, failure(dijminlO==l) 
sts gen SjllOu=s, by(tj)

stset Tijminll, failure(dijminll==l) 
sts gen Sjlllu=s, by(tj)

stset Tijminl2, failure(dijminl2==l) 
sts gen Sjll2u=s, by(tj)

stset Tijminl3, failure(dijminl3==1)



stset Tijminl4, failure(dijminl4==l) 
sts gen Sjll4u=s, by(tj)

stset Tijminl5, failure(dijminl5==l) 
sts gen Sjll5u=s, by(tj)

stset Tijminl6, failure(dijminl6==l) 
sts gen Sjll6u=s, by(tj)

stset Tijminl7, failure(dijminl7==l) 
sts gen Sjll7u=s, by(tj)

stset Tijminl8, failure(dijminl8==l) 
sts gen Sjll8u=s, by(tj)

stset Tijminl9, failure(dijminl9==l) 
sts gen Sjll9u=s, by(tj)

sts gen Sjll3u=s, by(tj)

sort ukno tj 

gen Millead=Mij

quietly by ukno : gen Mi21ead=MiHead [ n+1]
quietly by ukno : gen Mi31ead=Mi21ead[ n+1]
quietly by ukno : gen Mi41ead=Mi31ead[ n+1]
quietly by ukno : gen Mi51ead=Mi4lead[ n+1]
quietly by ukno : gen Mi61ead=Mi51ead[ n+1]
quietly by ukno : gen Mi71ead=Mi61ead[ n+1]
quietly by ukno : gen Mi81ead=Mi71ead[ n+1]
quietly by ukno : gen Mi 91ead=Mi81ead[ n+1]
quietly by ukno : gen Mil01ead=Mi91ead[ n+1]
quietly by ukno : gen Milllead=Mil01ead[ n+1]
quietly by ukno : gen Mil21ead=Milllead [ n+1]
quietly by ukno : gen Mil31ead=Mil21ead [ n+1]
quietly by ukno : gen Mi 14lead=Mil31ead [ n+1]
quietly by ukno : gen Mil51ead=Mil41ead [ n+1]
quietly by ukno : gen Mil61ead=Mil51ead [ n+1]
quietly by ukno : gen Mi171ead=Mil6lead [ n+1]
quietly by ukno : gen Mil81ead=Mil71ead [ n+1]
quietly by ukno : gen Mil91ead=Mil81ead [ n+1]

replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace

Millead=-9
Mi21ead=-9
Mi31ead=-9
Mi41ead=-9
Mi51ead=-9
Mi 61ead=-9
Mi7lead=-9
Mi8lead=-9
Mi91ead=-9
Mil01ead=-9
Milllead=-9
Mil21ead=-9
Mil31ead=-9
Mil41ead=-9
Mil51ead=-9
Mil61ead=-9
Mil71ead=-9
Mil81ead=-9

if year~=l 
if year~=l 
if year~=l 
if year~=l 
if year~=l 
if year~=l 
if year~=l 
if year~=l 
f year~=l 
if year~=l 
if year~=l 
if year~=l 
if year~=l 
if year~=l 
if year~=l 
if year~=l 
if year~=l 
if year~=l
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replace Mil91ead=-9 if year~=l

egen
egen
egen
egen
egen
egen
egen
egen
egen
egen
egen
egen
egen
egen
egen
egen
egen
egen
egen

Mil=max(Millead), 
Mi2=max(Mi21ead), 
Mi3=max(Mi31ead), 
Mi4=max(Mi41ead), 
Mi5=max(Mi51ead), 
Mi6=max(Miölead), 
Mi7=max(Mi71ead), 
Mi8=max(Mi81ead), 
Mi9=max(Mi91ead), 
MilO=max(MilOlead) 
Mill=max(Mi11lead) 
Mil2=max(Mil21ead) 
Mil3=max(Mil31ead) 
Mil4=max(Mil41ead) 
Mil5=max(Mil51ead) 
Mil6=max(Milölead) 
Mil7=max(Mi17lead) 
Mil8=max(Mil81ead) 
Mil9=max(Mil91ead)

by(ukno) 
by(ukno) 
by(ukno) 
by(ukno) 
by(ukno) 
by(ukno) 
by(ukno) 
by(ukno) 
by(ukno)
, by(ukno) 
, by(ukno) 
, by(ukno) 
, by(ukno) 
, by(ukno) 
, by(ukno) 
, by(ukno) 
, by(ukno) 
, by(ukno) 
, by(ukno)

gen gMjMll= (dijmaxl* Mij* Mil)/ Kjmaxll 
replace gMjMll=0 if gMjMll==.

gen gMjM12= (dijmax2* Mij* Mi2)/ Kjmaxl2 
replace gMjM12=0 if gMjM12==.

gen gMjM13= (dijmax3* Mij* Mi3)/ Kjmaxl3 
replace gMjM13=0 if gMjM13==.

gen gMjM14= (dijmax4* Mij* Mi4)/ Kjmaxl4 
replace gMjM14=0 if gMjM14==.

gen gMjM15= (dijmax5* Mij* Mi5)/ Kjmaxl5 
replace gMjM15=0 if gMjM15==.

gen gMjM16= (dijmax6* Mij* Mi6)/ Kjmaxlô 
replace gMjM16=0 if gMjM16==.

gen gMjM17= (dijmax7* Mij* Mi7)/ Kjmaxl7 
replace gMjM17=0 if gMjM17==.

gen gMjM18= (dijmax8* Mij* Mi8)/ Kjmaxl8 
replace gMjM18=0 if gMjM18==.

gen gMjM19= (dijmax9* Mij* Mi9)/ Kjmaxl9 
replace gMjM19=0 if gMjM19==.

gen gMjM110= (dijmaxlO* Mij* MilO)/ KjmaxllO 
replace gMjM110=0 if gMjM110==.

gen gMjMlll= (dijmaxll* Mij* Mill)/ Kjmaxlll 
replace gMjMlll=0 if gMjMlll==.

gen gMjM112= (dijmaxl2* Mij* Mil2)/ Kjmaxll2 
replace gMjM112=0 if gMjM112==.

gen gMjM113= (dijmaxl3* Mij* Mil3)/ Kjmaxll3 
replace gMjM113=0 if gMjM113==.

gen gMjM114= (dijmaxl4* Mij* Mil4)/ Kjmaxll4



replace gMjM114=0 if gMjM114==.

gen gMjM115= (dijmaxl5* Mij* Mil5)/ Kjmaxll5 
replace gMjM115=0 if gMjM115==.

gen gMjM116= (dijmaxlô* Mij* Mil6)/ Kjmaxll6 
replace gMjM116=0 if gMjM116==.

gen gMjM117= (dijmaxl7* Mij* Mil7)/ Kjmaxll7 
replace gMjM117=0 if gMjM117==.

gen gMjM118= (dijmaxl8* Mij* Mil8)/ Kjmaxll8 
replace gMjM118=0 if gMjM118==.

gen gMjM119= (dijmaxl9* Mij* Mil9)/ Kjmaxll9 
replace gMjM119=0 if gMjM119==.

gen gMjll= {dijmaxl* Mij)/ Kjmaxll 
replace gMjll=0 if gMjll==.

gen gMjl2= (dijmax2* Mij)/ Kjmaxl2 
replace gMjl2=0 if gMjl2==.

gen gMjl3= (dijmax3* Mij)/ Kjmaxl3 
replace gMjl3=0 if gMjl3==.

gen gMjl4= (dijmax4* Mij)/ Kjmaxl4 
replace gMjl4=0 if gMjl4==.

gen gMjl5= (dijmax5* Mij)/ Kjmaxl5 
replace gMjl5=0 if gMjl5==.

gen gMjl6= (dijmaxô* Mij)/ Kjmaxl6 
replace gMjl6=0 if gMjl6==.

gen gMjl7= (dijmax7* Mij)/ Kjmaxl7 
replace gMjl7=0 if gMjl7==.

gen gMjl8= (dijmax8* Mij)/ Kjmaxl8 
replace gMjl8=0 if gMjl8==.

gen gMjl9= (dijmax9* Mij)/ Kjmaxl9 
replace gMjl9=0 if gMjl9==.

gen gMjllO= (dijmaxlO* Mij)/ KjmaxllO 
replace gMjllO=0 if gMjllO==.

gen gMjlll= (dijmaxll* Mij)/ Kjmaxlll 
replace gMjlll=0 if gMjlll==.

gen gMjll2= (dijmaxl2* Mij)/ Kjmaxll2 
replace gMjll2=0 if gMjll2==.

gen gMjll3= (dijmaxl3* Mij)/ Kjmaxll3 
replace gMjll3=0 if gMjll3==.

gen gMjll4= (dijmaxl4* Mij)/ Kjmaxll4 
replace gMjll4=0 if gMjll4==.

gen gMjll5= (dijmaxl5* Mij)/ Kjmaxll5 
replace gMjll5=0 if gMjll5==.

gen gMjll6= (dijmaxlô* Mij)/ Kjmaxll6



gen gMjll7= (dijmaxl7* Mij)/ Kjmaxll7 
replace gMjll7=0 if gMjll7==.

gen gMjll8= (dijmaxl8* Mij)/ Kjmaxll8 
replace gMjll8=0 if gMjll8==.

gen gMjll9= (dijmaxl9* Mij)/ Kjmaxll9 
replace gMjll9=0 if gMjll9==.

replace gMjll6=0 if gMjll6==.

•k

gen gMll= (dijmaxl* Mil)/ Kjmaxll 
replace gMll=0 if gMll==.

gen gM12= (dijmax2* Mi2)/ Kjmaxl2 
replace gM12=0 if gM12==.

gen gM13= (dijmax3* Mi3)/ Kjmaxl3 
replace gM13=0 if gM13==.

gen gM14= (dijmax4* Mi4)/ Kjmaxl4 
replace gM14=0 if gM14==.

gen gM15= (dijmax5* Mi5)/ Kjmaxl5 
replace gM15=0 if gM15==.

gen gM16= (dijmax6* Mi6)/ Kjmaxl6 
replace gM16=0 if gM16==.

gen gM17= (dijmax7* Mi7)/ Kjmaxl7 
replace gM17=0 if gM17==.

gen gM18= (dijmax8* Mi8)/ Kjmaxl8 
replace gM18=0 if gM18==.

gen gM19= (dijmax9* Mi9)/ Kjmaxl9 
replace gM19=0 if gM19==.

gen gM110= (dijmaxlO* MilO)/ KjmaxllO 
replace gM110=0 if gM110==.

gen gMlll= (dijmaxll* Mill)/ Kjmaxlll 
replace gMlll=0 if gMlll==.

gen gM112= (dijmaxl2* Mil2)/ Kjmaxll2 
replace gM112=0 if gM112==.

gen gM113= (dijmaxl3* Mil3)/ Kjmaxll3 
replace gM113=0 if gM113==.

gen gM114= (dijmaxl4* Mil4)/ Kjmaxll4 
replace gM114=0 if gM114==.

gen gM115= (dijmaxl5* Mil5)/ Kjmaxll5 
replace gM115=0 if gM115==.

gen gM116= (dijmaxlô* Mil6)/ Kjmaxll6 
replace gM116=0 if gM116==.

gen gM117= (dijmaxl7* Mil7)/ Kjmaxll7 
replace gM117=0 if gM117==.
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gen gM118= {dijmaxl8* Mil8)/ Kjmaxll8 
replace gM118=0 if gM118==.

gen gM119= (dijmaxl9* Mil9)/ Kjmaxll9 
replace gM119=0 if gM119==.

gsort tj -Tijminl
by tj: gen gMjMllx=sum(gMjMll)
replace gMjMllx=0 if TijminKXi
egen sgMjMll=max(gMjMllx), by(tj Tijminl)
drop gMjMllx

gsort tj -Tijmin2
by tj: gen gMjM12x=sum(gMjM12)
replace gMjM12x=0 if Tijmin2<Xi
egen sgMjM12=max(gMjM12x), by(tj Tijmin2)
drop gMjM12x

gsort tj -Tijmin3
by tj: gen gMjM13x=sum(gMjM13)
replace gMjM13x=0 if Tijmin3<Xi
egen sgMjM13=max(gMjM13x), by(tj Tijmin3)
drop gMjM13x

gsort tj -Tijmin4
by tj: gen gMjM14x=sum(gMjM14)
replace gMjM14x=0 if Tijmin4<Xi
egen sgMjM14=max(gMjM14x), by(tj Tijmin4)
drop gMjM14x

gsort tj -Tijmin5
by tj : gen gMjM15x=sum(gMjM15)
replace gMjM15x=0 if Tijmin5<Xi
egen sgMjM15=max(gMjM15x), by(tj Tijmin5)
drop gMjM15x

gsort tj -Tijminö
by tj : gen gMjM16x=sum(gMjM16)
replace gMjM16x=0 if Tijmin6<Xi
egen sgMjM16=max(gMjM16x), by(tj Tijmin6)
drop gMjMlöx

gsort tj -Tijmin7
by tj : gen gMjM17x=sum(gMjM17)
replace gMjM17x=0 if Tijmin7<Xi
egen sgMjM17=max(gMjM17x), by(tj Tijmin7)
drop gMjM17x

gsort tj -Tijmin8
by tj: gen gMjM18x=sum(gMjM18)
replace gMjM18x=0 if Tijmin8<Xi
egen sgMjM18=max(gMjM18x), by(tj Tijmin8)
drop gMjM18x

gsort tj -Tijmin9
by tj: gen gMjM19x=sum(gMjM19)
replace gMjM19x=0 if Tijmin9<Xi
egen sgMjM19=max(gMjM19x), by(tj Tijmin9)
drop gMjM19x

gsort tj -TijminlO
by tj: gen gMjMl10x=sum(gMjM110)
replace gMjM110x=0 if TijminlO<Xi
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egen sgMjM110=max (gMjMUOx) , by(tj 
drop gMjMUOx

gsort tj -Tijminll 
by tj: gen gMjMlllx=sum(gMjMll1) 
replace gMjMlllx=0 if Tijminll<Xi 
egen sgMjMlll=max(gMjMlllx), by(tj 
drop gMjMlllx

gsort tj -Tijminl2 
by tj: gen gMjM112x=sum(gMjM112) 
replace gMjM112x=0 if Tijminl2<Xi 
egen sgMjM112=max(gMjM112x), by(tj 
drop gMjM112x

gsort tj -Tijminl3 
by tj: gen gMjM113x=sum(gMjM113) 
replace gMjM113x=0 if Tijminl3<Xi 
egen sgMjM113=max(gMjM113x), by(tj 
drop gMjM113x

gsort tj -Tijminl4 
by tj: gen gMjM114x=sum(gMjM114) 
replace gMjM114x=0 if Tijminl4<Xi 
egen sgMjM114=max(gMjM114x), by(tj 
drop gMjM114x

gsort tj -Tijminl5 
by tj : gen gMjM115x=sum(gMjM115) 
replace gMjM115x=0 if Tijminl5<Xi 
egen sgMjM115=max(gMjM115x), by(tj 
drop gMjM115x

gsort tj -Tijminlö 
by tj : gen gMjM116x=sum(gMjMllö) 
replace gMjM116x=0 if Tijminl6<Xi 
egen sgMjM116=max(gMjM116x), by(tj 
drop gMjMllöx

gsort tj -Tijminl7 
by tj : gen gMjM117x=sum(gMjM117) 
replace gMjM117x=0 if Tijminl7<Xi 
egen sgMjM117=max(gMjM117x), by(tj 
drop gMjM117x

gsort tj -Tijminl8 
by tj: gen gMjM118x=sum(gMjM118) 
replace gMjM118x=0 if Tijminl8<Xi 
egen sgMjM118=max(gMjM118x), by(tj 
drop gMjM118x

gsort tj -Tijminl9 
by tj : gen gMjM119x=sum(gMjM119) 
replace gMjM119x=0 if Tijminl9<Xi 
egen sgMjMl19=max(gMjMll9x), by(tj 
drop gMjM119x

TijminlO)

Tijminl1)

Tijminl2)

Tijminl3)

Tijminl4)

Tijminl5)

Tijminl6)

Tijminl7)

Tijminl8)

Tij mini 9)

gsort tj -Tijminl
by tj: gen gMjllx=sum(gMjll)
replace gMjllx=0 if Tijminl<Xi
egen sgMjll=max(gMjllx), by(tj Tijminl)
drop gMjllx



gsort tj -Tijmin2
by tj: gen gMj12x=sum(gMj12)
replace gMjl2x=0 if Tijmin2<Xi
egen sgMj12=max(gMj12x), by(tj Tijmin2)
drop gMjl2x

gsort tj -Tijmin3
by tj: gen gMj13x=sum(gMj13)
replace gMjl3x=0 if Tijmin3<Xi
egen sgMj13=max(gMj13x), by(tj Tijmin3)
drop gMjl3x

gsort tj -Tijmin4
by tj: gen gMj14x=sum(gMj14)
replace gMjl4x=0 if Tijmin4<Xi
egen sgMjl4=max(gMjl4x), by(tj Tijmin4)
drop gMjl4x

gsort tj -Tijmin5
by tj: gen gMj15x=sum(gMj15)
replace gMjl5x=0 if Tijmin5<Xi
egen sgMj15=max(gMj15x), by(tj Tijmin5)
drop gMjl5x

gsort tj -Tijminô
by tj: gen gMj16x=sum(gMj16)
replace gMjl6x=0 if Tijmin6<Xi
egen sgMj16=max(gMj16x), by(tj Tijmin6)
drop gMjl6x

gsort tj -Tijmin7
by tj: gen gMj17x=sum(gMj17)
replace gMjl7x=0 if Tijmin7<Xi
egen sgMjl7=max(gMjl7x), by(tj Tijmin7)
drop gMjl7x

gsort tj -Tijmin8
by tj: gen gMj18x=sum(gMj18)
replace gMjl8x=0 if Tijmin8<Xi
egen sgMj18=max(gMj18x) , by(tj Tijmin8)
drop gMjl8x

gsort tj -Tijmin9
by tj: gen gMj19x=sum(gMj19)
replace gMjl9x=0 if Tijmin9<Xi
egen sgMj19=max(gMj19x), by(tj Tijmin9)
drop gMjl9x

gsort tj -TijminlO
by tj: gen gMj110x=sum(gMj110)
replace gMjll0x=0 if TijminlO<Xi
egen sgMj 110=max ( gMj H O x  ) , by(tj TijminlO)
drop gMjllOx

gsort tj -Tijminll
by tj: gen gMj11lx=sum(gMj111)
replace gMjlllx=0 if TijminlKXi
egen sgMjlll=max(gMjlllx) , by(tj Tijminll)
drop gMjlllx

gsort tj -Tijminl2
by tj : gen gMj112x=sum(gMj112)
replace gMjll2x=0 if Tijminl2<Xi
egen sgMjll2=max(gMjll2x), by(tj Tijminl2)



drop gMjll2x

gsort tj -Tijminl3
by tj: gen gMj113x=sum(gMj113)
replace gMjll3x=0 if Tijminl3<Xi
egen sgMj113=max(gMj113x), by(tj Tijminl3)
drop gMjll3x

gsort tj -Tijminl4
by tj: gen gMj114x=sum(gMj114)
replace gMjll4x=0 if Tijminl4<Xi
egen sgMj114=max(gMj114x), by(tj Tijminl4)
drop gMjll4x

gsort tj -Tijminl5
by tj: gen gMjll5x=sum(gMjll5)
replace gMjll5x=0 if Tijminl5<Xi
egen sgMj115=max(gMj115x), by(tj Tijminl5)
drop gMjll5x

gsort tj -Tijminl6
by tj: gen gMj116x=sum(gMj116)
replace gMjll6x=0 if Tijminl6<Xi
egen sgMj116=max(gMj116x), by(tj Tijminl6)
drop gMjll6x

gsort tj -Tijminl7
by tj: gen gMj117x=sum(gMj117)
replace gMjll7x=0 if Tijminl7<Xi
egen sgMj117=max(gMj117x), by(tj Tijminl7)
drop gMjll7x

gsort tj -Tijminl8
by tj: gen gMj118x=sum(gMj118)
replace gMjll8x=0 if Tijminl8<Xi
egen sgMj118=max(gMj118x), by(tj Tijminl8)
drop gMjll8x

gsort tj -Tijminl9
by tj: gen gMj119x=sum(gMj119)
replace gMjll9x=0 if Tijminl9<Xi
egen sgMj119=max(gMj119x), by(tj Tijminl9)
drop gMjll9x

gsort tj -Tijminl
by tj: gen gMllx=sum(gMll)
replace gMllx=0 if Tijminl<Xi
egen sgMll=max(gMllx), by(tj Tijminl)
drop gMllx

gsort tj -Tijmin2
by tj: gen gM12x=sum(gM12)
replace gM12x=0 if Tijmin2<Xi
egen sgM12=max(gM12x), by(tj Tijmin2)
drop gM12x

gsort tj -Tijmin3
by tj: gen gM13x=sum(gM13)
replace gM13x=0 if Tijmin3<Xi
egen sgM13=max(gM13x), by(tj Tijmin3)
drop gM13x

gsort tj -Tijmin4
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by tj: gen gM14x=sum(gM14) 
replace gM14x=0 if Tijmin4<Xi 
egen sgM14=max(gM14x), by(tj Tijmin4) 
drop gM14x

gsort tj -Tijmin5
by tj: gen gM15x=sum(gM15)
replace gM15x=0 if Tijmin5<Xi
egen sgM15=max(gM15x), by(tj Tijmin5)
drop gM15x

gsort tj -Tijmin6
by tj: gen gMl6x=sum(gMl6)
replace gM16x=0 if Tijmin6<Xi
egen sgM16=max(gM16x), by(tj Tijmin6)
drop gM16x

gsort tj -Tijmin7
by tj: gen gM17x=sum(gM17)
replace gM17x=0 if Tijmin7<Xi
egen sgM17=max(gM17x), by(tj Tijmin7)
drop gM17x

gsort tj -Tijmin8
by tj: gen gM18x=sum(gMl8)
replace gM18x=0 if Tijmin8<Xi
egen sgM18=max(gM18x), by(tj Tijmin8)
drop gM18x

gsort tj -Tijmin9
by tj: gen gM19x=sum(gM19)
replace gM19x=0 if Tijmin9<Xi
egen sgM19=max(gM19x), by(tj Tijmin9)
drop gM19x

gsort tj -TijminlO
by tj: gen gM110x=sum(gMllO)
replace gM110x=0 if TijminlO<Xi
egen sgM110=max (gMUOx) , by(tj TijminlO)
drop gMUOx

gsort tj -Tijminll
by tj: gen gMlllx=sum(gMlll)
replace gMlllx=0 if TijminlKXi
egen sgMlll=max(gMlllx), by(tj Tijminll)
drop gMlllx

gsort tj -Tijminl2
by tj: gen gM112x=sum(gMl12)
replace gM112x=0 if Tijminl2<Xi
egen sgM112=max(gM112x) , by(tj Tijminl2)
drop gM112x

gsort tj -Tijminl3
by tj: gen gMl13x=sum(gMl13)
replace gM113x=0 if Tijminl3<Xi
egen sgM113=max(gM113x), by(tj Tijminl3)
drop gM113x

gsort tj -Tijminl4
by tj: gen gM114x=sum(gM114)
replace gM114x=0 if Tijminl4<Xi
egen sgM114=max(gM114x), by(tj Tijminl4)
drop gM114x
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gsort tj -Tijminl5
by tj: gen gM115x=sum(gM115)
replace gM115x=0 if Tijminl5<Xi
egen sgM115=max(gM115x), by(tj Tijminl5)
drop gM115x

gsort tj -Tijminl6
by tj: gen gM116x=sum(gM116)
replace gM116x=0 if Tijminl6<Xi
egen sgM116=max(gM116x), by(tj Tijminl6)
drop gM116x

gsort tj -Tijminl7
by tj: gen gM117x=sum(gM117)
replace gM117x=0 if Tijminl7<Xi
egen sgM117=max(gM117x) , by(tj Tijminl7)
drop gM117x

gsort tj -Tijminl8
by tj: gen gM118x=sum(gM118)
replace gM118x=0 if Tijminl8<Xi
egen sgM118=max(gM118x), by(tj Tijminl8)
drop gM118x

gsort tj -Tijminl9
by tj: gen gM119x=sum(gM119)
replace gM119x=0 if Tijminl9<Xi
egen sgM119=max(gM119x) , by(tj Tijminl9)
drop gM119x

•k
gen sxj11=((1/1138)* sgMjMll-(1/1138)* 
replace sxjll=0 if sxjll==.

sgMjll*(1/1138)*(1/ Sjllu)* sgMll)

gen sxj12=((1/1138)* sgMjM12-(1/1138)* 
replace sxjl2=0 if sxj12==.

sgMjl2*(1/1138)*(1/ Sj12u)* sgM12)

gen sxj13=((1/1138)* sgMjM13-(1/1138)* 
replace sxjl3=0 if sxjl3==.

sgMj13*(1/1138)*(1/ Sj13u)* sgM13)

gen sxj14=((1/1138)* sgMjM14-(1/1138) * 
replace sxjl4=0 if sxjl4==.

sgMj14 *(1/1138)*(1/ Sj14u)* sgM14)

gen sxj15= (( 1/1138)* sgMjM15-(1/1138)* 
replace sxjl5=0 if sxjl5==.

sgMj15*(1/1138)*(1/ Sj15u)* sgM15)

gen sxj16=((1/1138)* sgMjM16-(1/1138)* 
replace sxjl6=0 if sxjl6==.

sgMj16*(1/1138)*(1/ Sj16u)* sgM16)

gen sxj17=((1/1138)* sgMjM17-(1/1138 ) * 
replace sxjl7=0 if sxjl7==.

sgMj17*(1/1138)*(1/ Sj17u)* sgM17)

gen sxj18= (( 1/1138)* sgMjM18-(1/1138)* 
replace sxjl8=0 if sxjl8==.

sgMj18*(1/1138)*(1/ Sj18u)* sgM18)

gen sxj19=((1/1138)* sgMjM19-(1/1138)* sgMjl9*(1/1138)*(1/ Sj19u)* sgM19)
replace sxjl9=0 if sxjl9==.

gen sx j 110= ( ( 1/1138 ) * sgMjMHO-(1/1138) * sgMj 110* ( 1/1138 )*( 1 / SjllOu)* sgMUO) 
replace sxjll0=0 if sxjll0==.

gen sxj111=((1/1138)* sgMjMlll-(1/1138)* sgMjlll*(1/1138)* (1/ Sjlllu)* sgMlll) 
replace sxjlll=0 if sxjlll==.



gen sxjll2=((1/1138) 
replace sxjll2=0 if

* sgMjM112-(1/1138) * 
sxj112==.

sgMj112*(1/1138)*(1/ Sj112u)* sgM112)

gen sxj113=((1/1138) 
replace sxjll3=0 if

* sgMjM113-(1/1138) * 
sxj113==.

sgMjll3*(1/1138)*(1/ Sj113u)* sgM113)

gen sxj114=((1/1138) 
replace sxjll4=0 if

* sgMjM114-(1/1138)* 
sxj114==.

sgMjll4*(1/1138)*(1/ Sj114u)* sgM114)

gen sxj115=((1/1138) 
replace sxjll5=0 if

* sgMjM115-(1/1138)* 
sxj115==.

sgMjll5*(1/1138)*(1/ Sj115u)* sgM115)

gen sxj116=((1/1138) 
replace sxjll6=0 if

* sgMjM116-(1/1138)* 
sxj116==.

sgMj116*(1/1138)*(1/ Sj116u)* sgMl16)

gen sxj117=((1/1138) 
replace sxjll7=0 if

* sgMjM117-(1/1138)* 
sxj117==.

sgMj117*(1/1138)*(1/ Sj117u)* sgM117)

gen sxj118=((1/1138) 
replace sxjll8=0 if

* sgMjM118-(1/1138)* 
sxj118==.

sgMj118*(1/1138)*(1/ Sj118u)* sgM118)

gen sxj119=((1/1138) * sgMjM119-(1/1138)* sgMj119*(1/1138)*(1/ Sj119u)* sgM119)
replace sxjll9=0 if sxjll9==.

gen sumsxls= sxj11+sxj12+sxj13+sxj14+sxj15+sxj16+sxj17+sxjl8+sxjl9+sxjll0+ 
sxj111+sxj112+sxj113+sxj114+sxj115+sxj116+sxj117+sxj118+sxj119

egen sumsall=sum(sumsxls) , by(ukno)

collapse sumintjs sumsall di censorig Mi censll38 survll38 censori Yu, by(ukno) 

label var di "censorig"

* *

egen mpx=sum(sumintjs) 
gen meanpart=(1/1138)*mpx

•k
gen internl=di*(( Mi- meanpart)A2)/ censll38 
replace internl=0 if internl==.

egen sumintl=sum(internl)

gen terml=(1/1138)* sumintl

gen intern2=(censori/ (Yu* censll38))* sumsall 
replace intern2=0 if intern2==.

egen sumint2=sum( intern2)

gen term2=sumint2

gen varpart=(1/1138)*( terml+ term2) 

gen separt=sqrt(varpart) **

**
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Simple improved estimator

Based on equations (4.42), (4.43), (4.45) and (4.46) for the mean and on
equations (4.44), (4.45) and (4.46) for the variance

For Conventional (similarly for intensive)

* *
gen tj_l=year-l 
gen tj=year

gen Mij=costyr 
replace Mij=0 if Mij==.

egen di=min(censorig), by(ukno) 
egen Xi=min( timallde), by(ukno)

gen ejMi=Mij if Xi>tj 
replace ejMi=0 if ejMi==.

gsort tj -Xi
by tj: gen Sejx=sum( ejMi) 
egen Sej=max{ Sejx), by(tj Xi) 
drop Sejx

gen gejM=Sej/Yu

gen difejg= ejMi- gejM

gen internj=(censorl/censll38)* difejg 
replace internj=0 if internj==.

egen sinternj=sum(internj), by(tj)

**cov vector**

gen coval=(di*Mi)/censll38 
replace coval=0 if coval==.

gsort tj -Xi
by tj: gen scovalx=sum( coval) 
egen scoval=max( scovalx), by(tj Xi) 
*drop scovalx*

gen gMu=(1/1138)*(1/survl138)* scoval 
replace gMu=0 if gMu==.

gen cova2= Mi-gMu

gen cova3=(di*Mij)/censll38 
replace cova3=0 if cova3==.

gsort tj -Xi
by tj: gen scova3x=sum( cova3) 
egen scova3=max( scova3x), by(tj Xi) 
*drop scova3x*

gen gMju=(1/1138)*(l/survll38)* scova3 
replace gMju=0 if gMju==.

gen cova4= Mij-gMju
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* *ties * *

gen int const=l 
sort tj Xi
by tj Xi: gen ties=sum(const) 
egen maxties=max(ties), by(tj Xi)

gen cova5=( di/ censll38)* cova2* cova4
replace cova5=0 if cova5==.

