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A bstract

This thesis is concerned with steady two-dimensional flow in a rectangular cavity 
filled with a saturated porous medium governed by Darcy’s law. The flow is driven 
by differential heating of the upper surface of the cavity, whereas the sides and the 
bottom of the cavity are thermally insulated. Numerical calculations of the flow 
and temperature fields are carried out for cases where the temperature profile at 
the upper surface is a monotonic function of position (either a cosine function or 
a quadratic function) and results are obtained for a wide range of Darcy-Rayleigh 
numbers R  and aspect ratios L which describe the resulting single-cell circulation. 
Analytical results are obtained in the limit of small Darcy-Rayleigh number using 
a perturbation method and are compared with the numerical results. At large 
Darcy-Rayleigh numbers the flow adopts a boundary-layer structure in which the 
main variations in temperature and velocity occur near the upper surface. In the 
case of the quadratic temperature profile at the upper surface, an exact solution 
of the horizontal boundary layer equations is found which provides useful insight, 
including a prediction of the almost constant temperature of the fluid in the core 
region below the horizontal boundary layer. This solution can only be regarded 
as approximate, however, because it fails to take account of the need for the 
solution to match with that in a vertical boundary layer at one end of the layer. 
By considering the properties of this vertical boundary layer it is argued that in 
the limit of large Darcy-Rayleigh number the entire leading order flow circulation 
is contained within the combined horizontal and vertical boundary layers near the 
upper surface. The solution of the combined horizontal and vertical boundary 
layer system is considered and an asymptotic solution is found at the lower edge 
of the layers which matches consistently across the layers and with a solution 
in the core region below. This is used to obtain an improved overall solution of 
the system in good agreement with the numerical calculations at large Darcy- 
Rayleigh numbers.
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Chapter 1

Introduction

1.1 B ackground

Porous media play an important role in many areas of application including 
geothermal energy systems, oil and gas recovery, the spread of pollution in ground 
water and cavity wall insulation. A porous medium is a material consisting of a 
solid matrix with an interconnected void(pores). The porosity of the medium is 
defined as the fraction of the total volume of the medium that is occupied by void 
space; for natural media, the porosity does not normally exceed 0.6. The inter-
connected pores allow the flow of fluid through the material. In single phase flow 
the pores are saturated by a single fluid. In multiphase flow two or more fluids 
occupy the pore space. The distribution of pores with respect to shape and size 
is irregular in nature so on the pore scale (microscopic scale) the flow quantities 
will be irregular. However the quantities of interest are measured over an area 
that crosses many pores. Such space-averaged (macroscopic) quantities generally 
change in a regular manner with respect to space and time. This approach of 
averaging is called the spatial approach and a macroscopic variable is defined as 
an appropriate mean over a sufficiently large representative elementary volume. 
This operation yields the value of that variable at the centroid of the elemen-
tary volume. There is also a statistical approach in which the average is taken 
over an ensemble of possible pore structures. If we are concerned with deriving 
relationships between spatial quantities and not about their fluctuation in time, 
the results obtained by using the two approaches are the same. This leads to a 
continuum model for flow in a porous medium which is described in Section 1.2 
below.
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Previous studies of thermal convection in porous media can be divided into two 
main groups, those where the heating is from below and flow is generated typically 
by an instability mechanism, and those where the heating is from the side and 
horizontal thermal gradients generate motion (see equation (1.2.16) below). In 
the former case, the basic theory was developed by Lapwood (1948) who showed 
that instability due to buoyancy forces overcoming friction would result when 
the vertical thermal gradient was sufficiently large or, in non-dimensional terms, 
when the Darcy-Rayleigh number R  (see(1.2.18) below) reaches a certain critical 
value. The basic theory for an infinite horizontal layer has since been extended 
in numerous ways to include, for example, the variation of viscosity and thermal 
expansion with temperature(Kassoy and Zebib 1975, Morland, Zebib and Kassoy 
1977), nonlinear effects (Palm, Weber and Kvernvold 1972, Straus 1974), time- 
dependent motion (Schubert and Straus 1982) and the effect of lateral boundaries 
(Straus and Schubert 1979). Recent developments are discussed by Nield and 
Bejan (1999, chapter 6).

In the case of heating from the side, most previous studies have been con-
cerned with the case of a two-dimensional cavity where the vertical walls of the 
cavity are maintained at different constant temperatures. If the upper and lower 
boundaries are either perfectly insulated or perfectly conducting, the solution of 
the problem possesses a centro-symmetry property as noted by Gill (1966) for 
the corresponding Newtonian problem. Weber (1975) considered the boundary 
layer structure on the vertical walls in the large Darcy-Rayleigh number limit 
(R  —y oo) for the case where the horizontal walls are insulated. The results of his 
analysis are in satisfactory agreement with experiment for the interior tempera-
ture distribution and the Nusselt number, defined as the ratio of the total heat 
transport to the heat transferred by pure conduction. He also included the effect 
of a variable viscosity by allowing the viscosity to be a linear function of temper-
ature, which introduces asymmetry into the solution. Walker and Homsy (1978) 
considered the flow properties for large aspect ratio ¿(defined as the width of the 
cavity divided by the depth), and in the large and small R  limits for fixed L. For 
large aspect ratio L and for large 7?, solutions were found by matched asymptotic 
expansions and for fixed L and small R  solutions were found by a regular expan-
sion in R using semi-numerical techniques. Blythe, Daniels and Simpkins (1982) 
considered the structure of the vertical boundary layers near the corners in the 
high Rayleigh number limit and subsequently they also considered the horizontal
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boundary layer structure for the case of perfectly insulated boundaries (Daniels, 
Blythe and Simpkins 1982). This showed that in the high Rayleigh number limit 
the horizontal boundary layers have a double structure in which there is an outer 
layer of thickness 0(R~*) and an inner layer of thickness 0 (R ~ is). This work 
provided a leading order description of the overall flow field in the entire cavity 
for the boundary layer regime (R —* oo, L fixed). A summary of the various 
flow regimes is given by Blythe, Simpkins and Daniels (1983), and the properties 
of two distinct regimes where L is large were later examined in detail. In the 
intermediate regime (Daniels, Blythe and Simpkins 1986), where the Rayleigh 
number R  is comparable with the cavity aspect ratio L(^> 1), they found that as 
the Rayleigh number increases the flow departs from a single cell Hadley struc-
ture and separate circulations develop at each end of the cavity. Later,(Daniels, 
Simpkins and Blythe 1989) they considered the merged layer regime which arises 
for large aspect ratio L when R = 0 ( L 2). They showed that in this limit, as L 
increases, the boundary layers on the horizontal walls merge to completely fill the 
cavity and there is non parallel core flow throughout the cavity.

Other work on the porous cavity problem with heated sidewalls includes nu-
merical calculations by Chan, Ivey and Barry (1970), Hickox and Gartling (1981) 
and Prasad and Kulacki (1984) and a discussion of limiting structures in tall 
cavities (L <C 1) by Ansari and Daniels (1993,1994). Also experimental results 
for this problem have been obtained by Klarsfeld (1970), Bankvall (1974), Com- 
barnous and Bories (1975) and Seki, Fukusako and Inaba (1978). Other related 
work involving horzontal thermal gradients includes the horizontal boundary- 
layer analysis of Cheng and Chan (1976) and Chang and Cheng (1983) who 
considered similarity solutions of the porous medium boundary-layer equations 
on a heated horizontal wall. This and related work is described in a review article 
by Tien and Vafai (1990). More recently, the stability of porous media flows on 
horizontal surfaces has been considered by Rees and Bassom (1993, 1994). Porous 
medium boundary layer flows on heated vertical surfaces have been studied by 
Cheng and Minkowycz (1977), Merkin (1980), Ingham, Merkin and Pop (1982), 
Joshi and Gebhart (1984) and Ingham and Brown (1986), and flows driven by 
thermal gradients in corner regions by Daniels and Simpkins (1984), Ingham and 
Pop (1987) and Rees and Bassom (1991). For confined porous medium flows, 
there are also a number of studies which involve the generation of flow in a cavity
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by internal heat sources, where typically a double-cell circulation may be pro- 
duced(Haajizadeh, Ozguc and Tien 1984, Blythe, Daniels and Simpkins 1985, 
Prasad 1987, Mohamed 1995). Further examples and references pertaining to 
convection in porous media are discussed by Nield and Bejan (1999).

In the present thesis it is proposed to investigate thermally-driven flow in 
a two-dimensional cavity where the flow is driven by a temperature differential 
along the upper surface and the other walls are thermally insulated. Such flows 
may be relevant in groundwater systems where there is uneven heating of the 
Earth’s surface and in flows driven by localised heat sources such as the magma 
chamber of a caldera (Chery, Bonneville, Vilotte and Yuen 1991). Unlike the 
case of fixed temperatures at the vertical walls, in the problem where the flow is 
driven by a temperature differential along the upper boundary the solution does 
not possess centro-symmetry. The purpose of the investigation is to gain insight 
into the structure of the steady state flow and temperature fields for different 
values of the Darcy-Rayleigh number R  and the cavity aspect ratio L, and in 
particular to study in detail the limiting structure of the solution as R —V oo.

1.2 M athem atica l m odel

The system considered here is a rectangular two-dimensional cavity of length l 
and height d, filled with a saturated porous medium. The upper boundary is 
held at a temperature which depends on the distance from the corners while the 
bottom of the cavity and both vertical walls are thermally insulated.

Cartesian coordinates (x*, z*) are introduced with origin at the left hand lower 
corner of the cavity. Subject to Darcy’s law, and the Oberbeck-Boussinesq ap-
proximation, steady single-phase flows in fluid-saturated porous media are gov-
erned by the equations

where K  is the permeability, p is the coefficient of viscosity, p is the fluid den-
sity, k  is the thermal diffusivity, u* is the velocity, p* is the pressure, T* is the
temperature and F is any external force per unit mass. Equation (1.2.1) is the

u* v*T* = k V*2T*

u* = ( v y - p F )
[l

(1.2 .1)

(1.2 .2)

(1.2.3)
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continuity equation in which changes in the fluid density are neglected, in accor-
dance with the Oberbeck- Boussinesq approximation(Oberbeck 1879, Boussinesq 
1903). Equation (1.2.2) is Darcy’s law under the approximation that the per-
meability and viscosity are constant and equation (1.2.3) is the thermal energy 
equation. Further details of the physical assumptions leading to these equations 
are given by Bear (1988), Nield and Bejan (1999) and de Boer (2000).

In two-dimensions with gravity acting in the negative z* direction we have

u* = (u*,w*), (1.2.4)

F = (0 , -g ) ,  (1.2.5)

where g is the acceleration due to gravity. The equation of state is assumed to 
be

P = Po(i -  P T  -  r 0*», (1.2.6)

where ¡3 is the coefficient of thermal expansion and T0* is the temperature at 
density p0, and the governing equations (1.2.1)—(1.2.3) then become

du* dw* 
dx* dz*

u
q T *

dx*
w

w

,dT*
dz*

0, (1.2.7)

K  dp* 
p dx* ’

(1.2.8)

p dz* p
(1.2.9)

/cv*2r , (1.2.10)

where V*2 = is the two-dimensional Laplacian. Elimination of the
pressure p* yields

v*V
/■cV*2r*

Kg(3 dT* 
v dx* ’

d(T*,P)
d(x*, z*) ’

(1.2.11)

(1.2.12)

where v = is the kinematic viscosity and ip* is the stream function defined by

u* dip* 
dz* ’

w
dip* 
dx*'

(1.2.13)
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Non-dimensional variables x, z, ip and T are introduced by defining

(x*, z*) = d(x, z), (1.2.14)

ip* = Kip, T* =  Tq + (A T)T, (1.2.15)

where AT is the maximum temperature difference along the upper boundary and 
T0* will be taken as the temperature at the left-hand corner x =  0, z = 1. Then 
equations (1.2.11), (1.2.12) become

w  = - R ^ - , (1.2.16)

V2T a p »
d(x,z) ’

(1.2.17)

where
R KgPATd (1.2.18)

KV
is the Darcy-Rayleigh number.

The boundary conditions for the stream function at the impermeable walls
are

ip — 0 on x = 0,L, (1.2.19)

ip = 0 on z = 0,1, (1.2.20)

where
L = \  (1.2.21)

a
is the aspect ratio of the cavity. The bottom and side walls are assumed to be 
thermally insulated, so that

dT
—  = 0 on x = 0,L, (1.2.22)
ox

dT
—  = 0 on z = 0, (1.2.23)
dz

while the imposed temperature at the upper boundary is taken to be

T = S(x), (0 < x < L ) .  (1.2.24)

The mathematical problem is now defined by the equations(1.2.16), (1.2.17) 
and the boundary conditions (1.2.19), (1.2.20), (1.2.22), (1.2.23) and (1.2.24), and
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contains two non-dimensional parameters, the Darcy-Rayleigh number R  and the 
aspect ratio L.

1.3 P resen t study

The plan of the thesis is as follows. In Chapter 2, the flow is assumed to be 
driven by a temperature distribution along the upper wall given by a cosine 
function which is anti-symmetric about the vertical centre line of the cavity. The 
behaviour of the flow for small Darcy-Rayleigh numbers is investigated by means 
of a perturbation analysis. A numerical method of solution based on an explicit 
finite difference scheme is then used for calculating the flow and temperature 
fields at general Darcy-Rayleigh numbers, with particular emphasis on the case 
of a square cavity, L =  1. The results are compared with the perturbation analysis 
for small values of R and show how the flow develops with increasing values of the 
Darcy-Rayleigh number, and in particular the kind of boundary-layer structure 
that emerges as R -* oo.

In Chapter 3, a quadratic temperature profile is applied at the upper bound-
ary, and a detailed study is made of the effect of changing the aspect ratio of the 
cavity. Numerical results are obtained for aspect ratios in the range 0.25 <L< 4 
and for Darcy-Rayleigh numbers up to 5000.

Chapters 4 to 6 are concerned with the singular structure of the solution 
that develops as R —> oo. The numerical results indicate that in this limit the 
main features of the flow and temperature fields occur in a horizontal boundary 
layer near the upper surface and a vertical boundary layer near the top of the 
sidewall on the colder side. In Chapter 4, an approximate analytical solution for 
the horizontal boundary layer is obtained by neglecting the interaction with the 
vertical boundary layer. By considering the heat flux through the upper surface 
of the cavity, a prediction is obtained for the temperature in the core region of 
the cavity, below the horizontal boundary layer.

In Chapter 5 we consider the properties of the vertical boundary layer and 
how it interacts with the horizontal layer. Asymptotic solutions are considered 
near the top of the vertical layer and near the bottom of the layer, where it 
merges with the core region. Further properties are investigated using an integral 
method. One of the main conclusions of this analysis is that the main flow 
circulation is actually completed within the horizontal and vertical layers near

12
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the upper surface and that the core region therefore plays a relatively minor role 
in completing the mass-flux balance.

