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Abstract

The primary target of the current thesis is the establishment of a link (bridge) 
between the abstract concepts of control theory and the practical applications connected 
with different insurance systems. The existence of such a link has been identified by 
several authors in the last two decades who have focused on the use of conventional 
control theory (and optimal control techniques) in actuarial problems.

In our approach, after providing a short reference guide to the modern control 
theory in chapter 2 and a selective review of the literature in chapter 3, we propose 
three distinct models covering the most important areas of insurance applications (i.e. 
Life, General Insurance & Pensions). From the control point of view we actually use all 
the potential tools i.e. Multiple Input - Multiple Output, Time-Varying format, Non-
linear equations, Stability Analysis, Root Locus Method, Optimal design for the pa-
rameters involved and optimal control of a dynamic system.

The thesis deals with the basic concept of an insurance system, "the premium" 
and aims to answer the critical question "How to calculate and control the premium 
rating process?".

In the first model (chapter 4), we examine the general process of insurance pric-
ing, using the standard equation which connects the three major variables involved i.e. 
premiums, claims & surplus. Starting from the roots of actuarial science and the static 
point of view and passing to Lundberg’s revolution with his dynamic view, we arrive at 
the modern alternative view of control theory with respect to pricing models. We con-
centrate to the concept of stability rather than to the traditional concept of ruin.

In the second model (chapter 5), we construct a dynamic system which describes 
a special reinsurance arrangement (multinational pooling) which may only be handled 
using the modern control theory (as it refers to a multivariable system). Actually it is an 
extension of the previous model to a multi-system which consists of different subsys-
tems, as described in chapter 4 considering also the interaction between them.

Finally in the third model (chapter 6) we investigate the philosophy and mecha-
nisms of the Social Security System and the PAYG funding method. It may also be seen 
as an extension of the first model to the area of pensions and the necessity of calculat-
ing and controlling the respective contribution rate and the age of normal retirement. At 
the end of the sixth chapter, a simulation is carried out for the projected population data 
of Greece up to the year 2020.
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Chapter 1

Introduction

1.1 The insurance Paradox!

"Anything reasonable is correct!"

Unfortunately... or fortunately the above sentence is not always true!

It is extremely difficult to establish what is the real meaning of "reasonable" or 

"logical" in order to evaluate the truth or false of the first sentence.

Anyway, we shall not go further with philosophical questions. Simply we could 

say that, there are some complicated problems in different scientific areas wrapped in 

the colourful paper of easiness.

Of course, the most interesting thing arises when these problems come out from 

the real world and they are not just theoretical creatures of a scientific laboratory or 

clever mathematical puzzles.

Hilary Seal has pointed out such a strange ("complicated-obvious") insurance 

problem. In a paper which he had delivered to a conference on simulation organized by 

the Research Committee of the Society of Actuaries (1970), he set up a simple model 

for the total annual claims of a motor insurer and proposed several "reasonable" rules 

for setting the premium rates based on recent experience, (e.g. the average of recent 

years in the days before inflation).
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The surprising result of his research was that nearly all the simulated companies 

went broke.

At that moment there was again a simple answer. "Don’t worry all those mathe-

matical formulae and simulation procedures are not reliable. Insurance companies use 

the average function all previous years and they are doing well up to now".

Of course there was a smarter action... to go on with further research on the spe-

cific topic and that was done afterwards by S. Benjamin who attended that conference 

and found some first answers to his earlier questions.

At that time, S. Benjamin had been involved, giving advice on the control of a 

certain type of a new non-life insurance portfolio. He was faced with the same "obvi-

ous" problem of establishing a strategy to control an insurance system.

1.2 The successful marriage

The problem of the last section was not a new one. Actuaries have been working 

on financial controlling methods of (especially) insurance systems over the last 200 

years. They have developed different practices to manage long or short-term insurance 

funds and in more recent times pension funds.

S. Benjamin and L.A. Balzer produced some papers (and a joint one) and were 

amongst the first people who realized that insurance problems may be placed in a wider 

theoretical context named Control or Dynamic System Theory.

Control Theory, a very promising theory has been "married" with different part-

ners over the last decades engineering (the first one), physics, Aeronautics, chemistry 

and economics.
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The very last partners are finance and actuarial science. There are a lot of people 

who think that the last marriage will be one of the best and most successful of recent 

years.

1.3 A short reference to the traditional actuarial work

In order to understand better why the marriage mentioned in the last section may 

be proved absolutely successful, we should consider a short reference to the traditional 

actuarial work up to a few years ago.

Actuarial Science has been based on the statistical point of view using also some 

other elementary methodologies from other mathematical areas. Of course a special way 

of thinking has quickly appeared among the actuarial practitioners or theorists which 

(way of thinking) has been retained within a closed group of "Fellows".

Now tracing the development of traditional actuarial work we may consider the 

following stages:

(1) Pre-historical age: At that stage nothing formal has been established but practi-

tioners involved with commercial activities may well use the simple average 

function in order to evaluate risks. That stage may go back even to the origins of 

the humanity.

(2) Statistical point of view: Now reaching the roots of historical period we may find 

efforts from different people (normally with some kind of mathematical back-

ground) in order to establish more than the simple average function for each risk. 

Concepts as the variance, standard deviation or other moments of higher degree, 

reserves mortality tables etc. have been proposed. All that work is described as 

individual risk theory providing only the static picture of a problem (like a pho-

tograph).
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(3) Dynamic point of view: It was just the first decade of the 20th century in which 

Lundberg attempted (successfully at that time period) to upgrade the static point 

of view into a dynamic one. He considered an insurance system over an extended 

time period (of more than one unit time) and focused on the calculation of prob-

ability of ruin.

Lundberg may be considered as the man closing the traditional scene of actuarial 

science while at the same time writing the prelude of a new concept. More analy-

sis about the traditional actuarial approach (also providing some formulae) will 

be given in sections (4.4) and (4.5).

A complete history for the actuarial science and profession is provided in Biihl- 

man (1997). Starting from the establishment of Equitable Life Assurance Society in 

1762 (upon certain traditional techniques and statistical data) the author traces all the 

steps (as listed below) up to the modern view of risk, the advanced mathematics of 20th 

century and the challenge (for the actuaries) from the financial world.

• Establishment of the first life insurance companies in the second half of the 18th 

century.

• Formation of the first national actuarial bodies (the Institute of Actuaries in 1848) in 

the second half of the 19th century.

• The first International Congress of Actuaries in Brussels in 1895.

• The high recognition for the actuaries as the persons who controlled the know-how 

of the life insurance industry in the first half of the 20th century (“golden age”).

• The great dispute for the actuaries both for their professional and academic contribu-

tion in 1950’s.
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• Actuarial techniques began to break out from the area of life insurance in 1960’s and 

1970’s entering the field of general insurance (and pension funds).

• In more recent times, actuaries (and academics) compete equally with other profes-

sions to provide their services and expertise in financial markets and business world.

1.4 The roots of a new direction for actuarial science

After Lundberg’s prelude, and due to the tendency which appeared early this 

century of crossing the boarders of different scientific areas, actuarial research has been 

affected rapidly from various directions. Economics, Pure and Applied Mathematics 

offered some very promising alternatives for actuarial science in order to enhance and 

make more powerful its ability of exploring insurance problems. For example utility 

theory offered an entirely new and unique view for pricing and handling risks. But the 

most powerful proposal arose from pure mathematics, the theory of dynamic systems or 

qualitative analysis of differential / difference system of equations or control theory.

If we want to draw an abstract line from Lundberg (1909) who introduced the dynamic 

view for insurance problems up to the recent years we may have the following names. Lundberg, 

De Finetti, Borch, Balzer, Benjamin, Martin-Lof, Rantala, Taylor, Vanderbroeck, Loades, 

Haberman. Control theory examines an insurance system not only from the ruin point of view 

but provides deep insight into the mechanisms of the information or decision making system. It 

helps us to avoid enormous amounts of simulations by considering the quality characteristics of 

a system. Further analysis of the research work of each name mentioned in this section will be 

carried out in Chapter 3.
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1.5 Description of thesis structure & its objectives

Closing the introductory chapter, we shall present the general structure of the 

thesis with a brief description of each subsequent chapter regarding the topic examined 

and the objective aimed to.

Chapter 2: It stands as an introductory and quick reference point for all the basic 

concepts and results of control theory. Accompanied with the respective appendices it is 

self-contained with respect to the mathematical background. A simple insurance system 

is taken as an example in order to apply the concepts and results of control theory. This 

kind of development, facilitates the better and deeper understanding while also points 

the links between the two scientific areas.

Chapter 3: A literature review is considered with description and critical comments provided 

for each paper. Starting from De Finetti (1957) and following the footprints of the research for the last 

30 years we are trying to reach the highway of a new approach for insurance problems.

Chapter 4: The first application of control theory is implemented regarding the 

problem of "Insurance Pricing". Firstly we provide the traditional solution (with some 

other variations). Secondly we present the entirely new approach using control theory. 

The current research actually extends the work of Benjamin and Balzer (1980) incorpo-

rating design concepts from other papers and also some new ones. The actual problem 

refers to a non-life insurance portfolio. From the control point of view the model is con-

sidered to be a single input - single output one with two versions 

(a) time invariant and (b) time varying format

Chapter 5: A more complicated model is considered in chapter 5 as we design a multiple 

input - multiple output system. This problem requires (unavoidably) the use of modem control 

theory. The abstract system refers to special reinsurance arrangements similar to multinational
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pooling. Of course the abstract system may be also applicable to other practical problems as 

capital allocation between subsidiaries companies or solbency margin requirements between 

different lines of business.

Chapter 6: In order to show the wide use of control theory to all insurance 

problems, an application for PAYG funding method is designed in chapter 6. The origi-

nal problem and the respective system is non-linear and is being handled by the use of 

optimal control theory. At the end of this chapter we consider a special application for 

the Greek population using some projected data up to the year 2020.

Chapter 7: Conclusions, important results and scope for further research is pre-

sented at the final chapter.

1.6. Notation of the thesis

Developing the current thesis we have attempted to use a uniform notation in all chapters 

either describing past papers or expressing our own ideas. We have also tried to keep unique 

symbols for all the parameters but that has been achieved only for the important ones, as the 

large volume of parameters and special values forced us to make some duplications (or move 

repetitions). Here we shall refer to three sections (4.3), (5.3) & (6.10) which contain the impor-

tant symbols used almost through the whole thesis while also state that all the other symbols (not 

mentioned there) have limited use in each chapter or section.

We should also refer to the capital letters A,B,C,D which represent the basic 

matrices of the standard format of a dynamic system (see equations (2.6.3) & (2.6.4)) 

while un, x„, ŷ  represent the input, state and output vector variables respectively.

Finally, state that the subscript (n) declares a discrete model while the (t) variable de-

clares a continuous model.
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Chapter 2

Control Theory Concepts

2.1 Introduction

It is very important and extremely useful (not only for the need of this thesis) to 

summarize the basic concepts and theorems of control theory, providing critical com-

ments and examples concerning the translation of these ideas into the actuarial prob-

lems.

In this chapter, we consider a very simple example (actually the Balzer - Benja-

min’s model) of group profit sharing schemes. Then, we try to go through the basic 

concepts of control theory, considering at each section how this certain idea helps our 

modeling or how it facilitates a new further insight into the problem.

Some of this further insight had been already pointed out and examined from 

past papers of Balzer and Benjamin (1980) using traditional control techniques. Our 

effort is to emphasize the approach of modern control theory (using vectors, matrices, 

eigenvalues, eigenvectors, etc...).

We think this approach is more powerful (and the only way) to handle efficiently 

the systems of multiple input and output. We are also trying to examine and translate 

properly the concept of controllability and observability which has not been considered 

before.
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Finally, our aim (and perhaps ambition) in this chapter is to provide a complete 

introductory guide to control theory for actuarial scientists. (Consequently we quote 

some results which are not used directly in the technical development of the models but 

which complement the whole discussion).

2.2 A simple (standard) actuarial problem

Profit - sharing schemes are widely used not only in group life policies but also 

in non-life policies and in large reinsurance portfolios. Here, we consider a group life 

policy which is effected at time n=0 with a mutual agreement of the insurer and the 

policy holder upon the following items.

(1) The initial premium P| paid for the first year of policy.

(2) The required expense and profit margin of insurer 1-e (expressed as a percentage 

of gross premium, so actually e-Pn is used to cover the claim cost for each year n, 

where Pn is defined below).

(3) The modification of each renewal premium for year n according to the most re-

cently known experience of year n-2 (so the risk premium will be based on Cn-2) 

and the accumulated surplus up to that year (a proportion e of accumulated sur-

plus will be refunded). Hence, we have the formula

(4)

Pn — 'Cn-2 £‘Sn-2 n=2,3,... ( 2 .2 . 1)
e

(Cn and Sn are defined below).

Accumulated surplus is calculated using the following formula (at the end of 

each year).

Sn =Sn , + e - P - Cn n - 1  n n n=l,2,... ( 2 .2 .2)
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(2.2.3)

(5) No interest or inflation factors are considered.

(6) Pn stands for the premium received in year n (n=T,2,...)

Sn stands for the accumulated surplus at time n (n=l,2,...)

Cn stands for the claims incurred in year n (n=l,2,...).

In the next sections, we shall formulate the problem using modern control theory. The 

consideration of the certain model will secure direct comparison between our results 

and those of Balzer and Benjamin’s.

2.3 Physical & other types of systems -

-  Modelling & Design - Mathematical Representation

The real world, we live in, is full of different types of physical systems which af-

fect our lives, work, behaviour and generally all human activities. Even the whole uni-

verse could be considered as a large (perhaps the largest) system divided into smaller 

subsystems.

Common sense describes the word "system" as a set of different elements which 

may be related together (in some way). A well established system should have a well 

established set of elements and well defined relationships between them. Quoting the 

system’s definition of Ogata (1970) "A system is a combination of components that act 

together and perform a certain objective".

Examples of physical systems may be an electric circuit, a group of galaxies in 

the universe, the plants of a tropical island. Of course the systems are not limited to 

physical ones so other examples may be: The whole economy of a country, the student 

society of a University, the stock exchange, the insurance market, etc... (We stop here,

where S0 = P0 = C0 = 0
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otherwise we could end up our thesis just describing the different types of systems in 

the real world).

Although it may appear strange, all the above systems have a common point! 

They all can be translated and fully represented with a set of mathematical equations. 

Of course there is a certain way (a bridge) which transfers the elements and relation-

ships of a system into numbers and equations.

The bridge (mentioned above) is the modeling procedure of our system. A suc-

cessful model can give us more than half of the final solution. We should stress that in 

most times there are many ways of modeling and designing a certain system.

The first step of any dynamic analysis is to describe clearly the process and its 

unique characteristics. Then establish a system of differential (or difference for discrete 

type of systems) equations which is the mathematical representation of that verbal de-

scription. The system is considered to be dynamic since all the parameters are functions 

of the time variable n.

In our example (section (2.2)) we have already translated the insurance system 

and we have produce its mathematical representation as follows:

Sn+i — Sn + e • Pn+1 Cn+1 (2.3.1)

(2.3.2)
e

It is obvious from the structure of equations (2.3.1) and (2.3.2) that we refer to a 

linear dynamic system (as all the variables depend upon time).
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2.4 Well Oriented Systems (Input - Process -  Output)

Although it appears that all systems could be described as well oriented systems 

(simply that means, there is a type of order) this is not always true! There are some not 

well-oriented systems especially in quantum mechanics where the order of cause and 

effect is usually distorted.

At the present moment the insurance systems (which is our final target) do not 

obey the laws of quantum mechanics. So, we shall continue and focus on well-oriented 

systems which have an inertia order and this order may be generally described with 

three words: input - process - output.

Now we shall return to our example determining the variables of our problem 

and connect each one with some of the three words above.

A first trial to order our variables will be the following

premiums - claims - surplus

Thinking by common sense, premium is the input of the system (because it comes first), 

claims represents the process (think of the actuarial wording usually used "the claim 

process") and finally surplus is the output (because it comes as the final result of the 

whole procedure).

The approach above, may be a way of thinking but it is not the correct way of 

modeling the variables using control theory techniques. If we think deeper we shall find 

that the right order is the following:

claims - surplus - premium

or diagramatically,

Claims

Diagram (2.4.1)

Surplus Premium
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As it was described in the development of the model (section (2.2)) there was an 

initial agreement for the first year’s premium and consequently the system was free to 

adjust the renewal premiums of each subsequent year according to the claim experience 

and accumulated surplus. Hence, the claim variable comes first (as input), modifying 

the surplus variable (assuming a certain process) and finally producing the output of the 

system i.e. the next year’s premium.

As we can see, there is a mechanism which coordinates the different variables of 

the system. This kind of mechanism is called feedback action. Actually at the end of 

each time period a certain portion of the surplus is being fed back to the system in order 

to be controlled. So accumulated surplus may be defined as the measuring element in 

the whole process indicating the state of the system.

2.5 Control theory diagrams

The control diagrams have similarities and differences with the usual graphs or 

other types of diagrams. Blocks, arrows, cycles and signs (+,-) are used for the repre-

sentation of the basic parameters of the system. Typical examples are given below: Dia-

grams (2.5.1), (2.5.2), (2.5.3).

i) The first one is an open loop system. Diagram (2.5.1).

ii) The second one is a closed loop system with a feedback control mechanism Dia-

gram (2.5.2).

iii) The third one is again a closed loop system with a feedforward control mecha-

nism Diagram (2.5.3).

Control diagrams are very useful as a geometrical representation of the process 

of the system.
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Input Process Output

Diagram (2.5.1)

Diagram (2.5.2)

Diagram (2.5.3)

The diagrams above are similar with the ones quoted in Benjamin (1984).

At this point it will be interesting to show the relationship between a simple 

open-loop system with the respective closed-loop one (assuming a feedback mecha-

nism).

Consider the open-loop system

G(z)

Diagram (2.5.4)

where G(z) is the transfer function and

uz is the z-transformed input while 

yz is the z-transformed output 

i.e. yz=G (z)uz

Z transformation is discussed in Appendix I.

yz +•
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then if we introduce a negative feedback mechanism with H(z) as a transfer function

(see the next diagram (2.5.5)).

uz (+) vz G(z)
i :
(-)
wz

H(z)

Diagram (2.5.5)

we shall obtain that

G(z)
Yz l + G(z)H(z) Uz

hence the transfer function of the closed loop system will be

G(z>
1 + G(z )h ( z )

Finally we shall provide the required justification for the relations above. 

From the diagram (2.5.5) we obtain the relationships:

yz = G ( z ) v z

vz = u z- w z

w z =H(z)-yz

Substituting (2.5.4) into (2.5.3) we obtain

v z = uz - H(z) y z

and now solving the system of (2.5.2) and (2.5.5) we find that 

yz = G (z)[u z -H (z)-yz] o  

(l + G(z)-H(z))yz =G (z)uz

and from the last relationship (rearranging the terms) we obtain (2.5.1)

(2.5.1)

(2.5.2)

(2.5.3)

(2.5.4)

(2.5.5)
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2.6 Input - State - Output Spaces

The powerful tool of the modern control theory is the state-space analysis of the 

system. Quoting from Ogata (1970) the necessary definitions for this kind of analysis 

we have the following:

Definition (2.6.1) "State: The state of a dynamic system is the smallest set of 

variables (called state variables) such that the knowledge of these variables at n=no to-

gether with the input for n>no, completely determines the behavior of the system for any 

time n>no".

Definition (2.6.2) "State variables: The state variabes of a dynamic system are 

the smallest set of variables which determine the state of the dynamic system".

Definition (2.6.3) "State Vector: If h state variables are needed to completely de-

scribe the behavior of a given system then these h state variables can be considered to 

be the h components of a vector xn ■ at time n- Such a vector is called state vector.

Hence, generally speaking in every system we may distinguish three critical 

spaces: (The symbol = stands for equivalent between two vector spaces)

(1) U s R 1 (input space): the vector space where the input variable un can take its 

values.

(2) X s R h (state space): the vector space where the state variable xn can take its 

values.

(3) Y = R m (output space): the vector space where the output variable yn can take 

its values.

where IT is the space of real numbers.
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Rewriting equations (2.3.1), (2.3.2) and substituting the second into the first we

obtain

S1+1 = Sn -e e S ^ ,  + C n_, - C n+]

n̂+l = _£‘^n-l + ~ ̂ n-1

(2 .6 . 1)

( 2 . 6 . 2 )
e

The format above is similar to the standard format of the mathematical repre-

sentation of a discrete dynamic system i.e.

Sd(A,B,C,D):

x„+I =A- xn+ B u n where A e R “ , B e R

y =C-x„+D-un where C e R mxh, D e R

the standard format for continuous type is the following:

s c(a ,b ,c ,d )-
[ x ( t ) =  A x ( t ) + B u ( t )  

I y ( t ) = c  • x ( t )+  D u (t)

(2.6.3)

(2.6.4)

(2.6.5)
(2 .6 .6)

where A,B,C,D defined as before and x(t) is the first derivative of x(t). (In the con-

tinuous form we use t as the time variable instead of n.

From this point we shall use S(A,B,C,D) when a concept is applicable either for a dis-

crete or a continuous dynamic system.

As we observe the A,B,C,D matrices are constants, (i.e. do not depend on the 

time variable t or n). These systems are called time invariant. Of course, physical sys-

tems may be non-time invariant and consequently the matrices depend on the time vari-

able i.e. A(t), B(t), C(t), D(t) or An, Bn, Cn, Dn.

The graphical representation of systems (2.6.3) and (2.6.4) is given in diagram

(2 .6 .1).
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In order to find the input, state and output vectors of our example (and conse-

quently the respective spaces) we must find the standard vector format of the system. 

This will be done in the next section and the immediate results will be the following:

U s R 3, X s R 2 , Y  = R

2.7 Standard vector format of our model

As we have seen in the last section, our problem can take a similar format as the 

typical mathematical representation of a dynamic system. Here, we shall try to convert 

the equations into the vector form and achieve the exact standard format.

Let xn =

' C n ■

G
O

3 __
1

1C 3

II C„_,
S„_, ---1<N1c

U

• yn [Pn]
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with zero initial conditions Xo = Ho = yo

Then the system of equation (2.6.1) and (2.6.2) is written in the form,

S n + l 1 - e e X  ' ' - 1  0 f
= +

X  . ! 0

1
C/) 3 1__
__

__ 0 0 0

n +1

C„

Cn_,

Pn+1=[0 -e ]
X  ' 1

+ 0 0 -
e

' n +1

C

Cn-1

or equivalently,

xn+i = A - x n +B- un+1

y = C x  + D- u n+,
¿ . n +1 —n - n + 1

(2.7.1)

(2.7.2)

(2.7.3)

(2.7.4)
1--------

C
O

<
D1

i

l o

, B =
!  0 0  0  0 _

D = 0 0 1_
e

Having, achieved the standard format of mathematical representation, we can go 

through all the basic concepts of control theory and apply them into the certain problem 

(providing the required verbal interpretation of each idea).

At this point we should stress again, the problem could be handled by traditional 

methods, i.e.

(1) Using difference equation theory (see Goldberg (1963))

(2) Traditional Control Theory (see Balzer and Benjamin (1980)).

The vector representation is more powerful and gives us further insight into the 

problem. It also facilitates a quick and simple application of the basic theorems of con-
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trol theory and explain the critical properties of controllability, observability and sta-

bility of the system.

Actually the insight into the problem is gained by comparing the vector format of 

our example with the standard format. For example it is obvious now that the state of 

the system is described from Sn-i and Sn and not only from Sn i.e. We need the knowl-

edge of both Sn-i and Sn (or the vector xn) along with the input in order to completely 

determine the future behavior of the system.

Further insight is also gained because the description and equations have been 

replaced by a set of four matrices A,B,C,D. So we actually face the problem 

Sd(A,B,C,D) and our research is based on the exploration of the properties of these (4) 

four items. We shall see in the next sections how we can obtain immediate results from 

the size and pattern of the matrices.

2.8 Solution of the general form of a discrete dynamic system

Let us consider the general form of a discrete dynamic system

xn+i = A - x n + B u n 

yn = c  x„+D un
-Sd(A,B,C,D)

We may easily obtain its solution by mathematical induction calculating the first 

equation for values n=0,l,2,... Let x0,u 0 the initial conditions, then from the first equa-

tion of the system above we obtain,
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n=0, x ^ A ' X q +B-Uo

n=l, x2 = A x, + B u , =

= A(Ax 0 + B • u0) + Bu, =

= A2 • x0 + (AB • u0 + Bu, ) 

n=2, x 3 = A - x 2 + B u 2 =

= a (a 2 • x0 + (ABu0 + Bu, ))+ Bu 2 -  

= A1 • x0 + (a 2Bu 0 + ABu, + Bu 2 )

It is easily proved (mathematical induction) that

x„ = AnX o + X AkB^n-k-i , n = 1,2,... (2.8.1)
k=0

We shall proceed with the solution of the 2nd equation of system Sd(A,B,C,D).

n=0, yo= C- x 0 + D-u0

It is easily proved directly by substitution of (2.18.1) into the 2nd equation of system 

Sd(A,B,C,D) that,

yn =CAnx0 +CAn-'Bu0 +--- + CBun_, + Dun, n=l,2,... (2.8.2)

If we denote C>(n)=An, it is obvious that the solution is based on this specific 

matrix-function. The matrix An is called fundamental matrix since the resultant re-

sponse of the system is fundamentally based on it.

The matrix function O(n) is also called state-transition function (matrix) and for 

the time-varying systems is of the form O(n,no) i.e. depending on initial conditions too.

32



In order to complete the analysis for the time-invariant systems we shall only re-

fer to the respective state transition matrix of the continuous form i.e.

<D(t) = eAt
co i.k

The discussion above is based on Gadzow (1973) and Ogata (1970).

2.9 Application of the general solution to our model 

(Calculation methods for the fundamental matrix)

It is obvious from the last section that we may immediately obtain the solution 

for our problem using the general form of the solution and calculating the powers of the 

square matrix A e R hxh (powers for n=2,3,...). Here we shall see two methods the direct 

and the indirect one (for the calculation of An, n=2,3,...).

There is an extensive theory of linear algebra for calculating powers of a square 

matrix A, or generally calculating functions of A. (As we have seen the expression eAt 

is needed for calculating the general solution of a continuous linear time invariant dy-

namic system). A brief introduction of the theory above is given in Appendix II. As-

suming the required study of appendix II, we shall proceed with the calculation of the 

nth-power of A without detailed explanation.

Generally, An can be obtained as a product of three other matrices i.e.

A" = Q • Jn Q"1

where Q a matrix produced by the eigenvectors of A (or generalized eigen vectors) and 

J is a matrix of Jordan diagonial form which contains the eigenvalues of matrix A.

As we understand the whole problem (the exact form of solution and the ultimate 

behaviour of the solution) is based on the eigenvalues of matrix A.
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Considering the matrix A of our problem i.e.

A =
1

1

-e e

1

we obtain the characteristic polynomial q>(̂ .).

(p(k)=det(A.I-A)
rx (f "l -e s >.-1 ee

L° 1 0 -1 \

Hence, A,(A.-l)+ee = 0 <-» A2 -A + ee = 0 (2.9.1)

The last equation (which determines the eigenvalues of A and the solution of the 

system) is exactly the same with the equation which Benjamin (1984) discuss in his pa-

per. The discussion about the roots of the equation will become parallel with the paper 

mentioned above.

Finally we may calculate the eigenvectors in order to find the Q matrix (and con-

sequently Q '1). Obviously the eigenvectors and consequently matrix Q has no influence 

to the ultimate behaviour of the solution.

The approach discussed above may be characterized as the direct approach for 

calculating An. There is also another one (indirect) which is based on the z- 

tranformafion (see Appendix I). As we can easily identify

<D(n+l)=A <I>(n) and O(0)=I

If we take the z-transformation of the first relationship we obtain, 

Z {  0>(n + 1)} = A • O(n)}«

z • .2'{o(n)}-z0)(0) = A ■ JT{ 0>(n)} o  

[zl -  A]• „5r{ O(n)} = zO(o) = zl <=>
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,5r{ 0(n)} = z[zl -  A]-1 «

<D (n)=^'-'{z[zI-A ] "'}

( ,2T notation is explained in Appendix I).

Gadjow (1973) proposed a very useful algorithm in order to calculate [zI-A]'1

and consequently ®(n).

2.10 Transfer matrix (function) of the system

Another approach to the description and solution of dynamic systems is the re-

spective transfer function. The transfer function relates directly, the z (or Laplace) 

transformed input variables with the z (or Laplace) transformed output variables.

If we apply the z-transformation on the equations of the standard system we ob-

tain

(Assuming (a) zero initial i.e. x0 = Q and

(b)

Hence,

z x z = A-xz+Buz] (zI-A )xz = B u z
> —>> —> > —»

y =C-xz+Duz y = C x 2+Du z
— 1  y  — ^
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The polynomial matrix

G(z) = Cjzl -  A] 1B + D (2.10.1)

is called the transfer matrix function of the system. (The discussion above is based on 

Gadjow (1973). Working similarly as above we may obtain the transfer function of our 

system which has the same form as in equation (2.10.1) (although our system is slightly 

different from the standard format).

Using the matrices A,B,C,D of our example we shall calculate the transfer matrix 

function of our system.

Firstly, we shall calculate the [zI-A]'1, i.e.

z — 1 es -1 1 z -ee
A]

i _
~ 2

1

-1 z z - z + se 1 z — 1

a P i r 6 - Pi

y 5
then Q-1

det(Q) i i -i p i__
__ )(Generally, if Q = 

consequently we obtain G(z) from equation (2.10.1) i.e.

G(z)= [0 - s ] ~ ------z" - z  + ee

1CO<L>1N1___ '-1  0 f
+ 0 0 -

_! z - l i o o 0 e

0 -
z ' - z  + ee e z ' - z  + es

2.11 Input Signals - Output Responses

As we have seen in section (2.6) there are three types of variables (Input - state 

and output). Having developed the theory of transfer function, we may ignore at a first 

stage the state variable and examine the relationship between input and output through 

this new bridge (the transfer function).
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Keeping also in mind that the transfer function theory has been developed by

using z-transformation we may picture the following diagram.

1

2

k

Diagram (2.11.1.)

We may immediately have a first feeling of the behaviour of the output caused by 

different types of input signals. That is obtained in two ways.

(a) Simulating numerical values for an input signal and calculating (following the 

last diagram 2.11.1) the output values. That is very useful to examine the be-

haviour of the system over a finite time period.

(b) Using the analytical form of the equation of the transfer function y = G ( z ) u z

(after having obtain the z-transformation for input variable) and determine the 

exact pattern of the output values up to infinity. Of course this method is better 

and give us the safest answer for the ultimate behavior of the system.

Control theorists use standard input signals to run a first test for a dynamic system. 

Some of those are given in the table below (including z-transformation). (see Appendix

I)-
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Name Pattern (x0,xi,x2,...) z-transformation

spike 1,0,0,0,... 1

step U , 1,1,... 1
1 - z '1

ramp 0,1,2,3,... z~’

sine sincp, sin(w+(p),... (sin co)z_1
l-2(cosco)z“' + z_2

geometric l,a,a2,a3,... 1
1 -a z “1

delay Xt-m z-mx2

All the above signal patterns may have a verbal interpretation which is applicable 

to our problem. For example considering the spike signal we may translate it as follows: 

"How the system reacts if we have an unexpected claim of one unit".

The step signal may be interpreted as follows:

The underwriter has made a mistake when he assessed the risk for the policy so 

the actual claims will be one unit greater for any future time value t. How the system 

will react?

The ramp signal or the geometric one may be used to model an increasing trend 

in mortality or morbidity rates of a group of insured lives or claim frequency for a 

group of policies. So the application of such a signal as an input variable will reveal the 

future behavior and the possible inertia mechanism of the premium rating procedure of 

our system. If the results are not in line with our expectations we may change the pre-

mium rating in order to avoid undesirable future results.
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Another question which also arises is the following: Has the system been de-

signed properly to obtain a final stable state? All the questions above should be an-

swered using the techniques (a) and (b) described earlier in this section.

2.12 Non Linear problems & linearization procedure

Our discussion up to now, has considered only linear problems and consequently 

linear systems of equations. Of course there is something more, the non-linear systems.

Generally speaking, nonlinearities are divided into inherent and intentional ones. 

Ogata (1970) provides a certain list of the inherent non-linearities (e.g. Saturation, 

Dead zone etc.).

Intentional nonlinearities are introduced in order to obtain sophisticated models 

with high performance attitude.

Now, although there is a great need to establish analogous theory for non-linear 

systems, mathematicians have been unwilling to do so because of two reasons:

(a) Non-Linear theory appears extremely difficult and sometimes impossible to be 

handled.

(b) It has been established a standard linearization procedure by which a non-linear 

system may be easily converted to a linear one and be studied using standard lin-

ear techniques providing enough insight and accuracy to our questions.

Recently, there is a lot of discussion and some objections have been raised against point 

(a) as there are many scientists (in different areas) who have been involved with a 

newly developed theory (known by the Greek word "chaos") which studies non-linear 

systems.
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We stop here the discussion for chaos (perhaps that may form another Ph.D. the-

sis... chaos in insurance!!) and develop a standard technique to linearize a non-linear 

system. We shall develop the linearizaton procedure for the continuous type of a dy-

namic system (the work for the discrete type is exactly parallel, using differences in-

stead of derivatives). The non-linear vector form of the equation (2.6.5) is given below:

x ( t)  = f (x ( t) ,u ( t) ) ,  x ( t ) e R h , u ( t ) e R m (2 .12 .1 )

The lin e a r iz a tio n  o f  a system is usua lly  ob ta ined  over the e q u ilib r iu m  po in ts  x *  

(w h ich  is re la ted  w ith  constant in p u t signals u *  =constant).

Considering equation (2.12.1) we may define the equilibrium points x* (for the 

u* constant input) as the solution of equation below:

f ( x * ,u * ) =  O (2 .12 .2 )

Then we consider small deviations i.e.

x = x*+8x and u = u*+8u

and we expand a Taylor series over the point (x*,u*) for the function f(x(t),u(t)) ob-

taining.

f(x,u)= f(x*,u *)+ -—=■ 
dx (x*,u*)

x di 8x + —
“  3u

•8u + .
(**.«•)

where

df |

af. afh
5x, 0X,

af,
a x h dxh

= A e R hxh

(x*,u*)

(2.12.3)
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d£i = B e R hxm

(x*,u*)

Ignoring the terms (with power >2) of the Taylor expansion in equation (2.12.3) we 

obtain the final form of the system.

6x = A5x + B5u (2.12.4)

which describes the linear approximation of x = f(x,u) over the area of the equilibrium 

point (x*,u*). The discussion above is based on Kalogeropoulos (1987), Ogata (1970) 

and Gagzow (1973).

2.13 Controllability (Definitions - Theorems - Applications)

In this section, we shall discuss a very important concept of the linear dynamic 

system. It is a qualitative property, named controllability which has been introduced by 

Kalman and plays an important role (along with the other concept of observability) in 

the optimal control. Most of the physical systems are controllable, but the correspond-

ing mathematical models may not possess the property. Here we shall develop the nec-

essary conditions for questioning the certain property.

Generally speaking, there are two types of controllability: the state and the out-

put one. We shall first discuss the state controllability providing the necessary defini-

tions and theorems.

Definition (2.13,1) (Athans & Falb (1966)): A state X] is said to be reachable, or 

accessible, from the state x0 at to with respect to U if there is an element ut 

(ut, t e [t0, t, ] )  of U such that

f L  ...
du. chi.

af,
dum
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x,0 = x0 and x„ = x, 

for some finite ti>to

where U is the set of the admissible controls.

Definition (2.13.2) (Athans & Falb (1966)): If the state x, =0 is reachable from 

x0 at to, then we say that Xo *s controllable at (time) to- In other words x0 is controlla-

ble at to if there is a piecewise continuous function u° defined over [to,T] such that

xT = 0

Definition (2.13.3) (Athans & Falb (1966)): If every state xo is controllable at 

time t0 then we say that the system is controllable at t0. If every state x0 is controllable 

at every time to in the interval of definition of the system then we say that the system is 

completely (state) controllable.

We shall also quote the verbal interpetation of state controllability of Athans & 

Falb (1966).

"Controllability means that it is possible to drive any state of the system to the 

origin in some finite time".

A theorem will be given below which operates as a criterion in order to check the 

concept of complete state controllability of the system, in the linear time invariant sys-

tem (discrete or continuous type).

Theorem (2.13.1) (Athans & Falb (1966)). Let the general form of a dynamic 

linear system S(A,B,C,D) then the system (A,B) is complete controllable if and only if 

Rank [ B:AB:A2B:...:AhlB ]=h where h is the number of rows (columns) of matrix A.

The matrix âû = [ B:AB:...:Ah_,B ] is called matrix of controllability.
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If a system is not complete controllable then it is proved that the maximum con-

trollable space is given by Xc=col-span [ B:AB:...:Ah lB ] c R h (col-span means the

vector supspace determined by the columns of the specific matrix). Another useful theo-

rem is the following.

Theorem (2.13.2) (Kalogeropoulos (1987)). The controllability property is not 

destroyed by linear transformations.

The above theorem is very useful in conjunction with the concept of feedback 

action. As we are going to see in the next sections feedback (i.e. a linear transforma-

tion) will be used to redesign a system and achieve the required stability. Given the last 

theorem we may feel safe that the modification of (A,B) will not destroy controllability.

Another criterion (see Ogata (1970)) for checking the controllability property is 

based on the prospective diagonial form of matrix A. Let us assume the set of eigenval-

ues a(A)={7.i,X.2,...An} and Vj*j and Q = tn,u2•••un] the matrix of the respective 

eigenvectors then

(A,B) is complete controllable <=> All the rows of Q '’-B are different from zero.

Now, we shall also provide a necessary and sufficient condition for complete 

state controllability in the z-plane in terms of the transfer function (Ogata (1970)).

A system is completely state controllable if and only if "no cancellation occurs in 

the transfer function (or transfer matrix). If cancellation occurs the system cannot be 

controlled in the direction of the cancelled mode".

Finally we shall state the condition for the completely output controllability 

(Ogata (1970)).

The system Sd(A,B,C,D) (or Sc(A,B,C,D)) is completely output controllable if 

and only if the mx £ matrix
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[ CB;CAB:CA2B:...:CAh-'B:D ]

is of rank m.

Examination of state controllability of our model

Considering our model, we may apply the basic theorem and examine the con-

trollability of the system

A =
1 -ee '-1  0 f '-1  0 f

,B  = , A B  =
! 0 0 0 0 - \  0 1

-1  0 1 i -1  0 1

0 0 0 i -1 0 1
= 2rank [B:AB]=rank 

Hence, our system is complete state controllable.

Examination of output controllability of our model

c = [o -e ]  , D = 0 0 ]_
e

C • B = [O 0 0] , CAB = [s 0 -e ]

rank[CB:CAB:D] = 0 0 0 0 - s 0 0 -  
e

=  1

Hence the system is completely output controllable.

Comments: That means, we can fully control the system or guide the system 

from any initial state towards a desirable state in some finite time. (Normally we want 

to guide the system to O).

Trying to obtain a further insight over the controllability concept we may say that:

• Controllability examines the behaviour of the system over a finite time interval.
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• Stability (will be defined later in section (2.15)) examines the behavior of the 

system over the infinity.

Our basic aim should be to create a system with initial conditions which are in-

cluded in the controllable subspace Xc =col-span[ B:AB:...Ah~‘B ] and consequently

guide the system to the desired state. So avoid to put the initial conditions into the un-

controllable subspace.

2.14 Observability (Definitions - Theorems - Applications)

The concept of controllability refers to the first equation of the standard format 

of a dynamic system Sd(A,B,C,D) as opposed to the concept of observability which re-

fers to the second equation of system i.e.

yn =C x n + D-un, C g R m*n, D e R mx'

Definition (2.14.1) (Athans & Falb (1966)): We say that a state x0 is observable 

at to if, given any control u, there is time ti>to such that knowledge of uj, t j and the 

output y. . is sufficient to determine x0.
—Llo .*i J

Definition (2.14.2) (Athans & Falb (1966)): If every state x0 IS observable at to 

then we say that the system is observable at to- If every state x0 is observable at every

time to in the interval of definition of the system, then we say that the system is com-

pletely observable.

We shall quote again the verbal interpretation of Athans & Falb (1966) for ob-

servability i.e. "observability means that the initial state of the system can be found 

from a suitable measurement of the output".
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An analogous theorem as in the previous section will be described below which 

operates as a criterion in order to check the concept of complete observability of the 

system.

Theorem (2.14.1) (Äthans & Falb (1966)) The system S(A,B,C,D) is complete 

observable. If and only if

rank

C

CA

CA

= h

h - l

The matrix

C

CA

CAh-l

is called matrix of observability.

If a system is not complete observable then it may be proved that the maximum 

observable space is given

ST =Nr

C

CA

CAh-l

C R h

(where N r(F )= {xeR h : F(x) = o } ).

Another parallel theorem for observability is the following:

Theorem (2.14.2) (Kalogeropoulos (1987)). The observability property is not de-

stroyed by linear transformations.
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So, the linear transformation of a certain feedback action will not destroy ob-

servability of the system.

The last criterion applied to prospective diagonial form of the matrix A is the 

following:

Theorem (2.14.3) (Ogata (1970)). The dynamic system S(A,B,C,D) is complete 

controllable if and only if all the columns of C-Q are different from zero. (Q has been 

defined in section (2.13) for a controllability theorem).

Finally we should mention the conditions for complete observability in the z- 

plane which is exactly the same as for the complete controllability (i.e. No cancellation 

should occur in the transfer function or transfer matrix).

Examination of observability of our model

Considering our problem we obtain

A =
1 - e s  

1 0
, C = [0 - s ]  , CA = [-£ 0]

Hence rank
'  c  ■ '  0 - s

CA - s 0
-2

that means our system is complete observable.

Comments:

As we have stressed, observability is a very important property of a linear dy-

namic system. But what is the "meaning" of it, what is the physical interpretation?

Let us think the meaning of word "observability" in general... "ability" to ob-

serve" and the three spaces input-state-output. Obviously we can observe the first and
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the last one. It is not obvious that we can observe the state space. This space is gener-

ally hidden and describes the inertia mechanism. So it is possible to obtain systems to-

tally or partially unobservable. Of course this is not a desirable situation, and we are 

trying to avoid those systems. If we have to work with those systems we shall target to 

stay within the observable part of the state space.

Finally, we shall quote again Athans & Falb (1966) in order to explain the need 

of observability property. "Suppose that the system is observable this implies that we 

can compute the initial state xo at t=0". So we can fully regulate the output maintaining 

it at zero (after guiding it to zero, assuming the controllability property for a dynamic 

system).

2.15 Stability (Definitions -  Theorems - Applications)

As we have already pointed out in the comments of section (2.13) stability is an-

other important property of linear dynamic systems which examines the behaviour of 

the system "near the infinity area". Diagrammatically

Of course the basic target is the design of stable systems. That means we have to 

establish certain mechanisms into the system in order to obtain bounded output re-

sponses whatever is the input signals. (A special case of the previous concept is the 

B.I.B.O. system i.e. Bounded Input Bounded Output).

Stability is usually examined over the points which are called equilibrium points 

(zero 0 can always be one of them, perhaps after a suitable linear transformation). The 

proof is obvious considering the following definition of an equilibrium point.
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Definition (2.15.1) (Ogata (1970)): A point xe e X is called equilibrium point 

(state) of the system if and only if by definition x, = xe Vt > 0 given that x<> = 2L an^ 

u, =0 Vt>0 i.e. xe is an equlibrium state if the solution of the system x, remains on it 

as far as we have zero input signal.

Now considering the equation xn+1 = A-x„ +B-un we obtain

xe equilibrium point <=> A-xe = x e.

0 may always be a solution of the last equation. Now if A is a non-singular matrix 0 is 

the only equilibrium point (if A is singular there are infinite solutions).

There are two definitions for stable points: i.e.

Definition (2.15.2): An equilibrium point (state) xe is called (Liapunov) stable 

point if and only if by definition

VS(xe^ ) = { x e X : |x - x e|< ^ > 0 }  35 > 0 :S(xe,5 )c  S(xe,^)

Such that for every x0 e S(xe,5) then x, e S(xe,£,) Vt > t0 

that means the state vector remains always "near" the equlibrium point or quoting from 

Ogata (1970), "corresponding to each s(^)= s(xe,^), there is an s(5) = s(xe,5) such that 

trajetories starting in s(5) do not leave s(^) as t increases indefinitely. The real number

5 depends on s and in general also depends on to. If 5 does not depend on to the equilib-

rium state is said to be uniformly stable".

Definition (2.15.3): An equilibrium state xe ls called stable asymptotic point if 

and only if by definition

xe is a Liapunov stable point (according to definition (2.15.2)) 

and lim xn = xe (or lim||xn -  x j  = 0 ).
n —>oc n —>oc "
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that means the state vector remains always "near" the equilibrium point while converg-

ing to it. Theoretically the state vector equals the equilibrium point near the infinity 

area.

The asymptotic stability is a local concept, so most times we need to find the 

largest region where this property holds for the system. This region is called the domain 

of attraction. Actually it is the part of the state space where every trajectory originated 

is asymptotically stable.

We shall also provide the formal definition of instability (Ogata (1970)).

Definition (2.15.4): An equilibrium state xe is said to be unstable if for some 

real number ^>0 and any real number 5>0, no matter how small, there is always a state 

x0 in S(8) such that the trajectory starting at this state leaves s(£).

That means the state vector does not remain "near" xe •

The following diagram provides a geometrical representation of the two definition 

compared with the unstable situation. The diagram (2.15.1) shows a typical path for 

each of the three situations.