■k Vr

gsort tj -Xi ties
by tj: gen scova5x=sum( cova5)
gen scova5=scova5x if ties==maxties
egen scova5xx=min( scova5), by(tj Xi maxties)
replace scova5=scova5xx if scova5==.
*drop scova5x scova5xx*

gen cova6=(1/1138)*(l/survll38)* scova5

gen cova7=( censorl/(censll38A2))* covaô 
replace cova7=0 if cova7==.

egen scova7=sum(cova7), by(tj)

gen covj=(1/1138)*scova7

**Variance vector**

sort ukno tj

gen a41eadl=cova4
quietly by ukno: gen a41ead2=a41eadl[ n+1 ]
quietly by ukno: gen a4Iead3=a4lead2[ n+1 ]
quietly by ukno: gen a41ead4=a41ead3[ n+1]
quietly by ukno: gen a41ead5=a41ead4[ n+1]
quietly by ukno: gen a41ead6=a41ead5[ n+1]
quietly by ukno: gen a4Iead7=a4lead6[ n+1]
quietly by ukno: gen a4Iead8=a4lead7[ n+1]
quietly by ukno: gen a41ead9=a41ead8[ n+1]
quietly by ukno: gen a41eadl0=a41ead9[ n+1]
quietly by ukno: gen a41eadll=a41eadl0 [ n+1
quietly by ukno: gen a41eadl2=a41eadll [ n+1
quietly by ukno: gen a41eadl3=a41eadl2 [ n+1
quietly by ukno: gen a41eadl4=a41eadl3 [ n+1
quietly by ukno: gen a41eadl5=a41eadl4 [ n+1
quietly by ukno: gen a41eadl6=a41eadl5 [ n+1
quietly by ukno: gen a41eadl7=a41eadl6 [ n+1
quietly by ukno: gen a41eadl8=a41eadl7 [ n+1
quietly by ukno: gen a4Ieadl9=a41eadl8 [ n+1

replace a41eadl = . if tj~=l
replace a41ead2 = . if tj~=l
replace a4lead3 = . if tj~=l
replace a4lead4 = . if tj~=l
replace a4lead5 = . if tj~=l
replace a4lead6= . if tj~=l
replace a4lead7 = . if tj~=l
replace a4lead8 = . if tj~=l
replace a41ead9= . if tj~=l
replace a41eadl0=. if tj~=l 
replace a41eadll=. if tj~=l
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gen vara56=(di/censll38)*vara46 
replace vara56=0 if vara56==.

gen vara57=(di/censll38)*vara47 
replace vara57=0 if vara57==.

gen vara58=(di/censll38)*vara48 
replace vara58=0 if vara58==.

gen vara59=(di/censll38)*vara49 
replace vara59=0 if vara59==.

gen vara510=(di/cens 1138)*vara410 
replace vara510=0 if vara510==.

gen vara511=(di/cens 1138)*vara411 
replace vara511=0 if vara511==.

gen vara512=(di/censll38)*vara412 
replace vara512=0 if vara512==.

gen vara513=(di/censll38)*vara413 
replace vara513=0 if vara513==.

gen vara514=(di/censl138)*vara414 
replace vara514=0 if vara514==.

gen vara515=(di/censll38)*vara415 
replace vara515=0 if vara515==.

gen vara516=(di/censl138)*vara416 
replace vara516=0 if vara516==.

gen vara517=(di/censl138)*vara417 
replace vara517=0 if vara517==.

gen vara518=(di/censl138)*vara418 
replace vara518=0 if vara518==.

gen vara519=(di/censl138)*vara419 
replace vara519=0 if vara519==.

gen vara55=(di/censll38)*vara45
replace vara55=0 if vara55==.

gsort tj -Xi ties
by tj: gen svara51x=sum( vara51)
gen svara51=svara51x if ties==maxties
egen svara51xx=min( svara51), by(tj Xi maxties)
replace svara51=svara51xx if svara51==.
drop svara51x svara51xx

gsort tj -Xi ties
by tj: gen svara52x=sum( vara52)
gen svara52=svara52x if ties==maxties
egen svara52xx=min( svara52), by(tj Xi maxties)
replace svara52=svara52xx if svara52==.
drop svara52x svara52xx

gsort tj -Xi ties
by tj: gen svara53x=sum( vara53)
gen svara53=svara53x if ties==maxties
egen svara53xx=min( svara53), by(tj Xi maxties)



replace svara53=svara53xx if svara53==. 
drop svara53x svara53xx

gsort tj -Xi ties
by tj: gen svara54x=sum( vara54)
gen svara54=svara54x if ties==maxties
egen svara54xx=min( svara54), by(tj Xi maxties)
replace svara54=svara54xx if svara54==.
drop svara54x svara54xx

gsort tj -Xi ties
by tj: gen svara55x=sum( vara55)
gen svara55=svara55x if ties==maxties
egen svara55xx=min( svara55), by(tj Xi maxties)
replace svara55=svara55xx if svara55==.
drop svara55x svara55xx

gsort tj -Xi ties
by tj: gen svara56x=sum( vara56)
gen svara56=svara56x if ties==maxties
egen svara56xx=min( svara56), by(tj Xi maxties)
replace svara56=svara56xx if svara56==.
drop svara56x svara56xx

gsort tj -Xi ties
by tj: gen svara57x=sum( vara57)
gen svara57=svara57x if ties==maxties
egen svara57xx=min( svara57), by(tj Xi maxties)
replace svara57=svara57xx if svara57==.
drop svara57x svara57xx

gsort tj -Xi ties
by tj: gen svara58x=sum( vara58)
gen svara58=svara58x if ties==maxties
egen svara58xx=min( svara58), by(tj Xi maxties)
replace svara58=svara58xx if svara58==.
drop svara58x svara58xx

gsort tj -Xi ties
by tj: gen svara59x=sum( vara59)
gen svara59=svara59x if ties==maxties
egen svara59xx=min( svara59), by(tj Xi maxties)
replace svara59=svara59xx if svara59==.
drop svara59x svara59xx

gsort tj -Xi ties
by tj: gen svara510x=sum( vara510)
gen svara510=svara510x if ties==maxties
egen svara510xx=min( svara510), by(tj Xi maxties)
replace svara510=svara510xx if svara510==.
drop svara510x svara510xx

gsort tj -Xi ties
by tj: gen svara51lx=sum( vara511)
gen svara511=svara511x if ties==maxties
egen svara511xx=min( svara511), by(tj Xi maxties)
replace svara511=svara511xx if svara511==.
drop svara511x svara511xx

gsort tj -Xi ties
by tj: gen svara512x=sum( vara512)
gen svara512=svara512x if ties==maxties
egen svara512xx=min( svara512), by(tj Xi maxties)
replace svara512=svara512xx if svara512==.
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drop svara512x svara512xx

gsort tj -Xi ties
by tj: gen svara513x=sum( vara513)
gen svara513=svara513x if ties==maxties
egen svara513xx=min( svara513), by(tj Xi maxties)
replace svara513=svara513xx if svara513==.
drop svara513x svara513xx

gsort tj -Xi ties
by tj: gen svara514x=sum( vara514)
gen svara514=svara514x if ties==maxties
egen svara514xx=min( svara514), by(tj Xi maxties)
replace svara514=svara514xx if svara514==.
drop svara514x svara514xx

gsort tj -Xi ties
by tj: gen svara515x=sum( vara515)
gen svara515=svara515x if ties==maxties
egen svara515xx=min( svara515), by(tj Xi maxties)
replace svara515=svara515xx if svara515==.
drop svara515x svara515xx

gsort tj -Xi ties
by tj: gen svara516x=sum( vara516)
gen svara516=svara516x if ties==maxties
egen svara516xx=min( svara516), by(tj Xi maxties)
replace svara516=svara516xx if svara516==.
drop svara516x svara516xx

gsort tj -Xi ties
by tj: gen svara517x=sum( vara517)
gen svara517=svara517x if ties==maxties
egen svara517xx=min( svara517), by(tj Xi maxties)
replace svara517=svara517xx if svara517==.
drop svara517x svara517xx

gsort tj -Xi ties
by tj: gen svara518x=sum( vara518)
gen svara518=svara518x if ties==maxties
egen svara518xx=min( svara518), by(tj Xi maxties)
replace svara518=svara518xx if svara518==.
drop svara518x svara518xx

gsort tj -Xi ties
by tj: gen svara519x=sum( vara519)
gen svara519=svara519x if ties==maxties
egen svara519xx=min( svara519), by(tj Xi maxties)
replace svara519=svara519xx if svara519==.
drop svara519x svara519xx

gen vara61=(censorl/(cens1138 A2))* (1/1138)*(1/survl138)*svara51 
replace vara61=0 if vara61==.

gen vara62=(censorl/(censll38A2))*(1/1138)*(1/survl138)*svara52 
replace vara62=0 if vara62==.

gen vara63=(censorl/(censll38A2))*(1/1138)*(l/survll38)*svara53 
replace vara63=0 if vara63==.

gen vara64=(censorl/(censll38A2))* (1/1138)* 
replace vara64=0 if vara64==.

(l/survll38)*svara54



gen vara65=(censorl/(censll38A2))*(1/1138)*(1/survll38)*svara55 
replace vara65=0 if vara65==.

gen vara66=(censorl/(censll38A2))*(1/1138)*(1/survl138)*svara56 
replace vara66=0 if vara66==.

gen vara67=(censorl/(censll38A2))*(1/1138)*(1/survl138)*svara57 
replace vara67=0 if vara67==.

gen vara68=(censorl/(censll38A2))*(1/1138)*(1/survl138)*svara58 
replace vara68=0 if vara68==.

gen vara69=(censorl/(cens1138 A2))*(1/1138)* (1/survl138)*svara59 
replace vara69=0 if vara69==.

gen vara610=(censorl/(censll38A2))*(1/1138)*(l/survll38)*svara510 
replace vara610=0 if vara610==.

gen vara611=(censorl/(censll38A2))*(1/1138)*(l/survll38)*svara511 
replace vara611=0 if vara611==.

gen vara612=(censorl/(censll38A2))*(1/1138)*(1/survl138)*svara512 
replace vara612=0 if vara612==.

gen vara613=(censorl/(censll38A2))*(1/1138)*(1/survl138)*svara513 
replace vara613=0 if vara613==.

gen vara614=(censor1/(censll38A2))*(1/1138)*(1/survl138)*svara514 
replace vara614=0 if vara614==.

gen vara615=(censor1/(censll38A2))*(1/1138)*(1/survl138)*svara515 
replace vara615=0 if vara615==.

gen vara616=(censorl/(cens 1138A2) )*(1/1138)*(1/survl138)*svara516 
replace vara616=0 if vara616==.

gen vara617=(censorl/(censll38A2))*(1/1138)*(1/survl138)*svara517 
replace vara617=0 if vara617==.

gen vara618=(censorl/(censll38A2))*(1/1138)*(1/survl138)*svara518 
replace vara618=0 if vara618==.

gen vara619=(censorl/(censll38A2))*(1/1138)*(l/survll38)*svara519 
replace vara619=0 if vara619==.

egen var71=SUITI (
egen var72=sum (
egen var73=sum (
egen var74=sum (
egen var75=sum (
egen var7 6=sum (
egen var77=sum (
egen var78=sum (
egen var7 9=sum (
egen var710=sum (
egen var711 =sum (
egen var712=sum (
egen var713=sum (
egen var714=sum (
egen var715=sum (
egen var716=sum (
egen var717=sum (
egen var718=sum (
egen var719=sum (

vara 61) , by (tj)
vara 62) , by (tj)
vara 63) , by (t j )
vara 64) , by (tj)
vara 65) , by (tj)
vara 66) , by (tj)
vara 67) , by (tj)
vara 68) , by (t j )
vara 69) , by (t j )
vara610), by(tj) 
varaöl1), by(tj) 
vara612), by(tj) 
vara613), by(tj) 
vara614), by(tj) 
vara615), by(tj) 
vara616), by(tj) 
vara617), by(tj) 
vara618), by(tj) 
vara619), by(tj)
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gen varj11=(1/1138)* var71 
gen varj12=(1/1138)* var72 
gen varj13=(1/1138)* var73 
gen varj14=(1/1138)* var74 
gen varj15=(1/1138)* var75 
gen varj16=(1/1138)* var76 
gen varj17=(1/1138)* var77 
gen varj18=(1/1138)* var78 
gen varj19=(1/1138)* var79 
gen varj110=(1/I138)* var710 
gen varj111=(1/1138)* var711 
gen varj112=(1/1138)* var712 
gen varj113=(1/1138)* var713 
gen varj114=(1/1138)* var714 
gen varj115=(1/1138)* var715 
gen varj116=(1/1138)* var716 
gen varj117=(1/1138)* var717 
gen varj118=(1/1138)* var718 
gen varj119=(1/1138)* var719

** Matrix calculations for Simple Improved for conventional*

keep if ukno=="00011D"
keep ukno year sinternj covj varj*
mkmat varj1*,matrix(var)
matrix invvar=syminv(var)
svmat invvar
mkmat covj, matrix(covs)
matrix Gs=covs1*invvar
svmat Gs
mkmat sinternj, matrix(A) 
matrix ws=Gs*A 
svmat ws
gen wsterm= wsl/1138

matrix varsterm=Gs*covs 
svmat varsterm

gen msimpimp= meansimp-xxx
gen internlimp= censorig*((Mi- msimpimp)A2)/ censll38
replace internlimp=0 if internlimp==.
egen sumintlimp=sum(internlimp)
gen termlimp=(1/1138)*sumintlimp
gen term3imp=xxxx

gen varsimpimp=(1/1138)*(termlimp+term2- term3imp) 
gen sesimpimp=sqrt( varsimpimp)



Improved P artitioned  estim ator

Based on equations (4.47), (4.42) (4.46) and (4.48) for the mean and on
equations (4.49), (4.46) and (4.48) for the variance

For Conventional (similarly for intensive)

** Improved Partitioned: Covariance vector: Conventional**

gen tj_l=year-l 
gen tj=year

egen Xi=min(timallde), by(ukno) 
egen di=min(censorig), by(ukno)

gen Mij=costyr 
replace Mij=0 if Mij==.

gen minTitj=min(Xi, tj)

gen Xij=min(minTitj, Xi)

gen dij = l if (minTitj==tj I (minTitj==Xi & di==l)) 
replace dij=0 if dij==.

stset Xij, failure(dij==0) 
sts gen KjTij=s, by(tj)

gen intern=(dij*Mij)/KjTij 
replace intern=0 if intern==.

gen dijsurv=l if (minTitj==Xi & di==l) 
replace dijsurv=0 if dijsurv==.

stset Xij, failure(dij==l) 
sts gen Slu=s, by(tj)

gsort tj -Xi
by tj: gen glMlx=sum(intern) 
replace glMlx=0 if Xij<Xi 
egen sglMl=max(glMlx), by(tj Xi) 
replace sglMl=0 if Xij<Xi

gen glMl=(1/1138)*(1/Slu)*sglMl 
replace glMl=0 if glMl==.

gen Mil_gl=Mij-glMl

gen 11=1 
gen 12=2 
gen 13=3 
gen 14=4 
gen 15=5 
gen 16=6 
gen 17=7 
gen 18=8 
gen 19=9 
gen 110=10 
gen 111=11 
gen 112=12 
gen 113=13 
gen 114=14
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gen 115=15 
gen 116=16 
gen 117=17 
gen 118=18 
gen 119=19

gen jmaxll=max(tj, 11) 
gen jmaxl2=max(tj, 12) 
gen jmaxl3=max(tj, 13) 
gen jmaxl4=max(tj, 14) 
gen jmaxl5=max(tj, 15) 
gen jmaxl6=max(tj, 16) 
gen jmaxl7=max (tj, 17) 
gen jmaxl8=max(tj, 18) 
gen jmaxl9=max(tj, 19) 
gen jmaxllO=max(tj, 110) 
gen jmaxlll=max(tj, 111)
gen jmaxll2=max(tj, 112) 
gen jmaxll3=max(tj, 113) 
gen jmaxll4=max(tj, 114) 
gen jmaxll5=max(tj, 115) 
gen jmaxll6=max(tj, 116) 
gen jmaxll7=max(tj, 117) 
gen jmaxll8=max(tj, 118) 
gen jmaxll9=max(tj, 119)

gen Tijmaxl=min(Xi, jmaxll) 
gen Tijmax2=min(Xi, jmaxl2) 
gen Tijmax3=min(Xi, jmaxl3) 
gen Tijmax4=min(Xi, jmaxl4) 
gen Tijmax5=min(Xi, jmaxl5) 
gen Tijmax6=min(Xi, jmaxl6) 
gen Tijmax7=min(Xi, jmaxl7) 
gen Tijmax8=min(Xi, jmaxl8) 
gen Tijmax9=min(Xi, jmaxl9) 
gen TijmaxlO=min(Xi, jmaxllO) 
gen Tijmaxll=min(Xi, jmaxlll) 
gen Tijmaxl2=min(Xi, jmaxll2) 
gen Tijmaxl3=min(Xi, jmaxll3) 
gen Tijmaxl4=min(Xi, jmaxll4) 
gen Tijmaxl5=min(Xi, jmaxll5) 
gen Tijmaxl6=min(Xi, jmaxllô) 
gen Tijmaxl7=min(Xi, jmaxll7) 
gen Tijmaxl8=min(Xi, jmaxll8) 
gen Tijmaxl9=min(Xi, jmaxll9)

gen dijmaxl=l if Tijmaxl==jmaxll | 
replace dijmaxl=0 if dijmaxl==.

(Tijmaxl==Xi

gen dijmax2=l if Tijmax2==jmaxl2 | 
replace dijmax2=0 if dijmax2==.

(Tijmax2==Xi

gen dijmax3=l if Tijmax3==jmaxl3 | 
replace dijmax3=0 if dijmax3==.

(Tijmax3==Xi

gen dijmax4=l if Tijmax4==jmaxl4 | 
replace dijmax4=0 if dijmax4==.

(Tijmax4==Xi

gen dijmax5=l if Tijmax5==jmaxl5 ! 
replace dijmax5=0 if dijmax5==.

(Tijmax5==Xi

gen dijmax6=l if Tijmax6==jmaxl6 | (Tijmax6==Xi

di==l) 

di==l) 

di==l) 

di==l) 

di==l) 

di==l)
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gen dijmax7=l if Tijmax7==jmaxl7 | 
replace dijmax7=0 if dijmax7==.

gen dijmax8=l if Tijmax8==jmaxl8 | 
replace dijmax8=0 if dijmax8==.

replace dijmax6=0 if dijmax6==.

gen dijmax9=l if 
replace dijmax9=0

gen dijmaxlO=l if 
replace dijmaxl0=0

gen dijmaxll=l if 
replace dijmaxll=0

gen dijmaxl2=l if 
replace dijmaxl2=0

gen dijmaxl3=l if 
replace dijmaxl3=0

gen dijmaxl4=l if 
replace dijmaxl4=0

gen dijmaxl5=l if 
replace dijmaxl5=0

gen dijmaxl6=l if 
replace dijmaxl6=0

gen dijmaxl7=l if 
replace dijmaxl7=0

gen dijmaxl8=l if 
replace dijmaxl8=0

gen dijmaxl9=l if 
replace dijmaxl9=0

Tijmax9==jmaxl9 | 
if dijmax9==.

TijmaxlO==jmaxllO 
if dijmaxlO==.

Ti jmaxl1==jmaxll1 
if dijmaxll==.

Tijmaxl2==jmaxl12 
if dijmaxl2==.

Tijmaxl3==jmaxl13 
if dijmaxl3==.

Tijmaxl4==jmaxl14 
if dijmaxl4==.

Tijmaxl5==jmaxl15 
if dijmaxl5==.

Tijmaxl6==jmaxll6 
if dijmaxl6==.

Tijmaxl7==jmaxl17 
if dijmaxl7==.

Tijmaxl8==jmaxl18 
if dijmaxl8==.

Tijmaxl9==jmaxl19 
if dijmaxl9==.

(Tijmax7==Xi & di==l)

(Tijmax8==Xi & di==l)

(Tijmax9==Xi & di==l)

I (Tijmaxl0==Xi & di==l) 

| (Tijmaxll==Xi & di==l)

| (Tijmaxl2==Xi & di==l) 

| (Tijmaxl3==Xi & di==l) 

I (Tijmaxl4==Xi & di==l) 

I (Tijmaxl5==Xi & di==l) 

| (Tijmaxl6==Xi & di==l) 

| (Tijmaxl7==Xi & di==l)

(Tijmaxl8==Xi & di==l)

(Tijmaxl9==Xi & di==l)

stset Tijmaxl, failure(dijmaxl==0) 
sts gen Kjmaxll=s, by(tj)

stset Tijmax2, failure(dijmax2==0) 
sts gen Kjmaxl2=s, by(tj)

stset Tijmax3, failure(dijmax3==0) 
sts gen Kjmaxl3=s, by(tj)

stset Tijmax4, failure(dijmax4==0) 
sts gen Kjmaxl4=s, by(tj)

stset Tijmax5, failure(dijmax5==0) 
sts gen Kjmaxl5=s, by(tj)

stset Tijmax6, failure(dijmax6==0) 
sts gen Kjmaxl6=s, by(tj)

stset Tijmax7, failure(dijmax7==0) 
sts gen Kjmaxl7=s, by(tj)
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stset Tijmax8, failure(dijmax8==0) 
sts gen Kjmaxl8=s, by(tj)

stset Tijmax9, failure(dijmax9==0) 
sts gen Kjmaxl9=s, by(tj)

stset TijmaxlO, failure(dijmaxlO==0) 
sts gen KjmaxllO=s, by(tj)

stset Tijmaxll, failure(dijmaxll==0) 
sts gen Kjmaxlll=s, by(tj)

stset Tijmaxl2, failure(dijmaxl2==0) 
sts gen Kjmaxll2=s, by(tj)

stset Tijmaxl3, failure(dijmaxl3==0) 
sts gen Kjmaxll3=s, by(tj)

stset Tijmaxl4, failure(dijmaxl4==0) 
sts gen Kjmaxll4=s, by(tj)

stset Tijmaxl5, failure(dijmaxl5==0) 
sts gen Kjmaxll5=s, by(tj)

stset Tijmaxl6, failure(dijmaxl6==0) 
sts gen Kjmaxll6=s, by(tj)

stset Tijmaxl7, failure(dijmaxl7==0) 
sts gen Kjmaxll7=s, by(tj)

stset Tijmaxl8, failure(dijmaxl8==0) 
sts gen Kjmaxll8=s, by(tj)

stset Tijmaxl9, failure(dijmaxl9==0) 
sts gen Kjmaxll9=s, by(tj)

sort ukno tj

gen Millead=Mij

quietly by ukno: gen Mi21ead=Millead[ n+1 ]
quietly by ukno: gen Mi31ead=Mi21ead[ n+1 ]
quietly by ukno: gen Mi41ead=Mi31ead[ n+1]
quietly by ukno: gen Mi51ead=Mi41ead[ n+1]
quietly by ukno: gen Mi61ead=Mi51ead[ n+1]
quietly by ukno: gen Mi71ead=Mi61ead[ n+1]
quietly by ukno: gen Mi81ead=Mi71ead[ n+1]
quietly by ukno: gen Mi91ead=Mi81ead[ n+1]
quietly by ukno: gen Mil01ead=Mi91ead[ n+1]
quietly by ukno: gen Milllead=Mil01ead [ n + 1
quietly by ukno: gen Mil21ead=Milllead [ n+1
quietly by ukno: gen Mil31ead=Mil21ead [ n+1
quietly by ukno: gen Mil41ead=Mil31ead [ n+1
quietly by ukno: gen Mil51ead=Mil41ead [ n+1
quietly by ukno: gen Mil61ead=Mil51ead [ n+1
quietly by ukno: gen Mil71ead=Mil61ead [ n+1
quietly by ukno: gen Mil81ead=Mil71ead [ n+1
quietly by ukno: gen Mil91ead=Mil81ead [ n+1

replace Millead==-9 .if tj~=l
replace Mi21ead==-9 .if tj~=l
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replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace

Mi31ead=-9 if 
Mi41ead=-9 if 
Mi51ead=-9 if 
Mi61ead=-9 if 
Mi71ead=-9 if 
Mi81ead=-9 if 
Mi91ead=-9 if 
Mil01ead=-9 if 
Milllead=-9 if 
Mil21ead=-9 if 
Mil31ead=-9 if 
Mil41ead=-9 if 
Mil51ead=-9 if 
Mil61ead=-9 if 
Mil71ead=-9 if 
Mil81ead=-9 if 
Mil91ead=-9 if

tj~=l
tj~=l
tj~=l
tj~=l
tj~=l
tj~=l
tj~=l
tj~=l
tj~=l
tj~=l
tj~=l
tj~=l
tj~=l
tj~=l
tj~=l
tj~=l
tj~=l

egen
egen
egen
egen
egen
egen
egen
egen
egen
egen
egen
egen
egen
egen
egen
egen
egen
egen
egen

Mil=max(Millead), 
Mi2=max(Mi21ead) , 
Mi3=max(Mi31ead) , 
Mi4=max(Mi41ead) , 
Mi5=max(Mi51ead) , 
Mi6=max(Mi61ead) , 
Mi7=max(Mi71ead) , 
Mi8=max(Mi81ead) , 
Mi9=max(Mi91ead) , 
MilO=max(MilOlead) 
Mill=max(Milllead) 
Mil2=max(Mil21ead) 
Mil3=max(Mil31ead) 
Mil4=max(Mil41ead) 
Mil5=max(Mil51ead) 
Mil6=max(Mil61ead) 
Mil7=max(Mil71ead) 
Mil8=max(Mil81ead) 
Mil9=max(Mil91ead)

by(ukno) 
by(ukno) 
by(ukno) 
by(ukno) 
by(ukno) 
by(ukno) 
by(ukno) 
by(ukno) 
by(ukno)
, by(ukno) 
, by(ukno) 
, by(ukno) 
, by(ukno) 
, by(ukno) 
, by(ukno) 
, by(ukno) 
, by(ukno) 
, by(ukno) 
, by(ukno)

gen mul=(di*Mil)/censll38 
replace mul=0 if mul==.

gen mu2=(di*Mi2)/censll38 
replace mu2=0 if mu2==.

gen mu3=(di*Mi3)/censll38 
replace mu3=0 if mu3==.

gen mu4=(di*Mi4)/censll38 
replace mu4=0 if mu4==.

gen mu5=(di*Mi5)/censll38 
replace mu5=0 if mu5==.

gen mu6=(di*Mi6)/censl138 
replace mu6=0 if mu6==.

gen mu7=(di*Mi7)/censll38 
replace mu7=0 if mu7==.

gen mu8=(di*Mi8)/censll38 
replace mu8=0 if mu8==.

gen mu9=(di*Mi9)/censll38
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gen mulO=(di*MilO)/censll38 
replace mul0=0 if mulO==.

gen mull=(di*Mill)/censll38 
replace mull=0 if mull==.

gen mul2=(di*Mil2)/censll38 
replace mul2=0 if mul2==.

gen mul3=(di*Mil3)/censll38 
replace mul3=0 if mul3==.

gen mul4=(di*Mil4)/censll38 
replace mul4=0 if mul4==.

gen mul5=(di*Mil5)/censll38 
replace mul5=0 if mul5==.

gen mul6=(di*Mi16)/cens 1138 
replace mul6=0 if mul6==.

gen mul7=(di*Mil7)/censll38 
replace mul7=0 if mul7==.

gen mul8=(di*Mil8)/censll38 
replace mul8=0 if mul8==.

gen mul9=(di*Mil9)/censll38 
replace mul9=0 if mul9==.

replace mu9=0 if mu9==.