These ideas lead, in Chapter 6, to the development of a consistent overall 
solution structure in the cavity, in the large Darcy-Rayleigh number limit. An 
asymptotic solution is found at the lower edge of the horizontal boundary layer 
which matches consistently with a solution in the vertical boundary layer and is 
used to obtained an improved approximation to the combined horizontal/vertical 
boundary layer problem. A possible method for the complete numerical solution 
of this problem is outlined and some initial results are obtained. Properties of 
the solution in the core region are also discussed.

The results are summarized in Chapter 7 and possible future avenues of re-
search are outlined.
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Chapter 2

Flow in a Cavity Driven by 
Differential H eating of the Upper 
Surface

2.1 In tro d u c tio n

containing a fluid-saturated porous medium and thermally insulated along the 
two vertical sides (x = 0, L) and the horizontal base (z = 0). In this chapter we 
study the steady flow and temperature fields generated when the upper surface 
of the cavity is subject to an anti-symmetric temperature distribution

Thus in non-dimensional terms the temperature at the upper boundary varies 
monotonically from zero at the left-hand (cold) corner to one at the right-hand 
(hot) corner, and is anti-symmetric about the value T  — |  at the central point 
x = jj. The configuration is shown in figure 2.1. As shown in Section 1.2, subject 
to Darcy’s law and the Oberbeck-Boussinesq approximation, the non-dimensional 
stream function ip(x,z) and temperature T (x , z ) are governed by the equations

We consider a two-dimensional cavity 0 < : r < L , 0 < z < l o f  aspect ratio L

1 /7r'r
T  = S(x) — -(1  — cos — ), (0 < x < L, z =  1). (2.1.1)

( 2 . 1 .2 )

2 9 ( 7 »
aix, z) ’

(2.1.3)
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where R is the Darcy-Rayleigh number. The boundary conditions are given by 
(2.1.1) together with

_ dT
dx

ip — 0 

dT

= 0 on

on

dz
= 0 on z

x = 0, L

*  =  0 , 1,

0.

(2.1.4)

(2.1.5)

(2 .1.6)

In the next section the solution of the system (2.1.1)-(2.1.6) is found ana-
lytically for small values of the Darcy-Rayleigh number R  using a perturbation 
method. A numerical scheme of solution for general values of R  is described in 
Section 2.3 and results for the case of a square cavity (L = 1) are reported in 
Section 2.4. A brief summary is given in Section 2.5.

2.2 Solution for sm all D arcy-R ayleigh num bers

The solution for small Darcy-Rayleigh numbers can be obtained by assuming a 
perturbation expansion in powers of R:

T(x,z) — T0(x, z) +  RTi(x, z) +  . 

ip(x, z) =  Ripi (x, z) +  R2ip2 (x, z )

Substitution of (2.2.1) and (2.2.2) into (2.1.3) gives

(2 .2 .1)

(2 .2 .2)

d2Tp d2T0 
dx2 dz2

dT0 dT! dtp i 2dih ,(— + JR— + ...)(/?— + R —  + ...)

- {9T  + R mdz dz
..)(R dVh

dx
R2 d'lp2

dx
(2.2.3)

Equating coefficients of R° shows that the leading order temperature field To (a;, z) 
satisfies Laplace’s equation

d2T0 d2T0 
dx2 dz2

which must be solved subject to the boundary conditions

dT0

(2.2.4)

dx
= 0 on x =  0, L, (2.2.5)
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(2 .2 .6)97o
dz

= 0 on z — 0,

1 7yx
T0 = S(x ) = -(1 — cos —  ) on z — 1. 

Z Iv

The solution is readily found to be

To

Substitution of (2.2.1) and (2.2.2) into (2.1.2) gives

1 1 7T irx 7TZ
-------sech — cos cosh — .
2 2 L L L

(2.2.7)

( 2 .2 .8 )

+ S )  = ^dz2 ' d22 7 ‘ ^  v dx2 ' d22 7 dx ' dz

Equating coefficients of R shows that Vh satisfies Poisson’s equation

d2ip1 d2̂  dTo

). (2.2.9)

dx2 dz2 dz ’
(2.2 .10)

where T0 is given by (2.2.8). This must be solved subject to the boundary con-
ditions

'ipi = 0 on z = 0, L, '¡/q = 0 on 2 =  0,1. (2.2.11)

The solution is found to be

01 = ! / ,  X , t t  . 1TZ . 7TZ-  1 — 2 sech— sinh — sin — . 
4 L L L

( 2 . 2 . 12)

The leading order terms T0 -  - and 0i are seen to be odd and even functions of 
x — \L  respectively and their contours are shown in figure 2.2 for the case L = 1. 
The maximum value of the first order stream function, which defines the centre 
of circulation is found to be 0i = 0.0288277 and occurs at x = 2 =  0.689924.

From equation (2.2.3) equating coefficients of R  shows that the first-order 
temperature field Ti satisfies Poisson’s equation

d2Ti d2Ti dT0 dfa dT0 d0x
dx2 dz2 dx dz dz dx

(2.2.13)

where, on the right-hand side, T0 and 0i are given by (2.2.8) and (2.2.12). This 
must be solved subject to the boundary conditions

dT\
dx

0 on x = 0, L, (2.2.14)
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dT\
dz

= 0 on 2 =  0, (2.2.15)

(2.2.16)T\ — 0 on 2 =  1.

The solution can be determined in a straightforward manner and is found to be

2-it z  — 27rz  27T 2
Ti = a0e L + aie L + 022 cosh —— h 03 +L/

2lT  X  . 2777: — 27T2 CL2 . 2 7 T 2
+ cos —-—(0.4e L + a5e L ----- (2 cosh

L L 2 (2 -1 ))) , (2.2.17)

where

ao

ai

«2

03

04

05

2«<1+é)'
A,
2tt '= 2ç(l ■

= -4?,

and

2Lg . 27T
-------smh — ,

7T L
- 2 tt

sedlT - ̂
Lq 
7r

a — -i-sech2 — 
9 _  256S L ’

(2.2.18)

(2.2.19)

( 2 .2 .20 ) 

( 2 . 2 . 21 )

( 2 . 2 . 22 )

(2.2.23)

(2.2.24)

From equation (2.2.9), equating coefficients of K2 shows that the second order 
stream function 02 satisfies Poisson’s equation

d2xp2 d2ip2
dx2 dz2

dJ\
dx

(2.2.25)

where Tj is given by equation (2.2.17). This must be solved subject to the bound-
ary conditions

■02 = 0 on x = 0,L, 02 — 0 on z = 0,1. (2.2.26)

The solution is found to be

2 t i x  9 . ,  2>ixz . 2-nz —27t z .
02 = sin —— (2oiz sinh —— I-z(o2e L + o3e L ) +

L/ ±j
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(2.2.27)_L h .(  ■
O / r r  -v

where

(}
4 ’

(2.2.28)

04 Lq 
~2 ~ 8t t ’

(2.2.29)

- ( q-  + 4 Tt z
27ra5 

L h
(2.2.30)

2 Lq
7r (2.2.31)

- b 0 -  bl l((bx + b2)e^  + (63 -  b i ) e ~ )cosechĴu
(2.2.32)

and
b0 = 2(1- e ^ ) “1. (2.2.33)

Contours of the functions 7\ and xp2 , which are even and odd functions of x — \L  
respectively, are shown in figure 2.3.

In summary, the solution at small Darcy-Rayleigh numbers is found to have 
the form

T =
7r 7TX 7TZ\

-sech — cos —  cosh — j + R \ a 0e L + axe L +
Z Lj  ±j  Lj /

2ixz
+ a2z cosh —-— h 03 +

Lj

2 l l X  , 2-rrz - 2 tt z
cos —;— (ci4e 1 + a5e L

L
a2 , , 27t z  . , . . .y  (z cosh —  - 2 ( z -  1)))

0 {R 2 
1 7T 7TZ 'KX

ip = R [ - ( l  — z)sech— sinh —- sin —-  + R 2 [ sin —— {2biZl sinli —----h
L L L

2-k x
(2.2.34) 
27TZ

L
2lTZS

+ z(b2e L +b3e r ) + b±(z — l + e L +65 sinh——))
Lj

+ 0 ( R 3), (2.2.35)

where the various constants are given by (2.2.18) -(2.2.24) and (2.2.28)-(2.2.33). 
The temperature distribution along the upper boundary drives a circulation in 
the cavity with upwelling on the hot side and downwelling on the cold side. At 
leading order the velocity and temperature fields have symmetry about the centre 
line of the cavity (x = j )  but the correction terms destroy this symmetry, as can 
be seen from contour plots of the overall temperature and stream function (2.2.34)
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and (2.2.35) for R — 5, 10, 20 and 30 in figures 2.4-2.7. As the Darcy-Rayleigh 
number increases, the centre of circulation shifts towards the upper cold corner, 
while the isotherms swing around towards the hotter side.

2.3 N um erical m ethod  of solution

The steady-state equations (2.1.2) and (2.1.3) are of elliptic type but in order 
to obtain numerical solutions, time is introduced as an additional independent 
variable. Artificial time derivatives ^  and ^  are introduced and the system

dip
dt
dT
dt

\72iP + R — , 
ox

2 a ç ry o

(2.3.1)

(2.3.2)

is considered, which is parabolic with respect to time. This allows a numerical 
solution to be obtained by a straightforward marching procedure in time, with 
the required steady-state results obtained in the limit of large time. An explicit 
finite difference method is used to solve the equations (2.3.1), (2.3.2) subject to 
the boundary conditions (2.1.4) (2.1.6) and (2.1.1).

The rectangular domain 0 < a; < L, 0 < z < 1 is covered with a uniform 
rectangular grid with spacings h in the x direction and k in the z direction. The 
discretized version of (2.3.1), (2.3.2) based on central differences in x and 2 and 
a forward difference in time is then

At
€ r  = + ^ - (C + u  -  2€ ,  + C - u )

At
+ T T ( ^ +i - 2 ^  +  € i - r )k2 

AtR
~2h

( rp n  __  rpn \
\Ji+l,j 1i- 1J/J

T;
Atrpn  I ___ _ ( rpTl __  r\rpn  . rpn \
U2 Ij)

n + 1
hi "h j  1 fo2

_l_ ( rT'n  _ r\rpn rpn \
' ]ç2 r i j + 1 Z 1 hi  ' 1 h i ~ l b

+

rpn _  rpn i n  _  J .n
p i + l j  J i - l , j w “ , j+ l  r i j - l s

2 h ){ 2k ’
p i , j + l  A i + l j  V i - 1,] \

1 2k )[ 2 h

(2.3.3)

(2.3.4)
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where

=  ÿ { X i , Z j , t n ) , (2.3.5)
rnn
1hj T ( x i )  Z j ,  t n ) , (2.3.6)

=  if)(xi,Zj,tn +  At), (2.3.7)
rpn + l =  T{xi,zj , tn +  At), (2.3.8)

and Xi = ih, Zj = jk, tn — nAt. Formulae (2.3.3) and (2.3.4) are used to 
advance the solution at all internal grid points. Because the explicit scheme 
(2.3.3) and (2.3.4) uses central differences in x and z, the discretization of the 
spatial derivatives is second order accurate. In discretizing the boundary condi-
tions for and ^  second order accuracy is maintained by using a quadratic 
approximation to T. For example, at the boundary x =  0, T is expressed in 
the form

T =  a +  bx + cx2. (2.3.9)

This is equated to the value of T  at the new time step at the internal grid points 
x = h and x = 2h. The boundary condition (2.1.6) requires b — 0 and so this 
determines the values of a and c. In particular, the value of T  at the boundary 
x =  0 at the new time step is obtained as T  =  a. In this way the values of T  
at the new time step are obtained along the two sidewalls and the bottom wall. 
The boundary condition (2.1.1) determines T  directly along the top boundary.

Computations were started at t = 0 from the initial state

T  = 0, V> = 0, (2.3.10)

and allowed to proceed until a steady state was achieved. The time step At  was 
chosen to ensure that the condition for numerical stability and convergence of 
the equivalent pair of heat conduction equations (where the second terms on the 
right-hand sides of (2.3.1), (2.3.2) are neglected)

At
^  1 /  h2k2 \
~ 2 \ h 2 + k2)  ’

(2.3.11)

is satisfied. This proved to be effective in practice.
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2.4 N um erical resu lts

Various checks were carried out to test the accuracy and convergence of the 
numerical scheme. A comparison of the computed total heat flux at the upper 
boundary, the temperature at the centre of the cavity and the value of the stream 
function at the centre of the cavity for different step sizes h and k with L = 1 
are shown in table 2.1 for a Darcy-Rayleigh number R = 20 and in table 2.2 for 
R = 500.

h, k Total heat flux 
at upper boundary

Temperature at 
centre of cavity

Stream function 
at centre of cavity

0.05, 0.05 0.033754 0.428582 0.470505
0.02, 0.02 0.007494 0.428276 0.472080
0.01, 0.01 0.002750 0.428252 0.472274

Table 2.1: Comparison of the results for different grid sizes for L =  1 and R = 20

h, k Total heat flux 
at upper boundary

Temperature at 
centre of cavity

Stream function 
at centre of cavity

0.05, 0.05 
0.02, 0.02 
0.01, 0.01

0.632147
0.145898
0.040989

0.165044
0.161698
0.161463

2.759958
2.781390
2.784363

Table 2.2: Comparison of the results for different grid sizes for L =  1 and R = 500
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The time step At  in each case is chosen to be

h 2 k 2

The number of time steps,N, used in calculating each set of results was such that 
N A t  = t = 2, at which point the solution had reached its steady state form. 
The convergence of the solution to its steady-state form is illustrated in figures 
2.8-2.13.

Figure 2.8 shows the heat flux at the upper boundary as t varies from zero to 
2 for L = 1 and R = 20. For the steady state solution the total heat flux Q at 
the upper boundary must be zero: this can be shown analytically from equation 
(2.1.3) and the boundary conditions (2.1.4)-(2.1.6). It follows from integration of 
the heat equation over the cavity that

L dT 
dz x =0

(2.4.2)

but since ip = 0 on the impermeable walls of the cavity it follows that

l  dT
dz

dx = 0
z - 1

(2.4.3)

so that the total heat flux across the upper boundary is zero. From the graph in 
figure 2.8 it is seen that the total heat flux decreases gradually to small values 
but never quite reaches zero due to the error in the numerical discretization and 
the use of the trapezoidal rule in calculating the integral (2.4.3). Figure 2.9 
shows the corresponding behaviour for R = 500. Figures 2.10, 2.11 show the 
computed value of the temperature at the centre of the cavity for R —20, 500 as t 
varies from zero to 2. The temperature approaches a limiting value which varies 
slightly for different grid sizes at a given value of R. Figures 2.12 and 2.13 show 
the corresponding behaviour of the computed value of the stream function at the 
centre of the cavity for R = 20 and R = 500. As in the case of the temperature, 
the stream function approaches values which vary slightly for different grid sizes 
at a given value of R. The results for h, k = 0.02, 0.02 and h, k = 0.01, 0.01 are 
extremely close. The step sizes h and k were chosen to be 0.01 and 0.01 for all 
subsequent calculations.
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The results of the numerical calculations for the stream function and temper-
ature fields with L =  1 show that the flow moves in a counter clockwise direction. 
For small Darcy-Rayleigh numbers the centre of circulation is near the vertical 
centre-line of the cavity, as shown in figures 2.14-2.17. Analytical solutions for 
small R  based on the results of Section 2.2 (figures 2.4-2.7) compare well with the 
numerical solutions and show that both results are in good agreement for values 
of R  up to about 30.