Diagram (2.15.1)
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There is a basic theorem operating as a first criterion in order to judge the stabil-

ity of a system. That involves the eigenvalues of matrix A. We shall give the two ver-

sions for discrete and continuous type of systems.

Theorem (2.15.1): (Stability Criterion) (Kalogeropoulos (1987) and Ogata 

(1970)). The equilibrium point xe is said to be:

(a) Liapunov stable point if and only if all the eigenvalues of matrix A (where a+bi 

is the general form of an eigenvalue of matrix A).

(i) (continuous) have non-positive real part (i.e. a<0) and those with zero real 

part (i.e. a=0) have simple structure (see Appendix II).

(ii) (discrete) have absolute value less or equal to unity (i.e. |a + bi |<l)  and if

|a + bi| = 1 then the a+bi should have simple structure.

(b) Asymptotic stable point if and only if all the eigenvalues of matrix A (with the 

complex form a+bi)

(i) (continuous) has negative real part (i.e. a<0)

(ii) (discrete) has absolute value less than unity (i.e. |a + bi| < 1).

(c) Unstable point if and only if there is at least one eigenvalue of matrix A.

(i) (continuous) with positive real part, or with zero real part and not simple 

structure.

(ii) (discrete) with absolute value greater than unity or equal to unit and not 

simple structure.

Obviously the stability of the system depends upon the magnitude of the eigen-

values of matrix A. Consequently the eigenvalues depend upon the roots of the charac-

teristic polynomial of A i.e. the roots of cp(A,)=det(A,I-A)=0.
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The (p(>.) is an hth order polynomial and (generally) it is very difficult to be 

solved analytically. Control theorists have developed, a very powerful tool called root 

locus method in order to examine the position of the roots in the z-plane. Root locus 

method and other criteria will be discussed in Appendix III.

Example and comments

Considering our example we obtain,

cp(X,) = det(A.I-A) =
>i-l ee 

-1 X
— X — A, + ae — 0 (2.15.1)

We have found again this equation above in section (2.9) in the calculation of

An.

We generally know that p rp 2=ee (pi,p2 roots of equation (2.15.1)). So if |ee|>l 

then |piP2| > 1 and consequently there exists at least one root pi or p2 with absolute val-

ues greater than unity and the system is unstable. Hence, a first action would be to de-

sign the system such that |ee| < 1.

Of course we must examine the equation more accurately and answer other ques-

tions. Which is the best selection for the parameters? Is there a best one? How we de-

termine the concept of "best". All these questions will be answered in the next two sec-

tions in the context of the system feedback action and best selection of parameters ac-

cording to certain criteria.
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2.16 Feedback Action - Redesign of poles to obtain the required stability of the 

system

A n o th e r basic concept o f  lin e a r dynam ic  systems is the "feedback a c tio n ". I t  is 

d ire c tly  re la ted  w ith  the state space and is u su a lly  represented by a lin e a r tra ns fo rm a -

t io n  F :X —>U where u (t) = F -x ( t ) + v ( t )  and v ( t)  is  a new  in p u t fu n c tio n . So the in it ia l 

system S (A ,B ) is transfo rm ed  to the S (A + B F ,B )-

But what is the need of feedback action? The theorem below provides a first an-

swer.

Theorem (2.16.1) (Kalogeropoulos (1987)): Let the dynamic system S(A,B,C,D) 

and F:X—>U, linear transformation.

(i) col-span [ B:AB:...:Ah lB ]=col-span [ B:(A + BF) B:...:(A + BF)h_l B ] i.e. the 

controllability property is not destroyed.

C C

(ii) Nr
CA

= Nr
c (a + b f )

------1
TJZ<

. 
o

 
____1 C(A + BF)h_1

i.e. the observability property is not destroyed.

(iii) If the system S(A,B,C,D) is complete controllable then the set of eigenvalues of 

(A+BF) or the poles of S(A+BF,B,C,D) may be arbitrarily designed by choosing 

a suitable F.

Hence if a system is controllable but not stable we may design the poles in order 

to achieve the desired stability (remaining controllable). The poles refer to the roots of 

the characteristic polynomial of the matrix A or also may refer to the roots which make
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zero the denominator of the transfer function in a simple input - simple output dynamic

system.

Apart from the state feedback action there is the output feedback action where 

the output information is measured and used to stabilize the system.

Let L be an output feedback action,

L : Y —> U :u(t)=Ly(t)+v(t)

It is easily proved that the output feedback action may be translated into a state feed-

back action.

There are a lot of types of feedback mechanisms depending on how they use the 

historical information of the system (history of the state vector). We shall discuss three 

of the basic ones.

1. Proportional Action:

Considers the difference between the value of the state vector at the present time 

and the respective desired value of the state and feeds back a proportion to the system. 

In our example, we have a proportional feedback action considering only the final value 

of the accumulated surplus as the respective desired value is zero.

2. Integral Action:

Considers the whole history of the state vector (generally is based on integral 

(continuous type) or summation (discrete type) of the state vector).

3. Derivative Action:

Considers the short history immediately before the present time. Generally 

speaking is based on the derivative or difference of state vector variable.
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Of course, the three actions may be combined and produce a synthesis which will 

result better performance for the system, so we have

• proportional - plus - integral controllers

• proportional - plus - derivative controllers

• proportional - plus - derivative - plus - integral controllers.

Application to our example

In our problem there is a feedback mechanism and it is actually a proportional 

one. The choice of matrix F (see notation before) is restricted to the choice of s i.e. the 

certain proportion of accumulated surplus which should be fed back to the system. So if 

we want a stable system we should choose s such that the poles (or the eigenvalues of 

matrix A) are within the unit circle.

In the next section we shall examine another use of the feedback action with re-

spect to optimization problems.

2.17 Optima! and adaptive Control in dynamic systems

The optimal control theory is very extensive and in nowadays plays the most im-

portant role as there is a great demand for systems which perform in the best possible 

way. In Appendix IV, there is a short discussion of the required knowledge from stan-

dard analysis and functional analysis with respect to optimization techniques.

In this section we shall discuss the linear - time - invariant optimal control sys-

tems which are based on quadratic performance indexes along with the concept of feed-

back.

Actually we shall quote the result from Ogata (1970).
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Let us consider a certain dynamic system

x = A-x + B u  (2.17.1)

and the need for optimization of the quadratic performance index

J (u)= J^(x/(t)Qx(t)+if(t)Ru(t))dt (2.17.2)

where Q is a positive - definite (see Appendix IV for the definition) (or positive - 

semidefinite) real symmetric matrix and R is a positive - definite real symmetric matrix. 

Then it is proved (Ogata (1970)) that

u(t) = -Kx(t) (2.17.3)

is the optimal control law and K matrix is determined by the following equation

K = R“1 • B' • P (2.17.4)

P matrix is the solution in the reduced - matrix Riccati equation (see equation (2.17.5)).

AT + PA -  PBR'B'P + Q = 0 (2.17.5)

(The (') superscript stands for transpose matrix).

Hence, feedback action may produce an optimal system (apart from stable which 

we have seen in the previous section).

Before closing this section we shall briefly refer to adaptive control systems, 

quoting from Ogata (1970).

"Adaptation is a fundamental characteristic of living organisms since they at-

tempt to maintain physiological equilibrium in the midst of changing environmental 

conditions. An approach to the design of adaptive systems in then to consider the adap-

tive aspects of human or animal behavior and to develop systems which behave some-

what analogously".
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Obviously, from the definition above the adaptive systems are the most interest-

ing ones. Actually, we always target the designation of such a system.

So, is it possible to produce the ideal adaptive systems? The answer is: No, be-

cause we can not ideally simulate the human's behavior. A manager may use other cri-

teria to decide the next year’s premium where sometimes are not clear even to himself!

2.18 Special Topics - Geometrical Representation

In this section, we shall try to concentrate in the geometrical representation of 

control theory while discussing some special topics.

a) Control Design and Diagrams

Having obtained the right model, we have solved the problem half way through. 

That means we should spend a lot of time and care modelling our problem, i.e. do the 

following:

(i) Determine the input variables.

(ii) Determine the output variables.

(iii) Determine the state variables (both the basic and subsidiaries ones) which should 

be followed and controlled in order to (finally) control the output.

(iv) Determine the mechanisms in the state space and the relationships between all 

the variables.

(v) Formulate a control diagram based on the established variables and relationships 

trying to obtain a further insight into the flow of the whole process.

(vi) Examine the basic properties controllability, observability and stability of the 

system.
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(vii) Redesign (if necessary) the basic parameter values or create feedback mecha-

nisms which may help for stability or optimality purposes.

(viii) Translate final results and make any required adjustments.

We provide below the diagram (2.18.1) of the general form of the system 

Sc(A,B,C,D) (continuous type). Where A,B,C,D in the boxes are the respective matrices 

of equations (2.6.5) and (2.6.6) while the symbol in the central box stands for integra-

tion.

u

— I A t -

Diagram (2.18.1)

b) Transient Response Analysis

The transient response analysis of a system is very important and obviously pre-

defines the ultimate state.

In order to examine the transient-response characteristics, we apply one or more 

of the standard signals and determine some special indices.

1. delay time, td

2. rise time, tr

3. peak time, tp
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4. maximum overshoot, Mp

5. Settling time ts

The interpretation of these indices are immediate just from the word description 

but we shall also quote the formal definitions from Ogata (1970).

Definition (2.18.1)

a. Delay time, td:... is the time required for the response to reach half the final value 

the very first time.

b. Rise time, tr:... is the time required for the response to rise from 10 to 90%, of 

its final value.

c. Peak time, tp:... is the time required for the response to reach the first peak of the 

overshoot (the response curve above the x-axis).

d. Maximum (percent) overshoot, Mp:... is the maximum peak value of the response 

curve measured from unity. If the final steady-state value of the response differs 

from unity then it is common to use the maximum percent overshoot. It is de-

fined by the ratio

Maximum Peak Value -  Final Steady State Value 
Final State State Value

The amount of Mp directly indicates the relative stability of the system.

e. Settling time, ts:... is the time required for the response curve to reach and stay 

within a range about the final value of size specified by absolute percentage of 

the final value (usually 5% or 2%). The ts is related to the largest time constant 

of the control system.
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The definitions above are very important and useful in applications. Having es-

tablished the concept of "settling time" we may answer the question raised in the previ-

ous section. "What is the best design of the system? Which is the best choice for a spe-

cific parameter? Obviously the smaller the settling time of a system the better design 

for our system.

c) Application to our example

Below we shall examine a simulation of our problem and present a geometric ap-

proach of the stability of the system drawing the path of the state vector in the state 

space (in our example the state space is the R 2. Before we do so we shall determine the 

settling time for each scenario.

We consider a spike input signal and two different set of values for 8,e 

(i) 8=0.2 e=0.8 (ii) e=0.5 e=0.8

Then quoting the table from Benjamin (1984) we obtain the settling times for 

different scenarios as defined below.
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Table (2.18.1)

n (i): Sn (ii): Sn

0 -1.000 -1.000

1 -1.000 -1.000

2 0.160 0.400

3 0.320 0.800

4 0.294 0.640

5 0.243 0.320

6 0.196 0.064

7 0.157 -0.064

8 0.125 -0.089

9 0.100 -0.064

10 0.080 -0.028

11 0.064 -0.002

12 0.051 0.008

13 0.041 0.009

14 0.032 0.006

We also determine as 5% the required percentage for the definition of settling 

time then.

The 5% settling time for the first scenario is something greater than 12 i.e.

t & s l 2  (2-18.1)

while for the second scenario (using linear interpolation)

4% =9.4 (2.18.2)

So the second scenario is better than the first one considering the index of the settling 

time since
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but in the second scenario the system exhibits oscillations. So further research should 

be carried out in order to balance the minimum settling time with the minimum oscila- 

tion effects.

In the next diagram (2.18.1) we draw two paths one

(i) (blue path) "— " representation of xn with the point (sn-i, sn) in the xy-plane

(ii) (red path) "—  — ------ " representation of xn similarly as (i).

As we observe path (i) is closer to zero with no oscilation but goes slowly towards zero 

while path (ii) is not so close to zero, exhibits oscillations but goes faster towards to 

zero. After having obtained this graphical representation of the state of the system we 

may easily choose which is the best (according to our criteria) choice for the parameters 

involved and establish the respective strategy.
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Diagram (2.18.2)



2.19 Final Remarks - Further Proposals

As we have already indicate in the introductory section of this chapter, our aim 

was not to provide a detailed analysis of control theory, but a summary of the most use-

ful concepts and emphasize on the powerful tools of this theory which may be used by 

an actuary.

In this chapter we have presented the modern control theory approach using the 

vector form of the equations, the state space and linear algebra while providing also the 

basics from the conventional control theory approach with z-transformations and trans-

fer function.

The modern approach is more powerful providing a very deep insight into the 

problem. The more theoretical form and the description of the system only with four 

matrices S(A,B,C,D) provide us unique flexibility and understanding of the inertia 

mechanism of the system.

Conventional control theory can handle efficiently single input - single output 

problems. Modern systems are much more complex. They are usually described as mul-

tiple input - multiple output or/and time-varying or/and non-linear ones.

The use of modern control techniques are unavoidable for the systems above.

Finally we should stress the superiority (supported also by Taylor (1987)) of the 

modern approach in the system design and especially in the optimal control problems 

with respect to given performance indices.

In the development of the thesis we shall use modern control theory while keep-

ing some of the elementary approach of the conventional theory.

64



Chapter 3

Review of the Literature

(Applications of Control Theory to Insurance and Pensions)

3.1 Introduction

Having established the required theoretical background of control theory in 

chapter 2, we shall proceed now with the discussion of the relevant published paper 

work. It seems that many actuaries have pointed out the necessity for a new approach to 

the insurance problems as the traditional statistical methods or the individual / collec-

tive risk models appear to be not so practical or "safe".

Immediately after the development of Lundberg’s ruin theory, De Finneti (1957) 

proposed a modified model for an insurance company using a simple premium control 

rule. As a continuation of this work Borch (1967) in a survey article for the history of 

risk theory identified the modern direction of risk theory into control techniques pro-

viding a general solution to De Finneti’s model.

A paper of Seal (1970) presented in a Conference of the Society of Actuaries, 

provided the practical question and reasoning for developing the control techniques for 

insurance problems.

Afterwards and especially during the last two decades there are many persons 

who have been involved in modelling certain actuarial or insurance problems under the 

framework of control theory (starting from Balzer & Benjamin (1980)).
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In the next sections we shall present (seperately, one by one) the paper work us-

ing the following structure.

(a) Description (of the paper, stating the general structure, the model used and the 

important results).

(b) Comments (concerning the results and the control techniques or the certain point 

of view of the author plus the links with previous research work. That will en-

able us to trace through the development of ideas).

The papers are presented in chronological order as we prefer to focus on the 

control concepts and how they have been developed and linked with the different areas 

(life insurance, general insurance, pensions) of the actuarial work.

Before closing the chapter, we shall provide a final section discussing the basic control 

concepts across all the papers in order to obtain an overview of the topic.

3.2 De Finetti (1957). "Su una impostazione alternativa della theoria collectiva del 

rischio"

(a) Description: As we have stated in the intoductory section, almost fifty years af-

ter the development of Lundberg's ruin theory, De Finetti has pointed out the un-

realistic modelling structure of the collective risk model. The basic equation 

(3.2.1) which describes the surplus accumulation procedure drives the process up 

to infinity since

Sn = Sn.,+Pn-Cn (3.2.1)

where Sn is the surplus at the end of year n

Pn is the annual charged p rem ium  in  year n ca lcu la ted  us ing  a safety 

load ing  0q i.e.
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p „= (i+ e „)-E (c ,) (3.2.2)

Cn independent identically distributed random variables representing 

the total annual incurred claims in each year (n=l,2,...).

De Finetti proposed an upper limit for the surplus of the company (say Z). Actu-

ally his model is based on the assuptions below:

"(i) The company has an initial capital So.

(ii) In each operating period the company underwrites a portfolio of insurance 

contracts with a claim distribution F(x)-(F(x)=0 for x< 0).

(iii) In each operating period the company collects a constant amount of pre-

mium Pn=P.

(iv) If at the end of an operating period the company's capital exceeds Z the ex-

cess is paid out - as dividend or taxes.

(v) If at the end of an operating period the capital is negative, the company is 

ruined, and has to go out of business."

The proposed model is actually a random walk with an absorbing barrier for the 

accumulated Surplus (S) at S=0 and a reflecting barrier at S=Z (the predefined 

level of action).

(b) Comments: It is obvious that if we let Z (the reflecting barrier) to go up to in-

finity the model coincides with Lundberg's approach. The current model de-

scribes in a better way the reality because it assumes the existence of an upper 

limit for the accumulated surplus.

It actually proposes a certain type of control action on the surplus procedure. 

This action is not a smooth control as we only intervene in the system when S=Z.
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Smoother control actions are proposed in the next papers (see Martin-Lof (1983)) 

operating in a more frequent way.

Finally we must stress that De Finetti solved his model only for a special case 

where P=1 (premium equals the unity) and the distribution F has the following 

form:

F 'W =-
x = 0

, p + q = 1 (where F'(x) is the first derivative of F(x)
q , x = 2

The full solution has been provided by Borch (1967) who expanded the current 

model in the most general form (see next section).

3.3 Borch (1967), "The theory of risk"

(a) Description: An instructive journey from the roots of traditional risk theory up to 

the modern developments is presented as an introductory historical note in the pa-

per. The author traces the footprints of the risk concept and premium determina-

tion procedures from the well-known "principle of equivalence" with the possible 

existence of a "safety loading" up to more elegant views of the utility theory, the 

economic theory of insurance and the most recent one, the control theory ap-

proach. It is suggested that the traditional view of adding a certain safety loading 

to the net premium and allowing completely free the reserve process of the com-

pany there after, creates an unrealistic model of a random walk with a positive 

drift going up to infinity. That’s why, De Finneti’s model is proposed again with 

an absorbing barrier at S=0 and a reflecting barrier at S=Z (S is the reserve or the 

accumulated surplus and Z a predefined level of action for the reserve). Finally the
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general solution of De Finetti's model is provided with some numerical illustra-

tions.

(b) Comments: The current paper along with the previous one, provides the initial 

theoretical strike which "passes the ball" to the field of control theory approach. 

The modelling structure fits very well to a control problem. The existence of the 

reflecting barrier (S=Z) implies a certain control law (non-linear) which simulates 

the reality in a better way than traditional approaches. Apart the complex type of 

equations (Fredholm’s type) and the respective complicated methods (iterated ker-

nels, Dirac function, Neumann’s expansion) used for the general solution of the 

model, the paper contains some very prudent observations either for the assump-

tions or the formulation of an insurance problem.

Firstly, indicates the most unrealistic assumptions which are being used in most 

insurance models i.e.

(i) The stationarity, which implies the nature of the company’s business will 

never change.

(ii) The assumption that probability laws governing the process are completely 

known.

(iii) The implicit assumption that a decision once it has been made cannot be 

changed.

If we erase the above unrealistic assumptions then we shall be forced to consider a 

control approach to our model (a control model does not need these three assump-

tions).

Secondly, the paper eliminates the problem of an insurance company establishing
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(i) An information system: a system for observing the stochastic process as it is 

being developed.

(ii) A decision function: a set of rules for translating the observations into ac-

tion.

Especially, the last two rules will be widely used in the development of our appli-

cations.

3.4. Seal (1970) "Simulation of the ruin potential of nonlife insurance companies"

(a) Description: The paper suggests two types of modelling for a casualty insurance 

company calculating the probability or ruin using standard simulation techniques. 

The first model "consists of two independent and unchanging probability distribu-

tions. The first of these is the distribution of intervals between successive claims 

and the second is the distribution of individual claim amounts". Using queuing 

theory notation, the paper examines M /M/l, M/XI/1, XI/XI/1 situations where M 

stands for exponential and XI for Pareto. Finally it is observed that the longer tail 

distributions of interclaim periods and claims amounts respectively the bigger the 

probability or ruin.

The second model considers that the aggregate annual claim outgo of the company 

has a gamma distribution and different experience-rating strategies are examined 

calculating the probability of ruin. The results of the simulation establish a great 

surprise (paradox). Most of the simulated companies, although commenced with a 

fairly substantial reserve, during the first 40 time periods are ruined! The above, 

implies that standard rate-making strategies provide poor protection against the 

adverse chance fluctuations.
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(b) Comments: The paper does not use control techniques but may contribute in two 

interesting directions (the second direction along with the two previous papers is 

the commencement point of the control approach to actuarial problems).

(i) The simulation of ruin potential of an insurance business especially for short 

term periods. Of course simulation techniques always provide a limited view 

but it is preferable than nothing. As we know ruin theory provides the for-

mula which calculates the exact probability of ruin. But sometimes, it is very 

difficult or even impossible to obtain the respective numerical value.

The paper should be also considered as a starting point to a more general 

field of approximating the ruin functions.

(ii) The second direction which appears to be more interesting and stands as an 

extra incentive for this thesis is the result for the ruin potential of companies 

operating under "reasonable" experience rating procedures. We should pay 

more attention in the construction of these rate-making rules and be able to 

examine how much reasonable, effective or safe are, with respect to the ruin 

potential of a company. Actually the rules mentioned above should be con-

sidered as controllers and the respective premium formulae should form the 

basic equations of a dynamic system. Obviously the whole discussion above 

suggests the use of control theory which is the suitable tool for examining 

the rate-making rules.

3.5 Balzer & Benjamin (1980), "Dynamic response of insurance systems with delayed 

profit/loss sharing feedback to isolated unpredicted claims"

(a) Description: The paper considers a problem of group profit-sharing schemes pro-

viding a limited standard solution which is common to actuaries. It also uses that
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problem as an incentive in order to enter the field of control theory. A dynamic 

model is constructed, which simulates the actual problem with a delayed 

profit/loss sharing feedback mechanism. The basic equations are:

Sn =Sn_,+ePn - C n (3.5.1)

~~ Cn_f_, £Sn-fe
(3.5.2)

where Sn: accumulated surplus at time n,

Pn: premium received in (n-l,n)

Cn: claims incurred in (n-l,n)

e: expense factor

e: feedback factor

The delay factor (f) is not fully examined. The authors consider the special cases 

for f=l,2 and f=5 in order to judge that increasing delays cause undesirable oscil-

lations to the system.

The first equation describes the development of this accumulated surplus while the 

second operates as a decision function for premium determination using the latest 

known claim experience Cn-f-i and the latest known state of surplus Sn_f (f may be 

0,1,2,3,...). The paper then concentrates to the dynamic behavior of the system af-

ter applying a disturbance input of an isolated unpredicted claim i.e. a spike input 

signal. It is proved that increasing delays cause undesirable oscillations which may 

ultimately lead to instability. Finally we must mention that, paper also outlines the 

modelling philosophy of a dynamic system and the perspectives of such a design 

for the insurance systems.
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(b) Comments: An introductory paper for actuaries entering the field of control the-

ory. Although the general concept of "control" have been included in previous re-

search papers (e.g. Borch, (1967)) the specific approach of Balzer and Benjamin 

formulates the insurance problem under the typical notation, terminology and 

standard manipulation procedures of control theory. The reference to the model-

ling philosophy also confirms the statement above.

As regard the actual problem of group business, we may say that it is an ideal one 

in order to discuss the basic control concepts of input, output state and feedback 

mechanisms.

The authors also use control diagrams, a matter of great importance as the abstract 

insurance objects may find some kind of graphical representation.

The underlying philosophy of the system of equations (3.5.1) and (3.5.2) may 

comply with (while extending) the work and suggestions of De Finetti (1957) and 

Borch (1967). The control law is now smoother as we intervene into the system 

not only at the predefined level of surplus (Z) but at any time proportional to the 

volume of surplus.

The authors concetrate on the feedback concept and equation (3.5.1) which de-

scribes the state of the system. They discuss the stability of the model and the 

transient responses with respect to the feedback factor s (identifying oscillations 

for large values but ultimate return to initial steady state).

The inconvenient point of the discussion is the use of a poor claim predictor. As 

we can see from equation (3.5.2) the experience of (n-f-l)th year is only used in-

stead of an average of the last p-years. The last more sophisticated predictor may 

have reduce the oscillations of the feedback.
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The model and research of this paper is being extended in the next chapter 4. The 

basic directions of extension are:

(1) the consideration of an investment element

(2) the introduction and investigation of the delay factor (f) as a free changing vari-

able in the system.

(more details for the extension are provided in section (4.1)).

3.6 Balzer (1982), "Control of insurance systems with delayed profit/loss sharing 

feedback and persisting unpredicted claims "

(a) Description: At the beginning of the paper there is a short introduction by S. 

Benjamin who describes a "personal journey". He actually reports the practical 

questions or past research work (as the paper of Seal (1970)) which have directed 

him to a new conceptual universe using control theory in insurance problems. 

Then Balzer referring to the previous joint paper with Benjamin in 1980, attempts 

to formulate the same problem of profit/loss - sharing in a more sober way with 

respect to the control design and justification.

The system is disturbed by a persisting series of unpredicted claims (i.e. the input 

signal is a step function) and its behavior is examined with respect to transient re-

sponses and stability of the ultimate state.

The author goes "deeper" in control concepts describing the powerful tool of root 

locus method and its applications for the stability of the system or the optimal de-

sign of the parameters involved.

Using the final value theorem (in order to obtain the steady state value of the sys-

tem) he finds that the system does not return back to the initial state. He then dis-

cusses different control actions (as proportional, derivative, integral or a combi-
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nation of them) which can "correct" the behavior of the system and return it back 

to the initial state.

(b) Comments: The current paper has a direct relationship with the previous joint one 

(Balzer & Benjamin (1980)). It presents a clear and sufficient (or even say complete) 

view of the basic control concepts. It could be used as an autonomous reference for 

those actuaries who want to develop a more comprehensive understanding of the 

area of modelling and handling insurance problems via control techniques. As re-

gards the results of investigation of the system we may point out the following.

(i) The important result is the determination of the optimal (with respect to the 

fastest response and return of the system back to initial state) value for the 

feedback factor which is equal to 31.25% (for a 20% cost factor). Of course, 

in a business context 31.25% appears as a very surprising proposal. A more 

"logical" and perhaps acceptable percentage (both from the insurer and the 

policyholder of the group profit-sharing scheme) should be a "round" one. Or 

in other words, as the certain percentage defines the way of sharing the 

profit, it appears fair to share 50%-50%.

(ii) Although integral action improves the dynamic behavior of the system, de-

rivative action appears to degrade the dynamic response. The author provides 

an interesting general reasoning for this fact using the experience of driving 

a motor vehicle behind a large truck!.

Finally we should state again that no attention is paid to the claim predictor of the 

system and there is no discussion of the transient response characteristics of the 

system (i.e. to identify the basic concepts of section (2.18), delay time, peak time, 

rise time, maximum overshoot (see Section (2.18)).
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(a) Description: Using as a starting point the work of Borch (1967) the author con-

centrates on the premium control procedure of an insurance company. By a short 

review in the introductory section, he testifies the unrealistic view of the conven-

tional risk theory but also indicates the weakness of De Finneti’s model, in which 

the control action is restricted only at the reflecting barrier (S=Z). Consequently, 

he proposes a smoother control action which may stabilize the reserve in a more 

continuous way. Actually proposes a variable loading factor (0n) i.e.

3.7 Martin-Lof (1983), "Premium Control in an Insurance System an Approach

using Linear Control Theory"

where f is a function of the difference between the actual reserve at time t and Z 

the predefined level.

Following Borch’s suggestions, he proposes a system of two equations in order to 

analyze the dynamic behavior of the company. The first equation describes the 

state of the reserve while the second determines the decisions about the premiums 

at the end (or beginning) of each time (operation) period. Upon the background 

above, the model is developed discussing the concepts of stability, ultimate state, 

and optimal selection of the parameters involved.

(b) Comments: In this paper, we can recognize the standard formulation of a typical 

dynamic system. The two basic equations which are similar to those of Balzer & 

Benjamin (1980) are:

e . = f ( s . - z ) (3.7.1)

Sn =RS„., + R3(Pn-C „) (3.7.2)

(317.3)
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where Sn: accumulated surplus at time n

Pn: premium received in (n-l,n)

Cn: claims paid in (n-l,n)

Cn: claims predictor at time n

R: Interest factor

e,: constant parameter (chosen arbitrarily)

e: feedback factor

Removing the stationarity assumption, the author discuss a very sophisticated con-

struction procedure for the claim predictor based upon linearity and random fluc-

tuation which may actually simulate in a better way the real world. The discussion 

of the stability of the system with reference to the value of e parameter is an easy 

task as the characteristic equation is a polynomial of 2nd degree. Applying the 

theorems of section (2.15) the selection of parameter s is restricted in order to 

obtain roots within the unit circle. The interesting (and rather expected) results is 

the discovery of a certain link between the feedback and oscillations of the sys-

tem. (The same as in the previous section i.e. the stronger the feedback the bigger 

the oscillations.) Finally the proposed quantitative measure for the solidity of the 

steady state forms an optimal control strategy. The solidity requirements is given 

by the ratio

Solidity Ratio =

which is restricted to a small value (e.g. 0.25) so that the probability of ruin is 

also restricted. This last rule returns back to the traditional approach of calculat-

ing the probability of ruin.

Vvar(s)
E(S)
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(a) Description: The title of the paper explains in the best possible way the discus-

sion and the effort made by the author to put actuarial problems into the control 

theoretical framework. An extensive analysis is provided in order to formulate a 

similar model as with the sections (3.5) and (3.6) paying much attention on the 

definitions of input, state and output variables. The model now is adjusted to a 

general insurance company. The basic concepts of traditional control theory ap-

pears to be adequate enough, for the simple model of single input-single output. 

The system is also subject to a ramp input signal as well as to a stationary random 

one. The author provides another application of control theory, in the area of pen-

sions based on the aggregate funding method. A pension fund of a simple structure 

which uses the last funding method is considered as a control system. The invest-

ment return simulates the input while the fund level describes the state and the 

contribution rate represents the output of the system. The model is non-linear and 

provides an excellent opportunity to work with linearization methods while 

showing the potential application of control theory to the area of pension funds.

(b) Comments: A paper which should be placed in line with the papers in sections 

(3.5), (3.6). We must recognize in it some new efforts as regards the better and 

more elegant control modelling i.e. The author attempts to explain clearly why 

claims should be considered as input and surplus as the output variables while de-

scribing as state of the system each pair of input and respective output of the sys-

tem.

3.8 Benjamin (1984), "An Actuarial Layman looks at Control Theory"
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The above definition of the "state" does not comply with the standard terminology 

and conceptual design of modern control theory. As we have seen in section (2.6) 

the "state" of the system in this paper is a vector of two consecutive values of the 

accumulated surplus while the premium is designed as output variable. The ma-

nipulation of the stationary random input signal is also a new kind of work which 

incorporates the stochastic element in the whole discussion of deterministic sig-

nals.

Finally, we must comment on the second non-linear model. The linearization 

method is not formal but results in the right equations (the formal framework is 

provided in section (2.12)). Although the designed model stays far away from the 

real structure of a pension fund it is a contribution to the effort of enhancing the 

possible applications of control theory into other actuarial problems.

3.9. Pesonen (1984), "Optimal Reinsurances"

(a) Description: The paper starts with the realization that any insurance com-

pany would prefer an optimal (in some sense) reinsurance arrangement. Under this fact, 

the author tries to answer the main question: "what kind of reinsurance treaties can be 

optimal?"

He reports the traditional treaties concluding that any optimal reinsurance ar-

rangement "should be of function form i.e. the shares of the companies should be 

uniquely determined by the observed aggregate claims amount". Optimality is examined 

under the light of (concave) utility functions or using some other criteria assuming un-

known utility functions (which normally is the case).

(b) Comments: A very mathematical paper which concentrates in the question of 

optimal reinsurance. Using quite complicated methodology and the respective theorems
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and proofs arrive at the optimal family of reinsurance treaties. The use of control theory 

is limited (and only) along the basic way of thinking and modelling structure.

3.10 Rantala (1986), "Experience Rating of ARIMA processes by the Kalman Filter"

(a) Description: The paper concentrates on the experience rating procedure of a 

claim process with a certain structure (ARIMA, a stochastic process defined by (3) 

three figures p,d,q where in the special case p=d=q=0 we obtain the white noise proc-

ess). The basic target is the optimization of the sequence of proposed premiums re-

stricting the variation of the accumulated profits. Optimization is defined in terms of 

smoothness of the premium flow into the system. Minimizing quadratic performance 

criteria and using the Kalman filter technique the author arrives at the optimal rules for 

premium determination.

(b) Comments: The author uses a very similar (with previous sections) equation 

to describe the development of solvency of the system i.e.

Sn+1 = RnSn +Pn - C n (3.10.1)

(all the symbols have already been defined before). Then assuming a quadratic perform-

ance index which weights the variance of the solvency towards the dth difference of 

premiums and the Kalman filter he determines the optimal premium rating strategy. The 

paper is a fine contribution to stochastic modern control theory as all the equations, 

variables and criteria are "transformed into the state-space form".
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3.11 O’ Brien (1987), "A two-parameters family of pension contribution functions 

and stochastic optimization "

(a) Description: The author starts from the fund ratio (fund value over the pres-

ent value of the future benefits) as defined in Trowbridge (1963). He then models a 

pension fund with

(a) a controlled diffusion process and

(b) a quadratic performance index weighting the input variable (contribution rate) to-

wards to the deviation of the fund from the suggested level of funding according to the 

fund ratio mentioned above. Finally he obtains the optimal control function for the 

contribution rate using Bellman’s optimality principle. The author does not assume a 

target contribution rate as Vanderbroeck (1990) does in her approach.

(b) Comments: The paper uses advanced stochastic control theory (in continuous 

time) to approach the problem of pension funding. Setting a target fund ratio (in line 

with that defined by Trowbridge (1963)) the problem of funding may well be described 

as a typical control problem. The powerfulness of the approach relies on the advanced 

mathematics which can produce the analytical form of the optimal control function. 

From that form we can obtain deep insight into relations between the contribution rate 

and the known variables of benefits outgo (assumed linear), and the fund levels.

3.12 Taylor (1987), ”Control of unfunded and partially funded systems of payments" 

(a) Description: The paper considers unfunded systems (which maintain a fund ap-

proximately zero) and partially funded systems of payments (which maintain a 

non-zero fund at a level inadequate for full funding). Its target is the establishment 

of "a premium formula which is consistent with long term planning e.g. target rate

81



of funding, limited variation in premiums from year to year etc.". Examples of 

such systems may be the Social Security Schemes of many countries (e.g. UK, 

USA, Canada, Greece).

The development of the model is based on the previous works of Balzer & Benja-

min with the following modifications (generalizations).

(i) Introduction of an allowance for investment income as partial funded sys-

tems may well involve long term business.

(ii) A more generalized premium formula.

(iii) An explicit allowance for an initial value of the fund.

(iv) The rebate of premiums depends on the paid claims and not on the claims 

incurred.

As regards the second modification (i.e. the generalization of premium formula) 

the following general rule is used

P = Pb+Pc+Pp+Ps (3.12.1)

where Pb represents a base (or target) premium which has been initially estab-

lished while the other three premiums Pc,Pp,Ps represent adjustments made by the 

system evaluating the respective history of claims (C), past premium (P) and ac-

cumulated surplus (S).

Finally the results of the calculations indicate that instability increases in line with 

the delays of the system.

(b) Comments: This paper (considering the unfunded and partial funded systems) 

must be placed within the potential applications of the basic model developed by 

Balzer & Benzamin. The introduction of an investment component enhances our 

view and insight in the basic model, although there is not much weight on this
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item. The current model may well be combined with the works of Rantala (1988) 

and Loades (1992) (see sections (3.14) & (3.19) respectively) which refer to eco-

nomic cycles and underwriting cycles. It will be an ideal vehicle in order to ex-

amine the behavior of the system under the simultaneous effect of investment and 

claim cycles.

The whole development of the paper is based on traditional control theory an-

swering effectively the questions of the model since the basic structure of single 

input - single output is being used.

Finally we shall quote a remark of the author which appears in the ending part of 

the paper "Further Research".

"... The classical control theory used in this paper in common with that in the pa-

pers of Benjamin and Balzer is many years old. It is possible that the more power-

ful modern control theory, develop more recently could be used to advantage on 

insurance systems".

The last proposal of the author may be placed as the basic target of this thesis.

3.13 Rantala (1987), "On experience rating and optimal reinsurance"

(a) Description: This paper formulates a general reinsurance problem using a sto-

chastic control theoretical model. Optimal control is obtained "by means of vari-

ances of such variables as underwriting result of the insurer, solvency margin or 

the insurer and reinsurer and the premium paid by policy holders".

The model is based in the following important assumptions as stated by the 

author:

(i) A reinsurance contract between two insurance companies (the cedant and 

reinsurer) has been made for a fairly long period and both parties will look
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for an arrangement which would be optimal (under some criterion) over a 

longer term (this assumption justifies among other things the use of asym-

ptotic methods).

(ii) The reinsurer’s annual share of the total claims amount is a function of 

present and past annual total claim amounts only (i.e. reinsurance does not 

depend on individual risk)

(iii) The reinsurer’s share is a linear function.

Furthermore the basic dynamic system is described by the following equations:

Sl,n -  R-l ' Sl,n-1 + Pl,n Q (3.13.1)

^ 2 ,n  — ^ -2  ' ^ 2 ,n - l  +  ^2,11 ^ 2 ,n (3.13.2)

P = P -Pr 2,n r n r l,n (3.13.3)

C =C -C^ 2 ,n  M ,n (3.13.4)

where S j >n stands for the accumulated surplus at the end of year n for the 

j=T,2 company

P j  n stands for the premium received in year n for the j= l,2  company 

(Pn = total premium)

Cj n stands for the claims incurred in year n for the j= l ,2 company 

(Cn: total claims)

Rj stands for the accumulation (interest) factor of the j= l,2  company 

generally the subscript (1) represents the cedant while subscript (2) represents the 

reinsurer.

(b) Comments: The author attempts to provide a dynamic view of the general reinsur-

ance problem improving the traditional static one. The most common approach is

84



to split the total annual claims of a fixed year period (one year) into cedant’s and 

reinsurer’s part in an optimal way. This approach is extended to a longer time ho-

rizon in this paper.

The first version of the model considers "that E(Cn) is known and both the total 

premium Pn and the reinsurer's premium ?2,n are constants". Then the author 

searches for the optimal linear reinsurance policy i.e.

î,n = ao'Cn+a,Cn_,+... (3.13.5)

under the following restrictions.

(i) minimization of SD(cin) when SD(C2n) is restricted to a given value (or vice

versa)

(ii) minimization of SD(ACln) when SD(AC2n) is restricted to a given value (or

vice versa).

where SD(...) denotes Standard Deviation and

AC, =C, -C , ,l,n l,n l,n-l

The second version of the model relaxes the assumption of constant total premium 

Pn and reinsurer's premium P2,n and calculates the optimal control with respect to 

the available variables.

Finally as the author states the current paper "is more to show a feasible way to 

attack the problems of reinsurance than to give explicit results directly applicable 

in practice".
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3.14 Rantala (1988), "Fluctuations in Insurance Business Results Some Control 

Theoretical Aspects "

(a) Description: The paper starts with a realization that, "The latest downward phases 

of underwriting cycles have been unusually deep and longstanding" and conse-

quently proposes "proper analysis and modelling of fluctuation along the lines of:

(i) effective management

(ii) supervision and control of their solvency

(iii) fiscal purposes

(iv) reinsurance cover

(v) scientific premium rating".

Although there are conventional tools for actuaries to handle the problem above 

the author suggests control theory techniques as the new powerful and more effi-

cient way of modelling.

The paper may be separated in the following four parts (with respect to the sub-

jects discussed). In the first part, empirical data are presented and the respective 

conclusions are drawn such as:

(i) Loss ratios often exhibit cycles with a length of 4-8 year while amplitude of 

other characteristic may vary greatly from country to country or line to line.

(ii) Solvency ratios exhibit cycles with two or three-fold amplitudes because of 

accumulation of profit or losses, such cycles are crucial for financial 

strength.

In the second part the potential background for the cycle fluctuations is identified 

among the time delays, the forecasting techniques, faults in the tariff structure, 

fluctuation in investment return etc.

86



In the third part, the control theoretical tools are being developed using similar 

dynamic equations as with those of Balzer & Benjamin (1980).

Actually the first equation which describes the accumulation process is the fol-

lowing

Sn = R -Sn_, +Pn ~Cn , (3.14.1)

The differences (of the equation above) with equation (3.5.1) are the following:

(i) It includes the Accumulation factor R.

(ii) It does not include the expense factor e.

As regards the second equation which describes the premium decision formula is 

the following

P » = P ,g + M S 0 -S„_2) (3.14.2)

where Pt is a target premium while

So is a target surplus level and 

e2 proportion similar to feedback factor (e).

The equation above differs from equation (3.5.2) in two points:

(i) It does not use a claim predictor but a target premium Ptg .

(ii) It uses a target surplus level in order to decide the feedback action.

Finally in the fourth part the results of the formulation above are presented along 

with some more empirical data.

(b) Comments: The central and of course the very interesting concept of this paper is 

the existence of the underwriting cycle. The author suggests that this cycle has 

similarities with the business cycle although it is not properly defined and can not
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be easily identified from the official reports as the smoothing procedure hides the 

phenomenon (totally or in some extent).

The existence of the cycle is the best practical answer why control theory should 

be used in insurance problems. At this point we may also agree with the author’s 

opinion that a claim process should be modelled as a combination of impulses, 

steps, ramps (trends) sinewaves (cycles) and other stochastic items.

An interesting view of the author is the construction of a general premium formula

Pn = P tg + I a j[So ~ S n- j ] + ^ ^ b j C n_j +  t n
j> 0  j> 0

where aj and bj j>0, are weighting factors while xn is a correction factor compen-

sating the stochastic components of the claim process. The first summation may 

remind us the integral action while the second summation represents a sophisti-

cated claim predictor. The summation in the equation above assumes the use of 

the maximum available information. By general reasoning we could say that the 

more information will create less "problems" in the process (i.e. less fluctuating 

oscillation). The introduction of Tn produces even better results canceling the un-

desirable fluctuations of random events.

3.15 Benjamin (1989), "Driving the Pension Fund"

(a) Description: The paper aims to present a short introductory note for the use of 

control theory in pension funding methods. Actually, it considers two of them: the 

"aggregate" method and the "projected unit" method. The input signal is the 

earned real rate of interest each year while the output signal is the recommended 

contribution rate. In order to obtain a direct comparison of the two methods, the
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same model fund (as regards the demogratic assumptions and the benefit structure) 

is used. Both of the two methods produce non-linear equations consequently the 

linearization method is used again in order to obtain the linear standard format of 

a dynamic system.

The input signal (real rate of return) is modelled using two deterministic functions 

(spike, step) and one stationary random one. The simulation results and diagrams 

are obtained while the author focuses on the ratio of standard deviations of input 

and output signals i.e.

Ratio = SD(c„)
SD(i„)

where SD(cn) standard deviation of contribution rate and 

SD(i„) standard deviation rate of return.

The final part of the paper deals with an alternative proposal of controlling a pen-

sion fund. Actually a fund is driven from some initial conditions of fund level and 

contribution rate (Fo,co) to the ultimate (target) ones.

(b) Comments: The author manages to formulate another funding method (projected 

unit) under the conceptual framework of control theory. Under the achievement 

considered above, the formulation of the remaining funding methods (actually the 

exploration of the control characteristics of each one) may be just a matter of time 

and careful reference to the existing analysis.

The most interesting thing of the paper is the final part which actually appears in 

the title i.e. "Driving the Pension Fund". The author assumes the very practical 

problem of drawing a smooth path for contributions in order to achieve a target
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state (for contribution and fund level). The requirement of the derivation of "the 

smoothest path" is translated to an optimal control problem known as "minimum 

energy". The restriction of the time-horizon (4 years) of the problem enables the 

detection of a solution using Lagrange multipliers and some "hand writing" work. 

The possible extension of the time horizon for several years (e.g. 10 or 20) or the 

introduction of other additional performance criteria to the problem will lead to 

more complicated systems of equations which may demand heavy computer appli-

cations or approximation procedures. Such an extension will be considered later in 

section (6.15) where similar development will be used for the PAYG funding 

method.

In chapter 6 of our thesis, we shall use the modelling philosophy of Benjamin to 

formulate the PAYG (Pay-As-You-Go) funding method under the framework of 

control theory. We have chosen that method (for some reasons explained in chap-

ter 6 and) in order to enhance the field of applications not only in the fully funded 

systems but also in the unfunded (or partially funded) ones.

3.16 Vanderbroeck (1990), "Pension funding and Optimal Control"

(a) Description: The paper considers a deterministic model for a defined benefit pen-

sion plan and by the means of optimal control theory defines the solution for the 

optimal contribution rate c(t) and the target contribution rate c*.

The basic equation which describes the fund level (or the state of the system is the 

following

F'(t)= 5 • F(t)+c(t)- W(t) -  B(t) (3.16.1)
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where each variable depends on time t. F(t) stands for fund level, c(t) for contri-

bution rate and B(t) for benefits at time t while 8 is the force of interest. The other 

important expression which should be minimized is the following:

min io e <Pt ( M1)-0  * w (0 ]2 + P [k (BN)(0 -  F(t)]2} dtp,7I ;
(3.16.2)

where W(t) total salaries at time t

(BN)(t) present value at time t of the future benefit for active and

retired members 

(p discount rate

7i the required funding level as proposed by Trowbridge (1963)

The paper uses advanced optimization methods from functional analysis consid-

ering the Hamiltonian of the system and obtaining the optimal solution for c after 

determining a constant level for parameter c*.

Finally the theoretical model is applied to Belgian Social Security System using 

linear functions for the future projection of the Benefits and the salaries up to the 

year 2050. Consequently, numerical results are obtained which from the sensitivity 

analysis seem to be reliable for the 30 years.