*

gsort tj -Xi
by tj : gen smulx=sum(mul) 
egen smul=max(smulx), by(tj Xi) 
drop smulx

gsort tj -Xi
by tj: gen smu2x=sum(mu2) 
egen smu2=max(smu2x), by(tj Xi) 
drop smu2x

gsort tj -Xi
by tj: gen smu3x=sum(mu3) 
egen smu3=max(smu3x), by(tj Xi) 
drop smu3x

gsort tj -Xi
by tj: gen smu4x=sum(mu4) 
egen smu4=max(smu4x), by(tj Xi) 
drop smu4x

gsort tj -Xi
by tj: gen smu5x=sum(mu5) 
egen smu5=max(smu5x), by(tj Xi) 
drop smu5x

gsort tj -Xi
by tj: gen smu6x=sum(mu6) 
egen smu6=max(smu6x), by(tj Xi) 
drop smu6x
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gsort tj -Xi
by tj: gen smu7x=sum(mu7) 
egen smu7=max(smu7x), by(tj Xi) 
drop smu7x

gsort tj -Xi
by tj: gen smu8x=sum(mu8) 
egen smu8=max(smu8x), by(tj Xi) 
drop smu8x

gsort tj -Xi
by tj: gen smu9x=sum(mu9) 
egen smu9=max(smu9x), by(tj Xi) 
drop smu9x

gsort tj -Xi
by tj: gen smulOx=sum(mulO) 
egen smulO=max(smulOx), by(tj Xi) 
drop smulOx

gsort tj -Xi
by tj: gen smullx=sum(mull) 
egen smull=max(smullx), by(tj Xi) 
drop smullx

gsort tj -Xi
by tj: gen smul2x=sum(mul2) 
egen smul2=max(smul2x), by(tj Xi) 
drop smul2x

gsort tj -Xi
by tj: gen smul3x=sum(mul3) 
egen smul3=max(smul3x), by(tj Xi) 
drop smul3x

gsort tj -Xi
by tj: gen smul4x=sum(mul4) 
egen smul4=max(smul4x), by(tj Xi) 
drop smul4x

gsort tj -Xi
by tj: gen smul5x=sum(mul5) 
egen smul5=max(smul5x), by(tj Xi) 
drop smul5x

gsort tj -Xi
by tj: gen smul6x=sum(mul6) 
egen smul6=max(smulöx), by(tj Xi) 
drop smulöx

gsort tj -Xi
by tj: gen smul7x=sum(mul7) 
egen smul7=max(smul7x), by(tj Xi) 
drop smul7x

gsort tj -Xi
by tj: gen smul8x=sum(mul8) 
egen smul8=max(smul8x), by(tj Xi) 
drop smul8x

gsort tj -Xi
by tj: gen smul9x=sum(mul9) 
egen smul9=max(smul9x), by(tj Xi)



drop smul9x

gen gmul=(1/1138)*(l/survll38)* smul 
replace gmul=0 if gmul==.

gen gmu2=(1/1138)*(l/survll38)* smu2 
replace gmu2=0 if gmu2==.

gen gmu3=(1/1138)*(l/survll38)* smu3 
replace gmu3=0 if gmu3==.

gen gmu4=(1/1138)*(l/survll38)* smu4 
replace gmu4=0 if gmu4==.

gen gmu5=(1/1138)*(l/survll38)* smu5 
replace gmu5=0 if gmu5==.

gen gmu6=(1/1138)*(l/survll38)* smu6 
replace gmu6=0 if gmu6==.

gen gmu7=(1/1138)*(l/survll38)* smu7 
replace gmu7=0 if gmu7==.

gen gmu8=(1/1138)*(l/survll38)* smu8 
replace gmu8=0 if gmu8==.

gen gmu9=(1/1138)*(l/survll38)* smu9 
replace gmu9=0 if gmu9==.

gen gmulO=(1/1138)*(l/survll38)* smulO 
replace gmul0=0 if gmulO==.

gen gmul1=(1/1138)*(1/survl138)* smull 
replace gmull=0 if gmull==.

gen gmul2=(1/1138)*(l/survll38)* smul2 
replace gmul2=0 if gmul2==.

gen gmul3=(1/1138)*(l/survll38)* smul3 
replace gmul3=0 if gmul3==.

gen gmul4=(1/1138)*(1/survl138)* smul4 
replace gmul4=0 if gmul4==.

gen gmul5=(1/1138)*(l/survll38)* smul5 
replace gmul5=0 if gmul5==.

gen gmul6=(1/1138)*(l/survll38)* smul6 
replace gmul6=0 if gmul6==.

gen gmul7=(1/1138)*(l/survll38)* smul7 
replace gmul7=0 if gmul7==.

gen gmul8=(1/1138)*(l/survll38)* smul8 
replace gmul8=0 if gmul8==.

gen gmul9=(1/1138)*(l/survll38)* smul9 
replace gmul9=0 if gmul9==.

gen mlgml= Mil-gmul 
gen m2gm2= Mi2-gmu2 
gen m3gm3= Mi3-gmu3



gen m4gm4= Mi4 
gen m5gm5= Mi5- 
gen m6gm6= Mi6 
gen m7gm7= Mi7- 
gen m8gm8= Mi8- 
gen m9gm9= Mi9- 
gen mlOgmlO= Mi 
gen mllgmll= Mi 
gen ml2gml2= Mi 
gen ml3gml3= Mi 
gen ml4gml4= Mi 
gen ml5gml5= Mi 
gen ml6gml6= Mi 
gen ml7gml7= Mi 
gen ml8gml8= Mi 
gen m!9gml9= Mi

gmu4
gmu5
gmu6
gmu7
gmu8
gmu9
10- gmul0
11- gmull
12- gmul2
13- gmul3
14- gmul4
15- gmul5
16- gmul6
17- gmul7
18- gmu18
19- gmul9

*

gen covijl=Mil_gl*mlgml 
gen covij2=Mil_gl*m2gm2 
gen covij3=Mil_gl*m3gm3 
gen covij4=Mil_gl*m4gm4 
gen covij5=Mil_gl*m5gm5 
gen covij6=Mil_gl*m6gm6 
gen covij7=Mil_gl*m7gm7 
gen covij8=Mil_gl*m8gm8 
gen covij9=Mil_gl*m9gm9 
gen covij 10=Mil_gl*ml0ginl0 
gen covljll=Mil_gl*mllgmll 
gen covij12=Mil_gl*ml2gml2 
gen covij13=Mil_gl*ml3gml3 
gen covij14=Mil_gl*ml4gml4 
gen covij15=Mil_gl*ml5gml5 
gen covij16=Mil_gl*ml6gml6 
gen covij17=Mil_gl*ml7gml7 
gen covij18=Mil_gl*ml8gml8 
gen covij19=Mil_gl*ml9gml9

gen covaj1=(dijmaxl/Kjmaxll)*covlj1 
replace covaj1=0 ìf covaj1==.

gen covaj 2=(dijmax2/Kjmaxl2)*covlj 2 
replace covaj2=0 if covaj2==.

gen covaj 3=(dijmax3/Kjmaxl3)*covlj 3 
replace covaj3=0 if covaj3==.

gen covaj 4=(dijmax4/Kjmaxl4)*covlj 4 
replace covaj4=0 if covaj4==.

gen covaj 5=(dijmax5/Kjmaxl5)*covlj5 
replace covaj5=0 if covaj5==.

gen covaj 6=(dijmax6/Kjmaxl6)*covlj 6 
replace covaj6=0 if covaj6==.

gen covaj 7=(dijmax7/Kjmaxl7)*covlj 7 
replace covaj7=0 if covaj7==.

gen covaj 8=(dijmax8/Kjmaxl8)*covlj 8
replace covaj8=0 if covaj8==.
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gen covaj 9=(dijmax9/Kjmaxl9)*covlj 9
replace covaj9=0 if covaj9==.

gen covaj10=(dijmaxlO/KjmaxllO)*covlj 
replace covaj10=0 if covaj10==.

gen covaj11=(dijmaxll/Kjmaxlll)*covlj 
replace covaj11=0 if covaj11==.

gen covaj12=(dijmaxl2/Kjmaxll2)*covlj 
replace covaj12=0 if covaj12==.

gen covaj13=(dijmaxl3/Kjmaxll3)*covlj 
replace covajl3=0 if covajl3==.

gen covaj14=(dijmaxl4/Kjmaxll4)*covlj 
replace covaj14=0 if covaj14==.

gen covaj15=(dijmaxl5/Kjmaxll5)*covlj 
replace covajl5=0 if covajl5==.

gen covaj16=(dijmaxl6/Kjmaxll6)*covlj 
replace covajl6=0 if covajl6==.

gen covaj17=(dijmaxl7/Kjmaxll7)*covlj 
replace covajl7=0 if covajl7==.

gen covaj18=(dijmaxl8/Kjmaxll8)*covlj 
replace covaj18=0 if covaj18==.

gen covaj19=(dijmaxl9/Kjmaxll9)*covlj 
replace covaj19=0 if covaj19==.

**ties**

gen int const=l 
sort tj Xi
by tj Xi: gen ties=sum(const) 
egen maxties=max(ties) , by(tj Xi)

gsort tj -Xi ties 
by tj: gen scvajlx=sum(covaj1) 
replace scvajlx=0 if Xij<Xi 
gen scvajl=scvajlx if ties==maxties 
egen scvajlxx=min(scvaj1) if Xij==Xi, 
replace scvajl=scvajlxx if scvajl==. 
replace scvajl=0 if Xij<Xi 
*drop scvajlx scvajlxx*

gsort tj -Xi ties 
by tj: gen scvaj2x=sum(covaj2) 
replace scvaj2x=0 if Xij<Xi 
gen scvaj2=scvaj2x if ties==maxties 
egen scvaj2xx=min(scvaj2) if Xij==Xi, 
replace scvaj2=scvaj2xx if scvaj2==. 
replace scvaj2=0 if Xij<Xi 
*drop scvaj2x scvaj2xx*

gsort tj -Xi ties
by tj: gen scvaj3x=sum(covaj3)
replace scvaj3x=0 if Xij<Xi

(tj Xi maxties)

(tj Xi maxties)
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gen scvaj3=scvaj3x if ties==maxties
egen scvaj3xx=min(scvaj3) if Xij==Xi, by(tj Xi maxties) 
replace scvaj3=scvaj3xx if scvaj3==. 
replace scvaj3=0 if Xij<Xi 
*drop scvaj3x scvaj3xx*

gsort tj -Xi ties
by tj: gen scvaj4x=sum(covaj4)
replace scvaj4x=0 if Xij<Xi
gen scvaj4=scvaj4x if ties==maxties
egen scvaj4xx=min(scvaj4) if Xij==Xi, by(tj Xi maxties) 
replace scvaj4=scvaj4xx if scvaj4==. 
replace scvaj4=0 if Xij<Xi 
*drop scvaj4x scvaj4xx*

gsort tj -Xi ties
by tj: gen scvaj5x=sum(covaj5)
replace scvaj5x=0 if Xij<Xi
gen scvaj5=scvaj5x if ties==maxties
egen scvaj5xx=min(scvaj5) if Xij==Xi, by(tj Xi maxties) 
replace scvaj5=scvaj5xx if scvaj5==. 
replace scvaj5=0 if Xij<Xi 
*drop scvaj5x scvaj5xx*

gsort tj -Xi ties
by tj: gen scvaj6x=sum(covaj6)
replace scvaj6x=0 if Xij<Xi
gen scvaj6=scvaj6x if ties==maxties
egen scvaj6xx=min(scvaj6) if Xij==Xi, by(tj Xi maxties) 
replace scvaj6=scvaj6xx if scvaj6==. 
replace scvaj6=0 if Xij<Xi 
*drop scvaj6x scvaj6xx*

gsort tj -Xi ties
by tj: gen scvaj7x=sum(covaj7)
replace scvaj7x=0 if Xij<Xi
gen scvaj7=scvaj7x if ties==maxties
egen scvaj7xx=min(scvaj7) if Xij==Xi, by(tj Xi maxties) 
replace scvaj7=scvaj7xx if scvaj7==. 
replace scvaj7=0 if Xij<Xi 
*drop scvaj7x scvaj7xx*

gsort tj -Xi ties
by tj: gen scvaj8x=sum(covaj8)
replace scvaj8x=0 if Xij<Xi
gen scvaj8=scvaj8x if ties==maxties
egen scvaj8xx=min(scvaj8) if Xij==Xi, by(tj Xi maxties) 
replace scvaj8=scvaj8xx if scvaj8==. 
replace scvaj8=0 if Xij<Xi 
*drop scvaj8x scvaj8xx*

gsort tj -Xi ties
by tj: gen scvaj9x=sum(covaj9)
replace scvaj9x=0 if Xij<Xi
gen scvaj9=scvaj9x if ties==maxties
egen scvaj9xx=min(scvaj9) if Xij==Xi, by(tj Xi maxties) 
replace scvaj9=scvaj9xx if scvaj9==. 
replace scvaj9=0 if Xij<Xi 
*drop scvaj9x scvaj9xx*

gsort tj -Xi ties
by tj: gen scvaj10x=sum(covaj10)
replace scvaj10x=0 if Xij<Xi
gen scvaj10=scvajlOx if ties==maxties



egen scvaj10xx=min(scvaj10) if Xij==Xi, by(tj Xi maxties) 
replace scvaj10=scvajlOxx if scvaj10==. 
replace scvaj10=0 if Xij<Xi 
*drop scvajlOx scvajlOxx*

gsort tj -Xi fies
by tj: gen scvaj1lx=sum(covaj11)
replace scvajllx=0 if Xij<Xi
gen scvajll=scvajllx if ties==maxties
egen scvajllxx=min(scvaj11) if Xij==Xi, by(tj Xi maxties) 
replace scvaj1l=scvaj1lxx if scvajll==. 
replace scvaj11=0 if Xij<Xi 
*drop scvajllx scvajllxx*

gsort tj -Xi ties
by tj: gen scvaj12x=sum(covaj12)
replace scvaj12x=0 if Xij<Xi
gen scvaj12=scvaj12x if ties==maxties
egen scvaj12xx=min(scvaj12) if Xij==Xi, by(tj Xi maxties) 
replace scvaj12=scvaj12xx if scvaj12==. 
replace scvaj12=0 if Xij<Xi 
*drop scvaj12x scvaj12xx*

gsort tj -Xi ties
by tj: gen scvaj13x=sum(covaj13)
replace scvaj13x=0 if Xij<Xi
gen scvaj13=scvaj13x if ties==maxties
egen scvaj13xx=min(scvaj1) if Xij==Xi, by(tj Xi maxties) 
replace scvaj13=scvaj13xx if scvajl3==. 
replace scvaj13=0 if Xij<Xi 
*drop scvajl3x scvajl3xx*

gsort tj -Xi ties
by tj: gen scvaj14x=sum(covaj14)
replace scvaj14x=0 if Xij<Xi
gen scvaj14=scvaj14x if ties==maxties
egen scvaj14xx=min(scvaj14) if Xij==Xi, by(tj Xi maxties) 
replace scvaj14=scvaj14xx if scvajl4==. 
replace scvaj14=0 if Xij<Xi 
*drop scvaj14x scvaj14xx*

gsort tj -Xi ties
by tj: gen scvaj15x=sum(covaj15)
replace scvajl5x=0 if Xij<Xi
gen scvaj15=scvaj15x if ties==maxties
egen scvaj15xx=min(scvaj15) if Xij==Xi, by(tj Xi maxties) 
replace scvaj15=scvaj15xx if scvaj15==. 
replace scvaj15=0 if Xij<Xi 
*drop scvajl5x scvajl5xx*

gsort tj -Xi ties
by tj: gen scvaj16x=sum(covaj16)
replace scvaj16x=0 if Xij<Xi
gen scvaj16=scvaj16x if ties==maxties
egen scvaj16xx=min(scvaj16) if Xij==Xi, by(tj Xi maxties) 
replace scvaj16=scvaj16xx if scvajl6==. 
replace scvaj16=0 if Xij<Xi 
*drop scvaj16x scvaj16xx*

gsort tj -Xi ties
by tj: gen scvaj17x=sum(covaj17)
replace scvaj17x=0 if Xij<Xi
gen scvaj17=scvaj17x if ties==maxties
egen scvaj17xx=min(scvaj17) if Xij==Xi, by(tj Xi maxties)
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replace scvaj17=scvaj17xx if scvajl7==. 
replace scvajl7=0 if Xij<Xi 
*drop scvajl7x scvaj17xx*

gsort tj -Xi ties
by tj: gen scvaj18x=sum(covaj18)
replace scvajl8x=0 if Xij<Xi
gen scvaj18=scvaj18x if ties==maxties
egen scvaj18xx=min(scvaj18) if Xij==Xi, by(tj Xi maxties) 
replace scvaj18=scvaj18xx if scvajl8==. 
replace scvajl8=0 if Xij<Xi 
*drop scvajl8x scvaj18xx*

gsort tj -Xi ties
by tj: gen scvaj19x=sum(covaj19)
replace scvaj19x=0 if Xij<Xi
gen scvaj19=scvaj19x if ties==maxties
egen scvaj19xx=min(scvaj19) if Xij==Xi, by(tj Xi maxties) 
replace scvaj19=scvaj19xx if scvaj19==. 
replace scvajl9=0 if Xij<Xi 
*drop scvaj19x scvaj19xx*

gen covbl=(1/1138)*(1/Slu)*scvaj1 
replace covbl=0 if covbl==.

gen covb2=(1/1138)*(1/Slu)*scvaj2 
replace covb2=0 if covb2==.

gen covb3=(1/1138)*(1/Slu)*scvaj3 
replace covb3=0 if covb3==.

gen covb4=(1/1138)*(1/Slu)*scvaj 4 
replace covb4=0 if covb4==.

gen covb5=(1/1138)*(1/Slu)*scvaj5 
replace covb5=0 if covb5==.

gen covb6=(1/1138)*(1/Slu)*scvaj6 
replace covb6=0 if covb6==.

gen covb7=(1/1138)*(1/Slu)*scvaj7 
replace covb7=0 if covb7==.

gen covb8=(1/1138)*(1/Slu)*scvaj 8 
replace covb8=0 if covb8==.

gen covb9=(1/1138)*(1/Slu)*scvaj9 
replace covb9=0 if covb9==.

gen covblO=(1/1138)*(1/Slu)*scvaj10 
replace covbl0=0 if covbl0==.

gen covbl1=(1/1138)* (1/Slu)*scvaj11 
replace covbll=0 if covbll==.

gen covbl2=(1/1138)*(1/Slu)*scvaj12 
replace covbl2=0 if covbl2==.

gen covbl3=(1/1138)*(1/Slu)*scvaj13 
replace covbl3=0 if covbl3==.

gen covbl4=(1/1138)*(1/Slu)*scvaj14
replace covbl4=0 if covbl4==.
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gen covbl6=(1/1138)*(1/Slu)*scvaj16 
replace covbl6=0 if covbl6==.

gen covbl7=(1/1138)*(1/Slu)*scvaj17 
replace covbl7=0 if covbl7==.

gen covbl8=(1/1138)*(1/Slu)*scvaj18 
replace covb!8=0 if covbl8==.

gen covbl9=(1/1138)*(1/Slu)*scvaj19 
replace covb!9=0 if covbl9==.

gen covbl5=(1/1138)*(1/Slu)*scvaj15
replace covbl5=0 if covbl5==.

egen
egen
egen
egen
egen
egen
egen
egen
egen
egen
egen
egen
egen
egen
egen
egen
egen
egen
egen

-k

covcl=sum(covbl) , 
covc2=sum(covb2) , 
covc3=sum(covb3) , 
covc4=sum(covb4) , 
covc5=sum(covb5) , 
covc6=sum(covb6), 
covc7=sum(covb?), 
covc8=sum(covb8), 
covc9=sum(covb9), 
covclO=sum(covbl0) 
covcll=sum(covbll) 
covcl2=sum(covbl2) 
covcl3=sum(covbl3) 
covcl4=sum(covbl4) 
covcl5=sum(covbl5) 
covcl6=sum(covbl6) 
covcl7=sum(covbl7) 
covcl8=sum(covbl8) 
covcl9=sum(covbl9)

by(ukno) 
by(ukno) 
by(ukno) 
by(ukno) 
by(ukno) 
by(ukno) 
by(ukno) 
by(ukno) 
by(ukno)
, by(ukno) 
, by(ukno) 
, by(ukno) 
, by(ukno) 
, by(ukno) 
, by(ukno) 
, by(ukno) 
, by(ukno) 
, by(ukno) 
, by(ukno)

gen covdl=(censorl/(censll38A2) ) *covcl 
replace covdl=0 if covdl==.

gen covd2=(censorl/(censll38A2))*covc2 
replace covd2=0 if covd2==.

gen covd3=(censorl/(censll38A2))*covc3 
replace covd3=0 if covd3==.

gen covd4=(censorl/(cens 1138A2))*covc4 
replace covd4=0 if covd4==.

gen covd5=(censorl/(censll38A2))*covc5 
replace covd5=0 if covd5==.

gen covd6=(censorl/(cens1138A2))*covc6 
replace covd6=0 if covd6==.

gen covd7=(censorl/(censll38A2))*covc7 
replace covd7=0 if covd7==.

gen covd8=(censorl/(censll38A2))*covc8
replace covd8=0 if covd8==.



gen covd9=(censorl/(censll38A2)) 
replace covd9=0 if covd9==.

*covc9

gen covdlO=(censorl/(censll38A2) 
replace covdl0=0 if covdlO==.

)*covclO

gen covdll=(censorl/(censll38A2) 
replace covdll=0 if covdll==.

)*covcll

gen covdl2=(censorl/(censll38A2) 
replace covdl2=0 if covdl2==.

)*covcl2

gen covdl3=(censorl/(censll38A2) 
replace covdl3=0 if covdl3==.

)*covcl3

gen covdl4=(censorl/(censll38A2) 
replace covdl4=0 if covdl4==.

)*covcl4

gen covdl5=(censorl/(censll38A2) 
replace covdl5=0 if covdl5==.

)*covcl5

gen covdl6=(censorl/(censll38A2 ) 
replace covdl6=0 if covdl6==.

)*covcl6

gen covdl7=(censorl/(cens 1138A2 ) 
replace covdl7=0 if covdl7==.

)*covcl7

gen covdl8=(censorl/(censll38A2) 
replace covdl8=0 if covdl8==.

)*covcl8

gen covdl9=(censorl/(censll38A2) 
replace covdl9=0 if covdl9==.

)*covcl9

*
egen covel=sumi(covdl), by (tj)
egen cove2=sumi(covd2), by (tj)
egen cove3=sumi(covd3), by (tj)
egen cove4=sum (covd4), by (tj)
egen cove5=sumi(covd5), by (tj)
egen cove6=sumi(covd6), by (tj)
egen cove7=sum (covd7), by (t j )
egen cove8=sumi(covd8), by (tj)
egen cove9=sumi O O <3 a by (tj)
egen
egen
egen
egen
egen
egen
egen
egen
egen

covelO
covell=
covel2=
covel3=

sum(covdlO) 
sum(covdl1) 
sum(covdl2) 
■sum ( covdl3 )

covel4=sum(covdl4) 
covel5=sum(covdl5) 
covel6=sum(covdl6) 
covel7=sum(covdl7) 
cove!8=sum(covdl8)

egeni covel9=sum(covdl9),

gen covj1=(1/1138) *covel
gen covj 2=(1/1138) *cove2
gen covj 3=(1/1138) *cove3
gen covj 4=(1/1138) *cove4
gen covj5=(1/1138) *cove5
gen covj 6=(1/1138) *cove6
gen covj 7=(1/1138) *covel
gen covj8=(1/1138) *cove8
gen covj 9=(1/1138) *cove9

by (tj
by ( t j 
by (tj 
by (t j 
by (t j 
by (tj 
by (t j 
by (tj 
by (t j 
by (t j

)
)
)
)
)
)
)
)
)
)

233





Appendix A.4.7. Generation of the artificial dataset (as described in section 4.4.4.3)

For 25% censoring (Similarly for all other levels of censoring)

**Generating the artificial dataset for 25% censoring**

drop _all

set seed 1001

set obs 1138

gen const=l
gen ukno=sum(const)
drop const

sort ukno

gen timallde=10*uniform()+0

gen Ci=20*uniform()+0

gen censorig=l if timallde<=Ci 
replace censorig=0 if censorig==.

gen Mi0=10000*uniform()+5000

gen bi=1600*uniform()+1000

gen til=400*uniform() 
gen ti2=400*uniform() 
gen ti3=400*uniform() 
gen ti4=400*uniform() 
gen ti5=400*uniform() 
gen ti6=400*uniform() 
gen ti7=400*uniform() 
gen ti8=400*uniform() 
gen ti9=400*uniform() 
gen til0=400*uniform()

gen deathci=20000*uniform()+10000

sort ukno

gen censorl=l if censorig==0 
replace censorl=0 if censorig==l

stset timallde, failure(censorig==l)

sts gen survll38=s

stset timallde, failure(censor1==1)

sts gen censll38=s

drop _t0 _t _d _st

gen int const=l
gsort - timallde
gen Yux=sum(const)
egen Yu=max(Yux), by(timallde)
drop const Yux

sort ukno
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save "C:\WINDOWS\Desktop\artificialdata\nll38_cens6\nll38cens6.dta", replace 

use "C: WINDOWS \ Des ktop\art ificialdata\nll38_censl\nll38_yrsl0.dta", clear 

keep ukno year 

sort ukno year

merge ukno using "C:\WINDOWS\Desktop\artificialdata\nll38_cens6\nll38cens6.dta" 

drop _merge

gen cyr=bi+til if year==l 
replace cyr=bi+ti2 if year==2 
replace cyr=bi+ti3 if year==3 
replace cyr=bi+ti4 if year==4 
replace cyr=bi+ti5 if year==5 
replace cyr=bi+ti6 if year==6 
replace cyr=bi+ti7 if year==7 
replace cyr=bi+ti8 if year==8 
replace cyr=bi+ti9 if year==9 
replace cyr=bi+tilO if year==10

gen x=l if timallde>=year-l

gen truecyr=cyr if x==l 
replace truecyr=0 if x==.

egen struecyr=sum(truecyr), by(ukno)

gen Mitrue=MiO+ struecyr+deathci

gen Mi=MiO+ struecyr+censorig*deathci

label var Mitrue "NO censoring"

egen maxyear=max(year) if x~=., by(ukno)

gen costyr=truecyr+MiO if year==l
replace costyr=truecyr+censorig*deathci if year==maxyear & costyr==. 
replace costyr=truecyr+censorig*deathci+MiO if maxyear==l 
replace costyr=truecyr if costyr==. & x~=.

sort ukno year

collapse Mitrue Mi, by(ukno)

label var Mitrue "NO censoring"

sort ukno

merge ukno using "C:\WINDOWS\Desktop\artificialdata\nll38_cens6\nll38cens6.dta" 

drop _merge

save "C: WINDOWS\Desktop\artificialdata\nll38_cens6\nll38cens6.dta", replace

*
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Appendix A.4.8. Programs for estimating the standard errors of L inl, Lin2 and Bang and 
Tsiatis simple weighted and partitioned estimators using the bootstrap

**For Lin 1: Cost h is to r ie s  recorded**

use "C:\WIND0WS\Desktop\linlconvyrsl9test.dta", clear 
rename ukno uknoO
do "C:\WINDOWS\Desktop\bsLinlconv.txt" 

where "C:\WINDOWS\Desktop\bsLinlconv.txt" is:

**Linl: Cost histories recorded**

* CONVENTIONAL** Mean **

program define linlsim

i f  » ' i ' " = = " 7 "  {

global S_1 "mean" 
exit

}

egen Xi=min(timallde), by(ukno) 
egen di=min(censorig), by(ukno)

stset Xi if year==l, failure(di==l)

sts gen survll38=s

gen int inttime=int(Xi)+1 if year==l 
egen mintime=min(Xi), by(inttime) 
gen st=survll38 if mintime==Xi 
egen Skx=min(st), by(inttime)

gen ak=year-l 
gen akl=year

gen
gen
gen
gen
gen
gen
gen
gen
gen
gen
gen
gen
gen
gen
gen
gen
gen
gen
gen

slx=Skx if 
s2x=Skx if 
s3x=Skx if 
s4x=Skx if 
s5x=Skx if 
s6x=Skx if 
s7x=Skx if 
s8x=Skx if 
s9x=Skx if 
slOx=Skx if 
sllx=Skx if 
sl2x=Skx if 
sl3x=Skx if 
sl4x=Skx if 
sl5x=Skx if 
sl6x=Skx if 
sl7x=Skx if 
sl8x=Skx if 
sl9x=Skx if

inttime==l 
inttime==2 
inttime==3 
inttime==4 
inttime==5 
inttime==6 
inttime==7 
inttime==8 
inttime==9 
inttime==10 
inttime==l1 
inttime==12 
inttime==13 
inttime==14 
inttime==15 
inttime==l6 
inttime==17 
inttime==18 
inttime==19

egen sl=min(slx) 
egen s2=min(s2x) 
egen s3=min(s3x) 
egen s4=min(s4x) 
egen s5=min(s5x)
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egen s6=min(s6x) 
egen s7=min(s7x) 
egen s8=min(s8x) 
egen s9=min(s9x) 
egen slO=min(slOx) 
egen sll=min(sllx) 
egen sl2=min(sl2x) 
egen sl3=min(sl3x) 
egen sl4=min(sl4x) 
egen sl5=min(sl5x) 
egen sl6=min(sl6x) 
egen sl7=min(sl7x) 
egen sl8=min(sl8x) 
egen s!9=min(sl9x)

gen Sk=s
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace

1 if ak==0 
Sk=s2 if ak==l 
Sk=s3 if ak==2 
Sk=s4 if ak==3 
Sk=s5 if ak==4 
Sk=s6 if ak==5 
Sk=s7 if ak==6 
Sk=s8 if ak==7 
Sk=s9 if ak==8 
Sk=slO if ak==9 
Sk=s11 if ak==10 
Sk=sl2 if ak==ll 
Sk=sl3 if ak==12 
Sk=sl4 if ak==13 
Sk=s15 if ak==14 
Sk=sl6 if ak==15 
Sk=sl7 if ak==l6 
Sk=sl8 if ak==17 
Sk=s19 if ak==18

gen Yki=l if Xi>=ak 
replace Yki=0 if Yki==.

gen Cki=costyr 
replace Cki=0 if Cki==.

egen sYki=sum(Yki), by(ak)

gen YkiCki= Yki* Cki
egen sYkiCki=sum( YkiCki), by(ak)

gen Ek= sYkiCki/ sYki

gen SkEk= Sk* Ek
egen sSkEk=sum( SkEk), by(ukno)

rename sSkEk meanlinl

sum meanlinl

post ' 1 ' (r(mean)) 

end

*
set seed 1001
bstrap linlsim, reps(1000) dots cluster(uknoO) idcluster(ukno) 
saving(C: Windows\desktop\bslinlconvl000.dta)
-k  ~k
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For Lin 2: Cost histories not recorded

use "C:\WINDOWS\Desktop\lin2convyrsl9.dta", clear 
rename ukno uknoO
do "C:\WIND0WS\Desktop\bsLin2conv.txt" 

where "C:\WIND0WS\Desktop\bsLin2conv.txt" is:

** Lin 2: Cost histories NOT recorded **

** CONVENTIONAL ** Mean** 

program define lin2sim

i f  " ' \ ' "=="7" {
global S_1 "mean" 
exit

}

egen Xi=min(timallde), by(ukno) 
egen di=min(censorig), by(ukno)

stset Xi if year==l, failure(di==l)

sts gen survll38=s

gen int inttime=int(Xi)+1 if year==l 
egen mintime=min(Xi), by(inttime) 
gen st=survll38 if mintime==Xi 
egen Skx=min(st), by(inttime)

gen ak=year-l 
gen akl=year

gen slx=Skx 
gen s2x=Skx 
gen s3x=Skx 
gen s4x=Skx 
gen s5x=Skx 
gen s6x=Skx 
gen s7x=Skx 
gen s8x=Skx 
gen s9x=Skx 
gen slOx=Skx 
gen sllx=Skx 
gen sl2x=Skx 
gen sl3x=Skx 
gen sl4x=Skx 
gen sl5x=Skx 
gen sl6x=Skx 
gen sl7x=Skx 
gen sl8x=Skx 
gen sl9x=Skx

if inttime==l 
if inttime==2 
if inttime==3 
if inttime==4 
if inttime==5 
if inttime==6 
if inttime==7 
if inttime==8 
if inttime==9 
if inttime==10 
if inttime==ll 
if inttime==12 
if inttime==13 
if inttime==14 
if inttime==15 
if inttime==16 
if inttime==17 
if inttime==18 
if inttime==19

egen sl=min(slx) 
egen s2=min(s2x) 
egen s3=min(s3x) 
egen s4=min(s4x) 
egen s5=min(s5x) 
egen s6=min(s6x) 
egen s7=min(s7x) 
egen s8=min(s8x) 
egen s9=min(s9x) 
egen slO=min(slOx)
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use "D:\Chapterl_COST\Original_ukpds_data\KM_convll38.dta", clear 
do "D:\Chapterl_COST\tsiatis_new\Partitioned_simul\sesimplesim_conv.txt"

where sesimplesim_conv.txt is:

** Simple mean: conventional **

program define sesimpsim

if "'f'"=="?" (

global S_1 "meansimp" 
exit

}

stset timallde, failure(censorig==l)

sts gen survll38=s

gen censorl=l if censorig==0 
replace censorl=0 if censorl==.

label var censorl "1:censored; 0:dead"

stset timallde, failure(censorl==l)

sts gen censll38=s

gen diMi_KTi= (censorig* Mi)/ censll38 
replace diMi_KTi=0 if diMi_KTi==.

egen sumalli=sum(diMi_KTi)

gen meansimp=(1/1138)* sumalli

sum meansimp, meanonly

post '1' (r(mean))

end

•k

set seed 1001

bstrap sesimpsim, reps(lOOO) dots saving(C:\windows\desktop\conv_sesimplOOO.dta)

•k

For Bang and Tsiatis simple weighted estimator
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For Bang and Tsiatis partitioned estimator

use "C:\... \conv_partyrs.dta", clear
rename ukno uknoO
do "C:\... \separtsim_conv.txt"

where separtsim_conv.txt is:

** Partitioned mean:conventional **

program define separtsim

i f  " ' i < " = = " 9 "  {

global S_1 "meanpart" 
exit

gen tj_l=year-l 
gen tj=year

gen Mij=costyr 
replace Mij=0 if Mij==.

egen Xi=min(timallde), by(ukno) 
egen di=min(censorig) , by(ukno)

gen minTitj=min(Xi, tj) 
gen Xij=min(minTitj , Xi)

gen dij=l if (minTitj==tj I (minTitj==Xi & di==l)) 
replace dij=0 if dij==.

stset Xij, failure(dij==0)

sts gen KjTij=s, by(tj)

gen intern=(dij*Mij)/KjTij 
replace intern=0 if intern==.

egen sumintjs=sum(intern), by(ukno)

collapse sumintjs, by(ukno)

egen sumintjn=sum(sumintjs) 
gen meanpart=(1/1138)*sumintjn

sum meanpart, meanonly

post '1' (r(mean))

end

*

set seed 1001
bstrap separtsim, reps (1000) dots cluster(uknoO) idcluster(ukno) 
saving(C:\.... \conv_separt1000.dta)

* *
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Appendix A.5.1. Assessing the proportionality assumption in the stratified Cox model

The test for assessing the assumption of proportional hazards proposed by Grambsch and Themeau 
(1994) results in a x 1 distribution for the statistic and whenever Prob<0.05 the null hypothesis of 
proportional hazards is rejected.