As R increases, the numerical solutions show that the centre of circulation 
moves towards the cold end of the upper boundary, as can be seen in figures 2.18, 
2.19.

For high values of the Darcy-Rayleigh number the temperature field starts to 
exhibit a boundary-layer structure at the upper boundary and near the vertical 
boundary at the upper cold corner. This can be seen clearly in figures 2.20, 2.21.

Figures 2.22-2.24 show the slip velocities on the sidewalls of the cavity for 
different values of the Darcy-Rayleigh number. The corresponding slip velocities 
on the upper and lower walls are shown in figures 2.25-2.27. The local heat flux at 
the upper boundary is shown for different Darcy-Rayleigh numbers in figures 2.28, 
2.29 and the profiles calculated from the small Darcy-Rayleigh number analysis 
of Section 2.2 are shown for comparison in figure 2.30. A measure of the error in 
the numerical solution for different values of R  is shown by the total heat flux at 
the upper boundary in figure 2.31.

The variation of the solution properties with R  is shown in figures 2.32-2.37. 
The variation of the maximum stream function value ipmax shown in a logarithmic 
plot in figure 2.32 confirms that VWæ is of order R as R  —> 0 and predicts a 
value of order R R3 as R  —» oo; this is confirmed by a boundary-layer analysis 
of the solution structure for large values of R in Chapter 4. The behaviour of 
the temperature at the centre of the cavity shown in figure 2.33 indicates that 
it approaches a finite, non-zero value of approximately 0.1, that is, about 10 
per cent of the maximum temperature imposed at the upper surface. From the 
isotherms shown in figure 2.21 it is clear that at large R  most of the cavity is 
at a temperature of about this value, the exception being the immediate vicinity 
of the upper surface. In contrast, the behaviour of the stream function at the 
centre of the cavity is less obvious, and although no clear asymptotic form has 
emerged at R = 5000 it appears that it may also be approaching a finite value 
independent of R. Figures 2.35-2.39 show the movement of the maximum stream
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function location (xmax, zmax) as a function of R. The values of xmax and zmax 
plotted in these figures are only accurate to within the tolerance of the grid 
spacing (0.01). The centre of circulation moves into the upper cold corner of the 
cavity as R —> oo.

2.5 Sum m ary

In this chapter we have used numerical and asymptotic methods to investigate 
the flow and temperature fields in a fluid-saturated porous medium contained in 
a cavity whose upper surface is subject to differential heating. Analytical results 
have been obtained for small Darcy-Rayleigh numbers R  and numerical results 
for general values of R , with particular emphasis on the case of a square cavity, 
L — 1. With increasing R, the differential heating drives a circulation whose 
centre moves towards the upper cold corner of the cavity. Most of the variation 
in temperature then occurs near the upper surface and below this the temperature 
tends to an almost constant value slightly greater than the coldest value at the 
upper surface. The structure of the cavity flow at large values of R  is considered 
in detail in Chapters 4-6.

In the next chapter, results are obtained for an alternative temperature profile 
on the upper surface and a detailed investigation is made of how the aspect ratio 
influences the solution.
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T  =  |(1  -  cos

z = 0
x =  0

Figure 2.1: Configuration of the problem

25



Figure 2.2: Contours of the leading order temperature and stream function for
L = 1.
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Figure 2.3: Contours of the first order temperature and stream function for L
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Figure 2.4: Analytical prediction of isotherms and streamlines for L = 1 and 
R = 5
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Figure 2.5: Analytical prediction of isotherms and streamlines for L = 1 and 
R =  10
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Figure 2.6: Analytical prediction of isotherms and streamlines for L =  1 and 
R = 20
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Figure 2.7: Analytical prediction of isotherms and streamlines for L = 1 and 
R  = 30
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t

Figure 2.8: Total heat flux Q across the upper boundary for L — 1 and R = 20 
versus t for different grid sizes where the upper curve is for h =  0.05, k =  0.05, the 
middle curve for h = 0.02, k = 0.02 and the lower curve for h = 0.01, k = 0.01.

t

Figure 2.9: Total heat flux Q across the upper boundary for L — 1 and /2=500
versus t for different grid sizes where the upper curve is for h — 0.05, A: = 0.05, the
middle curve for h = 0.02, k = 0.02 and the lower curve for h = 0.01, k — 0.01.
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T( 0.5,

Figure 2.10: Value of the temperature at the centre of the cavity for L = 1 and 
R = 20 versus t for different grid sizes h = 0.05, k =  0.05; h = 0.02, k =  0.02 and 
h =  0.01, k = 0.01 : all three curves are nearly the same

T(0.5,0.

Figure 2.11: Value of the temperature at the centre of the cavity for L = 1 
and R  = 500 versus t for different grid sizes, where the upper curve is for h = 
0.05, k = 0.05, the middle curve for h = 0.02, k = 0.02 and the lower curve for 
h = 0.01, k = 0.01.
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"0(0.5, 0.

Figure 2.12: Value of the stream function at the centre of the cavity for L — 1 
and R = 20 versus t for different grid sizes, where the upper curves are for h — 
0.01, k = 0.01 and h = 0.02, k = 0.02, and the lower curve for h = 0.05, k — 0.05.

0(0.5, 0.

Figure 2.13: Value of the stream function at the centre of the cavity for L = 1 
and R — 500 versus t for different grid sizes, where the upper curves are for h = 
0.01, k ~  0.01 and h = 0.02, k = 0.02, and the lower curve for h = 0.05, k = 0.05.
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Figure 2.14: Contour plot of the temperature and stream function from the nu-
merical solution for L = 1 and R  = 5

Figure 2.15: Contour plot of the temperature and stream function from the nu-
merical solution for L = 1 and R = 10
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Figure 2.16: Contour plot of the temperature and stream function from the nu-
merical solution for L = 1 and R = 20

Figure 2.17: Contour plot of the temperature and stream function from the nu-
merical solution for L — 1 and R  =  30
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Figure 2.18: Contour plot of the temperature and stream function from the nu-
merical solution for L — 1 and R  =  200

Figure 2.19: Contour plot of the temperature and stream function from the nu-
merical solution for L = 1 and R = 500
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Figure 2.20: Contour plot of the temperature and stream function from the nu-
merical solution for L = 1 and R = 1500

Figure 2.21: Contour plot of the temperature and stream function from the nu-
merical solution for L = 1 and R = 5000
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0 0.2 0.4 0.6 0.8 1

Figure 2.22: Slip velocity w for L = 1 and different values of R  at the boundary 
x = 0 from the numerical calculation

z

0 0.2 0.4 0.6 0.8 1

Figure 2.23: Slip velocity w for L = 1 and different values of R  at the boundary 
x = 0 from the numerical calculation
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R  =  5000

Z

Figure 2.24: Slip velocity w for L — 1 and different values of R at the boundary 
x = 1 from the numerical calculation
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X

Figure 2.25: Slip velocity u for L — 1 and different values of R  at the upper 
boundary z — 1 from the numerical calculation

x

0.2 0.4 0.6 0.8 1

Figure 2.26: Slip velocity u for L — 1 and different values of R  at the upper 
boundary z — 1 from the numerical calculation
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Figure 2.27: Slip velocity u for L = 1 and different values of R  at the lower 
boundary z — 0 from the numerical calculation
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Figure 2.28: Local heat flux at the upper boundary 2 =  1 from the numerical 
calculation for L = 1 and different values of R.

dT
dz 0*M)

Figure 2.29: Local heat flux at the upper boundary 2 = 1 from the numerical 
calculation for L = 1 and different values of R
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Figure 2.30: Comparison between the value of the local heat flux at the upper 
boundary z — l from the numerical calculation for L = 1 and the analytical 
calculation for small R , where the dotted curves represent the results from the 
numerical calculation

Q

0 . 0 2  

0 .0 1 7 5  

0 . 0 1 5  

0 .0 1 2 5  

0.01 

0 .0 0 7 5  

0 . 0 0 5  

0 .0 0 25

50 100 150 200

R

Figure 2.31: Total heat flux Q across the upper boundary z — 1 from the numer-
ical calculation for L = 1 and various values of R
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Figure 2.32: Graph of lni/Wx versus Ini? for L = 1 where the dotted curve is 
from the analytical calculation for small R  and the full curve is from the numerical 
calculation
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Figure 2.33: Temperature at the centre of the cavity versus R  from the numerical 
calculation for L = 1

-0(0.5, 0.5

R

Figure 2.34: Stream function at the centre of the cavity versus R  from the nu-
merical calculation for L = 1
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Figure 2.35: Position (xmax, zmax) of the maximum value of the stream function 
ipmax for different values of R  from the numerical calculation for L = 1
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R

Figure 2.36: Position zmax of the maximum value of the stream function 
versus R from the numerical calculation for L — 1

1

0 . 8  ■

%max  0 . 6 -  

l
. . . \

0 . 2  ■

I

0 1000  2000  3000  4000  5000

R

Figure 2.37: Position xmax of the maximum value of the stream function ^ mai
versus R from the numerical calculation for L — 1

48



1

0.8

0.6
Z m a x

0 . 4

0 . 2  '

0 . 0 2 5  0 . 0 5  0 .0 7 5  0 .1  0 .1 2 5  0 .1 5  0 . 1 7 5  0 .2

l / R

Figure 2.38: Position zmax of the maximum value of the stream function ipmax 
versus l /R  from the numerical calculation for L = 1
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Figure 2.39: Position xmax of the maximum value of the stream function il>m ax

versus l / R  from the numerical calculation for L = 1
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Chapter 3

Further Solutions and 
D ependence on A spect R atio

3.1 In tro d u c tio n

In this chapter the results are extended to a different temperature profile along 
the upper surface of the cavity and to a range of aspect ratios. At the upper 
boundary z — 1 the temperature is assumed to have the quadratic form

T = l - (x -  L )2
L2

0 < x < L (3.1.1)

so that, as with the cosine profile(2.1.1) it is monotonie and varies from zero at 
the cold end(x =  0) to one at the hot end (x = 1). One reason for studying 
this quadratic profile is that it allows an exact solution of the horizontal bound-
ary layer equations in the high Darcy-Rayleigh number limit, to be discussed in 
Chapter 4. This profile is also of interest in that unlike the cosine profile it is 
linear as it approaches the cold end {x =  0), implying a more sudden drop in tem-
perature there and thus a more vigorous motion. Mathematically, it also implies 
a weak singularity in the thermal held in the corner (x = 0,2 = 1) because the 
value of H  must adjust from the value 2/ L  given by(3.1.1) on z = 1 as x —> 0+ 
to the value = 0 associated with the thermally insulated boundary, x = 0. 
From(2.1.2)-(2.1.6) the full system considered here consists of the equations
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(3.1.2)

(3.1.3)V2T d(T, $)
d(x, z )

together with (3.1.1) and the remaining boundary conditions

dT
ip = —— = 0 on x = 0, L

dx
(3.1.4)

ïp — 0 on z — 0,1, (3.1.5)

dT
—  = 0 on z — 0. 
dz

(3,1,6)

The solution for small Darcy-Rayleigh numbers is considered in Section 3.2 
and numerical solutions for general Darcy-Rayleigh numbers are discussed in 
Section 3.3. Both tabular and graphical results are obtained for aspect ratios in 
the range L = \  to L = 4. The results are summarized in Section 3.4 .

3.2 Solution for sm all D arcy-R ayleigh num bers

The solution for the flow in the cavity for small Darcy-Rayleigh numbers R where 
the upper boundary temperature has the quadratic form (3.1.1) can be obtained 
by assuming

T(x,z) =  T 0 ( x , z )  + --- (3.2.1)

xp(x,z) =  R i p i ( x ,  z )  + • • • (3.2.2)

As in Section 2.2, the leading order temperature field To(x,z) satisfies Laplace’s 
equation

dx2 dz1 ’
which must now be solved subject to the boundary conditions

(3.2.3)

dTo
dx

= 0 on x =  0, L, (3.2.4)
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on 2  =  0 (3.2.5)dTo
dz

= 0

Tn = 1 (x ~ Lf
L2

The solution is found using a cosine series 
conditions (3.2.4), and has the form

on 2 =  1. (3.2.6)

in x in order to satisfy the boundary

Tq =
2 iS, mix mrz
3 + ¿^ c n cos cosh — (3.2.7)

where

n (wr)2
4 n7r 

sech — .
Lj

(3.2.8)

The leading order stream function 0i satisfies Poisson’s equation

<920 i  d 2ripi DTq

dx2 c?22 <9rr ’
(3.2.9)

where T0 is given by (3.2.7). This must be solved subject to the boundary con-
ditions

?/q = 0 on x = 0 ,L, '01 = 0 on 2 =  0,1. (3.2.10)

Here the solution can be constructed as a sine series in x and is composed of a 
particular integral which balances the right-hand side of (3.2.9) together with a 
complementary function which ensures that the boundary conditions at 2 = 0 
and 2 = 1 are satisfied. The solution is found to be

OO
0i = E  ~ r ( z -  i ) sinh

n = 1 Z

mrz . mrx 
sin

L L
(3.2.11)

where Cn is given by (3.2.8).
The solutions for T0 and 0i are both infinite series in this case, in contrast to 

the previous case (Section 2.2) where the temperature at the upper boundary is 
a cosine function and only one mode of the cosine and sine series for T0 and 0o 
(respectively) are generated, as shown in (2.2.8) and (2.2.12). We see that there 
is now no symmetry about x = |  in either the temperature field T0 or the stream 
function 0i , unlike the previous case. The centre of the eddy, where 0i attains 
its maximum value of 0.02342 is at x = 0.44, z = 0.69 when L =  1, and is thus 
closer to the cold end of the cavity than in the previous case.

Plots of the isotherms and the streamlines predicted by this analysis are shown
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for R — 5 and L = 1 in figure 3.1. Both the isotherms and the centre of circulation 
are seen to be closer to the cold side than in the corresponding result for the 
cosine function shown in figure 2.4. However, the overall pattern of isotherms 
and streamlines is similar in each case. Results predicted by the analysis of this 
section for other aspect ratios in the range \  < L < 4 and R = 5 are shown in 
figures 3.2 and 3.3.