(b) Comments: The paper is a fine contribution to the potential applicability of opti-

mal control into pension funding (in line with that of O’ Brien (1987), see section 

(3.11)). It uses the most advanced tools of the functional optimization theory in 

order to obtain the solution in the analytical form while leaving the model in the 

most general continuous format. It will be interesting to compare and investigate a 

possible relationship and similarities of the current paper with the work of Benja-

min (1989).
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Actually the two problems are very similar in the sense that both of the two mod-

els target the optimal path of contribution rates. Benjamin (1989) reduces the 

complexity of the problem by considering it in a discrete time context, with a lim-

ited time horizon (4 years) so the optimization procedure is restricted to the use of 

Lagrange multipliers. The continuous format of the current paper forces the analy-

sis to advanced functional minima methods. As regards the theoretical result we 

must stress again the complexity but also the elegant format which ensures insight 

into the problem.

Finally, we should stress the link of this paper with our work in chapter 6.

3.17 Brown & Grenfell (1992), "Crediting Rate Management for Capital Guaranteed 

Insurance"

(a) Description: As is stated in the introduction crediting rate management attempts 

to satisfy multiple objectives such as:

(i) Solvency

(ii) Investment Return

(iii) Marketing

(iv) Financing Reserves for normal and abnormal growth

(v) Objective crediting rate formula

(vi) Equity

The complicated problem above is tackled in this paper using historical data and 

simulation studies supported by models of control theory. The basic equation of 

the model is similar with that of Rantala (1988) (see equation (3.14.2)) for pre-

mium determination. Now instead of charged premium P the target Premium Ptg
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and target surplus level we have Adjusted Earnings Rate (AER), Clients Expecta-

tion Indicator Rate (CEIR) and Target Interest Equalization Reserve (TIER).

(AER)„ =(CEIR)„(l-t')+e3((AlER)n -(T IE R ).) (3.17.1)

where t': allowance for tax

s3: feedback factor

AIER: Actual Interest Equalization Reserve.

The feedback factor is designed in a special way

e31 if (AIER)<(TIER)
e3 = \

|s 32 if (a i e r )> ( t i e r )
(3.17.2)

with 3̂,1 > 3̂,2 (3.17.3)

(i.e. the feedback action is reduced when the (AIER) is greater than (TIER). "The 

developed simulation model was used to test the effect of changes in the feedback 

and (TIER) parameter on various quantities over a simulated period of ten years", 

(b) Comments: A very interesting paper as it transfers the basic model of Rantala 

(1988) into the area of "Rate management". The author relies heavily on simula-

tion results constructing the respective tables and identifying the optimal pair of 

values (feedback factor and TIER) according to some given criteria.

Generally speaking the feedback factor operates parallel with (TIER) i.e. For a 

certain quantity the increase of feedback factor will produce analogous results 

with the increase of (TIER).

The idea of an asymmetric feedback factor is very impressive. Up to now all the 

papers (we have examined) assume a constant feedback factor. The new approach
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adds an interesting flexibility in the model design. Further improvements may be 

achieved by considering a more complicated function for the feedback factor. 

Another interesting direction of research is the proposal of a feedback form as

e3 (log(l + (AIER)) -  log(l + (TIER)))

Because as the author states:

"This form gives greater proportional correction when the (AIER) is below target 

for a fixed value of the factor s3".

3.18 Kamano & Nara (1992), "Long term management of Reserve & Dividend"

(a) Description: The current paper is involved with a very similar subject as with the 

previous one of Brown & Grenfell (1992 ) i.e. the management of the reserve and 

dividend in a mutual life insurance company. The problem is converted to the 

equivalent one i.e.: Describe the investment behavior of the company and deter-

mine the procedure of splitting the rate of return in two parts, a steady one which 

should be distributed to policy holders and a fluctuating one which should be re-

tained as a reserve. For this reason, the following equation is proposed

J(t) =  j , ( t ) + j 2( t)  (3 -18 .1 )

where j ( t )  =  rate o f  re tu rn  o f  a s tock d u rin g  year t 

j  1 ( t)  = rate o f  (steady pa rt) re tu rn  

j 2( t)  = rate o f  ( f lu c tu a tin g  part) re tu rn

j 2(t) can be regarded as white noise, while j 1 (t) may be assumed to perform a ran-

dom walk. The equations above along with the following one

F ( t)= (F ( t  - 1)+ (CFXO) a  + j, ( t )+  k ( t) .  j , ( t ) )  (3 .18 .2 )
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which determines the consecutive asset values F(t) formulates the dynamic equa-

tions of the model (CF)(t) is the cash flow in year t and k(t) is the proportion of 

fluctuating asset in year t).

The solution of the problem is obtained using the powerful tool of "Kalman Fil-

ter". (see Rantala (1986)). The disussion is completed with the establishment of 

the control parameters.

(b) Comments: The modelling procedure of the paper is interesting as it proposes the 

use of the "Kalman Filter" for the solution of the problem which appears to be a 

promising tool for potential application in insurance problems.

The unique characteristic of this paper is the absence of a feedback factor. Of 

course, the feedback mechanism may be considered as a hidden element of the 

filtering procedure.

The formulation of the investment behavior as a random walk ensures the suit-

ability into the filtering algorithm but restricts the potential use of other different 

patterns as an input signal in the model.

3.19 Loades (1992) "Instability in Pension Funding"

(a) Description: The paper presents the most general type of actuarial model which 

may be used for the controlling of a pension fund. The basic parts of this model as 

described in the paper are:

(i) Benefit structure.

(ii) The valuation method which determines how the actuarial liabilities and

standard contribution rates are to be calculated.

(iii) Demographic assumptions.

(iv) A model of market rates of return.
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(v) A decision rule to produce valuation rates of interest from the invest-

ment model.

(vi) A method of placing an actuarial value to the fund.

(vii) A control mechanism for amortising surpluses / deficiencies.

The paper considers the entry age funding method and investigates (using a nu-

merical approach) different control strategies (regarding some of the controllable 

parts mentioned above) with respect to the mean and variabilities of the actual 

recommended contribution rates (and the resulting funding levels and surpluses). 

The whole model is placed (and studied) a 15-year economic cycle which continu-

ously repeats itself and completely determines the rates of investment return. For 

the reason above, exponential smoothing is used for setting the valuation rates of 

interest (and also because the last method seems to simulate better the observed 

behavior of the actuaries compared to the arithmetical smoothing method). Fi-

nally, numerical results are obtained and discussed with respect to each parameter 

involved.

(b) Comments: The central concept in this paper, which eventually has influenced the 

analysis and the respective results is the principle of a 15-year economic cycle. 

This idea may well correspond with the concept of the underwriting cycle (with a 

length of 4-8 years) developed by Rantala (1988). It will be very interesting to 

explore the possible relationships between them, finding intersections, parallel 

movements etc.

The results of these two papers indicate at least similarities in the generation of cy-

clical oscillations in the output variables of the two models. By general reasoning 

we may argue that the coexistence of the two cycles will produce multiple effects
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(if parallel) or will cancel any oscillation (if opposite). As regards the other results 

of the paper we should emphasize that ultimate position is never reached due to 

the heavy influence of the transient effects which may be attributable to the expo-

nential smoothing procedure (which actually operates as a claim predictor in the 

model).

All the above observations may drive us to the key conclusion of the author that 

"If investment returns are driven by a cyclical economy, static valuation bases re-

duce fluctuations in both contributions and surpluses".

Finally, as regards the use of control theory in the development of the paper we 

must say that it is restricted only in the general philosophy of "control" and the 

basic concepts of the theory.

3.20 Martin-Löf (1994) "Lectures on the use of Control Theory in Insurance"

(a) Description: The paper discusses the theoretical background of the optimal con-

trol techniques in Markov chains and some practical applications to non-life in-

surance business. The definitions of the minimal cost and the respective equation 

which holds between the states i.e.

(3.20.1)

where V(i): minimal cost for the i state

c(i,u): operational cost at state i and applying the

u control

N

P(i,j,u): Probabilities, P(i, j,u)> 0 and ^Tp(i, j,u) = 1
i=i

v: discount factor
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N: total number of possible states of the system

play the most important role in the development of the models.

The basic equation (3.20.1) is used in order to handle De Finetti’s model mini-

mizing the present value of all future premiums. The solution is provided for the 

special case of a random walk with absorption and reflection barriers. The model 

of Martin Lof (1983) is also discussed applying two different input signals: a sta-

tionary stochastic variable and a deterministic sequence of a "step" signal.

(b) Comments: The author uses a simple and self-contained terminology and reason-

ing in order to present an introductory survey on optimal control of Markov chains 

for Actuaries with no previous training in that area.

In the solution of De Finetti' s model, he calculates the optimal control, finding 

the optimal reserve level for the reflecting barrier £*• Then calculates the prob-

ability of ruin and consequently check whether it stands below an acceptable level. 

A reverse approach might also be interesting i.e. firstly calculate the optimum 

probability of ruin determining the optimal %* and then check the present value of 

all future premiums. Of course a weighed criterion (a compromise) for the optimal 

value of may be constructed upon the two concepts described above.

The use of the Markovian control

P„=P„(S„-,) (3.20.2)

may not always applicable because the insurance business can exhibit longer de-

lays. (It is common to have available values for surplus 2,3 or... years before i.e. 

Sn-2, Sn-3,...). So it would be more appropriate to consider control actions based on 

Sn.f where f=2,3,... (this has been done by Balzer & Benjamin).
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Another interesting feature of the paper is the linearization procedure around the 

equilibrium point for the general model of De Finetti. Using that method, we 

might calculate E{ Sn}, Var{Sn} and observe, the results a growing E{Sn} which is 

not desirable. Hence, a compromise should be obtained by keeping {Sn, n = l,2,...} 

reasonably small while averaging {Pn, n = 1,2,...}.

3.21 Fujiki (1994), "Pension Fund Valuation"

(a) Description: The author presents a general overview of the "valuation" process 

(along with other aspects of the required management procedure) of a pension fund. 

After providing the necessary theoretical background for pension funds he focuses 

on the potential applications of control theory into this area. He investigates the 

control of the valuation basis through a changing environment with respect to

- movements in the real investment returns

- movements in the dividend yield and

- movements in the rate of withdrawals.

He proposes certain patterns for the movements of the parameters above and car-

ries out projection for several set of numerical values.

(b) Comments: The author uses the basic philosophy and elementary concepts of 

control modelling. He provides some theoretical background for open-loop and 

closed-loop systems (with special reference to feedback action) and also some 

more details about the concepts of input state and output variables of a dynamic 

system. He then investigates the "pension fund valuation" process under several 

different scenarios with respect to the input signals (actual experience follows the 

patterns of a spike a step or a sine wave) and the possible control strategies for the
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selection of the valuation basis (constant or changing patterns). Finally he pro-

poses an optimal selection procedure using averaging or past experience and/or 

small delays in the decision formula for the valuation basis.

3.22 Haberman & Sung (1994), "Dynamic approaches to pension funding"

(a) Description: In the introductory section of the paper the authors describe the 

basic philosophy, structure and mechanisms of an occupational pension scheme while 

pointing out that the management of a pension fund is an excellent example of a control 

problem. Having established the control characteristics of the problem they discuss the 

conflict of interest between the employer and the trustees / employees. The former aims 

to stability while the last aims to security. This conflict of interest is converted into a 

functional which weights the "contribution rate risk" (stability) towards the "solvency 

risk" (security). The functional is minimized under different scenarios obtaining opti-

mal control for the premiums.

(b) Comments: The paper is a fine contribution to the modelling of a pension 

fund using optimal control techniques. It discusses both the deterministic and the sto-

chastic versions of the problem. The form of the functional used is quite general and 

actually extends the different formats proposed by Benjamin (1984), O’ Brien (1987) 

and Vanderbroeck (1990). The functional has the form (the discrete version)

Ft : fund level at time t

rFt : target fund level at time t

ct : contribution rate in year (t+1)

xct : target contribution rate in year (t+1)
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u : (1+i)'1, i valuation real rate of return

P : a weighting factor to reflect the relative importance of the solvency risk

against the contribution rate risk 

(the continuous version requires integral instead of summation).

Having established the objective function and the control horizon the paper ob-

tains the optimal control c s , c s + i , . . . , c t - i .

3.23 Sung (1997), "Dynamic Programming Approaches to Pension Funding"

(a) Description: As the title of the thesis indicates, the author uses a dynamic pro-

gramming approach to pension funding. Setting up a dynamic model he uses opti-

mal control techniques to balance the conflicting interests of the employer and the 

trustees or employees for stability and security respectively. He uses two distinct 

linear models based on different forms of the solvency equation.

(a) the "modified" solvency-level growth equation and

(b) the "zero input, 100% - target solvency-level growth equation".

Finally he derives "optimal funding control procedures for the contribution rate by 

solving" seven special versions of the control problem.

(b) Comments: It is a contribution to the application of control theory (especially the 

dynamic programming) into the actuarial problems (especially for pension funds). 

The formulation of the problem follows exactly the rules and terminology of con-

trol theory with emphasis on dynamic programming methods.

One of the basic concerns is the optimization of the "spreading parameter" which 

becomes extremely difficult when there is a large number of boundary constraits 

and long control horizon.
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Another issue of the research work is the comparison between the "dynamic pen-

sion funding" and the "spread funding" plans. The author proposes the following 

equation

DC, =NCt +pc,UV, +ac,

as a more suitable formula in order to balance the conflicting interest of the em-

ployer and trustees or employees, where

DCt: Dynamic Contribution rate applying between time t akd t+1

NCt: Normal Cost applying between time t and t+1

UVt: Undesirable Valuation outcome at time t (e.g. ALt-Ft for a classical actu-

arial valuation)

pct: proportional controlling parameter applying between t and t+1

act: additive controlling parameter applying between t and t+1

3.24 Loades (1998), "Elementary Engineering Control and Pension Funding"

(a) Description: This paper, in line with previous works Benjamin (1984), 

(1989) and Loades (1992), explores the relationship of the control theory with the area 

of pension funds. The author uses a "continuous type" model to describe the develop-

ment of the fund level (Ft) assuming also a "proportional controller" to feed back (and 

control) the unfunded liability into the system. In the actuarial literature the "propor-

tional controller" is known as "spread forward method". Additionally, equations are 

modified to reflect the development of the solvency level of the scheme. Finally, de-

rivative and integral control actions are introduced in order to eliminate the stable error 

and upgrade the efficiency of the whole system.
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(b) Comments: The paper contributes in two directions. Firstly, it shows how 

integral action can improve the efficiency of a pension scheme under a control frame-

work. Secondly, it investigates the behaviour of the fund (and solvency level) under an 

environment of cyclical rates of return. The last investigation shows that long cycles of 

15 years may produce dramatic oscillations compared with rapid cycles of 5 years 

which may not affect the gradual development of the fund (and the solvency level).

3.25 Conclusions - Cross References to the papers

In this chapter we have collected and presented some of the most important pa-

pers which may well describe the points of intersection between the control theory and 

actuarial science.

ACTUAL PROBLEMS

As we have seen, applications cover all the area of actuarial work from life as-

surance and especially group business (section (3.5)), general insurance (section 

(3.20)), pension funding methods (section (3.15)), investment (section (3.17)), reinsur-

ance (section (3.13)) and generally the concept of premium control and solvency re-

quirement of an insurance company (section (3.7)) as well as probabilities of ruin (sec-

tion (3.4)).

MODELLING PROCEDURE

As regards the modelling procedure, they all try to formulate the problems using 

pure control techniques providing also some limited solutions which may be more fa-

miliar to actuaries (section (3.5)). Most of the models use traditional or classical con-

trol theory as all of them are designed as
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Single Input - Single Output

(although some of them are described with more than one input or output variables).

INPUT SIGNALS

In line with the standard control techniques most of the models are analyzed us-

ing some deterministic signals described with special names as: Spike, Step, ramp, sine 

wave.

Apart from the above ones, stochastic signals are also used measuring the vari-

ance of the output response (compared with the input’s variance).

FEEDBACK ACTION - STABILITY

Feedback action is widely used in order to control the transient response or ulti-

mate states of the system. The analysis of this action across all the papers show that 

feedback in conjunction with the inertia delay of the systems produces oscillations.

Special design should be considered for the choice of the parameters involved in 

order to avoid large undesirable oscillations and produce stable systems.

OPTIMAL CONTROL DESIGN

Many of the papers are involved with some kind of optimization procedure in the 

model. The first category discusses the optimal choice of the parameters which governs 

the stability of the system. Consequently, they search for the values which quickly re-

turn back the system to initial state. (The parameter which takes the major concern is 

the feedback factor).

The second category discuss the optimal choice of the parameters which mini-

mize the variance of the output variable.
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The third category is involved with the more advanced optimal control tech-

niques trying to obtain the optimal function control of the system. Such examples are:

(i) In section (3.15) the determination of the optimal "smoothest" path for contribu-

tions and fund levels of a pension fund.

(ii) In section (3.16) the detemination of the optimal (which minimizes a certain 

functional) function as a choice for the development of the contribution rates in a 

pension plan operating under the "pay as you go" system.

STOCHASTIC /  DETERMINISTIC APPRO A CH

Almost all the authors refer both to the deterministic and the stochastic approach 

of each problem, with more emphasis on the former one. In the stochastic version of a 

model the variables are substituted by their means while for the optimizaton procedure 

the respective variances are considered. The Kalman Filter is proved to be an efficient 

tool to handle the stochastic component of the investment procedure presented in Ka- 

mano & Nara (1992). Another contribution is that of Benjamin's (1984) where he tack-

les a random imput signal by considering the minimization of the ratio between (a) 

variance of the output response over (b) the variance of the input signal.

NON-LINEARITY

As the non-linear problems exhibit high degree of complexity there is a certain 

preference from the authors to use linear models. Of course, there are some of them 

(e.g. Benjamin (1984), Martin-Lof (1983), Vandebroek (1990)) who model the problem 

in the most general form (using non-linear equations) and then use the linearization 

procedure at the equilibrium point in order to obtain a solveable linear dynamic system.
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MODERN CONTROL THEORY

Finally we must stress that all the papers identify the great potential of the use of 

modern control theory. Of course it is unavoidable to use it, if the model designed is of 

the form

multiple input - multiple output

or refers to a time-varying problem. The last area of research will be covered by the 

current thesis.
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Chapter 4

Application to Insurance Pricing

4.1 Introduction

In this chapter, we shall design and develop a model of "Insurance Pricing" con-

sidering a very common problem which quite often causes "headaches" to insurance 

managers and underwriters, especially when it is placed in a wider context taking into 

account market competition. It will be formulated and solved using control theory tech-

niques while providing standard (up to now) view of the actuarial approach.

The model is very similar to the one developed by Balzer and Benjamin (see 

sections (3.5), (3.6) & (3.8)). Actually we may consider it as an extension to that previ-

ous research work. This extension has been achieved by two ways:

(i) Incorporating additional modelling concepts and background from the similar 

papers of chapter 3 i.e. Firstly, we have introduced an investment element in the 

accumulation procedure (of the surplus process) as Martin-Lof (1983) and Taylor 

(1987).

Secondly we have improved the claim predictor considering the average of the 

last years using weights and inflation factors similar with the proposal of Martin- 

Lof (1983) and Rantala (1988).
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(ii) Introducing entirely new concepts in the modelling design, trying to extent the 

model into the most possible directions e.g. Consider a time-varying interest 

factor, or leave the delay factor as a control parameter into the system and ex-

amine its affect in the solution.

Generally speaking, the target of this chapter is to provide a complete (as possi-

ble) reference to the "Insurance Pricing" techniques of the short term insurance 

policies starting from the roots of classical risk theory and "the principle of 

equivalence" up to the most modern view initially pointed by Borch (1967) and 

subsequently followed by many others as we have seen in chapter 3.

4.2 Description of the problem

We consider a non-life portfolio with available data from the past years. Let 

Ci,C2,...,Cn denote the total amounts of incurred annual claims over the last n years

c, c2 cn
-*— — * — -----* — --- * ---- ---*-
0 1 2 • • • n-1 n

Diagram (4.2.1)

We are at the end of year n and we have to decide the premium for the next year. 

In the real world we may have to solve the above problem without knowing Cn, (the 

claim experience of the last year) or even Cn-i or Cn-2- And sometimes we may have no 

available data at all or any other similar experience. Of course the question is still 

there... "the next year’s premium?".

But if it was only that question the problem could be easy. Another identical 

question arises exactly one year later!... at the end of year (n+1) which is the new pre-
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mium for the next year (?), assuming all the recent experience including Cn+i. And after 

one year again, the same question and so on! Considering the situation described before 

we may quote Brian Hey's opinion from Balzer (1982): "It is all very well, trying to 

forecast the next few years but we don’t even know what has happened in the last few 

years, we’re still having to forecast that".

Finally, after all we realize there is a need to establish a formal decision proce-

dure to determine the premiums for successive years. We have to build a control strat-

egy to guide the whole system through a safe path.

It seems like an electronic game with a car. The player is a driver who tries to 

keep the car on the road using a wheel (turning left or right) while only a small part of 

the road is revealed in front of him on the screen.

4.3 Standard formulation and the respective notation

Let us try to give some quick answers to our "question" using the standard sta-

tistical - actuarial approach. Firstly we should standardize a formal notation for the 

purposes of our calculations.

• Cn, n=l,2,... total amount of (incurred) annual claims for the year 1,2,...(paid at 

the end of each year).

• Pn, n=l,2,... total gross (including expenses) premium for the year 1,2,... (paid at 

the beginning of each year).

• l-e„, n=l,2,... total proportional expenses (including the desired profit margin) 

for the year 1,2,... expressed as a percentage of total gross annual premium. We 

also assume that expenses are paid at the beginning of each year and are con-

stant, equal to 1-e without any fluctuation.
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• Ln, n=l,2,... annual surplus at the end of the year n (i.e. at time n).

• Sn, n=l,2,... accumulated surplus at the end of the year n (i.e. at time n).

• Rn, n=l,2,... interest rate factor for the year n (Rn= l+ jn where j„ is the real rate of 

return in year n).

4.4 First actuarial approach based on experience rating methods and/or 

the given (priori) distribution of claims

In the last section, we have established a lot of parameters to describe our prob-

lem. Now in order to get a first quick answer we shall remove some of them (equating 

with zero or other specific value) to handle better our calculations.

(i) Rn= l, n=l,2,... no interest rate (i.e. j n=0 for every n).

(ii) Ignore annual and accumulated surplus variables.

Answer (a): Simple Average

Although we have found that the use of average function and generally the stan-

dard experience rating methods (Seal (1970), section (3.4)) may guide the insurance 

company into catastrophe, we shall provide it as the first obvious solution. An insur-

ance manager with no other kind of information (except Ci,C2,...,Cn) should go on and 

decide the next year’s premium Pn+i by using the formulae below: (The symbol A above 

the claim parameter indicates an estimation for claims).

(4.4.1)

P = -C1 n+l v "n+ le
(4.4.2)
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Answer (b): Weighted Average

This answer requires more pieces of information which after a special interpreta-

tion may be reflected in the mathematical formulae of premium estimation. Here, we 

shall consider two specific examples.

1st Example: Assuming that Cn represents the annual claims for a motor insurer 

and government has imposed stricter traffic rules in the last years resulting a decline of 

claims, then we should weight more the recent experience.

Using exponential smoothing with higher weights for more recent claims i.e. 

Wk=0k, k=l,2,...,n and 9>1 we obtain, (where wt, k=l,2,...,n are the weights for each 

observation Cn).

- _0C ,+0C 2 +...+enc n
^n+l ~ ' 0 + 02+... + 0n

and again use equation (4.4.2) for Pn+i-

(4.4.3)

2nd Example: Assuming the situation of the 1st example plus the existence of an 

annual inflation factor, say F>1, which affects the development of the claim cost each 

subsequent year (i.e. if a certain car damage costs one unit of money for the current 

year, then the same one costs F the next year) we may use again the exponential 

smoothing technique. The weights now, reflect two corrections due to inflation, and the 

recent experience

i.e. wk = F n~k+10k k=l,2, ,n

(4.4.4)

Hence - _ Fn0C, +F"“102C2 +... + F0nCI]
n̂+1 — ' F"0 + Fn_102 +... + F0"

Again use equation (4.4.2) for Pn+|.

(4.4.5)
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Answer (c): "The net premium principle (principle of equivalence)".

A standard method for premium calculation, which assigns the mean to each dis-

tribution of claims (see Gerber (1979)). Of course if we know the distribution of Cn’s 

(e.g. N(p,o2) ) and we absolutely believe it, there is no need to use the approach in an-

swer (b) (i.e. evaluate the past experience). We may simply use the "principle of 

equivalence" and predict the claims using the mean p i.e.

Cn+1 = E(Claims) = p (4.4.6)

Again using (4.4.2) we derive Pn+i-

4.5 Second actuarial approach based on ruin theory (or probability of ruin)

The analysis of the last section is too simple. We have ignored all the variations 

which may occur and the surplus or deficit which arises due to trends, variations, fluc-

tuations or bad premium estimations. In this section we shall focus on the surplus pro-

cedure and try to protect the company against the white noise (randomness of the 

events).

Answer (a): Traditional Ruin theory

The traditional ruin theory proposes a simple rule for premium determination. 

Claims (Cn, i=l,2,...) are supposed to be independent identically distributed random 

variables with a given distribution (Cn~H(c), n=l,2,...). We find the mean p of the dis-

tribution by two ways,

(i) directly, if we know the exact form of the distribution

(ii) indirectly, using conditional probabilities

H = E(C„,|C,,C1,...,C .) (4.5.1)
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Then, the risk premium is calculated adding a suitable safety loading 0o- i.e.

Cn+1=(l + 0o)p , Vn = l,2,..., (4.5.2)

and using (4.4.2) we obtain the premium P„+i. Parameter 0o is chosen such that the risk 

of "ruin" i.e. Pr(Sn<0) is sufficiently small (e.g. 10~2 or 10'3). Using risk theory we can 

calculate the probability of ruin

Pr(Sn<0) = exp(-R*-S0) (4.5.3)

at infinite time where R* is the coefficient of ruin depending on the distribution of 

claims Cn, n=l,2,... and So is the initial capital (for more analysis see Bowers et al 

(1980)).

The choice of the parameter 0o determines the name of the principle for premium 

estimation (see Gerber (1979)) i.e.

i) Expected value principle: 0o may take any value

ii) Variance principle: 0o is proportional to the ratio

iii) Standard deviation principle: 0o is proportional to the ratio

Answer (b): A slight modification to ruin theory

If we observe the accumulated surplus variable Sn, we should notice that it grows 

infinitely, since the risk premium has the positive safety loading (0o>O). So a first obvi-

ous modification puts an upper bound So, to variable Sn. That means when Sn becomes 

greater than So, then the difference Sn-So) is distributed as a refund to policy holders. So 

the time diagram of surplus variable is bounded into one semi-plane as appears in the 

following diagram (4.5.1).

-y/var(C)
E(C)
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Of course, if the surplus Sn becomes less than zero then the company is ruined 

and the whole process stops. This model is due to De Finetti (1957) but also discussed 

by Borch (1967) who gave the general solution.

After this modification it turns out that the probability of ruin equals to one 

(Pr(Sn < 0)= l) but when is a very large number the probability of ruin within a rea-

sonable time period is given by the same formula as expression (4.5.3).

The results above are quoted in Borch (1967) and Martin-Lof (1983) (sections 

(3.3) & (3.7) respectively).

Answer (c): A more sophisticated version of ruin theory

There are many other versions of answer (a) and (b) which improve the behavior 

of the system. All the methods target to smooth premiums while keeping small the 

probability or ruin. The concept of "control strategy" is found in those versions of pre-

mium calculations.
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For example a method which stabilizes Sn in a more continuous (uniform) way is 

given by the following formula

c „ , =(l + 8»(s„))|i (4.5.4)

The safety loading 0o(Sn) depends upon the accumulated surplus and obviously 

decreases as Sn increases or vice versa 0o(Sn) increases as Sn decreases.

The above procedure described by the formula (4.5.4) is due to Martin-Lof 

(1983).

4.6 Third actuarial approach based on "manual" control techniques

From the first and second actuarial approach, it is obvious that it is necessary to 

have some kind of control procedure in order to guide the whole system through a "safe 

path" as regards the smoothness of premiums, equity and solvency requirements.

The diagnosis of the necessity above, has been identified very early, almost from 

the beginning of actuarial profession. Actuaries use different mathematical models 

comparing the theoretical results towards the actual experience in order to intervene 

into the system and do some corrections. Generally, there are different types of actuarial 

investigations which are used as "control tools" (see Trowbridge (1989) i.e.

(i) "Participating Insurance": In the pricing procedure of a long term individual 

policy, an actuary should consider a conservative technical basis (low interest 

rates, high mortality rates high expense margins) for the need of premium calcu-

lations. At the valuation dates, he examines whether there is a gain which may be 

distributed as a "dividend" to the policyholder.

(ii) "Experience Rating": In group business an opposite approach is adopted using a 

short-term guarantee for the initial premium. Then on the renewals dates, nego-
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tiations take place with the policy holder in order to obtain an agreement for "a 

fair premium" (which heavily rely on recent claim experience).

(iii) "Actuarial gain/loss adjustment": This is a typical method used by pension actu-

aries in order to "handle" a pension plan. At each valuation date, actuaries cal-

culate the surplus (overfunded) or deficit (underfunded) of a pension fund and 

action is decided for the future contribution rates.

We should also mention the bonus-malus system which is used (mostly) in mo- 

tor-insurance as an other premium control procedure.

In our problem a possible control action should be similar to the action described 

as "experience rating".

Assuming we have a more "complete" information about the distribution of total 

annual claims (i.e. Cn ~N(p,o2)) we may use Credibility theory in order to achieve a 

better estimation. As a general argument we may say that Credibility theory weights the 

actual experience towards an initial estimate.

At this point we shall provide the Bayesian approach to credibility theory quot-

ing our results from Waters (1986).

Suppose Xi,X2,...,Xn are i.i.d. observations from a normal distribution with den-

sity f(x,p,o2). Then starting with a priori distribution for p say N(p0,Go) we may find 

the posteriori distribution.

Finally we may obtain the mean of the posteriori distribution as the best estimation for 

the parameter p and consequently for the required premium's estimation.

Hence, Cn+, = "nx p0" 
2 + _2 / i n  0

2 + 2
L CT CT0 ) / 1 °  °oJ

and using (4.4.2) we obtain Pn+i.
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So, actually, there are some "primitive" control techniques using standard deci-

sion rules which they are applied every n (n=l,2,3,...) year from the insurance managers 

trying to achieve the desired smooth results. A "manual" controller (the insurance man-

ager) is attached into the system to protect it from undesired dangerous deviations.

The insurance manager always uses some standard strict mathematical criteria 

deciding for the right action on the right time. Of course a big question stands in front 

of us.

"How do we know that he decides the right action?" ... or another more difficult ques-

tion.

"How do we know that the whole sequence of his right actions (decisions of each year) 

is the right sequence?"

It is a complicated matter of the choice of the "best strategy".The next section 

will give us another view of this problem.

4.7 An alternative approach based on utility theory or economics of insurance

In order to complete the discussion for the different methods of pricing of an in-

surance product, we should also mention two other elegant theories.

(i) Utility Theory: (Bowers et al (1986)). The basic assumption of this theory is 

the existence of a utility function say u which matches the wealth of amount w (meas-

ured in money units) to a numerical value (in most times) different from w and this 

function is unique for each individual (decision maker). Then the maximum premium P 

which is prepared to pay the individual above with wealth w in order to be totally cov-

ered from a random loss C with a distribution function H is determined by the equation:

u(w -  P) = E(u(w -  C)) (4.7.1)
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or u(w -P )=  I* u(w-c)dH(c)J-oo (4.7.2)

(ii) Economics of Insurance: Another interesting view is to consider the insur-

ance product as a commodity which obeys the laws of the market with respect to its 

price, i.e. The price is determined by demand and supply functions (at the intersection 

point). Of course under this approach we may ignore everything else and just examine 

the market movements in order to decide our premium for the next year (hopefully near 

the mean).

4.8 The great challenge!... "Control the controller!"

A Greek (very popular nowadays) word may describe and give us a first explana-

tion to the title of this section. The word is ..."Cybernetics"! But what do we mean?... 

and what is the great challenge?

For the first time, we can develop a theoretical model for the cybernetics of an 

insurance system. That means we shall be able to decide about the control strategy. Is it 

a good one? or is it a safe one? or ideally is it the best? (according to a certain set of 

criteria). For the first time we are able to control the controller.

Avoiding thousands of simulations we may reach directly the answer of the best 

strategy! Simulation procedures are time consuming and do not give us 100% safety 

about our decision making procedure.

An automatic controller (like an automatic pilot) is attached to the system and 

becomes responsible for the cybernetics of it. Although these automatic controllers may 

be very powerful and clever they can not substitute entirely the human management of 

the insurance company. So what is left for the managers?
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The answer is very simple! Think of a modern airplane. They all have a human 

and an automatic pilot. Each of them takes action the right time and of course the hu-

man remains responsible for everything, especially during dangerous phenomena like a 

storm or a snowfall or...

Conclusively the role of an insurance manager is twofold.

(i) Develop, test and put in action the automatic controller in the good "sunny" days 

and

(ii) Put out of order the automatic controller and guide the system with his own arms 

through a terrible market "storm or snowfall".

4.9 Analysis of the model using control theory techniques

We shall consider the general version of our problem as described in section 

(4.3) with the restriction of a constant interest factor R without fluctuations adding also 

another four assumptions.

(i) No distribution of surplus to policyholders.

(ii) An inflation factor (F) for claim development (where F=l+inflation rate).

(iii) There is a "binding agreement" between the insurance company and the policy 

holders stating that all insurance contracts will remain in force up to infinity.

This assumption is very important because it prevents withdrawal of the portfolio 

when the premium is risen due to the feedback of a negative surplus reserve.

(iv) There is a time delay factor (f) in the system. That means, we obtain the full in-

formation for the unknown variables of the system (i.e. claims with a time delay. 

So, at each time point n we have exact information up to time point n-f.
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The last assumption is very important and may not actually hold in practice but it 

must be assumed here. In the real world, it is impossible to avoid the time delay ele-

ment for a number of reasons which are well described in Ackman et al (1985) and be 

repeated below:

(i) "The insured contingency itself may not occur at a single instant - for example 

workmen's compensation".

(ii) "The legal liability of the insurer may not always be clear cut and there may be 

considerable delays before the insurer (or the court) decides that a liability ex-

ists"

(iii) "The quantum of damages may be impossible to determine until some time has 

elapsed since the occurrence of the event - for example motor damage claims..."

(iv) "There will be processing delays within the insurer's office..."

(v) "There may be delays before the insurer is even notified that a claimable event 

has occurred..."

Firstly, we should establish a standard decision rule in order to produce a first

• • *  iestimation for the next year’s risk premium Cn+I. Although we can use complicated 

mathematical rules we prefer a relative simple one described as the weighted average 

prognosis based on the last p years of actual claim experience. The weights shall have 

the format described in equation (4.4.4) and will be applied to claims experience 

Cn-p.f+i, Cn-p.f+2,..., Cn.f as we have introduced the time delay i.e.

C L , = ^ [ F'*' n e w , . ,  + F ",-|e! - C , ^  + ...+F " -9' . c j  (4.9.1)

where M = ¿ F p+f+1' k0k
k=l
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and subsequently we may produce another estimate taking into account the expense

margin Cj+1 i.e.

(4.9.2)

Our basic aim is to design such a control mechanism in order to obtain the ideal 

smoothness for both premiums and surplus. Finally, we prefer a stable system which 

shall be self-protected from instability. This may be obtained inserting a negative feed-

back mechanism of the accumulated surplus. Before go further with the concept of 

feedback, we shall do some basic control analysis of the problem.

In our example the amount of total annual claims is considered to be the input of 

the system. The process is all the set of equations, functions and logical rules which 

produce the output of the system. The output consists of two variables: premium and 

surplus. As it usually happens, the smoothness of the first output variable (surplus) op-

erates contrariwise to the smoothness of the second output variable (premiums).

A measuring procedure on the surplus output will enable us to decide whether 

our premium estimates are correct or not. This information of the output should be fed 

back. But the big questions are: How? and How much of this information should be fed 

back in order to stabilize the system? We shall try below to answer these questions.

The annual surplus Ln is given by the formula

Finally, we may refund a fraction (say a) of this accumulated surplus to the poli-

cyholder.

Ln+i cRPn+i-Cn+i (4.9.3)

and the accumulated surplus Sn+i at the end of year (n+1)

Sn+l R S n+Ln+l (4.9.4)
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Hence, (4.9.5)

where |s| normally lies in the interval [0,1]. Again we identify the existence of the de-

lay factor (f) for the accumulated surplus (S). (We are at the end of year n, without 

knowing the actual claim experience for years n, n-l,...,n-f+l consequently the last 

known value for the accumulated surplus is the Sn-f).

As we have stated the current model is an extension of the one developed by 

Balzer & Benjamin (1980) generalized in three directions.

(1) There is an additional parameter R which reflects the investment income falling 

into the system.

(2) The "exponential smoothing" process is used (with F,0 inflation & weighting 

factors) as an advanced claim predictor providing smoother estimations.

(3) The delay (f) is a free control parameter which value will be examined in con-

junction with the stability of the system.

4.10 Control diagram of the model

Now, we shall draw the control diagram of the model in order to obtain a geo-

metrical representation of the process (see Diagram (4.10.1) of the next page).

We may picture another representation of the diagram by putting into the boxes 

the algebraic equations and indicating the arrows with the analogous variable.

Finally, we may have the formal representation of a control diagram, which 

shows the z-transformation of each equation into the boxes.
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Control diagram of the model

C n+1 (actual incurred claims for the year n +  1 ) A S

In the Diagram we have indicated with dotted arrows the relationship between boxes or circles with the equations of section (4.9)

Diagram (4.10.1)

c 
TJ





(similarly is defined the Cz).

Now assuming zero initials conditions i.e.

C-k-0 and S.k=0 for every k=0,l,2,...

we may obtain the following equation for the z-transformed variables Sz and Cz i.e.

Sz = RzSz + ^ [ F p+f0zp+f +... + F1+f0pz1+f ] Cz -eR sz1+fSz - C z (4.11.9)

the last equation is rearranged putting the terms of Sz into the left-hand side while the 

terms of Cz into the other side. So,

( l-R z  + eRez1+f)-Sz = ^ ( F p+f0zp+f+... + F1+f0pz1+f ) - l •C (4.11.10)

or equivalently,

1 - — (Fp+f0zp+f +... + F1+f0pz1+f )
S, = — M

1 -  Rz + eRezi+f -C. (4.11.11)

The fraction (with the negative sign) which is included in the last expression (4.11.11) 

is the transfer function of the system

(transfer function):
1 -  — ( Fp+f0zp+f +... + F1+f0pz1+f ) 

G(z) = ------'
1 -  Rz + eRez

(4.11.12)

As we have seen in chapter 2, G(z) is very important for the investigation of the 

system as represents the basic cybernetic element containing the full information of the 

whole process.

A typical control diagram using the G(z) function is given below:
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CL Claims

( input)

Sz Accum. Surplus 
-------------------- >

( output)

Diagram (4.11.1)

In order to proceed with the solution of the initial equation (4.11.8) we have to 

consider now the roots of the characteristic polynomial (or equivalently the poles of the

transfer function). Now let be the roots of equation
P ,  P  2 P n

h(z) = 1 -  Rz + eRsz1+f = 0

then it is easily proved that pi,p2,...,pn are the roots of 

cp(z) = z1+f -  Rzf + eRs = 0

(4.11.13)

(4.11.14)

and we may split the transfer function G(z) by the methods of partial fractions and re-

write (4.11.11) in the following general form (see Goldberg (1963)).

S, = *12

1 — p , z  l - p 2Z
- + ... + - *l,l+f

l -P l+fZ
C +

+ *21 ‘22
1 — p,z l - p 2z

- + . . .  + - *2,l+f
i-Pl.fZ

z1+fC +.

* p+i,i a p+l,2 a p+l,l+f

1-p.z l - p 2z 1 —PiH-fZ.
zp+fC, (4.11.15)
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Fi n all y, w e m a y o bt ai n t h e s ol uti o n b y i n v erti n g t h e z-tr a n sf or m ati o n o f l a st 

e q u ati o n ( 4. 1 1. 1 5) a n d c o n str u cti n g t h e g e n er al f or m o f S n ( s e e G ol d b er g ( 1 9 6 3)) as,

= ( a i l P l  + a ! 2 P 2  +  " • +  a i , l + f P l + f  ) *   +

+  ( a 2 l P l  + a 2 2 p 2  + , "  +  a 2 ,l + f P l + f  ) *  ^ - n - f - 1  +  " •

+  ( a p + l ,l P l + a p + l, 2 P 2 +  • • •■ *" a p + l , l + f P l + f ) * ^ ' n - f - p  ( 4 . 1 1 . 1 6 )

w h er e

• c o effi ci e nt s a  ̂ i = l, 2,..., p +l, j = l, 2,...,l + f ar e d et er mi n e d b y t h e m et h o d o f p arti al 

fr a cti o n s u n d er t h e f oll o wi n g r el ati o n s hi p.

T h e v al u e s o f aij j = l, 2,...,l + f ar e c al c ul at e d, e q u ati n g t h e e x pr e s si o n w hi c h 

c o nt ai n s t h e m wit h - 1 w hil e

f or e a c h i = 2, 3,..., p +l t h e v al u e s o f a  ̂j = l,...,l + f ar e c al c ul at e d, e q u ati n g t h e e x-

R
pr e s si o n w hi c h c o nt ai n s t h e m w it h ----Fl +f ~'

M

i. e. a y a n al o g o u s t o — • F , +f_1 ( 4. 1 1. 1 7)
M

• a n d t h e si g n * w hi c h a p p e ar s i n e q u ati o n ( 4. 1 1. 1 6) m e a n s c o n v ol uti o n!

4. 1 2 C o m m e nts o n t h e g e n er al s ol uti o n

I n t hi s s e cti o n a n d aft er h a vi n g o bt ai n e d t h e s ol uti o n o f t h e pr o bl e m, w e s h all 

m a k e s h ort c o m m e nt s t o t h e g e n er al f or m at a n d o n e a c h p ar a m et er i n v ol v e d wit h it s 

p o s si bl e aff e ct.

S ol uti o n st r u ct u r e: G e n er all y s p e a ki n g, t h e s ol uti o n d e p e n d s o n t hr e e f a ct or s.

( a) P a st Cl ai m e x p eri e n c e (li n e arl y)

1 2 7



(b) The roots of equation (4.11.14) (exponentially)

(c) The coefficients ajj i= l,...,l+ f, j= l,...,p+ l (linearly)

As we can see the most important factor is the second one, the roots of the characteris-

tic equation which has an exponential affect. Now since we can not alter the (a) factor 

we shall study the (b), (c) factors in conjunction with the parameters of the problem: 

f,R,e,e,F,p,0.

f delay factor: The delay factor appears to be the most important feature of the 

whole process as affects the degree of the characteristic polynomial (consequently the 

number of roots of characteristic equation). The effect is exponential because the roots 

appear in the power format in the solution. Another interesting result is the appearance 

of certain oscillations if f>3. It has been shown in Zimbidis & Haberman (1993) that 

equation (4.11.14) has at least one pair of conjugate complex number (using Descartes 

Rule of Signs - positive roots). So, if £>3 then the general solution (i.e. the accumulated 

surplus and consequently the premiums) will exhibit some kind of oscillations (longer 

discussion will follow in later section using the root locus method).

R interest factor: The interest factor appears both in the characteristic equation 

and in the expression which determines the coefficients ay so it has a multiple effect in 

the solution. As R appears in the numerator of the right hand side of expression 

(4.11.17) its effect should be determined analogously. Generally speaking R accelerates 

the surplus procedure i.e. Larger values of R result in greater output responses (and 

similarly for smaller values). The effect of R into the characteristic equation will be 

discussed in later section with the help of the root locus method. R could also be a 

function of time but this problem will be dealt with in sections (4.20) & (4.21).
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e,E expense and feedback factors: These appear in the characteristic equation so 

have an exponential effect as they determine the position of the roots (full discussion in 

a later section using the root locus method).

0, F weighting and inflation factors: They appear in expression (4.11.17) both 

in the numerator and the denominator of the respective fraction. They affect the coeffi-

cients ay, so actually determine the amplitude of the output (Sn). Large values of 0,F 

will produce large coefficients ay when i's are small, so actually the output will be af-

fected from recent claim experience (expected also by general reasoning)

p averaging factor: It appears in many places of the solution determining the 

"length" of equation (4.11.16). Large values of p produce many coefficients ay conse-

quently more claim experience is incorporated in the solution and finally smoother re-

sults for the output of the system.

Control of parameters: Having examined the possible effects of each parameter 

the obvious question is whether we can control them and in a way "guide the solution". 

Generally, we may separate the parameters above in three categories.

1st category: (R,e,F) These parameters may be almost uncontrollable (or con-

trolled but in a very thin interval) by the actuary.

2nd category: (f,p,0) These parameters may be controllable especially when there 

is enough past data, so an actuary may choose the delay factor or the averaging number 

of years, or the special weighting factor 0 .

3rd category: (e ) The feedback factor may be determined and be absolutely con-

trolled by the actuary.
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After having established the three categories above the actuary (the person who 

creates and follows the system) may design the optimal control strategy in order to ob-

tain the desired results for surplus and premium variables (i.e. smooth, stable etc.)

Closing this section we must distinguish the two meanings of a controllable pa-

rameter (the potential to determine its numerical value without any restrictions) and 

controllable system which has been defined in section (2.13)

4.13 Analysis of a special case (p=2,f=l, 0=1)

Before go further with more control analysis of the general solution let’s try to 

have a first "look" (in numerical results) using simulation techniques and a special case 

of the model where p=2 , f=l & 0= 1 .