CONVENTIONAL
year==l

Test of proportional hazards assumption

1 rho chi2 df Prob>chi2

age I -0.00730 0.58 1 0.4455
fpg 1 -0.04028 18 . 69 1 0.0000
bmi | 0.03453 13.77 1 0.0002
race | -0.00716 0.54 1 0.4604
sex | 0.01358 2.02 1 0.1556

global test | 0.41 5 0.9949

year==2
Test of proportional hazards assumption

1 rho chi2 df Prob>chi2

age I -0.01343 1.98 1 0.1595
fpg l -0.01023 1.18 1 0.2765
bmi | 0.02807 9.16 1 0.0025
race | -0.03575 13.71 1 0.0002
sex | 0.00576 0.36 1 0.5464

global test | 0.32 5 0.9972

year==3
Test of proportional hazards assumption

1 rho chi2 df Prob>chi2

age I -0.01347 1.99 1 0.1584
fpg 1 0.03543 14.30 1 0.0002
bmi | 0.00308 0.11 1 0.7398
race | 0.00315 0.11 1 0.7422
sex | -0.00634 0.44 1 0.5074

global test | 0.18 5 0.9993

year==4
Test of proportional hazards assumption

1 rho chi2 df Prob>chi

age 1 -0.01939 4 .13 1 0.0422
fpg 1 -0.00331 0.12 1 0.7241
bmi ! 0.00173 0.03 1 0.8525
race 1 0.00205 0.05 1 0.8298
sex 1 0.01866 3.80 1 0.0512

global test | 0.09 5 0.9999
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year==5
Test of proportional hazards assumption

year==

1 rho chi2 df Prob>chi2

age I -0.02979 9.67 1 0.0019

fpg 1 -0.01945 4.33 1 0.0375
bmi | 0.01885 4 .14 1 0.0418
race | 0.01245 1.66 1 0.1977
sex | 0.02159 5.10 1 0.0239

global test | 0.27 5 0.9982

6
Test of proportional hazards assumption

1 rho chi2 df Prob>chi2

age I -0.00316 0.11 1 0.7418

fpg 1 -0.02637 7.86 1 0.0051
bmi | 0.01008 1.16 1 0.2807
race I -0.02485 6.67 1 0.0098
sex | 0.03614 14.22 1 0.0002

global test | 0.29 5 0.9978

7
Test of proportional hazards assumption

1 rho chi2 df Prob>chi2

age I -0.01230 1.61 1 0.2050

fpg 1 0.02570 7 . 17 1 0.0074
bmi | -0.00058 0.00 1 0.9504
race | 0.01507 2.43 1 0.1193
sex | 0.02397 6.12 1 0.0133

global test | 0.15 5 0.9995

8
Test of proportional hazards assumption

1 rho chi2 df Prob>chi2

age I -0.02564 6.86 1 0.0088

fpg I 0.01777 3.33 1 0.0681
bmi ! -0.01460 2.33 1 0.1266
race | 0.02067 4.55 1 0.0328
sex | -0.00348 0.13 1 0.7177

global test | 0.12 5 0.9998

= 9
Test of proportional hazards assumption

1 rho chi2 df Prob>chi2

age I -0.01398 2.08 1 0.1489

fpg l 0.03390 11.49 1 0.0007
bmi | 0.00712 0.55 1 0.4566
race I 0.01743 3.41 1 0.0648
sex | 0.02573 7 . 14 1 0.0075

global test | 0.13 5 0.9997



year:

year=

year=

year=

year=

==10
Test of proportional hazards assumption

1 rho chi2 df Prob>chi2

age 1 0.00196 0.04 1 0.8411
fpg 1 0.06275 37.97 1 0.0000
bmi 1 -0.00398 0.17 1 0.6820
race 1 0.00419 0.20 1 0.6536
sex 1 -0.03594 13.80 1 0.0002

global test | 0.13 5 0.9997

=  11
Test of proportional hazards assumption

1 rho chi2 df Prob>chi2

age 1 -0.01868 3.69 1 0.0549
fpg 1 -0.02439 5.67 1 0.0172
bmi 1 -0.04956 24.92 1 0.0000
race 1 0.01462 2.55 1 0.1105
sex 1 0.02038 4.41 1 0.0358

global test 1 0.06 5 0.9999

= 12
Test of proportional hazards assumption

1 rho chi2 df Prob>chi2

age 1 0.05852 37.55 1 0.0000
fpg 1 -0.00362 0.13 1 0.7192
bmi ! 0.00480 0.23 1 0.6311
race 1 -0.00193 0.05 1 0.8264
sex 1 0.06320 43.20 1 0.0000

global test 1 0.08 5 0.9999

= 13
Test of proportional hazards assumption

1 rho chi2 df Prob>chi2

age 1 0.04364 20.01 1 0.0000
fpg ! -0.01616 2.53 1 0.1118
bmi 1 -0.01559 2.67 1 0.1024
race 1 0.02144 6.55 1 0.0105
sex 1 0.04384 19.91 1 0.0000

global test 1 0.02 5 1.0000

= 14
Test of proportional hazards assumption

1 rho chi2 df Prob>chi2

age 1 0.03388 12.70 1 0.0004
fpg 1 -0.02012 3.62 1 0.0570
bmi 1 -0.05235 27.10 1 0.0000
race 1 0.03085 14.59 1 0.0001
sex 1 -0.02536 6.82 1 0.0090

global test 0.01 5 1.0000



year==15
Test of proportional hazards assumption

1 rho chi2 df Prob>chi2

age 1 0.08021 67.07 1 0.0000
fpg 1 -0.02630 5.37 1 0.0205
bmi 1 0.09872 94.27 1 0.0000
race 1 -0.06248 35.79 1 0.0000
sex 1 -0.04451 19.97 1 0.0000

global test | 0.01 5 1.0000

year==16
Test of proportional hazards assumption

1 rho chi2 df Prob>chi2

age I 0.01978 3.93 1 0.0473

fpg 1 0.01225 1.02 1 0.3132
bmi | -0.00341 0.10 1 0.7473
race I 0.01193 1.25 1 0.2642
sex | -0.01670 2.74 1 0.0977

global test | 0.00 5 1.0000

17
Test of proportional hazards assumption

1 rho chi2 df Prob>chi2

age I 0.37451 1249.91 1 0.0000

fpg l 0.26504 325.63 1 0.0000
bmi | 0.08720 75.29 1 0.0000
race | 0.29140 424.58 1 0.0000
sex | -0.07251 52.53 1 0.0000

global test | 0.02 5 1.0000

18
Test of proportional hazards assumption

1 rho chi2 df Prob>chi2

age I -0.07142 37.37 1 0.0000

fpg I 0.15217 49.09 1 0.0000
bmi | 0.06861 23.44 1 0.0000
race I 0.22924 43.23 1 0.0000
sex | -0.04373 15.29 1 0.0001

global test | 0.00 5 1.0000



INTENSIVE
year==l Test of proportional hazards assumption

rho chi2 df Prob>chi2

age I -0.02339 14.94 1 0.0001
fpg ! 0.02470 17.02 1 0.0000
bmi | -0.00468 0.62 1 0.4326
race | -0.00544 0.82 1 0.3640
sex | 0.01778 8.33 1 0.0039

global test | 0.46 5 0.9934

2
Test of proportional hazards assumption

1 rho chi2 df Prob>chi2

age I -0.03174 27.49 1 0.0000

fpg I 0.03792 40.31 1 0.0000
bmi | 0.02688 20.26 1 0.0000
race | -0.01710 8.18 1 0.0042
sex | 0.00133 0.05 1 0.8294

global test | 1.11 5 0.9536

3
Test of proportional hazards assumption

1 rho chi2 df Prob>chi2

age I -0.00214 0.12 1 0.7244

fpg 1 0.04231 49.36 1 0.0000
bmi | 0.00963 2.60 1 0.1070
race | 0.00951 2.49 1 0.1149
sex | 0.01871 9.26 1 0.0023

global test | 0.74 5 0.9808

4
Test of proportional hazards assumption

1 rho chi2 d f Prob>chi2

age I -0.01373 5.13 1 0.0236

f p g  I 0.02216 13.61 1 0.0002
bmi | -0.00807 1.79 1 0.1813
race | -0.00219 0.13 1 0.7151
sex | -0.00605 0.97 1 0.3250

global test | 0.22 5 0.9989

5
Test of proportional hazards assumption

1 rho chi2 df Prob>chi2

age I -0.01167 3.71 1 0.0541
f p g  1 0.04401 53.40 1 0.0000
bmi | 0.01653 7.46 1 0.0063
race | 0.00777 1.70 1 0.1927
sex | -0.01166 3.60 1 0.0577

global test | 0.67 5 0.9843



year==6
Test of proportional hazards assumption

year==

1 rho chi2 df Prob>chi2

age I 0.00127 0.04 1 0.8341

fpg I 0.04362 53.22 1 0.0000
bmi | 0.01400 5.36 1 0.0206
race I 0.00728 1.42 1 0.2332
sex | 0.01966 10.23 1 0.0014

global test ! 0.72 5 0.9821

7
Test of proportional hazards assumption

rho chi2 df Prob>chi2

age I -0.01623 6.98 1 0.0083

fpg I 0.03346 30.85 1 0.0000
bmi I 0.01618 7.11 1 0.0077
race I -0.04225 46.28 1 0.0000
sex | 0.03045 24.56 1 0.0000

global test | 0.99 5 0.9636

= 8
Test of proportional hazards assumption

1 rho chi2 df Prob>chi2

age ! 0.00899 2.11 1 0.1461

fpg 1 0.03152 27.18 1 0.0000
bmi | 0.01654 7.01 1 0.0081
race I 0.01202 3.59 1 0.0583
sex | 0.01533 6.23 1 0.0126

global test | 0.30 5 0.9977

= 9
Test of proportional hazards assumption

1 rho chi2 df Prob>chi2

age I -0.00443 0.51 1 0.4731

fpg 1 0.03666 37.57 1 0.0000
bmi | 0.02703 18 . 12 1 0.0000
race I 0.00584 0.82 1 0.3665
sex | -0.02640 18.56 1 0.0000

global test I 0.28 5 0.9979

= 10
Test of proportional hazards assumption

1 rho chi2 df Prob>chi2

age I 0.00324 0.27 1 0.6019

fpg I 0.01661 7.01 1 0.0081
bmi I 0.01453 5.24 1 0.0221
race | 0.00151 0.06 1 0.8145
sex | 0.01302 4.49 1 0.0342

global test | 0.06 5 1.0000
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year=

year=

year=

year=

year=

= 11
Test of proportional hazards assumption

1 rho chi2 df Prob>chi2

age I -0.02087 11.31 1 0.0008

fpg 1 0.03978 39.39 1 0 . 0 0 0 0
bmi | 0.00763 1.49 1 0.2224
race I 0.00880 1.84 1 0.1754
sex | 0.00057 0 . 0 1 1 0.9263

global test | 0 . 1 1 5 0.9998

1 2
Test of proportional hazards assumption

1 rho chi2 df Prob>chi2

age I -0.00987 2.43 1 0.1187

fpg 1 0.01510 5.52 1 0.0188
bmi | -0.03257 26.59 1 0 . 0 0 0 0
race | -0.01875 8 . 0 2 1 0.0046
sex | 0.00951 2.38 1 0.1225

global test | 0.04 5 1 . 0 0 0 0

13
Test of proportional hazards assumption

1 rho chi2 df Prob>chi2

age I -0.03706 32.90 1 0 . 0 0 0 0

fpg 1 0.06124 91.79 1 0 . 0 0 0 0
bmi | -0.01886 9.03 1 0.0027
race | -0.01051 2.71 1 0.0998
sex | -0.02676 18 . 95 1 0 . 0 0 0 0

global test | 0.08 5 0.9999

14
Test of proportional hazards assumption

1 rho chi2 df Prob>chi2

age I -0.00878 1.83 1 0.1766

fpg 1 -0.01685 6.58 1 0.0103
bmi | 0.00248 0.16 1 0.6861
race | -0.02739 18.38 1 0 . 0 0 0 0
sex | 0.04579 54.17 1 0 . 0 0 0 0

global test I 0 . 0 1 5 1 . 0 0 0 0

15
Test of proportional hazards assumption

1 rho chi2 df Prob>chi2

age I 0.05050 61.02 1 0 . 0 0 0 0

fpg 1 0.04553 47.49 1 0 . 0 0 0 0
bmi | -0.03090 22.07 1 0 . 0 0 0 0
race I -0.10985 334.91 1 0 . 0 0 0 0
sex | 0.09169 214.26 1 0 . 0 0 0 0

global test | 0.05 5 1 . 0 0 0 0
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year=

year=

year=

year=

=16
Test of proportional hazards assumption

1 rho chi2 df Prob>chi2

age I -0.05392 63.18 1 0.0000

fpg 1 -0.05905 92.40 1 0.0000
bmi | -0.11303 172.69 1 0.0000
race I 0.05597 79.46 1 0.0000
sex | 0.06123 95.89 1 0.0000

global test | 0 . 0 1 5 1 . 0 0 0 0

17
Test of proportional hazards assumption

1 rho chi2 df Prob>chi2

age I -0.07907 133.29 1 0.0000

fpg I -0.01417 6.06 1 0.0138
bmi | -0.00769 0.74 1 0.3885
race I -0.04379 42.12 1 0.0000
sex | 0.08005 169.73 1 0.0000

global test | 0 . 0 0 5 1 . 0 0 0 0

18
Test of proportional hazards assumption

1 rho chi2 df Prob>chi2

age I -0.07637 94.12 1 0.0000

fpg 1 0.04809 33.82 1 0 . 0 0 0 0
bmi I -0.05181 22.06 1 0.0000
race I 0.00330 0 . 2 1 1 0.6461
sex | -0.03560 30.49 1 0.0000

global test | 0 . 0 0 5 1.0000

19
Test of proportional hazards assumption

1 rho chi2 df Prob>chi2

age I -0.44672 5529.79 1 0.0000

f p g  I -0.55970 1358.31 1 0.0000
bmi | -0.03993 18.46 1 0.0000
race | 0.45140 1145.20 1 0.0000
sex | 0.14766 733.09 1 0.0000

global test | 0 . 0 0 5 1.0000
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Appendix A.5.2. Weibull and Exponential regression models on total cost

CONVENTIONAL

Weibull regression

Weibull regression -- accelerated failure-time form

No. of subjects = 1138 Number of obs = 1138
No. of failures = 213
Time at risk = 9500509.408

LR chi2(5) _ 41.86
Log likelihood = -575.43213 Prob > chi2 = 0 . 0 0 0 0

t Coef. Std. Err. z P> 1 z 1 [95% Conf. Interval]

age -.051336 .0098131 -5.23 0 . 0 0 0 -.0705694 -.0321026
bmi .0032357 . 0126375 0.26 0.798 -.0215333 .0280048
fpg . 0046819 . 0304612 0.15 0.878 -.0550209 .0643848

race i .0592436 . 1076293 0.55 0.582 -.1517061 .2701932
sex i .2290909 . 1317603 1.74 0.082 -.0291545 .4873363

cons i 12.93738 .7914047 16.35 0 . 0 0 0 11.38626 14.48851

/ ln_p i . 1394609 . 0429129 3.25 0 . 0 0 1 .0553531 . 2235687

P i 1.149654 . 049335 1.056914 1.250532

1/P i .869827 . 0373268 .79966 .946151

Exponential regression

Exponential regression -- accelerated failure- time form

No. of subjects = 1138 Number of obs = 1138
No. of failures = 213
Time at risk = 9500509 .408

LR chi2(5) = 47.79
Log likelihood -580.15453 Prob > chi2 = 0 . 0 0 0 0

_t Coef. Std. Err. z P> 1 z | [95% Conf. Interval]

age i -.0622891 . 0105939 -5.88 0 . 0 0 0 - . 0830527 -.0415254
bmi i . 0002449 . 0142341 0 . 0 2 0.986 -.0276535 . 0281432
fpg -.0064317 . 0342738 -0.19 0.851 -.0736071 .0607437

race . 0894702 . 1232363 0.73 0.468 -.1520685 .3310088
sex .2737993 . 1502651 1.82 0.068 -.0207148 .5683134

cons 13.77712 . 8571194 16.07 0 . 0 0 0 12.09719 15.45704
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INTENSIVE

Weibull regression

Weibull regression -- accelerated failure-time form

No. of subjects = 2729 Number of obs = 2729
No. of failures = 489
Time at risk = 22024713.02

LR chi2(5) 133.63
Log likelihood -1305., 9663 Prob > chi2 = 0 . 0 0 0 0

_t 1 Coef. Std. Err. z P> 1 z | [95% Conf. Interval]

age 1 -.048417 . 005711 - 8  .48 0 . 0 0 0 . 0596104 -.0372237
bmi 1 . 0011463 .0074388 0.15 0.878 .0134335 .015726
fpg 1 -.0453473 . 0160413 -2.83 0.005 .0767877 -.0139068

race 1 . 0236118 .0650777 0.36 0.717 . 1039381 .1511616
sex 1 .496793 . 0800094 6 . 2 1 0 . 0 0 0 . 3399775 .6536085

cons 1 12.79873 .4562066 28.05 0 . 0 0 0 11.90458 13.69288

/ ln_p 1 .2637249 . 0301343 8 .75 0 . 0 0 0 . 2046629 .322787

P 1 1.30177 . 0392279 1.227111 1.380971

1/P 1 .7681848 . 0231487 . 7241281 .814922

Exponential regression

Exponential regression -- accelerated failure- time form

No. of subjects = 2729 Number of obs = 2729
No. of failures = 489
Time at risk = 22024713.02

LR chi2(5) = 155.10
Log likelihood -1337 .773 Prob > chi2 = 0 . 0 0 0 0

_t 1 Coef. Std. Err. z P> 1 z | [95% Conf. Interval]

age | -.0691696 .0069622 -9.94 0 . 0 0 0 -.0828153 -.055524
bmi | -, 0022877 .0097351 -0.23 0.814 -.021368 .0167927

f p g  1 -.064018 .0204434 -3.13 0 . 0 0 2 -.1040863 -.0239497
race | .0542264 .0846879 0.64 0.522 -.1117589 .2202117
sex | .6271029 .1021918 6.14 0 . 0 0 0 . 4268106 . 8273951

cons | 14.29921 .5686191 25.15 0 . 0 0 0 13.18474 15.41368
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Appendix A.5.3. Carides regression models (Carides et al, 2000)

Carides regression models for conventional

Total cost against tim e-to -fa ilu re  using the uncensored cases only

Source | SS df MS Number of obs = 213

Model
Residual

i
i

3.1175e + 09 
6.5604e+10

1 3.1175e+09 
211 310917115

F ( 1, 211) = 10.03 
Prob > F = 0.0018 
R-squared = 0.0454 
Adj R-squared = 0.0408 
Root MSE = 17633Total i 6.8721e + 10 212 324155825

Mi i Coef. Std. Err. t P> 11 1 [95% Conf. Interval]

timallde
cons

i
i

972.4001 
5137.195

307.0877 3.17 
2644.424 1.94

0 . 0 0 2
0.053

367.0471 1577.753 
-75.68007 10350.07

Log transformed 
only

to ta l  cost against tim e-to -fa ilu re  using the uncensored cases

Source i SS df MS Number of obs = 213 
F ( 1, 211) = 46.26 
Prob > F = 0.0000 
R-squared = 0.1798 
Adj R-squared = 0.1759 
Root MSE = .98631

Model
Residual i

45.0008132
205.262457

1 45.0008132 
211 .972807853

Total i 250.26327 212 1.18048712

InMi i Coef. Std. Err. t P> 11 1 [95% Conf. Interval]

timallde
cons i

.1168289 
7.974748

.0171773 6.80 

.1479184 53.91
0 . 0 0 0
0 . 0 0 0

.0829679 .1506899 
7.68316 8.266335

Log-Log transformed to ta l  ■ 
cases only

cost against tim e-to-■failure using the uncensored

Source i SS df MS Number of obs = 213 
F( 1, 211) = 50.64 
Prob > F = 0.0000 
R-squared = 0.1936 
Adj R-squared = 0.1897 
Root MSE = .11444

Model
Residual

i
i

. 663258557 
2.76336055

1 .663258557 
211 .013096496

Total 3.42661911 212 .016163298

lnlnMi i Coef. Std. Err. t P> 11 1 [95% Conf. Interval]

timallde
cons

i
i

.0141834 
2.066175

.001993 7.12 
.0171627 120.39

0 . 0 0 0
0 . 0 0 0

.0102546 .0181123 
2.032342 2.100007
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Carides regression models for Intensive

Total cost against tim e-to -fa ilu re  using the uncensored cases only

Source i SS df MS Number of obs 
F ( 1, 487) 
Prob > F 
R-squared 
Adj R-squared 
Root MSE

= 489 
70.99 

= 0 . 0 0 0 0  
= 0.1272 
= 0.1254 
= 11368

Model
Residual

i
i

9.174 9e + 09 
6.2939e+10

1
487

9.174 9e + 09 
129238492

Total i 7.2114e+10 488 147774693

Mi i Coef. Std. Err. t P> 11 1 [95% Conf. Interval]

tima1 1 de 
cons

i
!

1053.654 
2731.592

125.
1092

0527 8.43 
.836 2.50

0 . 0 0 0
0.013

807.9443 
584.3366

1299.363
4878.848

Log transformed to ta l  cost against tim e-to -fa ilu re  using the uncensored cases 
only

Source i ss df MS Number of obs 
F ( 1, 487) 
Prob > F 
R-squared 
Adj R-squared 
Root MSE

489
= 205.11 
= 0 . 0 0 0 0  
= 0.2964 
= 0.2949 
= .87408

Model
Residual

i
i

156.708772
372.078572

1
487

156.708772
.764021708

Total i 528.787344 488 1.08358062

InMi i Coef. Std. Err. t P> 11 1 [95% Conf. Interval]

timallde
cons

i . 1377031 
7.759076

.009615 14.32 
.0840257 92.34

0 . 0 0 0
0 . 0 0 0

.1188111
7.593978

.1565952 
7.924174

Log-Log transformed to ta l  cost against tim e-to -fa ilu re  using the uncensored 
cases only

Source i ss df MS Number of obs 
F ( 1, 487) 
Prob > F 
R-squared 
Adj R-squared 
Root MSE

489
= 196.21 
= 0 . 0 0 0 0  
= 0.2872 
= 0.2857 
= .10861

Model
Residual i

2.31441056
5.74446578

1
487

2.31441056
.011795618

Total i 8.05887634 488 .016514091

lnlnMi i Coef. Std. Err. t P> 11 1 [95% Conf. Interval]

timallde
cons

i
i

.0167347 
2.040383

.0011947 14.01 

.0104405 195.43
0 . 0 0 0
0 . 0 0 0

.0143873 
2.019869

.0190821 
2.060897
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Programs for obtaining bootstrap estimates for the standard errors of the mean for the 
Carides et al models

**Carides Models: Bootstrap for the standard errors **

program define pcarides
if "'11"=="?" {

global S_1 "mclinear mclnMi mclnMism mclnlnMi mclnlnMism" 
exit

}

**KM mean survival**

stset timallde, failure(censorig==l)

sts gen survt_KM=s
gsort - survt_KM timallde
quietly gen lagXi= timallde[_n—1]
replace lagXi=0 if lagXi==.
gen areaiXi= survt_KM*( timallde- lagXi)
egen meansurvtKM=sum(areaiXi)

**Regression models**

**Mi against time-to-failure**

regress Mi timallde if censorig==l

matrix beta=e(b) 
svmat beta 
gen b0 x=beta2  
egen bO=min(bOx) 
gen blx=betal 
egen bl=min(blx)

gen meanclinear= bO+bl* meansurvtKM

**lnMi against time-to-failure** 

gen lnMi=ln(Mi)

regress InMi timallde if censorig==l

predict residlnMi, residuals

matrix betaln=e(b) 
svmat betaln 
gen b0 1 nx=betaln2 
egen b01n=min(bOlnx) 
gen bllnx=betalnl 
egen blln=min(bllnx)

gen eresidlnMi=exp( residlnMi)

egen seresidlnMi=sum( eresidlnMi)

gen smearlnMi=(1/1138)* seresidlnMi
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gen meanclnMism=(exp(b01n+ blln* meansurvtKM))* smearlnMi

gen meanclnMi=exp(b01n+ blln* meansurvtKM)

**lnlnMi against time-to-failure** 

gen lnlnMi=ln(InMi)

regress lnlnMi timallde if censorig==l 

predict residlnlnMi, residuals

matrix betalnln=e(b) 
svmat betalnln 
gen b0 1 nlnx=betalnln2 
egen b01nln=min(bOlnlnx) 
gen bllnlnx=betalnlnl 
egen bllnln=min(bllnlnx)

gen eresidlnlnMi=exp( residlnlnMi)

gen meanclnlnMi=exp(exp(bOlnln+bllnln* meansurvtKM))

gen eelnlnMism=exp((exp(bOlnln+bllnln* meansurvtKM))* eresidlnlnMi)

egen seelnlnMism=sum( eelnlnMism)

gen meanclnlnMism=(1/1138)* seelnlnMism

* *

tempname yl
summarize meanclinear, meanonly 
scalar 'yl'=r(mean)

tempname y2
summarize meanclnMi, meanonly 
scalar 'y2 '=r(mean)

tempname y3
summarize meanclnMism, meanonly 
scalar 'y3'=r(mean)

tempname y4
summarize meanclnlnMi, meanonly 
scalar 'y4'=r(mean)

summarize meanclnlnMism, meanonly

post '1 ' ('yl') ('y2 ') ('y3') ('y4’) (r(mean))
end

■;k  ~k

end of do-file 

set seed 1 0 0 1

bstrap pcarides, reps(1 0 0 0 ) dots
saving(C:\WINDOWS\Desktop\regressions_new\Carides\bsconvl000.dta)



Appendix A.5.4. Ordinary least squares regression using the uncensored cases only 

Using the complete set of covariates

CONVENTIONAL

Source | SS df MS Number of obs = 213
F( 5, 207) = 1 . 2 1

Model 1 1.9587e + 09 5 391745120 Prob > F = 0.3034
Residual | 6.67 62e + 10 207 322523233 R-squared = 0.0285

Adj R-squared = 0.0050
Total 1 6.8721e + 10 2 1 2 324155825 Root MSE 17959

Mi 1 Coef. Std. Err. t P> 11 1 [95% Conf. Interval]

age | 262.4724 197.5792 1.33 0.185 -127.0531 651.998
bmi 1 454.0052 270.1044 1 . 6 8 0.094 -78.50296 986.5134
f p g  1 537.4346 611.4397 0 . 8 8 0.380 -668.0129 1742.882

race ¡ 1783.516 2204.647 0.81 0.419 -2562.924 6129.956
sex 1 1545.937 2646.605 0.58 0.560 -3671.818 6763.693

cons 1 -23980.37 16190.03

C
O

f—
1 

1 0.140 -55898.86 7938.124

INTENSIVE

Source | SS df MS Number of obs 489

Model I 492715435 
Residual | 7.1621e+10

5 98543086.9
483 148284337

Total I 7.2114e+10 488 147774693

F ( 5, 483) = 0.66 
Prob > F = 0.6505 
R-squared = 0.0068 
Adj R-squared = -0.0034 
Root MSE = 12177

Mi 1 Coef. Std. Err. t P> 11 1 [95% Conf. Interval]

age | 57.55115 85.66172 0.67 0.502 -110.7645 225.8668
bmi 1 34.83646 123.7422 0.28 0.778 -208.303 277.9759
f p g  1 -176.5466 267.8438 -0 . 6 6 0.510 -702.8295 349.7363

race | 146.7123 954.3455 0.15 0.878 -1728.469 2021.894
sex 1 1802.747 1250.537 1.44 0.150 -654.417 4259.911

cons 1 5647.455 7148.846 0.79 0.430 -8399.223 19694.13

Using fasting plasma glucose (fpg) as the only covariate

CONVENTIONAL

Source 1 SS df MS Number of obs = 213
F( 1, 211) = 1 . 0 0

Model 1 323160914 1 323160914 Prob > F = 0.3192
Residual | 6.8398e+10 2 1 1 324160540 R-squared = 0.0047

Adj R-squared = -0 . 0 0 0 0
Total 6.8721e + 10 2 1 2 324155825 Root MSE 18004

Mi 1 Coef. Std. Err. t P> 11 1 [95% Conf. Interval]

fpg 1
cons 1

602.4029 
7367.779

603.3339
5369.693

1 . 0 0  
1.37

0.319
0.171

-586.9315 
-3217.339

1791.737
17952.9
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INTENSIVE

Source | SS df MS

Model 1 44656082.7 1 44656082.7
Residual | 7.2069e+10 487 147986436

Total 1 7.2114e+10 488 147774693

Number of obs = 489 
F ( 1, 487) = 0.30 
Prob > F = 0.5830 
R-squared = 0.0006 
Adj R-squared = -0.0014 
Root MSE = 12165

Mi 1 Coef. Std. Err. t P> 11 1 [95% Conf. Interval]

f p g  1
cons 1

-144.1522 
12142.42

262.4169
2403.761

-0.55
5.05

0.583
0 . 0 0 0

-659.7613
7419.398

371.4569
16865.44

Programs for obtaining bootstrap estimates for the standard errors of the coefficients and the 
mean for the OLS regression model

**OLS naive on total costs: Bootstrap estimates for the standard errors** 

program define polsnaive
i f  !>']_! "=="?" {

global S_1 "bO bl b2 b3 b4 b5 mclinear bOfpg blfpg mcfpglinear" 
exit

}

egen meanage=mean(age) 
egen meanbmi=mean(bmi) 
egen meanfpg=mean(fpg) 
egen meanrace=mean(race) 
egen meansex=mean(sex)

regress Mi age bmi fpg race sex if censorig==l

matrix betaallZ=e(b)

svmat betaallZ

gen b0x= betaallZ6 
egen b0=min( bOx)

gen blx= betaallZl 
egen bl=min( blx)

gen b2x= betaallZ2 
egen b2 =min( b2 x)

gen b3x= betaallZ3 
egen b3=min( b3x)

gen b4x= betaallZ4 
egen b4=min( b4x)

gen b5x= betaallZ5 
egen b5=min( b5x)

drop bOx blx b2x b3x b4x b5x

gen meanclinear=bO+bl* meanage+b2* meanbmi+b3* meanfpg+b4* meanrace+b5* meansex
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regress Mi fpg if censorig==l

matrix betafpg=e(b) 
svmat betafpg

gen bOfpgx= betafpg2 
egen bOfpg=min( bOfpgx)

gen blfpgx= betafpgl 
egen blfpg=min( blfpgx)

drop bOfpgx blfpgx

gen meancfpglinear=bOfpg+blfpg* meanfpg 

tempname yl
summarize bO, meanonly 
scalar 'yl'=r(mean)

tempname y2
summarize bl, meanonly 
scalar 'y2 '=r(mean)

tempname y3
summarize b2 , meanonly 
scalar 'y3'=r(mean)

tempname y4
summarize b3, meanonly 
scalar 'y4'=r(mean)

tempname y5
summarize b4, meanonly 
scalar 'y5'=r(mean)

tempname y6
summarize b5, meanonly 
scalar 'y6 '=r(mean)

tempname y7
summarize meanclinear, meanonly 
scalar 'y7'=r(mean)

tempname y8
summarize bOfpg, meanonly 
scalar 'y8 '=r(mean)

tempname y9
summarize blfpg, meanonly 
scalar 'y9'=r(mean)

summarize meancfpglinear, meanonly

post '1' ('yl') ('y2') ('y3') ('y4') ('y5') ('y6 ') ('y7') ('y8 ') ('y9')
(r(mean))

end 

* *

end of do-file 

set seed 1 0 0 1
bstrap polsnaive, reps(1 0 0 0 ) dots
saving(C:\WINDOWS\Desktop\regressions_new\OLS_naive\bsconvlOOO.dta)
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Appendix A.5.5. Programs for the Lin (2000) regression methodology using the total costs at 
the last contact dates or at the point of death