3.3 N um erical resu lts for general D arcy-R ayleigh 
num bers

The same numerical method as described in Section 2.4 was used to calculate 
solutions of the system of equations (3.1.2), (3.1.3) with boundary conditions 
(3.1.1) and (3.1.4)-(3.1.6) for general Darcy-Rayleigh numbers. Most computa-
tions were carried out with step sizes of 0.01 in both the x and z directions and a 
time step of 10-5. In all cases it was found that 2 x 105 time steps were sufficient 
to reach a steady-state, equivalent to t = 2. The initial state at t =  0 was taken 
to be T — 0, ip =  0 at all internal points in the cavity.

3.3.1 Results for a square cavity, L — 1.

Numerical values of the steady state solution at various reference points in the 
cavity are displayed in table 3.1 for values of R  equal to 5, 30, 200, 500, 1500 and 
5000. Also shown are the position and value of the maximum value of the stream 
function and the corresponding value of the temperature at that point.

Isotherms and streamlines are shown in figures 3.4 - 3.15. The results for 
R — 5 shown in figures 3.4 and 3.5 are in excellent agreement with the small R 
analysis. We see that as the value of R  increases (figures 3.6 - 3.15) the isotherms 
migrate towards the hot end and the centre of circulation moves towards the cold 
end, leaving the temperature in the lower part of cavity at a value of around 
0.23-0.24 in the limit of large R. This can be seen in figure 3.14 and in more 
detail in figure 3.16. The overall structure of the solution is similar to that of 
the previous results of Chapter 2, where the temperature at the upper boundary 
is a cosine function, although the temperature in the lower region in the limit of 
large R  is slightly lower (< 0.2) in the previous case.
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M  L = 1

B,

R 5 30 200 500 1500 5000

^A2 0.100642 0.584468 2.034072 2.764080 3.494969 4.084355
Ta 2 0.656712 0.591581 0.394221 0.310195 0.251687 0.236864
Ta  i 0.556830 0.484798 0.328248 0.274621 0.238047 0.232662
T 43 0.735051 0.659985 0.416885 0.318704 0.253339 0.236738
Tb i 0.612686 0.533341 0.346509 0.283131 0.241108 0.233620
Tb 2 0.648512 0.566640 0.359310 0.288660 0.242871 0.234105
Tb 3 0.683464 0.602136 0.376120 0.296274 0.245264 0.234708
1ft max 0.117937 0.699686 3.029098 5.032325 8.440277 13.860153

T  at Ipmax 0.638297 0.586046 0.433103 0.375387 0.329827 0.312290
X-max > ^max (0.43,0.69) (0.40,0.70) (0.27,0.76) (0.20,.81) (0.13,.86) (0.08,.90)

Table 3.1: Numerical results for L — 1

3.3.2 Results for tall cavities, L < 1.

Numerical calculations for taller cavities were carried out for two aspect ratios 
L = 0.25 and L = 0.5. Numerical values of the steady-state solution at various 
reference points in the cavity for L = 0.25 are shown in table 3.2 and isotherms 
and streamlines are displayed for R  =  5,30,200,500,1500 and 5000 in figures 
3.17 - 3.22. The results for R — 5 are in good agreement with the small R 
analysis (figure 3.3). We see that most of the variation occurs in the upper part
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1

A\ A2 A3 L =  0.25

B ! B2 \ B ,
0.25

R 5 30 200 500 1500 5000

4>A2 0.000944 0.005722 0.033301 0.055332 0.072721 0.078472
Ta 2 0.662393 0.641186 0.516368 0.413588 0.322736 0.278668
Tax 0.661680 0.640465 0.515743 0.413188 0.322576 0.278620
Ta 3 0.663200 0.642000 0.517063 0.414029 0.322911 0.278713
Tb  1 0.661892 0.640715 0.516186 0.413522 0.322699 0.278628
Tb 2 0.661895 0.640718 0.516188 0.413523 0.322700 0.278628
Tb 3 0.661898 0.640721 0.516191 0.413525 0.322701 0.278628

Rmax 0.029523 0.178483 1.110682 2.231225 4.271912 7.653702
T  at 'lpmax 0.651209 0.641041 0.549390 0.476495 0.415317 0.356216
Xmax j Zmax (0.11,0.92) (0.11,0.92) (0.09,0.93) (0.08,0.93) (0.06,0.95) (0.04,0.96)

Table 3.2: Numerical results for L =  0.25
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of the cavity as R  increases and a horizontal boundary layer structure develops 
as R  —» oo. The temperature in the lower part of the cavity in the limit of large 
R  is between 0.27 and 0.28, and the isotherms there for R = 5000 can be seen 
in more detail in figure 3.23. The corresponding results for the case L =  0.5 are 
shown in table 3.3 and figures 3.24 - 3.30.

R 5 30 200 500 1500 5000

A2 0.021927 0.132274 0.604564 0.862543 1.070963 1.193139
Ta 2 0.657565 0.615215 0.435155 0.342707 0.274151 0.250765
Tax 0.639429 0.596431 0.421738 0.335426 0.271487 0.250007
TA 3 0.674743 0.632053 0.444619 0.347122 0.275512 0.251079
Tm 0.655163 0.612105 0.431217 0.340099 0.273074 0.250438
Tb 2 0.656689 0.613638 0.432179 0.340582 0.273239 0.250482
Tbs 0.658212 0.615175 0.433163 0.341080 0.273408 0.250527
'tpmax 0.059558 0.360278 1.930214 3.459962 6.129371 10.419395

T  at Ipmax 0.648037 0.617785 0.486767 0.417138 0.356994 0.328509
X-max > Zmax (0.22,0.84) (0.21,0.84) (0.16,0.86) (0.13,0.88) (0.09,0.91) (0.05,0.94)

Table 3.3: Numerical results for L = 0.5
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3.3.3 Results for shallow cavities, L > 1

Numerical calculations for shallow cavities were also investigated for two aspect 
ratios, L = 2 and L — 4. Numerical values of the temperature and stream 
function at various reference points are shown in table 3.4 for L = 2 and the 
isotherms and streamlines for various values of R are displayed in figures 3.31 - 
3.36. Results for R = 5 in figure 3.31 agree well with the small R  analysis(figure 
3.2). More detailed isotherms in the lower part of the cavity for R  = 5000 are 
shown in figure 3.37. Corresponding results for an aspect ratio L = 4 are shown 
in table 3.5 and figures 3.38 - 3.44. Notice here that the shallow geometry makes 
the development of a horizontal boundary layer structure as R —> oo less evident 
than in the previous case, although its emergence is clearly indicated in the results 
for R = 5000 shown in figures 3.43 and 3.44.

For moderate and small values of R  and very shallow cavities (L ;$> 1) the 
isotherms align almost vertically in the middle section of the cavity, as shown 
for L =  4 and R — 5 in figure 3.38, and the streamlines are approximately 
symmetrical about the horizontal line z  = This reflects the fact that the z  

derivatives on the left-hand sides of (3.1.2) and (3.1.3) dominate the x derivatives 
in this limit, and the relevant solution thoughout most of the cavity (0 < |  < 
1 ,  0 < z  < 1 )  is

T ~  l - ( f - l ) 2. (3.3.1)

An inner solution near x /L  = 0 is necessary to allow ip to adjust to zero at the 
cold end wall, but the details are not considered here.
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1

M A-2 A3 L = 2

B, B2
2

B 3

R 5 30 200 500 1500 5000

0.171382 0.954399 3.098205 4.388374 5.992555 7.573549
Ta 2 0.672782 0.605718 0.416770 0.326718 0.257741 0.234563
Tai 0.403675 0.333748 0.245124 0.223516 0.212824 0.219693
Ta 3 0.847273 0.763870 0.479277 0.355945 0.266952 0.235889
Tb i 0.470041 0.383329 0.265650 0.234878 0.217864 0.221616
Tb 2 0.647676 0.529180 0.316333 0.257728 0.225613 0.223919
Tb 3 0.800721 0.697852 0.402883 0.300467 0.240080 0.227571

Ipmax 0.180961 1.033586 4.112726 6.752359 11.172470 18.078587
T  'Iprnax 0.604932 0.533863 0.383803 0.338168 0.306067 0.295019
X-max j Zmax (0.79,0.56) (0.72,0.57) (0.43,0.65) (0.30,0.71) (0.20,0.77) (0.12,0.83)

Table 3.4: Numerical results for L — 2
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L = 4

R 5 30 200 500 1500 5000

1pA2 0.142369 0.846964 3.522609 5.511643 8.332968 11.762621
Ta 2 0.704617 0.652744 0.494190 0.400635 0.308188 0.253876
Tax 0.244860 0.204832 0.160752 0.164277 0.181400 0.203643
Taj . 0.949152 0.919195 0.660494 0.490519 0.344591 0.264704
Tbx 0.291744 0.240495 0.179283 0.176843 0.188552 0.207033
Tb 2 0.683537 0.580946 0.336233 0.257919 0.218717 0.216280
Tbj , 0.932064 0.891926 0.585507 0.410249 0.283840 0.235788
^max 0.164882 0.937143 4.251990 7.617726 13.529162 22.714008

T  clt 'Iprnax 0.512657 0.475739 0.330235 0.292985 0.281880 0.284960
X-max i Zmax (1.26,0-52) (1.27,0.52) (0.76,0.58) (0.47,0.63) (0.29,0.68) (0.17,0.75)

Table 3.5: Numerical results for L = 4
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3.4 Sum m ary

From the numerical results for a range of aspect ratios L and various values of 
R, we see that the solutions possess the same general features as those found in 
Chapter 2 for square cavities. In particular, the results indicate the formation 
of a horizontal boundary layer in the upper part of the cavity as R  increases, 
leaving the bottom part of the cavity with an almost constant temperature in 
the region of 0.2 - 0.3 in the limit of large R. This limiting value appears to be 
largely independent of aspect ratio. The main feature of the flow pattern is the 
migration of the centre of circulation towards the upper end of the cold wall as 
R increases.
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Figure 3.1: Isotherms and streamlines from the small R  analysis for R — 5 and 
L = 1
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Figure 3.2: Isotherms and streamlines from the small R analysis for R = 5 and
aspect ratios L — 1,2,4
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Figure 3.3: Isotherms and streamlines from the small R analysis for R  =  5 and
aspect ratios L = 0.5,0.25
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Figure 3.4: Isotherms from the numerical calculation for R = 5 and L — 1

Figure 3.5: Streamlines from the numerical calculation for R = 5 and L =  1
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Figure 3.6: Isotherms from the numerical calculation for R = 30 and L — 1

Figure 3.7: Streamlines from the numerical calculation for R = 30 and L = 1

65



Figure 3.8: Isotherms from the numerical calculation for R  = 200 and L = 1

Figure 3.9: Streamlines from the numerical calculation for R = 200 and L = 1
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Figure 3.10: Isotherms from the numerical calculation for R = 500 and L = 1

Figure 3.11: Streamlines from the numerical calculation for R  = 500 and L = 1
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Figure 3.12: Isotherms from the numerical calculation for R = 1500 and L = 1

Figure 3.13: Streamlines from the numerical calculation for R  =  1500 and L = 1
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Figure 3.14: Isotherms from the numerical calculation for R = 5000 and L — 1

Figure 3.15: Streamlines from the numerical calculation for R  = 5000 and L — 1
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Figure 3.16: Isotherms between 0.23 and 0.24 from the numerical calculation for 
R = 5000 and L = 1
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Figure 3.17: Isotherms and streamlines from the numerical calculation for R — 5 
and L = 0.25
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Figure 3.18: Isotherms and streamlines from the numerical calculation for R = 30 
and L = 0.25
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Figure 3.19: Isotherms and streamlines from the numerical calculation for R  
200 and L =  0.25
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Figure 3.20: Isotherms and streamlines from the numerical calculation for R 
500 and L = 0.25
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Figure 3.21: Isotherms and streamlines from the numerical calculation for R 
1500 and L = 0.25
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Figure 3.22: Isotherms and streamlines from the numerical calculation for R 
5000 and L =  0.25
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Figure 3.23: Isotherms between 0.2786 and 0.2787 for R = 5000 and L = 0.25
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Figure 3.24: Isotherms and streamlines from the numerical calculation for R  =  5 
and L = 0.5
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Figure 3.25: Isotherms and streamlines from the numerical calculation for R = 30 
and L = 0.5
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Figure 3.26: Isotherms and streamlines from the numerical calculation for R 
200 and L =  0.5
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Figure 3.27: Isotherms and streamlines from the numerical calculation for R 
500 and L — 0.5

81



Figure 3.28: Isotherms and streamlines from the numerical calculation for R 
1500 and L =  0.5
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Figure 3.29: Isotherms and streamlines from the numerical calculation for R 
5000 and L = 0.5
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Figure 3.30: Isotherms between 0.25 and 0.26 for R  = 5000 and L = 0.5
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Figure 3.31: Isotherms and streamlines from the numerical calculation for R  = 5 
and L = 2
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Figure 3.32: Isotherms and streamlines from the numerical calculation for R = 30 
and L — 2
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Figure 3.33: Isotherms and streamlines from the numerical calculation for R = 
200 and L — 2
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Figure 3.34: Isotherms and streamlines from the numerical calculation for R 
500 and L = 2
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Figure 3.35: Isotherms and streamlines from the numerical calculation for R 
1500 and L = 2
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Figure 3.36: Isotherms and streamlines from the numerical calculation for R 
5000 and L = 2
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Figure 3.37: Isotherms between 0.2 and 0.3 from the numerical calculation for 
R  =  5000 and L = 2
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Figure 3.38: Isotherms and streamlines from the numerical calculation for R  = 5 
and L = 4
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Figure 3.39: Isotherms and streamlines from the numerical calculation for R = 30 
and L — 4
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Figure 3.40: Isotherms and streamlines from the numerical calculation for R  
200 and L — 4
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Figure 3.41: Isotherms and streamlines from the numerical calculation for R  = 
500 and L — 4
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Figure 3.42: Isotherms and streamlines from the numerical calculation for R  
1500 and L — 4

96



Figure 3.43: Isotherms and streamlines from the numerical calculation for R 
5000 and L = 4

97



Figure 3.44: Isotherms between 0.2 and 0.3 from the numerical calculation for 
R = 5000 and L = 4
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Chapter 4

An Approxim ate Theory for 
Large Darcy-Rayleigh Num bers

4.1 In tro d u c tio n

Numerical calculations of the problems in Chapter 2 and Chapter 3 have shown 
that when R is large all the main features of the steady flow and temperature 
fields shift toward the upper boundary. In this chapter we obtain an approximate 
solution in the limit of large Darcy-Rayleigh number R  by using an asymptotic 
method to investigate the flow in an upper horizontal boundary layer. By as-
suming that the temperature along the upper surface of the cavity is a quadratic 
function of x as in (3.1.1) a solution may be sought in which the temperature 
and stream function in the horizontal boundary layer depend on quadratic and 
linear functions of x respectively. In this way we can find an exact solution of 
the horizontal boundary layer equations as outlined in Section 4.2 below. Making 
use of this solution, the temperature in the cavity below the horizontal boundary 
layer can be obtained by considering the heat transfer in the horizontal boundary 
layer. This is undertaken in Section 4.3. Although we shall see that the results 
compare well, in some respects, with the full numerical calculations of Chapter 3, 
it emerges that the horizontal boundary layer solution discussed in this chapter 
can only be regarded as an approximate representation of the flow and tempera-
ture fields there. This is because the solution fails to take proper account of the 
flow near the cold end of the cavity. This is discussed further in Section 4.4.
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4.2 U pper horizontal b oundary  layer approxi-
m ation

We expect the main variation of the steady flow and temperature fields to be 
in a horizontal layer near 2 = 1. Assuming that 2 =  1 — R~az near the upper 
boundary where z = 0(1) and a > 0 it follows that in the governing equations
(3.1.2), (3.1.3), 0  >>  0  and 0  >>  0 .  Thus we try to balance

Ip RT
z2 X
T Tip
z 2 xz

(4.2.1)

(4.2.2)

Since T  ~  1 and x ~  1 within the layer it follows from (4.2.1) that ip ~  Rz2 and 
then from (4.2.2)that z~2 ~  Rz  in which case 2 ~  f? sand ip ~  . Thus we set
a  =  |  (see figure 4.1) and the upper horizontal layer solution is constructed in 
the form

T{x ,z ) = T(x,z)  + • • •, (4.2.3)

tp(x,z) =  R*ip(x,z) + • ■ •, (4.2.4)

where
2 =  1 -  R~^Z.