Consequently the system of equations (4.11.1) - (4.11.5) will be realized as fol-

lows:

C ' = —  [f 3C 3 +F2Cn 2 1 
n M '  ̂ n--* n~2 ^

(4.13.1)

C2 = - C 1' - 'n  ' “ n (4.13.2)
e

Pn =C 2 -e S n_2 (4.13.3)

Ln =eRPn- C n (4.13.4)

Sn =  R S n_j +  L n (4.13.5)

where M'=F2+F3

We may assume that the system stands on the equilibrium point i.e.

Cn=0 , Pn=0 , Sn=0 , Vn<0

and simulate it, using the recursive relationship of equation (4.11.8) (replacing p=2 0=1 

and f= l, so obtain (4.13.6)) under different claim patterns i.e.
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(4.13.6)Sn =RSn , - eRsSn , + —  (F3Cn ,+ F 2Cn 2)-Cn n—1 n - 2  -* r f  \  n—i  n—L  jM

We may produce tables (and diagrams respectively using different values for the 

set of the basic parameters {R,e,F,s}. We shall use some typical values (for Greece in 

years 1990-92, or generally for an economy with high inflation and interest rates and 

with insurance companies having a substantial expense & profit margin) i.e.

1.18 < R <  1.22, 60% < e < 80%, 1.12 < F < 1.15

For the feedback function, we shall consider values from 10% up to 100%, while 

the following patterns for claims will be considered:

(i) a spike function where

C o = 0 , C i  =  l  , C 2 = 0 , C 3 = 0 , . . . , C n = 0 , . . .

(ii) a step function where

C o = 0 , C ,  =  l , C 2= l , C 3 = l , . . . , C n= l , . . .

(iii) a random variable uniformly distributed in the unit interval i.e.

Cn~U(0,l) n=0,l,2,...

A computer function will be used to generate the observations of the uniform 

distribution.

In the next section we present the results and the respective diagrams of the 

simulations.
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4.14 Presentation of some examples with brief comments (Tables & Diagrams)

1st example: (input signal = spike)

The first example contains a spike function as an input signal. The three other 

parameters R,e,F are constant while we examine four different values for the parameter

s.

Hence, we simulate four different set of values as the following table (4.14.1)

Table (4.14.1)

Input Signal R e F 8

(i) Spike 1.18 60% 1 . 1 2 10 %

(ii) Spike « « « « « « 30%

(iii) Spike « « « « « « 50%

(iv) Spike « « « « « « 10 0%

The results of our simulations are shown in table (4.14.2). There are six columns. 

The first one represents the development of the time variable. The second one, shows 

the claim amount at each time t. Finally the last four columns which correspond to the 

rows (i), (ii), (iii), (iv) of the table (4.14.1.) show the development of the surplus vari-

able Sn, according to the selected value of £=0 .1 , 0.3, 0.5 or 1 (i.e. 10 %, 30%, 50%, 

10 0%).

We shall also provide table (4.14.3.) which shows the development of the two 

variables Cn and Sn for general values of the parameters R,e,F,e and a spike input sig-

nal.

132



TABLE (4 .14 .2 )

Input Signal Spike ( 0,1,0,0,0,0,...)

Expense (e) 60%
Interest (R) 1,18
Inflation (F) 1,12

( M / ) 2,659

(i) (¡0 (Hi) (iv)
Feedback (t) 10% 30% 50% 100%

Accumulated Accumulated Accumulated Accumulated
Time Claims surplus surplus surplus surplus

0 0 0,0000 0,0000 0,0000 0,0000
1 1 - 1,0000 - 1,0000 - 1,0000 - 1,0000
2 0 - 1,1800 - 1,1800 - 1,1800 - 1,1800
3 0 - 0,7650 - 0,6234 - 0,4818 - 0,1278
4 0 - 0,1958 0,1384 0,4726 1,3080
5 0 - 0,1768 0,2957 0,7282 1,6340
6 0 - 0,1948 0,3196 0,6920 1,0020
7 0 - 0,2173 0,3143 0,5588 0,0255
8 0 - 0,2427 0,3030 0,4144 - 0,6793
9 0 - 0,2710 0,2908 0,2912 - 0,8196
10 0 - 0,3026 0,2787 0,1969 - 0,4862
11 0 - 0,3378 0,2672 0,1293 0,0066
12 0 - 0,3772 0,2560 0,0828 0,3520
13 0 - 0,4212 0,2454 0,0520 0,4107
14 0 - 0,4703 0,2352 0,0320 0,2354
15 0 - 0,5252 0,2254 0,0194 - 0,0130
16 0 - 0,5864 0,2160 0,0115 - 0,1820
17 0 - 0,6547 0,2070 0,0067 - 0,2056
18 0 - 0,7311 0,1984 0,0039 - 0,1137
19 0 - 0,8163 0,1901 0,0022 0,0114
20 0 - 0,9115 0,1822 0,0012 0,0939
21 0 - 1,0178 0,1746 0,0007 0,1028
22 0 - 1,1364 0,1674 0,0003 0,0548
23 0 - 1,2689 0,1604 0,0002 - 0,0081
24 0 - 1,4169 0,1537 0,0001 - 0,0484
25 0 - 1,5821 0,1473 0,0000 - 0,0513
26 0 - 1,7666 0,1412 0,0000 - 0,0263
27 0 - 1,9725 0,1353 0,0000 0,0053
28 0 - 2,2025 0,1297 - 0,0000 0,0249
29 0 - 2,4593 0,1243 - 0,0000 0,0256
30 0 - 2,7460 0,1191 - 0,0000 0,0126
31 0 - 3,0662 0,1142 - 0,0000 - 0,0033
32 0 - 3,4237 0,1094 - 0,0000 - 0,0128
33 0 - 3,8229 0,1048 - 0,0000 - 0,0128
34 0 - 4,2686 0,1005 - 0,0000 - 0,0060
35 0 - 4,7663 0,0963 - 0,0000 0,0019
36 0 - 5,3220 0,0923 - 0,0000 0,0065
37 0 - 5,9425 0,0885 - 0,0000 0,0063
38 0 - 6,6354 0,0848 - 0,0000 0,0029
39 0 - 7,4090 0,0812 - 0,0000 - 0,0011
40 0 - 8,2729 0,0779 - 0,0000 - 0,0033
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Table (4.14.3)

time (n) claims (Cn) Accumulated Surplus variable Sn

0 0 0

1 1 -1

2 0 -R

3 0 d2 f  T2) - R 2 +R- e-£H-----
l  M 'J

We have also drawn the diagrams (4.14.1) and (4.14.2) which show the graphical 

representation of columns (i)-(iv) of table (4.14.2). Consequently we have the following 

comments.

(1) As we observe in diagram (4.14.1) the surplus variable goes to minus infinity. 

That means, if we use a small percentage (e.g. s=10%) as feedback the system 

will never reach the stable state (action: avoid small values of s).

(2) As we observe in diagram (4.14.2) the surplus variable converges to zero for 

every value of £=30%, 50%, 100%. But the process shows oscillatory behavior 

for the large value of £ = 1 0 0 %  (action: avoid large values of e ) .

(3) Obviously, a selection between 30% and 50% for the feedback parameter will be 

the best choice (of the ones examined). If we would like to choose just one value, 

we should consider other features of the system. For instance, we may consider 

the settlement time (how quickly something goes to zero) for each value of e . In 

our graph we observe that the path of 50% feedback goes faster.
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Diagram (4.14.1)
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The second example contains a step function as an input signal. Similarly with 

the 1 st simulation obtain again four different set of values as the following table

(4.14.4)

2nd example: (input signal =  step)

Table (4.14.4)

Input Signal R e F 8

(i) step 1 .2 2 80% 1.15 30%

(ii) « « « « « « « « 50%

(iii) « « « « « « « « 80%

(iv) « « « « « « « « 10 0%

The results of our simulations are shown in table (4.14.5). (The format of the table

(4.14.5) is exactly the same as for table (4.14.2)).

We shall also provide table (4.14.6) similar to (4.14.3).

Table (4.14.6)

time (n) claims (Cn) Accumulated Surplus variable S„

0 0 0

1 1 -1

2 1 -(1+R)

3 1 ( F2  ̂
- R 2 +R- e -8 + ------1 -1

l  M' J

We also present diagram (4.14.3) including the graphical representation of table

(4.14.5).
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TABLE (4.14.5)

Expense (e) 80%
Interest (R) 1,22
Inflation (F) 1,15

( M/ )  2,843

Input Signal Step (0,1,1,1,1,1,...)

(1) (ii) (¡n) (iv)
back (t) 30% 50% 80% 100%

Accumulated Accumulated Accumulated AccumulaU
Time Claims surplus surplus surplus surplus

0 0 0,0000 0,0000 0,0000 0,0000
1 1 - 1,0000 - 1,0000 - 1,0000 - 1,0000
2 1 - 2,2200 - 2,2200 - 2,2200 - 2,2200
3 1 - 2,8482 - 2,6530 - 2,3602 - 2,1650
4 1 - 2,6047 - 1,9332 - 0,9260 - 0,2545
5 1 - 2,1238 - 0,8439 0,9331 2,0225
6 1 - 1,6084 0,1338 2,0814 2,9358
7 1 - 1,1204 0,7951 2,0307 1,8278
8 1 - 0,6760 1,1247 1,0724 - 0,4155
9 1 - 0,2766 1,2042 - 0,0573 - 2,0708
10 1 0,0805 1,1402 - 0,6872 - 1,9009
11 1 0,3991 1,0234 - 0,5737 - 0,0780
12 1 0,6834 0,9121 0,0567 1,9801
13 1 0,9369 0,8334 0,7371 2,7119
14 1 1,1629 0,7916 1,0750 1,5959
15 1 1,3644 0,7791 0,9560 - 0,4798
16 1 1,5441 0,7842 0,5469 - 1,9230
17 1 1,7043 0,7965 0,1408 - 1,6577
18 1 1,8471 0,8090 - 0,0352 0,0744
19 1 1,9745 0,8183 0,0671 1,9287
20 1 2,0880 0,8236 0,3293 2,5004
21 1 2,1893 0,8254 0,5694 1,3880
22 1 2,2795 0,8251 0,6575 - 0,5269
23 1 2,3600 0,8238 0,5776 - 1,7776
24 1 2,4318 0,8224 0,4113 - 1,4344
25 1 2,4957 0,8213 0,2708 0,2050
26 1 2,5528 0,8207 0,2292 1,8701
27 1 2,6036 0,8204 0,2882 2,3014
28 1 2,6490 0,8204 0,3927 1,2025
29 1 2,6894 0,8205 0,4740 - 0,5591
30 1 2,7255 0,8207 0,4917 - 1,6357
31 1 2,7576 0,8208 0,4498 - 1,2299
32 1 2,7863 0,8209 0,3848 0,3160
33 1 2,8118 0,8209 0,3383 1,8059
34 1 2,8346 0,8209 0,3322 2,1148
35 1 2,8549 0,8209 0,3612 1,0375
36 1 2,8730 0,8209 0,4013 - 0,5783
37 1 2,8892 0,8209 0,4275 - 1,4981
38 1 2,9036 0,8209 0,4283 - 1,0433
39 1 2,9164 0,8209 0,4087 0,4093
40 1 2,9278 0,8209 0,3842 1,7377
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(1) As we observe in diagram (4.14.3), no one path converges to zero. That means 

the design of the system is not good enough to react properly to a step signal.

(2) Again, the path of 100% feedback (as for the spike input) exhibits oscillations 

(showing a slightly decreasing amplitude).

(3) The three paths of 30%, 50%, 80% feedback appear to converge to certain val-

ues. These limits will be examined in section (4.19). We shall find exactly how 

far from zero the path may converge.

— [Fp+f0 + ... + F1+f-0P]-1
(The limit as quoted in (4.19)): —-----------------------------

1 -  R + eRe

As has been shown in Balzer (1982) for a similar model, integral action should 

be used in order to "bring the system back to initial condition of zero". In section (4.19) 

we also use integral action and we prove that system may return back to initial state of 

zero.

3rd example: (input signal = random U(0,1))

The third example contains a random (U(0,1)) function as an input signal.

We assume constant values for parameters R, e, F i.e.

R=1.20 , e=70% , F= 1.14

and we run 1.000 simulations for ten different values of s (feedback factor)

8=10% , 20% , 30% , ... , 90% , 100%

Then for each simulation we find the value of £ (feedback factor) which produces the 

output (surplus) sequence of values with the minimum mean and minimum variance.

The results of our simulations with respect to the minimum mean and variance are 

shown in the following table (4.14.8).
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(Interpreting table (4.14.8) we can say that under 81 simulations the output which cor-

responds to s=20% had the minimum mean etc...).

Table (4.14.8)
M I N I M U M  M E A N M I N I M U M  V A R I A N C E

( e )  f e e d b a c k  fa c t o r S i m u l a t i o n s %
f r e q u e n c y

( e )  f e e d b a c k  fa c t o r S im u la t i o n s %
f r e q u e n c y

0 ,2 81 8 ,1 0 % 0 ,4 3 8 3 ,8 0 %

0 ,7 1 0 ,1 0 % 0 ,5 4 8 4 4 8 , 4 0 %

0 ,8 2 2 2 ,2 0 % 0 ,6 3 0 5 3 0 , 5 0 %

0 , 9 1 1 6 1 1 ,6 0 % 0 ,7 1 0 7 1 0 ,7 0 %

1 7 8 0 7 8 , 0 0 % 0 ,8 4 4 4 ,4 0 %

T o ta l 1 0 0 0 0 ,9 11 1 ,1 0 %

1 11 1 ,1 0 %

T o ta l 1 0 0 0

As we can see the greater the value of (s) then the greater probability to obtain 

the minimum value for the mean of the accumulated surplus. For example if £=100% 

then in 780 cases (i.e. 78%) the minimum value for the mean is obtained.

As regard the variance of the accumulated surplus we observe that it is obtained 

(with greater probability) in the area of 50% and 60% of the (s) feedback factor (the 

probability for the minimum variance under 8=50% or 60% is 78.9%).

Finally from our simulations we found that

(1) No path (any choice of e) appears to converge to a certain value.

(2) The path of 100% feedback has the most oscillatory form
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4.15 The "Damokleios Sword" 1 (the great threat)

The simulation tables sometimes cause more confusion than solving the problem. 

Of course, we obtain a first "taste" but we have no insight to the behaviour of the sys-

tem on a long-term basis. On the other hand we never feel absolutely safe (even in the 

short-term) because we can not simulate all the different sets of values for the parame-

ters of the problem (e.g. in our model e,R,e,F).

A "Damokleios sword" is always above our heads threatens with a catastrophe of 

the system. A "dangerous" set of values which has never been simulated may occur (e.g. 

F=1.35 high inflation rate) and destroy the whole process.

But even if we could avoid the total catastrophe we would not be happy again 

because we aim to be in a position to obtain the best strategy for the future designing 

the values of parameters which are partially or fully controlled by us.

As we have seen in section (4.12) e feedback factor may be a fully controllable 

parameter. We should be able to choose the "best" e for our system, considering the 

typical values of the other parameters.

The expense e factor is also a controllable factor, since it contains the desirable 

profit margin. An insurance company may modify (each year) its profit margin in order 

to obtain a better behaviour (and the desirable stability) of the system.

Of course, one may argue that in a very competitive market these factors may not 

be fully controllable. The competition may restrict the choices of e and e.

Anyway, (partially or fully) there are some parameters which may be controlled, 

so we need a more advanced analysis of the system revealing the role of each parameter 

on a long-term basis. We shall then be in a position to design the parameters of the 

system and obtain the "best control strategy".
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4.16 Stability analysis of the general model using the root locus method

The analytical solution (described by equation (4.11.16)) of the difference equa-

tion (4.11.8) may provide us full information about the behaviour of the system but in 

most times it is very difficult to obtain the exact numerical form. Fortunately, the most 

times it is needless because we do not need such full information. We only need to be 

able to answer some basic questions. For example the most important one: "Is the sys-

tem stable?".

A theory has been developed which examines the qualities of difference (and dif-

ferential) equations without solving them. In this section, we shall discuss the general 

solution of our system with respect to stability using the root locus method (Appendix 

III).

From equation (4.11.16) we may conclude that the behavior of the system de-

pends (heavily) upon the roots of equation (4.11.14). (The dependency should be con-

sidered on a long-term basis). Firstly, there are three options for convergence:

(i) The absolute values of the roots are less than the unity i.e.

| p i | < 1 ,|p2 | < 1 ,...,|pi+ f | < l

Consequently, the acc. surplus variable (Sn) converges to zero for large values of n.

(ii) At least one of the absolute values of the roots is greater than the unity i.e.

there exists ie  {1 ,2 ,...,1 +f} such that |p,|>l

consequently, (Sn) diverges to infinity.
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(iii) At least one of the absolute values of the roots equals to the unity (while the 

other are less than unity). Then the (Sn) converges to a certain finite limit deter-

mined by the coefficient of the specific root.

Secondly, we must stress again that if the roots are complex numbers the solution 

exhibits oscillations. So, combining the last statement with the three above options we 

conclude that there are actual six patterns for the behavior of the solution i.e.

(i) Converging to zero with non-oscillations.

(ii) Converging to finite value with non-oscillation.

(iii) Diverging to infinity with non-oscillation.

(iv) Converging to zero with oscillation.

(v) Converging to finite value with oscillation

(vi) Diverging to infinity with oscillation.

Of course the magnitude of the patterns above are affected by the magnitude and 

position of the roots in the z-plane. Now, let us consider the characteristic equation 

(4.11.14) with a slightly different notation.

and design the paths of the roots using the ten (10) steps of Appendic III (Root Locus 

Method).

We shall examine the root-locus with respect to parameter (e). The ten steps be-

low are exactly parallel to Appendix III. Hence,

cp, (z) = z1+f -  Rzf + eRs -  0

Step 1: Equation (4.11.14) is rearranged as

cp,(z) = 1 + £<p2(z) = 0 (4.16.1)

(4.16.2.)
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Step 2: 

Step 3:

Step 4:

Step 5:

Step 6: 

Step 7: 

Step 8:

The number of separate root loci equals to 1+f.

Determine zeros & poles of cp2(z) i.e. 

zeros: oo (infinity, with 1 +f multiplicity) 

poles: 0 (with f multiplicity) and R.

Complex portion of root-locus.

• f=0 then there is no complex portion.

• f>l then the complex portions exist and are symmetrical to x-axis. 

Real portion of root locus:

• f  odd number (1,3,5,7,...) then 1+f is even and consequently no real por-

tion is at left-hand side of zero. The real portion is restricted in 

the area between 0 and R.

• f  zero or even number (0,2,4,6,...) then 1+f is odd and consequently

there are real portion at the left hand side of zero and between 0 

and R.

The angles of the asymptotes an

mi
an = ± ——, n= l,3,5,7,... 

1 + f
(4.16.3)

The intersection point of asymptotes with x-axis.

(IS ) =
R

1+7 (4.16.4)

Breakpoints (of our locus) with x-axis.

_d_
dz

—  ( -z 1+f+Rzf) 
eR v ’

= 0 «
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z = 0 ((f - 1) multiplicity) & z = R -—— (4.16.5)

Step 9: Not applicable as there are no complex poles.

Step 10: The intersection points may be found after sketching the loci. (So the ini-

tial guess is determined by the diagram).

Keeping in mind the distinctions described in steps 4 and 5 we may draw four 

diagrams for the root-locus i.e.

Diagram (4.16.1): f  equals zero (0)

Diagram (4.16.2): f  equals one (1)

Diagram (4.16.3): f is an odd number (large value)

Diagram (4.16.4): f is an even number (large value)

Observing the general diagrams (4.16.3) and (4.16.4) we may state the following gen-

eral comments with respect to the position of the roots and the required stability.

Comments

1) The first important result is revealed by the 3rd step which determines the ze-

ros & poles. One of the poles is R, normally greater than zero. As we observe a path 

starts at R (which corresponds to 8=0) and goes towards the breakaway point (via the 

real axis) which may lie left or right to unity.

So, for all small values of e there is always a root with absolute value greater 

than unity, consequently the system is unstable. If the path (starting from R) crosses the 

unity then the specific value of 8 is determined by:

8 = l1+f - R l f 
eR

(see magnitude criteria of App. Ill) or equivalently,

(4.16.6)
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(4.16.7)R - l
8 = ------

eR

Hence, if 0 < e <  ——- (4.16.8)
eR

then the system is unstable (for any value of f).

2) The second important result is revealed by the combination of 3rd and 8th step. 

Considering the situation before, but assuming that the breakaway point is greater than 

unity i.e. (from equation 4.16.5).

R —  > l o f > —  (4.16.9)
1 + f R - l

then the certain path lies always outside the unit circle. See Diagram (4.16.4). So if the 

(4.16.9) inequality holds i.e. the delay factor is greater than a certain value, say then

the system is unstable independently of the choice of e.

The critical value of fM may have a very interesting verbal interpretation if we 

consider R=l+j where j is the interest rate. Then fx equals the perpetuity at interest j

f.=ag‘> (4.16.10)

3) Finally if the breakaway point is at left hand side of the unity, it will be inter-

esting to find the intersection points of the unit circle and the root loci which starts 

from R goes towards the breakaway point and then is developed in two symmetrical 

(with respect to x-axis) lines which converge asymptotically to two straight lines with

intersection point: (lS) = -—-

angles with x-axis: (ang), = (ang)-i =
71

T+?
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Then we calculate the value of e (say co) which corresponds to the points above by the 

magnitude criteria of App. Ill and conclude: The system will be stable if and only if we 

choose £ such that

— -<s<co (4.16.11)
e-R
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4.17 Stability analysis and optimal design for the parameters of the special case

(P=2 , f —1, 0=1)

For the special case where f=l the characteristic equation (4.11.14) becomes

z2 -  Rz + esR = 0 (4.17.1)

As we can see from diagram (4.16.2) the roots of the equation lies on a cross

f R n
with the center on the point with coordinates 0,—

V 2 )

The analytical form of the roots is given below

P i , 2 —
R + a/R 2 -4eeR (4.17.2)

In order to determine the interval of values for e which results a stable system, we shall 

use firstly comment (1) of section (4.16) and equation (4.17.2). From the 1st comment 

we immediately derive that

(4.17.3)
eR

From equation (4.17.2) and diagram (4.16.2) we shall consider the crossing points with 

the unit circle (the absolute value will be equal to unity) i.e.

|p , ,H  (4.17.4)

Consequently,

'R.V
, 2 ,

+ V 4eeR-R 2
\ 2 2

= 1 »

8
eR

(4.17.5)
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Hence, the system is stable if and only if

R -1 1 (4.17.6)< £ < ---
eR eR

As regards the optimal design for the parameters with reference to the fastest re-

turn into initial conditions we should try to minimize the magnitude of both roots pi 

and p2 as the magnitude of surplus variable depends on them.

The above requirement may be achieved if we have a double root i.e.

So if we select the above specific value the system will converge (in the fastest way) 

back to initial state (zero).

4.18 Optimal design for the parameters of the special case (p=2,f=2, 0=1)

We shall examine the optimal parameter design with respect to the fastest re-

sponse of the system for the special case when f=2. The characteristic equation is the 

following:

If we observe diagram (4.16.4) we can see that

(1) For 8=0 there are two roots O (double root) and R.

(2) There are three paths which start (the two of them) from zero (going across the 

x-axis left and right) and the other from R (going left on the x-axis.

If we demand to minimize the maximum absolute value of the roots then we

. . 2Rshould choose 8 such that the equation has a double root at the breakaway point i.e. —-  

and a third one say p on x-axis. Then the following equations hold

(4.17.7)

z3 -R z 2 +eeR = 0 (4.18.1)
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Equating the coefficients we obtain

8 = 4R
27e

R (4.18.2)

(4.18.3)

So, if we select e as determined in equation (4.18.3) we shall have the fastest re-

sponse of the system back to initial conditions.

4.19 The ultimate state of the system -  Integral Action

Finally, in this section we shall examine the ultimate state of the system. We shall 

find the limit of the surplus variable Sn as n (time) goes to infinity.

There is a basic equation which connects the limit of a variable with the limit of 

the z-transformed respective variable i.e. (see Appendix I).

We shall consider the basic equation (4.11.11) which relates the variables Cz and Sz i.e.

lim yn = lim yz (z - l)
n —>oo z—>1

1 - — ÎFp+f0zp+f + ... + F,+fepz1+f] 
o M 1_____________________

__ 1+f1 -  Rz + eRez1+f

and substitute successively the Cz function for a spike and a step input signal.
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Spike

As we have seen, the spike function has the form

C ’ n and z-transformation Cz=l 
n 1 0, n * 0

Hence, we obtain

i x =limSn = limSz (z-l)= lim G (z) Cz(z - l)
n->oo z—>1

lim
z—►!

R
M

[Fp+f6zp+f +... + F1+f0pz1+f] - l

1 -  Rz + eRezi+f (z - l )  =

— [Fp+f0zp+f +... + F1+f6pz1+f] - l  
= lim (z - 1) • lim M -----------------------—---------- = (Z->1 z-*l 1 -  Rz + eRez

i.e. the process will converge to zero when there is a spike as 

haviour may be identified also in diagram (4.14.2).

Step

As we have seen the step function has the form, C„=l,

z-transformation C„
z - 1

Hence, we obtain (similarly as above)

— [Fp+f0zp+f +... + F1+fepz1+f] - l
^ l i m M l ------------------------ -- -------------- — ( z - 1

z-̂ ’ 1-Rz + eRez f z -1

— [Fp+fe+...+F1+fep]-i
M

1 -  R + eRe

) (4.19.1)

an input signal. This be-

Vn e N and consequently

(4.19.2)
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The last quantity (the value of limit i 2) may be identified also in diagram (4.14.3) as 

the final distance between each simulation path and x-axis.

As we can observe £2 * 0 > so there is a steady error in the system which may be 

corrected by using integral action (suggested also by Balzer (1982), Loades (1998)). 

Integral action is based on integrals (continuous time models) or on summations (dis-

crete time models) of the difference between the actual and the target value of the con-

trolled variables. In our model we shall consider the summation over consecutive years 

(from 1 up to n-f-1) of the output variable (accumulated surplus S) as the target value 

for S equals zero. So under proportional & integral action equation (4.11.3) will take 

the form

P .= C 2 (4-19'3)k=-oo

and then equation (4.11.12) which describes the transfer function of the system be-

comes

1 -  — [Fp+f 0zp+f +... + F1+f0pz1+f ]
G (z)=------M--------------------------------------------------------------------    (4.19.4)

1 -  Rz + ecRz1+f + eejgR ^ z f+k
k=l

As we observe in the denominator exists an infinite summation which equals to (since 

| z| < 1 ),

°° _ i+ f
(4.19.5)

t l  ! - z

Now if we calculate the ultimate state of the system (under integral action) using the 

transfer function of (4.19.4) (and with a step input signal) we obtain
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13 = lim Sn = limG(z)— (z- l )  = limzG(z) = 0
n-+® z-+l Z — 1 z-»l

The last limit equals zero because if we combine equations (4.19.4) and (4.19.5) then 

G(z) may be written in the form

We must stress that all the calculations above exists given that there is a finite 

limit for yn. In diagram (4.14.1) we observe that the process diverges although we have 

an input spike signal. That happens because the combination of the parameter values 

e,R,e produce roots pi,p2 with absolute value greater than the unity.

4.20 Analysis of the special case (p=2,f=l, 0=1) using a time varying format for (R„) 

and premium delays

In this section, we shall consider the special case where p=2, f=l and 0=1 (see 

section (4.13)) with two modifications. The first one will relax the restriction of the 

interest factor (Rn) from a constant value (R) to the most general where (Rn) may have 

any pattern of values whether deterministic or even stochastic. The second modification 

affects the premium. We assume that there is a certain delay in the premium collection 

procedure.

That may happen in practice as all the policies provide a "grace period" of one 

month (or even more) to the policy holders in order to pay the required premium. So 

premiums can not earn the same investment rate as the reserve. Assuming delay for 

the premium collection period where 0<£'< 1 , also define £=!-£' and use the simple in-

So =limG(z)=limz(z-l)H(z) = 0
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terest model for the accumulation of premiums for the time periods which are less than 

the unity we can proceed with the new version of our problem.

Under the conditions described above equations (4.11.8) and (4.11.6) will be 

written respectively as (assuming also that M' = F2 +F3):

s .  = R„S„_| + ̂ [ f 3 -Cn_3 +F 2 •Cn_2]-ee^Rn •Sn_2 -C„

P" = ^ F3C"-3+F2C"-
-sS n-2

(4.20.1)

(4.20.2)

The system of equations (4.20.1) & (4.20.2) has a linear time-varying format and may 

be transformed in the standard vector format of a dynamic system (see section (2 .6))

C„

e R 2, h „ =
n—1 .

yn-\

yn-2

"̂n-3

s R ' ,  y  = P „ e R

Ai ER “ , B , e E " ,  Ce R “ , D e R 1’ 4 

(where R  is the field of the real numbers)

I X  -es^R nl , „ ÇR»F2 ÇR„F3IIc< llCQ M' M'
_ 1 0

—
i

oooo__
1

C = [0 -e ]  , D= 0 0 

Hence the dynamic system is written

F2 F3

M'e M'e

—n in -1 ~*~®n Un

y n - C  x n_, + D  un

(4.20.3)

(4.20.4)

Now, we shall develop shortly the solution of the time-varying dynamic system.
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• n=l ,  x, = A, -x0 +Bt -Uj

• n=2, X2 = A2 • Xj + B2 ■ u2 =

= A2[A, x 0 +B1u,]+B2u2 =

= A2A, x 0 + A2Bj u , +B2u 2

• n=3, \ 3 = A3x 2 +B 3U3 = ...=

= A3A2A ,x 0 + A3A2B,u , + A3B2u 2 +B 3U3

It is easily proved by mathematical induction that

n
* n  = ^ n - X 0 + I V k +l ,nBkU k

k=l

n=2,3,4,...

where
•^k ’ ̂ k+1 ’ "• ’

I

k < n 

k > n

(4.20.5)

(Especially when k=T then j^ n =s/n).

The is called the transition matrix and is very important for the behavior of 

the dynamic system. The solution of the second equation (4.20.4) is easily obtained by 

substitution of (4.20.5) into it.

y, = Cx0 +Du,

n-1
yn = C ^ n_,x0 + Z ^+ i.n -iBkuk +Dun n=2,3,4,...

k=l

Closing the section we shall try to analyze the transition matrix s/B 

some comments about its behaviour.

(4.20.6)

(4.20.7)

and make
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The calculation of the matrix is not standard.

Of course we have always the ability of the calculation of using a computer 

but in that case we do not have the deep insight into the problem which may be avail-

able by the analytical formula.

The analytical calculation of requires the full knowledge of the sequence of 

the accumulation factors {Rn: n=l,2,3,...}. A possible pattern for Rn may follow the 

"investment cycle" i.e. A sine wave pattern with a certain period where the Rn takes 

discrete constant values on the sine wave graph e.g. period of the sine wave = 8 years.

n 1 2 3 4 5 6 7 8 9 10

R„ 4 % 4 . 2 5 % 4 . 5 % 4 . 2 5 % 4 % 3 .7 5 % 3 .5 % 3 .7 5 % 4 % 4 . 2 5 %

Under the pattern described above, K  depends on the product j ^ = A i -A2*...-A8. 

Consequently the investigation of the behavior of the solution of the dynamic system 

requires the determination of the eigenvalues of .

Another possible pattern for {Rn: n=l,2,...} is the following

_ JR, n = 2k +1 k = 0,1,2,... 
n “ [R2 n = 2(k + 1) k = 0,1,2,...

i.e. Rn fluctuates between Ri and R2 under a strict format (Ri for odd numbers and R2 

for even numbers).

Then we obtain

2 if n = 2k + l 

if n = 2(k + l)

k = 0,1,2,... 

k = 0,1,2,...

where
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R 2 -ee R, -ee R ,R ,-e e  -eeR 2

1 0 _ 1 0 _ 1 * 1 n> CO i__
_

Now, in order to obtain the analytical solution of the system we should obtain the 

eigenvalues of . Actually, in the real world the patterns of Rn may include a stochas-

tic component which makes the analytical approach of the solution more difficult.

In the next section, we shall discuss the concept of stability and produce general 

result even for the cases where Rn is stochastic.

4.21 Stability analysis of the time-varying format of the model

In this section we shall try to answer the question of the stability for the time- 

varying format of the system and consequently answer the same question for the special 

case described in section (4.20).

First of all, we shall find the equilibrium points xe- According to definition 

(2.15.1)

xe equilibrium point <=> xn = xe Vn > 0 given x0 = xe and un = 0 Vn > 0 

or equivalently that xe IS the solution of the homogeneous system (4.21.1) with initial 

condition x0 = xe

Vn > 0 (4.21.1)

This equation has always the trivial solution xe = Q- Hence, the time-varying system has 

at least the zero vector as equilibrium point. We shall not investigate for any other 

equilibrium point as we shall prove that zero is an asymptotic stable point and 

consequently is the only stable point.

Before examining the asymptotic stability we shall define the norm functions for 

the vector and matrix spaces as follows:
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Let A e R ”  then 111A| I =p(A) where is the maximum absolute value of the ei-

genvalues of matrix A. We also define a compatible norm for the vector space R " say 

|x||. (Compatible means, ||A -x ||< |||A |||-||x ||).

Now, we may derive the eigenvalues of the An matrices as follows

|pnI - A n| = 0 «
p n - R n e e Ç R n 

- 1  P n

= 0 «

P n -R nPn+ef̂ Rn = 0 »

P n  =
R ,,± V R L ‘teÇR» (4.21.2)

Hence A n||| =  p ( A n )  =

Rn + > ; - 4 e EÇRn R
e <

Ve^ R n £ >

4eÇ
K
4eÇ

(4.21.3)

(if £ > —2- then we have complex roots and Ip | = Vee for any pn).
4eÇ

Now, considering the definition (2.15.2) about the Liapunov stable point we have 

the equivalent condition. xe is Liapunov stable point <=> 3K >0: I Lad I - R Vn>0 (i.e.

the transition matrix is bounded for any n>0).

N l A i -A j - . - A J
N |  " 11 l A n

=  p ( A 1 ) ’ p ( A 2 ’ P ( A n )  —  [P n .m a x  ] "

w h e r e  Pn .m ax = max{p(Ak) , k = l,2,...,n} and pmax = max{p(Ak) , k = 1,2,...}
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and as we can see from equation (4.21.2) the pmax is obtained for the maximum Rn 

Hence if we consider Rmax = max{Rn =1,2,...,} (if any) we obtain

P  max

R max max 4 e S C R max ^  ^  R m a x

2

Vee,£Rr e >

4e^
D
l v max

4e^

(4.21.4)

Now if we choose £ such that pmax<l then

|K |||^ [P n ,max]n ^(Pmax)" > 0

so the transition matrix is bounded and consequently xe = 0 is Liapunov stable. 

Furthermore we may show that 0 is an asymptotic stable point and consequently the 

only equilibrium point. We must show that

lim||xn -  0|| = 0
n—>co "

Again we choose £ such that p m a x < l  then

i'JS 11̂ 41=IK - x o I s Hm H K111 • 11 |x 01

1—01’hm (pm )" =||x0||-0 = 0
11 11 n — " 11

Hence 0 is asymptotic stable.

Now, the investigation of e in order to obtain an asymptotic stable system is re-

stricted to the question of finding an e such that pmax<l. From equation (4.21.4) we ob-

tain the system of inequalities

R m a x + V R m a x - 4 e e 5 R max ^  

2

VeS^Rmax < 1

(4.21.5)

(4.21.6)
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Solving the system we obtain

R max - 1

e^Rr
< £ <

e^R„
(4.21.7)

Closing this section we shall summarize our results under the following com-

ments.

Comments

Consider Q as the set where Rn takes its values (under a deterministic or a sto-

chastic model) then:

(1) If Q is bounded then our system is Liapunov stable.

(2) If Q is bounded, we may choose s as

Rb-1 1
— ------- < £ < ------------
e^Rb e^Rb

(where Rb is the lower upper bound of Q)

and force the system to be asymptotic stable to zero.

(3) If D. is not bounded then system is unstable.

Numerical Example

We shall consider now, a numerical example to illustrate in a better way the 

ideas expressed in this section. For this reason we assume the following:

(1) Premium delay (Ç') : 0 (No delay, so Ç=l)

(2) Expense factor (e) : 80%

(3) Inflation factor (F) : 1.04

(4) Input signal : Step (0,1,1,...)
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(5) Interest factor (Rn) : Uniform in [108, 1.10] i.e. the interest factor follows

a stochastic time varying pattern for all the years n=l,2,3,...

From the last assumption we obtain that

Rb= 1.10

So the bounds for (e) the feedback factor using inequality (4.21.7) in order to produce a 

stable system are defined below i.e.

0.136 < £ <  1.136 (4.21.8)

In the next table (4.21.1) and the respective diagram (4.21.1) we can observe that the 

first path corresponding to e=5% diverges while all the others (making true the expres-

sion (4.21.8)) converge to certain values.

Other numerical examples may be also considered using different patterns for the 

interest factor (Rn). A lognormal distribution would be a natural choice for the (Rn).
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T A B L E  (4 .2 1 .1  )

Input Signal Step (0,1,1,1,1,1,...)

Expense (e) 80%
Interest (R n ) Uniform [1,08 1,10]
Initiation (F) 1,04

( M ) 2,206

0) 00 (Hi) (iv)
Feedback (e) 5% 30% 80% 100%

Interest Accumulated Accumulated Accumulated Accumulated
Time Factor (R n) Claims surplus surplus surplus surplus

0 0 0 0,0000 0,0000 0,0000 0,0000
1 1,0993 1 - 1,0000 - 1,0000 - 1,0000 - 1,0000
2 1,0843 1 - 2,0843 - 2,0843 - 2,0843 - 2,0843
3 1,0867 1 - 2,6888 - 2,4714 - 2,0368 - 1,8629
4 1,0840 1 - 2,7403 - 2,0528 - 0,6779 - 0,1279
5 1,0984 1 - 2,7934 - 1,5049 0,7856 1,5948
6 1,0877 1 - 2,8314 - 1,0133 1,4140 1,9336
7 1,0865 1 - 2,8684 - 0,6220 1,0766 0,8012
8 1,0970 1 - 2,9254 - 0,3186 0,2852 - 0,7211
9 1,0936 1 - 2,9800 - 0,0916 - 0,3480 - 1,3959
10 1,0884 1 - 3,0278 0,0720 - 0,4890 - 0,8030
11 1,0969 1 - 3,0935 0,1999 - 0,1952 0,4410
12 1,0838 1 - 3,1376 0,2818 0,2114 1,2579
13 1,0816 1 - 3,1782 0,3344 0,4454 1,0606
14 1,0970 1 - 3,2518 0,3897 0,4371 0,1565
15 1,0937 1 - 3,3238 0,4321 0,2601 - 0,6631
16 1,0825 1 - 3,3748 0,4491 0,0612 - 0,7709
17 1,0837 1 - 3,4296 0,4580 - 0,0303 - 0,1767
18 1,0818 1 - 3,4822 0,4607 0,0066 0,5577
19 1,0916 1 - 3,5599 0,4745 0,1200 0,8548
20 1,0926 1 - 3,6448 0,4903 0,2191 0,5391
21 1,0804 1 - 3,7037 0,4871 0,2342 - 0,0759
22 1,0877 1 - 3,7822 0,4895 0,1899 - 0,4640
23 1,1000 1 - 3,8973 0,5098 0,1439 - 0,3436
24 1,0801 1 - 3,9659 0,5038 0,1043 0,1099
25 1,0886 1 - 4,0590 0,5039 0,1018 0,5075
26 1,0810 1 - 4,1352 0,4949 0,1189 0,5345
27 1,0907 1 - 4,2424 0,4986 0,1493 0,2308
28 1,0839 1 - 4,3351 0,4955 0,1632 - 0,1294
29 1,0857 1 - 4,4365 0,4937 0,1591 - 0,2553
30 1,0979 1 - 4,5825 0,5094 0,1579 - 0,0688
31 1,0825 1 - 4,6859 0,5056 0,1432 0,2291
32 1,0919 1 - 4,8245 0,5105 0,1379 0,4021
33 1,0940 1 - 4,9788 0,5197 0,1446 0,3334
34 1,0965 1 - 5,1513 0,5320 0,1583 0,1093
35 1,0855 1 - 5,2902 0,5277 0,1569 - 0,0853
36 1,0941 1 - 5,4686 0,5318 0,1550 - 0,0949
37 1,0853 1 - 5,6200 0,5250 0,1445 0,0564
38 1,0860 1 - 5,7798 0,5175 0,1352 0,2297
39 1,0907 1 - 5,9684 0,5178 0,1374 0,2921
40 1,0863 1 - 6,1458 0,5138 0,1415 0,2039
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Diagram (4.21.1)
Stochastic pattern for the (R n) Interest Factor
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4.22 A measuring element for the entropy of an insurance system

The concept described by the Greek word «Entropy» (or in the Greek version 

«Entropia») is widely used for all physical systems. The measurement of this quantity is 

quite important for every system as it determines the order («taxis») or the respective 

chaos in it. It also provides the potential ability of the system to return back to its initial 

state.

Clearly from the last definition, as the delay factor increases the entropy of the 

system increases too, because the root loci which lies within the unit circle are reduced 

i.e. there are less potential choices for (e) feedback factor in order to have a stable sys-

tem. It is also clear that if f  is greater than the critical value of f» then the system en-

tropy goes to infinity as there is no chance to return back to the initial state.

Diagrammatically (with respect to the (f) delay factor) we may think the graph of 

entropy starting from zero (when f=0) and going quickly to infinity (when f=f») and 

remaining thereafter at this state.

Since entropy is analogous to the area of root loci lying in the unit circle we may 

have the following measuring elements (for the entropy).

(1) Angle of the first asymptote with x-axis

Angle = —
1 + f

The larger the angle the less entropy of the system. When the angle reduces then

the root loci quickly goes out of the unit circle and entropy increases.

(b) The breakaway point of the root loci with x-axis is equal to

R f
1 + f
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Obviously the greater R the greater the value for the breakaway point and conse-

quently the less this root loci-within the unit circle. In this case we obtain large 

values for the entropy of the system.

(c) A more sophisticated measuring element may be described as

Entropy = —
V

when \\i corresponds to the length of the interval [\|/i,v|/2] where [v|fi,\|/2]c=[0,l] 

and for any value of (s) in the [\|/i,v|/2] the respective roots (solution of the sys-

tem) lie within the unit circle.

The left boundary of the interval [v|/i,v|/2] is determined from the equation 

f( l)= ll+f - R  lf +esR = 0

u  R - ]Hence e = q/, = ------
eR

The calculation of xji2 requires numerical approximations.

Finally after all this analysis we may say that great concern should be paid when 

designing a system in order to obtain less entropy.

4.23 Conclusions

In this final section, closing Chapter 4, we shall briefly review the basic model-

ling features and the important results.

Our problem may well be described with the title of this chapter, i.e. «Insurance 

Pricing».

As we have stated in the introductory section the basic model is similar with that 

developed by Balzer & Benjamin (1980). Actually it should be considered as a full gen-
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eralization with respect to the delay factor (f) which is left as a free control parameter 

into the model.

The model is also similar to that of Vandebroek & Dhaene (1990) who investi-

gate the optimal premium control while we are focusing on stability and optimal design 

of the parameters of the system (and especially the feedback factor). The most impor-

tant result is the existence of the critical value for (f)

If we select f > f^ then the process will diverge to infinity, independently of the choice 

of feedback factor (e).

As we have also stated, fM equals to the perpetuity in arrears i.e.

Considering some values of j% we obtain respectively the values of fM i.e.

j% 0% 5% 10% 20% 25% 50% 100%

Co 00 20 10 5 4 2 1

For an extra large value of (R) as R=100% we obtain f x - \  which means that the 

system will always diverge (of course except the case where f=0). The divergency of the 

process independently of the choice of (e) means that the information included in the 

surplus variable with delay (f) (i.e. Sn-f) is needless to the system. Hence, large values 

of (R) (or equivalently j%) deteriorate quickly (in f» time units) the information carried 

by the surplus variable. At the other extreme where j=0% (so R=l) we obtain foo=0° i.e. 

we may always find a value of (s) in order to stabilize the system.
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Another interesting result is the optimal design for parameters involved when 

f=l or f=2 (sections (4.17), (4.18) i.e. The fastest response of the output (return back to 

initial position) is obtained:

for f=l when and

for f=2 when s = •4R2
27e

The second direction of full generalization is the introduction of the time-varying 

pattern for interest factor (R) (whether deterministic or stochastic). The basic result is 

connected with the bound of the D. set (where Q is the set of possible values of Rn,

n=l,2,...).

Finally, the third generalization is the incorporation of a more advanced formula 

as a claim predictor using an inflation factor F, a weighting factor 0 and averaging over 

(p) years. (Where (p) is another control parameter.) At this point, we recall a result 

from simulations in section (4.14) for the random input signal where a value s=50% or 

60% appears to be the optimal ones (with respect to the smaller variance of the output).
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Chapter 5

Application to M ultinational Pooling Arrangements

5.1 Introduction

In the real world, there are many types of insurance agreements operating 

amongst two, three or more insurance companies. Actually these are types of reinsur-

ance agreements, which determine the way of interaction amongst the surplus funds of 

the companies.

In this chapter we shall focus on a special reinsurance agreement known as 

"multinational pooling". The concept of pooling is one of the efficient tools for han-

dling large employee benefit schemes of international companies.