Based on equations (5.25) and (5.27) for the regression parameters and on 
equations (5.29), (5.30), (5.31) and (5.32) for the coefficient standard errors

**Lin 2000: Total costs: Conventional (similarly for intensive)**

**Mean and coefficients' standard errors**

egen maxtimeL=max( timallde)

gen di=l if censorig==l 
replace di= 0 if di==.

gen di_star=l if (di==l | maxtimeL== timallde) 
replace di_star= 0 if di_star==.

gen di_censor=l-di

stset timallde, failure(di_star==0 )

sts gen G_Tistar=s

egen meanage=mean(age) 
egen meanbmi=mean( bmi) 
egen meanfpg=mean(fpg) 
egen meanrace=mean(race) 
egen meansex=mean(sex)

gen int replicate= 6

expand replicate

gen int const=l

sort ukno

by ukno: gen constx=sum(const)

sort ukno constx

gen Zi=const if constx==l 
replace Zi=age if constx==2 
replace Zi=bmi if constx==3 
replace Zi=fpg if constx==4 
replace Zi=race if constx==5 
replace Zi=sex if constx= = 6

move Zi age

gen Zi0_Zi0p=Zi*const 
gen Zil_Zilp=Zi*age 
gen Zi2_Zi2p=Zi*bmi 
gen Zi3_Zi3p=Zi*fpg 
gen Zi4_Zi4p=Zi*race 
gen Zi5_Zi5p=Zi*sex

gen wZi0_Zi0p= (di_star/ G_Tistar)* Zi0_Zi0p
gen wZil_Zilp= (di_star/ G_Tistar)* Zil_Zilp
gen wZi2_Zi2p= (di_star/ G_Tistar)* Zi2_Zi2p
gen wZi3_Zi3p= (di_star/ G_Tistar)* Zi3_Zi3p
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gen wZi4_Zi4p= (di_star/ G_Tistar)* Zi4_Zi4p 
gen wZi5_Zi5p= (di_star/ G_Tistar)* Zi5_Zi5p

egen swZiO__ZiOp=sum (wZiO_ZiOp) , by(constx) 
egen swZil_Zilp=sum(wZil_Zilp), by(constx) 
egen swZi2_Zi2p=sum(wZi2_Zi2p), by(constx) 
egen swZi3_Zi3p=sum(wZi3_Zi3p) , by(constx) 
egen swZi4_Zi4p=sum(wZi4_Zi4p), by(constx) 
egen swZi5_Zi5p=sum(wZi5_Zi5p) , by(constx)

gen wYiZi=( di_star/ G_Tistar)*Mi*Zi

egen swYiZi=sum(wYiZi), by(constx)

mkmat swZiO ZiOp swZil Zilp swZi2_Zi2p swZi3 Zi3p swZi4_Zi4p swZi5_Zi5p if 
ukno=="00011D", matrix(bterml)

mkmat swYiZi if ukno=="00011D", matrix(bterm2) 

matrix beta=syminv(bterml)*bterm2 

svmat beta

matrix list beta

egen bOx=min(betal) 
egen bO=min(bOx) 
egen blx=min(betal) 
egen bl=min(blx) 
egen b2 x=min(betal) 
egen b2 =min(b2 x) 
egen b3x=min(betal) 
egen b3=min(b3x) 
egen b4x=min(betal) 
egen b4=min(b4x) 
egen b5x=min(betal) 
egen b5=min(b5x)

if constx==l 

if constx= = 2  

if constx==3 

if constx==4 

if constx==5 

if constx= = 6

drop bOx blx b2x b3x b4x b5x

gen meancost=bO+bl* meanage+b2* meanbmi+b3* meanfpg+b4* meanrace+b5* meansex

sum meancost

**Standard e rro rs  fo r the coefficients**

gen beta_Zi=bO*const+bl* age+b2* bmi+b3* fpg+b4* race+b5* sex 

gen Yi_bZi=Mi-beta_Zi

gen Btermli= (di_star/ G_Tistar)* Yi_bZi*Zi

gen Xi= timallde

* *ties * * 
sort constx Xi
by constx Xi: gen ties=sum(const) 
egen maxties=max(ties), by(constx Xi)

k  k

**For I(Ti star>t in Q(t)**
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gsort constx -Xi ties
by constx: gen QXinumx=sum( Btermli)
gen QXinum=QXinumx if ties==maxties
egen QXinumxx=min(QXinum), by(constx Xi maxties)
replace QXinum=QXinumxx if QXinum==.

gsort constx -Xi
by constx: gen QXidenomx=sum(const)
egen QXidenom=max(QXidenomx), by(constx Xi)

gsort constx -Xi ties

egen QXxx=sum(Btermli), by(constx Xi) 
gen QXinumtest=QXinum-QXxx

gen QXitest=QXinumtest/ QXidenom

gen Bterm2itest=di_censor*QXitest
gen djcens_QXjsXltest= di_censor* QXitest/ QXidenom 

sort constx Xi ties
by constx: gen Bterm3ixtest=sum(djcens_QXjsXltest) 
gen Bterm3itest=Bterm3ixtest if ties==maxties 
egen Bterm3ixxtest=min(Bterm3itest), by(constx Xi maxties) 
replace Bterm3itest=Bterm3ixxtest if Bterm3itest==.

gen Bterml23itest= Btermli+Bterm2itest- Bterm3itest

gen Bterml23i_lxtest=Bterml23itest if constx==l 
egen Bterml23i_ltest=min( Bterml23i_lxtest), by(ukno)

gen Bterml23i_2xtest=Bterml23itest if constx==2 
egen Bterml23i_2test=min( Bterml23i_2xtest) , by(ukno)

gen Bterml23i_3xtest=Bterml23itest if constx==3 
egen Bterml23i_3test=min( Bterml23i_3xtest), by(ukno)

gen Bterml23i_4xtest=Bterml23itest if constx==4 
egen Bterml23i_4test=min( Bterml23i_4xtest), by(ukno)

gen Bterml23i_5xtest=Bterml23itest if constx==5 
egen Bterml23i_5test=min( Bterml23i_5xtest), by(ukno)

gen Bterml23i__6xtest=Bterml23itest if constx= = 6  
egen Bterml23i_6test=min( Bterml23i_6xtest), by(ukno)

gen Btermp_pltest= 
gen Btermp_p2test= 
gen Btermp_p3test= 
gen Btermp_p4test= 
gen Btermp_p5test= 
gen Btermp_p6test=

Bterml23itest*
Bterml23itest*
Bterml23itest*
Bterml23itest*
Bterml23itest*
Bterml23itest*

Bterml23i_ltest 
Bterml23i_2test 
Bterml23i_3test 
Bterml23i_4test 
Bterml23i_5test 
Bterml23i 6test

egen sBtermp_pltest=sum( Btermp_pltest) , 
egen sBtermp_p2test=sum( Btermp_p2test), 
egen sBtermp_p3test=sum( Btermp_p3test) , 
egen sBtermp_p4test=sum( Btermp_p4test) , 
egen sBtermp_p5test=sum( Btermp_p5test), 
egen sBtermp_p6test=sum( Btermp_p6test) ,

by(constx) 
by(constx) 
by(constx) 
by(constx) 
by(constx) 
by(constx)

mkmat sBtermp_pltest sBtermp_p2test sBtermp_p3test sBtermp_p4te 
sBtermp_p5test sBtermp_p6test if ukno=="00011D", matrix(seBxtest)



matrix seBtest=(1/1138)*seBxtest

svmat seBtest 

matrix list seBtest

matrix covbetamattest=seinvA*seBtest*seinvA 

svmat covbetamattest

matrix list covbetamattest 

* *

Bootstrap estimates of the standard errors for the coefficients and the mean for Lin (2000) 
using the total costs at the last contact dates or death

use "C:\Desktop\Lin2000\conv_orig.dta", clear 
rename ukno uknoO
do "C:\Desktop\Lin2000\Total_costs\bs_total.txt" 

where bs_total.txt is:

**Lin2000 on total costs: Conventional and/or Intensive**

**Bootstrap Estimation of standard errors for coefficients and mean**

program define ptotal
if " ' i ' "=="•?" {

global S_1 "bO bl b2 b3 b4 b5 meanc" 
exit

}

egen maxtimeL=max( timallde)

gen di=l if censorig==l 
replace di= 0 if di==.

gen di_star=l if (di==l | maxtimeL== timallde) 
replace di_star= 0 if di_star==.

gen di_censor=l-di

stset timallde, failure(di_star==0 )

sts gen G_Tistar=s

egen meanage=mean(age) 
egen meanbmi=mean( bmi) 
egen meanfpg=mean(fpg) 
egen meanrace=mean(race) 
egen meansex=mean(sex)

gen int replicate= 6

expand replicate

gen int const=l
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sort ukno

by ukno: gen constx=sum(const) 

sort ukno constx

gen Zi=const if constx==l 
replace Zi=age if constx==2 
replace Zi=bmi if constx==3 
replace Zi=fpg if constx==4 
replace Zi=race if constx==5 
replace Zi=sex if constx= = 6

move Zi âge

gen ZiO_ZiOp=Zi*const 
gen Zil_Zilp=Zi*age 
gen Zi2_Zi2p=Zi*bmi 
gen Zi3_Zi3p=Zi*fpg 
gen Zi4_Zi4p=Zi*race 
gen Zi5_Zi5p=Zi*sex

gen wZiO_ZiOp= 
gen wZil_Zilp= 
gen wZi2_Zi2p= 
gen wZi3_Zi3p= 
gen wZi4_Zi4p= 
gen wZi5_Zi5p=

(di_star/ 
(di_star/ 
(di_star/ 
(di_star/ 
(di_star/ 
(di star/

G_Tistar)* ZiO_ZiOp 
G_Tistar)* Zil_Zilp 
G_Tistar)* Zi2_Zi2p 

G_Tistar)* Zi3_Zi3p 
G_Tistar)* Zi4_Zi4p 
G_Tistar)* Zi5_Zi5p

egen swZiO_ZiOp=sum(wZiO_ZiOp), by(constx) 
egen swZil_Zilp=sum(wZil_Zilp), by(constx) 
egen swZi2_Zi2p=sum(wZi2_Zi2p), by(constx) 
egen swZi3_Zi3p=sum(wZi3_Zi3p), by(constx) 
egen swZi4_Zi4p=sum(wZi4_Zi4p), by(constx) 
egen swZi5_Zi5p=sum(wZi5_Zi5p), by(constx)

gen wYiZi=( di_star/ G_Tistar)*Mi*Zi

egen swYiZi=sum(wYiZi), by(constx)

collapse meanage meanbmi meanfpg meanrace meansex swYiZi swZiO_ZiOp swZil_Zilp 
swZi2_Zi2p swZi3_Zi3p swZi4_Zi4p swZi5_Zi5p, by(constx)

sort constx

mkmat swZiO_ZiOp swZil_Zilp swZi2_Zi2p swZi3_Zi3p swZi4_Zi4p swZi5_Zi5p, 
matrix(bterml)

mkmat swYiZi, matrix(bterm2) 

matrix beta=syminv(bterml)*bterm2 

svmat beta

gen bOx=betal if 
egen bO=min(bOx) 
gen blx=betal if 
egen bl=min(blx) 
gen b2 x=betal if 
egen b2 =min(b2 x) 
gen b3x=betal if 
egen b3=min(b3x)

constx==l

constx= = 2

constx==3

constx==4
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gen b4x=betal if constx==5 
egen b4=min(b4x) 
gen b5x=betal if constx= = 6  
egen b5=min(b5x)

gen meancost=bO+bl* meanage+b2* meanbmi+b3* meanfpg+b4* meanrace+b5* meansex 

tempname yl
summarize bO, meanonly 
scalar 'yl'=r(mean)

tempname y2
summarize bl, meanonly 
scalar 'y2 '=r(mean)

tempname y3
summarize b2 , meanonly 
scalar 'y3'=r(mean)

tempname y4
summarize b3, meanonly 
scalar 'y4'=r(mean)

tempname y5
summarize b4, meanonly 
scalar 'y5'=r(mean)

tempname y6
summarize b5, meanonly 
scalar 'y6 '=r(mean)

summarize meancost, meanonly
post '1' ('yl1 ) ('y2') ('y3') ('y4') ('y5') ('y6 ') (r(mean))

end

■k *
end of do-file 

set seed 1 0 0 1

bstrap ptotal, reps(1 0 0 0 ) dots cluster(uknoO) idcluster(ukno) 
saving(C:\Documents and
Settings\raikou\Desktop\Lin2000\Total_costs\Conventional\bsconvl000.dta)

* *
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Appendix A.5.6. Programs for the Lin (2000) regression methodology using multiple time 
intervals

Based on equations are given by (5.33) and (5.35) for the coefficients and by 
(5.36), (5.37), (5.38), (5.39), (5.40) and (5.41) for their standard errors.

**Lin 2000 on Annual Costs: Conventional (similarly for intensive) **

gen tk_l=year-l 
gen tk=year

gen Xik=min(Xi, tk)

egen maxtimeL=max(Xi)

gen dik_star=l if (Xik==tk | (Xik==Xi & di==l) | (Xik==Xi & maxtimeL==Xi)) 
replace dik_star= 0 if dik_star==.

stset Xik, failure( dik_star==0) 
sts gen GTik_star=s, by(tk)

drop _st _d _t _t0

egen meanage=mean(age) 
egen meanbmi=mean(bmi) 
egen meanfpg=mean(fpg) 
egen meanrace=mean(race) 
egen meansex=mean(sex)

gen int replicate= 6  
expand replicate

gen int const=l

sort ukno year

by ukno year: gen constx=sum(const)

sort ukno year constx

gen Zi=const if constx==l 
replace Zi=age if constx==2 
replace Zi=bmi if constx==3 
replace Zi=fpg if constx==4 
replace Zi=race if constx==5 
replace Zi=sex if constx= = 6

move Zi age
move constx age_entr
move const age
drop age_entr maxyear gender

sort ukno year constx

gen Zi0_Zi0p=Zi*const 
gen Zil_Zilp=Zi*age 
gen Zi2_Zi2p=Zi*bmi 
gen Zi3_Zi3p=Zi*fpg 
gen Zi4_Zi4p=Zi*race 
gen Zi5_Zi5p=Zi*sex

gen wZi0_Zi0p= ( dik_star/ GTik_star)* Zi0_Zi0p
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gen wZil_Zilp= 
gen wZi2_Zi2p= 
gen wZi3_Zi3p= 
gen wZi4_Zi4p= 
gen wZi5_Zi5p=

( dik_star/ 
( dik_star/ 
( dik_star/ 
( dik_star/ 
( dik star/

GTik_star)* Zil_Zilp 
GTik_star)* Zi2_Zi2p 
GTik_star)* Zi3_Zi3p 
GTik_star)* Zi4_Zi4p 
GTik_star)* Zi5_Zi5p

egen swZiO_ZiOp=sum(wZiO_ZiOp), 
egen swZil_Zilp=sum(wZil_Zilp), 
egen swZi2_Zi2p=sum(wZi2_Zi2p), 
egen swZi3_Zi3p=sum(wZi3_Zi3p), 
egen swZi4_Zi4p=sum(wZi4_Zi4p), 
egen swZi5_Zi5p=sum(wZi5_Zi5p),

by(tk constx) 
by(tk constx) 
by(tk constx) 
by(tk constx) 
by(tk constx) 
by(tk constx)

gen wYikZi=( dik_star/ GTik_star)* Mik*Zi 
egen swYikZi=sum(wYikZi), by(tk constx)

sort ukno tk constx

mkmat swZiO_ZiOp swZil_Zilp swZi2_Zi2p swZi3__Zi3p swZi4_Zi4p swZi5_Zi5p if 
(ukno=="00011D" & tk==l), matrix(bklterml)

mkmat swYikZi if (ukno=="00011D" & tk==l), matrix(bklterm2) 

matrix betakl=syminv(bklterml)*bklterm2 

svmat betakl 

*

mkmat swZiO_ZiOp swZil_Zilp swZi2_Zi2p swZi3_Zi3p swZi4_Zi4p swZi5_Zi5p if 
(ukno=="00011D" & tk==2), matrix(bk2terml)

mkmat swYikZi if (ukno=="00011D" & tk==2), matrix(bk2term2) 

matrix betak2 =syminv(bk2 terml)*bk2 term2 

svmat betak2 

*

mkmat swZiO_ZiOp swZil_Zilp swZi2_Zi2p swZi3_Zi3p swZi4_Zi4p swZi5_Zi5p if 
(ukno=="00011D" & tk==3), matrix(bk3terml)

mkmat swYikZi if (ukno=="00011D" & tk==3), matrix(bk3term2) 

matrix betak3=syminv(bk3terml)*bk3term2 

svmat betak3 

*

mkmat swZiO_ZiOp swZil_Zilp swZi2_Zi2p swZi3_Zi3p swZi4_Zi4p swZi5_Zi5p if 
(ukno=="00011D" & tk==4), matrix(bk4terml)

mkmat swYikZi if (ukno=="00011D" & tk==4), matrix(bk4term2) 

matrix betak4=syminv(bk4terml)*bk4term2

svmat betak4 

*

mkmat swZiO_ZiOp swZil_Zilp swZi2_Zi2p swZi3_Zi3p swZi4_Zi4p swZi5_Zi5p if 
(ukno=="00011D" & tk==5), matrix(bk5terml)

mkmat swYikZi if (ukno=="00011D" & tk==5), matrix(bk5term2)
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m a t r i x  b e t a k 5 = s y m i n v ( b k 5 t e r m l ) * b k 5 t e r m 2  

s v m a t  b e t a k 5

■k

m k m a t   s w Z i O _ Z i O p  s w Z i l _ Z i l p  s w Z i 2 _ Z i 2 p  s w Z i 3 _ Z i 3 p  s w Z i 4 _ Z i 4 p  s w Z i 5 _ Z i 5 p  i f  
( u k n o = = " 0 0 0 1 1 D "  &  t k = = 6 ) , m a t r i x ( b k 6 t e r m l )

m k m a t  s w Y i k Z i  i f  ( u k n o = = " 0 0 0 1 1 D "  &  t k = = 6 ) , m a t r i x ( b k 6 t e r m 2 ) 

m a t r i x  b e t a k 6 = s y m i n v ( b k 6 t e r m l ) * b k 6 t e r m 2  

s v m a t  b e t a k 6

■ k

m k m a t   s w Z i O _ Z i O p  s w Z i l _ Z i l p  s w Z i 2 _ Z i 2 p  s w Z i 3 _ Z i 3 p  s w Z i 4 _ Z i 4 p  s w Z i 5 _ Z i 5 p  i f  
( u k n o = = " 0 0 0 1 1 D "  &  t k = = 7 ) ,  m a t r i x ( b k 7 t e r m l )

m k m a t  s w Y i k Z i  i f  ( u k n o = = " 0 0 0 1 1 D "  &  t k = = 7 ) ,  m a t r i x ( b k 7 t e r m 2 ) 

m a t r i x  b e t a k 7 = s y m i n v ( b k 7 t e r m i ) * b k 7 t e r m 2  

s v m a t  b e t a k 7

■ k

m k m a t   s w Z i O _ Z i O p  s w Z i l _ Z i l p  s w Z i 2 _ Z i 2 p  s w Z i 3 _ Z i 3 p  s w Z i 4 _ Z i 4 p  s w Z i 5 _ Z i 5 p  i f  
( u k n o = = " 0 0 0 1 1 D "  &  t k = = 8 ) ,  m a t r i x ( b k 8 t e r m l )

m k m a t  s w Y i k Z i  i f  ( u k n o = = " 0 0 0 1 1 D "  &  t k = = 8 ) ,  m a t r i x ( b k 8 t e r m 2 ) 

m a t r i x  b e t a k 8 = s y m i n v ( b k 8 t e r m i ) * b k 8 t e r m 2  

s v m a t  b e t a k 8

■ k

m k m a t   s w Z i O _ Z i O p  s w Z i l _ Z i l p  s w Z i 2 _ Z i 2 p  s w Z i 3 _ Z i 3 p  s w Z i 4 _ Z i 4 p  s w Z i 5 _ Z i 5 p  i f  
( u k n o = = " 0 0 0 1 1 D "  &  t k = = 9 ) , m a t r i x ( b k 9 t e r m l )

m k m a t  s w Y i k Z i  i f  ( u k n o = = " 0 0 0 1 1 D "  &  t k = = 9 ) , m a t r i x ( b k 9 t e r m 2 ) 

m a t r i x  b e t a k 9 = s y m i n v ( b k 9 t e r m l ) * b k 9 t e r m 2

~ k

s v m a t  b e t a k 9

m k m a t   s w Z i O _ Z i O p  s w Z i l _ Z i l p  s w Z i 2 _ Z i 2 p  s w Z i 3 _ Z i 3 p  s w Z i 4 _ Z i 4 p  s w Z i 5 _ Z i 5 p  i f  
( u k n o = = " 0 0 0 1 1 D "  &  t k = = 1 0 ) ,  m a t r i x ( b k l O t e r m l )

m k m a t  s w Y i k Z i  i f  ( u k n o = = " 0 0 0 1 1 D "  &  t k = = 1 0 ) ,  m a t r i x ( b k l 0 t e r m 2 ) 

m a t r i x  b e t a k l O = s y m i n v ( b k l O t e r m l ) * b k l 0 t e r m 2  

*

s v m a t  b e t a k l O

m k m a t   s w Z i O _ Z i O p  s w Z i l _ Z i l p  s w Z i 2 _ Z i 2 p  s w Z i 3 _ Z i 3 p  s w Z i 4 _ Z i 4 p  s w Z i 5 _ Z i 5 p  i f  
( u k n o = = " 0 0 0 1 1 D "  &  t k = = l l ) ,  m a t r i x ( b k l l t e r m l )

m k m a t  s w Y i k Z i  i f  ( u k n o = = " 0 0 0 1 1 D "  &  t k = = l l ) ,  m a t r i x ( b k l l t e r m 2 ) 

m a t r i x  b e t a k l l = s y m i n v ( b k l l t e r m l ) * b k l l t e r m 2  

s v m a t  b e t a k l l

2 6 8





mkruat swYikZi if (ukno=="00011D" & tk==18), matrix (bkl8term2)

matrix betakl8 =syminv(bkl8 terml)*bkl8 term2 

svmat betakl8

~k
mkmat swZiO_ZiOp swZil_Zilp swZi2_Zi2p swZi3_Zi3p swZi4_Zi4p swZi5_Zi5p if 
(ukno=="00011D" & tk==19), matrix(bkl9terml)

mkmat swYikZi if (ukno=="00011D" & tk==19), matrix(bkl9term2) 

matrix betakl9=syminv(bkl9terml)*bkl9term2 

svmat betakl9

matrix
beta=betakl+betak2+betak3+betak4+betak5+betak6+betak7+betak8+betak9+betakl0+beta
kll+betakl2+betakl3+betakl4+betakl5+betakl6+betakl7+betakl8+betakl9

svmat beta

gen bOx=betal if constx==l 
egen bO=min(bOx)

gen blx=betal if constx= = 2  
egen bl=min(blx)

gen b2x=betal if constx==3 
egen b2 =min(b2 x)

gen b3x=betal if constx==4 
egen b3=min(b3x)

gen b4x=betal if constx==5 
egen b4=min(b4x)

gen b5x=betal if constx= = 6  
egen b5=min(b5x)

matrix list beta

sum bO bl b2 b3 b4 b5

drop bOx blx b2x b3x b4x b5x

gen meancost= bO+bl* meanage+b2* meanbmi+b3* meanfpg+b4* meanrace+b5* meansex 

sum meancost

**For the standard e rro rs  of the coefficients**

gen bOklx=betakll if (constx==l) 
egen bOkl=min(bOklx)

gen blklx=betakll if (constx==2 ) 
egen blkl=min(blklx)

gen b2klx=betakll if (constx==3) 
egen b2 kl=min(b2 klx)
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gen b4klx=betakl1 if 
egen b4kl=min(b4klx)

gen b5klx=betakll if 
egen b5kl=min(b5klx)

gen b0 k2 x=betak2 1 if 
egen b0 k2 =min(b0 k2 x)

gen blk2 x=betak2 1 if 
egen blk2 =min(blk2 x)

gen b2 k2 x=betak2 1 if 
egen b2 k2 =min(b2 k2 x)

gen b3k2x=betak21 if 
egen b3k2=min(b3k2x)

gen b4k2 x=betak2 1 if 
egen b4k2=min(b4k2x)

gen b5k2x=betak21 if 
egen b5k2=min(b5k2x)

gen b0k3x=betak31 if 
egen b0k3=min(b0k3x)

gen blk3x=betak31 if 
egen blk3=min(blk3x)

gen b2k3x=betak31 if 
egen b2k3=min(b2k3x)

gen b3k3x=betak31 if 
egen b3k3=min(b3k3x)

gen b4k3x=betak31 if 
egen b4k3=min(b4k3x)

gen b5k3x=betak31 if 
egen b5k3=min(b5k3x)

gen bOk4x=betak41 if 
egen bOk4=min(bOk4x)

gen blk4x=betak41 if 
egen blk4=min(blk4x)

gen b2k4x=betak41 if 
egen b2k4=min(b2k4x)

gen b3k4x=betak41 if 
egen b3k4=min(b3k4x)

gen b4k4x=betak41 if 
egen b4k4=min(b4k4x)

gen b5k4x=betak41 if 
egen b5k4=min(b5k4x)

gen b3klx=betakll if
egen b3kl=min(b3klx)

(constx==4)

(constx==5)

(constx==6 )

(constx==l)

(constx==2 )

(constx==3)

(constx==4)

(constx==5)

(constx==6 ) 

(constx==l)

(constx==2 ) 

(constx==3)

(constx==4)

(constx==5) 

(constx==6 )

(constx==l) 

(constx==2 ) 

(constx==3) 

(constx==4)

(constx==5)

(constx==6 )

gen b0k5x=betak51 if (constx==l)



egen b0k5=min(b0k5x)

gen blk5x=betak51 if 
egen blk5=min(blk5x)

(constx==2 )

gen b2k5x=betak51 if 
egen b2k5=min(b2k5x)

(constx==3)

gen b3k5x=betak51 if 
egen b3k5=min(b3k5x)

(constx==4)

gen b4k5x=betak51 if 
egen b4k5=min(b4k5x)

(constx==5)

gen b5k5x=betak51 if 
egen b5k5=min(b5k5x)

(constx==6 )

gen b0k6x=betak61 if 
egen b0 k6=min(b0 k6 x)

(constx==l)

gen blk6x=betak61 if 
egen blk6=min(blköx)

(constx==2 )

gen b2k6x=betak61 if 
egen b2 k6=min(b2 k6 x)

(constx==3)

gen b3k6x=betak61 if 
egen b3k6=min(b3k6x)

(constx==4)

gen b4k6x=betak61 if 
egen b4k6=min(b4k6x)

(constx==5)

gen b5k6x=betak61 if 
egen b5k6=min(b5k6x)

(constx==6 )

gen b0k7x=betak71 if 
egen b0k7=min(b0k7x)

(constx==l)

gen blk7x=betak71 if 
egen blk7=min(blk7x)

(constx==2 )

gen b2k7x=betak71 if 
egen b2k7=min(b2k7x)

(constx==3)

gen b3k7x=betak71 if 
egen b3k7=min(b3k7x)

(constx==4)

gen b4k7x=betak71 if 
egen b4k7=min(b4k7x)

(constx==5)

gen b5k7x=betak71 if 
egen b5k7=min(b5k7x)

(constx==6 )

gen b0k8x=betak81 if 
egen bOk8 =min(b0 k8 x)

(constx==l)

gen blk8x=betak81 if 
egen blk8 =min(blk8 x)

(constx==2 )

gen b2k8x=betak81 if 
egen b2 k8 =min(b2 k8 x)

(constx==3)

gen b3k8x=betak81 if 
egen b3k8=min(b3k8x)

(constx==4)
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gen b4k8x=betak81 if (constx==5) 
egen b4k8=min(b4k8x)

gen b5k8x=betak81 if (constx==6 ) 
egen b5k8=min(b5k8x)

gen b0k9x=betak91 if ( 
egen bOk9=min(b0k9x)

constx==l)

gen blk9x=betak91 if (constx==2) 
egen blk9=min(blk9x)

gen b2k9x=betak91 if (constx==3) 
egen b2k9=min(b2k9x)

gen b3k9x=betak91 if (constx==4) 
egen b3k9=min(b3k9x)

gen b4k9x=betak91 if ( 
egen b4k9=min(b4k9x)

constx==5)

gen b5k9x=betak91 if ( 
egen b5k9=min(b5k9x)

constx==6 )

gen b0 kl0 x=betakl0 1 if 
egen bOklO=min(bOklOx)

(constx==l)

gen blkl0 x=betakl0 1 if 
egen blklO=min(blklOx)

(constx==2 )

gen b2 kl0 x=betakl0 1 if 
egen b2 kl0 =min(b2 kl0 x)

(constx==3)

gen b3kl0x=betakl01 if 
egen b3kl0=min(b3kl0x)

(constx==4)

gen b4kl0 x=betakl0 1 if 
egen b4kl0=min(b4kl0x)

(constx==5)

gen b5kl0x=betakl01 if 
egen b5kl0=min(b5kl0x)

(constx==6 )

gen bOkllx=betaklll if 
egen bOkll=min(bOkllx)

(constx==l)

gen bl kllx=betakl1 1 if 
egen blkll=min(blkllx)

(constx==2 )

gen b2 kllx=betaklll if 
egen b2 kll=min(b2 kllx)

(constx==3)

gen b3kllx=betaklll if 
egen b3kll=min(b3kllx)

(constx==4)

gen b4kllx=betaklll if 
egen b4kll=min(b4kllx)

(constx==5)

gen b5kllx=betaklll if 
egen b5kll=min(b5kllx)

(constx==6 )

gen b0 kl2 x=betakl2 1 if 
egen b0 kl2 =min(b0 kl2 x)

(constx==l)
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gen blkl2 x=betakl2 1 if 
egen blkl2 =min(blkl2 x)

(constx==2 )

gen b2 kl2 x=betakl2 1 if 
egen b2 kl2 =min(b2 kl2 x)

(constx==3)

gen b3kl2x=betakl21 if 
egen b3kl2=min(b3kl2x)

(constx==4)

gen b4kl2 x=betakl2 1 if 
egen b4kl2 =min(b4kl2 x)

(constx==5)

gen b5kl2x=betakl21 if 
egen b5kl2=min(b5kl2x)