Then T  and ip satisfy the horizontal boundary layer equations

d2T _  dip dT dip dT
dz2 dz dx dx dz '
d2ip _  dT
dz2 d x ’

with boundary conditions

ip = 0, T  = 1 — L~2(x  — L )2, 2 = 0.

(4.2.5)

(4.2.6)

(4.2.7)

(4.2.8)

dip n dT _
— ^ 0 , ^ 0 ,  2  — } OO.

The actual boundary conditions as 2 —> 00 will emerge later, but we consider
here what happens if we assume that

1 0 0

(4.2.9)



We look for a solution of (4.2.6)-(4.2.9) in the form

(4.2.10)

(4.2.11)

0  = (L -  x)(/>0(z),

T  = - ( L - x ) ^ ( z )  + Ol {z).

Note that these solutions are consistent with the end conditions xp = = 0
at x = L but do not satisfy the equivalent boundary conditions at x =  0. The 
existence of a vertical boundary layer near x = 0 is discussed in Section 4.4. 
Substitution in (4.2.6) and (4.2.7) gives

e ' l - e ' ^ L - x f  = - 2 (l - x )2p>% -  M S 1, -  (L -M Si) ,(4.2.12)

( L - x ) %  = - 2 ( L - x ) 6 0, (4.2.13)

from which it follows that the functions 0O, 90 and 6\ satisfy the nonlinear
o r d i n a r y  d i f f e r e n t i a l  e q u a t i o n s

K  = -290, (4.2.14)

% — 2(p'09o + 4>o9'0 = 0, (4.2.15)

% = 00̂ 1 ) (4.2.16)

to be solved subject to the boundary conditions

60 = L~2, 9, = 1, 0 O = 0 (¿ = 0), (4.2.17)

0 o ,  9'0, 9[ -> 0 (z —> o o ) . (4.2.18)

We can scale out L from the system (4.2.14)-(4.2.18) by setting

z = L'lz, 00 = L - ^ { Z ) ,  90 = L~290(Z), e1 = 9 1 (Z) (4.2.19)

to obtain

0" = -200, (4.2.20)

9q — 2 0 ' 60 + <p9'0 = o, (4.2.21)

% = -00 j, (4.2.22)

1 0 1



with boundary conditions

0O = 1, 0i = l, 4> = 0 (Z = 0), (4.2.23)

0', 0Q, 6[ -> 0 (Z -> oo). (4.2.24)

From (4.2.20) we have 0O = ~ \ (t)" so (4.2.21) can be transformed to give the 
following fourth order system for 0 :

0™ + 00"' -  20'0" = 0, (4.2.25)

0 = 0, 0" =  -2  (Z = 0), (4.2.26)

0 '->O  (Z —> oo). (4.2.27)

The outer boundary condition rules out the behaviour 0 ~  kZ  (Z —> oo) and 
it follows from one integration of (4.2.25) that

0"' + 00" -  ^0 /2 = 0,

0 = 0, 0" = -2  (Z = 0),

0' —» 0 (Z —>• oo).

At the edge of the layer 0 has the behaviour

0 ~  a — ke~aZ (Z —»• oo), (4.2.31)

where a and fc are constants to be determined. These are effectively fixed by 
satisfying the two boundary conditions at Z =  0. If the solution (4.2.31) were 
valid for all Z then it would follow that

k = a = 25 (4.2.32)

and the actual solution of (4.2.28)-(4.2.30) was found by using this as an initial 
guess in an iterative scheme, as follows.

Equation (4.2.28) was converted into a set of first order ordinary differential 
equations which were then integrated inwards from a suitable outer boundary 
Z =  Zoo using a fourth order Runge Kutta scheme. At Z = Z^ (4.2.31) was 
assumed to apply, the values of k and a being set initially to those given by

(4.2.28)

(4.2.29)

(4.2.30)

1 0 2



(4.2.32). This results in values of (f> and <p" at Z  = 0 which can be considered 
functions of a and k. Setting

</>(0) = p(a,k), 

0"(O) + 2 =  q(a, k),

(4.2.33)

(4.2.34)

we then use Newton’s method to solve the system of nonlinear equations

p{a,k) = 0, (4.2.35)

q(a,k) = 0. (4.2.36)

To find new approximations to a and k the functions p and q are expanded as 
Taylor series about the point (a, k), leading to the Newton equations

0 = p(a, k) + ^ ( a ,  k)5a + ~ ( a ,  k)6k, 
da ok
da da

0 = q(a,k) + — (a ,k)8a+ — (a,k)8k.OCL OK

(4.2.37)

(4.2.38)

The four partial derivatives are calculated numerically by repeating the Runge- 
Kutta solution for neighbouring values of a and k. From the above equations we 
then solve for the increments 8a, 8k to obtain the new approximations a + 8a and 
k+8k. The whole procedure is then repeated until the conditions (4.2.35),(4.2.36) 
at Z = 0 are satisfied. The computations were carried out with — 8 and steps 
of A Z  = 0.01 in the Runge-Kutta scheme. Checks were made with other outer 
boundaries and step sizes to confirm the accuracy of the solution. The constants 
a and k converged to the final values

a =1.141, A; = 1.021 (4.2.39)

and the first derivative of (f> at the origin was found to be given by

c — 0'(O) = 1.447. (4.2.40)

The graph of <j> is shown in figure 4.2.
Once <p(Z) is determined then 90 is found from 90 — ~ \ <P” and is shown in 

figure 4.3 ; note that 90 —> 0 as Z —> oo. Also 9\ is found by integrating (4.2.22)
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once to give
e\ = -Ae~fo *dZ

where A is an arbitrary constant. One further integration then gives

(4.2.41)

ex = i -  a q x (4.2.42)

where
©i =  J  exp f — J  (jxlZjdZ

and is shown in figure 4.4. We see that

(4.2.43)

9\ —y 1 — as Z   ̂ oo, (4.2.44)

where

Xo = r  exp (-r  (j)dz\ dZ = 1.472. (4.2.45)

4.3 H eat tran sfe r in th e  horizontal boundary  
layer

In order to find the constant A and thus complete the horizontal boundary layer 
solution we appeal to the fact that the solution must be consistent with the heat 
flux property of the overall solution in the cavity,

rL dT
/  —  (x, l)dx = 0. 
Jo oz

(4.3.1)

This can readily be established from (3.1.3)-(3.1.6) and expresses the fact that 
since no heat can escape through the sides or base of the cavity, the net heat 
transfer through the upper surface must vanish. The main contribution to this 
transfer in the limit of large R must come from the horizontal boundary layer 
and so it follows that

rL  r)T
(4.3.2)rL &T

I  à î ( l ’0)<fe = 0’
which gives

(9[(0) -  (L -  x)26'0{0)) dx = 0. (4.3.3)
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In terms of the scaled variables defined by (4.2.19), this implies that

e;(o)-^i(o) = o. (4.3.4)

Now

1IIo
' (4.3.5)

and
- ^ " ( 0 )  = - j W 0 ) ) 2 = - j c 2*o(0) = (4.3.6)

from(4.2.28) so that

A = ~ c 2 = 0.524. 
4

(4.3.7)

This completes the solution (4.2.42) for 9\, which is shown in figure 4.5. It is seen 
that

Oi —* b — 1 — ^c2xo = 0.229 as Z  —> oo. (4.3.8)

This predicts a temperature in the cavity below the horizontal layer which is 
constant and given by

T{x,z) «  b = 0.229. (4.3.9)

This is in reasonable agreement with the numerical results described in Chapter 
3 and suggests that in the large Darcy-Rayleigh number limit the temperature 
throughout most of the cavity is somewhat greater than that of the coldest point 
on the upper surface.

The transport of heat through the horizontal boundary layer can be analysed 
as follows. From the horizontal boundary layer equation (4.2.6) it follows that 
the local heat transfer at the upper surface of the cavity is

dT d r , d T

Integration over the length of the upper surface then gives

(4.3.10)

(4.3.11)

where it has been assumed that '¡/> = 0 at x = L. This relates the total heat 
transfer through the upper wall to that passing through the left hand end of 
the horizontal layer. Since the total heat transfer through the upper wall is
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zero (equation (4.3.2)) it follows from (4.3.11) that the horizontal boundary layer
solution will also satisfy

(4.3.12)

The choice of A = \c2 ensures that this is the case so that 0O, 90 and 9\ are
such that

-  . / d6i q d9n\ ,
L M l ) \ - d i ~ L l i ) d l  = 0- <4-3'

In terms of the scaled functions </>, 9q and 91 this implies that

0'o)dZ = 0. (4.3.14)

4.4 Sum m ary

The overall temperature profile at the end x — 0 of the horizontal boundary layer 
is given by

T(0,z) = 91( Z ) - 9 0(Z) (4.4.1)

and is shown in figure 4.6. This indicates that the temperature gets higher as we
move down the left-hand edge of the horizontal boundary layer until a maximum 

— 2 2 value T  «  0.313 is reached at z = L^Z0 ~  0.961/3. As we move down further the
temperature gets lower until the asymptote T  ~  0.229 is reached as z —> oo.

In the case of the stream function at x  = 0,

^(0 ,z) = L ^ ( Z ) ,  (4.4.2)

where 0 is the function shown in figure 4.2. As we move down the left-hand edge 
of the horizontal layer, the stream function increases from zero and reaches a 
maximum value of ?/> ~  1.141 as z —> oo. The scaled velocity profile U = <f>' is 
shown in figure 4.7 which indicates that the horizontal velocity in the negative x 
direction is highest at the upper boundary and reduces to zero at the bottom of 
the horizontal layer.

The overall temperature and stream function fields in the horizontal boundary 
layer can be expressed in the form

T = 9\(Z) -  (1 -  X ) 290(Z), $  = ¿3(1 -  X M Z ) ,  (4.4.3)
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where X  = x /L  and the corresponding isotherms and streamlines are shown in the 
domain 0 < X  < 1, Z > 0 in figures 4.8 and 4.9. The isotherms are consistent 
with the formation of the thermal layer at the upper surface of the cavity, in 
accordance with the full cavity calculations in Chapter 2 and Chapter 3. The 
streamlines indicate a flow drawn into the lower edge of the horizontal layer and 
then conveyed to the cold end, where it is expelled from the layer. Here the 
comparison with the full numerical calculations is less convincing, both in terms 
of the implied existence of a region of predominantly upward velocity below the 
thermal variation in the layer(not seen in the numerical calculations) and the 
non-existence of a closed eddy at the end of the layer(seen in the numerical 
calculations). The exact solution of the horizontal boundary layer equations 
found here imposes both a horizontal velocity and a temperature profile at the 
end x = 0 of the layer which must be adjusted in order to achieve the boundary 
conditions ip = = 0 on the side wall of the cavity. Although it seems likely
that a vertical boundary layer must exist at the end of the horizontal layer, and 
that this will allow variations in both ip and T  there, it is not clear that such a 
layer can accommodate the two outer behaviours (4.4.1) and (4.4.2) specified by 
the horizontal boundary layer solution. This question is considered in detail in 
the next chapter, where it will emerge that the horizontal layer solution obtained 
here must be modified in both a qualitative and quantitative sense. Nevertheless, 
the solution obtained in this chapter still provides a useful approximation to the 
behaviour of the flow and temperature fields near the upper surface of the cavity 
and in particular appears to predict a constant temperature in the core region 
below which is in close agreement with that of the full numerical calculations at 
large Darcy-Rayleigh numbers.
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Figure 4.1: Horizontal boundary layer region
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Figure 4.2: Graph of </> versus Z
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Figure 4.3: Graph of 90 versus Z
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Figure 4.4: Graph of 0 ! versus Z
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Z

Figure 4.5: Graph of 6X versus Z
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Figure 4.6: Graph of temperature T  = Qi(Z) — 9q(Z) versus Z  in the horizontal 
boundary layer at x = 0.
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Figure 4.7: Graph of the scaled velocity profile U = f t  versus Z  in the horizontal 
boundary layer at x = 0.
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X

Figure 4.8: Isotherms of the temperature field in the horizontal boundary layer
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X

Figure 4.9: Contours of the stream function field in the horizontal boundary layer
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Chapter 5

Vertical Boundary Layer

5.1 In tro d u c tio n

In this chapter we consider the results of the horizontal boundary layer analysis 
of the previous chapter and investigate the implications of these results for the 
existence of a vertical boundary layer near the top of the wall, x = 0, in the limit 
of large Darcy-Rayleigh number. General properties of the vertical boundary 
layer equations are considered with a view to understanding whether they will 
admit a solution consistent with the profiles (4.4.1) and (4.4.2) at the end of the 
horizontal layer. The vertical boundary layer system is formulated in Section 
5.2. Section 5.3 considers the behaviour of the solution at the outer edge of the 
layer, with particular reference to the profiles (4.4.1), (4.4.2). Various integral 
properties of the vertical boundary layer system are studied in Section 5.4 and 
in Section 5.5 an asymptotic solution is determined near the top of the layer, as 
z —» 0. In Section 5.6 an integral method is used to shed further light on the 
properties of the solution for general z and in Section 5.7, asymptotic solutions 
are considered in the limit z —» oo. The results are summarized in Section 5.8.