Furthermore, we shall design a model of pooling on a special quota share basis 

with respect to the surplus fund of each company using control techniques and we shall 

investigate the potential dynamic behavior of the system.

We shall present the problem in the most general form (i.e. assuming (m) com-

panies and the existence of a delay factor (f)) but provide analysis for three special 

cases i.e.

1st: m not fixed with f=l

2nd: m=2 with f  not fixed

3 rd: m=2 with f=l
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The proposed problem also deals partially with the question of the optimal rein-

surance as apppears in the relevant literature (section (5.19)). The literature tackles the 

problem from a static point of view while our approach concentrates on the dynamics of 

the system.

Before we go on with the typical formulation of the equations we shall briefly 

discuss the concept of pooling and the various multinational insurance networks.

5.2 Description of Multinational Insurance Networks

The international industrial giants of the last decades or the other large and me-

dium sized corporations operating in many countries all over the world have created a 

special insurance market with some specific needs.

Operating on a centralized or decentralized basis the parent corporations have 

demanded some kind of control on their subsidiaries. The insurance companies have 

quickly received the message and gave their answer through the construction of Multi-

national Insurance Networks.

These networks have initially been established through special reinsurance 

agreements between affiliated insurance companies. Nowdays, at the end of the century, 

the traditional networks have been collapsed and gave their position to the modern net-

works which are fully controlled (and owned) by the insurance giants of the world mar-

ket.

The basic concept and perhaps the most important product which is being sold 

through these networks is the "pooling arrangement". Generally speaking, pooling is a 

special kind of self insurance. More precisely we may say that: Pooling is the combina-

tion of risks underlying the employee benefit schemes in two or more countries of a 

certain corporation.
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A formal way to establish a pooling arrangement is the following:

• A large multinational corporation (e.g. IBM computer company) goes to the 

Central Office of the network asking for insurance coverage for their employees 

around the world.

• The Central Office informs the insurance companies of the network and the par-

ent multinational corporation informs its local subsidiaries for the potential co-

operation.

• Each insurance company (coordinated by the Central Office) establishes a group 

policy with each subsidiary using the local rates and insurance practice.

• The problem which then arises is the coordination of the network i.e. Establish a 

general procedure for

(a) Premium rating by sharing the international claim experience of each com-

pany in the pool.

(b) The potential interaction of the surpluses amongst the insurance companies 

participating in this agreement.

(The mathematical formulation of the problem will be developed in the next sec-

tion).

The basic advantages of the "pooling" concept and the respective motivation are listed 

below:

• Cost savings: The large volume of business will result lower expense margins 

and perhaps lower security loadings as the random fluctuation of the claim expe-

rience will be restricted down to the minimum levels. Lower expenses may be re-

alized because of minor efforts (from insurer's side) with respect to acquisition 

costs, underwriting and claim management.
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• Extra Cost Saving: The pooling procedure (i.e. the combination of all risks in 

different countries) will normally produce some extra profit as the parent corpo-

ration can benefit from the good claim experience on a larger scale.

• Flexible Scheme: Expatriate problems or other complications arising from the 

internal structure of the corporation may be solved in the most efficient manner.

• International Control: As a last benefit (and perhaps the most important) we 

should put the potential of international control given to the parent corporation. 

This may result the right decision-making targeting the ideal risk management.

A full description of the multinational insurance networks plus the description of 

the additional advantages of multinational pooling is provided in the manual of William 

M. Mercer International (1988).

5.3 Formulation of the control problem for the general model of (m) companies 

with (f) as a delay factor

As we have stated in the introductory section we shall examine a special quota 

share agreement (with respect to the surplus funds) of a pooling arrangement with the 

following characteristics.

(a) There are (m) insurance companies which participate in the multinational net-

work and

(b) Each company passes to the other block of (m-1) companies a pre-determined 

percentage of its accumulated surplus at every time n (n=l,2,3,...).

In the most general case, the predetermined percentage which each company 

passes to the other is not equally divided. So we have to define a matrix A de-

scribed as the "harmonization matrix" which governs the surplus exchange. So,
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A - tx .J e R

where X¡j is the predetermined percentage of surplus which the i-th company 

passes to j-th company.

Obviously, each row adds to unity i.e.

m

y 1 Xj¡ -1  for each i=l,2,...,m
j = i

and the element of the first main diagonal Xü i=l,2,...,m  determines the retained 

surplus by each company.

(c) Each company has its own operational parameter values for expense, feedback, 

accumulation and inflation factors (all of them will be defined properly later in 

this section).

Definition of the problem

The existing problem may be described as follows: Design, check and establish 

the best (i.e. stable, controllable, observable and consequently optimal process) strategy 

for premium rating (control feedback, expenses etc.) and surplus exchange (control A 

matrix) for a combined system of group policies covered under (m) different insurance 

companies which operate under a special pooling reinsurance agreement.

The development of the model will be based on the model described in Chapter 4 

(see the description of the problem section (4.2)). The problem there, refers to a non-

life portfolio but it may also adequately describe a situation of a group profit sharing 

policy. The structure of the current model is a generalization of the model in chapter 4 

(which may be treated as a subsystem in the new format of the model).

177



Now, the pooling arrangement demands a certain combination, multiplicating the 

parameters of the model. The interesting new problem which now appears is the inter-

action phenomenon between the surpluses of the (m) companies. Consequently, we 

have to control not only the profit sharing factors denoted by Sj’s but also the interac-

tion denoted with the harmonization matrix A. The control action on the A matrix will 

result the desired harmonization between the (m) companies.

As a next step we shall define all the required symbols using two subscripts 

where needed (the first indicating the subsystem and the second indicating the time).

Parameters & Notation

,̂n Total amount of annual incurred claims (for the £-ih company in the n-th 

year).

Total gross (including expenses) premium paid at the end (or equivalently

there is no investment income from the premiums), of year for the ¿-th com-

pany l  = 1,2,...,m in the n-th year. The assumption that the premium is pai,nd 

at the end of the year is also reasonable for this model due to the normal 

network's practise to credit no investment income on premium payments. 

Expense factor [(l-ei)Pi,n margin for expenses] for the ^-th company. So we

have a vector of m-dimension for the expense factor, say e = [eje2...em]. 

Annual surplus at the end of the n-th year for the £ -th company

L =e P -CH . n  C1 r l,n v-l,n (5.3.1)

Ri Accumulation factor ( R f =l  + ĵ  rate of return) for the f-th  company. The 

respective vector for accumulation factor is R = [R,R2...Rm]
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't,n

i,j=l,2,...,m . Constitutes the harmonization matrix A (as defined earlier). 

Accumulated surplus at the end of the n-th year for the £ -th company.

S £,n - R 1 • l ^ S l,n-l + - -  +  ^ 2 iS 2,„-l +  -  +  ^mlS m,n-l ] + L f,n ’ f  =  1,2,...m (5.3.2)

Weighting factor of the f - t h  company. (As described in chapter 4) 

£ = l,2,...,m.

Inflation factor ( Ff =l+inflation rate) of the 1-th company. This factor indi-

cates a certain internal growth of the total annual claims which may be at-

tributable to inflation or to business growth. The respective vector for infla-

tion is f  = [ f ]f 2...f J .

Estimate of the total expected annual incurred claims in year n (at the begin-

ning of year n i.e. at time n-1). Assuming a delay of information of (f) years 

and averaging over p consecutive years we obtain

+ -+ F ;*re?c, ) f = l,2,...,m (5.3.3)

where M, = £  F,p+f+,-k -(
k=l

(5.3.4)

Profit sharing factor (feedback factor) for the £ -th company which includes

both the local and international premium repayments and determines the per-

centage of accumulated surplus repaid. The respective vector is

§ = [ 8182—e m]-

Using all the notation above we may define the control law of our system 

which determines the premiums for subsequent years i.e.
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'  s,,n ■ C .,n

C,,n_,

S , ,n - f ^ l . n - f - p

S 2,n C 2,„

S 2,n- , ' V c 2,n-,

^ 2 ,n - f

g  R m<1+f), y  =
_ n

P 2,„
G R m , u n =

^ 2 ,n - f - p

•
_P m,n_

Sm,„ ^ m ,n

C m>n—1

c f

j^m(l+f+p)

A =

A„ A i2 ' -  Alm

A2i A22 A 2m e J^mO+fM'+f)

Am] Am2 ••• Amm-

matrix of matrices A ,^ l^d+fHi+f) where

Rj î. 0 0 ••• 0 -e.s, RjX.ji 0 • • 0*

1 0 0 ••• 0 0

A,,=
0 1 0 ••• 0 0

’ Ajj
0*j)

0 0 • • 0

0 0 0 ••• 0 0
0 0 0 ••• 1 0 0 0 • • °.
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B,2 -  Blm "

B =
B21 B22 " B2m e  J^m(l+f><ni(l+f+p)

Bml Bm2 •” Bmm_

i.e. B is a matrix of matrices e R*l+f̂ 1+f+p) where

- 1 0 ■ 0
F1+fepi i Fp+fe

M, M,

B„ -
0 0 ••• 0 0 0

0 0 ••• 0 0 0

c  = [c ,c 2 • C m |e J^mxm(l+f)

i.e. C is a matrix of matrices C¡ e R mx(l+f) where

'0 0  ••• 0 0  '

0 0  ••• 0 0

0 0  ••• 0 0

0 0 0 - e . <— i

0 0  ••• 0 0

0 0  ••• 0 0  _

[D,Dr ..D„ ]e R mxm(l+f+p)

i.e. D is a matrix of matrices D¡ e ]R_mx(|+f+p) where
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0 0 0 0

0 0 0 0

0

D, =
0 0

0 0 0
Fil+f0P

0
Fip+f0i <—i-th ro w

0 0
M,e,

0

0 0 0 0

After all and having left the problem in the most general form we have managed to cre-

ate a complicated mathematical system. Of course the presentation of the model in the 

vector format reduces the complexity of many parameters and the respective subscripts 

focusing on the structure of matrices A,B,C,D. Consequently, we may conclude that the 

modern control theory is the only solution path for our problem. In the next sections we 

shall see some special cases of the general model. In order to facilitate our calculations 

we shall remove the weighting factor 0 (equating it to unity) and restrict the averaging 

period p down to two years (p=2). The specific simplification does not affect the gener-

ality of our approach as the parameters 0,p do not affect the fundamental matrix A 

which governs the solution of the system (and the respective stability).

5.4 Special case of the general model (Model I) for (m) companies and delay

As a first step, in order to investigate the complicated form of our problem we 

shall produce a special model, called Model I, by the restriction of the delay factor (f) 

to a specific value i.e. f=l.

The restriction above will reduce the complexity of the whole problem by re-

ducing the rank of the vectors and matrices of section (5.3).

factor f= l
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So substituting f=l into the system of equations (5.3.6) the fundamental matrices

A,B,C,D and the input-state-output vectors un,xn,y will take the following format:

Cu
C,n_,

S »,n

Jl,n—1

2̂,n
>2,n-l g  R 2m , y =

P»,„
L 2,n

L m,n

e R m , u„ =

M,n-2
C , , n-3

c 2,n
C2>n_,
2̂,11-2
2̂,n-3

g R 4m

m ,n-l C
Cm ,n -l

'/m,n-2

''m ,n-3

and A e R 2mx2m,B e R 2mx4ra C g  R mx2m ,D g  R mx4m

R,X,n - e ls l R A 21 0 Rl^31 0 ••• R,^ni 1
1 0 0 0 0 0 •• 0 1

R 2̂ 12 0 R 2X,22 — e2e2 R 2X,31 0 •• R2̂ -m2
0 0 1 0 0 0 0 i

Rm l̂m 0 Rji^lni 0 Rm^3m 0 • RnA™ - e
0 0 0 0 0 0 1 1

-1 0 r i
m ;

r l
m ;

0 0 0 0 •• • 0 0 0 0

0 0 0 0 0 0 0
F,2

0 •• 
F3

■• 0 0 0 0

0 0 0 0 -1 0 A 2 

M'
x  2  

M 2
•• 0 0 0 0

0 0 0 0 0 0 0 0 ••• 0 0 0 0

F2 F3m m0 0 0 0 0 0 0 0 • 1 o 1 m

M'm
A m

0 0 0 0 0 0 0 0 • • • 0  0 0 0
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••• 0 0
••• 0 0c =

D =

-e , 0 0
0 0 -8

0 0 0

F20 1

0 — 8 „

MJe,

0 0 0

0 0 0

F, 0 0 0 0
M'.e,

F2 F30 0 0 x 2 A 2
M'2e2 M2e2

0 0 0 0

0 0 0

0 0 0

V 2
0 0

0

0

M' e M' em m  Am

where M', = F,2 + F3

Before going further, we shall discuss a little more matrix A which is the most impor-

tant element of the dynamic system. Actually we shall rewrite matrix A in two other 

forms.

A = R(r) • A(0k) + E and A = R(r) • A(,ts) + 1, 

where the superscript (ts) stands for transpose matrix.

R, 0 0 0 • • 0 0

0 0 0 0 • • 0 0

R<E)=[r,j]=
0 0 r 2 0 • • 0 0

0 0 0 0 • • Rm 0

0 0 0 0 • • 0 0

0 , i ^ j or i

r^ = R ,+, . i  = j
= j =
= 2k

2k
- 1 ,

, k = l,2,...,m 
k = 1,2,.. .,m

2

so actually



•̂ o

A,,, 0 ^12 0 A.,3 0  •• x ln 0

0 0 0 0 0 0 • 0 0

X,21 0 a ,22 0 ^ 2 3 0 • ^ 2m 0

0 0 0 0 0 0  •• • 0 0

K ,
0 0 A, •.m 5 0  •• ^mm 0

0 0 0 0 0 0  •• • 0 0

= [ ^ ] e R 2mx2m

and is the transponse matrix of Ao..

As we observe Ao is obtained from A matrix adding m-zero rows and m-zero columns. 

The A] matrix is obtained from Ao matrix modifying some of the elements of the diago-

n a l which lies below the first main diagonial i.e.

A, =[^'1JJ e R 2mx2m

and

e -E1 1
2 2 

R;
, j = l + i = 2 k , k = l,2,...,m

A.0. , any other case

E =

0

1

0

0

e.e, 0 0 •• 0 0

0 0 0 •• 0 0

0 0 - e 2s2 •• 0 0

0 1 0 •• 0 0

0 0 0 •• 0 ~ emem

0 0 0 •• 1 0

, J^2m x2m

and finally matrix f  is the same with E without the diagonial with - e^ i (i.e. only the 

one secondary diagonial non zero).
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5.5 General Solution (Matrix representation) o f  Model I

Again, having obtained the standard format of the dynamic system we may use 

the standard solution method described in section (2.8). Hence,

n-1

x„ = An -x0 + X  Ak' B ‘Mn-k-i > n=l,2,...
k=0

yn = CAn“’x0 +CA"~2Bu 0 + ... + CBun_2 +Dun , n=l,2,...

Our basic concern is to examine the power series of A, (An, n=0,l,2,...) and ob-

tain the diagonal (or Jordan) form of A calculating the eigenvalues and the respective 

eigenvectors.

p eigenvalue of A <=> (pm(p) = |pI-A | = 0

p —RjX.,1 e ,£ , r , x ,2i 0  • •• —R.X. .1 ml 0

- 1 P 0 0  • 0 0

— R 2^i2 0 p — R 2^22 e 2s 2 •• —R 2A. ? 0

0 0 - 1 P ’ 0 0

- R Lm 1m 0 0  • •• p - R mL m• m mm e me

0 0 0 0  • - 1 P

The full analytical development of <pm(p) is very difficult. Here, we describe a 

set of recursive relationships which help us to calculate the required <pm(p)-

Firstly, we define the symbol Mil2 ; which represents the minor determinant

which arises from <pm(p) deleting the ii-th, i2-th,...,ik-th rows and columns. (Trivially 

M0=(pm(p)).
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Developing across the second row we obtain

<pm(p) = e r £i-Mi2+p-M2 l s,-Level

Mi2=e2£2-Mi234+P'Mi24
2nd-Level

M2=e2£2'M234+P'M24

Mi234=e3£3-Mi23456+P * M)2346

Ml24=e3£3‘Mi2456+P ‘ M[246

M234=e3£3'M23456+P ‘ M2346 3rd-Level

M24=e3£3'M2456+P * M246

We systematically develop the determinants across the first row (from the top) which 

has the elements of (-1 ) and p, and finally obtain a polynomial of (2 m)-degree i.e.

(Pm(p)= a 2mP2m + a 2m-.p2n" ‘ +... + a,p + ao 

As regards the coefficients of cpm(p) we may observe that generally

ak =f(e,,s,,X1J) , k=l , 2 ,...,2 m

From the form of cpm(p) and the development we have described before we may derive 

that

a2m— 1

(As all the terms containing p are lying on the diagonios of cpm(p) with no coefficient)

a o - e i e 2 . . .  e m 8 i 8 2 ...£m

(if we consider the first row of each development level described before, we can see 

that the constant term will be derived as a o = e i 8 i - e 2 £ 2 -.-- • em8m-Mi2...2m where 

Mi2...2m= l).
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The full determination of the roots of (pm(p)=0 (eigenvalues of A) requires nu-

merical methods. Hence, after calculating the eigenvalues and the respective eigenvec-

tors we may calculate the power series of An (and consequently the solution). Another 

approach for the calculation of An may use the analysis for matrix A of section (5.4).

5.6 Stability Analysis o f  Model I

In this section we shall examine the stability of the model I (see analysis of sec-

tion (2.15)).

First of all we must calculate the equilibrium points xe

xe equilibrium point <=> Axe = x e

As we can see,

det(A) =

R l ^ l l -e ,s , R,*2. 0 R l^ m l 0

1 0 0 0 0 0

R2X,]2 0 R 2̂ 22 — e2s2 R 2 ^m 2 0

0 0 1 0 0 0

R r a ^ lm 0 R m 2m 0 ••• R Im mm - e tn

0 0 0 0 1 0

(developing across the second row and then, across the first column we obtain)

det(A) = (-lX -e,£,)

R2X,22 e2S2 ■" 2̂̂ -m2 0

1 0

R I . m 0

0 0

0 0

R i -̂22

R m̂mni em£r

1 0
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So, there is a recursive relationship. If we define

<p(ei,e2,e3,e„1,ei,s2,e3,...,eI„)=det(A) 

then, det(A)=eiei(p(e2,e3,...,em,82,£3,...,8m)=

e ] £| £2£2(p(£3,... ̂ m;£3viEm)

e i 8 i e 28 2. . . e m- r 8 m.i  • <p(Cm?£m)

<p(em, e j  =
R X - e  em mm m m= emsm

Hence, det(A)=eie2-...-em-£i82-...-8m *0 (given that ej*0 and £¡*0 Vi)

and consequently the homogeneous system has only the zero solution which is the only

equilibrium point in the state space.

The Liapunov or asymptotic stability should be considered only at the zero point

0.

The examination of system’s stability is very difficult as we have not analytic 

formulae for all the coefficients of the characteristics polynomial and consequently for 

the eigenvalues of matrix A.

The only possible action for the full investigation of the system’s stability is the 

determination of the eigenvalues of A with numerical methods for different sets of the 

parameter values and then to see whether the eigenvalues lie in the unit circle.

Before starting this hard work, we may apply an easy criterion for instability 

which is easily derived from the analytic form of the first and last coefficients ao and 

a2m of the cpm(p).
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Controllability

We have to examine the rank of 38 matrix and prove that rank ^=2m  for com-

plete controllability of the system (see theorem (2.13.1) i.e.

rank^? = rank[B:AB:A2B:---:A2m_1Bj = 2m

As we can see 38 e R 2mx8m , so there is a lot of calculation work. We shall avoid it, us-

ing a trick (having the B matrix and calculating only the AB product).

Matrix ^ i s  written [b1b2...b4mb4m+1...bgmb8m+1...b8m2]. The first 4m vectors belong 

to matrix B and as we can see the bp b5,b9,...,b4m_3 are linearly independent (i.e. m vec-

tors). We should find another m linear independent vectors in order to fulfill the re-

quirement of 2m.

Let us calculate the product AB.

R i X , n 0
F2 F3

—L - R j X n
m ; 1 11

R ^ 2 , 0
F2

2 R , ^ 2 l
m ;  1 21

F3
2 R , X

m ;  1

- 1 0
F,2 f ,3

0 0 0 0

A B  =

— R - 2 ^ 2 2 0

m ;

F2
- d - R 2 X , 2
m ; 2 12

m ;
F3

- ¡ - r 2 x , 2 
m ; 2 12

— r 2 x 22 0
F2

2 r 2 x 22 
m ;  2 22

F3
2 R 2 X  

M ' 2

0 0 0 0 - 1 0
F22

m 2

f 23
m ;

and we can rewrite AB = [b4m+1b4m+2...b8m].

The m vectors b4m+1,b4m+5,...,b8m_3 are linearly independent and all the vectors

b|,b5,...,b4m_3,b4m+1,b4m+5,...,b8m_3 

are linearly independent.

Hence rank 38=2m and consequently the system is completely controllable.
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Observability

From theorem (2.14.1) we obtain that the system (A,B,C,D) is complete observ-

able if and only if

C

CA

rank = rank = 2 m

CA2m_1

where ^ e R 2m2x2m.

We shall use the same trick as for the controllability property. The ^m atrix  may 

be written in the form

V £m + l 5 2 m 2-m +l

IO £m +2
, CA2"1' 1 =

? 2 m 2-m +l
where C =

_cm _

ii<u

_ ? 2 m  _ ? 2 m 2 _

Again we observe that vectors are linear independent. We shall calculate

the product C-A.
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CA =

0 0 0  ••• 0

••
 

o — e 2

o
 

■■

o
 

••

0 0 0 - e

Obviously, cm+,,cm+2,...,c2in are linear independent and all of them c,,c2,...,c2ra are line-

arly independent and consequently

rank f t  = 2 m

Hence, the system is completely observable.

5.8 Optimal design fo r  the matrices o f  Model I

The optimal design for the parameter values involved in the problem is very in-

teresting but it is very difficult to have an analytical approach. In this section we shall 

try to describe a method which may provide the solution with the fastest response to 

different input signals. For this purpose we shall formalize the procedure.

Let s = (e,e,R,A) a choice for the parameter values and S* the whole set of

choices for s. Let ps = max{|p5,|,|p52|,...,|p52m| } be the maximum absolute value of the

eigenvalues of matrix A with respect to s. Actually ps is the radius of a circle with its 

center placed on zero which contains all the eigenvalues p s , i , P s , 2, - - - , p s ,2m-

As the solution of the system is a linear combination of the power series of the 

eigenvalues then the magnitude of the solution depends on the maximum absolute value 

of the eigenvalue of A (i.e. it depends on ps).

Hence, the fastest response is obtained for the choice s which minimizes the ps.

Let,

Po =min{ps :s e S ’ j
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We shall show that,

Po — 2"Veie 2 ■•••'emei82 (5.8.1)

As we have shown in section (5.5) the characteristic polynomial has the following form

(Pm(p) = a 2mP2m + a 2m-lP2m_l +... + a ,P + a0 

with a2m=l and ao=ei-...-em-si-...-em 

Consequently, using the argument of section (5.6)

P2"1 ^|ps,lHps,2| -- -|p..2m|= ei 

From the last inequality we obtain (5.8.1)

The minimization of the maximum root of cpm(p) is obtained in two cases.

1st case: When the cpm(p) has a real root with multiplicity equal to the degree of 

the polynomial (i.e. 2 m).

Then <Pm(p) = (p -P 0)2m (5.8.2)

where p0 = 2̂ e, •...•em -e,

Assuming there is the po we may expand the (5.8.2) and obtain

(5.8.3)

2m ^2 m^
k=0 V k  J

<pm(p)=(p-po)2m = Z  7  • ( -po)2m' k-pk (5.8.4)

then equating the respective coefficients

ak =
^2 m^

V k  J
( - P 0)2m’k, k=0,l, . . . ,2m (5.8.5)

we obtain a system of (2 m +l) equations which contain m2+3m (control) parameters, i.e. 

ei,...,em, £i,...,em, Ri,...,Rm, Xn,...,A.mm. Some of them may be fully (e vector and A ma-

trix) or partially (e and R vectors) controlled. Our aim should be the optimal selection
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of all the controlled parameters such that the system becomes solveable. In that case we 

may obtain a root (for the characteristic polynomial) with multiplicity 2 m.

2nd case: When the cpm(p) has roots (real or complex) which all lie on the circum-

ference of the circle with the origin at zero and radius p0 = 2̂ e, -e, .

i.e. Pj =p0-(cosGj -MsineJ j= l ,2 ,...,m

and the polynomial cpm(p) will have the form

<Pm(p) = l
2m ei •••••em -s,

Hence the second case may appears when

(5.8.6)

a2m-i= a 2m_2= ... = a2 = a 1=0 (5.8.7)

(i.e. all the coefficients except the very first and last one should be equal to zero).

Obviously, for large m the systems of equations becomes very complicated or 

there is not a choice of s resulting a root with multiplicity 2m. That’s why, we should 

be forced to follow a "trial and error" procedure with numerical methods with the fol-

lowing steps.

Step 1: Make an initial guess for the parameter values (which are controllable)

and obtain the choise si and the respective pS| (after solving the polyno-

mial cpm(p) with numerical methods).

Step 2: Compare the magnitude of pS| with the po (always p0 <pl) and then try to

change one by one the controllable parameters obtaining a choice S2 and 

Ps2-

Step 3: Compare p ,p and po and try to identify the effect of the change of each

parameter. Then, again a choose S3 and calculate pS].
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Of course we need a lot of simulation work with a computer and after (sp) steps 

decide whether

(a) ps may converge to po and so obtain a choice s* and ps. :|p 0 - p s.|< 5

(8 is the desired distance) continuing the simulation.

(b) ps. may not converge to po and so obtain the best choice s** of our simulaton

which gives the p such that 

Po - P s..| = min{|p0 -Ps„|:n = l,2,...,(sp)}

5.9 Special case o f  the general model (Model II) fo r  (m=2) companies 

and (f) delay factor

In this section, we shall provide another version (Model II) of our general model 

restricting the first parameter i.e. the number of participating companies m~2 while 

leaving as a free parameter the delay factor (f).

So again substituting in the system of equation (5.3.6) the value of m=2 we ob-

tain the input - state - output vectors (u n,x n,yn) respectively and the fundamental ma-

trices A,B,C,D.
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x „  =

° l ,n

S 2,n

^ 2 ,n -l

^ 2 ,n -f

:R 2(l+f), y„ =
‘ l,n

2,n
e R 2, un =

c,„

C l,n-l

^Un-f-l

^ l ,n - f - 2

c ,
;R 2.(3+f )

'2,n

'2 ,n -l

^ 2 ,n -2 - l

c
'- '2 ,n -f-2

and A e R 2(wWl+f), B e R 2(1+fW3+f)

C e R 2x2(1+f), D g  R 2x2(3+f)

Ri^n 0 0 • • 0 -e ,e , 11 R-1̂ 21 0 0 ... 0 0

l 0 0 • • 0 0 11 0 0 0 ... 0 0
0 1 0 • • 0 0

1111
0 0 0 ... 0 0

0 0 0 • • 0 0
1111 0 0 0 ... 0 0

0 0 0 • • 1 0 11 0 0 0 ... 0 0

R2X,i2 0 0 • • 0 0 11R-2̂ 22 0 0 ... 0 - e 2e2
0 0 0 • • 0 0 11 1 0 0 ... 0 0

0 0 0 • • 0 0
1111

0 1 0 ... 0 0

0 0 o • • 0 0

1111 0 0 0 ... 0 0

0 0 0 • • 0 0 11 0 0 0 ... 1 0

---
---

---
---

-1
1 o

0 
: o

g
L

n to

2
1-

^ o

o
-1  o •

F2 F3
• 0 2 2 

m ; m '2

O
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0 0 • • 0 - e ,

oo

• • 0 0

0 0 • • 0 0

oo

-• 0 — e 2_

F,2 F,3
! o 0 . . .  00 0 • • 0 1

m ;c ,

1
M ; e , i

i

0 0 • • 0 0 0 ! o 0 . . .  0

0

J L
M '2e2

0

F 2

5.10 General Solution o f  Model I I

Again having obtained the standard format of the dynamic system we may use 

the standard solution method described in section (2 .8) i.e. equations (2 .8 .1 ) and

(2 .8.2 ).

Similarly with the work of section (5.5), we should proceed with the calculation 

of the power series of A (An, n=l,2,...), so actually we have to obtain the eigenvalues 

and the respective eigenvectors of matrix A. Hence,

p eigenvalue of A <=> (p2(p) = |p l-A | = 0 or

p - R ^ i i 0  •• • 0 e,e, 1
1 ■ R . * 2 1 0  •• • 0 0  "

- 1 p  •• • 0 0 1
1
1

0 0  •• • 0 0

0 0 p 0

1
1
1
1 0 0  •• • 0 0

0 0  •• • - 1 p
1
1
L

0 0  •• • 0 0

- R 2A,12 0  •• • 0 0 1 PI
— r 2a .22 0  •• • 0 e2e2

0 0 • 0 0 1
1
1
I

- 1 0  •• • 0 0

0 0  •• • 0 0

1
1
1
1 0 0  •• • p 0

0 0  •• • 0 0
1
1 0 0  •• • - 1 p

The analytical development of q>2(p) is again difficult but we can find the final 

form if we follow a simple rule and a strict recursive procedure.
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Firstly, the simple rule: Always develop the major determinant (p2(p) or the mi-

nor ones (which are produced deleting rows and columns) across the (first) row or col-

umn which has the greatest number of zero elements.

Secondly we shall describe the recursive procedure with the following steps.

Step 1: Develop the q>2(p) across the second row which has only two non zero 

elements the -1  and p and so,

<P2(p )= (-l)-(-l)H ?  + P -'*',2 (5.10.1)

where E2 is the minor determinant of cp2(p) which is produced, deleting the 1st column 

and the 2 nd row of q>2(p) and

T 2 is the minor determinant of q>2(p) which is produced, deleting the 2 nd column 

and the 2 nd row of (p2(p)-

[The (2) superscript of Si and *¥] is referred to <P2(p)]

Step 2: Develop the minor determinant E2 across the first column (which has 

only one non-zero element the -1). So,

Hi = (-!)■ (-l)-3j (5.10.2)

Step 3: Continue to develop the

- M - l X - O s t ,  1=2,3..... f-1 (5.10.3)

where E, (i=2,3,...,f) is the minor determinant of Si_] which is produced, deleting the 

1st column and 2nd row of E, and

6,8, 0 ••• 0

- 2  _ 0

0

(5.10.4)
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From the last equation we obtain

E2 = e ,e ,-^ (p ) (5.10.5)

Step 4: Combine equations (5.10.1), (5.10.2), (5.10.3) and (5.10.5) and obtain

that

<P2(p) = eiei <P,(p)+p-'*'i2 (5.10.6)

Step 5: Develop the minor determininant *Fi across the second row (which has 

only one non-zero element, p) i.e.

VF,2 = p-'Fj (5.10.7)

Step 6: Continue to develop 'Fi, i=2,3,..., determinants across the second row (as 

with vFi) and finally obtain,

'F,2 = p-vFi2+1, i=2,3,...,f-l (5.10.8)

where VF12 (i=2,3,...,f) is the minor determinant of 'F,2, which is produced, deleting the 

2 nd column and the second row and

(5.10.9)

Step 7: Combining equations (5.10.6), (5.10.7) and (5.10.8) we obtain

(P2(p) = eiei ■(Pi(p)+Pf '^f2 (5.10.10)

Step 8 : Develop 'F2 across the third row which has two non-zero elements -1

and p. So we obtain,
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p — RjX.,1 - R f 2] 0 ••• 0 p -R ,^ n - r ,x,21 0 ••• 0

— R-,X.P 
0

— R 2Xp

f-Nl^7,11 s, +p- 0 VF11

0 0

(now the (1) superscripts of Hi and *Fi refers to cpi(p)). Hj and T,' are produced simi-

larly to Hj5 and T ,2 from <pn(p)- So we follow similar steps and finally,

p -R ^ n 0 0 p -R ^ u r ,x,2i 0

Tf2 = — R 2 1̂2 0 e282 + PM - R 2X,12 p - p2L22 e2e2

0 - 1 P 0 0 P

'Ff —e282(p R,X,u )+p [(p R,XnXp R 2̂ 22) ^-1̂ 2^ 12̂ 21] (5.10.11)

Step 9: Develop cpi(p) similarly with cp2(p) and obtain

(P,(p)=e2£2 +pf(p -R 2>.22) (5.10.12)

Step 10: Combine equations (5.10.10), (5.10.11) and (5.10.12) and finally obtain

^ ( p )“ e,e28,£2 +Ci£]P (p — ^ 2^ 2 2 P e2e2(p 1)

+ p2f •(p -R 1X,ll)(p -R 2X22) - p 2fR]R2>.12X.21 (5.10.13)

Again we observe that (p2(p) is a polynomial with a2(i+p=l (coefficient of p2(1+f̂  and 

ao=eie2£i82 constant term. The full determination of the roots of cp2(p)= 0 (eigenvalues 

of A) requires numerical methods. After obtaining those eigenvalues and the respective 

eigenvectors we may calculate the solution using the standard equations.

5.11 Stability Analysis o f  Model I I

In this sections, we shall examine the stability of model II similarly with section 

(5.6). Firstly, we calculate the equilibrium points xe-

202



xe equilibrium point <=> A-xe = x e

The equation above has at least the zero solution. We shall show that this is the only 

one (unique)

det(A) =

R |A . , i 0 . . .  0 - e , E , i R , ^ 21 0  ••• 0 0

1 0 . . .  0 0 1
1
1
1
1 O

0 0 . . .  0 0
1
1
1

0 0 . . .  1 0
1
1

. 1
R 2A.12 0 . . .  0 0 j R-2̂-22 o  ••• 0 - e 2£ 2

| 1 0  ••• 0 0

o
o 0  ••• 0 0

! 0 0  ••• 1 0

A], j  A
a 2; 1  a

12

22

where An , Au , A2i , A22 e R (1+f>(1+f).

Developing det(A) across the 2nd row and again the minor across the 2nd row... continu-

ously after f-steps we obtain

det(A )=(-l)'

-e ,s . 0 0

0

0

Then developing across the l s,-row we obtain

det(A) = ( - l) f+1e,E, det(A22) (5.11.1)

Similarly, we develop det(A22) and combining also equation (5.11.1) we derive that

det(A) = (- l)2(1+f)e1e2e,s2 = e,e2£,E2 (5.11.2)

From equation (5.11.2) and for ei,e2,Ei,£2*0 we obtain det(A) i.e. 0 is the only solution 

to the system A xe = xe consequently the only equilibrium point.
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Now although we have the analytical form of the (p2(p) characteristic polynomial 

it is very difficult to investigate and find the position of the eigenvalues of matrix A.

Again numerical methods and arguments as in section (5.6) should be applied in 

order to examine the magnitude of the eigenvalues (less or greater than unity). Of 

course we can also use the root-locus method to investigate the potential stability 

(against a certain parameter). For example if we want to examine the root loci against 

the values of parameter si we may rearrange equation (5.10.13) in the form of Step 1 of 

Appendix III i.e.

cp2(p)=l + e , ^ 77------------v ---- eie 2 £2 + e p f ( p - R 2A.22) --------------  (5.11.3)
p ( p - R ^ . X p - R ^ J - p  R,R2?,12?i21+ p e2e2(p-R,?t11)

The procedure described in Appendix III requires the zeros and poles of the fraction 

which appears in equation (5.11.3). Again these values can only be obtained using nu-

merical methods (for a large f value).

5.12 Controllability and Observability properties o f  Model I I

In this section we shall examine the concepts of controllability and observability 

of model II.

Controllability

Similarly, with section (5.7) we must prove

rank^  = [B:AB:A2B:--:A2f+1Bj = 2(l + f) 

for the complete controllability of the system.

We shall show that taking the first column of each of the 2(1+f) matrices in-

cluded in i^w e can obtain 2 ( 1 +f) linear independent vectors and consequently
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rank &=2(\ +f).

We may observe that matrix B has only one non-zero element in its first column 

(at the top, equal to -1). If we calculate consecutively AB, A2B,...,A2f+1B we may ob-

serve that this non-zero element (-1 ) is going down one by one row in the first column. 

So we may actually obtain the 2(1 +f) linear independent vector. So model II is com-

pletely controllable.

Observability

For the observability property we should prove that

C

CA

rank if  = = 2(l + f)

CA2f+l

Calculating carefully the required products we obtain

0 0 0  •• • 0 0 - E l ! o 0 0  ••• 0 0 0

0 0 0  •• • 0 0 0 1 0 
1

0 0  ••• 0 0 - E

0 0 0  •• • 0 0 I 0 
1

0 0  ••• 0 0 0

0 0 0  •• • 0 0 0 i 0 0 0  ••• 0 <N
CO1 0

0 0 0  •• • - £ | 0 0 i 0 0 0  ••• 0 0 0

0 0 0  •• • 0 0 0 i o 0 0  ••• - e 2 0 0
A

As we observe the ei,£2 are moving to the left (creating new linear independent vector) 

and easily identify 2 (1 +f) linear indepent vectors, so rank if  =2(1 +f) and the system is 

completely observable.
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5.13 Optimal design fo r  the matrices o f  Model I I

The discussion is exactly the same as for the Model I in Section (5.8). In this 

case we have a characteristic polynomial of 2(l+f) degree see equation (5.10.13) with

a 2(i+f) =  ̂ an<̂  ao= e ,e2s,s2 

So according to inequality (5.8.1)

Po ^ 2(1+̂ e,e2e,£ 2

We may explore as in section (5.8) the optimal set of parameter values for e,s,R vec-

tors and A matrix using the algorithm described there in order to obtain (if possible) a 

root with 2(1 +f) multiplicity or 2 (1  +f) roots lying in the circumference of the circle

with center at zero and radius 2̂ +f\Jele2EiE2 f°r the characteristic polynomial and con-

sequently the fastest output response for the system.

5.14 Special cases o f the general model (Models III, IV) fo r  (m=2) companies and 

delay factor (f=l) with numerical examples

In this section we shall firstly examine a very special case restricting the number 

of participating companies m=2 and the delay factor f=l (Model III). Actually this third 

Model may be described as the intersection point of Models I and II.

Hence, we obtain the following system of equation (which corresponds to the general 

system (5.3.6) under the modifications and restrictions mentioned above.
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F 3 p |
^2,n =  ^-2^ 12^ 1,11-1 +  ^ -2^ 22^ 2,11-1 + T T r^ 2 ,n -3  + 77T ^'2,n-2  _ e 2E2^2,n-2 _  ^2,nM2 M2

Sl,n  ~  R - A l  l^ i,n- l  +  R-1^21^2,n-l +  ~ 7  C l,n -3  +  ^ - C ,  n_2 e ie 1S 1 n_2 C l,n

P -  F‘ c  1 Fi cr l.n _  » ,,  ^ l,n -3  +  ^MJe, M'.e, l,n-2 e |S i,„ -2

^2,n “ 7 "̂  C2 3 + —f  C2 2 - e 2S2 n_2 
M2e2 M2e2

(5.14.1)

Again having obtained the system of equation we may pass to the standard dynamic 

format system of (5.3.7). Consequently we obtain the following vectors and matrices 

which again correspond to vector x„>y ,u„ and matrices A,B,C,D of section (5.3).

l,n

z,n

:R 4 ’ L
l,n

2,n

'l,n

'l,n-l

" l , n - 2

•'l.n -3

' 2,n

' 2 , n - l

'2,n-2

'2 ,n -3

:R 8

A e R 4x4 , B € Pv4x8 , C e R 2x4 , D e R 2x8

A =

R,A,n -e.e, R,À,2i 0

1 0 0 0

R 2A.12 - 0 2 22 - e 2e

0 0 1 0

, D =
0 0

M',e, Mjej 

0 0 0 0

0 0 

0 0
M 2^2 M2C2
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F,2 F,3-1 0 x 1 1 0 0 0 0
m ; m ;

0 0 0 0 0 0 0 0 0 -8 , c c

0 0 0 0 -1 0 f 22 F2
> C = oo

___
i 0 1 m ro

m ; M'2
0 0 0 0 0 0 0 0

Closing this section, we shall present a diagram incorporating the input-state- 

output concepts of the dynamic system. The diagram is not formal but allows us a fur-

ther insight into the problem.

Diagram (5.14.1)

Looking at the diagram above we may identify two directions of smoothing ac-

tions. The parallel one which is the profit sharing feedback operating for each of the 

two subsystems and the vertical one which is determined by the interaction procedure 

between the two surpluses of the companies.
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Furthermore and in order to facilitate the calculations in the next sections we 

shall produce another model, Model IV assuming that both companies are identical with 

respect to operational parameters i.e.

e ,= e 2=e , R , = R 2=R , F,=F2=F , e , = 82=s  

As regards the "harmonization matrix" A we shall assume a simple pattern where each 

company passes exactly the same percentage (X.) of its surplus fund to the other com-

pany i.e.

A =
1-X

X

X

1-X

The assumptions above may be reasonable as the multinational networks are composed 

of (more or less) equivalent (with respect to operational matters) companies. The as-

sumption also is necessary in order to obtain analytical solutions and results.

Numerical Examples

Finally we shall present three numerical examples of Model IV investigating the 

effect of the interaction factor (X). We use three values of (X): a small one (5%), a me-

dium one (50%) and a large one (95%) with the same set of other assumptions i.e.

(1) Input signals

zero (0 ,0 ,0 ,...) 

spike (0, 1 ,0,...)

80%

1.10

1.04

Subsystem 1 

Subsystem 2

(2) Expense factor (e)

(3) Interest factor (R)

(4) Inflation factor (F)

consequently M '=F2+F3=2.21
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We obtain tables (5.14.1), (5.14.2), (5.14.3) and diagrams (5.14.2), (5.14.3) and 

(5.14.4). As we can observe the large value of (A.) produces oscillations while the small 

value does not produce oscillations.