(constx==6 )

gen b0kl3x=betakl31 if 
egen b0kl3=min(b0kl3x)

(constx==l)

gen blkl3x=betakl31 if 
egen blkl3=min(blkl3x)

(constx==2 )

gen b2kl3x=betakl31 if 
egen b2kl3=min(b2kl3x)

(constx==3)

gen b3kl3x=betakl31 if 
egen b3kl3=min(b3kl3x)

(constx==4)

gen b4kl3x=betakl31 if 
egen b4kl3=min(b4kl3x)

(constx==5)

gen b5kl3x=betakl31 if 
egen b5kl3=min(b5kl3x)

(constx==6 )

gen b0kl4x=betakl41 if 
egen b0kl4=min(bOkl4x)

(constx==l)

gen blkl4x=betakl41 if 
egen blkl4=min(blkl4x)

(constx==2 )

gen b2kl4x=betakl41 if 
egen b2kl4=min(b2kl4x)

(constx==3)

gen b3kl4x=betakl41 if 
egen b3kl4=min(b3kl4x)

(constx==4)

gen b4kl4x=betakl41 if 
egen b4kl4=min(b4kl4x)

(constx==5)

gen b5kl4x=betakl41 if 
egen b5kl4=min(b5kl4x)

(constx==6 )

gen b0kl5x=betakl51 if 
egen b0kl5=min(b0kl5x)

(constx==l)

gen blkl5x=betakl51 if 
egen blkl5=min(blkl5x)

(constx==2 )

gen b2kl5x=betakl51 if 
egen b2kl5=min(b2kl5x)

(constx==3)

gen b3kl5x=betakl51 if 
egen b3kl5=min(b3kl5x)

(constx==4)

gen b4kl5x=betakl51 if (constx==5)



egen b4kl5=min(b4kl5x)

gen b5kl5x=betakl51 if 
egen b5kl5=min(b5kl5x)

(constx==6 )

gen b0kl6x=betakl61 if 
egen b 0 kl6=min(b0 kl6x)

(constx==l)

gen blkl6x=betakl61 if 
egen blkl6=min(blkl6x)

(constx==2 )

gen b2kl6x=betakl61 if 
egen b2 kl6=min(b2 kl6x)

(constx==3)

gen b3kl6x=betakl61 if 
egen b3kl6=min(b3kl6x)

(constx==4)

gen b4kl6x=betakl61 if 
egen b4kl6=min(b4kl6x)

(constx==5)

gen b5kl6x=betakl61 if 
egen b5kl6=min(b5kl6x)

(constx==6 )

gen b0kl7x=betakl71 if 
egen b0kl7=min(b0kl7x)

(constx==l)

gen blkl7x=betakl71 if 
egen blkl7=min(blkl7x)

(constx==2 }

gen b2kl7x=betakl71 if 
egen b2kl7=min(b2kl7x)

(constx==3)

gen b3kl7x=betakl71 if 
egen b3kl7=min(b3kl7x)

(constx==4)

gen b4kl7x=betakl71 if 
egen b4kl7=min(b4kl7x)

(constx==5)

gen b5kl7x=betakl71 if 
egen b5kl7=min(b5kl7x)

(constx==6 )

gen b0kl8x=betakl81 if 
egen b0 kl8 =min(bOkl8 x)

(constx==l)

gen blkl8x=betakl81 if 
egen blkl8 =min(blkl8 x)

(constx==2 )

gen b2kl8x=betakl81 if 
egen b2 kl8 =min(b2 kl8 x)

(constx==3)

gen b3kl8x=betakl81 if 
egen b3kl8=min(b3kl8x)

(constx==4)

gen b4kl8x=betakl81 if 
egen b4kl8=min(b4kl8x)

(constx==5)

gen b5kl8x=betakl81 if 
egen b5kl8=min(b5kl8x)

(constx==6 )

gen b0kl9x=betakl91 if 
egen b0kl9=min(b0kl9x)

(constx==l)

gen blkl9x=betakl91 if 
egen blkl9=min(blkl9x)

(constx==2 )
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gen b2kl9x=betakl91 if (constx==3) 
egen b2kl9=min(b2kl9x)

gen b3kl9x=betakl91 if (constx==4) 
egen b3kl9=min(b3kl9x)

gen b4kl9x=betakl91 if (constx==5) 
egen b4kl9=min(b4kl9x)

gen b5kl9x=betakl91 if (constx==6 ) 
egen b5kl9=min(b5kl9x)

gen bOk=
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace

bOkl if t
b0 k=b0 k2
b0k=b0k3
b0k=b0k4
b0k=b0k5
b0 k=b0 k6
b0k=b0k7
b0 k=b0 k8
b0k=b0k9
b0 k=b0 kl0
b0 k=b0 kll
b0 k=bûkl2
b0k=b0kl3
b0k=b0kl4
b0k=b0kl5
b0 k=b0 kl6
b0k=b0kl7
b0 k=b0 kl8
b0k=b0kl9

k==l 
if tk== 
if tk== 
if tk== 
if tk== 
if tk== 
if tk== 
if tk== 
if tk== 
if tk= 
if tk= 
i f  t k =  

if tk= 
if tk= 
if tk= 
i f  t k =  

if tk= 
if tk= 
if tk=

2
3
4

5
6 
1 
8 
9

=  10 
=  11 
=  12 
= 13 
= 14 
= 15 
= 16 
= 17 
= 18 
= 19

gen blk=
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace

blkl if t
blk=blk2
blk=blk3
blk=blk4
blk=blk5
blk=blk6
blk=blk7
blk=blk8
blk=blk9
blk=blkl0
blk=blkll
blk=blkl2
blk=blkl3
blk=blkl4
blk=blkl5
blk=blkl6
blk=blkl7
blk=blkl8
blk=blkl9

k==l 
if tk== 
if tk== 
if tk== 
if tk== 
if tk== 
if tk== 
if tk== 
if tk== 
if tk= 
i f  t k =  

if tk= 
if tk= 
if tk= 
if tk= 
if tk= 
if tk= 
if tk= 
if tk=

2
3
4

5
6
7
8 
9
=  10 

=  11 
=  12 
= 13 
= 14 
= 15 
= 16 
= 17 
= 18 
= 19

gen b2 k=b2 kl if tk==l 
replace b2 k=b2 k2 if tk= = 2  
replace b2k=b2k3 if tk==3 
replace b2k=b2k4 if tk==4 
replace b2k=b2k5 if tk==5 
replace b2 k=b2 k6 if tk= = 6
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replace b2k=b2k7 if t k==7
replace b2 k=b2 k8 if tk== 8
replace b2k=b2k9 if tk== 9
replace b2 k=b2 kl0 if tk== 1 0
replace b2 k=b2 kll if tk== 1 1
replace b2 k=b2 kl2 if tk== 1 2
replace b2k=b2kl3 if tk== 13
replace b2k=b2kl4 if tk== 14
replace b2k=b2kl5 if tk== 15
replace b2 k=b2 kl6 if tk==16
replace b2k=b2kl7 if tk==17
replace b2 k=b2 kl8 if tk== 18
replace b2k=b2kl9 if tk== 19

gen b3k=
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace

=b3kl if t
b3k=b3k2
b3k=b3k3
b3k=b3k4
b3k=b3k5
b3k=b3k6
b3k=b3k7
b3k=b3k8
b3k=b3k9
b3k=b3kl0
b3k=b3kll
b3k=b3kl2
b3k=b3kl3
b3k=b3kl4
b3k=b3kl5
b3k=b3kl6
b3k=b3kl7
b3k=b3kl8
b3k=b3kl9

k==l
if tk= = 2  
if tk==3 
if tk==4 
if tk==5 
if tk= = 6  
if tk==7 
if tk= = 8  
if tk==9 
if tk= = 1 0  
if tk==ll 
if tk= = 1 2  
if tk==13 
if tk==14 
if tk==15 
if tk==16 
if tk==17 
if tk==18 
if tk==19

*

gen b4 k:=b4 kl. if t
repiace b4 k==b4k2
repiace b4 k==b4k3
repiace b4 k==b4k4
repiace b4 k==b4k5
repiace b4 k==b4k6
repiace b4 k=;b4 k7
repiace b4 k==b4k8
repiace b4 k==b4k9
repiace b4 k==b4klO
repiace b4 k==b4kl 1
repiace b4 k==b4kl2
repiace b4 k=:b4 kl3
repiace b4 k==b4kl 4
repiace b4 k=;b4 kl5
repiace b4 k=:b4 kl6
repiace b4 k=;b4 kl7
repiace b4 k=:b4 kl8
repiace b4 k=:b4 kl 9

k==l
if tk= = 2  
if tk==3 
if tk==4 
if tk==5 
if tk= = 6  
if tk==7 
if tk= = 8  
if tk==9 
if tk= = 1 0  
if tk==ll 
if tk= = 1 2  
if tk==13 
if tk==14 
if tk==15 
if tk==16 
if tk==17 
if tk==18 
if tk==19

gen b5k=b5kl if tk==l 
replace b5k=b5k2 if tk==2 
replace b5k=b5k3 if tk==3 
replace b5k=b5k4 if tk==4 
replace b5k=b5k5 if tk==5 
replace b5k=b5k6 if tk= = 6  
replace b5k=b5k7 if tk==7



 





drop ksikl3_lx ksikl3_2x ksikl3_3x ksikl3_4x ksikl3_5x ksikl3_6x

k  k

egen ksikl3_6=min( ksikl3_6x), by(ukno)

J  ^  k  k

gen ksikl4_lx= ksikitest if (tk==4 & constx==l) 
egen ksikl4_l=min( ksikl4_lx), by(ukno)

gen ksikl4_2x= ksikitest if (tk==4 & constx==2) 
egen ksikl4_2=min( ksikl4_2x), by(ukno)

gen ksikl4_3x= ksikitest if (tk==4 & constx==3) 
egen ksikl4_3=min( ksikl4_3x), by(ukno)

gen ksikl4_4x= ksikitest if (tk==4 & constx==4) 
egen ksikl4_4=min( ksikl4_4x), by(ukno)

gen ksikl4_5x= ksikitest if (tk==4 & constx==5) 
egen ksikl4_5=min( ksik!4_5x), by(ukno)

gen ksikl4_6x= ksikitest if (tk==4 & constx==6 ) 
egen ksikl4_6=min( ksikl4_6x), by(ukno)

drop ksik!4 lx ksik!4 2x ksik!4_3x ksik!4__4x ksik!4_5x ksik!4_6x

•k k

k  k  ]_ =  5  k  k

gen ksikl5_lx= ksikitest if (tk==5 & constx==l) 
egen ksik!5_l=min( ksikl5_lx), by(ukno)

gen ksikl5_2x= ksikitest if (tk==5 & constx==2) 
egen ksikl5_2=min( ksikl5_2x), by(ukno)

gen ksikl5_3x= ksikitest if (tk==5 & constx==3) 
egen ksikl5_3=min( ksik!5_3x), by(ukno)

gen ksikl5_4x= ksikitest if (tk==5 & constx==4) 
egen ksikl5_4=min ( ksikl5__4x) , by(ukno)

gen ksikl5_5x= ksikitest if (tk==5 & constx==5) 
egen ksikl5_5=min( ksikl5_5x), by(ukno)

gen ksikl5_6x= ksikitest if (tk==5 & constx==6 ) 
egen ksikl5_6=min( ksikl5_6x), by(ukno)

drop ksik!5_lx ksik!5_2x ksik!5_3x ksik!5_4x ksik!5_5x ksik!5_6x

k  k

k  k  =  ^  k  k

gen ksikl6_lx= ksikitest if (tk= = 6 & constx==l) 
egen ksikl6_l=min( ksikl6_lx), by(ukno)

gen ksikl6_ 2 x= ksikitest if (tk= = 6 & constx==2 ) 
egen ksikl6_ 2 =min( ksik!6_ 2 x), by(ukno)

gen ksikl6_3x= ksikitest if (tk= = 6 & constx==3) 
egen ksikl6_3=min( ksikl6_3x), by(ukno)

gen ksikl6_4x= ksikitest if (tk= = 6 & constx==4) 
egen ksikl6_4=min( ksikl6_4x), by(ukno)

gen ksik!6_5x= ksikitest if (tk==6 & constx==5)
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gen ksikll2_5x= ksikitest if (tk==12 & constx==5) 
egen ksikll2_5=min( ksikll2_5x), by(ukno)

gen ksikll2_ 6x= ksikitest if (tk= = 1 2 & constx==6 ) 
egen ksikll2_ 6=min( ksikll2_ 6x), by(ukno)

drop ksikll2_lx ksikll2_2x ksikll2_3x ksikll2_4x ksikll2_5x ksikll2_6x 

* *

**1=13**
gen ksikll3_lx= ksikitest if (tk==13 & constx==l) 
egen ksikll3_l=min( ksikll3_lx), by(ukno)

gen ksikll3_2x= ksikitest if (tk==13 & constx==2) 
egen ksikll3_2=min( ksikll3_2x), by(ukno)

gen ksikll3_3x= ksikitest if (tk==13 & constx==3) 
egen ksikll3_3=min( ksikll3_3x), by(ukno)

gen ksikll3_4x= ksikitest if (tk==13 & constx==4) 
egen ksikll3_4=min( ksikll3__4x) , by(ukno)

gen ksikll3_5x= ksikitest if (tk==13 & constx==5) 
egen ksikll3_5=min( ksikll3_5x), by(ukno)

gen ksikll3_6x= ksikitest if (tk==13 & constx==6 ) 
egen ksikll3_6=min( ksikll3_6x), by(ukno)

drop ksikll3_lx ksikll3_2x ksikll3_3x ksikll3_4x ksikll3_5x ksikll3_6x 

* *
* j_=}_ 4 * *
gen ksikll4_lx= ksikitest if (tk==14 & constx==l) 
egen ksikll4_l=min( ksikll4_lx), by(ukno)

gen ksikll4_2x= ksikitest if (tk==14 & constx==2) 
egen ksikll4_2=min( ksikll4_2x), by(ukno)

gen ksikll4_3x= ksikitest if (tk==14 & constx==3) 
egen ksikll4_3=min( ksikll4_3x), by(ukno)

gen ksikll4_4x= ksikitest if (tk==14 & constx==4) 
egen ksikll4_4=min( ksikll4_4x), by(ukno)

gen ksikll4_5x= ksikitest if (tk==14 & constx==5) 
egen ksikll4_5=min( ksikll4_5x), by(ukno)

gen ksikll4_6x= ksikitest if (tk==14 & constx==6 ) 
egen ksikll4_6=min( ksikll4_6x), by(ukno)

drop ksikll4_lx ksikll4_2x ksikll4_3x ksikll4__4x ksikll4_5x ksikll4_6x

* *
**1=15**
gen ksikll5_lx= ksikitest if (tk==15 & constx==l) 
egen ksikll5_l=min( ksikll5_lx), by(ukno)

gen ksikll5_2x= ksikitest if (tk==15 & constx==2) 
egen ksikll5_2=min( ksikll5_2x), by(ukno)

gen ksikll2_4x= ksikitest if (tk==12 & constx==4)
egen ksikll2_4=min( ksikll2_4x), by(ukno)

gen ksikll5_3x= ksikitest if (tk==15 & constx==3)
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gen ksikll5_4x= ksikitest if (tk==15 & constx==4) 
egen ksikll5_4=min( ksikll5_4x), by(ukno)

gen ksikll5_5x= ksikitest if (tk==15 & constx==5) 
egen ksikll5_5=min( ksikll5_5x), by(ukno)

gen ksikll5_6x= ksikitest if (tk==15 & constx==6 ) 
egen ksikll5_6=min( ksikll5_6x), by(ukno)

drop ksikll5_lx ksikll5_2x ksikll5_3x ksikll5_4x ksikll5_5x ksikll5_6x

k  k

**1=16**
gen ksikll6_lx= ksikitest if (tk==16 & constx==l) 
egen ksikll6_l=min( ksikll6_lx), by(ukno)

gen ksikll6_ 2 x= ksikitest if (tk==16 & constx==2 ) 
egen ksikll6_ 2 =min( ksikll6_2 x), by(ukno)

gen ksikll6_3x= ksikitest if (tk==16 & constx==3) 
egen ksikll6_3=min( ksikll6_3x), by(ukno)

gen ksikll6_4x= ksikitest if (tk==16 & constx==4) 
egen ksikll6_4=min( ksikll6_4x), by(ukno)

gen ksikll6_5x= ksikitest if (tk==16 & constx==5) 
egen ksikll6_5=min( ksikll6_5x), by(ukno)

gen ksikll6_ 6x= ksikitest if (tk==16 & constx==6 ) 
egen ksikll6_ 6=min( ksikll6_ 6x), by(ukno)

drop ksikll6 lx ksikll6_2x ksikll6_3x ksikll6_4x ksikll6_5x ksikll6_ 6x

egen ksikll5_3=min( ksikll5_3x), by(ukno)

**2̂  = 2_'y**

gen ksikll7_lx= ksikitest if (tk==17 & constx==l) 
egen ksikll7_l=min( ksikll7_lx), by(ukno)

gen ksikll7_2x= ksikitest if (tk==17 & constx==2) 
egen ksikll7_2=min( ksikll7_2x), by(ukno)

gen ksikll7_3x= ksikitest if (tk==17 & constx==3) 
egen ksikll7_3=min( ksikll7_3x), by(ukno)

gen ksikll7_4x= ksikitest if (tk==17 & constx==4) 
egen ksikll7_4=min( ksikll7_4x), by(ukno)

gen ksikll7_5x= ksikitest if (tk==17 & constx==5) 
egen ksikll7_5=min( ksikll7_5x), by(ukno)

gen ksikll7_6x= ksikitest if (tk==17 & constx==6 ) 
egen ksikll7_6=min( ksikll7_6x), by(ukno)

drop ksikll7 lx ksikll7 2x ksikll7_3x ksikll7_4x ksikl!7_5x ksikll7_6x

k  k

**1=18**
gen ksikll8_lx= ksikitest if (tk==18 & constx==l) 
egen ksikll8_l=min( ksikll8_lx), by(ukno)

gen ksikll8_2x= ksikitest if (tk==18 & constx==2)
egen ksikll8_2=min( ksikll8_2x), by(ukno)



gen ksikll8_4x= ksikitest if (tk==18 & constx==4) 
egen ksikll8_4=min( ksikll8_4x), by(ukno)

gen ksikll8_5x= ksikitest if (tk==18 & constx==5) 
egen ksikll8_5=min( ksikll8_5x), by(ukno)

gen ksikl!8_ 6x= ksikitest if (tk==18 & constx==6 ) 
egen ksikll8_ 6=min( ksikll8_ 6x), by(ukno)

drop ksik!18_lx ksik!18_2x ksik!18_3x ksik!18_4x ksik!18_5x ksik!18_6x

gen ksikll8_3x= ksikitest if (tk==18 & constx==3)
egen ksikll8_3=min( ksikll8_3x), by(ukno)

* *]_=]_ 9* *
gen ksikll9_lx= ksikitest if (tk==19 & constx==l) 
egen ksikll9_l=min( ksikll9_lx), by(ukno)

gen ksikll9_2x= ksikitest if (tk==19 & constx==2) 
egen ksikll9 2=min( ksikll9_2x), by(ukno)

gen ksikll9_3x= ksikitest if (tk==19 & constx==3) 
egen ksikll9_3=min( ksikll9_3x), by(ukno)

gen ksikll9_4x= ksikitest if (tk==19 & constx==4) 
egen ksikll9_4=min( ksikll9_4x), by(ukno)

gen ksik!19_5x= ksikitest if (tk==19 & constx==5) 
egen ksikll9_5=min( ksikll9_5x), by(ukno)

gen ksikll9_6x= ksikitest if (tk==19 & constx==6 ) 
egen ksikll9_6=min( ksikll9_6x), by(ukno)

drop ksik!19_lx ksik!19_2x ksik!19_3x ksik!19_4x ksik!19_5x ksik!19_6x

* *
sort

gen

: ukno 

xll 1 =

tk constx 

ksikitest* ksikll 1
gen xll 2 = ksikitest* ksikll_ 2
gen xll 3= ksikitest* ksikll 3
gen xll 4 = ksikitest* ksikll 4
gen xll 5 = ksikitest* ksikll 5
gen xl1_ 6= ksikitest* ksikll_ 6

gen xl2 1 = ksikitest* ksikl2 1
gen xl2 2 = ksikitest* ksikl2 2
gen xl2 3= ksikitest* ksikl2 3
gen xl2 4 = ksikitest* ksikl2_4
gen xl2 5 = ksikitest* ksikl2 5
gen xl2_ 6= ksikitest* ksikl2 6

gen xl3 1= ksikitest* ksikl3 1
gen xl3 2= ksikitest* ksikl3_2
gen xl3 3= ksikitest* ksikl3 3
gen xl3 4 = ksikitest* ksikl3 4
gen xl3 5= ksikitest* ksikl3_5
gen xl3_6= ksikitest* ksikl3 6

gen xl4 1 = ksikitest* ksikl4 1
gen xl4 2 = ksikitest* ksikl4_2
gen xl4 3= ksikitest* ksikl4 3
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gen xl4 4 = ksikitest* ksikl4 4
gen xl4~"5= ksikitest* ksikl4 "5
gen xl4~'6= ksikitest* ksikl4 "6

gen xl5_ 1 = ksikitest* ksikl5 1
gen xl5 ‘ 2 = ksikitest* ksikl5 ‘ 2
gen xl5 ’3= ksikitest* ksikl5 "3
gen xl5~"4 = ksikitest* ksikl5 ’4
gen xl5~"5 = ksikitest* ksikl5 ’5
gen xl5~~6= ksikitest* ksikl5 ~6

gen xl 6 1 = ksikitest* ksikl6 1
gen xl6‘"2 = ksikitest* ksikl6 "2
gen xl 6~’3= ksikitest* ksikl6 '3
gen xl6 "4 = ksikitest* ksikl6 ~4
gen xl6 "5 = ksikitest* ksikl6 ~5
gen xl 6 >= ksikitest* ksikl6 ~6

gen xl7 1 = ksikitest* ksikl7 1
gen xl7 "2 = ksikitest* ksikl7 "2
gen xl7~"3= ksikitest* ksikl7~"3
gen xl7""4 = ksikitest* ksikl7 "4
gen xl7~"5= ksikitest* ksikl7~’5
gen xl7~[6= ksikitest* ksikl7 ~6

gen xl8 1 = ksikitest* ksikl8 1
gen xl8~"2 = ksikitest* ksikl8 "2
gen xl8~"3= ksikitest* ksikl8 "3
gen xl8~"4 = ksikitest* ksikl8 "4
gen xl8~"5= ksikitest* ksikl8 "5
gen xl8~~6= ksikitest* ksikl8 ~6

gen xl9 1 = ksikitest* ksikl9 1
gen xl9‘ 2 = ksi kitest* ksikl9 "2
gen xl9""3= ksikitest* ksikl9 "3
gen xl9~ 4 = ksikitest* ksikl9 "4
gen xl9‘"5= ksikitest* ksikl9 "5
gen xl 9"'6= ksikitest* ksikl9 ~6

gen xllO_l= ksikitest* ksikllO_l 
gen xll0_2 = ksikitest* ksikll0 _ 2  
gen xll0_3= ksikitest* ksikll0_3 
gen xll0_4= ksikitest* ksikll0_4 
gen xll0_5= ksikitest* ksikll0_5 
gen xll0_ 6= ksikitest* ksikll0 _ 6

gen xlll_l= ksikitest* ksiklll_l 
gen xlll_2 = ksikitest* ksiklll_ 2  
gen xlll_3= ksikitest* ksiklll_3 
gen xlll_4= ksikitest* ksiklll_4 
gen xlll_5= ksikitest* ksiklll_5 
gen xlll_6= ksikitest* ksiklll_ 6

gen xll2_l= ksikitest* ksikll2_l 
gen xll2_2 = ksikitest* ksikll2 _ 2  
gen xll2_3= ksikitest* ksikll2_3 
gen xll2_4= ksikitest* ksikll2_4 
gen xll2_5= ksikitest* ksikll2_5 
gen xll2_ 6= ksikitest* ksikll2 _ 6

gen xll3_l= ksikitest* ksikll3_l 
gen xll3_2= ksikitest* ksikll3_2 
gen xll3_3= ksikitest* ksikll3_3 
gen x!13_4= ksikitest* ksik!13_4
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gen xll3 5 = ksikitest* ksikll3 5
gen xll3_ 6= ksikitest* ksikll3_ ö

gen xll4 1 = ksikitest* ksikll4 1

gen xll4 2 = ksikitest* ksikll4_ 2
gen xll4 "3 = ksikitest* ksikll4 3
gen xll4 4 = ksikitest* ksikll4_"4
gen xll4 "5 = ksikitest* ksikll4 '5
gen xll4__'6= ksikitest* ksikll4_ 6

gen xll5_ 1 = ksikitest* ksikll5 1
gen xll5 2 = ksikitest* ksikll5 '2
gen xll5 3= ksikitest* ksikll5 '3
gen xll5 "4 = ksikitest* ksikll5 "4
gen xll5 "5 = ksikitest* ksikll5 '5
gen xll5_ß = ksikitest* ksikll5 ' ö

gen xll 6 1 = ksikitest* ksikllö 1
gen xl 16 2 = ksikitest* ksikllö 2
gen xll6 ‘3= ksikitest* ksikll6_"3
gen xll 6 ’4 = ksikitest* ksikllö "4
gen xll 6 ’5= ksikitest* ksikllö "5
gen xll6_"6= ksikitest* ksikllö_' ö

gen xll7 1= ksikitest* ksikll7 1
gen xll7 ’2 = ksikitest* ksikll7 "2
gen xll7 '3= ksikitest* ksikll7 "3
gen xll7 "4 = ksikitest* ksikll7 "4
gen xl 17 ’5 = ksikitest* ksikll7_"5
gen xl 17 '6= ksikitest* ksikll7 'ö

gen xll8 1 = ksikitest* ksikll8_ 1
gen xll8 "2 = ksikitest* ksikll8 ‘2
gen xll8 "3= ksikitest* ksikll8 '3
gen xll8 ’4 = ksikitest* ksikll8 "4
gen xll8 "5= ksikitest* ksikll8 ‘5
gen xll8_~ö= ksikitest* ksikll8 "ö

gen xll9 1= ksikitest* ksikll9 1
gen xll9 "2 = ksikitest* ksikll9 ’2
gen xll9 "3= ksikitest* ksikll9 ‘3
gen xll9 "4 = ksikitest* ksikll9_"4
gen xll9 "5= ksikitest* ksikll9 ’5
gen xll9 '6= ksikitest* ksikll9_‘ö

* *
drop ksikl*

* *

egen sxll_l=sum(xll_l), by(tk constx) 
egen sxll_2 =sum(xll_2 ), by(tk constx) 
egen sxll_3=sum(xll_3), by(tk constx) 
egen sxll_4=sum(xll_4), by(tk constx) 
egen sxll_5=sum(xll_5), by(tk constx) 
egen sxll_6=sum(xl1_ 6 ), by(tk constx)

egen sxl2_l=sum(xl2_l), by(tk constx) 
egen sxl2_2 =sum(xl2_2 ), by(tk constx) 
egen sxl2_3=sum(xl2_3), by(tk constx) 
egen sxl2_4=sum(xl2_4), by(tk constx) 
egen sxl2_5=sum(xl2_5) , by(tk constx) 
egen sx!2_ 6=sum(x!2_ 6 ), by(tk constx)
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egen sxl3 l=sum(xl3 1 ) , by (tk constx)
egen sxl3 2=sum(xl3 2 ) , by (tk constx)
egen sxl3 3=sum(xl3 3), by (tk constx)
egen sxl3 4=sum(xl3 4) , by (tk constx)
egen sxl3 5=sum(xl3 5) , by (tk constx)
egen sxl3 6=sum(xl3 .6 ) , by (tk constx)

egen sxl4 l=sum(xl4 1 ) , by (tk constx)
egen sxl4 2=sum(xl4 2 ) , by (tk constx)
egen sxl4 3=sum(xl4 3) , by (tk constx)
egen sxl4 4=sum(xl4 4) , by (tk constx)
egen sxl4 5=sum(xl4 5) , by (tk constx)
egen sxl4 6=sum(xl4 _6 ) , by (tk constx)

egen sxl5 l=sum(xl5 1 ), by (tk constx)
egen sxl5 2=sum(xl5 2 ) , by (tk constx)
egen sxl5 3=sum(xl5 3) , by (tk constx)
egen sxl5 4=sum(xl5 4) , by (tk constx)
egen sxl5 5=sum(xl5 5) , by (tk constx)
egen sxl5 6=sum(xl5 _6 ) , by (tk constx)

egen sxl6 l=sum(xl6 1 ) , by (tk constx)
egen sxl6 2 =sum(xl6 2 ) , by (tk constx)
egen sxl6 3=sum(xl6 3) , by (tk constx)
egen sxl6 4=sum(xl6 4) , by (tk constx)
egen sxl6 5=sum(xl6 5) , by (tk constx)
egen sxl6 6=sum(xl6 .6 ), by (tk constx)

egen sxl7 l=sum(xl7 1 ) , by (tk constx)
egen sxl7 2=sum(xl7 2 ) , by (tk constx)
egen sxl7 3=sum(xl7 3) , by (tk constx)
egen sxl7 4=sum(xl7 4) , by (tk constx)
egen sxl7 5=sum(xl7 5) , by (tk constx)
egen sxl7 6=sum(xl7 _6 ) , by (tk constx)

egen sxl8 l=sum(xl8 1 ) , by (tk constx)
egen sxl8 2 =sum(xl8 2 ) , by (tk constx)
egen sx! 8  3=sum(xl8 3) , by (tk constx)
egen sxl8 4=sum(xl8 4) , by (tk constx)
egen sxl8 5=sum(xl8 5) , by (tk constx)
egen sxl8 6=sum(xl8 .6 ) , by (tk constx)

egen sxl9 l=sum(xl9 1 ) , by (tk constx)
egen sxl9 2=sum(xl9 2 ) , by (tk constx)
egen sxl9 3=sum(xl9 3) , by (tk constx)
egen sxl9 4=sum(xl9 4) , by (tk constx)
egen sxl9 5=sum(xl9 5) , by (tk constx)
egen sx!9 6=sum(xl9 6 ) , by (tk constx)

egen sxllO l=sum(xllO 1), by(tk constx)
egen sxllO 2=sum(xll0 2), by(tk constx)
egen sxllO 3=sum(xll0 3) , by(tk constx)
egen sxllO 4=sum(xll0 4), by(tk constx)
egen sxllO 5=sum(xll0 5) , by(tk constx)
egen sxllO 6=sum(xll0 6 ), by(tk constx)

egen sxlll l=sum(xlll 1 ), by(tk constx)
egen sxlll 2 =sum(xlll_2 )i, by(tk constx)
egen sxlll 3=sum(xlll_3) , by(tk constx)
egen sxlll 4=sum(xlll 4)i , by(tk constx)
egen sxlll 5=sum(xlll 5), by(tk constx)
egen sxlll 6=sum(xlll 6 ), by(tk constx)

egen sxll2 l=sum(xll2 1 )i , by(tk constx)
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egen
egen
egen
egen
egen

egen
egen
egen
egen
egen
egen

egen
egen
egen
egen
egen
egen

egen
egen
egen
egen
egen
egen

egen
egen
egen
egen
egen
egen

egen
egen
egen
egen
egen
egen

egen
egen
egen
egen
egen
egen

egen
egen
egen
egen
egen
egen

•k  ~k

egen
egen
egen
egen
egen
egen

sxll2_2 =sum(xll2 
sxll2_3=sum(xll2 
sxll2_4=sum(xll2 
sxll2_5=sum(xll2 
sxll2_ 6=sum(xll2

sxll3_l=sum(xll3 
sxll3_2=sum(xll3 
sxll3_3=sum(xll3 
sxll3_4=sum(xll3 
sxll3_5=sum(xll3 
sxll3_6=sum(xll3

sxll4_l=sum(xll4 
sxll4_2=sum(xll4 
sxll4_3=suin(xll4 
sxll4_4=sum(xll4 
sxll4_5=sum(xll4 
sxll4 6=sum(xll4

sxll5_l=sum(xl!5 
sxll5_2=sum(xll5 
sxll5_3=sum(xll5 
sxll5_4=sum(xll5 
sxll5 5=sum(xll5 
sxll5_6=sum(xll5

sxll6_l=sum(xll6 
sxll6_2 =sum(xll6 
sxl 16__3=sum (xl 16 
sxll6_4=sum(xll6 
sxll6_5=sum(xll6 
sxll6_ 6=sum(xll6

sxll7_l=sum(xll7 
sxll7_2=sum(xll7 
sxll7_3=sum(xll7 
sxll7_4=sum(xll7 
sxll7_5=sum(xll7 
sxll7_6=sum(xll7

sxll8_l=sum(xll8 
sxll8_2 =sum(xll8 
sxll8_3=sum(xll8 
sxll8_4=sum(xll8 
sxll8_5=sum(xll8 
sxll8_ 6=sum(xll8

sxll9_l=sum(xll9 
sxl!9_2=sum(xll9 
sxll9_3=sum(xll9 
sxll9_4=sum(xll9 
sxll9_5=sum(xll9 
sx!19 6=sum(xll9