5.2 V ertical boundary  layer system

We consider the existence of a region near the top of the wall x =  0 in which the 
solution is generated by the incoming flow and temperature fields of the horizontal 
boundary layer. It follows that we must assume solutions for T  and ip which are 
order one and order R 5 respectively as R  —> oo, and that the vertical scale of
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variation, also determined by the horizontal layer, is 2 = 0(1), where

z  =  1  —  R  3 z . (5.2.1)

The terms in the heat equation

d 2T  d 2T  d T  d ip  d T  d ip  

d x 2 ' d z 2 d x  d z  d z  d x
(5.2.2)

are then of order

± * i  =  ^ (5.2.3)
X

whilst the terms in the equation

d 2ip d 2ip d T  

d x 2 ' d z 2 d x
(5.2.4)

are of order
R l3 R

R =  — •X2 X
(5.2.5)

Since we must have x  <C 1 it follows that the only viable balance which allows T  

and ip to vary in the horizontal direction is obtained by balancing the x  derivative
terms in the Laplace operators with the right-hand sides of (5.2.2) and (5.2.4),

2
in which case x  ~  (see figure 5.1) and we set

x  =  R - h .  (5.2.6)

The solutions for ip and T  are expanded in the form

ip = Ri%j) {x ,  z )  + • • •, (5.2.7)

T  = T(x, z) + • • ■ (5.2.8)

and since the 2 derivatives in the Laplace operators may be neglected relative to 
the x  derivatives we then obtain the vertical boundary layer equations

d 2ip d T
(5.2.9)

d x 2 d x  ’

d 2f d T d i p d T  d ip
(5.2.10)

d x 2 d x  d z ^  d z  d x '
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with boundary conditions

where

i> =  T  =  0, z  =  0,

g r p

ÿ =  =  0, x =  0
ox

ip ipoo{z), T  —> T ^ z ) ,

tp°o(z) = 0(0 ,z),

Too(z) = T(0,z).

(5.2.11)

, (5.2.12)

x —> oo, (5.2.13)

(5.2.14)

(5.2.15)

Here (5.2.12) are the boundary conditions on the side wall of the cavity and 
(5.2.13)-(5.2.15) express the fact that the vertical boundary layer solution must 
match as x  —> oo with the horizontal boundary layer solution at a; = 0. The 
conditions (5.2.11) express the fact that there is no flow through the upper surface 
of the cavity and that the temperature there is small (o(l)).

For the horizontal boundary layer solution of Chapter 4, the external profiles 
ipoo and Too are given by

'tpoo(z) = L3(f>(Z), (5.2.16)

Too(z) = e ^ - O o  (Z), (5.2.17)

2
where z = L*Z  and 0 and 9\ —90 are the functions shown graphically in figures 
4.2 and 4.6.

Recall that 0 is a monotonically increasing function of Z  with the properties

0(0) =  0, 0'(O) = c =  1.447, 0"(O) = -2;0(oo) = a = 1.141 (5.2.18)

and that 9\ — 9o has a local maximum at Z  = Z0 = 0.96 with

(0i-0o)(O) = 0, (9[ — 9q)(0) = ~c2 = 1.047,

(91 - 9 0)(Z0) = 0.313, (9x - 9 0)(oo) = 5 =  0.229. (5.2.19)

Note that both 0 and 9\ — #0 approach their constant limiting forms as Z —> oo 
with exponential decay. In the following sections we investigate various properties
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Too(f) in this region.
(ii) z  > z0: here we have ip'  ̂ > 0, < 0 so ( ip'^2 — 47^)^ > and hence

only A+ has positive real part (A_ has negative real part). Thus we can only 
expect to be able to specify one of '(p00{z) and Toc(^) in this region.

For this reason we cannot expect the horizontal boundary layer solution ob-
tained in Chapter 4 to be the correct one, as it determines both ip^ and in the 
region z > z0. It might have been feasible if it had led to a horizontal boundary 
layer solution with tp'^,  > 0 for all z  , but clearly this is not the case.

5.4 In teg ra l p roperties of th e  vertical boundary  
layer

Next we consider some general properties of the system (5.2.9)-(5.2.15). From 
(5.2.9), (5.2.13) it follows that

OX
(5.4.1)

and (5.2.10) implies that

dT
dx

dT
dx

= 0 =
1=0 - jT(

, d [°°~dip
■^Tco + g .  J0 T g i dX- (5.4.2)

Thus making use of (5.2.11)

/Jo 1 xzxdx
dx

[  ip' Toodz for all z 
Jo

(5.4.3)

or, alternatively

i™ T j r d x  = V’ooToo -  f  ipooT'^dz for all A. (5.4.4)
Jo dx Jo

This is a heat-flux equation for the vertical boundary layer, sometimes referred to 
as an energy-integral equation (see, for example, Schlichting 1968, p.291). From
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but

- - T oo(oo)'0oo(oo) -  0

= -L^ab  (5.4.11)

and so (5.4.10) confirms the result (5.4.6).

5.5 Solution s tru c tu re  in th e  vertical boundary  
layer as z  -» 0

From the horizontal boundary layer solution we expect that the external profiles 
have the forms

Ipoo ~— ^00̂  T ■ • • 5 Fqq booZ “I- . . .  J z  ̂ 0, (5.5.1)

with aoo,boo > 0 so a solution in the vertical boundary layer is sought in the form

xjj =  zf(x)  + . . . ,  T  — zg(x) + . . . ,  z —* 0. (5.5.2)

Substitution into (5.2.9), (5.2.10) gives

= g - b ^ ,  (5.5.3)

g" =  -  (5.5.4)

and from (5.2.12),(5.2.13) the boundary conditions are

/  =  g' = 0, x = 0, (5.5.5)

/  -> Ooo, g ôo, X -» oo. (5.5.6)

This implies that /  satisfies the system

r  +  f f " + f ( b 00- f )  = o,

f  = f "  = 0, x — 0,

/  -)• aoo, x -> oo.
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As x  —» oo we expect

/  ~  aoo + Re{k+e~x+* + k_e~x~s), (5.5.10)

where A = A± are the two roots

A± = n°°± ( A - ^ ) l , (5.5.11)

which are positive if > iboo and complex conjugates with positive real part if 
ale < 4&OQ. The constants k± in (5.5.10) must be chosen to ensure f  = f"  = 0 at 
x = 0.

One method of computing /  is to let

f (x)  = b$of(x), x = boo2x  (5.5.12)

and then solve the system

/" ' + / / "  + / '( l  -  / ')  = 0, (5.5.13)

/  = /"  = 0, f '  = k0, x = 0, (5.5.14)

for different values of the constant k0. The solution is computed outwards from 
the origin using a fourth order Runge-Kutta scheme to obtain

/(oo) =  a(kQ). (5.5.15)

Values of a for various values of k0 in the range 0 < A;0 < 1 are shown in table 5.1 
and typical graphs of the function /  are shown in figures 5.3-5.13. For k0 > 1 
(figures 5.12, 5.13) /  continues to increase with x and a constant limit (5.5.15) is 
not achieved as x —> oo. I

From (5.5.9) we require = bioa(k0) so that for given values of a^  and b^ 
the relevant value of a is determined by

a = ciooboo2 (5.5.16)

and (in principle) the corresponding value of k0 is determined from table 5.1. 
Note the oscillatory behaviour of the solution f  in figures 5.3 - 5.9 for a < 2, 
consistent with the existence of complex conjugate roots of (5.5.11) in this case.
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k0 a

0.0 0.000
0.1 0.129
0.2 0.237
0.3 0.325
0.4 0.432
0.5 0.628
0.6 0.979
0.7 1.606
0.8 2.902
0.9 6.861
1.0 oo

Table 5.1:

Note also that as k0 approaches the value 1, /  approaches the exact solution 
/  =  x of (5.5.13), (5.5.14) and in this case a —> oo.

From the horizontal boundary layer solution of Chapter 4 , = L~zc and
b0o = ^L~%c2 where c is given by (4.2.40) , so that this solution corresponds to 
the case a = y/2 where the behaviour at the edge of the vertical boundary layer 
is oscillatory. Note also that for the marginal case a = 2, the two roots \±  in 
(5.5.11) are equal and then the two exponentials in (5.5.10) are replaced by the 
form e~x+x(k+ + k_x).

5.6 In teg ra l m ethod  for th e  region z  > z 0

In this section we consider the lower section of the vertical boundary layer z > z0 
where z0 is defined as the position at which = 0. The analysis of Section 5.3 
suggests that in this region only one of the two external profiles and -0OO can be 
specified at the edge of the layer. We can then attempt to use an integral method 
to determine an approximation to T,x  if is given (or vice versa) following the 
approach adopted by Simpkins and Blythe (1980). From (5.2.10),

dT_
dx x=0 d x y d z ’

(5.6.1)
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and thus making use of (5.2.12) we have

dz
-  — /  T{TX -  T)dx,

dz Jo

which can be rearranged to give

r] r oo _
^ T~  = 5 i

Suppose we approximate

T  = T00(z)G(r1)+b,  77= *

(5.6.2)

(5.6.3)

0{z)'
(5.6.4)

where -  b and then, from (5.2.9),

dip
w = —q = = -Too(l -  G) = -T ^ F fy ) , (5.6.5)

where F  = 1 — G. The boundary conditions require that G'(0) =  0 and G(oo) =  1. 
Equation (5.6.3) implies that

^  = I 5Tl
roc
I F 2dr7 
Jo

and

in which case

where

ÔO Too 5
r  00

/  F dr],
Jo

d
0 —  —ip o o T ^ +  -jz (A tp o cT o c ),

fo°° F 2dr] 
fo°° F dr] ■

Equation(5.6.8) can be rewritten as

and solved to give

0 = (^ -  l)V>oÆ + Aip'̂ To,

T oo =  A .Q Q 'lpoo A ,

(5.6.6)

(5.6.7)

(5.6.8)

(5.6.9)

(5.6.10)

(5.6.11)
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where A <*, is an arbitrary constant. Now if Tœ =  A0, tp^ = La A\ at z = z0 then

Aoo = A0(L 1âA1) ^  (5.6.12)

and this completes the solution (5.6.11) for T,'x  in terms of V'oo-
However in order that ip'  ̂ > 0 and < 0 in the region z > z0 we need 

A > 1, that is
roo r oo
/ T 2d??> / F dr]. (5.6.13)

This cannot be ruled out because if G(0) < 0  then F (0) > 1 and so F 2 > F  for 
values of r] near the wall. However, (5.6.11) would imply that Tx  —> 0 as z —> oo. 
Thus the integral method does not appear to give a reasonable solution on the 
basis that ip'  ̂ > 0 and < 0 in the region z > z0- We note however that it 
could give a reasonable solution if ip'  ̂ < 0 and < 0 in which case A < 1 and 
the vertical layer expels fluid back into the horizontal boundary layer. Indeed, 
on the assumption that Tœ —>• 0 as z —> oo (so that —>• b as z —> oo), (5.6.11) 
would then imply that i/'oo —t 0 as z —> oo and the circulation would essentially 
be completed within the vertical/horizontal boundary layer system. The vertical 
boundary layer thickness S(z) given by (5.6.7) is

S(z) Ipoo
Too Jo00 F dr]

1 - 2  A

ip^~A
Aoo fo° F dr]

(5.6.14)

and with \  < A < 1 and ip^ —> 0 as z —> oo, this predicts that <5 —» oo as z -> oo, 
which is not unreasonable in comparison with the full numerical solution at large 
Darcy-Rayleigh numbers in Chapter 3.

5.7 A sym pto tic  solution of th e  vertical b ound -
ary  layer equations as z  -A oo

In this section we investigate possible asymptotic forms of the vertical boundary 
layer system (5.2.9)-(5.2.13) as z —> oo. It is instructive to begin by considering 
solutions for which

V 'oo-tT3«, T« b + Îz
oo (5.7.1)
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so that the leading terms in both '¡/’oo and are consistent with the horizontal 
boundary layer solution of Chapter 4. The algebraic correction to involving 
c > 0 is not consistent with that solution but is included to allow analytical insight 
to be gained into the general nature of the vertical boundary layer system; the 
horizontal boundary layer solution of Chapter 4 would imply an exponentially 
small correction as z —» oo and so can be considered as the limiting case when 
c =  0.

First note that if in the solution for T  as z —> oo, were allowed to remain 
unchanged across the layer so that

T  ~  Too(z) + To, (5.7.2)

say, then ¡/>0 and the perturbation T0 would satisfy the equations

d^o f  dT0 d'ipp 
dx °’ dx2 00 dx ’

in which case, assuming < 0,

T0 =  A0e - ^ \

However, the wall condition requires ^  = 0 at x = 0 in which case A0 = 0 ; 
a solution for •ipp consistent with the wall condition ip0 =  0 at x =  0 and (5.7.1) 
cannot then be found.

Instead, a solution consistent with (5.7.1) must be sought in the form

$  ~  F(fj), T  ~ b  + z~lG{f)), (5.7.5)

where the balance of terms in both (5.2.9) and the heat equation (5.2.10) requires
that fj — x / z  = 0(1). Substitution into (5.2.9) and (5.2.10) gives

G" + F'G =  0, (5.7.6)

F" = -G", (5.7.7)

and the requirements that O(oo) = c and F'(oo) = 0 give

F' = c - G .  (5.7.8)

(5.7.3)

(5.7.4)
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Thus F' can be eliminated in (5.7.6) giving

G" + G(c - G )  = 0, (5.7.9)

to be solved subject to

G ' = 0 (77 =  0), G - ^ c  (77- ^ 00). (5.7.10)

One integration of (5.7.9) and use of (5.7.10) gives

G'2 = \{G  -  c)2(2G + c). (5.7.11)

Inspection of the phase plane then shows that a solution for G consistent with 
(5.7.10) is then possible with G varying from — \c  at 77 = 0 to c at 77 =  00. This 
solution can be found by one further integration of (5.7.11) using the substitution 
v2 — 2G +  c giving

G =  -c  (3 tanh2(c2 77/2) — l) (5.7.12)
2

and the corresponding solution for F' is

F' =  sech2((T77/ 2), (5.7.13)

which indicates a downward vertical velocity (F1 > 0) reaching a maximum value 
(F' = |c) at the sidewall 77 = 0. The solution for F  satisfying F(0) = 0 is

F = 3C2 tanh(c277/2) (5.7.14)

and the value of c is finally fixed by requiring that F(oo) = Lza in which case

L^a = 3cT (5.7.15)

This shows that for a specified external form t/^ ,  the corresponding form of 
Tqo can be calculated from the vertical boundary layer (or vice versa). This is 
consistent with the results of Section 5.3, given that here T\̂  < 0.

The asymptotic solution found here assumes that 'ip is of order one and T  — b 
is of order z~x as z —>• 00. It seems likely that in fact a whole family of possible 
solutions will exist for other orders of magnitude of ^  and T  — b as z —>■ 00, and

129



that the correct orders of magnitude must be determined by matching with a 
consistent structure in the horizontal boundary layer. For example a structure 
in which V? —» 0 as z —> oo would correspond, essentially, to a solution in which 
both L^a and c are small in the above analysis (with L^a ~  ch) and the vertical 
layer width rj is large (since it scales with c~i). This structure is considered in 
detail in Chapter 6.