In section (5.18) we shall prove formally the result above i.e. the larger the value 

of (A) the larger the oscillations. By general reasoning, we could argue that the less in-

tervention (i.e. small value of (A)) into the system the less the confusion (oscillations) 

caused in it. Or in other words we should let each subsystem to manage its own prob-

lems and not transfer (the problem) using large value of (A) to the other subsystem.
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TABLE (5.14.1)

Input Signal Spike ( 0,0,0,0,...) subsystem 1
Input Signal Zero (0,1,0,0,...) subsystem 2
Expense (e) 80%
Interest (R) 1,10
Initiation (F) 1,04

( M / ) 2,21
Interaction w 0,05

subsystem 1 subsystem 2subsystem 1 subsystem 2 Total System
Feedback (€) 20% 20%

Accumulated Accumulated Accumulated
Time Claims Claims surplus surplus surplus

0 0 0 0,0000 0,0000 0,0000
1 0 1 0,0000 - 1,0000 - 1.0000
2 0 0 - 0,0550 - 1,0450 - 1,1000
3 0 0 - 0,1150 - 0,4449 - 0,5598
4 0 0 - 0,1358 0,2058 0,0700
5 0 0 - 0,1122 0,2788 0,1666
6 0 0 - 0,0802 0,2522 0,1720
7 0 0 - 0,0520 0,2146 0,1626
8 0 0 - 0,0297 0,1810 0,1513
9 0 0 - 0,0127 0,1532 0,1404
10 0 0 - 0,0001 0,1304 0,1303
11 0 0 0,0091 0,1118 0,1208
12 0 0 0,0156 0,0964 0,1121
13 0 0 0,0202 0,0837 0,1039
14 0 0 0,0232 0,0732 0,0964
15 0 0 0,0251 0,0644 0,0894
16 0 0 0,0260 0,0569 0,0829
17 0 0 0,0263 0,0506 0,0769
18 0 0 0,0261 0,0452 0,0713
19 0 0 0,0256 0,0406 0,0662
20 0 0 0,0248 0,0366 0,0614
21 0 0 0,0238 0,0331 0,0569
22 0 0 0,0227 0,0301 0,0528
23 0 0 0,0216 0,0274 0,0490
24 0 0 0,0204 0,0250 0,0454
25 0 0 0,0193 0,0228 0,0421
26 0 0 0,0181 0,0209 0,0391
27 0 0 0,0170 0,0192 0,0362
28 0 0 0,0159 0,0177 0,0336
29 0 0 0,0149 0,0163 0,0312
30 0 0 0,0139 0,0150 0,0289
31 0 0 0,0130 0,0138 0,0268
32 0 0 0,0121 0,0128 0,0249
33 0 0 0,0113 0,0118 0,0231
34 0 0 0,0105 0,0109 0,0214
35 0 0 0,0098 0.0101 0,0198
36 0 0 0,0091 0,0093 0,0184
37 0 0 0,0084 0,0086 0,0171
38 0 0 0,0078 0,0080 0,0158
39 0 0 0,0073 0,0074 0,0147
40 0 0 0,0068 0,0069 0,0136
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TABLE (5.14.2)

Input Signal Spike (  0,0,0,0,...) subsystem 1
Input Signal Zero (0,1,0,0,... ) subsystem 2
Expense (e) 80%
Interest (R) 1,10
Initiation (F) 1,04

( M / ) 2,21
Interaction W 0,5

subsystem 1 subsystem 2 subsystem 1 subsystem 2 Total System
Feedback (£) 20% 20%

Accumulated Accumulated Accumulated
Time Claims Claims surplus surplus surplus

0 0 0 0,0000 0,0000 0,0000
1 0 1 0,0000 - 1,0000 - 1,0000
2 0 0 - 0,5500 - 0,5500 - 1,1000
3 0 0 - 0,6050 0,0452 - 0,5598
4 0 0 - 0,2199 0,2899 0,0700
5 0 0 0,1353 0,0313 0,1666
6 0 0 0,1268 0,0452 0,1720
7 0 0 0,0730 0,0896 0,1626
8 0 0 0,0691 0,0822 0,1513
9 0 0 0,0716 0,0689 0,1404

10 0 0 0,0662 0,0641 0,1303
11 0 0 0,0602 0,0606 0,1208
12 0 0 0,0559 0,0562 0,1121
13 0 0 0,0520 0,0519 0,1039
14 0 0 0,0482 0,0482 0,0964
15 0 0 0,0447 0,0447 0,0894
16 0 0 0,0415 0,0415 0,0829
17 0 0 0,0385 0,0385 0,0769
18 0 0 0,0357 0,0357 0,0713
19 0 0 0,0331 0,0331 0,0662
20 0 0 0,0307 0,0307 0,0614
21 0 0 0,0285 0,0285 0,0569
22 0 0 0,0264 0,0264 0,0528
23 0 0 0,0245 0,0245 0,0490
24 0 0 0,0227 0,0227 0,0454
25 0 0 0,0211 0,0211 0,0421
26 0 0 0,0195 0,0195 0,0391
27 0 0 0,0181 0,0181 0,0362
28 0 0 0,0168 0,0168 0,0336
29 0 0 0,0156 0,0156 0,0312
30 0 0 0,0145 0,0145 0,0289
31 0 0 0,0134 0,0134 0,0268
32 0 0 0,0124 0,0124 0,0249
33 0 0 0,0115 0,0115 0,0231
34 0 0 0,0107 0,0107 0,0214
35 0 0 0,0099 0,0099 0,0198
36 0 0 0,0092 0,0092 0,0184
37 0 0 0,0085 0,0085 0,0171
38 0 0 0,0079 0,0079 0,0158
39 0 0 0,0073 0,0073 0,0147
40 0 0 0,0068 0,0068 0,0136
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TABLE (5.14.3)

Input Signal Spike (  0,0,0,0,...) subsystem 1
Input Signal Zero (0,1,0,0,... ) subsystem 2
Expense (e) 80%
Interest (R) 1,10
Initiation (F) 1,04

( M / ) 2,21
Interaction W 0,95

subsystem 1 subsystem 2 subsystem 1 subsystem 2 Total System
Feedback (£) 20% 20%

Accumulated Accumulated Accumulated
Time Claims Claims surplus surplus surplus

0 0 0 0,0000 0,0000 0,0000
1 0 1 0,0000 - 1,0000 - 1,0000
2 0 0 - 1,0450 - 0,0550 - 1,1000
3 0 0 - 0,1150 - 0,4449 - 0,5598
4 0 0 - 0,3040 0,3740 0,0700
5 0 0 0,3925 - 0,2259 0,1666
6 0 0 - 0,1659 0,3379 0,1720
7 0 0 0,2812 - 0,1186 0,1626
8 0 0 - 0,0819 0,2333 0,1513
9 0 0 0,1943 - 0,0538 0,1404

10 0 0 - 0,0324 0,1627 0,1303
11 0 0 0,1372 - 0,0163 0,1208
12 0 0 - 0,0043 0,1164 0,1121
13 0 0 0,0995 0,0045 0,1039
14 0 0 0,0108 0,0856 0,0964
15 0 0 0,0741 0,0153 0,0894
16 0 0 0,0184 0,0646 0,0829
17 0 0 0,0566 0,0203 0,0769
18 0 0 0,0214 0,0500 0,0713
19 0 0 0,0443 0,0218 0,0662
20 0 0 0,0218 0,0395 0,0614
21 0 0 0,0354 0,0215 0,0569
22 0 0 0,0209 0,0319 0,0528
23 0 0 0,0288 0,0202 0,0490
24 0 0 0,0193 0,0261 0,0454
25 0 0 0,0237 0,0184 0,0421
26 0 0 0,0174 0,0216 0,0391
27 0 0 0,0198 0,0165 0,0362
28 0 0 0,0155 0,0181 0,0336
29 0 0 0,0166 0,0146 0,0312
30 0 0 0,0137 0,0153 0,0289
31 0 0 0,0140 0,0128 0,0268
32 0 0 0,0119 0,0129 0,0249
33 0 0 0,0119 0,0111 0,0231
34 0 0 0,0104 0,0110 0,0214
35 0 0 0,0102 0,0097 0,0198
36 0 0 0,0090 0,0094 0,0184
37 0 0 0,0087 0,0084 0,0171
38 0 0 0,0078 0,0080 0,0158
39 0 0 0,0074 0,0073 0,0147
40 0 0 0,0067 0,0069 0,0136
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5.15 General Solution o f  the system and output responses to certain input signals 

(Model IV)

Having obtained the standard format of the dynamic system we may use the stan-

dard solution method described in section (2.8.). Hence,

x „ = A nx0 + X  AkBun-k-„ n = 1,2,...
k=0

yn = CAn~‘ x0 + CAn_2Bu0 +... + CBun_2 + Dun, n = 1,2,...
(5.15.1)

As we observe the solution depends firstly on matrix A and its power series (An, 

n=0,l,2,...) and secondly on the other matrices B,C,D and the input signal vectors

u 0 , u , , u 2 , . . . , u „ , . . .

The calculation of An, n=0,l,2,... has explicitly been discussed in chapter 2 and appen-

dix II. The basic target is to determine the diagonial (or Jordan) form of A matrix find-

ing the eigenvalues and the respective eigenvectors, 

p eigenvalue of matrix A <=> det(pl -  A) = 0 i.e.

p - r ( i - à ) es - R I 0

- 1 P 0 0

-  RÀ. 0 p -R (l-X ) es
0 0 - 1 P

(developing the determinant across the second row)

es -  Rà  0 
« ( - lX - l)O  p -R (l-).)  es

0 - 1  p
- M V

p-R (l-À ) -K k  0 
-R à  p - R(l- X) es 

0 - 1  p
=  0

<=> e-s
p -  R(l -  X) es

- 1  p
+ p [p -R (l-k)]

R(l -  A.) es
- 1  p

+ pRA,
-RX 0

- 1  p
=  0
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<=> [p[p — R(l — A,)]+ ee]-[p[p — R.(l — ee]—[X.pR]2 =0

<=> [p3-R (l-X )p  + ee-^Rpj-[p2 -R (l-k )p  + ee + ÀRpj=0

<=> [p2 - R - p  + eEj-[p2 - R ( l - 2 ^)-p + es] = 0

<=> p2 -R p  + es = 0 or p2 -  R(l - sX)p + es = 0

R± VR2 -4es R(l -  Tk)± J r 2(\-2X)2 - 4es
^  P i , 2 _  2  ’  P 3-4 — 2

Hence, there are four eigenvalues pi,p2,p3,p4 which depend (a) the first two on 

R,e and e parameters and (b) the second two on R,e,s and X parameters. Finally (and 

after obtaining the eigenvectors) we may rewrite the solution of the dynamic system in 

the scalar form.

where gi,g2,g3,g4 are real functions of the parameters p",p",P3,P4, (n=0 , l ,2 ,...) and 

R,e,s,X.,F.

Closing this section we shall examine the behaviour of the system with respect to 

three types of input signals (spike, step, sine). Assuming also zero initial conditions 

x0 = 0  and yQ = 0 for any situation.

Spike

We shall assume that a spike signal appears as the input of the first subsystem 

while the second subsystem has a zero input i.e.

Vn e Z

then we may obtain the input vector unas below
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1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0
. Ml =

0
. M2 =

0
. M3 =

0
. Mn =

0

0 0 0 0 0

0 0 0 0 0

0_ 0_ 0 0 0

Substituting un n=0,l,2,... in the general solution we obtain

x„ = Anx0 + An"'Bu0 + An_2Bu1 + An_3Bu2 + A"‘4Bu3

yn = CA"“1 x0 + CAn~2Bu0 + CAn~3Bu, +CAn“4Bu2 + CAn"5Bu3 (n>5) 

We may continue our calculations so,

Bu0 =

■ - f ro_ _F2 " " f 3 "
M' M'

0
, Bu, =

0
, Bu,  =

0 II<*■>
31CQ 0

0 0 0 0

0_ 0_ 0 0 _

and since x0 = 0 the solution takes the form

xn = A
n-1

y = CAn-2
0

0

0

+ CAn_

M'
0

0

0

r - i i F2 F3

M' M'
0

+ A"“3 • 0 + A"-4 • 0

0 0 0

0 0 0

r ll F2"

CA n-5

z l
M'
0

0

0
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Ak, k=n-l, n-2, n-3, n-4, n-5 and substitute them into the formulae above.

Obviously, from the final format of the state xn anc* output y the system will asymp-

totically converge to zero (as n increases) assuming that all the magnitudes of the ei-

genvalues of A are less than the unity. This is true because only a finite number of 

powers of A is involved in the formulae (i.e. A"'1, An'3, An‘4 for xn and An"2, An’4, An"5 

for L ).

Finally we only need to calculate

Step

We assume a step signal for the first input variable i.e.

Vn e Z  then,C„ =
[ 0, n < 0 

!l, n > 0 C2,n = 0

u0

1 1 1 1
0 1 1 1
0 0 1 1
0

5 U1 =
0

, u2 =
0

, un =
1

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

and consequently

Bu0 =

n>3,

■ -f - f [ i l - l l
M'

'O'

0
, Bu, -

0
, Bu 2 = 0

»BUn =
0

0 0 0 0

0 0 _ 0 0_

n>3

(The last equality holds because M'=F2+F3, so Bun =0 n>3 )
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Now the general solution may be written in the form

xn =[a "'1 + An~2]-

' - f t l - i l
M'

0
+ An~3 • 0

0 0

0 _ 0

yn =C-[a "‘ 2 + A"“3]-

Again as for the spike input we observe that the format of xn and ŷ  contains a finite

number of powers of Matrix A. So assuming again eigenvalues with magnitude less 

than the unity we may obtain asymptotic stability and convergency to initial conditions 

of the system (zero state and output).

" - f rf - i l
M'

00
+ CA"'4 •

0 0

0 0

n>5

Sine

An interesting assumption about the input variable is the sine signal. This model 

of input signal may be the more realistic in some cases as the sine waves represent the 

underwriting cycles which appear in the insurance market of each country. So we define

Cln = sin(co1n + cp1) , C2n = sin(co2n+ cp2) n> 0

71 71
CO, = ( 0 2 =71  , (p, = - -  , cp2 = -

o z
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n 0 1 2 3 4

C 1 , n 1
2

1
2

1
2

1
2

. . .

C 2,n 1 -1 1 -1 . . .

Consequently the input vectors,

— 0.5 0.5' -0.5 0,5' '-0 .5 '
0 -0.5 0.5 -0,5 0,5
0 0 -05 0,5 -0,5
0 0 0 -0,5 0,5
1 > Mi =

- 1
, u2 =

1 » Mk = - 1 ’ Mu = 1

0 1 - 1 1 - 1

0 0 1 - 1 1

0 0 0 1 - 1_

where k=2 n+l, |i=2 (n+l), n>l

Bu0 -

'0,5' ’-0 ,5 '

0
, Bu, =

0

- 1 1

0 0

0,5

, Bu, =

^1 - — " 
V " M'J 

0

\ - —
v

0

B M k =

f  p 2 p 3 ^

- 0 , 5  1 -------------- +  —
^  M '  M ' J

0

M '  M '

.  B M „  =

---------
o

i___________________

f  -  F 2 F 3 J  

^  M '  M ' J  

0

■ , - C + Z l l
M '  M '

0 0

where k=2 n+l,  p=2 (n+l) n>l.
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Bu, = -B u 0 and Buk+1 = -B uk , k=2n+l, n>l

Now assuming again zero initial condition i.e. x0 = 0 and substituting equations men-

tioned above we obtain the general solution for the state of the system

xn = An“’Bu0 -  An' 2Bu0 + An-3Bu2 + A"~4Bu3 -  An~5Bu3 +... + ( - l)n~' ABu3 + ( - i f  Bu3 

Rearranging the terms of the equation above we obtain

xn = A"“2(A -  l)Bu0 + A"~3Bu2 + (a "“4 -  An"3 +... + ( - l)n i) Bu3 

Now we shall distinguish the values for odd and even numbers i.e.

n = odd number

xn = A"*2 (A -  l)Bu0 + An’3Bu2 + (i + A2 +... + An‘ 3 \ a  -  l)Bu3

As we observe for the vectors calculated before

n = even number

xn = An_2(A - 1) Bu0 + An_3Bu2 + [(A -  I)(a  + A3 +... + An_3 )+ ij Bu3 

If we want to examine the behaviour of the system for large values of n (as n 

goes to infinity) we may prove that the sequence of ||xn|| converges to a certain limit

and consequently the sequence of xn converges respectively.

If we recall the norms defined in section (4.21) and define

H I AII ■«’= Bl

we obtain
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n = odd number

X ,  II < r 2(5+1)51 H.I+5""35'|| u;||+(l+?  +. . .+¡T5 +1)51 “>1 =
/  \n~3, |

r !fe+i)5ll a»||+5"-’5l a2|+^ L _ , fe + *1 a3|| =:2

,n-3

5""2 (5+*1 a„||+S"'1̂  u2| | + a ,

If we choose the parameters of the system such that  ̂= < 1  then the se-

quence of II xn II is bounded from another sequence (see the last inequality) which con-

verges and so the sequence of ||xn|| (for odd numbers) is bounded

n = even number

Similarly as for the case where n is an odd number we may prove that

| X„ || < fe+ 1)5’|| Ho | + 4 " 55'|| a 2 II+ t e + l)fe+ ) +  ifcll B)

and consequently (see the argument for an odd number) the sequence of ||xn|| for even 

number is bounded.

Finally we obtain that sequence ||xn|| converges and consequently the sequence

xn also converges to a certain limit as n goes to infinity.

5.16 Stability Analysis o f  Model IV

One of the main questions for any dynamic system is the existence of some kind 

of stability. With reference to the analysis of section (2.15) we have the following de-

velopment.

First of all we should find the equilibrium points xe. As we know, xe equilib-

rium point <=> Axe = xe.
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But det(A) =

R(l-X) -ee RX 0
1 0 0 0

RX 0 r (i - x ) -ee
0 0 1 0

-es RX 0 
0 R(l-X) -ee  
0 1 0

= (ee)2

Given that e*0 and e*0 then det(A)*0 and consequently A is non singular and the 

system Axe = x e has a unique solution, i.e. the trivial xe = 0 (since A-0 = 0) .

Now we shall examine whether the zero equilibrium point is also a Liapunov or 

asymptotic stable point. As we have seen in section (2.15) and the relevant stability 

criterion, we should examine the magnitude of the eigenvalues of A against the magni-

tude of the unity (less or equal to the unity).

The eigenvalues of A matrix have been found in section (5.15) as follows

R±-v/R 2 -4es J R(1-2X)±-»/r 2(1-2X)2 -4e8 
Pi,2 = ------- r --------- and p3 4 = ----------------- ------------------

We shall gain further insight for the magnitude of the roots if we plot them in the xy- 

plane and identify the area (of root loci) which lies within the unit circle (see Diagram 

5.16.1).
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All the roots may be plotted on two crosses for constant R,>. and as the product

ee varies from zero to infinity.

The characteristics of these crosses are the following:

(a) The centre are the breakaway points with x-axis lie on — and for p 1 ,p2

and P3,p4 respectively.

(b) The first axis of each cross lies on the x-axis from 0 up to R for pi,p2 roots and 

from 0 up to R(1-2X.) for p3,p4 roots.

(c) The second axes are parallel to y-axis (continuing up to infinity as ee goes to 

infinity).

Interpreting also the diagram with respect to the stability of the system we may 

comment that: For a given pair of R,A, and constant e then the extreme choices for e (i.e. 

zero or infinity, infinity means too large) will produce an unstable system.

We shall now find conditions for the breakpoints of the unit circle, but before we 

shall determine the intervals for the typical values of the parameters involved

Stability Conditions

• For the first two roots pi and p2 we shall distinguish two situations (real and complex 

roots)

Real roots p i,p 2 i-e. R 2-4ee>0

s e [ 0 , l ] R e[l  , l.lO], X e [0.05 , l ] , e e [0 .5  , l]

(the root with the negative sign normally is less than 1)
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» R + ^ R i — <l<^VR2-4e s< 2 -R<^

R2 -4es < (2 -R )2 <=> R2 -  4ee < R2 -  4R + 4

Hence, ee>R-l (5.16.2)

Complex roots p /,p 2 Le. R'-4es<0

2 , , R . V 4es-R 2If R -4es<0 then we have two complex conjugates roots p12 = — ± i------ ------

and consequently

|pi.2 | ^ 1 <=> f  R ^
v ^

i ( 
+ V 4ee-R 2

V

<!<=>

R2 4 e s -R 2«• —  + - 
4

< 1 <=> ee < 1

• For the second two roots p3 and p4 we shall follow the same procedure as above and it 

may be easily proved that in order to obtain roots with absolute value less than unity

R(l-2X)-l<ee<l (5.16.3)

Finally summing up all the work for the magnitute of the roots we obtain the 

follow. The zero point is a Liapunov stable point if and only if

R -1 < es < 1 (5.16.4)

(since R(l —2A.)—1 < R —1 )

Consequently the zero point is an asymptotic stable point if and only if

R -1 < ee < 1 (5.16.5)
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(The conditions (5.16.4) is similar with (4.17.6)). The only difference arises due to the 

fact that now there is not investment income for premiums in the year received. The 

parameter (X.) is not involved in the inequality above but we can see from another point 

of view how it affects the stability of the system.

The choice of X. determines the centre of the second cross. Large values of X 

(near to 100%) move the centre of the cross near to zero and consequently a bigger area 

of the cross lies in the unit circle, so the probability of a stable system is increased.

5.17 Controllability and Observability properties o f  Models III, IV

As regards the investigation of these properties we should refer to section (5.7). 

As we have stated Model III is a restriction of Model I. Consequently, since the Model I 

has the two properties above (as shown in (5.7)) its obvious that also Model III has 

these properties too. The same applies for Model IV.

5.18 Optimal design fo r  the parameters o f  Model IV  with respect to speed response 

and oscillatory form  o f  the solution

Another interesting issue of our problem is the determination of the optimal pa-

rameter values according to some specific requirements and criteria. In this section, we 

shall examine four cases with respect to the oscillatory form of the solution and the re-

quired response speed to different input signals.

1st Case: No oscillations

As a first case, we require a solution of the system with no oscillations. The rea-

son why, may be easily found. Oscillations mean that the state and consequently the 

output will fluctuate round the x-axis. So the premium charged to the policy holder will

229



sometimes increases and other times decreases with a sine wave form. Of course this is

not desirable especially when the fluctuation (up and down) is very big.

From the mathematical point of view no oscillations means that all the eigenval-

ues of A are real numbers. Looking the form of pi,p2,p3,p4 we demand

and since X normally lies between zero and unity the conditions above are restricted to 

one i.e.

The speed of the state or output response to the different input signals (the 

minimum time which the system needs to return to zero, equilibrium point) depends on 

the maximum magnitude of the eigenvalues of A. As we have seen the solution depends 

on the power series of A (An n=0,l,2,...) which depends on the powers of the eigenval-

ues.

Obviously from the form of the eigenvalues we derive that the minimum values 

are obtained when the quadratic polynomials have double roots i.e.

The conditions above may be simultaneously fulfilled if and only if X,=0 or 1, 

where we obtain the trivial cases with no or full interaction between the two systems 

and we have two equal double roots (or a root with fourth multiplicity)

R2 -4es > 0 
R2(l -2X)2 -4es > 0

R2(l-2A.)2 -4es > 0

2nd Case: Fastest Response
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R
P i , 2 P 3,4 ~  —

In the real case where ^>0 then we can not choose parameters making true both 

equations but we still have to minimize the maximum magnitude of the roots. So we 

have to choose which equation is most important (producing the maximum magnitude).

We may answer the question above if we observe Diagram (5.16.1). The pi,p2 

lies on the right cross while p3,p4 lies on the left cross. We can see that if we demand 

R2-4e£=0 then pi,p2 coincides on the centre of the right cross while P3,p4 are complex 

numbers and lie on the vertical axis of the left cross. So the root with the maximum

absolute value is the double root p,,p2 = —.

The other option of demanding R2(l-2X )2-4ee = 0 will produce four eigenval-

_ . , , . R (l-2)i) R ± a/R 2 -4eeues as follows. A double root p3,p4 = —------- - and two different p,,p2 = — ------ —----

Obviously the maximum absolute value exists for root p2 which is big-

. R ger than — .
2

Finally, we may derive the following two proposals. 

Fastest Response with oscillations »  R2 -  4ee = 0.

Fastest Response with no oscillations <=> (l-2A.)2R2 -4ee = 0.

3rd Case: Optimal Response & Oscillations

In the first two cases we have identified an opposite effect between the fastest 

response and system oscillations. Here, we shall try to find a compromise between them 

reducing the oscillations down to an acceptable level.
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Firstly, we require the fastest response, so we choose e such that R2-4e8=0.

From the choice above we obtain

• One double root p, 2 = — and

• Two complex conjugate roots

P „ = v [ ( l - 2 X ) ± i - V 4 M !)

The last pair of the complex form may be written 

p34 = — (cos0±isin0)

where tan0 = yJX-X2
0. 5-1

It is obvious that the choice of X does not affect the absolute value of the roots 

but only affects the value of angle 0.

RThe two roots p3 and p4 may be plotted on a circle with a radius of — . Accord-

ing to the choice of X the roots run over the circle (see next diagram (5.18.1)).
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At this point we shall open a small parenthesis and discuss the angle 0 in con-

junction with the general solution of the system.

If zi,z2 are complex conjugates eigenvalues of matrix A of a dynamic system 

then the general solution will contain a linear combination of the powers of zi and z2 

i.e.

yn =^,z"+ ^2z2

where p12 =a(cosP±isinp) and zI2 =z(cos0 + isin0)

Hence, yn = 2az" cos(r|0 + p)

As we observe from the last equation the angle 0 determines the magnitude of 

oscillations. Consequently the choice of interaction parameter X will affect the magni-

tude of oscillations.

If we ignore P as a constant item we can see that the sign of yn depends on angle 

0 . So if we require two consecutive values of yn having the same sign it should be

0 <  —
4

The last condition may be expressed as 

tan 0 < 1

and solving with respect to X we obtain

tan 0 = ^  < 1 <=> -JX- X? < 0.5 -  X <=>
0.5 - X

<=> X-X2 <(0 .5 -X)2 t t X - X 2 <0.25- X + X2 <=>

2X2 -2X + 0.25 > 0
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The roots of quadratic are

1̂,2 —
1±V05

The inequality holds outside the roots and since X,<0.5 we obtain

X < 1 ...V ^ o.1464 (14.64%) .

If we require three consecutive values of the yn having the same sign it should be

0< n

or equivalently

tan0 <

Solving with respect to X we obtain

tan9 = ^  À-< —  o 3 'A - ^ 2 < V 3 (0.5- X ) o  
0.5-X 3 v 7

(¡U0.5)

«  9(à,-  À.2 ) < 3(0.5 - À.)2 <^>3X-3X2 < 0.25 - X  + X2 <=>

4X2 -4X + 0.25 > 0 .

The roots of quadratic are

, _2± V 3
V 2 -  4

Again the inequality holds outside the roots and since A.<0.5 we obtain

X < = 0.067 (s 6.7%) .

Summarizing our results we have the following table
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Table (5.18.1)

0 6 . 7 % 1 4 .6 4 % 5 0 %

e 0 n/3 j t /4 7l/2

5.19 Optimal reinsurance (Model IV) with respect to the variance o f  surplus 

(Comparison with other models o f  optimal reinsurance, static or dynamic)

Optimal reinsurance is a very large subject and it has been widely discussed in 

the risk-theoretical literature. The problem is usually tackled using static models i.e. 

Fix the time period and then divide the total claim amounts into cedant’s and reinsurers 

components in an optimal way (see Daykin et al (1994)).

A dynamic approach has been presented by Rantala (1987) (see section (3.16)) 

using the concepts of control theory. His target was to minimize the variance of the re-

tained claims while keeping the solvency requirement constant.

As we have seen in the previous sections, our approach does not target the mini-

mum variance of retained claims. Our main effort is to establish a stable system of risk 

exchange between two insurance partners (not between an insurer and a reinsurer) over 

a long time period.

We have also attempted to target the fastest response and asymptotic behaviour 

of the system (return to initial equilibrium state). In the next part of the section we shall 

try to handle the problem with respect to the variances and get an optimal solution.

Of course our target will be the minimization of the variance of surplus (since 

there is no claim exchange between the two companies, the incurred claims equals the 

retained claims).
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As we have seen in section (5.5) the surplus vector xn is given from the general

equation

n-1

in =A nx0+ ^ A kBun_k_,, n=l,2,...
k=0

The first term may disappear if x0 = Q (zero initial conditions). So, xn is expressed only 

as a combination of uk k=l,...n-l.

i„  =Bun_, + ABun_2 + ... + An~'Bu0, n=l,2,

substituting Hn=An B, n=0,l,2,... we obtain

i n  =H0Un_1+H,un_2+... + Hn_]u0

where Hn is a matrix with dimensions 4x8.

Then Var(xn) =

Var(Sl.n)" 
V a r (S l,n-l )  

V a r (S 2,n )

v ar(s2,n-.)

= v ar[H0un_, + H, un_2 +... + Hn_, u0 ]

We shall calculate analytically the Var(xn) for n=l,2 and examine its behaviour with 

respect to A,. For n>3 we shall provide only the theoretical analysis up to a certain point. 

We assume Cin i—1,2 , n=0,±l,±2,... are independent identically random variables with

var(c,n)= o 2 i=l,2 , n e Z  

and consequently for un we obtain

var(un)= o 2-l n e % where l e R 8x1

Now for n=l we obtain
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var(x, ) = var(H0 u0) = var(Bu0 )
f F2 F3 „ \

“ 1C1>0 + — C,_3

 ̂ 0

— 1C2,0 + — C2 _2 + F C2,_3

V 0 J

taking the variance of each coordinate we have the following result

1 +

1 +

p 4 p 6

M7T+M7T
0

p 4 p6

m 7T+m 7T
0

As we observe the variance of x, does not depend on the choice of X (depends upon F).

For n=2 we obtain

var(x2)= var(H0u, + H ,u0)=

= var(Bu, + ABu0)

In section (5.7) we have calculated the product A-B. Consequently, we obtain

Var(x2 )= Var

f F F3 _y7

+ — c ,  , + — C, 2 
M' M' 1- "2

0
F2 F3

ri
y7

+  — C, , + — C ,  2
M' 2' -1 M' 2’~2

V

-----
1

o

( i - q

(l-X)

F2 F3 F2 F3 _ _
— RC., H-----RC, , H----- RC j 2

M' 1-'1 M' u 2_
+ 1 — RC2, h-----RC2 , h— -RC2 2

2>1 M' 2’ M' 2’ 2_
F2

-1C,, + — C
M'

F3
'■'l + 2,-2

F2 F F2 F3
-R C ,, + — RC, , + —  RC2 2

u M' 1-1 M' 2’-2
+ X — RC,, h-----RC, ,H----- RC, _2

1,1 M' 1,1 M' '’ 2_
F2 F3

-1C, , H----- C, . H------C, 2
2>1 M' 2H M' 2’-2 j  /
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Var(x2) =

[(i + (i - x.)r )2 + à,2R 2

F4

F4 F6
1 H------- —  4- -

M '2 M '2

1 +  — ^  +
M>2 V I'2

[(i +(i - à )r )2+^2r 2 F4 F6 
1 +  — —  +

M'2 M'2
F4 F6

1 + — r  +
M'2 M'2

As we can see now, the variance of x2 depends on X. If we want the minimum value of 

var(x2) with respect to X we have to minimize the function

f(x )= 1+ (l- à )2r 2+X,2R2

The minimum if obtained for Xo such that

df(X)
dX

df(X.)
dX

= 0 and d2f(X.)
d r

>o
x=x0

= 0 <=> -2(l ->i)R2 + 2À.R2 = 0

1 = I
0 2

Ä 4 R > > 0
dX2

The last inequality is true for any typical value of R.

Hence, for Xn = — the minimum is obtained
0 2

Now we observe that there is a contradiction between the oscillatory form of the 

solution and the variance of x2 • In section (5.18) we have shown that small values of X 

(near 0%) create small oscillations while now we find that the minimum variance of x2
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is obtained for a large value of X (equal to 50%). So we have to find a compromise be-

tween them.

Now for n>3 we shall develop the following analysis. Generally, 

var(xn)= var(H0un_, +H ,un_2 + ... + Hn_,u0)

since the respective coordinates of each of the vector u0, u , u n_, are independent vari-

ables we obtain

var(xn) = var(H0un_, )+... + var(Hn_j u0) or

var(xn)= a 2{diag(H0H|)ts))+... + diag(Hn_1H(nt!!)}t 

where diag(H) stands for the diagonios of matrix H 

H(ts> stands for the transpose matrix of H.

As we can see from the last relationship for the variance of xn it is very difficult 

to obtain the analytical form and consequently to apply the same procedure as previ-

ously for n=l,2.

5.20 Conclusion - A short review o f the results

In this chapter, we have constructed a general model of multiple input - multiple 

output which is directly applicable to multinational pooling arrangement. The basic 

concepts are the interaction amongst the different subsystems (of each company) and 

the "harmonization action" i.e. the control action with respect to optimal interaction. 

The whole process targets to:

(1) "Smooth" as far as possible the surplus funds of each company participating in 

the pool (and consequently smooth the solvency requirement).
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(2) Spread the experience (premiums - claims) of each company to the block of the 

other companies and obtain the desired solidarity amongst the insured groups of 

lives (as they actually constitute one large multinational company).

The specific modelling may be also used generally for the subsidiaries insurance 

companies of a parent company which aims to smooth the solvency requirement of each 

individual company or,

It may be used for capital allocation between different lines of business.

Closing this section (and simultaneously the chapter) we should mention briefly 

the important results.

(1) All versions 1,11.Ill and IV of the general model have one equilibrium point equal 

to zero (given that 8i*0, 82* 0,..., em*0 and 8i*0, 82* 0 ,..., 8m*0). For model IV we 

have also obtained the required condition for stability (similar to the respective 

condition of chapter 4)

R -1 < ee < 1 .

(2) All versions I,II,III and IV are completely controllable and observable so optimal 

control solutions may be designed.

(3) For models I and II a certain algorithm has been described in order to approxi-

mate a possible optimal solution with respect to the fastest response of the out-

put. This optimal selection depends upon the choice of the parameters such that 

to obtain a root with the minimum possible magnitude

P o  ~  2 \ / e i  ' • • • ■ e m 8 1 • — ’ 8 m

For model IV full investigation has been done with respect to fastest response 

and oscillatory form of the solution. It has been shown that small magnitude of
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the oscillation corresponds to small values of X. Hence if we require a system 

with no large fluctuation we should choose small values for the interaction factor 

(7.) i.e. Each sub-system should be left "alone" (as possible) to arrange its prob-

lems.

(4) In section (5.19) it has been discussed optimality of Model IV with respect to 

minimization of variances in contrast with previous work. It has been shown that 

the optimal point is (for the variance of x2)

Hence a contradiction appears (for the optimal selection of interaction factor) 

between less oscillations and smaller variances. The variance of x, is independ-

ent of the choice of parameters (X) while for x„ where n>3 the calculation of the 

minimum requires numerical methods. (This restriction prevents the direct com-

parison of our result with that of Rantala (1987)).

Finally, we should stress that the general form of the model may be handled only using 

numerical methods, as the vectors and matrices involved are quite complicated!
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Chapter 6

Application to the PAYG (Pay-As-You-Go) funding method 

(An optimal control approach)

6.1 Introduction

In this chapter, we shall construct a model for the PAYG (pay-as-you-go) fund-

ing method using optimal control techniques attempting also to obtain a deeper insight 

into the demographics and the inertia mechanisms of the PAYG model. The final target 

will be the establisment of a new proposal which may comply with the respective socio-

economic requirements (as inter-generational equity, solidarity, subsidiarity, people’s 

expectations, government’s planning etc.) and also applicable in the real world.

The PAYG method has been chosen as the subject of this research work because 

it is the basic vehicle (and in most times the only one) for funding the benefits paid by 

the Social Security Systems in many countries of the world. So we can say that (almost) 

everyone on this planet may be concerned (in some way) about the philosophy and the 

mechanisms underlying the process which is going to provide a respectable standard of 

living after retirement.

The concern mentioned above, is greater in the last years as the international 

situation (in demographical and economical factors) and the respective projections be-

yond the year 2000 have revealed funding problems threating the stability of the system 

or even the existence of it.
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The structure of this chapter will be based upon the following steps:

• Describe the phenomenon of "aging populations".

• Discuss the philosophy and mechanisms of the PAYG funding method pointing 

also the future problems which currently threatens the system.

• Realize the current problem of the PAYG method.

• Motivate and explain the details of a new approach formulating the model using 

optimal control techniques.

• Solve the theoretical model considering three different approaches starting from 

the most general (and most difficult) and going down to the most practicable 

(providing an algorithm for applications)

• Apply the model into real statistical projection data of Greece up to the year of 

2020 and obtain a "smooth" (consequently acceptable by all parts i.e. Govern-

ment, Employers, Employees) path for contribution rates and age of eligibility 

for normal retirement.

• Draw conclusions, scope for further research and simulations of the model.

6.2 An international demographic trend ("Aging populations")

Most of the western developed countries (and not only) exhibits a certain demo-

graphic trend called "Population Aging" which according to the projections will be ex-

panded rapidly after the year 2005. Although the title of the phenomenon is well de-

scriptive, we shall quote Chen’s (1987) definition who states that it is the "growth over 

time of the proportion of old persons according to some chronological age (usually 65) 

in the total population". So actually the population as a whole becomes more and more 

older!
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But how does it happen? There are two basic reasons which the coexistence of 

them accelerate the phenomenon even more and guide the population structure to ex-

treme patterns of high proportions of old aged lives.

The first reason is: The decrease in fertility rates. This decline, described as 

"baby bust" has followed the explosion of births which occurred immediately after the 

Second World War described as the "baby boom" of late 50’s and 60’s. Obviously, this 

certain decrease in fertility rates restricts the proportion of young people and sometimes 

(if it is below a certain level 2.1) also reduces the number of lives in the whole popula-

tion (see Section (6.4) for further analysis of fertility).

The second reason is: The increase in life expectancy. Again this phenomenon is 

related to the big changes happened in Post War years and continued in this last dec-

ades. Of course, changes occurred in many areas of human activity, but here we refer to 

the great medical achievements which managed to enhance substantially the life expec-

tancy. Now older people live even longer and consequently raise their proportion in the 

whole population.

At this point we must distinguish the two concepts of life expectancy (usually

o
denoted in actuarial mathematics by ex or ex) and the limiting age (usually denoted by 

to). Even the most modern medical achievements have not managed to affect (consid-

erably) the limiting age of human lives (see section (6.4) for further analysis).

In order to obtain a "numerical taste" for the phenomenon described above, we 

shall quote an extract from the relevant table of Brown (1992) which presents an inter-

national comparison for "aging population" (see table (6.2.1)).
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Table (6.2.1)

Aged Population Ratios (%)

Country 1985 2005 2025

% 65+ 75+ 85+ 65+ 75+ 85+ 65+ 75+ 85+

UK 15.1 6.3 3.1 15.3 6.9 3.8 18.7 8.1 4.0

USA 12.0 4.9 2.6 13.1 6.7 4.1 19.5 8.5 4.8

China 5.1 1.4 0.5 7.4 2.4 1.0 12.8 4.1 1.8

India 4.3 1.1 0.4 6.1 1.8 0.7 9.7 3.1 1.3

Japan 10.0 3.7 1.7 16.5 6.4 3.0 20.3 8.0 4.9

(Source: U.S. Department of Commerce 1987, 46-62). We shall also add some data for 

the Greek population (see next table (6.2.2).

Table (6.2.2)

Aged Population Ratio (%)

Country 1985 2005 2025

% 65+ 75+ 85+ 65+ 75+ 85+ 65+ 75+ 85+

Greece 15.3 6.0 1.4 18.4 7.8 1.6 20.0 10.0 2.6

(Source: Greek National Statistical Service, Tables 1995).

Aged population ratio (65+) is defined as the ratio of the old people aged above 65, 

over the total population of lives.

As we observe the problem threatens more or less all the countries examined in 

the previous tables for the ages 65+ in all countries.
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Apart from the absolute figures it will be interesting to consider the relevant in-

creases between the extreme values of the tables. So we can see that for U.K. the in-

crease in the population ratio 65+ between the year 1985 and 2025 is 23.8% while for 

India the same percentage is 97.9% i.e. the proportion of the population aged above 65 

will be almost doubled.

From the analysis above we may conclude that some countries will exhibit bigger 

problems as the "aging" phenomenon develops rapidly.

Conclusively, "Aging Populations" is a reality. But is it really a bad situation? 

How does it affect the standard social structure with respect to the security system? 

How does it affect the PAYG model? These questions will be discussed in the next sec-

tions.

6.3 Description o f the PAYG funding  method

The PAYG (Pay-As-You-Go) funding method is the simplest one (at least in its 

primitive form) as it requires no accumulation of funds. Normally there is a small fund 

only for liquidity purposes (i.e. managing the incidence of cash flows). The whole in-

sured group of lives is split into two subgroups: The active lives (or workers or con-

tributors...) and the retired lives (or pensioners). A specific time period is also chosen, 

usually one calendar year, where the following equation holds:

Total Contributions = Total benefits , (6.3.1)

So actually, during the calendar year contributions are collected and benefits are paid 

while at the end of the year there is a requirement for zero balance between them.

The problem above, is carried forward year by year theoretically up to infinity. It 

is obvious that PAYG model is an unfunded system i.e. there is no accumulation of
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funds in order to support future benefits either for the existing active lives or the retired

ones.

Each active life (in such a system) pays contributions to compensate the benefits 

of the retired lives while relying on the goodwill of the future generations of active 

lives who are going to contribute for his retirement benefits. But how willing will the 

next generation be to do so? Of course, this is the most critical question which actually 

touches the fundamental concept of this system i.e. Solidarity.

Inter-generational solidarity is the necessary requirement in order to build such a 

system. It is defined as the willingness of different groups of people (in the Social Se-

curity Context, the concept is defined amongst young and old generations) to participate 

in a common pool sharing actual experience (and consequently the loss (see Wilkie 

(1997)) of the environmental changes. This is not always easy and may be found when 

certain characteristics exist for the group of lives i.e.

1. Large number of lives (active, retired).

2. Great perspective for the continuous existence of the group theoretically (up to 

infinity).

3. The existence of a critical age where beyond that age the life can produce less 

than he needs for his living. (This should be true for the most of the individual 

lives).

The characteristics above may be easily realized in the whole population of a 

certain country.

Apart from the solidarity concept, there are two other important ones: the inter- 

generational equity and subsidiarity which are actually complementary.
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Inter-generational equity is defined as the situation where, under a certain type of 

measurement (normally financial one) all generations are equal to each other. (The fig-

ure for the measurement is the same for each generation).

The equity concept is the great demand of each society. So a good and clear pro-

cess for its measurement should be established. The most usual one, is the calculation 

of the implied rate of return. Quoting from Lapkoff (1991) we obtain that "The rate of 

return is the interest rate that equalizes the stream of contributions to the stream of 

benefits and would have been the interest rate applicable had the contributions actually 

been invested". This rate of return is calculated either for individual or cohorts of lives. 

The "rate of return" is equivalent to the "Internal Rate of Return IRR" (see McCutcheon 

& Scott (1986)). The comparison between the implicit rates of return reveals the exis-

tence and the magnitude of the equity concept of the system.

The subsidiarity concept complements equity as it is impossible to measure everything 

with figures or avoid random events which sometimes result to catastrophes. Subsidiarity is de-

fined as the willingness of different groups of people to abandon the equity concept (i.e. partially 

abandon their rights) and contribute in favour of other groups of people. So, for example a gen-

eration who lives during a war may not contribute too much in the social retirement scheme but 

surely must receive pensions at the retirement age. The lives of the next generation should ac-

cept to subsidise them (not only because they have fight in the war) as being their fathers or 

grand fathers. Conclusively, we could say that subsidiarity is the extreme form of solidarity 

(Willekes and van den Hoogen (1998)).

Closing this section we should mention that apart the inter-generational solidar-

ity, there are also other forms of solidarity between (as quoted in Willikes and van den 

Hoogen (1998)):
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• people with high and low income (income solidarity)

• males and females

• (unmarried and married) people who cohabit with single people

• households with one income and households with a double income

• healthy and less healthy people

6.4 The demographics o f  PAYG model

In this section, we shall discuss the different demographic factors and the way af-

fecting the PAYG model i.e.

(1) Fertility

(2) Immigration (Positive)

(3) Labour Force Participation

(4) Mortality

(5) Morbidity

(6) Withdrawal or Early Retirement

Generally speaking, the factors may be separated into two categories. The first 

affects entrance to the system ((1), (2), and (3)) while the second affects exit from the 

system ((4), (5) and (6). Let’s analyze separately them one by one.

(1) Fertility: This is the most important factor as regards the entrance of the 

system. Before we go further we shall define the concept of the "replacement ratio" 

which actually equals 2.1. "Replacement Ratio (RR)" is the required fertility rate (births 

per female member) in order to replace the population generations (Brown (1992)) i.e. 

obtain a stationary population. So the 2nd condition of section (6.3) which requires this 

continuous existence of the group of lives may hold for ever as the population will be
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increasing or at least constant. In the opposite case where the fertility rate is below the 

(RR) then the population is decreasing in the future and the PAYG system will exhibit a 

catastrophe.

It is also important to examine not only the absolute value of the fertility rates 

but also the trend between consecutive values. Increasing fertility rates will result de-

creasing contribution rates for the PAYG system while a decline in fertility rates (as it 

is the current situation, described in section (6.2)) will result in relevant increases.

Hence, the government (or the responsible authority for the smooth operation of 

the Social Security System) should have some kind of control mechanism for birth rates 

(if possible). For example a control mechanism may be established providing financial 

incentives (additional income or tax relief) for families with three or more children. At 

this point we should mention two of the important schools of thought for the time de-

velopment of fertility rates which have been described in recent years (we shall quote 

Brown (1992) for the relevant description).

"One school is represented by Easterlin "wave theory" of fertility (Easterlin, 

1987). Easterlin postulates that fertility rates rise and fall in a wave-like pattern with a 

cycle length (peak to peak or trough to trough) of two generations".

"The other common theory on fertility is presented by Ermisch (1983) Butz and 

Ward (1979) and others. The theory states that in a one-earner family if the worker’s 

real wages rise rapidly and the cost of children remains constant then family will have 

more children... In a two earner family if real wages rise rapidly but the wife has to 

leave the work force or interupt a career path to have and raise children then the cost of 

children rises and fertility rates will not change"
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(2) Immigration: This factor actually expands the work force of a country (if 

positive) or reduce it (if negative). So the whole analysis as regards the positive immi-

gration. So the whole analysis may be parallel with fertility except that the migrants are 

aged x which is not necessarily zero. Of course births are all aged zero!

The quality of the workers (skilled or not, educated or not,...) will be a critical 

issue for the control which should be established by the Government. Increasing en-

trance rates of unskilled workers may result bigger problems in Social Security System 

as training cost, unemployment benefits etc will offset any advantage of their contribu-

tions.

(3) Labour Force Participation: A secondary but also important index is the 

level of participation in the labour force of the potential active population. Obviously 

higher participation rates result in lower contribution rates for the PAYG system. So if 

a government cannot successfully control the births, it may attempt to provide incen-

tives in order to increase the labour force participation rate and consequently lessen the 

contribution rates for the Social Security System.

(4) Mortality: The important factor as regards exit from the system is the pattern 

for the mortality rates especially those of the retired lives (which are usually higher 

than for active lives). Lower mortality rates will result an enhanced life expectancy and 

consequently more retired lives with larger benefits as a total and finally higher contri-

bution rates for the existing active lives. (This is the current demographic trend de-

scribed in section (6.2).) In the opposite case where there is an increasing trend for the 

mortality pattern and hence lower life expectancy, the figures go the other way round.

We should stress again that medical achievements have managed to shift the life 

expectancy by keeping in older age bands more and more humans and not by shifting
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considerably the limiting age which remains almost the same during the last decades. 

Of course, enhanced life expectancy have considerable affects also in health care treat-

ment raising again the cost of the Social Security System.

Now as regards the controllability of this factor the only way of thinking may be 

an improvement. No government will attempt to increase mortality rates in order to re-

duce the cost of pensioners and finally relieve the Social Security System!!!

(5) Morbidity: Morbidity pattern is basically applicable to the active lives. Low 

morbidity rates will secure a satisfactory number of workers and consequently accept-

able levels of contribution rates for Social Security System. Morbidity pattern is also 

applicable to retired persons in conjunction with other recent changes in Society (e.g. 

the family structure) may increase the cost of Social Security System for the long term 

care of disabled retired persons or the respective disability pension for them.

(6) Withdrawal or early retirement: Similarly with the labour force participa-

tion rate, the withdrawal rate defines the people remaining in active lives. Small with-

drawal rates will result in (finally) smaller contribution rates. This is a factor where the 

Government may intervene and encourage late retirement (so actually low withdrawal 

rates) and hence keeping more lives as active workers.

Closing this section we shall refer to the normal retirement age which one of the 

most important issues for the calculation of the contribution rate. The normal retirement 

age is a powerful control variable in Government’s hands which may help to reduce the 

cost of Social Security System. Of course any decision should take in account people’s 

reactions and potential acceptance by the society.

Obviously, the normal retirement age draws the line separating the cohort of ac-

tive lives from the cohort of retired persons. Shifting this line to the right (increase of
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retirement age) will result in a smaller cohort of retired persons compared with the 

larger cohort of active lives and ultimately smaller contribution rates. The opposite rea-

soning may be applicable if we decrease the retirement age.