2) , by (tk constx)
3) , by (tk constx)
4) , by (tk constx)
5) , by (tk constx)
6) , by (tk constx)

1) , by (tk constx)
2) , by (tk constx)
3) , by (tk constx)
4) , by (tk constx)
5) , by (tk constx)
6) , by (tk constx)

1) , by (tk constx)
2) , by (tk constx)
3) , by (tk constx)
4) , by (tk constx)
5) , by (tk constx)
.6) , by (tk constx)

1) , by (tk constx)
2) , by (tk constx)
3) , by (tk constx)
4) , by (tk constx)
5) , by (tk constx)
6) , by (tk constx)

1) , by (tk constx)
2) , by (tk constx)
3) , by (tk constx)
4) , by (tk constx)
5) , by (tk constx)
6) , by (tk constx)

1) , by (tk constx)
2) , by (tk constx)
3) , by (tk constx)
4) , by (tk constx)
5) , by (tk constx)
6) , by (tk constx)

1) , by (tk constx)
2) , by (tk constx)
3) , by (tk constx)
4) , by (tk constx)
5) , by (tk constx)
6) , by (tk constx)

1) , by (tk constx)
2) , by (tk constx)
3) , by (tk constx)
4) , by (tk constx)
5) , by (tk constx)
6), by (tk constx)

sZiO_ZiOp=sum(ZiO_ZiOp) , 
sZil__Zilp=sum (Zil_Zilp) , 
sZi2_Zi2p=sum(Zi2_Zi2p), 
sZi3_Zi3p=sum(Zi3_Zi3p), 
sZi4_Zi4p=sum(Zi4_Zi4p), 
sZi5_Zi5p=sum(Zi5_Zi5p),

by(tk constx) 
by(tk constx) 
by(tk constx) 
by(tk constx) 
by(tk constx) 
by(tk constx)



keep if ukno=="00011D

sort tk constx

mkmat sZiO_ZiOp sZil_Zilp sZi2_Zi2p sZi3_Zi3p sZi4_Zi4p sZi5_Zi5p if tk==l, 
matrix(seAx)

matrix seA=(1/1138)*seAx

svmat seA 
matrix list seA

matrix seinvA=syminv(seA)

svmat seinvA 
matrix list seinvA

mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat

sxll_l 
sxl2_l 
sxl3_l 
sxl4_l 
sxl5_l 
sxl6_l 
sxl7_l 
sxl8_l 
sxl9_l 
sxl1 0_ 
sxlll_ 
sxll2~ 
sxll3_ 
sxll4_ 
sxl15_ 
sxl16_ 
sxll7_ 
sxll8_ 
sxl 19

sxll_ 2  
sxl2 _ 2  
sxl3_2 
sxl4_2 
sxl5_2 
sxl6 _ 2  
sxl7_2 
sxl8 _ 2  
sxl9_2 

1 sxllO_ 
sxlll_ 
sxl1 2_ 
sxll3_ 
sxll4_ 
sxll5_ 
sxl 16_ 
sxll7_ 
sxll8_ 
sxl 19

sxll_3 
sxl2_3 
sxl3_3 
sxl4_3 
sxl5_3 
sxl6_3 
sxl7_3 
sxl8_3 
sxl9_3 
2 sxl1 0  

sxl 1 1  
sxll2 
sxll3 
sxll4 
sxll5 
sxll6 
sxll7 
sxll8 
sx!19

sxll_4 
sxl2_4 
sxl3_4 
sxl4_4 
sxl5_4 
sxl6_4 
sxl7_4 
sxl8_4 
sxl9_4 
_3 
_3 
3

sxll
sxl2
sxl3
sxl4
sxl5
sxl6
sxl7
sxl8
sxl9

sxll0_4 
sxlll_4 
sxll2_4 
sxll3_4 
sxll4_4 
sxll5_4 
sxll6_4 
sxll7_4 
sxll8_4 
SX119 4

sxll_ 
sxl2_ 
sxl3_ 
sxl4_ 
sxl5_ 
sxl6_ 
sxl7_ 
sxl8_ 
sxl9_ 

sxll0_5~ 
sxlll_5 
sxll2_5 
sxll3_5 
sxll4_5 
sxll5_5 
sxll6_5 
sxll7_5 
sxll8_5 
sxll9 5

if tk==l, 
if tk==l, 
if tk==l, 
if tk==l, 
if tk==l, 
if tk==l, 
if tk==l, 
if tk==l, 
if tk==l,

mat
mat
mat
mat
mat
mat
mat
mat
mat

rix(Bklllx) 
rix(Bkll2x) 
rix(Bkll3x) 
rix(Bkll4x) 
rix(Bkll5x) 
rix(Bkll6x) 
rix(Bkll7x) 
rix(Bkll8 x) 
rix(Bkll9x)

sxllO 6 if tk== 1,
sxlll 6 if tk==1,
sxll2 6 if tk== 1,
sxll3 "6 if tk== 1,
sxll4 '6 if tk== 1,
sxll5 ~6 if tk== 1,
sxll 6 '6 if tk== 1,
sxll7 "6 if tk== 1,
sxll8_"6 if tk== 1,
sxl 1 9 '6 if tk== 1,

matrix Bkl_lall=(1/1138)*( Bklllx+ Bkll2x+ Bkll3x+ Bkll4x+ Bkll5x+ Bkll6x+ 
Bkll7x+ Bkll8 x+ Bkll9x+ Bklll0x+ Bkllllx+ Bklll2x+ Bklll3x+ Bklll4x+ Bklll5x+ 
Bklll6x+ Bklll7x+ Bklll8 x+ Bklll9x)

svmat Bkl_lall

matrix list Bkl lall

mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat

sxll_l 
sxl2_l 
sxl3_l 
sxl4_l 
sxl5_l 
sxl6_l 
sxl7_l 
sxl8_l 
sxl9_l 
sxll0_ 
sxll1_ 
sxll2_ 
sxll3_ 
sxll4

sxl1_2 
sxl2_2 
sxl3_2 
sxl4_2 
sxl5_2 
sxl6_2 
sxl7_2 
sxl8_2 
sxl9_2 

1 sxllO 
1 sxll 1~ 
1 sxll2_ 
1 sxll3_ 
1 sxll4~

sxll_3
sxl2_3
sxl3_3
sxl4_3
sxl5_3
sxl6_3
sxl7_3
sxl8_3
sxl9_3
2 sxllO
2 sxl11
2 sxll2
2 sxll3
2 sxll4

sxll_4 
sxl2_4 
sxl3_4 
sxl4_4 
sxl5_4 
sxl6_4 
sxl7_4 
sxl8_4 
sxl9 4 
_3 
3

sxll
sxl2
sxl3
sxl4
sxl5
sxl6
sxl7
sxl8
sxl9

sxll0_4 
sxlll_4 
sxll2_4 
sxll3_4 
sxll4 4

sxll 
sxl2 
sxl3 
sxl4 
sxl5 
sxl 6 
sxl7 
sxl8 

_ sxl9 
sxll0_5_ 
sxll1_5 
sxll2_5 
sxll3_5 
sxll4 5

if tk= 
i f  t k =  

if tk= 
if tk= 
if tk= 
if tk= 
if tk= 
if tk= 
if tk= 

sxll0 _ 6  
sxlll_ 6  
sxll2 _ 6  
sxll3_6 
sxll4 6

=2, mat 
==2 , mat 
==2 , mat 
==2 , mat 
=2, mat 
==2 , mat 
==2 , mat 
==2 , mat 
==2 , mat 
if tk== 
if tk== 
if tk== 
if tk== 
if tk

rix(Bk211x) 
rix(Bk212x) 
rix(Bk213x) 
rix(Bk214x) 
rix (Bk215x) 
rix(Bk216x) 
rix(Bk217x) 
rix (Bk218x) 
rix(Bk219x)
2, matrix(Bk2110x) 
2, matrix(Bk2111x) 
2, matrix(Bk2112x) 
2, matrix(Bk2113x) 
2, matrix(Bk2114x)
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mkmat sxll5__l sxll5_2 
mkmat sxll6_l sxll6_2 
mkmat sxll7_l sxll7_2 
mkmat sxll8 1 sxl!8 2

sxll5_3 sxll5_4 
sxll6_3 sxll6_4 
sxll7_3 sxll7_4 
sx!18 3 sxl!8 4

sxll5_5 sxll5_6 if tk==2, matrix(Bk2115x) 
sxll6_5 sxll6_6 if tk==2, matrix(Bk2116x) 
sxll7_5 sxll7_6 if tk==2, matrix(Bk2117x) 
sx!18 5 sx!18 6 if tk==2, matrix(Bk2118x)

mkmat sxll9_l sxll9_2 sxll9_3 sxll9_4 sxll9_5 sxll9_6 if tk==2, matrix(Bk2119x)

•k k

matrix Bk2_lall=(1/1138)*( Bk211x+ Bk212x+ Bk213x+ Bk214x+ Bk215x+ Bk216x+ 
Bk217x+ Bk218x+ Bk219x+ Bk2110x+ Bk2111x+ Bk2112x+ Bk2113x+ Bk2114x+ Bk2115x+ 
Bk2116x+ Bk2117x+ Bk2118x+ Bk2119x)

svmat Bk2_lall

matrix list Bk2 lall

mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat

sxll_l 
sxl2_l 
sxl3_l 
sxl4_l 
sxl5_l 
sxl6_l 
sxl7_l 
sxl8_l 
sxl9_l 
sxllO_ 
sxlll_ 
sxll2_ 
sxll3_ 
sxll4_ 
sxll5_ 
sxll6_ 
sxll7_ 
sxll8_ 
sxll 9

sxll_2 sxll_3 sxll_4 sxll 
sxl2_2 sxl2_3 sxl2_4 sxl2 
sxl3_2 sxl3_3 sxl3_4 sxl3 
sxl4_2 sxl4_3 sxl4_4 sxl4 
sxl5_2 sxl5_3 sxl5_4 sxl5 
sxl6_2 sxl6_3 sxl6_4 sxl6 
sxl7_2 sxl7_3 sxl7_4 sxl7 
sxl8_2 sxl8_3 sxl8_4 sxl8 
sxl9_2 sxl9_3 sxl9_4 sxl9 

1 sxll0_2 sxll0_3 sxllO_4 
1 sxlll_2 sxlll_3 sxlll_4 
1 sxll2_2 sxll2_3 sxll2_4 
1 sxll3_2 sxll3_3 sxll3_4 
1 sxll4_2 sxll4_3 sxll4_4 
1 sxll5_2 sxll5_3 sxll5_4 
1 sxll6_2 sxll6_3 sxll6_4 
1 sxll7_2 sxll7_3 sxll7_4 
1 sxll8_2 sxll8_3 sxll8_4 
1 sxl19 2 sxll9 3 sxll9 4

sxll 
sxl2 
sxl3 
sxl4 
sxl5 
sxl6 
sxl7 
sxl8 
sxl9 

sxll0_5 
sxll1_5 
sxll2_5 
sxll3_5 
sxll4_5 
sxll5_5 
sxll6_5 
sxll7_5 
sxll8_5 
sxll9 5

if tk= 
if tk= 
if tk= 
i f  t k =  

if tk= 
if tk= 
if tk= 
if tk= 
if tk= 

sxll0_6 
sxlll_6 
sxll2_6 
sxll3_6 
sxll4_6 
sxll5_6 
sxll6_6 
sxll7_6 
sxll8_6 
sxll9 6

=3, 
=3, 
=3, 
=3, 
=3, 
=3, 
:=3, 
=3, 
= 3,

mat
mat
mat
mat
mat
mat
mat
mat
mat

if tk==
if
if

tk== 

tk== 

if tk== 
if tk== 
if tk== 
if tk== 
if tk== 
if tk= 
if tk=

rix(Bk311x 
rix(Bk312x 
rix(Bk313x 
rix(Bk314x 
rix(Bk315x 
rix(Bk316x 
rix(Bk317x 
rix(Bk318x 
rix(Bk319x 
3, matrix( 
3, matrix( 
3, matrix( 
3, matrix( 
3, matrix( 
3, matrix( 
3, matrix( 
3, matrix( 
3, matrix( 
3, matrix(

)
)
)
)
)
)
)
)
Bk3110x)
Bk3111x)
Bk3112x)
Bk3113x)
Bk3114x)
Bk3115x)
Bk3116x)
Bk3117x)
Bk3118x)
Bk3119x)

matrix Bk3_lall=(1/1138)*( Bk311x+ Bk312x+ Bk313x+ Bk314x+ Bk315x+ Bk316x+ 
Bk317x+ Bk318x+ Bk319x+ Bk3110x+ Bk3111x+ Bk3112x+ Bk3113x+ Bk3114x+ Bk3115x+ 
Bk3116x+ Bk3117x+ Bk3118x+ Bk3119x)

svmat Bk3_lall

matrix list Bk3 lall

mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat

sxll_l 
sxl2_l 
sxl3_l 
sxl4_l 
sxl5_l 
sxl 6 1 
sxl7_l 
sxl8_l 
sxl9_1 
sxllO_ 
sxlll_ 
sxll2_ 
sxll3_ 
sxll4_ 
sxll5_ 
sxl 16

sxll_2 
sxl2 2 
sxl3_2 
sxl4_2 
sxl5_2 
sxl6_2 
sxl7_2 
sxl8_2 
sxl9_2 

1 sxllO 
1 sxl 11” 
1 sxll2~ 
1 sxll3~ 
1 sxll4~ 
1 sxll5_ 
1 sxll6

sxll__3 
sxl2_3 
sxl3__3 
sxl4_3 
sxl5_3 
sxl6_3 
sxl7_3 
sxl8_3 
sxl9_3 
2 sxllO 
2 sxl11 
2 sxll2 
2 SX113 
2 sxll4 
2 sxll5 
2 sxll6

sxll_4 sxll 
sxl2_4 sxl2 
sxl3_4 sxl3 
sxl4__4 sxl4 
sxl5_4 sxl5 
sxl6_4 sxl6 
sxl7_4 sxl7 
sxl8_4 sxl8 
sxl9_4 sxl9 
3 sxll0_4 
3 sxll1_4 
3 sxll2_4 
3 sxll3_4 
3 sxll4_4 
3 sxll5_4 
3 sxl16 4

sxll 
sxl2 
sxl3 
sxl4 
sxl5 
sxl6 
sxl7 
sxl8 
sxl 9 

sxll0_5 
sxlll_5 
sxll2_5 
sxll3_5 
sxll4_5 
sxll5_5 
sxll6 5

i f  tk= 
if tk= 
if tk= 
if tk= 
if tk= 
if tk= 
if tk= 
if tk= 
if tk= 

sxll0_6 
sxl11_6 
sxll2_6 
sxl13_6 
sxll4_6 
sxll5_6 
sxll6 6

=4, 
=4, 
=4, 
=4, 
- 4 ,  
= 4, 
:=4 , 
:=4, 
:=4,

mat
mat
mat
mat
mat
mat
mat
mat
mat

if tk== 
if tk== 
if tk== 
if tk== 
if tk== 
if tk 
if tk==

rix(Bk411x 
rix(Bk412x 
rix(Bk413x 
rix(Bk414x 
rix(Bk415x 
rix(Bk416x 
rix(Bk417x 
rix(Bk418x 
rix(Bk419x 
4, matrix( 
4, matrix( 
4, matrix( 
4, matrix( 
4, matrix( 
4, matrix( 
4, matrix(

)
)
)
)
)
Bk4110x)
Bk4111x)
Bk4112x)
Bk4113x)
Bk4114x)
Bk4115x)
Bk4116x)
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matrix Bk8_lall=(1/1138)*( Bk811x+ Bk812x+ Bk813x+ Bk814x+ Bk815x+ Bk816x+ 
Bk817x+ Bk818x+ Bk819x+ Bk8110x+ Bk8111x+ Bk8112x+ Bk8113x+ Bk8114x+ Bk8115x+ 
Bk8116x+ Bk8117x+ Bk8118x+ Bk8119x)

svmat Bk8_lall

matrix list Bk8 lall

mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat

sxll_
sxl2_
sxl3_
sxl4_
sxl5_
sxl6_
sxl7_
sxl8_
sxl9_
sxllO
sxlll
sxll2
sxll3
sxll4
sxll5
sxll6
sxll7
sxll8
sxll9

sxll_2 
sxl2_2 
sxl3_2 
sxl4_2 
sxl5_2 
sxl6_2 
sxl7_2 
sxl8_2 

1 sxl9_2 
_1 sxllO_ 

sxlll_ 
sxll2_ 
sxll3_ 
sxll4_ 
sxll5_ 
sxl 16_ 
sxll7~ 
sxll8_ 
sxll9

sxll_3 
sxl2_3 
sxl3_3 
sxl4_3 
sxl5_3 
sxl6_3 
sxl7_3 
sxl8_3 
sxl9 3

sxll 4 sxll 5 sxll 6 if tk== 9
sxl2 4 sxl2 5 sxl2 6 if tk== 9
sxl3 4 sxl3 5 sxl3 6 if tk== 9
sxl4 4 sxl4 5 sxl4 '6 if tk== 9
sxl5 4 sxl5 5 sxl5 6 if tk== 9
sxl6 4 sxl6 5 sxl6 6 if tk== 9
sxl7 4 sxl7 5 sxl7 6 if tk== 9
sxl8 4 sxl8 5 sxl8 6 if tk== 9
sxl9 4 sxl9 5 sxl9 6 if tk== 9

mat
mat
mat
mat
mat
mat
mat
mat
mat

sxllO_ 
sxlll_ 
sxll2~ 
sxll3_ 
sxll4_ 
sxll5~ 
sxl 16_ 
sxl17~ 
sxll8_ 
sxl!9

3 sxllO_4 
3 sxlll__4 
3 sxll2_4 
3 sxll3_4 
3 sxll4_4 
3 sxll5_4 
3 sxl16_4 
3 sxll7_4 
3 sxll8_4 
3 sxl19 4

sxll0_5 
sxlll_5 
sxl12_5 
sxl13_5 
sxll4_5 
sxll5_5 
sxl16_5 
sxl17_5 
sxll8_5 
sxll9 5

sxllO 6 if tk== 9
sxlll '6 if tk== 9
sxll2 6 if tk== 9
sxll3 6 if tk== 9
sxll4 6 if tk== 9
sxll5 6 if tk== 9
sxllö 6 if tk== 9
sxl 17 6 if tk== 9
sxll8 6 if tk== 9
sxll9 6 if tk== 9

rix(Bk911x) 
rix(Bk912x) 
rix(Bk913x) 
rix(Bk914x) 
rix(Bk915x) 
rix(Bk916x) 
rix(Bk917x) 
rix(Bk918x) 
rix(Bk919x)

matrix(Bk9110x) 
matrix(Bk9111x) 
matrix(Bk9112x) 
matrix(Bk9113x) 
matrix(Bk9114x) 
matrix(Bk9115x) 
matrix(Bk9116x) 
matrix(Bk9117x) 
matrix(Bk9118x) 
matrix(Bk9119x)

matrix Bk9_lall=(1/1138)*( Bk911x+ Bk912x+ Bk913x+ Bk914x+ Bk915x+ Bk916x+ 
Bk917x+ Bk918x+ Bk919x+ Bk9110x+ Bk9111x+ Bk9112x+ Bk9113x+ Bk9114x+ Bk9115x+ 
Bk9116x+ Bk9117x+ Bk9118x+ Bk9119x)

svmat Bk9_lall

matrix list Bk9 lall

mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
matrix
mkmat
matrix
mkmat
matrix
mkmat
matrix
mkmat
matrix
mkmat
matrix
mkmat
matrix

sxl1_1 
sxl2_l 
sxl3__l 
sxl4_l 
sxl5_l 
sxl6_l 
sxl7_l 
sxl8_l 
sxl9 1

sxll_2 
sxl2_2 
sxl3_2 
sxl4_2 
sxl5_2 
sxl6_2 
sxl7_2 
sxl8_2 
sxl9 2

sxllO_l sxllO 
(BklOllOx) 
sxlll_l sxlll 
(BklOlllx) 
sxll2_l sxll2 
(Bkl0112x) 
sxll3_l sxll3 
(Bkl0113x) 
sxll4_l sxll4 
(Bkl0114x) 
sxll5_l sxll5 
(Bkl0115x) 
sxll6_l sxll6 
Bkl0116x)

sxll_3 
sxl2_3 
sxl3_3 
sxl4_3 
sxl5_3 
sxl6_3 
sxl7_3 
sxl8_3 
sxl9_3 
2 sxllO

sxll_4 
sxl2_4 
sxl3_4 
sxl4_4 
sxl5_4 
sxl6_4 
sxl7_4 
sxl8_4 
sxl9 4

sxll_ 
sxl2_ 
sxl3_ 
sxl4_ 
sxl5_ 
sxl 6_ 
sxl7_ 
sxl8_ 
sxl9

sxll_
sxl2_
sxl3_
sxl4_
sxl5_
sxl6_
sxl7_
sxl8_
sxl9

i f  tk= 
if tk= 
if tk= 
if tk= 
if tk= 
if tk= 
if tk= 
if tk= 
if tk=

3 sxllO 4 sxllO 5 sxllO 6

= 1 0 , 
=10, 
= 1 0 , 
=  1 0 , 
= 1 0 , 
= 1 0 , 
= 10, 
= 1 0 , 
= 1 0 , 
if t

matrix
matrix
matrix
matrix
matrix
matrix
matrix
matrix
matrix
k==10,

(BklOllx)
(Bkl012x)
(Bkl013x)
(Bkl014x)
(Bkl015x)
(Bkl016x)
(Bkl017x)
(Bkl018x)
(Bkl019x)

2 sxlll_3 sxlll_4 sxlll_5 

2 sxll2_3 sxll2_4 sxll2_5 

2 sxll3_3 sxll3_4 sxll3_5 

2 sxll4_3 sxll4_4 sxll4_5 

2 sxll5_3 sxll5_4 sxll5_5 

2 sxll6 3 sxll6 4 sxll6 5

sxlll_6 if tk==10, 

sxll2_6 if tk==10, 

sxll3_6 if tk==10, 

sxll4_6 if tk==10, 

sxll5_6 if tk==10, 

sxllö 6 if tk==10,

294



mkmat sxll7_l sxll7_2 sxll7_3 sxll7_4 sxll7_5 sxll7_6 if tk==10, 
matrix(Bkl0117x)
mkmat sxll8_l sxll8_2 sxll8_3 sxll8_4 sxll8_5 sxll8_6 if tk==10, 
matrix(Bkl0118x)

mkmat sxll9_l sxll9_2 sxll9_3 sxll9_4 sxll9_5 sxll9_6 if tk==10, 
matrix(Bkl0119x)

matrix BklO_lall=(1/1138)*( Bkl011x+ Bkl012x+ Bkl013x+ Bkl014x+ Bkl015x+ 
Bkl016x+ Bkl017x+ Bkl018x+ Bkl019x+ Bkl0110x+ Bkl0111x+ Bkl0112x+ Bkl0113x+ 
Bkl0114x+ Bkl0115x+ Bkl0116x+ Bkl0117x+ Bkl0118x+ Bkl0119x)

svmat BklO_lall

matrix list BklO lall

mkmat sxll 1 sxll 2 sxll 3 sxll 4 sxll 5 sxll 6 if tk== 11, matrix(Bkl11lx)
mkmat sxl2 1 sxl2 2 sxl2 3 sxl2 4 sxl2 5 sxl2 6 if tk==11, matrix(Bklll2x)
mkmat sxl3 1 sxl3 2 sxl3 3 sxl3 4 sxl3 5 sxl3 "6 if tk==11, matrix(Bklll3x)
mkmat sxl4 1 sxl4 2 sxl4 3 sxl4 4 sxl4 5 sxl4 '6 if tk==11, matrix(Bklll4x)
mkmat sxl5 1 sxl5 2 sxl5 3 sxl5 4 sxl5 5 sxl5 '6 if tk== 11, matrix(Bklll5x)
mkmat sxl6 1 sxl6 2 sxl6 3 sxl6 4 sxl6 5 sxl6 "6 if tk== 11, matrix(Bklll6x)
mkmat sxl7 1 sxl7 2 sxl7 3 sxl7 4 sxl7 5 sxl7 '6 if tk==11, matrix(Bklll7x)
mkmat sxl8 1 sxl8 2 sxl8 3 sxl8 4 sxl8 5 sxl8 '6 if tk== 11, matrix(Bklll8x)
mkmat sxl 9 Ì sxl9 2 sxl9 3 sxl9 4 sxl9 5 sxl9 ’6 if tk== 11, matrix(Bklll9x)
mkmat sxllO 1 sxllO_ 7. sxllO|_3 sxll0_4 sxllO 5 sxllCi 6 if tk==ll,
matrix(BkllllOx) 
mkmat sxlll_l sxlll_ 
matrix(Bklllllx) 
mkmat sxll2_l sxll2_ 
matrix(Bkllll2x) 
mkmat sxll3_l sxll3_ 
matrix(Bkllll3x) 
mkmat sxll4_l sxll4_ 
matrix(Bkllll4x) 
mkmat sxll5_l sxll5_ 
matrix(Bkllll5x) 
mkmat sxll6_l sxll6_ 
matrix(Bkllll6x) 
mkmat sxll7_l sxll7_ 
matrix(Bkllll7x) 
mkmat sxll8_l sxll8_ 
matrix(Bkllll8x) 
mkmat sxll9_l sxll9_ 
matrix(Bkllll9x)

2 sxlll_3 sxlll_4 sxlll_5 sxlll_6 if tk==ll, 

2 sxll2_3 sxll2_4 sxll2_5 sxll2_6 if tk==ll, 

2 sxll3_3 sxll3_4 sxll3_5 sxll3_6 if tk==ll, 

2 sxll4_3 sxll4_4 sxll4_5 sxll4_6 if tk==ll, 

2 sxll5_3 sxll5_4 sxll5_5 sxll5_6 if tk==ll, 

2 sxll6_3 sxll6_4 sxll6_5 sxll6_6 if tk==ll, 

2 sxll7_3 sxll7_4 sxll7_5 sxll7_6 if tk==ll, 

2 sxll8_3 sxll8_4 sxll8_5 sxll8_6 if tk==ll, 

2 sxll9 3 sxll9 4 sxll9 5 sxll9 6 if tk==ll,

matrix Bkll_lall=(1/1138)*( Bkllllx+ Bklll2x+ Bklll3x+ Bklll4x+ Bklll5x+
Bkl116x+ Bklll7x+ Bklll8x+ Bklll9x+ BkllllOx+ Bklllllx+ Bkllll2x+ Bkllll3x+ 
Bkllll4x+ Bkllll5x+ Bkllll6x+ Bkllll7x+ Bkllll8x+ Bkllll9x)

svmat Bkll_lall

matrix list Bkll lall

mkmat sxll_l sxll_2 sxll_3 sxll__4 sxll_5 sxll_6 if tk==12, matrix(Bkl211x) 
mkmat sxl2_l sxl2_2 sxl2_3 sxl2_4 sxl2_5 sxl2_6 if tk==12, matrix(Bkl212x) 
mkmat sxl3_l sxl3_2 sxl3_3 sxl3_4 sxl3_5 sxl3_6 if tk==12, matrix(Bkl213x) 
mkmat sxl4__l sxl4_2 sxl4_3 sxl4_4 sxl4_5 sxl4_6 if tk==12, matrix(Bkl214x) 
mkmat sxl5_l sxl5_2 sxl5_3 sxl5_4 sxl5_5 sxl5_6 if tk==12, matrix(Bkl215x) 
mkmat sxl6 1 sxl6 2 sxl6 3 sxl6 4 sxl6 5 sxl6 6 if tk==12, matrix(Bkl216x)



mkmat sxl7_l sxl7_2 sxl7_3 sxl7_4 sxl7_5 sxl7_6 if tk==12, matrix(Bkl217x) 
mkmat sxl8_l sxl8_2 sxl8_3 sxl8_4 sxl8_5 sxl8_6 if tk==12, matrix(Bkl218x) 
mkmat sx!9 1 sx!9 2 sx!9 3 sx!9 4 sx!9 5 sx!9 6 if tk==12, matrix(Bkl219x)
mkmat sxllO 1 sxllO 2 sxllO 3 sxllO_4 sxll0_5~ sxllO 6 if tk== 12,
matrix(Bkl2110x)
mkmat sxlll 1 sxlll 2 
matrix(Bkl2111x)

sxlll_3 sxlll_4 sxlll 5 sxlll_6 if tk== 12,

mkmat sxll2 1 sxll2 2 
matrix(Bkl2112x)

sxll2 3 sxll2_4 sxll2 5 sxll2_6 if tk== 12,

mkmat sxll3 1 sxll3 2 
matrix(Bkl2113x)

sxll3 3 sxll3 4 sxll3 5 sxll3 6 if tk== 12,

mkmat sxll4 1 sxll4 2 
matrix(Bkl2114x)

sxll4 3 sxll4 4 sxll4_5 sxll4 6 if tk== 12,

mkmat sxll5 1 sxll5 2 
matrix(Bkl2115x)

sxll5_3 sxll5 4 sxll5_5 sxll5 6 if tk== 12,

mkmat sxll6 1 sxll6 2 
matrix(Bkl2116x)

sxll6_3 sxll6 4 sxll6 5 sxll6 6 if tk== 12,

mkmat sxll7 1 sxll7 2 
matrix(Bkl2117x)

sxl17_3 sxl17_4 sxl17_5 sxll7_6 if tk== 12,

mkmat sxll8 1 sxll8 2 
matrix(Bkl2118x)

sxll8_3 sxll8_4 sxll8 5 sxll8_6 if tk== 12,

mkmat sxll9 1 sxll9 2 
matrix(Bkl2119x)

sxll9_3 sxll9 4 sxl19_5 sxl!9 6 if tk== 12,

matrix Bkl2_lall=(1/1138)*( Bkl211x+ Bkl212x+ Bkl213x+ Bkl214x+ Bkl215x+ 
Bkl216x+ Bkl217x+ Bkl218x+ Bkl219x+ Bkl2110x+ Bkl2111x+ Bkl2112x+ Bkl2113x+ 
Bkl2114x+ Bkl2115x+ Bkl2116x+ Bkl2117x+ Bkl2118x+ Bkl2119x)

svmat Bkl2_lall 

matrix list Bkl2 lall

* ■k

mkmat sxll 1 sxll 2 sxll 3 sxll 4 sxll 5 sxll
mkmat sxl2 1 sxl2 2 sxl2 3 sxl2 4 sxl2 5 sxl2
mkmat sxl3 1 sxl3 2 sxl3 3 sxl3 4 sxl3 5 sxl3
mkmat sxl4 1 sxl4 2 sxl4 3 sxl4 4 sxl4 5 sxl4
mkmat sxl5 1 sxl5 2 sxl5 3 sxl5 4 sxl5 5 sxl5
mkmat sxl6 1 sxl6 2 sxl6 3 sxl6 4 sxl 6 5 sxl6
mkmat sxl7 1 sxl7 2 sxl7 3 sxl7 4 sxl7 5 sxl7
mkmat sxl8 1 sxl8 2 sxl8 3 sxl8 4 sxl8 5 sxl8
mkmat sxl9 1 sxl9 2 sxl9 3 sxl9 4 sxl9_5 sxl9
mkmat sxllO 1 sxllO _2 sxll0_3 sxllO 4 sxl