5.8 Sum m ary

Our analysis of the various properties of the vertical boundary layer system shows 
that we cannot find a satisfactory solution in the vertical boundary layer if we 
use the results from the horizontal boundary layer solution of Chapter 4. We 
must therefore consider how to solve the horizontal and vertical boundary layers 
together to ensure solutions in both regions which match consistently across the 
boundary between the regions. This will be done in the next chapter.
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Figure 5.1: Vertical boundary layer region
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Figure 5.2: Cavity heat transfer
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Figure 5.3: Graph for k0 — 0.1

Figure 5.4: Graph for ko = 0.2
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Figure 5.5: Graph for k0 =  0.3

Figure 5.6: Graph for k0 =  0.4
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Figure 5.7: Graph for k0 = 0.5

Figure 5.8: Graph for k0 = 0.6
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Figure 5.9: Graph for k0 = 0.7

Figure 5.10: Graph for k0 =  0.8
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Figure 5.11: Graph for ko = 0.9

Figure 5.12: Graph for ko = 1.0
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Figure 5.13: Graph for kQ = 1.1
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Chapter 6

Solution at Large Darcy-Rayleigh  
Num bers

6.1 In tro d u c tio n

In this chapter we investigate the horizontal and vertical boundary layers to-
gether, with the aim of finding the correct limiting solution in the cavity as the 
Darcy-Rayleigh number R  —> oo. The problem is formulated in its simplest terms 
in Section 6.2 and in Section 6.3 an asymptotic solution as the boundary layer 
coordinate z  —> oo is determined, consistent with both the horizontal and verti-
cal boundary layer regions. The implications of this asymptotic solution for the 
solution in the core region below the boundary layers are considered in Section 
6.4. In Section 6.5 the asymptotic solution of Section 6.3 is combined with the 
approximate theory of Chapter 4 to yield an improved ‘approximate’ solution of 
the boundary layer problem. A numerical scheme for the complete solution of 
the combined boundary layer problem is discussed in Section 6.6 and the results 
are summarized in Section 6.7.

6.2 T he com bined boundary  layer problem

Here we briefly summarize the mathematical problem posed by the combined 
solution of the horizontal and vertical boundary layer regions as R  —> oo. In 
order to present the problem in its simplest terms it is noted that the cavity 
aspect ratio L can be scaled out of the problem as follows.
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In the horizontal boundary layer we write

T{x,z) = 9 (X ,Z )  +  il>(x,z)=RsL*ij>{X,Z)+ ■■■, (6.2.1)

where
x = LX, 1 - z  = RT*L*Z (6.2.2)

to obtain the governing equations

d24> _  89
8Z 2  ~  ~ 8 X ’

<92 0  8(f) 8 9  8(j) 8 8

dZ* =  8 X 8 Z ~ " d Z d X ’

with the boundary conditions

(6.2.3)

(6.2.4)

<i> = 0, 9 = l - ( X  -  l )2, Z  = 0, (6.2.5)
89

(¡> = 8X
= 0, X  =  l, (6.2.6)

88
<t> 0, a z

(6.2.7)

Here we assume a quadratic temperature profile (6.2.5) on the upper surface of the 
cavity and in (6.2.7) that the main circulation is completed within the horizontal 
and vertical boundary layers following the arguments developed in Chapter 5.

In the vertical boundary layer we write

T(x, z) = 9(X, Z) + • • •, ^(x, z) =  RzLs<l)(X, Z) +  ■ • •, (6.2.8)

where
x  =  R ~ * L * X

to obtain the governing equations

8 24> _  8 8  

8 X 2 ~  ~ 8 X ’

8 28 d<f> 8 8  8^> 8 8

d x 2 ~~

(6.2.9)

(6 .2.10)

(6 .2 .11)
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with boundary conditions

0 = Ob
i II o N II o (6.2.12)

0 =

o'II
1*o

'%
1'S (6.2.13)

0 -> 0OO{Z), 0 —> 0OO(Z), X  -4- oo, (6.2.14)

and where, from matching with the horizontal boundary layer,

0oo(Z) = 0(0, Z), e ^ Z )  = 0(0, Z). (6.2.15)

The combined boundary layer problem stated in (6.2.3)-(6.2.7) and (6.2.10)- 
(6.2.15) is independent of L and the aim of this chapter is to determine its 
solution.

6.3 A sym pto tic  solution as Z  -» oo

The previous analysis in Chapter 5 suggests that we need a different balance 
(from that of the approximate solution of Chapter 4) in the horizontal boundary 
layer as Z  —> oo in order to match with the vertical boundary layer. We consider 
now the possibility that 0 and 9 have the asymptotic behaviour

0 M X }
Z a ’

6 ~  b + C(X)
ZP ’ Z  —y oo, (6.3.1)

where b is a constant and a  and (3 are constants to be determined. The need for 
a balance in (6.2.3) requires that

(3 = a  + 2. (6.3.2)

In the heat equation (6.2.4) the conduction term on the left hand side is of order 
Z~P~2 whilst the convection terms on the right hand side are of order Z~a~P~l . 
Thus a full balance requires a — 1, in which case (3 =  3 from (6.3.2). If a > 1 
the conduction term dominates leading to C ( X ) = 0 and then A(X)  = 0 from
(6.2.3), so that this is not consistent. If a < 1 the convection term dominates 
and then

olAC' -  (3A'C = 0, (6.3.3)
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giving
C = C0A *

where C0 is a constant. Then (6.2.3) gives

A'
— a 2 ( a 1)

Co(3
A2

(6.3.4)

(6.3.5)

Since a < 1 and ¡3 = a. + 2 it follows that 2 — |  < -1  and since we can expect 
that H(l) = 0 it follows that A!{ 1) is infinite. This would imply a local structure 
near X  = 1, contrary to the implications of the full numerical results of Chapter 
3.

Consider next the implications for the structure of the vertical boundary layer 
as Z —> oo. Here a solution consistent with (6.3.1) would require

4>rsj m
Z« ’ 6 ~  b + (6.3.6)

where rj — and 7 is a further constant to be determined. Substitution of 
(6.3.6) into (6.2.10) shows that

7 =  /?- a  (6.3.7)

and, from (6.3.2), it follows that 7 = 2. In the heat equation a balance between 
conduction and convection then requires a = 1, whilst if a < 1 the convection 
terms dominate. Whilst the latter possibility can be pursued it does not appear 
to lead to a consistent structure within a conductive sublayer near the wall, 
certainly not for general values of a < 1. Here we also appeal to the asymptotic 
structure identified in Section 5.7 which showed that, in the present notation, if 
(j)  ̂ ~  a, Ooo ~  b + cZ_1 as Z  —> 00 then a and c are related by the formula

a =  3cT (6.3.8)

The more general structure (6.3.6) is equivalent to a of order Z~a and c of order 
Z x~0 in which case (6.3.8) suggests that a and (3 should be related by

- 2 a  =  1 -  p. (6.3.9)
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This, together with (6.3.2), gives

a = 1, (3 = 3. (6.3.10)

These arguments, then, suggest that an asymptotic structure as Z —> oo 
should be investigated in which a = 1 and (3 = 3 and there is a full balance 
between conduction and convection as Z  —» oo in both the horizontal and vertical 
boundary layers. Further evidence for the correctness of this structure is discussed 
in relation to the implied structure of the core region below the horizontal and 
vertical boundary layers, which is considered in Section 6.4 below. We proceed 
then by assuming that

~  AqZ  1, Oqq ~  b T CqZ Z  —y oo, (6.3.11)

where A0 and C0 are constants to be determined. In the vertical boundary layer

cj)~ Z-'Firj), 6 ~ 6  + Z~sG{fi), 

where rj = Ik. Substitution into (6.2.10) and use of (6.3.11) gives

(6.3.12)

- F '  = G ~  Cn (6.3.13)

and from (6.2.11)
G" = FG' -  3F'G. (6.3.14)

Elimination of G then shows that F  satisfies the third order system

F'" -  F F ” -  3 F \C 0 -  F') =  0, (6.3.15)

with boundary conditions

F = F ” = 0, 77 = 0,

F' —> 0, rj —> oo.

(6.3.16)

(6.3.17)

The constant C0 is assumed positive and can be eliminated using the transfor-
mation

F(f j )=c(F(r)) ,  i) =  C0“h  (6.3.18)
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to obtain

F'" -  FF"  + 3F \F '  -  1) = 0, 

F = F"  = 0, 77 = 0,

F' —> 0, fj —> oo.

(6.3.19)

(6.3.20)

(6.3.21)

We expect the solution of this system to yield the numerical value of F(oo) = k,
say, in which case (6.3.18) and (6.3.11) together imply that A0 and C0 are related 
by the equation

The solution of (6.3.19)-(6.3.21) is not straightforward and it is by no means

given that F  = 77 is one solution of (6.3.19) which satisfies both of the condi-
tions (6.3.20) at the origin, but does not have the required behaviour at large 77. 
Computations of (6.3.19) using a shooting method based on a fourth order Runge 
Kutta scheme and starting from the conditions (6.3.20) together with F" = k\ at 
77 = 0 were inconclusive and generally approached the singular form

with the value of 770 depending on the value of k\. However, there are solutions 
for which F  approaches a finite value ,k, as 77 —» 00 in which

Substitution into (6.3.19) shows that if k > 0 a non-zero solution for cx is possible 
with

-  k C l (6.3.22)

clear that a solution exists for which F  approaches a constant value as 77 —>• 00,

F  ~  6(77 -  770) 1 as 77 - » 770-, (6.3.23)

F  ~  k + kxe~Clf) + k2e~2cxf]. (6.3.24)

(6.3.25)

and
(6.3.26)

In fact, if F  is approximated by (6.3.24) for all 77 and the boundary conditions 
F = F" = 0 applied at 77 =  0 we obtain the equations

k -f- kx T Â2 — 0, (6.3.27)
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C1 {kl + 4fc2) 0 (6.3.28)

giving k\ =  — |/c and /c2 = and then (6.3.26) together with (6.3.25) yields the 
result

with

Cl = «  1.331, k -1.229, k2 = \ k  «  0.307. (6.3.30)
o

The corresponding gradient of F  at the origin is

(6.3.31)

This approximate solution based on the expansion (6.3.24) about fj — 00 gives 
some confidence that there may be a suitable solution of (6.3.19)-(6.3.21). In fact, 
it can be expected that a suitable solution of (6.3.19)-(6.3.21) is only possible if

a minimum, it follows that F'"(0) < 0. But (6.3.19) evaluated at fj — 0 gives 
F"'(0) = 3F'(0)(1 — F'(0)) and since the solution for which F'(0) = 1 does 
not have the required behaviour as fj —> 00 it follows that a consistent solution 
requires both F"'(0) < 0 and F'(0) > 1.

A numerical solution of (6.3.19)-(6.3.21) was obtained as follows. The expan-
sion (6.3.24) was used in a numerical scheme based on shooting inwards from a 
suitably large value fj^ of fj using a fourth order Runge Kutta scheme. At fj = 0 
the values of F  and F" define the two quantities

as functions of the arbitrary parameters k and ki in the asymptotic form (6.3.24). 
We then use Newton’s method to solve the pair of nonlinear equations

The values given in (6.3.29) and (6.3.30) are used as initial estimates of k and

F'(0) > 1. Assuming that the magnitude of the downward velocity (associated 
with F') reaches a maximum at the wall fj = 0 (where F" =  0) rather than

P(k,ki) = F( 0), 

q(k ,h )  = F"( 0),

(6.3.32)

(6.3.33)

p{k, k\) = 0, q(k, ki) = 0. (6.3.34)
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ki and to find new approximations the functions p and q are expanded in Taylor 
series about the point (k,k\) leading to the Newton equations

p(k , ki) + - ^ ( k , k 1)5k + - ^ - ( k , k 1)8k1 = 0, (6.3.35)

q(k, ki) + ^ { k , k i ) 6 k  + ^ - ( k , k i ) 5 k i  =  0, (6.3.36)

for the increments 5k and 5k\. The four partial derivatives are calculated nu-
merically using neighbouring values of k and k\. The new approximations k + 5k 
and k\ + 5k\ are thus determined and the whole procedure repeated until the 
conditions (6.3.34) at r) = 0 are satisfied. The computations were carried out 
with 7)00 = 10 and a step length At) = 0.01 in the Runge Kutta scheme. The final 
solutions for F  and F" are shown in figures 6.1 and 6.2 and the value of F(oo) is 
found to be

k = 2.598, (6.3.37)

significantly larger than the estimate given by (6.3.29). The value of F'(0) was 
found to be

F'(0) = 1.125. (6.3.38)

Once the numerical solution for F  was found, the temperature profile is given by

G(rj) =  Co (6.3.39)

where
G = 1 -  F' (6.3.40)

and this function is shown in figure 6.3. We note that

(7(0) =  —0.125, (6.3.41)

so that the wall temperature at x =  0 given by (6.3.12) is an increasing function 
of Z , which is physically plausible.

The solution for F  was checked by using the symbolic algebra package MATH- 
EMATICA to compute the solution forwards from r) = 0 using the initial condi-
tions (6.3.20) together with (6.3.38). Figures 6.4-6.6 show the effect of changing 
the value of F'(0) by a small amount, leading to the onset of the singularity 
(6.3.23). This onset is delayed to higher values of fj by a fine adjustment of F'(0)
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but the solution is extremely sensitive to its value, making the backward shooting 
method a much better option.

In the horizontal boundary layer

(f> ~  A(X)Z~~1, 6 ~ b  + C(X)Z~3, Z -»  oo 

and substitution into (6.2.3) and (6.2.4) gives

(6.3.42)

2 A = - C ,

12C = AC' -  3A'C.

(6.3.43)

(6.3.44)

The boundary conditions (6.2.6) are equivalent to the requirement that

A = C' = 0 at X  = l. (6.3.45)

Substitution of A in (6.3.44) using (6.3.43) gives a second order equation for C:

3CC" -  C'2 -  24C = 0, (6.3.46)

which can be converted to the first order equation

dP P  8 
d C ~ 3 C ~ P

(6.3.47)

using the substitution P = C'. This can be integrated using the further substi-
tution V  = P 2, giving

V = C'2 = 48C -  KC*  (6.3.48)

where K  is a constant. Since C' — —2A = —2A0 at X  = 0 and C — Co at X  = 0
it follows that

K  =  48C„J (1 -  2 . k2), (6.3.49)

where A0 has been replaced in terms of Co using (6.3.22). Since k =  2.598 from 
(6.3.37) it follows that K  is positive. Another integration of (6.3.48), making use 
of the fact that C = C0 at X  = 0, gives

f c dC 
Jco (4 8 C - K C i ) î

(6.3.50)

where it is assumed that C  < 0, so that A > 0 in (6.3.13), consistent with the
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fact that the stream function should be positive. The integral can be evaluated 
by the substitution

U =
l  +  h k2

(6.3.51)

to obtain
(U+  l - ^ 2)

U  2
-dU = - X . (6.3.52)

From the boundary condition (6.3.45) at X  = 1, together with (6.3.48), it follows 
that

c ( l )  = ( § )  = (1 -  ~ k 2)3c0, (6.3.53)

so that
U = 0 at X  = 1. (6.3.54)

Setting X  = 1 in (6.3.52) now determines the value of Co as

1 \  ~2
Co = 16AT2 (1 -  — k2 ) «  6.068 (6.3.55)

and from (6.3.22), the corresponding value of A0 is

A0 = k c l  = 6.400. (6.3.56)

The complete solution for C(X)  is given implicitly from (6.3.52) as

(l\ ) '  u h u  + i - \ k 3) = l - x ,  (6.3.57)

where C is related to U by (6.3.51), and is shown in figure 6.7. The corresponding 
solution for A(X)  is then given from (6.3.43) and (6.3.48) as

A = (12C0)*U* ( u  + 1 -  (6.3.58)

and is shown in figure 6.8. We note from (6.3.53) that

C(l) = 0.508, (6.3.59)

so that the wall temperature at x — L given by (6.3.42) is a decreasing function of 
Z, consistent with the maximum value {6 = 1) which occurs at the upper corner
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x — L, z — 1.
The asymptotic structure found here provides a solution as Z —> oo consistent 

across both the horizontal and vertical boundary layer regions. In the next section 
we briefly consider the implications of this structure for the flow and temperature 
fields in the main core region of the cavity.