Finally, we should also mention the entry age as another control variable of the 

system. Of course age at entry may be fully controllable in a private pension scheme but 

not in the social security system.

6.5 The economics o f  PAYG model

The other critical issue of the PAYG model is the economics of the system. Re-

turning back to the basic equation (6.3.1) which balances the total contributions and 

benefits in each time period (one year) we should stress that (see Brown (1992)):

(a) Contributions are related to wages and salaries which move in line with the eco-

nomic growth and productivity while

(b) Post-retirement benefits are related to price inflation (securing a certain standard 

of living for retired persons).

So there is a gap between the rates which affect the contributions and benefits re-

spectively. Normally this is a positive gap (since the economic growth normally exceeds 

the price inflation) i.e. we have a positive real economic growth. Now the bigger the 

gap is the lower contribution rates will be applicable in the future.

Obviously, the gap may be fully controllable by each Government as the second 

item of the increase of benefits is directly defined by Government’s decision. So it may 

be a case where a decision may be taken for lower increases (than price inflation) in 

order to increase the gap and finally decrease future contribution rates. That means, the 

retired persons will pay some of the cost of the Social Security System by losing the 

initial standard of living.

253



Of course, such a decision is painful for a Government as the people won’t ac-

cept this solution and many social problems may occur.

The expenditure for the Social Security System should also take into account not 

only the retired persons (so the elderly dependency ratio) but also the training cost for 

the young ages or the unemployment benefits. It should be considered in the wider 

context of the Government’s budget which is the ultimate object which should be bal-

anced during a certain time period.

In the economics of PAYG we should also place the important implicit rate of 

return which defined in section (6.3) and according to Samuelson (1958) equals to the 

population growth plus the real wage growth rate (further analysis for this item will be 

provided in the next section).

Another issue in the economics of the PAYG model is the non-existence of an 

accumulation fund (or a small fund for liquidity purposes). Normally the equation

(6.3.1) stands alone with no provision for funding future benefits. In practice, modern 

models (see Nesbitt et al (1995)) assume some kind of a stabilization item in equation

(6.3.1) in order to manipulate in a more efficient way the whole system. In section (6.8) 

we examine how the existence of a stabilization fund may improve the total perform-

ance of the system and suggest a solution with the existence of a contingency fund.

Finally we must stress that the PAYG funding method may be used in the days of 

high inflation as the other fully funded methods exhibit difficult problems by inflation. 

(Inflation has destroyed several fully-funded schemes in Europe this century (see Trow-

bridge (1977)).
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6.6 The basic structure o f  PAYG model (Defined Benefit & Defined Contribution 

Plans)

As we generally know, there are two categories of pension funds: those with 

fixed contribution for their members (Defined Contribution) and the others with the 

fixed benefit (Defined Benefit). This categorization may also be applicable to the plans 

operating under a PAYG model. In order to investigate the mechanisms of the two cate-

gories mentioned above, we rewrite equation (6.3.1) while expanding it in the following 

form.

(A.L) x (I.C) = (R.L) x (I.P)

where, A.L = total number of active lives

I.C = individual contribution

R.L = total number of retired lives

I.P individual pension

So there are two options either to fix (I.C) or (I.P) in order to produce a certain 

type of plan. Now from equation (6.6.1) we may derive that the size of the cohort of 

lives whether for active lives or retired persons determines the relevant size of benefits 

or contributions.

For a defined benefit plan, large cohorts will have smaller contributions while 

smaller cohorts will exhibit larger contributions. For a defined contribution plan the 

situation above is applicable for benefits i.e. large cohorts obtain small benefits while 

small cohorts receive larger benefits.

A very interesting research for the advantages & disadvantages of the two types 

of plans is that of Lapkoff (1991) who also refers to Keyfitz (1985). The two authors 

investigate which is the most efficient way (fixing contributions or benefits) to obtain

255



inter-generational equity. The last condition is translated into the requirement of equal 

rates of return (as defined in section (6.3)).

As Lapkoff (1991) states in a stable population, ignoring the real economic 

growth (consequently and in a stationary one) the PAYG model produces identical rates 

of return for every cohort of lives (equal to the growth rate of the population). The 

problems arise in a non-stable population with cohorts of lives of different sizes. In this 

case, the large cohort of lives obtain high rates of return under a defined benefit plan, 

since the benefit is fixed while the contribution for them is smaller and the small co-

horts of lives obtain greater rates of return under a defined contribution plan (using 

similar reasoning as before).

Finally, the problem (as investigated by Keyfitz and Lapkoff) can be expressed 

as a minimization problem of the standard deviation of the different obtained rates of 

return for each cohort of lives.

Keyfitz’s simulations showed that defined contribution plans produce rates of 

return (for the different cohort of lives) with a smaller standard deviation than the re-

spective defined benefit plans. As Lapkoff points, Keyfitz’s result can not be general-

ized as he used an extract of a certain demographic pattern (The Post War baby-boom) 

ignoring the previous historical data. Furthermore, Lapkoff continued the investigation 

using a theoretical model of a stationary population with four cohort of lives (three of 

them as active and one for retired persons). Then the specific population was subjected 

to one abnormally sized cohort of lives.

Calculating the rates of return under a defined benefit and a defined contribution 

structure she proved that the minimum standard deviation is obtained for the defined 

benefit plan. Hence, it is more fair and consequently should be used for a PAYG model.
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In the real world most of the Social Security Systems have adopted the defined benefit 

structure or sometimes a hybrid model (a combination of the two structures) but which 

is heavily-weighted towards the defined benefit structure.

In Section (6.9), the basic structure of Lapkoffs model will be used as a vehicle 

to illustrate how the existence of a contingency fund in the PAYG method may secure 

(in a better way) the intergenerational equity by producing small deviations for the dif-

ferent obtained rates of return for each cohort of lives.

We shall return to the concept of the fund in section (6.9) providing the 

motivation for our proposal of a well-operated PAYG model.

6.7 The existing problem o f  Social Security Systems operating under the PAYG 

model

We have described up to now all the basic features of the underlying philosophy 

and inertia mechanisms of the PAYG funding method. Now if we combine this litera-

ture with the existing international demographic trend of section (6.2) we may easily 

identify the problem which actually threatens with an absolute catastrophe the Social 

Security Systems of all countries operating under the PAYG model.

We must also point out that the two demographic trends are placed in the same 

side so the ultimate additive effect accelerates the whole system even more. Decline in 

fertility rates and enhanced life expectancy with even worse projections (the projected 

elderly dependency ratio equals to 2:1 the year 2040 for the countries of the European 

Union) for their development, force the contribution rates up to unacceptable or even 

illogical levels for the future generations of active lives. The potential catastrophe is 

not just a theoretical threat but it describes the possible real situation i.e. It is very pos-

sible that generations beyond the year of 2010 or 2020 won’t accept to meet the cost of
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the baby boom of late 50’s and 60’s as the active cohort of lives will be quite small in 

order to subsidise the cohort of retirees.

Now the critical question which should be answered is the following:

"What can we do in the future in order to avoid undesirable problems with the funding 

procedure of the Social Security System?"

A lot of individuals and organizations around the world have attempted to solve 

the problem and propose possible actions in order to avoid the catastrophe of the sys-

tem.

The World Bank (1994) in its book with the title "Averting the Old-Age Crisis" 

proposed a multipillar approach. The first pillar will be supported by Social Security 

providing only a minimum guaranteed income. The second pillar will be supported by 

private fund management (insurance companies, pension funds etc...) providing a pen-

sion directly related with the contribution paid of each individual. Such a model has 

already been established in Chile from 1981 producing quite acceptable results up to 

now. Daykin (1998) provides an extensive review of the Chile’s model and all the other 

experience from different countries around the world which tried to reform their Social 

Security System.

Of course this second pillar proposal is not a panacea but it is a wise action to-

wards the right action. And as Daykin (1998) states "We can’t prevent the ageing of 

population but we can at least try to reduce the risk of it becoming a crisis".

Now in order to reduce the risk of crisis and produce a balanced Social Security 

System, there are some minor and major control variables. The minor variables are (a) 

the method of indexation of pension payments (b) the pattern for the accrual rates of 

benefit (c) the period of averaging of the final salary.
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The major two control variables in order to prevent sustainability of the system 

is the contribution rate and the normal retirement age.

Of course the control and consequently the modification of these variables is not 

an easy exercise as any solution or action should be acceptable by the society and the 

lives which are going to pay the cost. In order to achieve this target actuaries should 

communicate efficiently with all the parties (Government, Employers, Employees) 

identify the expectations of each one and finally propose a suitable solution which will 

be finalized by political terms and conditions.

6.8 Different solutions proposed fo r  the problem o f  social security system

In this section, we shall focus on three approaches (the second one actually con-

sists of a series of three papers) which discuss the three major control variables of the 

PAYG model. They are very interesting as all the authors (of the respective papers) use 

an entirely different approach from the other and consequently the whole puzzle of the 

PAYG model and Social Security System is revealed. Finally we should stress that, this 

is not a literature review but a selective presentation of solution proposals.

The three approaches are presented below providing a small summary and some critical 

comments.

1) Vanderbroek (1990): "Pension Funding and Optimal Control.

The paper formulates the PAYG model using optimal control techniques. It focus 

on the contribution rates searching for the design of an optimal path. The basic cri-

terion for optimality relies on the smoothing procedure of contribution rates along 

with the smoothing of the fund values. This last requirement (i.e. the smoothing of 

fund values) may not comply with our suggestion as appears in section (6.9). As we

259



are going to see in section (6.9) the potential ability of the fund to fluctuate deliber-

ately may absorb random effects and so improve the performance of our model. 

Hence, it should be interesting to examine a similar model eliminating the require-

ment of a smooth path for fund values.

2) (i)Nesbitt (1991), "Elementary models of reserve fund for OASDI in the USA.

(ii) Nesbitt et al (1995), "Some Financing Options for Social Security"

(iii) Nesbitt et al (1995), "Conclusions from Michigan Studies of Social Secu-

rity Financing".

The papers propose the introduction of a contingency fund into the standard PAYG 

model in order to avoid large fluctuations in equilibrium rates. It discusses the mainte-

nance of such a fund up to the levels of "100 to 150 percent of the current’s year outgo 

for benefits and administration".

It also introduces the concept of the n-year roll forward reserve (where n>2). 

This concept may stand between a full prefunding method and the PAYG model. Actu-

ally if n goes to infinity (or the limiting age of the current group) the n-year roll- 

forward reserve is a full-funding method. The n-year roll-forward reserve is defined as 

the sufficient reserve for covering liabilities and administration expenses for the n fu-

ture years.

So each year annual contribution will provide the projected benefits n years 

ahead rather than the outgo of the current year. The maintenance of such a contingency 

fund will prevent large fluctuations in the contribution rates.

Finally, we shall provide some basic algebra for the "n-year roll forward reserve 

method". The required notation is the following: (see Nesbit et al (1995))
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nA-3 i/i 2/k = Present value of the outgoes of the next n years at 31/12/k.

Ok = Outgo during the year k (occurring in the middle of the year).

n Ik  = Required contribution in year k (occurring in the middle of the year) in

order to cover the projected outgo n years ahead.

8 = constant force of interest.

Then we obtain the relationships below:

35 (2n-l)6

n-A-31/12/k — O k + ie  " +  ^ k + 2 C " + -  +  ^ k + n e

n ^ 3 1 /1 2 /k e  + [n ^ k + l ^ k + 1  ]  e “  ~ n  ^ 3 1 /1 2 /k + l

I = 0  en Ak+1 u k + ltn  c
-n5

There is no smoothing procedure used in this model.

( 6 .8 . 1)

(6 .8.2)

(6.8.3)

3) Brown (1992): Pay-as-you-go funding stability: An age of eligibility model.

The paper presents a full description of the demographics of the PAYG model. It 

also places the problem of Social Security into a wider context of the Government’s 

budget and planning for Canada. It states the current demographic trends and the re-

spective problems of Social Security Systems. Finally, the author proposes a solu-

tion (which may be easily adopted by the Canadian Government) based on the con-

trol (increase) of the normal retirement age while keeping constant the total expen-

diture of the Government for youths, unemployed and retired persons. He actually 

applies his ideas to the Social Security System of Canada defining the index 

LFEDR (Labour Force Expenditure Dependency Ratio), where

LFEDR = (l.7xY )+(lxU )+ (4.244 x 0 6jtk )
LF

(6.8.4)

Y those aged 0-19
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U = unemployed labour force 

065+k= aged 65+k and over 

LF = projected labour force

So keeping constant the LFDER index beyond the year 2006 he proposes a gradual 

increase of the normal retirement age up to 2030.

6.9 Discussion and Motivation fo r  a new proposal based on the concept o f  the 

"Intergenerational Equity"

We have seen up to now the basic features of a PAYG model (i.e. demographic 

and economic factors, potential structures, current problems caused in Social Security 

Systems and the respective proposed solutions). At this point, we shall attempt to use 

all this experience and data in order to formulate a new proposal which will be heavily 

based on the concept of "Intergenerational Equity".

As we have seen in the three approaches of section (6.8) the three major vari-

ables involved in the PAYG model are:

1) The reserve (surplus / deficit) fund.

2) The age of normal retirement.

3) The contribution rate.

Of course there is another one, the relevant pension benefit (i.e. the entitlement 

formula or the rate of benefit increase each year etc.).

Keeping in mind the analysis in section (6.6) and the results of Lapkoff which is 

in favour for a defined benefit plan, we shall construct such a plan (which corresponds 

better to "Intergenerational Equity" by
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a) Leave constant the entitlement formula and

b) Assume also that Government always decides that benefit increases should be 

equal to the annual inflation rate, so actually preserving the standard of living for 

the retired lives.

Now, returning back to the three major variables let’s proceed with some further 

analysis and the proposal for the role of each of them into our PAYG model.

1) The reserve (surplus /  deficit) fu n d

That usually, equals to zero (for the standard PAYG model). But as we are going 

to prove with our proposed modification, the existence of a certain contingency fund 

may improve the performance of the system with respect to "inter-generational equity". 

We shall assume a ficticious demographic pattern in our approach similar with that of 

Lapkoff (1991) quoting also from him the first five (5) assumptions as below. The sixth 

assumption contains our proposal for the introduction of a contingency fund. Hence we 

have the following assumptions.

(1) "A population with four age groups - three of working population and one of re-

tired".

(2) "To keep the arithmetic simple the population is assumed stationary with one 

individual at each age group and no mortality until the end of retirement".

(3) "Each worker (of the active population) contributes $1 per time period and thus 

$3 over their working lives".

(4) "In any one time period $3 is collected altogether and distributed to the retiree". 

So equation (6.6.1) always holds during one time period.
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(5) In a certain time period, say t, "the stationary population is subjected to one ab-

normally-sized cohort" of a double size. (For simplification we shall assume that

t*=2).

(6) After the occurrence of the abnormally-sized cohort and for the time periods 

(t=2,3,4,5) which remains in the active (t=2,3,4) or retired (t=5) population of 

lives, equation (6.6.1) does not hold while a contingency fund is created since 

the contributions and benefits remain constant (per person and per unit time). 

The fund exists at times t=2,3,4 while it disappears at the end of the 5th time pe-

riod compensating the pension benefits of the abnormally-sized cohort of lives. 

Under the situation described above, the rate of return for all cohort of lives

(even for the large one) will be the same (in the specific example equals zero which is 

the actual growth of a stationary population) (see table (6.9.1)).

Another situation may not be so extreme i.e. at time t=2 reduce the contribution 

as the large cohort appears but not down to 0.75 units, perhaps down to 0.9 units so a 

surplus of 0.6 units may be accumulated. Applying the same rule at times t=3,4 we may 

obtain an accumulated surplus of 1.8 units at time t=4 which will partially compensate 

the excess benefits for the retirement of the large group. At that time t=5 contribution 

for active lives will be raised to 1.4 units. Even in this situation the produced rates of 

return will have a smoother pattern than Lapkoff s original model but not zero deviation 

as they exhibit in the extreme previous case where the contributions remained stable 

(see table (6.9.2.)).

Finally, we may conclude that the existence of a "contingency fund" will have a 

favourable effect to the PAYG model as it:

(1) Absorbs the random fluctuations in the different demographic patterns.
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(2) Smooths the produced rates of return for each cohort of lives whether small or 

medium or large ones.

(3) Ultimately, approximates in a better way the concept of inter-generational equity 

by minimizing (as far as possible) the standard deviation of the produced rates of 

return of each cohort of lives.

So we shall use a non-zero reserve fund in our model, which has two characteristics.

(a) It fluctuates deliberately (in the short run) in order to absorb random fluctuations 

in mortality or fertility rates or due to any other cause.

(b) It returns to zero when the randomness disappears leaving the system to a new 

equilibrium point with respect to the other two variables.

In order to obtain (a) and (b) we should build a control model in where the re-

serve fund "should have the ability" to "distinguish" the random or the constant nature 

of a certain demographic pattern. Such a "clever" system may understand that the 

demographic pattern in Lapkoff s model is random and fully absorbs the fluctuations 

leaving constant the contribution rates and age of normal retirement (while in opposite 

cases fully pass the event to the other two variables).

Table (6.9.1)

T im e N u m b e r  o f  
A c t i v e  l i v e s

N u m b e r  o f  
R e t ir e d  l i v e s

T o ta l
C o n t r ib u t io n s

T o t a l
B e n e f i t s

A n n u a l
B a l a n c e

A c c u m u l a t e d
F u n d

1 3 1 3 3 0 0

2 4 1 4 3 1 1

3 4 1 4 3 1 2

4 4 1 4 3 1 3

5 3 2 3 6 -3 0

6 3 1 3 3 0 0
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Table (6.9.2)

T im e N u m b e r  o f  
A c t i v e  l i v e s

N u m b e r  o f  
R e t ir e d  l i v e s

T o ta l
C o n t r ib u t io n s

T o ta l
B e n e f i t s

A n n u a l
B a l a n c e

A c c u m u l a t e d
F u n d

1 3 1 3 3 0 0

2 4 1 3 .6 3 0 .6 0 .6

3 4 1 3 .6 3 0 .6 1.2

4 4 1 3 .6 3 0 .8 1.8

5 3 2 4 .2 6 - 1 . 8 0

6 3 1 3 3 0 0

2) The age o f  normal retirement

The age of normal retirement, determines the actual number of active and retired 

lives and consequently the potential wages / salaries and pensions. This variable should 

be linked with the concept of life expectancy. It may be fair that all cohorts of lives 

should rest (i.e. live as retired persons) equal percentage of their total lifetime. That 

means cohorts with high life expectancy should retire at a higher age and cohorts with 

low life expectancy to retire earlier. This may also comply with the view of Dilnot et al 

(1994) who points that "If the population is aging because of increased longevity then 

individuals will need a longer period in the labour force to obtain a given level of aver-

age consumption over their lifetime. This might lead to individuals prolonging their 

working lives by postponing retirement...". Keeping the rule of "equal percentage of 

rest" we may produce the following example. Assume that currently exists a cohort of

lives with life expectancy (at age zero i.e. eo) equal to 80 and the current age of normal 

retirement is 60. Then if another cohort of lives appears with life expectancy equal to 

84 then the age of normal retirement should be raised to 63 (the equal percentages may 

also be applicable but considering not the life expectancy but the years of contributions 

and the years of receiving benefits from the system).
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3) The contribution rate

Finally, the contribution rate should be linked with the fertility rates and the re-

spective population growth rate. The higher the growth rate the smaller the contribution 

rate which should be applied to the PAYG model. A certain rule (similar to the one 

found for the age of normal retirement and life expectancy) may be described in order 

to link and control the contribution rate with respect to the changes in the population 

growth rate. Of course the PAYG model should be able to identify whether it is a con-

stant or random change in the population growth rate and act accordingly.

Having established the underlying philosophy of the three major variables we 

shall construct a "clever" control model using them.

The reserve fund will fluctuate deliberately absorbing random demographic pat-

terns while targeting the zero value at certain terminal time points.

The age of normal retirement and the contribution rate will be controlled guiding 

them through a smooth path over time.

The smoothness of the path will be determined by a functional which shall 

weight the changes in the two variables. The weights will be parameters determined 

firstly by the people’s expectations and secondly (a) from life expectancy for the age of 

normal retirement and (b) from the population growth rate for the contribution rate. 

People’s expectation is a very important parameter which should be examined by sta-

tistical research, be interpreted and finally be incorporated in our model, modifying the 

weights (which have been calculated by technical reasoning before) of the two control 

variables i.e. In the previous example with respect to the life expectancy and the age of 

normal retirement the new cohort of lives with the high life expectancy (equal to 84) 

may prefer to pay a slightly higher contribution rate and ultimately retire also at age of
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60. Hence the weights in the smoothing process will be heavily based on people’s ex-

pectations.

6.10 Formulation and notation o f the proposed model using optimal control 

techniques

In this section we shall proceed with the typical formulation of our proposed 

model interpreting the general discussion and motivation of the last section into sym-

bols and equations. The proposed model is a deterministic one (but it may easily be 

transformed to a stochastic one).

The problem will be defined in the continuous form and in the next sections we 

shall degrade it, into the discrete type.

Firstly, we shall define the symbols 

F(t) : Reserve (accumulated) fund at time t 

c(t) : Contribution rate at time t 

r(t) : Normal Retirement Age at time t 

pl(t,x) : the population at time t aged x 

s(t,x) : total salary received by a person aged x at time t. 

b(t,x) : total benefit paid to a life aged x at time t. 

a : entry age in the labour force,

co : limiting age of the life band (1q,=0)

B(t,x) : Total benefits to be paid at time t if the relevant retirement age has been

x

fixed to age x i.e. B(t,x)= J pl(t,y)-s(t,y)dy

W(t,x) : Total wages / salaries (where the contribution rate c(t) is applicable) at time t 

if the relevant retirement age has been fixed to age x i.e.
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W(t,x)= J pl(t,y)-b(t,y)dy
x

(We assume that functions B(t,x) and W(t,x) for benefits and wages are known for 

every time t i.e. te[0,oo] and for any age in the life-band i.e. xe(0,(o). These forms 

may be derived from projection data of the demographics of the population).

Co : A standard value for the contribution rate. We may consider it as an initial 

value or average value near which, we try to place the path of the future con-

secutive values of C(t) using the smoothing process, 

ro : (Similarly with Co). It is the standard value for the retirement age.

8 : The constant force of investment rate of return applicable to the reserve

fund.

0 : The weight applicable to any change of the contribution rate from the stan-

dard value Co (consequently, 1-0 is the weight applicable to any change of the 

retirement age from the standard age ro).

Having defined the symbols above we may proceed with the formulation of the 

equations. The first one describes the development of F(t) i.e.

F'(t) = 5F(t)+ c(t)w(t, r(t))- B(t,r(t)) (6.10.1)

That is a differential equation for F which may be written generally as

F'(t)=G(F(t),c(t),r(t)) (6.10.2)

where G is a non-linear function of F(t),c(t) and r(t). As we can see equation (6.10.2) 

determines a dynamic system where

F(t) is the state variable and c(t), r(t) are the control (input) variables.

The c(t) and r(t) are the potential control variables for a Government when trying 

to balance the Social Security System. Of course there is another one the increase in
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pension benefits but as we have stated this variable should not be considered as a con-

trol variable assuming that it is fixed or linked with the relevant annual inflation rate.

Now the objective for the authority responsible for a Social Security System is 

the determination of a "smooth" path for the control variables guiding the system over 

time and targeting a zero (or almost zero) fund value. The existence of a "smooth" path 

requires that the relevant choices for c(t) and r(t) will comply with people’s expecta-

tions and the other technical criteria described in section (6.9).

Summing up all the literature above the question of optimal path may be an-

swered by minimizing the following expression i.e.

min £  {e • [ 100• (c (t)-c0)]2 + (l -6)• ( r( t)-r0)2 }dt (6.10.3)

The coefficient of 100, has been applied in the change of contribution rates in 

order to arrange the metric problems which exist as c(t) is a percentage less than unity 

and r(t) is a number greater than unity (near 65).

The weights 0 and 1-0 reveal the negative effect which occurs upon a change in 

the control variables c(t) and r(t) respectively. The parameter 0 would be obtained after 

statistical research and negotiations with all parties involved in the Social Security 

System (i.e. Government, Employers, Employees etc...).

Hence expression (6.10.3) minimizes the negative effects in the Society upon the 

certain changes induced in the Social Security System with respect to contribution rates 

and age of eligibility.

As we have seen in section (3.11), O’ Brien (1987) uses a similar approach 

smoothing the fund level around the desired level defined by the funding ratio.
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Vanderbroek (1990) also proposes a similar expression for minimization with re-

spect to the contribution rates and (instead of the age of normal retirement) the fund 

level.

Haberman and Sung (1994) proposes the minimization of the control error and/or 

the control action error i.e. minimization of the differences or the square differences of 

the actual and desired solvency levels and contribution rates respectively.

The functional of expression (6.10.3) does not contain the fund values as we as-

sumed that will fluctuate deliberately in order to absorb random events. Of course we 

shall require a small value for the fund level at the end of the respective period of ex-

amination at time t=T

i.e. F(T) e (-Y<+y)> Y > 0 (6.10.4)

or more strictly F(T)=0 . (6.10.5)

Combining equations (6.10.1) (6.10.3) and either (6.10.5) we obtain the typical form of 

an optimal control problem as below.

mi" £  {e[l00-(c(t)-c0)]2 + ( l-0 )-(r( t) - r0)2 }dt

F'(t) = 5F(t)+c(t)w(t,r(t))-B(tr(t)) ( 6 . 10.6)

F(0)=F0 and F(T)=0

In the next sections from (6.13) up to (6.17) we shall develop three different op-

tions of this basic system. The first called [C-C] model will be exactly the same with 

that described in system (6.10.6) which has continuous functions for Wages (W) and 

Benefits (B) while the decision for contribution rates and age of eligibility is also taken 

continuously (i.e. c(t) and r(t) are control variables of a continuous form).
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The second version of the model called [C-D] will have continuous functions for 

W and B but discrete form for c(t) and r(t) i.e. the decision for the control variables will 

be taken at discrete points of time.

Finally the third version of our model called [D-D] will consider discrete forms 

for all functions while we are going to relax the third strict condition of (6.10.5) sub-

stituting with condition (6.10.4) i.e. we shall demand to guide the fund value of the 

system to be "near" zero (and not exactly at the zero point).

6.11 General discussion applying the model to a stationary, stable, non-stable and 

stochastic population

It will be interesting to investigate the behaviour of our model under different 

demographic population patterns in order to obtain a further insight for its mechanisms, 

solution and finally the relevant level of efficiency for funding a Social Security Sys-

tem. For this purpose, we shall examine four different situations as stated in the title of 

this section (i.e. stationary, stable, non-stable and stochastic populations) assuming that

s(t,x)=s and b(t,x)=b Vt,x (6.11.1)

(i.e. salaries and benefits are fixed over time and age). This simplification does not de-

stroy the generality of our results but facilitates our calculations and focus our attention 

on the specific demographic pattern.

Stationary Population

Stationarity is not a realistic assumption for an ageing population but we shall 

also examine this case as provides a good framework (i.e. a simple population pattern) 

in order to build gradually our insight to the model and understand the interaction be-

tween the control variables cn, rn, Fn.
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So in the simplest case, of a stationary population the number of lives at each age 

band is constant every year, so the functions of wages W(t,x) and benefits B(t,x) do not 

depend on the time variable t but only on the age variable x. All the basic indices are 

also constant i.e. fertility rates (population growth equals zero) life expectancy etc. So 

at the beginning of such a PAYG system we may choose the optimal pair of values 

(contribution rate and age of eligibility) which complies with people’s expectation using 

the formula below

c0 W(t,r0)=B(t,r0) 

or analyzing W and B we obtain

r0 bD
c0-s-j lydy = b j lydy (6.11.2)

a r0

(where ly is the usual function of a life table, i.e. the number of lives at age y)

where (co,r0) is the optimal pair. Now according to the value of the initial fund F0 we

have the following cases:

1st Case" F„=0

Then c(t)=c0 and r(t)=r0 Vt>0 (6.11.3)

is the optimal path for c(t) and r(t) which satisfies the system (6.10.6) i.e.

(1) The expression (6.10.3) is minimized under (6.11.3) and the respective minimum 

value is zero.

(2) Equation (6.10.1) with the respective condition (6.10.5) also holds for the trivial 

function F when

F(t) = 0 V t>0
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If we sketch the Fund value F(t), the contribution rate c(t) and the age of eligibility r(t) 

with respect to the time variable t (in a four dimension linear space) then the produced 

graph will be a straight line parallel to the axis of the time variable and starting from 

the point (F,c,r,t)=(0,c0,r0,0)

2nd Case: F0 *0

Under this case we must distinguish two possible scenarios

(i) The fund value Fo is a small one such that condition (6.10.4) is satisfied then we 

may follow the solution of the first case above

i.e. c(t)=Co and r(t)=ro Vt>0

while F(t) remaining constant equal to Fo.

(ii) The fund value Fo is not a small one, so we require to increase or reduce it 

up/down to a certain level in order to satisfy condition (6.10.4). Then we should 

choose initial values for the contribution rate and the age of eligibility slightly 

greater or smaller than Co and r0 in order to increase or reduce the value of Fo (if 

positive or negative respectively).

As the time passes F(t) will go near to zero and the c(t), r(t) near to their optimal values 

of Co and r0 respectively i.e.

limc(t) = c0 and limr(t) = r0 . (6.11.4)t->co t-*oo

Hence the graph of the optimal path will be an asymptotic line (which may be the same 

after a certain point) to the straight line described in the first case. It is obvious that a 

compromise should be achieved between the starting point and the slope of the optimal 

path in order to minimize the first condition of the system (6.10.6). For example we 

may choose c(0) and r(0) such that
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F(0)=B(r(o))-C(o).W(r(0))

So the fund F will become immediately zero and then choose

c(t)=Co and r(t)=ro Vt > 0

Stable population

The stable population may be considered as a generalization of the stationary as 

the number of lives is not constant as time passes but increases or decreases with a con-

stant rate, say g (i.e. stationary is a stable population with g=0). A negative g would 

imply “ageing”.

Again we can choose a pair for the contribution rate and retirement age i.e. Co, ro 

respectively. Then we may write the formula

co' W(t,r0)= B(t,r0) or equivalently

ro to

c0 • y)- sdy = Jpl(t, y)- bdy or
a r0

c0 -s- j l y -e_Bydy = b Jly -e'^dy
a r„

(6.11.5)

and if we consider g as force of interest we may rewrite equation (6.11.5) in terms of 

the continuous annuity values i.e.

c0s • a*8̂ ,  = ba*8̂  (6.11.6)
u a:r„-al r0:co-r0l v '

Similarly with the argument of the stationary population and using the last equation

(6.11.6) (which does not depend on the time variable t) we may distiguish two cases:

1st Case: F=0

Again following the reasoning of the stationary population and since equation

(6.11.6) does not depend on the time variable the optimal path is defined from equations
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c(t)=c0 and r(t)=r0 Vt > 0

and consequently F(t)=0 Vt > 0.

2nd Case: F*0

Under this case we have also two possible scenarios.

(i) The fund value Fo is a small one (so similarly with the stationary population) we 

obtain again the optimal pair as for the 1st case leaving the fund value constant 

i.e.

F(t) = Fo Vt > 0 ,

(ii) The fund value of Fo is not a small one. Again similarly with the respective case 

of the stationary population we choose initial values c(0) and r(0) slightly differ-

ent from Co and r0 in order to modify the fund value (reduce or increase it up or 

down to zero) while as the time passes (and as the fund goes to zero i.e. 

F ( t ) - —  -»0) our choice will converge to Co and ro i.e.

limc(t) = c0 and lim r(t)=r0
t —»co t —>co

Non-Stable Population

In a non-stable population we may distinguish two cases.

1st Case

The demographic pattern may be approximated by a combination of stationary or 

stable populations. For example, we may have a population with a decreasing growth 

rate say g(t) where

g(0)=g0 and limg(t) = goo (6.11.7)
t—»co
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Consequently will be asymptotically stable with a growth rate of g^,.

In such cases we may provide similar reasoning as before and imagine the opti-

mal path lying in the area described by the lines (we have seen in the stable population) 

of the initial go and ultimate growth rates.

2nd Case

The demographic pattern can not be described with a combination of the standard 

ones. Then in such cases we can not obtain a first taste but only solve the system

(6.10.6) and design the respective optimal path according to the whole analysis de-

scribed in section (6.10) for our model.

Stochastic pattern fo r  population

The demographic pattern is a stochastic one. Then we should modify the equa-

tions and conditions of section (6.10) using expectations and variances for the respec-

tive variables of the system. Under this arrangement the minimization criterion will 

have the following format:

min f E{e[lOO(c(t)-c0)]2+(l-eXr(t)-r0) 2}dt

Similarly we shall use in equations (6.10.1) and (6.10.5) the quantities 

EF(t): expected value of the fund at time t

EB(t,x): expected value of B(t,x) at time t

EW(t,x): expected value of W(t,x) at time t.
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6.12 The use o f  linear functions fo r  Wages/Salaries (W) and benefits (B)

As we have already seen, our proposed model requires the use of functional 

analysis. Actually, in its general form described by the system (6.10.6) there is a ques-

tion of a functional minimization. Consequently, the solution of the problem in its gen-

eral form becomes very difficult. In order to tackle this difficulty and obtain a further 

insight in the model we shall discuss the use of linear functions for wages / salaries (W) 

and benefits (B). We shall provide the obvious reason why we may be allowed to con-

sider linear functions in our development of the solution without losing the full gener-

ality or insight of our model.

The obvious reason is the existence of the linearization procedure of any func-

tion.

We recall the definition of W(t,x) and B(t,x) from section (6.10) i.e.

Now considering the most general format for the population pf(t,y), the salary 

function s(t,y) and the benefit function (b(t,y) we obtain by integration W(t,x) and 

B(t,x) which may also have any general format.

(6 .12.1)

0)
and ( 6 . 12.2)
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Instead of these, we may use their linear approximations which are obtained by 

the standard linearization procedures. Firstly we have to choose the equilibrium point 

say (to,ro) then we obtain

(t-to)+757wM  (x-r°) (6.12.3)

(t- t°)+-|̂ B(cxi (x - r o) ■
1 x=ro

(6.12.4)

Finally, using the linearization procedure for a series of points we may approximate our 

general functions of W and B with a family of linear functions.

6.13 The continuous fo rm  o f the model [C-C] and the respective general solution

The [C-C] version of the model is the most general form of the problem. In order 

to handle it, we have to use functional minimization techniques. Let’s consider the sys-

tem of equations (6.10.6) i.e.

cioiiof M 100^ ) - ^ ) ] 2 + (1 -0 M r(t)~ ro]2}cit (6.13.1)

F'(t)=6F(t)+c(t)w (t,r(t))-B (t,r(t)) (6.13.2)

F(o)=F0 and F(t ) = 0 (6.13.3)

Firstly, we shall not discuss the general sufficiency conditions for optimality for 

the problem above (these may be found in Athans & Falb (1966)). We shall use a result 

(see Kamien & Schwartz (1981)) which states that at least one solution exist if  the inte-
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grand of (6.13.1) and the right hand side of differential equation (6.13.2) are convex in 

(F,c,r). Now the solution of the problem may be determined using the Hamiltonian of 

the system i.e.

The Hamiltonian is defined as:

;r(t)= e[ioo(c(t)-c0)]I + (i-e )[r (t)-r „ ]2 +

+ p(t)SF(t)+ p(t)c(t)w(t,r(t))-p(t)B(t,r(t)) (6.13.4)

where p(t) is the relevant costate vector of the system.

The optimal c(t) and r(t) controls can be found as the solution of the following

system

3^r
3c

= 0 and
3r

= 0 (6.13.5)

(sufficiency conditions for the existence of the minimum will be discussed in the next 

section). Differentiating the Hamiltonian according to (6.13.5) and equating to zero we 

obtain

201OO2[c(t)-co]+p(t)w(t,r(t)) = 0

2(1 -  0)[ r(t)-  r0 ]+ p ( t ) c ( t ) - ^  • W (t, r(t))- p(t)
3

3r(t)
■B(t,r(t))=0

(6.13.6)

(6.13.7)

As we observe equation (6.13.6) may be solved with respect to c(t) and then be substi-

tuted in (6.13.7) eliminating the c(t). But the new equation which is produced from

(6.13.7) is a partial differential equation with respect to r(t) and consequently not easily 

solveable.

Overcoming the last difficulty, we may generally write the solution as

C(t) = G ,(t,c0 ro,0,p(t)) (6.13.8)
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r(t)= G 2(t,Co,r0,e,p(t)) 

(where G i ,G2 are the suitable functions).

(6.13.9)

Now p(t) is given by the following differential equation

, SJFp ---------
dF

or equivalently differentiating the Hamiltonian with respect to F we obtain

(6.13.10)

P'(t)= - Sp(t)<=> p(t)= p0e '8t , (6.13.11)

Substituting (6.13.11) into (6.13.8) and (6.13.9) and then the resulting equation into the 

initial (6.13.2) we obtain a differential equation with respect to F(t).

Now solving this equation with respect to F(t) given the conditions (6.13.3) for 

the boundary values of F(0) and F(T) we may determine the po which appears in equa-

tion (6.13.11).

Finally, the optimal path for c(t) and r(t) are defined by function G3,G4 as

c(t)= G3(t,co,ro,0,5,po) (6.13.12)

r(t) = G4(t,co,ro,0,0,po) , (6.13.13)

6.14 Special case fo r  the [C-C] model using linear functions fo r  W and B

As we have seen in the last section the general solution of the [C-C] model is 

quite complex, so we shall simplify it, by approximating with linear functions the total 

wages / salaries (W) and total benefits (B). Referring to the discussion of section (6.12), 

let’s assume the following forms,

W(t,r(t)) = k,t + k2r(t)+ X.J (6.14.1)

B(t,r(t))= k,t + k2r(t)+k3 (6.14.2)
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where ki,k2,k3,Xi,7.2,X3 are constant coefficients

(e-g- X2 = ^ j w M t) ) etc... Substituting (while differentiating if necessary)
r(t)=r{

equation (6.14.1) and (6.14.2) to (6.13.6) and (6.13.7) we obtain

201002 • [ c(t)-  c0 ] + p(t)• [V  + M 0 + ^3] = 0

2(1 - 0)- [r(t)~r0]+ X2p(t)-c(t)-k2p(t) = 0 ,

(6.14.3)

(6.14.4)

We shall rearrange the terms of the equation above in order to obtain the system 

in the standard format and solve it by using the relevant determinants i.e.

201002 c(t) + X2p(t>(t) = 201002 c0 -  X,tp(t)- X3p(t) 

X2p(t)c(t)+ 2(l - ©)r(t)= 2(1—0) r0 + k2p(t) ,

(6.14.5)

(6.14.6)

The solution of the system is given of equation (6.14.10) & (6.14.11) and provided as:

(6.14.7):(t)= 2ai) and r ( t ) = 2 ± )
D D

where

D = det
201002 X2p(t) 
> 2p(t) 2(1-0)

= 40(1 - 0)1002 ~[X2p(t)]2 , (6.14.8)

In order to obtain a unique solution D*0 i.e.

p(t)i±^V0Fe). (6.14.9)

DC(t) and Dr(t) are the determinants which are produced by substituting the column of

the relevant index to the determinant D keeping also in mind equation (6.13.11) for the 

costate variable p(t) and substituting into the solution of c(t) and r(t) we finally obtain

:(t)_  [2( l - e) H 2910Q2co - V p , ^ 51 -X 3p0e-Sl J -[x 2p0e~51] [2 (l-0> o + k2p0e~ } R  J())

40(l -0)l 002 - [x 2p0e“' 15
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|2910Q1]-l2(l-e)r0+k;p1,e-‘' | - |x ;p0e-1'll2eiOOzca-X,tp„e-i>-X1ple^]
40(1 —0)1001 - [ i . ;p,,e * ] 2

Equations (6.14.10) and (6.14.11) should be combined with equation (6.13.2) and 

using conditions (6.13.3) obtain the value of po.

Now we shall discuss the sufficiency conditions for the existence of the mini-

mum.

The following matrix Ai should be positive definite

201002 /.,p(t)'

> 2p(t) 2(1 -  9)

i.e. the relevant determinant should be positive definite which is interpreted with the 

two inequalities (a) and (b) below 

(a): 26-1002>0

a2;r d2jr
A ,  =

5c2
d2W

ôrôc
52̂ r

dcdr dr

(b): det(A,)=41002e (l-e )-[^ 2p(t)]2 >0

The last inequality holds if and only if 

p(t)e (6.14.12)

Closing this section we shall provide some comments with respect to the solution of the 

system (see equations (6.14.10), (6.14.11)) and its behavior according to the change of 

each parameter. Firstly about the ultimate values of our control i.e.

limc(t) = c0 and limr(t) = r0 , (6.14.13)t—►«> t—>co

Equation (6.14.13) may be easily proved considering the solution of c(t) and r(t) and 

since

lime”51 = 0 (6.14.14)t—>oo
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Hence, the ultimate values for c(t) and r(t) converge to the equilibrium point 

(co,ro). Now as regards the behavior of the solution with respect to the different pa-

rameters involved we may draw some conclusions observing (a) the position of the pa-

rameter (i.e. whether it is in the numerator or denominator of the fractions in equations 

(6.14.10) and (6.14.11)) (b) the sign (positive or negative) and the relevant coefficient. 

So according to those rules we may state that:

(1) Generally speaking, the two control variables c(t), r(t) have the same expression 

in their denominator while in their numerators have four brackets. Diagrammati- 

cally in the following sense.

c(t): [A, ]- [A3 ]— [A, ]- [A, ] (6.14.15)

r(t): [A,] [A4] - [ a J  [A,] (6.14.16)

From the last two expressions and as [A3] appears both in c(t) and r(t) with the 

same sign and the terms [A2], [A4] have opposite signs we may identify that c(t), 

r(t) are developed in opposite directions (when c(t) increases the r(t) decreases 

and vice versa).

(2 ) co is in the numerator of c(t) with positive sign, so as this parameter increases the 

same happens to the magnitude of the solution for c(t). co also appears in the 

numerator of r(t) but with the negative sign consequently the magnitude of r(t) 

but with the negative sign consequently the magnitude of r(t) will decrease as Co 

increases.

(3) A similar situation (as with comment (2)) applies for the ro parameter. As it in-

creases then r(t) increases while c(t) decreases.

(4) As regards the Ô force of interest we may say that the higher is the faster the so-

lution converges to its ultimate state of (co,ro).
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(5) Parameters X, 1,̂ .3 appear in numerator of c(t) with negative sign so the higher val-

ues will result smaller values for c(t). The opposite result holds for the r(t) as 

Xi,X,3 appears in numerator but with positive sign. This situation may be proved 

by general reasoning as Xi,X.3 appears in the function of wages. So the bigger X3 

(constant term in function) or the bigger Xi (the slope of function with respect to 

time) the less contribution required.

(6) Parameter k2 (the slope of benefits with respect to age of normal retirement) ap-

pears on the numerator of c(t) with negative sign and on the numerator of r(t) 

with positive sign (similar results as before may be drawn).

(7) Parameter X2 (the slope of wages with respect to age of normal retirement) ap-

pears both in numerator and denominator of c(t), r(t) with the same negative 

sign, so its effect is the same for the control variables while the direction of the 

effect depends on the magnitude of the parameters in the expressions.

(8) Finally parameter 0 appears both in numerator and denominator of c(t) and r(t) 

(also the 2nd power appears). From its pattern we may conclude that c(t) in-

creases and r(t) decreases as 0 increases (Expected also by general reasoning as 0 

is the weight of c(t)).

6.15 An hybrid fC-DJ model and the respective general solution

The general model in the continuous form [C-C] (apart from being very difficult) 

it is not so practicable as describes the contribution rates and age of normal retirement 

with the continuous functions c(t) and r(t) respectively.

Obviously it is very difficult in practice to change these variables "continuously" 

(i.e. every week, or every day, or every hour!...). In this section we shall degrade our 

problem approximating better the real world. We shall observe our process at discrete
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time n=l,2,... Now we need to find the equivalent symbols and expressions for this type 

of model. Firstly, we have to find the equivalent annual accumulation factor J=l+i 

which is derived as

J = 1 + i = e5 , (6.15.1)

Then the other symbols are defined similarly as in section (6.10) keeping in mind the 

new discrete format of the process (substitute variable t with n) i.e.

Fn: Reserve fund at time n (at the end of the n-th year).

cn: Contribution rate during the n-th year, (constant for whole year)

rn: Retirement age in the n-th year (constant for the whole year)

pl(n,x) , s(n,x) , b(n,x) , B(n,x) , W(n,x)

are defined similar as in section (6 .10 ) with the consideration of the discrete variable n. 

So for example

B(n,x) stands for the benefits paid during year n if the age of normal retirement is fixed 

at x.

Now the basic differential equation (6.10.1.) becomes difference equation i.e.

F,.,=F„J + C ,w (n ,r j-B (n ,r ,) , (6.15.2)

and the functional index of minimization (substituting the integral with the summation 

operator and taking the differences between consecutive values of cn and rn in order to 

determine a smooth path) i.e. the (6.10.3) expression becomes

minZ  { 0 [ l ° ° (cn - c „_,)]2 - t - ( l -e ) [rn- r n_,]2} , (6.15.3)
n = l

We should state that expression (6.15.3) is very similar with the one used by Benjamin 

(1989) in the context of funding a defined pension scheme (in that approach m=4). Fi-

nally, expressions (6.10.3) and (6.15.3) are special cases of the general expression used
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by Haberman & Sung (1994), where the smoothing procedure asumes target values for 

each year n.

xrn : target normal retirement age at time n

TCn : target normal contribution rate at time n

So under the notation above we have that

• (6.10.3) uses xrn = ro and xcn = Co while

• (6.15.3) uses xrn = rn.i and xc„ = cn-i

We should also mention that expression (6.15.3) differs from expression (6.10.3) 

in the sense that the former smooths the path for cn and rn using the first differences 

while the latter smooths the path for c(t) and r(t) using the differences of these values 

from some standard ones (i.e. Co and ro).