LO
1

o
 

\—1

matrix(Bkl3110x)
mkmat sxlll 1 sxlll _2 sxlll_3 sxlll 4 sxlll_5
matrix(Bkl3111x)
mkmat sxll2 1 sxll2 _ 2 sxll2 3 sxll2_4 sxll2 5
matrix(Bkl3112x)
mkmat sxll3 1 sxll3 _2 sxll3 3 sxll3 4 sxll3 5
matrix(Bkl3113x)
mkmat sxll4 1 sxll4 _2 sxll4_3 sxll4 4 sxl!4 5
matrix(Bkl3114x)
mkmat sxll5 1 sxll5 _2 sxll5 3 sxll5 4 sxll5 5
matrix(Bkl3115x)
mkmat sxl!6 1 sxl!6 _2 sxll6_3 sxll6 4 sxll6_5
matrix(Bkl3116x)
mkmat sxll7 1 sxll7 _ 2 sxll7_3 sxll7_4 sxl17_5
matrix(Bkl3117x)
mkmat sxll8 1 sxll8 _2 sxll8_3 sxll8_4 sxll8 5
matrix(Bkl3118x)
mkmat sxll9_l sxll9 _ 2 sxll9_3 sxll9 4 sxll9 5
matrix(Bkl3119x)

6 if tk== 13, matrix(Bkl311x)
6 if tk== 13, matrix(Bkl312x)
6 if tk== 13, matrix(Bkl313x)
6 if tk== 13, matrix(Bkl314x)
6 if tk== 13, matrix(Bkl315x)
6 if tk== 13, matrix(Bkl316x)
6 if tk== 13, matrix(Bkl317x)
6 if tk== 13, matrix(Bkl318x)
6 if tk==13, matrix(Bkl319x)
sxllO 6 if tk==13,

sxlll_6 if tk==13, 

sxll2_6 if tk==13, 

sxll3_6 if tk==13, 

sxll4_6 if tk==13, 

sxll5_6 if tk==13, 

sxll6_6 if tk==13, 

sxll7_6 if tk==13, 

sxll8_6 if tk==13, 

sxll9 6 if tk==13,





mkmat sxll2 1 sxll2 2 
matrix(Bkl5112x)

sxll2_3 sxll2 4 sxll2_5 sxll2 6 if tk== 15,

mkmat sxll3 1 sxll3 2 
matrix(Bkl5113x)

sxll3_3 sxll3 4 sxll3_5 sxll3_6 if tk== 15,

mkmat sxll4 1 sxll4 2 
matrix(Bkl5114x)

sxll4_3 sxll4_4 sxll4 5 sxll4_6 if tk== 15,

mkmat sxll5 1 sxll5 2 
matrix(Bkl5115x)

sxll5_3 sxll5 4 sxll5_5 sxll5_6 if tk== 15,

mkmat sxll6 1 sxll6 2 
matrix(Bkl5116x)

sxll6_3 sxll6 4 sxll6_5 sxll6 6 if tk== 15,

mkmat sxll7 1 sxll7 2 
matrix(Bkl5117x)

sxll7_3 sxl17_4 sxll7_5 sxll7_6 if tk== 15,

mkmat sxll8 1 sxll8 2 
matrix(Bkl5118x)

sxll8_3 sxll8_4 sxll8_5 sxll8_6 if tk== 15,

mkmat sxll9 1 sxll9 2 
matrix(Bkl5119x)

sxll9 3 sxll9_4 sxll9 5 sxll9_6 if tk== 15,

k  -k

matrix Bkl5_lall=(1/1138) *( Bkl511x+ Bkl512x+ Bkl513x+ Bkl514x+ Bkl515x+ 
Bkl516x+ Bkl517x+ Bkl518x+ Bkl519x+ Bkl5110x+ Bkl5111x+ Bkl5112x+ Bkl5113x+ 
Bkl5114x+ Bkl5115x+ Bkl5116x+ Bkl5117x+ Bkl5118x+ Bkl5119x)

svmat Bkl5 lall

matrix list Bkl5 lall

mkmat sxl 1 1 sxll 2 sxl 1 3 sxll 4 sxll 5 sxll 6 if tk== 16, matrix(Bklöllx)
mkmat sxl2 1 sxl2 2 sxl2 3 sxl2 "4 sxl2 5 sxl2 6 if tk== 16, matrix(Bkl612x)
mkmat sxl3 1 sxl3 2 sxl3 3 sxl3 '4 sxl3 5 sxl3 '6 if tk== 16, matrix(Bkl613x)
mkmat sxl4 1 sxl4 2 sxl4 3 sxl4 '4 sxl4 5 sxl4 6 if tk== 16, matrix(Bkl614x)
mkmat sxl5 1 sxl5 2 sxl5 3 sxl5 4 sxl5 5 sxl5 6 if tk== 16, matrix(Bkl615x)
mkmat sxl6 1 sxl6 2 sxl6 3 sxl6 '4 sxl 6 5 sxl6 6 if tk== 16, matrix(Bkl616x)
mkmat sxl7 1 sxl7 2 sxl7 3 sxl7 "4 sxl7 5 sxl7 6 if tk== 16, matrix(Bkl617x)
mkmat sxl8 1 sxl8 2 sxl8 3 sxl8 "4 sxl8 5 sxl8 ‘6 if tk== 16, matrix(Bkl618x)
mkmat sxl9 1 sxl9 2 sxl9 3 sxl9 "4 sxl9 5 sxl9 '6 if tk= II I-1 (Tt matrix(Bkl619x)
mkmat sxllO 1 sxllO 2 sxllO 3 sxllO 4 sxllO 5 sxllC1 6 if tk==16,
matrix(Bkl6110x) 
mkmat sxlll_l sxlll_ 
matrix(Bkl6111x) 
mkmat sxll2__l sxll2_ 
matrix(Bkl6112x) 
mkmat sxll3_l sxll3_ 
matrix(Bkl6113x) 
mkmat sxll4_l sxll4_ 
matrix(Bkl6114x) 
mkmat sxll5_l sxll5 
matrix(Bkl6115x) 
mkmat sxll6_l sxll6 
matrix(Bkl6116x) 
mkmat sxll7_l sxll7_ 
matrix(Bkl6117x) 
mkmat sxll8_l sxll8 
matrix(Bkl6118x) 
mkmat sxll9_l sxll9_ 
matrix(Bkl6119x)

2 sxlll_3 sxl11_4 sxlll_5 

2 sxll2_3 sxll2_4 sxll2_5 

2 sxll3_3 sxll3_4 sxll3_5 

2 sxll4_3 sxll4_4 sxll4_5 

2 sxll5_3 sxll5_4 sxll5_5 

2 sxll6_3 sxll6_4 sxll6_5 

2 sxll7_3 sxll7_4 sxll7_5 

2 sxll8_3 sxll8_4 sxll8_5 

2 sxll9 3 sxll9 4 sxll9 5

sxlll_6 if tk==16, 

sxl12_6 if tk==16, 

sxll3_6 if tk==16, 

sxll4_6 if tk==16, 

sxll5_6 if tk==16, 

sxll6_6 if tk==16, 

sxll7_6 if tk==16, 

sxll8_6 if tk==16, 

sxl19 6 if tk==16,

matrix Bkl6_lall=(1/1138)*( Bkl611x+ Bkl612x+ Bkl613x+ Bkl614x+ Bkl615x+ 
Bkl616x+ Bkl617x+ Bkl618x+ Bkl619x+ Bkl6110x+ Bkl6111x+ Bkl6112x+ Bkl6113x+ 
Bkl6114x+ Bkl6115x+ Bkl6116x+ Bkl6117x+ Bkl6118x+ Bkl6119x)

svmat Bkl6 lall



matrix list Bkl6 lall

mkmat sxll 1 sxl 1 2 sxl 1 3 sxll 4 sxll 5 sxll 6 if tk== 17,
mkmat sxl2 1 sxl2 2 sxl2 3 sxl2 "4 sxl2 5 sxl2 6 if tk== 17,
mkmat sxl3 1 sxl3 2 sxl3 3 sxl3 "4 sxl3 5 sxl3 6 if tk== 17,
mkmat sxl4 1 sxl4 2 sxl4 3 sxl4 "4 sxl4 5 sxl4 6 if tk== 17,
mkmat sxl5 1 sxl5 2 sxl5 3 sxl5 "4 sxl5 5 sxl5 6 if tk== 17,
mkmat sxl 6 1 sxl6 2 sxl 6 3 sxl 6 "4 sxl6 5 sxl6 6 if tk== 17,
mkmat sxl7 1 sxl7 2 sxl7 3 sxl7 4 sxl7 5 sxl7 6 if tk== 17,
mkmat sxl8 1 sxl8 2 sxl8 3 sxl8 ’4 sxl8 5 sxl8 6 if tk== 17,
mkmat sxl 9 1 sxl 9 2 sxl9 3 sxl9 "4 sxl9 5 sxl9 6 if tk== 17,
mkmat sxllO 1 sxllO 2 sxllCi 3 sxll 0 4 sxllO 5 sxllC1 6 if t

(Bkl711x)
(Bkl712x)
(Bkl713x)
(Bkl714x)
(Bkl715x)
(Bkl716x)
(Bkl717x)
(Bkl718x)
(Bkl719x)

matrix(Bkl7110x) 
mkmat sxlll 1 sxlll 
matrix(Bkl7111x) 
mkmat sxll2_l sxll2_ 
matrix(Bkl7112x) 
mkmat sxll3_l sx!13_ 
matrix(Bkl7113x) 
mkmat sxll4_l sxll4_ 
matrix(Bkl7114x) 
mkmat sxll5__l sxll5_ 
matrix(Bkl7115x) 
mkmat sxll6_l sxll6_ 
matrix(Bkl7116x) 
mkmat sxll7_l sxll7_ 
matrix(Bkl7117x) 
mkmat sxll8_l sxll8_ 
matrix(Bkl7118x) 
mkmat sxll9_l sxll9_ 
matrix(Bkl7119x)

2 sxlll_3 sxlll_4 sxlll_5 sxlll_6 if tk==17, 

2 sxll2_3 sxll2_4 sxll2_5 sxll2_6 if tk==17, 

2 sxll3_3 sxll3_4 sxll3_5 sxll3_6 if tk==17, 

2 sxll4_3 sxll4_4 sxll4_5 sxll4_6 if tk==17, 

2 sxll5_3 sxll5_4 sxll5_5 sxll5_6 if tk==17, 

2 sxl 16_3 sxll6__4 sxll6_5 sxll6_6 if tk==17, 

2 sxl17_3 sxl17_4 sxll7_5 sxll7_6 if tk==17, 

2 sxll8_3 sxll8_4 sxll8_5 sxll8_6 if tk==17, 

2 sxll9 3 sxl19 4 sxll9 5 sxll9 6 if tk==17,

matrix Bkl7_lall=(1/1138)*( Bkl711x+ Bkl712x+ Bkl713x+ Bkl714x+ Bkl715x+ 
Bkl716x+ Bkl717x+ Bkl718x+ Bkl719x+ Bkl7110x+ Bkl7111x+ Bkl7112x+ Bkl7113x+ 
Bkl7114x+ Bkl7115x+ Bkl7116x+ Bkl7117x+ Bkl7118x+ Bkl7119x)

svmat Bkl7_lall

matrix list Bkl7 lall

mkmat sxll 1 sxl 1 2 sxll 3 sxll 4 sxll 5 sxll 6 if tk== 18, matrix(Bkl811x)
mkmat sxl2 1 sxl2 2 sxl2 3 sxl2 4 sxl2 5 sxl2 '6 if tk=

C
O

 
1—

1
II matrix(Bkl812x)

mkmat sxl3 1 sxl3 2 sxl3 3 sxl3 4 sxl3 5 sxl3 '6 if tk=

C
O

 
1—1 II matrix(Bkl813x)

mkmat sxl4 1 sxl4 2 sxl4 3 sxl4 4 sxl4 5 sxl4 "6 if tk=

C
O

 
\—1 II matrix(Bkl814x)

mkmat sxl5 1 sxl5 2 sxl5 3 sxl5 4 sxl5 5 sxl5 ‘6 if tk==18, matrix(Bkl815x)
mkmat sxl 6 1 sxl6 2 sxl 6 3 sxl 6 4 sxl6 5 sxl6 '6 if tk== 18, matrix(Bkl816x)
mkmat sxl7 1 sxl7 2 sxl7 3 sxl7 4 sxl7 5 sxl7 ’6 if tk== 18, matrix (Bkl817x)
mkmat sxl8 1 sxl8 2 sxl8 3 sxl8 4 sxl8 5 sxl8 "6 if tk== 18, matrix(Bkl818x)
mkmat sxl9 1 sxl9 2 sxl 9 3 sxl9 4 sxl9 5 sxl9 "6 if tk== 18, matrix(Bkl819x)
mkmat sxllO 1 sxllO 2 sxllO 3 sxllO 4 sxllO 5 sxllC1 6 H

- hh r+ P
V II II h-1 00

matrix(Bkl8110x) 
mkmat sxlll_l sxlll_ 
matrix(Bkl8111x) 
mkmat sxll2_l sxll2_ 
matrix(Bkl8112x) 
mkmat sxll3_l sxll3_ 
matrix(Bkl8113x) 
mkmat sxll4_l sxll4_ 
matrix(Bkl8114x)

2 sxlll_3 sxlll_4 sxlll_5 sxlll_6 if tk==18, 

2 sxl12_3 sxll2_4 sxll2_5 sxll2_6 if tk==18, 

2 sxll3_3 sxll3_4 sxll3__5 sxll3_6 if tk==18, 

2 sxll4 3 sxll4 4 sxll4 5 sxll4 6 if tk==18,
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mkmat sxll5 1 sxll5 2 
matrix(Bkl8115x)

sxll5_3 sxll5_4 sxll5 5 sxll5_6 if tk== 18

mkmat sxll6 1 sxll6 2 
matrix(Bkl8116x)

sxll6 3 sxll6_4 sxll6 5 sxll6_6 if tk== 18

mkmat sxll7 1 sxll7 2 
matrix(Bkl8117x)

sxll7_3 sxll7_4 sxll7_5 sxll7_6 if tk== 18

mkmat sxll8 1 sxll8 2 
matrix(Bkl8118x)

sxll8_3 sxll8_4 sxll8_5 sxll8_6 if tk==18

mkmat sxll9 1 sxll9 2 
matrix(Bkl8119x)

sxll9 3 sxll9 4 sxll9_5 sxll9 6 if tk== 18

matrix Bkl8_lall=(1/1138)*( Bkl811x+ Bkl812x+ Bkl813x+ Bkl814xt Bkl815x+ 
Bkl816x+ Bkl817x+ Bkl818x+ Bkl819x+ Bkl8110x+ Bkl8111x+ Bkl8112x+ Bkl8113x+ 
Bkl8114x+ Bkl8115x+ Bkl8116x+ Bkl8117x+ Bkl8118x+ Bkl8119x)

svmat Bkl8 lall

matrix list Bkl8 lall

mkmat sxll_l sxll_2 
mkmat sxl2_l sxl2_2 
mkmat sxl3_l sxl3_2 
mkmat sxl4_l sxl4_2 
mkmat sxl5_l sxl5_2 
mkmat sxl6_l sxl6_2 
mkmat sxl7_l sxl7_2 
mkmat sxl8_l sxl8_2 
mkmat sxl9_l sxl9_2 
mkmat sxllO_l sxllO_ 
matrix(Bkl9110x) 
mkmat sxlll_l sxlll_ 
matrix(Bkl9111x) 
mkmat sxll2_l sxll2_ 
matrix(Bkl9112x) 
mkmat sxll3_l sxll3_ 
matrix(Bkl9113x) 
mkmat sxll4_l sxll4_ 
matrix(Bkl9114x) 
mkmat sxll5 1 sxll5_ 
matrix(Bkl9115x) 
mkmat sxll6_l sxll6_ 
matrix(Bkl9116x) 
mkmat sxll7_l sxll7 
matrix(Bkl9117x) 
mkmat sxll8_l sxll8_ 
matrix(Bkl9118x) 
mkmat sxll9_l sxll9 
matrix(Bkl9119x)

sxll_3 sxll_4 sxll_5 sxll_ 
sxl2_3 sxl2_4 sxl2_5 sxl2_ 
sxl3_3 sxl3_4 sxl3_5 sxl3_ 
sxl4_3 sxl4_4 sxl4_5 sxl4_ 
sxl5_3 sxl5_4 sxl5_5 sxl5_ 
sxl6_3 sxl6_4 sxl6_5 sxl6_ 
sxl7_3 sxl7_4 sxl7_5 sxl7_ 
sxl8_3 sxl8_4 sxl8_5 sxl8_ 
sxl9_3 sxl9_4 sxl9_5 sxl9_ 
2 sxll0_3 sxll0_4 sxll0_5

2 sxlll_3 sxlll_4 sxlll_5

2 sxll2_3 sxll2_4 sxll2_5

2 sxll3_3 sxll3_4 sxll3_5

2 sxll4_3 sxll4_4 sxll4_5

2 sxll5_3 sxll5_4 sxll5_5

2 sxll6_3 sxll6_4 sxll6_5

2 sxll7_3 sxll7__4 sxll7_5

2 sxll8_3 sxll8_4 sxll8_5

2 sxll9 3 sxll9 4 sxll9 5

if tk= 
if tk= 
if tk= 
i f  t k =  

if tk= 
if tk= 
if tk= 
if tk= 
if tk=

sxllO 6

=19, matrix 
=19, matrix 
=19, matrix 
=19, matrix 
=19, matrix 
=19, matrix 
=19, matrix 
=19, matrix 
=19, matrix 
if tk==19,

(Bkl911x)
(Bkl912x)
(Bkl913x)
(Bkl914x)
(Bkl915x)
(Bkl916x)
(Bkl917x)
(Bkl918x)
(Bkl919x)

sxlll_6 if tk==19, 

sxll2_6 if tk==l9, 

sxll3_6 if tk==19, 

sxll4_6 if tk==19, 

sxll5_6 if tk==19, 

sxll6_6 if tk==19, 

sxll7_6 if tk==19, 

sxll8_6 if tk==19, 

sxll9 6 if tk==19,

matrix Bkl9_lall=(1/1138)*( Bkl911x+ Bkl912x+ Bkl913x+ Bkl914x+ Bkl915x+ 
Bkl916x+ Bkl917x+ Bkl918x+ Bkl919x+ Bkl9110x+ Bkl9111x+ Bkl9112x+ Bkl9113x+ 
Bkl9114x+ Bkl9115x+ Bkl9116x+ Bkl9117x+ Bkl9118x+ Bkl9119x)

svmat Bkl9_lall 

matrix list Bkl9 lall

matrix B= Bkl_lall+ Bk2_lall+ Bk3_lall+ Bk4_lall+ Bk5_lall+ Bk6_lall+ Bk7_lall+ 
Bk8_lallt Bk9_lall+ BklO_lall+ Bkll_lall+ Bkl2_lallt Bkl3_lall+ Bkl4_lallt 
Bkl5 lall+ Bkl6 lallt Bkl7 lallt Bkl8 lallt Bkl9 lall
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sort ukno year

by ukno year: gen constx=sum(const)

sort ukno year constx

gen Zi=const if constx==l 
replace Zi=age if constx==2 
replace Zi=bmi if constx==3 
replace Zi=fpg if constx==4 
replace Zi=race if constx==5 
replace Zi=sex if constx==6

move Zi age

move constx age_entr

move const age

drop age_entr maxyear gender

sort ukno year constx

gen ZiO_ZiOp=Zi*const 
gen Zil_Zilp=Zi*age 
gen Zi2_Zi2p=Zi*bmi 
gen Zi3_Zi3p=Zi*fpg 
gen Zi4_Zi4p=Zi*race 
gen Zi5_Zi5p=Zi*sex

gen wZiO_ZiOp= 
gen wZil_Zilp= 
gen wZi2_Zi2p= 
gen wZi3_Zi3p= 
gen wZi4_Zi4p= 
gen wZi5_Zi5p=

( dik_star/ 
( dik_star/ 
( dik_star/ 
( dik_star/ 
( dik_star/ 
( dik star/

GTik_star)* ZiO_ZiOp 
GTik_star)* Zil_Zilp 
GTik_star)* Zi2_Zi2p 
GTik_star)* Zi3_Zi3p 
GTik_star)* Zi4_Zi4p 
GTik_star)* Zi5_Zi5p

egen swZiO_ZiOp=sum(wZiO_ZiOp) , 
egen swZil_Zilp=sum(wZil_Zilp), 
egen swZi2_Zi2p=sum(wZi2_Zi2p) , 
egen swZi3_Zi3p=sum(wZi3_Zi3p) , 
egen swZi4_Zi4p=sum(wZi4_Zi4p), 
egen swZi5_Zi5p=sum(wZi5_Zi5p) ,

by(tk constx) 
by(tk constx) 
by(tk constx) 
by(tk constx) 
by(tk constx) 
by(tk constx)

gen wYikZi=( dik_star/ GTik_star)* Mik*Zi 
egen swYikZi=sum(wYikZi), by(tk constx)

sort ukno tk constx

collapse meanage meanbmi meanfpg meanrace meansex swYikZi swZiO_ZiOp swZil_Zilp 
swZi2_Zi2p swZi3_Zi3p swZi4_Zi4p swZi5_Zi5p, by(tk constx)

sort tk constx

mkmat swZiO_ZiOp swZil_Zilp swZi2_Zi2p swZi3_Zi3p swZi4_Zi4p swZi5_Zi5p if 
tk==l, matrix(bklterml)

mkmat swYikZi if tk==l, matrix(bklterm2) 

matrix betakl=syminv(bklterml)*bklterm2 

svmat betakl
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mkmat 
tk==2,

swZiO ZiOp swZil Zilp swZi2 Zi2p swZi3 Zi3p swZi4 Zi4p swZi5 Zi5p if 
matrix(bk2termi)

mkmat swYikZi if tk==2, matrix(bk2term2)

matrix betak2=syminv(bk2terml)*bk2term2

svmat betak2

mkmat
tk==3,

swZiO ZiOp swZil Zilp swZi2 Zi2p swZi3 Zi3p swZi4 Zi4p swZi5 Zi5p if 
matrix(bk3terml)

mkmat swYikZi if tk==3, matrix(bk3term2)

matrix betak3=syminv(bk3terml)*bk3term2

svmat betak3

mkmat 
tk==4,

swZiO ZiOp swZil Zilp swZi2 Zi2p swZi3 Zi3p swZi4 Zi4p swZi5 Zi5p if 
matrix(bk4termi)

mkmat swYikZi if tk==4, matrix(bk4term2)

matrix betak4=syminv(bk4termi)*bk4term2

svmat betak4

mkmat 
tk==5,

swZiO ZiOp swZil Zilp swZi2 Zi2p swZi3 Zi3p swZi4 Zi4p swZi5 Zi5p if 
matrix(bk5termi)

mkmat swYikZi if tk==5, matrix{bk5term2)

matrix betak5=syminv(bk5terml)*bk5term2

svmat betak5

mkmat
tk==6,

swZiO ZiOp swZil Zilp swZi2 Zi2p swZi3 Zi3p swZi4 Zi4p swZi5 Zi5p if 
matrix(bkôterml)

mkmat swYikZi if tk==6, matrix(bk6term2)

matrix betak6=syminv(bköterml)*bk6term2

svmat betakö

mkmat 
t k==7,

swZiO ZiOp swZil Zilp swZi2 Zi2p swZi3 Zi3p swZi4 Zi4p swZi5 Zi5p if 
matrix(bk7terml)

mkmat swYikZi if tk==7, matrix(bk7term2)

matrix betak7=syminv(bk7termi)*bk7term2

svmat betak7

mkmat 
tk==8,

swZiO ZiOp swZil Zilp swZi2 Zi2p swZi3 Zi3p swZi4 Zi4p swZi5 Zi5p if 
matrix(bk8terml)

mkmat swYikZi if tk==8, matrix(bk8term2)

matrix betak8=syminv(bk8terml)*bk8term2

svmat betak8
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mkmat swYikZi if tk==9, matrix(bk9term2) 

matrix betak9=syminv(bk9terml)*bk9term2 

svmat betak9

mkmat swZiO_ZiOp swZil_Zilp swZi2_Zi2p swZi3_Zi3p swZi4_Zi4p swZi5_Zi5p if 
tk==10, matrix(bklOterml)

mkmat swYikZi if tk==10, matrix(bkl0term2) 

matrix betaklO=syminv(bklOterml)*bkl0term2 

svmat betaklO

mkmat swZiO_ZiOp swZil_Zilp swZi2_Zi2p swZi3_Zi3p swZi4_Zi4p swZi5_Zi5p if 
tk==ll, matrix(bkllterml)

mkmat swYikZi if tk==ll, matrix(bkllterm2) 

matrix betakll=syminv(bkllterml)*bkllterm2 

svmat betakll

mkmat swZiO_ZiOp swZil_Zilp swZi2_Zi2p swZi3_Zi3p swZi4_Zi4p swZi5_Zi5p if 
tk==12, matrix(bkl2terml)

mkmat swYikZi if tk==12, matrix(bkl2term2) 

matrix betakl2=syminv(bkl2termi)*bkl2term2 

svmat betakl2

mkmat swZiO_ZiOp swZil_Zilp swZi2_Zi2p swZi3_Zi3p swZi4_Zi4p swZi5_Zi5p if 
tk==13, matrix(bkl3terml)

mkmat swYikZi if tk==13, matrix(bkl3term2) 

matrix betakl3=syminv(bkl3termi)*bkl3term2 

svmat betakl3

mkmat swZiO_ZiOp swZil_Zilp swZi2_Zi2p swZi3_Zi3p swZi4_Zi4p swZi5_Zi5p if 
tk==14, matrix(bkl4terml)

mkmat swYikZi if tk==14, matrix(bkl4term2) 

matrix betakl4=syminv(bkl4termi)*bkl4term2 

svmat betakl4

mkmat swZiO_ZiOp swZil_Zilp swZi2_Zi2p swZi3_Zi3p swZi4_Zi4p swZi5_Zi5p if 
tk==15, matrix(bkl5terml)

mkmat swYikZi if tk==15, matrix(bkl5term2) 

matrix betakl5=syminv(bkl5terml)*bkl5term2 

svmat betakl5

mkmat swZiO_ZiOp swZil_Zilp swZi2_Zi2p swZi3_Zi3p swZi4_Zi4p swZi5_Zi5p if
tk==9, matrix(bk9terml)
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mkmat swYikZi if tk==16, matrix(bkl6term2) 

matrix betakl6=syminv(bkl6terml)*bkl6term2 

svmat betakl6

mkmat swZiO_ZiOp swZil_Zilp swZi2_Zi2p swZi3_Zi3p swZi4_Zi4p swZi5_Zi5p if 
tk==17, matrix(bkl7terml)

mkmat swYikZi if tk==17, matrix(bkl7term2) 

matrix betakl7=syminv(bkl7terml)*bkl7term2 

svmat betakl7

mkmat swZiO_ZiOp swZil_Zilp swZi2_Zi2p swZi3_Zi3p swZi4_Zi4p swZi5_Zi5p if 
tk==18, matrix(bkl8terml)

mkmat swYikZi if tk==18, matrix(bkl8term2) 

matrix betakl8=syminv(bkl8termi)*bkl8term2 

svmat betakl8

mkmat swZiO_ZiOp swZil_Zilp swZi2_Zi2p swZi3_Zi3p swZi4_Zi4p swZi5_Zi5p if 
tk==19, matrix(bkl9terml)

mkmat swYikZi if tk==19, matrix(bkl9term2) 

matrix betakl9=syminv(bkl9terml)*bkl9term2 

svmat betakl9 

matrix
beta=betakl+betak2+betak3+betak4+betak5+betak6+betak7+betak8+betak9+betakl0+beta
kll+betakl2+betakl3+betakl4+betakl5+betakl6+betakl7+betakl8+betakl9

mkmat swZiO_ZiOp swZil_Zilp swZi2_Zi2p swZi3_Zi3p swZi4_Zi4p swZi5_Zi5p if
tk==16, matrix(bkl6terml)

svmat beta

matrix list beta

gen bOx=betal if tk==l & constx==l 
egen bO=min(bOx)

gen blx=betal if tk==l & constx==2 
egen bl=min(blx)

gen b2x=betal if tk==l & constx==3 
egen b2=min(b2x)

gen b3x=betal if tk==l & constx==4 
egen b3=min(b3x)

gen b4x=betal if tk==l & constx==5 
egen b4=min(b4x)

gen b5x=betal if tk==l & constx==6 
egen b5=min(b5x)

gen meancost= bO+bl* meanage+b2* meanbmi+b3* meanfpg+b4* meanrace+b5* meansex
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tempname yl
summarize bO, meanonly 
scalar 'yl'=r(mean)

tempname y2
summarize bl, meanonly 
scalar 'y2'=r(mean)

tempname y3
summarize b2, meanonly 
scalar 'y3'=r(mean)

tempname y4
summarize b3, meanonly 
scalar 'y4'=r(mean)

tempname y5
summarize b4, meanonly 
scalar 'y5'=r(mean)

tempname y6
summarize b5, meanonly 
scalar 'y6'=r(mean)

summarize meancost, meanonly
post '1' (' yl') ('y2') ('y3') ('y4 ' ) ('y5') ('y6') (r(mean))

end

•k -k

end of do-file 

set seed 1001

bstrap pannual, reps(1000) dots cluster(uknoO) idcluster(ukno) saving 
(C:\Desktop\Lin2000\bs_convannuall000.dta)