The equivalent boundary conditions are the following

F0 and Fm=0 , (6.15.4)

In order to proceed with the solution of the model we shall combine the difference 

equation (6.15.2) with (6.15.4) and produce one "large" equation as below

m
F„J"’ + £  [cnW (n ,r,)-B (n ,rJ] J ” " = F m = 0  , (6.15.5)

n=l

Now observing the last equation and the expression (6.15.3) we conclude that our 

minimization problem requires lagrange multipliers (i.e. it is an optimization problem 

with constraints). Hence, the problem is restricted to the expression below:

minA(c,,...,cm,r,,...,rm,A.,c0,r0,0,J,F0) , (6.15.6)

where A should be minimized with respect to X.,Ci,C2,..., cm,ri,r2,...,rm and is the fol-

lowing function
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(6.15.7)

A = i  {e[lOO(c„ —c„_,)]2 + ( l - 6)[r,-r„_,]2}-
n=l

+ M F .J " + Z  k w (n .O -B (n ,r„ )]r-
n=l

So the function is a real-valued function with (2m+l) free variables. Its minimization 

requires partial differentiation to each of the (2 m+l) variables then equating to zero and 

finally solve of the system of (2 m +l) simultaneous equations i.e.

<9A , <9A . , 5A . , . , _—  = 0 and —  = 0 and —  = 0 where i=l,2,...,m  
dc, dr, dk

(6.15.8)

As we observe the general solution is again quite complex, so we shall consider in the 

next section linear functions for W and B in order to obtain an analytical expression for 

the partial derivatives of the system (6.15.8).

6.16 Special case fo r  the [C-D] model using linear functions fo r  W and B

Similarly with section (6.14) we assume the linear functions for W and B given 

by equation (6.14.1) and (6.14.2) (in the discrete form) i.e.

W(n,rn ) = X,4n +A.5rn + k6 

B(n,rn)= k 4n + k5rn+ k 6

Now according to the system (6.15.8) we obtain,

2OO0(c, - c i.,)-2OO0(cj+1 - c 1)+X,[7.]i + >.2r1 +^.3] = 0

2(1 -eXr, - rH) -  2(1 - eXrw -  r,)+ - k ,]= 0

F .J " + S  [c.W (n,r,)-B (n,r„)]j"-"=0 i=l,2,...,m
n=l

(6.16.1)

(6.16.2)

(6.16.3)
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Unfortunately we arrive again at (6.11.3) a quite complex system of simultaneous equa-

tion which may be solved only by numerical methods.

6.17 The discrete form  o f  the model, called [D-D] and the respective algorithm

The two previous models [C-C] and [C-D] are interesting from the theoretical 

point of view but may not be applicable in practice, as require the continuous form for 

the functions of wages W and benefits B, over the interval [0,T],

In this section we shall develop another version of the basic model, called [D-D] 

which may easily applicable to real data. We shall consider that functions of W and B 

are defined (by some kind of projection) for discrete values of (n) and (x). So actually 

we have a table with respect to each function.

Table (6.17.1)

x \  n 
x \

0 1 2 ...

65

Projected values 
of W(n,x)

66

67

Table (6.17.2)

x\  n 
x

0 1 2 ...

65

Projected values 
of B(n,x)

66

67

Similarly with section (6.15) equation (6.15.2) also holds in this version of the 

model i.e.

F..,=F»(l + 0+c.W (n,r,)-B (n ,rn) (6.17.1)

Now in order to find the optimal ("smoothest") path we shall simulate different 

paths for (cn,rn) under the following simple rules
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cn + Ac 

Cn
cn-Ac

(6.17.2),
rn +Ar

r „

rn -A r
(6.17.3)

i.e. consider small changes Ac and Ar starting from (co,ro) and finally after m years 

calculate the value of the functional of expression (6.15.3) i.e.

I  {0[lOO(c„ -c„_,)]2 + (l-0 )  [r„ — r„_,] 2} (6.17.4)
n=l

Finally, we shall relax the second condition of (6.15.4) (which states that the final value 

Fm should be zero) and demand only that Fm should be "near" to zero i.e.

Fme(-y,+y) (6.17.5)

(where y is a small positive number),

Then we shall collect all the paths which produce a final value Fm in the required 

interval (-y,+y) and examine which minimizes expression (6.17.4).

Hence, that is going to be the optimal path. Of course the whole procedure is not 

simple! Assuming that we want to find the optimal path for the next m years (i.e. de-

termine the path from (co,ro) up to (cm,rm)) then we should simulate and check 9m 

paths!!! (The proof for the number of the paths is obvious because having defined 

(cn,rn) the next possible positions for (cn+i,rn+i) are actually nine. Using standard theory 

of combinations we obtain the last number of 9m paths.)

Now it is more clear that the solution by the simulation techniques is not just 

"simple" but for large values of m (e.g. m=20 or 30 which may be practicable) the solu-

tion procedure is quite heavy even for the fastest computer.

For the reason above and in order to obtain a solution for the real data used in 

the next sections we shall modify this algorithm by drawing some additional comments 

about the demographic pattern and for the development of the reserve fund.
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Closing this section, we shall provide a further notice for the small changes Ac 

and Ar which appear in the algorithm for the simulation of the path for cn and rn.

These quantities should be small (depending also on the selected time unit, if we 

assume that the time unit is a calendar year then small means

0<Ac<l% (6.17.6)

and

0<Ar<l (6.17.7)

(in the last inequality 1 stands for one year of age).

We must also notice that some relationship should exist between the choices for 

Ac and Ar. A full investigation of the problem may require several simulations with 

different values for the pair of Ac and Ar in order to decide which is the optimal path 

for the contribution rate and age of normal retirement. For example the first simulation 

may consider annual changes of 0.25% for the contribution rate and 0.25 (i.e. three 

months) for the age of normal retirement. The second simulation may consider annual 

changes of 0.5% and 0.5 (i.e. six months) respectively and so on. Finally we may be 

able to choose the optimal path of all the set of simulation.

6.18 General description o f  the demographic pattern in Greece (Projections up to 

2020)

We have already seen in section (6.2) that Greece follows the international 

demographic trend of the "aging populations". As we observe from table (6.2.2) the eld-

erly dependency ratio for those lives aged 65 and over will steadily be increased the 

next 20 years (from 15.3% in 1995 will go up to 20.0 in the year 2015).
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It has also the standard characteristics of an "aging population" i.e. a decreasing 

pattern for fertility rates while increasing for life expectancy. A further insight may be 

gained by considering table (6.18.1) which presents a projection (using statistical data 

up to 1995) up to the year 2020. It will be also helpful to observe the 3-D diagram 

(6.18.1) which presents the data of table (6.18.1) from the age band [25-29] up to 

[90+...]. Considering the normal practice where a young person enters the labour force 

approximately at age 25 (after completing his studies and the compulsory service of 1.5 

years to the Greek Army etc.).

Then diagram (6.18.1) presents both the active group and the group of retired 

lives. As we can see the graphs of the first four age bands i.e. [25-29], [30-34], [35-39], 

[40-44] generally decreases while all the remaining graphs of the respective age bands 

have an increasing trend. We may also observe from table (6.18.1.) that the total popu-

lation almost remains constant (actually has a marginal increase) near to 10.5-11 mil-

lions.

The Greek government has attempted (in the last 15 years) to provide some in-

centives (financial) in order to increase the fertility rates but they were unsuccessful up 

to now. Consequently, under the situation described above and the even worse perspec-

tives with respect to the funding process of the Social Security System, government has 

started a dialogue process with all the parties involved in the funding process of the 

system.

Although the system has already been reformed once in 1991 the proposed 

changes appear now non-adequate in order to solve efficiently the funding problem at 

the beginning of the next century.
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Table (6.18.1)

AGE
BANDS

1 9 9 5

MALES FEMALES

2 0 0 0

MALES FEMALES

2 0 0 5

MALES FEMALES

2 0 1 0

MALES FEMALES

2 0 1 5

MALES FEMALES

2 0 2 0

MALES FEMALES

0 - 4 2 6 8 ,  9 2 5 3 ,  1 2 8 5 ,  3 2 6 7 , 9 3 0 0 ,  9 2 8 2 , 5 2 9 8 , 1 2 7 9 ,  9 2 8 9 ,  9 2 7 2 , 2 2 8 5 ,  1 2 6 7 ,  6
5 - 9 2 9 4 ,  1 2 7 8 , 3 2 7 1 ,  6 2 5 6 ,  0 2 8 6 ,  5 2 6 9 ,  3 3 0 2 , 1 2 8 3 ,  9 2 9 9 ,  4 2 8 1 , 3 2 9 1 , 2 2 7 3 ,  6

1 0 - 1 4 3 5 7 , 7 3 3 7 , 8 2 9 8 ,  1 2 8 2 ,  0 2 7 3 ,  5 2 5 7 ,  8 2 8 8 , 4 2 7 1 , 0 3 0 4 , 0 2 8 5 ,  7 3 0 1 , 3 2 8 3 ,  1
1 5 - 1 9 3 9 5 ,  3 3 7 3 ,  5 3 6 1 ,  6 3 4 1 , 4 3 0 0 ,  0 2 8 3 ,  8 2 7 5 ,  4 2 5 9 ,  6 2 9 0 ,  3 2 7 2 ,  9 3 0 5 ,  9 2 8 7 , 5
2 0 - 2 4 4 0 5 ,  0 3 8 5 ,  6 3 9 9 ,  9 3 7 9 ,  4 3 6 3 ,  3 3 4 4 , 2 3 0 2 ,  0 2 8 6 ,  7 2 7 7 , 7 2 6 2 ,  6 2 9 2 , 5 2 7 5 ,  8
2 5 - 2 9 4 0 3 ,  4 3 9 4 , 7 4 0 9 ,  8 3 9 1 ,  1 4 0 1 ,  6 3 8 1 , 9 3 6 5 ,  2 3 4 6 ,  7 3 0 4 , 3 2 8 9 ,  4 2 8 0 ,  1 2 6 5 ,  3
3 0 - 3 4 3 7 5 ,  3 3 7 6 ,  1 4 1 0 ,  1 4 0 0 ,  9 4 1 2 , 4 3 9 3 ,  9 4 0 4 , 2 3 8 4 ,  6 3 6 8 ,  1 3 4 9 ,  6 3 0 7 , 4 2 9 2 , 4
3 5 - 3 9 3 6 3 ,  4 3 6 4 , 7 3 7 9 ,  8 3 8 0 ,  1 4 1 1 , 3 4 0 2 ,  3 4 1 3 ,  5 3 9 5 ,  4 4 0 5 ,  6 3 8 6 ,  2 3 6 9 ,  7 3 5 1 , 3
4 0 - 4 4 3 4 6 ,  6 3 4 3 ,  1 3 6 5 ,  9 3 6 7 ,  5 3 7 9 ,  7 3 8 0 ,  9 4 1 1 ,  0 4 0 3 ,  1 4 1 3 ,  5 3 9 6 ,  3 4 0 5 ,  6 3 8 7 , 2
4 5 - 4 9 3 2 7 ,  6 3 2 7 , 7 3 4 5 ,  0 3 4 2 , 5 3 6 3 ,  2 3 6 6 ,  2 3 7 6 ,  9 3 7 9 ,  5 4 0 8 , 3 4 0 1 ,  8 4 1 0 ,  8 3 9 5 ,  0
5 0 - 5 4 2 9 2 , 0 3 0 0 ,  1 3 2 4 , 9 3 2 7 , 5 3 4 1 , 2 3 4 1 , 2 3 5 9 ,  0 3 6 4 , 7 3 7 3 , 2 3 7 8 , 2 4 0 4 , 0 4 0 0 ,  3
5 5 - 5 9 3 1 0 ,  6 3 3 0 ,  0 2 8 6 ,  3 2 9 8 ,  6 3 1 7 ,  6 3 2 4 , 7 3 3 3 ,  5 3 3 8 ,  3 3 5 1 , 9 3 6 1 ,  9 3 6 5 ,  6 3 7 5 ,  3
6 0 - 6 4 3 0 9 ,  8 3 3 2 , 2 2 9 7 ,  1 3 2 4 , 3 2 7 4 , 7 2 9 3 ,  5 3 0 4 ,  6 3 1 9 ,  1 3 2 1 , 2 3 3 3 ,  0 3 3 8 , 9 3 5 6 ,  2
6 5 - 6 9 2 6 5 ,  8 3 0 1 , 3 2 8 3 ,  6 3 1 8 ,  1 2 7 5 ,  2 3 1 2 , 3 2 5 4 , 6 2 8 2 , 7 2 8 4 , 3 3 0 8 ,  4 2 9 9 ,  9 3 2 1 , 9
7 0 - 7 4 1 7 8 ,  1 2 2 2 ,  1 2 2 8 , 7 2 7 5 ,  6 2 4 9 ,  4 2 9 4 , 9 2 4 1 , 9 2 8 9 ,  4 2 2 6 ,  9 2 6 4 , 0 2 5 3 ,  3 2 8 8 , 1

: 7 5 - 7 9 1 1 7 , 7 1 5 7 , 0 1 3 9 ,  5 1 8 8 ,  0 1 8 5 ,  0 2 3 8 ,  4 2 0 1 , 5 2 5 4 ,  9 1 9 9 ,  7 2 5 3 , 7 1 8 7 , 5 2 3 1 , 7
8 0 - 8 4 8 7 , 4 1 2 3 , 4 7 8 , 5 1 1 2 ,  7 9 9 ,  0 1 4 2 , 1 1 3 1 ,  1 1 7 9 ,  9 1 4 7 , 7 1 9 7 , 7 1 4 6 , 2 1 9 6 ,  5
8 5 - 8 9 4 2 ,  3 5 7 ,  6 4 4 ,  6 6 7 , 2 4 4 , 7 6 7 , 8 5 6 ,  5 85 ,  6 7 9 ,  2 1 1 4 ,  0 8 9 ,  0 1 2 5 ,  0

90 + 1 7 , 0 2 6 ,  2 1 8 ,  9 2 8 , 2 2 4 ,  1 3 8 ,  1 2 5 ,  5 4 1 , 2 3 4 ,  1 5 4 , 9 4 7 , 4 7 3 ,  1

TOTAL 

GRAND T<

5 . 1 5 8  5 . 2 8 5  

1 0 . 4 4 3

5 . 2 2 9  5 . 3 4 9  

1 0 . 5 7 8

5 . 3 0 3  5 . 4 1 6  

1 0 . 7 1 9

5 . 3 4 5  5 . 4 4 6  

1 0 . 7 9 1

5 . 3 7 9  5 . 4 6 4  

1 0 . 8 4 3

5 . 3 8 1  5 . 4 4 7  

1 0 . 8 2 8

Source : National Statistical Service of Greece (1995)



D i a g r a m  (  6 . 18.1  )

A  p r o j e c t i o n  f o r  t h e  G r e e k  p o p u l a t i o n  

u p  t o  t h e  y e a r  2 0 2 0
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□ 80-84
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■ 90+



Now the question is: which is the solution? We may argue as before and finally 

propose the model of this chapter as a small contribution to the large problem of Social 

Security System.

Of course, our simulation will still be theoretical without taking in account all 

the complexities involved. We shall use table (6.18.1) assuming that we stand on a 

equilibrium point and then we shall design a potential path for cn and rn over the next 

years up to the year 2020.

Finally as regards the reliability of the data of table (6.18.1) we must stress that 

the projection has been based on the most recent experience (up to 1995) of the whole 

population of Greece. So we may assume full credibility to the figures shown in the 

mentioned table.

6.19 Application o f the ¡D-D] model to the projected population o f Greece and the 

respective simulation algorithm

In this section, we shall describe the respective algorithm (data, assumptions, 

equations, techniques etc.) used for the simulation of the [D-D] model to the projected 

population of Greece shown in table (6.18.1). The algorithm may be described by the 

following ten model assumptions:

1st Assumption

Firstly, we identify the potential trend of the optimal path for cn and rn. As we 

have comment in section (6.18) Greece exhibits the international demographic trend of 

"aging populations" (the elderly dependency ratio is shifting to the right without any 

fluctuations to the left side of the age band). So actually the potential optimal path
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should have a steadily increasing trend. Under this situation we may modify equation

(6.17.2) and (6.17.3) reflecting the specific trend

C n + 1 —
|c„ + Ac
lc.

(6.19.1) r n + l =
K + A r
k

(6.19.2)

As a first step this modification will degrade the number of potential simulated 

paths down to 4m (in section (6.17) were 9m paths).

2nd Assumption

The starting point of our simulation is the 1st of January 1998 (i.e. the first year 

(n=l) is the calendar year 1998) and the ending point is the 31st of December 2020 (i.e. 

the m-th last year is the calendar year 2020), consequently m equals 23 (m=23). That 

means we must simulate 423 paths, (where 423 equals to some hundreds of trillions!!!). 

But we are not going to do so because,

a) that was going to be a very heavy procedure even for a powerful computer 

station.

b) (more important) we have to consider some kind of boundaries for the values 

of the reserve fund i.e. if we leave the length of simulation equal to m=23 then the re-

serve fund will fluctuate deliberately (as there is no restriction) for a very long time up 

to the ending point where we should have put a condition similar to condition (6.17.5).

Considering the two reasons above we split the simulation period into four sub-

periods (i.e. 6,6,6,5 years respectively) applying the modified [D-D] algorithm to these 

subperiods obtaining the optimal path in four pieces. Analytically the four subperiods 

contain the following calendar years.
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1st subperiod : 1998 - 2003 inclusively

2nd " " : 2004 - 2009

3rd ""  : 2010 - 2015

4th " " 2016 - 2020

At the end of each subperiod there is a condition for the reserve fund similar to 

condition (6.17.5) i.e.

F6 e (~ Y l> + Y l) ,  F 12  G ( - T 2 5+ y 2X F18e ( - r 3 ’+Y3)> F23e ( - y 4 > + Y 4 )

where y 1> y 2 >Y3 > y 4 , (6.19.3)

So actually with the existence of the last condition (6.19.3), the reserve fund is forced 

steadily and "smoothly" (depending on the choice for the values of Yi>Y2,Y3,Y4) to zero.

In our application the choice for yi’s i= 1,2,3,4 is

Yi =Y2 =Y3 =Y4 = 10 (6.19.4)

The units of yi's are compatible with the monetary units of W(t,x) and B(t,x) (see 

the 5th Assumption). Finally we should stress that the certain choice for yfs (equal to 

10) was decided in order to obtain a solveable system i.e. For smaller values (less than 

10) condition (6.17.5) was not ultimately reachable for all the four subperiods.

3rd Assumption

The required tables (similar to tables (6.17.1) & (6.17.2)) for functions W(n,x) 

and B(n,x) are obtained from table (6.18.1) using linear interpolation in order to obtain 

the values for the intermediate values of the calendar years (e.g. 1998, 1999, 2001,

2002.. .. etc.) and for the whole age band (integer of fractional ages e.g. 66.5, 66.0, 66.5,

66.0, ... etc.).

297



Active lives are considered all lives (males and females) aged 25 and above up to 

the relevant retirement age limit. (Actually the implicit assumption for the labour force 

participation rate equals to 100%).

5th Assumption

Assume that all active lives receive an annual income (wage / salary) equal to 

one money unit (on which the contribution rate is applicable) and retirees receive a pen-

sion of one half of money unit. This assumption may comply with the typical situation 

in Greece for the last decade where a pensioner receive a pension equal to 50% of the 

current salary of an active life.

6th Assumption

The initial conditions for the first subperiod are:

c0=l 5%, r0=65, F0=0 (6.19.5)

The conditions for the contribution rate and the age of normal retirement have been 

chosen such that their application to the calendar year 1997 will result a zero balance 

for the basic equation (6.3.1) in that year. The initial conditions for the 2nd, 3rd and 4th 

subperiods are determined consecutively from the determination of the optimal path of 

the previous subperiods (1st, 2nd, 3rd respectively).

7th Assumption

The increases Ac and Ar have been fixed to the following figures:

Ac=0.5% (6.19.6), Ar=0.5 (six months) (6.19.7)

The values above may be considered adequately small for a "smooth" path.

4th Assumption
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The weights for cn and rn are determined by 0 which is fixed to 0.50

0=0.50 (6.19.8)

The conditions above may be interpreted: People are indifferent to a Ac increase in the 

contribution rate or a Ar increase in the age of eligibility (retirement age).

9th Assumption

The interest rate is chosen to be a small one

i=4% (6.19.9)

10th Assumption

The design of the optimal path for the 1st, 2nd and 3rd subperiod requires the 

simulation of 46=4096 potential paths for (cn,rn) while the 4th subperiod requires 

45=1024 paths. Equation (6.17.1) is used to obtain the values for the reserve fund while 

expression (6.17.4) is minimized under the conditions described in 2nd step for the val-

ues (F6,Fi2,Fi8,F23) of the reserve fund.

The whole program is developed under the platform of a spreadsheet (Microsoft 

Excel).

The results of our simulations are provided into the following pages in table 

(6.19.1) and diagrams (6.19.1), (6.19.2), (6.19.3), (6.19.4) and (6.19.5). Full explana-

tion and critical comments for the table & diagrams will be provided in the next section 

(6 .20 ).

8th Assumption
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Table (6.19.1 ) 
(Optimal Path)

Year D.R. (65+) c n r n F n

1998 23,41% 15,0% 65,0 -15,80
1999 23,70% 15,0% 65,5 - 7,71
2000 23,99% 15,5% 65,5 15,60
2001 24,28% 15,5% 65,5 25,00
2002 24,57% 15,5% 65,5 20,10
2003 24,86% 15,5% 65,5 0,26
2004 25,13% 16,0% 65,5 -6,04
2005 25,41% 16,0% 65,5 -27,20
2006 25,48% 16,0% 65,5 -53,60
2007 25,54% 16,5% 65,5 -56,10
2008 25,61% 16,5% 66,0 -25,90
2009 25,67% 16,5% 66,0 0,47
2010 25,74% 16,5% 66,0 22,90
2011 26,00% 16,5% 66,0 33,90
2012 26,26% 16,5% 66,0 33,00
2013 26,52% 16,5% 66,0 19,60
2014 26,78% 16,5% 66,0 -6,72
2015 27,03% 16,5% 66,5 -7,03
2016 27,30% 16,5% 66,5 -20,02
2017 27,57% 16,5% 66,5 -46,80
2018 27,83% 16,5% 67,0 -46,80
2019 28,10% 16,5% 67,5 -18,30
2020 28,37% 16,5% 67,5 -0,71
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Diagram ( 6.19.3 )

Year

Diagram ( 6.19.4 )
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6.20 Comments on the results o f  our simulations fo r  the actual application o f  [D-D]

model

In this section, we shall comment on the structure and the results from our 

simulations which were presented in table (6.19.1) and diagrams (6.19.1), (6.19.2),

(6.19.3), (6.19.4) and (6.19.5).

Table (6.19.1) contains the values of the optimal path for cn and rn contribution 

rate & normal retirement age for the first year which is actually the calendar year 1998 

and up to 23rd year i.e. the calendar year 2020 (see the 3rd and the 4th column). It also 

presents the relevant values for the reserve fund at the end of each year (see the 5th col-

umn, Fn) and the development of the elderly dependency ratio D.R. (65+) (see 2nd col-

umn) which is defined as:

This is a slightly different definition than the normal one where the denominator equals 

to “total lives aged 25 up to 65”.

(We consider lives 25 and over in order to focus only in the development of the labour 

force volume and not in the development of the young ages below 25).

Diagrams (6.19.1), (6.19.2), (6.19.3) and (6.19.4) present the development of the 

2nd, 3rd, 4th and 5th column of the table (6.19.1) respectively.

Diagram (6.19.5) presents the annual increase (as a percentage of the previous 

value) for the 2nd, 3rd and 4th column of table (6.19.1). Actually the quantities presented 

are given by the formulae

D.R.(65+) = Total lifes aged 65 and over
( 6.20 . 1)

Total lives aged 25 and over

D.R.(65 +)„„ -  D.R.(65 +)„ 
D.R.(65+)„

C n+! ~ C n r n + l ~ r n

c r.
( 6 .20 .2)

304



and may be considered as the graph of the relevant slope for Diagrams (6.19.1), (6.19.2) 

and (6.19.3) respectively.

Now as regards the form of the table and diagrams we state the following obser-

vations.

1) From the 2nd column of table (6.19.1) and the relevant diagram (6.19.1) we ob-

serve a steady increase (marginal) for the DR(65+). That was expected as this is 

the basic characteristic of an "aging population". And we can also see from table 

(6.19.5) the slope of this increase is almost constant for the whole period except 

a break in the years 2006-2010 where is near zero. (That means for those five 

years the phenomenon of aging populations slows down its speed.)

2) From the 3rd column of table (6.19.1) and the relevant diagram (6.19.2) we ob-

serve that cn is steadily increased for the first half of the period 1998-2008 from 

15% up to 16.5% and then remains constant to that value for the remainder of the 

period up to the year 2020. The opposite pattern appears for the development of 

rn (see 4lh column of table (6.19.1) and the relevant diagram (6.19.3)) i.e. con-

stant pattern (or marginal increase) for the first half period (1998-2008) and in-

creasing there after (rapidly after the year 2015).

That was expected as the two variable cn and rn compete with each other. So for 

the first half of the period where we could say that the phenomenon of "aging 

population" is not so heavy, the steady increase in the contribution rate is ade-

quate to balance the system without shifting the age of eligibility. In a small pe-

riod between the years 2008-2015 we observe that both variables remain constant 

and this may be attributable to the lower speed in the increase of D.R. (65+) (see 

Diagram (6.19.5) for the relevant years). From the year 2015 up to the end the
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phenomenon of the aging population is so heavy that the system achieves its bal-

ance by shifting rapidly the normal retirement age.

3) From the 5th column of table (6.19.1) and the relevant diagram (6.19.4), we ob-

serve that the reserve fund fluctuates rapidly with a period almost the half of our 

investigation period i.e. the period should be equal to 10-14 years. That may re-

veal a relevant pattern for the basic characteristics of the population i.e. the fer-

tility rates and the life expectancy which appears to have a cyclical pattern every 

5-7 years.

4) Finally from diagram (6.19.5) we may observe that there is a relationship be-

tween the patterns of the slopes. Generally we can say that the graphs for the 

slope of contribution rate and normal retirement age react with a delay (of almost 

3 years) to the relevant pattern of the dependency ratio. This is quite clear in the 

middle of the investigation period (see the years 2006-2010 for the dependency 

ratio and 2009-2014 for the contribution rate & normal retirement age.) Addi-

tionally, we may also observe that the area described from the graph of the de-

pendency ratio and the x-axis equals (approximately) the sum of the two areas 

described from the graph of the contribution rate with x-axis and the graph of the 

retirement age and x-axis. That may also be argued by general reasoning saying 

that the increase in contribution rates and normal retirement age should fully ab-

sorb the increase in the dependency ratio (which is actually a combination of the 

decline in fertility rates and increase in life expectancy).

6.21 Conclusions

In this chapter, we have attempted to obtain a deeper insight into the mechanisms 

and underlying philosophy of the PAYG model. Having identified the international demo-
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graphic trend of "aging populations" and the respective problems (which may lead to a big 

crisis), we discussed different solutions described under a control theoretical context.

Basically, we have examined the three major variables of the PAYG model, i.e. 

the reserve fund, the contribution rate and the age of normal retirement.

Firstly, we show that "inter-generational equity" concept may be well served un-

der the existence of a contingency fund (see section (6.9)). The fund absorbs the ran-

dom fluctuations in the mortality pattern or the fertility rates and consequently smooths 

in a better way the contribution rates and the rates of return for each cohort of lives.

Secondly, we have investigated the different links of the contribution rate with 

the fertility rates and age of normal retirement with the life expectancy in order to real-

ize the "inter-generational equity" concept. It is also has been pointed that people’s ex-

pectations should be investigated and be incorporated (adjusting the weights of the two 

control variables mentioned before) in the objective function (section (6.9)).

Under the lines described above we have constructed a general model ([C-C] ver-

sion) in order to design an optimal control path for the contribution rate and age of 

normal retirement. We have overcome the difficulty of the complicated version of the 

problem by considering linear functions for wages/salaries and benefits obtaining an 

analytical solution for the two control variables.

Then the initial model is simplified more ([C-D] version) obtaining a similar ap-

proach to Benjamin (1989). The full solution of this version required numerical meth-

ods.

Finally, we have introduced an additional simplification to our model ([D-D] 

version) trying to obtain a realistic algorithm which may be used in practice, especially 

for some statistical data of the Greek population.
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The application of the third version of the model, in the Greek population may be 

considered successful. We have obtained the optimal path for contribution rates and re-

tirement age for a projection period of 23 years. Starting in 1998 with a pair of values 

equal to (15%, 65) (for cn and r„) we have ended in 2020 with a pair of (16.5% 67.5). 

Insight has also been obtained into the relationship between the variables and their 

trends using the relevant diagrams of section (6.19).
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Chapter 7

Conclusions

7.1 Finally "everything is under control”! (Stability instead o f ruin)

At this stage of this thesis, we have put "everything under control". We have ex-

amined three insurance problems:

(a) a non-life insurance portfolio

(b) a special reinsurance arrangement (multinational pooling)

(c) the PAYG funding method

and have proved the powerfulness of the new approach using control theory.

Our basic effort for every problem was to design a stable system and thereafter to 

find the optimal control or the optimal choice for the parameters involved.

In the control approach the critical concept of "ruin" is replaced with the stability 

concept. We are not "afraid of ruin" (as described in the traditional approach) and so no 

attention is paid with respect to its calculation. But we are "afraid of instability" (i.e. 

the situation where the system diverges to infinity) and so, careful design is employed 

in order to achieve the desired level of stability.

Actually we should redefine the ruin (in the control theory context) as instability.
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7.2 A short review o f all the important results o f  the thesis

In this section, we shall try to outline the most important results of the thesis. 

The presentation will follow the order of the chapters. Hence,

Chapter 2

It is quite clear that control theory concepts may well match with the needs of the 

actuarial science. The successful application of control theory to a specific insurance 

problem encourages for further analysis & research.

Chapter 3

The research up to now has been restricted mostly in conventional control theory 

with some exceptions focused in modern optimal control techniques. Having identified 

this point, the concern of the current thesis was employed in modern control theory (i.e. 

examining time-varying problems & multiple input - multiple output models).

Chapter 4

The most important results in Chapter 4 which discusses the general problem of 

insurance pricing are:

(a) The existence of a critical value (foo) for the delay factor where beyond that value 

the system becomes unstable irrespective of the choice of the (e) profit sharing 

feedback factor. That is the critical point where the information of the past be-

comes completely useless. The value of fx, equals to the perpetuity (in arrears) 

value at a rate of interest j=R-l i.e.
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(b) As regards the simulation results, it was very interesting to identify the potential 

minimum for the variance of the output response, with respect to the (s) feedback 

factor in the area of 50% - 60%.

(c) Finally, in the time-varying model we have fully examined the stability condition 

in conjunction with the boundaries of Q. (ft is the set of possible values for Rn, 

n=l,2,...) i.e. The value of the upper bound of ft determines the choice of (e) 

feedback factor in order to produce a stable system.

Chapter 5

In chapter 5, we have consider a special reinsurance arrangement (multinational 

pooling) under three versions of a basic model. The important results are the following.

(a) The potential points for stability analysis (i.e. equilibrium points) are restricted 

to zero value given that 8i*0 ,E2* 0 ,...,£m*0 (non-negative feedback for each sys-

tem).

(b) All the three versions are complete controllable so optimal solutions may be de-

signed. Optimal values have been discussed for the parameters of the models ei-

ther with analytical or numerical methods.

(c) We have obtained an optimal value for the interaction factor (k) which minimizes 

the variance of the output response (for n=2)

k0 = 0.5

(d) For the special version of the general problem (model IV) where there are two 

subsystems with the same operational parameters we have concluded that large 

values (near the unity) of the interaction factor (k) causes large fluctuations.
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Hence if we aim to smooth results with short fluctuations we should restrict the

magnitude of the interaction factor (near to zero).

Chapter 6

In chapter 6 we have examined carefully the mechanisms and philosophy under-

lying the PAYG funding method obtaining the following results:

(a) The existence of a contingency fund which absorbs fluctuations in mortality 

around a long term trend and fluctuations in fertility is the best vehicle in order 

to obtain inter-generational equity.

(b) The "smoothing" problem for the contribution rates and age of retirement is quite 

complicated in the general form so a special discrete algorithm has been de-

signed which also requires a lot of simulation work.

(c) For the projected population of Greece the optimal path starts at (15%, 65) in 

year 1998 and ends at (16.5%, 67.5) in year 2020. Obviously the optimal path 

requires larger increases for the retirement age rather than for the contribution 

rate.

7.3 Perspectives & Future Research Topics

At this point, and after the description of the important results of this thesis, it is 

very interesting to suggest the potential perspective for future research. The proposals 

will be subdivided according to the chapter which refer to:

Chapter 4

(a) Examine potential modification in the model structure or insert different control 

actions (e.g. integral actions) in order to increase the critical value f«, (perhaps up
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to infinity) and so obtain a stable system even for large values of the delay factor

(f).

(b) The result for the random input signal should be checked further using another 

full set of simulations (perhaps above 1000 simulations) in order to establish the 

existence of a minimum variance when (s) takes value in the area of 50% - 60%.

(c) Other different random input signals may be considered except the uniform dis-

tribution (e.g. A random signal with an exponential distribution).

(d) For the time-varying model, it should be checked the transient behavior of the 

system under different patterns for (R) (e.g. R may be a random variable with a 

normal distribution).

Chapter 5

(a) Exercise simulations with typical values of the parameters involved in the prob-

lem (A matrix, R,e,s and F vectors) and determine the transient and ultimate be-

havior of the system.

(b) Determine the condition for the area of equilibrium points (potential stability 

power) when some of the feedback factor 81,82,...,sm equals to zero.

(c) Considering different input signals (claims) design the optimal control for the 

premium strategy in order to minimize the variance of the surpluses and premi-

ums.

Chapter 6

(a) In equation (6.10.2), we may include a stochastic element corresponding to ran-

dom fluctuations in mortality & fertility patterns (the model will then become 

extremely complicated).
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(b) Consider variable weights (i.e. 0(t) and 1 -0(t)) in equation (6.10.3). Normally a 

change in the age of retirement between ages 65 and 66 should be weighted less 

than a change between ages 68 and 69.

(c) Use variable values for Ac and Ar, according to the fund value for the discrete 

type of model [D-D]. For example when the accumulated fund is near to zero 

consider small changes (Ac and Ar) but when the fund is large (negative or posi-

tive) then consider bigger changes (Ac and Ar) for the contribution rates and age 

of retirement.

Closing our proposals we also suggest that future research may be directed to 

learning systems.

A learning system is a higher-level system than an adaptive control system. 

Quoting from Ogata (1970) we have the following description: "The approach to the 

design of such a system is to "teach" the system the best choice for each situation. Once 

the system has learned the optimal control law for each possible situation it may operate 

near the optimal condition regardless of the environmental changes".
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Appendices

I. Z  transformation (Laplace) [see Ogata (1970)]

A very useful and powerful tool for handling the complicated calculations of a 

system of difference equations is the Z-transofmation (Laplace transformation for dif-

ferential equations).

Generally speaking, Z-transformation is a function between functions (i.e. 

matches a function with another unique function changing the free variable, xn-*xz).

Let us assume {xn, ne  N } a sequence of real numbers. Then we produce a func-

tion of z-variable with the following formula

= £ x n- z n where |z|> 1
n=0

(the above series converge since Izl > 1 = z <1) and we say that xz is the Z-

transformation of xn. i.e. ,2^Xn}=Xz and consequently 27 ' { x z} = xn.

A simple example!

We consider the following sequence of numbers (known as a spike).

x„ =
1, n = 0

0, n * 0
i.e. xn={ 1,0,0,0,...,0,...}

The Z-transformation is calculated below:

-2 ”{Xn } =  ¿ L X n 2  " = 1 - Z °  + 0  +  Z ' + 0 - Z  2 +  ... =  1
n=0
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We should give another equivalent version of Z-transformation which is calculated by 

the formula

cc
xz = 2 > n-zn where | z |<l .

n=0

It is easily proved that the slight modification of the formula does not affect the behav-

ior or the properties of Z-transformation. We shall use either the first of the second 

definition for the solution of our problems.

We shall provide a table with the basic properties which are necessary for the 

development of our problems.

Table (1.1)

Xn X z

1 a-xn a x z

2 xn+yn xz+yz

3 X n+1 Z - X z - Z - X 0

4 Xn+m zmxz- z m-'x0- . . . - z x m_1

5 x(cc) lint{(z-l)-X }
z->l

The analogous concept in the continuous form is the Laplace transformation let 

f(t) a continuous functions of t then

L{f(t)} = F (s )= J[e -.f( t)d t
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This appendix provides a full reference for the calculation of the powers of ma-

trix A.

Definition (II.1): Let A e C ” , \ e C ,  u, e C n, then Xj is called eigenvalue of A 

and Uj . ( Ui * Q) the respective eigenvector if and only if (by definition)

Au; = \  Uj <-» (A -  Xfl) • Uj =0

Definition (II.2): The polynomial cp(x) = det(XIn -  A) is called the characteristic 

polynomial of A. (p(X) may be expressed as cp(X,)=(X-Xj)Ti • (X-X2) t2 •...•(X-Xp) Ip with

p

^  x, = n and X., * Xj when ( i * j ).
i= l

Definition (II.3): The set a ( A ) = { X j e C :  ( X )  = 0} is called fasma of A  and the 

integer number t j  is called algebric manifold of X j .

Definition (II.4): The space Nf = [u, e C  ^ A -X ^ )^ , = o} is called right «zero- 

space» of A - X j l n  and dj=n-rank(A-XjI)=dim Ni is called geometric manifold of X j .

Definition (II.5): Let A e  C nxn and X j , . . . , X p the eigenvalues of A. Then X j  is 

called eigenvalue with simple structure if and only if Xj=dj (given dj<Tj). If all the ei-

genvalues have simple structure then A is called matrix of simple structure.

Theorem (II.1): Let A e C nxn, A may be represented by a diagonial matrix if and 

only if it is of simple structure i.e.

A= QDQ*  

where D=diag{Xi,X2,...,Xp}

II. Basics of Linear Algebra [see Kalogeropoulos (1995)]
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each eigenvalue appears at its algebric manifold indicator and Q = [miM2—M3] the matrix 

of eigenvectors.

Definition (II.6): Let uk e C n, Uk*0 then uk is called generalized eigenvector of 

kth order if and only if

(A-AJ)kuk =0 and (A-Xl)k”'u k *0

Theorem (II.2): Let A e C ” , A may always be represent by the Jordan canoni-

cal matrix form

A= QJ Q ' '

where J =
J,

i.e. J, =

%  1

k  i  o

o

and Jk Jordan block

k  1

and Q = [u ]u 2,...,u J

where U;, i=l,2,...,n the set of simple and generalized eigenvectors of the eigenvalues

Xi,...,A,p.

Proposition (II .1): Let A e C nxn then An= Q J n Q' ’ and more generally 

f(A)=Qf(I)Q-'

Proof: An = (Q .J-Q -')n = (q JQ~')(q J-Q~1)...(q JQ~') =

318



III. Root Locus Method [see Shinners (1964)]

The root locus method has been developed (initially by Evans) in order to pro-

vide the ability of sketching the roots of the characteristic equation of a dynamic system 

with respect to a certain parameter involved. That parameter may be determined by the 

engineer of the system so the right choice will result a stable system. Ideally the engi-

neer would like to know how the roots of characteristic polynomial move in the z-plane 

as the specific parameter changes from zero to infinity. The required graphical repre-

sentation may be provided by the root locus method.

Actually the method relates the poles of the transfer function (or roots of the 

characteristic equation) of a closed loop system to the zeros and poles of the transfer 

function of the respective open-loop system. We have shown the existing relation (be-

tween the transfer function) in the section (2.5) i.e.:

G’(z)= O (z)
1 +  G ( z ) h ( z )

(III.l)

Now let us describe the sketching procedure step by step quoting the rules from 

Shinners (1964) (p. 145-153) with small modifications and leaving the justification to 

the reference book.

[of course, the following procedure may be applicable to any equation

f (z) = 0

and not just for a characteristic equation].

(HI-2)

Step 1: Rearrange equation (III.2) in the following form: 

f(z) = 1 + K • P(z)= 0 (IH.3)
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(So actually, if f(z) is the characteristic equation of a closed-loop system, P(z) is the 

transfer function of the respective open-loop system).

Step 2: Determine the number of separate loci which equals to the number of 

roots of the equation (III.2) or equivalently equals the order of the polynomial f(z) 

(characteristic polynomial).

Step 3: Determine the zeros and poles of equation

P(z) = 0 (III.4)

keeping in mind that poles define the start of the root locus (k=0) while zeros define the 

end (k=oo) (if there are less finite poles than zeros then the root locus starts from infin-

ity while in the opposite situation the root locus diverges to infinity.

(P(z) may be written in the form

*)-g <m'5)
so the poles of P(z) are the zeros of R(z)).

Step 4: Design the complex portion of the root locus keeping a symmetry along 

the x-axis as the complex roots or poles always occur as conjugate pairs (symmetrical to 

x-axis).

Step 5: Design the real portion of root locus keeping in mind that these portions 

always lie to the left of an odd number of finite poles plus finite zeros.

Step 6: Design the asymptotes of the root loci by finding firstly the angles 

(ang)n with x-axis i.e.
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As the P(z) polynomial is a complex function may take complex values so for a

specific point z* which lies on the root locus the following relation holds:

Magnitude Criteria: K = , }

Proof: Considering equation (III.3) we obtain that 

1 + k • P(z) = 0 => K • P(z) = -1 <=>

|k-P(z)| = |- l |o K |P ( z ) | = l o  

K — L
|P(zJ

Angle Criteria: <! P(z) = (2i + l)l80o i=0,l,2,...

Proof: From (III.3) again and taking the angles we obtain

k • P(z) =<¿-10

<ik+<iP(z)= ¿̂-1<=>

0+<iP(z)=(2i+l)180o i=0,l,2,...

(HI-9)
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IV. Optimization Criteria in Standard and Functional Analysis problems 

[see Athans & Falb (1966)]

(1) Firstly, consider a real valued function which is defined also in R : i.e. 

f  :(a,b)-{x,,...,xn}—>R then a minimum may exist.

(a) At the boundaries of the (a,b) i.e. a or b or at the points of [a,b] where the f  

is not defined xi,X2,...,xn. So we have to examine f(a),f(b),f(x)),..., f(xn).

(b) At the points where the 1st derivative does not exist.

(c) At the points where the 1st derivative exists and equals zero

f'(x*) = 0

then x* is a minimum if and only if the second derivative at this point is 

positive (i.e. f"(x*)>0).

(2) We shall continue with a real valued function which is defined in R n i.e.

f : f i c R "  -> R  then a minimum exists

(a) ... the same as (1)

(b) ... the same as (2) substituting the concept of derivative with the gradient of 

the function

(c) At the points where the gradient exists and equals zero (all the partial de-

rivatives equals to zero) i.e.

Vf = O <* — (*•) = — (x1 )=... = — (X‘ )= 0
“  dx, ' dx,_ '  Sx.

Then x* is a minimum if the matrix
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Q =

d2f
8x{

82 f
8x8x1

(x *)

(x *)

82 f
8xx8x2

82f
8x„8x-,

(x *) 

(x *)

82f
5 x iX n

(x *)

82f
8x2

(x *)

is positive definite.

A matrix A :

a il a i2

a 21 a 22

a n l  a n 2

2 n

is said to be positive definite if and only if

the minors

P i  =  a n  ’ P 2 =

a il a i2

a 21 a 22

P „  =

a il a i2

3. , a.
n l  n 2

M n

are all greater than zero (for a semidefinite, may equals zero).

(3) Ordinary minima with Constraits (Lagrange multipliers).

(We shall quote the respective theorem from Athans & Falb (1966) p. 235).

If x* is a point of the domain D at which f has a local minimum subject to the 

constraits gi=0, i=l,2,...,m  where f and the g* all have continuous partial deriva-

tives then there are numbers p |,p’2,...,p*m called Lagrange multipliers such that 

x*,pj,p2,...,p^ are a solution of the following system of n+m equations in the n+m 

unknows

X 1 , X 2 , .  . . , X n , p l  , P 25 - -  - i P m -

dXj 8xt dXj 8x j
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g,(

where i=l,2,...,n and j=l,2,...,m .

(4) Finally we shall briefly discuss the functional minima (more analysis is provided 

in Athans & Falb (1966) p. 237-363 from where we quote the result below).

The problem has a variety of forms. Generally speaking, it is a problem of finding 

the optimal function control which minimizes a certain criterion (usually given as 

a functional) under the contraight of a differential equation.

Let us consider the dynamic equation x(t) = f(x(t),u(t)) then we require the optimal 

u*(t) which minimizes L i.e.

H(x(t),p(t),u(t),t) = L(x(t),u(t))f < p(t),f(x(t),u(t))>

or H(t) = L(x(t),u(t))+p(t)-f(x(t),u(t)) then H(x*(t),p*(t)u,t) has an absolute mini-

min L = min f  L(x(t),u(t))dt

given that x(t0)= x 0 and x(t,)= x ,.

We must introduce the Flamiltonian H of the system

mum as a function of u when u = u*(t) t e  [t0,t,] i.e.

while
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