6.4 Core region

Summarizing the results of Section 6.3, it has been found that at the lower edge 
of the horizontal boundary layer the temperature and stream function have the 
forms

r ~ » Æ  (6.4,)
Z 6 Z

as Z  —>• oo, where À" =  x /L  and Z = R l^ L ~ 2̂ (  1 -  z). Also, at the lower end of 
the vertical boundary layer the temperature and stream function have the forms

T - 6 + 5 M  ^  „  jr 1/3x V3;̂ M  (6.4.2)
Z A Z

as Z  —>• oo, where
fj = X / Z 2 = Lx/[l  -  z f  (6.4.3)

These results suggest that on the scale of the core region, where 0 < z < 1 and 
0 < x < L, the solutions for the temperature and stream function have the forms

T  = b + R~1Q(x, z) + . . . ,  i/j = 'S(x,z) + .. .  (6.4.4)

as R  —» oo, where 0  and T are order one functions of x and z. Note that 
to leading order the temperature has the constant value b determined by the 
horizontal and vertical boundary layer problems, this being consistent with the 
conditions of thermal insulation on the sidewalls and lower surface of the cavity.

Substitution of (6.4.4) into the full governing equations (2.1.2) and (2.1.3) 
shows that 0  and T satisfy the equations

V2T

V20

_ æ
dx ’

d(0, T)
d(x, z)
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which are, in fact, the full equations with the Darcy-Rayleigh number scaled out. 
On the sidewalls the appropriate boundary conditions are

oe (6.4.7)

and on the lower wall
<90

* = -  =  0 ( ,  = 0). (6.4.8)

Finally, the solution must match with the boundary layer forms (6.4.1) and 
(6.4.2), requiring that

T ~  LA(x/L)(l  -  z)-1, 0  ~  L2C(x/L)(l  -  z)"3 as z -> 1

for 0 < x < L (6.4.9)

and that

^  L F { r f ) { \ - z )~ \  O -  L2G{?j){l- z)“3 as z -> 1

for 0 < rj < oo (6.4.10)

where rj = Lx / ( l  — z)2.
Thus the core problem (6.4.5)-(6.4.10) involves a solution which is singular 

at the upper boundary where it matches with the horizontal boundary-layer so-
lution and in the upper corner x = 0, z = 1 where it matches with the vertical 
boundary layer (see figure 6.9). The solution for T must complete the circulation 
of fluid emanating from the vertical boundary layer at the order one level of the 
stream function, effecting its movement into the bottom of the horizontal bound-
ary layer. The main circulation, at the order R 1̂  level of the stream function, is 
completed within the horizontal and vertical boundary layers themselves. As far 
as the temperature is concerned, it is seen that in the core region this assumes 
the constant value b to a first approximation, and that relative to this value, 
there is an order R~l variation of temperature which, from the forms of G and 
C(X)  determined in Section 6.3, is negative near the sidewall x =  0 and positive 
elsewhere. This is consistent with the pattern of isotherms computed from the 
full set of equations and boundary conditions at R = 5000 in Chapter 3, shown 
in figure 6.10. The isotherm T  = b on which 0  = 0 emanates from the bottom of 
the vertical boundary layer and intersects the lower boundary of the cavity. Note
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that since C(X)  is a decreasing function of X,  the isotherms emanating from 
the vertical boundary layer should turn upwards near the base of the horizontal 
boundary layer, and this can also be observed in figure 6.10. The corresponding 
streamlines are shown in figure 6.11 and would appear to be consistent with the 
proposed core structure.

Because of the singular nature of the core problem (6.4.5)-(6.4.10), its solution 
will require a careful numerical treatment and this is not attempted here. It 
appears, however, that this region will complete the overall asymptotic structure 
in the limit of large Darcy-Rayleigh number and have a solution which matches 
consistently with both the horizontal and vertical boundary-layer regions.

6.5 Im proved solution of th e  boundary  layer prob-

In Chapter 4 an approximate solution of the horizontal boundary-layer problem 
was obtained by neglecting the vertical boundary layer and looking for an exact 
solution of the horizontal boundary layer equations which in the present notation 
is given by

where X  and Z  are defined in (6.2.2) and 90, and </> are the functions deter-
mined numerically in Chapter 4 and shown graphically in figures 4.3, 4.5 and 4.2 
respectively. The constant A which appears in the solution for 9\ is assumed to 
be given by (4.3.7) so that the total heat flux through the upper surface Z — 0 
is zero. We have seen that the solution (6.5.1), (6.5.2) does not have the correct 
asymptotic behaviour as Z  —> oo but can expect that it provides a good approx-
imation near the upper wall where it satisfies not only the governing equations 
but also the boundary conditions on Z  = 0 and on X  = 1, as well as the heat 
flux condition referred to above.

In this section we shall obtain an improved approximate solution of the com-
bined horizontal/vertical boundary layer problem by assuming that the solution 
(6.5.1), (6.5.2) is valid in the upper part of the horizontal layer, say Z < Zc, 
where Zc is to be determined. In the region Z  > Zc we shall assume that the

lem

0 =  9 i { Z )  — (1 — X ) 260( Z )

4> = (i-x)<f>(z),
(6.5.1)

(6.5.2)
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solution in the horizontal layer is given by a generalization of the asymptotic 
solution (6.3.42)

0 = b + C(X){Z + K c) -3, (6.5.3)

0 = A(X)(Z  + K e) - \  (6.5.4)

where K c is a constant to be determined. Note that K c is equivalent to an origin 
shift in the large Z  expansion, and is therefore arbitrary as far as the asymptotic 
theory is concerned. In practice, its value should be determined by the solution 
of the combined boundary value problem. The functions A(X)  and C(X)  are 
those determined in Section 6.3 and shown graphically in figures 6.8 and 6.7. 
We cannot, of course, expect the solutions (6.5.1), (6.5.2) and (6.5.3), (6.5.4) 
to join smoothly at Z — Zc for 0 < X  < 1, but we can look for a solution 
in which certain continuity conditions are applied at Z  =  Zc on = 0. Since 
the boundary conditions at X  = 1 are satisfied by (6.5.1)-(6.5.4), as well as the 
governing equations, and since the solution (6.5.3), (6.5.4) matches consistently 
with the solution in the lower part of the vertical boundary layer (Z > Zc), we 
might expect the overall solution to provide a reasonably good approximation to 
the actual solution.

We proceed then by considering the forms (6.5.1)-(6.5.4) on X  =  0, where we 
have

0(0, Z) = 0 i ( Z ) - 0 o(Z), Z < Z C (6.5.5)

0(0, Z) = <j)(Z), Z < Z C (6.5.6)

and

0(0, Z) = b + C0(Z + K c)~3, Z > Z C (6.5.7)

0(0, Z) = A0(Z + K c) - \  Z > Z C (6.5.8)

where C0 =  (7(0) = 6.068 and A0 = A(0) = 6.400. At Z = Zc we require 
continuity of 0(0, Z), 0(0, Z) and (dd/dZ)(Q, Z), giving

ex(zc) - e 0(zc) = b +  c 0(zc +  K c)-3, (6.5.9)

0(ZC) =  A0(Zc + K cy l (6.5.10)
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e[(zc) -  e'0(zc) = —3Co(zc + k c)~4 (6 .5 .11)
respectively. We cannot ask for continuity of (dcj)/dZ)(0, Z) at Zc because (6.5.6) 
is a monotonically increasing function of Z , whereas (6.5.8) is a monotonically 
decreasing function of Z . The three equations (6.5.9)-(6.5.11) may now be solved 
to obtained the three unknown constants Zc, K c and b. This may be done by 
substituting for Zc + K c on the right-hand side of (6.5.11) from (6.5.10), giving

6[(ZC) -  0'„(ZC) + - j r W Z c ) ) 1 = 0 (6.5.12)

which now contains the single unknown Zc. A plot of the left-hand side of (6.5.12) 
is shown in figure 6.12, from which it is seen that there are two zeros, one at 
Zc =  3.04 and another at Zc = 0.98. In practice, we select the one which gives 
the smallest discontinuity in (d^/dZ)(0, Zc), namely

Zc = 3.04 (6.5.13)

and

and then the corresponding values of K c and b are given from (6.5.10) and (6.5.9) 
respectively. This gives

K c = 2.73 (6.5.14)

and
b =  0.213 (6.5.15)

The complete profiles 0(0, Z) and 0(0, Z) with these values of Zc, K c and b are 
shown in figures 6.13 and 6.14. Note that Z  = Zc defines the position of the 
maximum value of the stream function,

0(0, Zc) = 1.108. (6.5.16)

The maximum value of the temperature occurs within the upper 
and is thus the value Z = Z0 — 0.96 found in Chapter 4, with

section Z  < Zc

0(0, Z0) = 0.313. (6.5.17)

As Z  -» oo, the temperature approaches the value (6.5.15), which is slightly 
different from that determined in Chapter 4.
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Figures 6.15 and 6.16 show the isotherms and streamlines in the horizontal 
boundary layer, as determined by the composite solutions (6.5.1)-(6.5.4) and the 
results (6.5.13)-(6.5.15). Note that the stream function is discontinuous along 
the line Z — Zc, 0 < X  < 1 because the linear dependence on X  in (6.5.2) 
does not quite match the nonlinear dependence of A ( X ) in (6.5.4). In other 
respects the solution has all the features expected of the actual solution, and 
in particular provides for the transportation of fluid from the lower part of the 
vertical boundary layer to the upper part.

6.6 N um erical schem e for th e  b oundary  layer 
problem

In this section we propose a numerical scheme for solving the combined horizon-
tal and vertical boundary layer problem (6.2.3)-(6.2.7) and (6.2.10)-(6.2.15) and 
report some initial results. Further work is needed to complete the numerical 
solution.

In the horizontal layer we allow the solution to evolve to a steady state by 
solving the artificial time-dependent system

<90 <920 d9
(6.6.1)

dt dZ2 + d X ’
d9
dt

d29
dZ2

d<fi d9 <90 de 
dX  dZ  + dZ dX  ’

(6.6.2)

with 0 and 9 regarded as functions of X , Z  and t. The approximate solution 
found in the previous section is taken as the initial state at t = 0. The boundary 
conditions applied to the above equations in the Z  direction are taken to be

0 = 0, 9 = 1 -  (X -  l)2 on Z = 0 (6.6.3)

and
4 > ~ A ( X ) Z - \  — - - 3 C(X)Z~4, Z ^  00, (6.6.4)

O Zj

where A(X)  and C(X)  are the functions determined in Section 6.3. In the X  
direction, it is assumed that

| |  = 0 at X  = 1 
dX

(6.6.5)
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9 = doo(Z) at X  = 0 for Z  > Z0 (6.6.6)

where 9 ^ (Z) is taken to be the temperature profile determined by the approxi-
mate solution of the previous section and shown in figure 6.13. Note that only 
the section Z  > Z0 is used, where Z0 = 0.96 is the point at which 9'^ =  0.

The equations (6.6.1) and (6.6.2) are discretized on a uniform mesh in X  and 
Z  in the region 0 < X < 1 , 0 < Z <  Z ^  where Z<*, is a suitably large outer 
boundary. In practice this must be taken quite large because of the algebraic 
decay of the solution in (6.6.4). An explicit finite difference scheme is used similar 
to that applied to the full cavity problem in Chapters 2 and 3 except, of course, 
that the second order derivatives in X  are missing from (6.6.1) and (6.6.2). This 
allows new values of </> and 9 to be determined at successive time steps at all 
internal grid points. New values of (f) and 9 on Z  = 0 and Z = Z ^  are determined 
using (6.6.3) and (6.6.4), in the latter case applying a quadratic extrapolation for 
9 based on two internal grid points. New values of 4> and ^ on I  = 1 are 
determined using (6.6.5) and again a quadratic extrapolation is used in the case 
of 9. No conditions are applied on 9 and 0 for Z  < Z0 when X  = 0 and new 
values are set there simply by a linear extrapolation of the solution at two internal 
grid points. The same method is used to set the new values of 0 in Z > Z0 ; the 
values of the temperature in Z > Z0 are fixed by (6.6.6). Results of computations 
with step sizes AX = AZ  — 0.1 and an outer boundary Z ^  = 24 are shown in 
figures 6.17-6.20. These were obtained after 48000 time steps, using At  =  0.004, 
at which point the solution had reached a steady state, to within variations of 9 
and (f> in the fourth significant figure. Figures 6.17 and 6.18 show the new profiles 
of 9 and 0 on X  = 0, which we shall denote by 900(Z) and (j)^(Z) respectively and 
these may be compared with the initial profiles at t =  0 shown in figures 6.13 and 
6.14. Of course the temperature is unchanged in the region Z > Z0. There is a 
slight change in the temperature for Z < Z0 and the position of maximum stream 
function moves from Z  = 3.04 at t =  0 to Z = 2.4. Its value changes from 1.108 to

max — 0.92. Isotherms and streamlines of the steady-state horizontal boundary 
layer solution are shown in figures 6.19 and 6.20. The initial discontinuity in 4> 
(see figure 6.16) is smoothed out.

The next stage of the numerical scheme is to take the new steady-state profiles 
of and 0oo (the latter for Z < Z0 only) and use these as boundary conditions 
for 4> and 9 at the edge of the vertical boundary layer. The steady-state vertical

and that
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boundary-layer equations (6.2.10), (6.2.11) are parabolic in Z , although there may 
be slight upward velocities near the edge of the layer if the outward exponential 
decay is oscillatory -see Section 5.5. This suggests that the vertical boundary 
layer system could be solved numerically by marching down the layer in the Z  
direction. This should determine a new temperature profile 9^  at the edge of 
the layer for Z  > Zq (and an adjustment in the location of Z0). As Z —> oo we 
expect the asymptotic form (6.3.12) to emerge, including an adjustment in the 
value of b. The vertical boundary layer widens considerably as Z  —* oo but use 
of a coordinate transformation (X ,Z )  —> (rj,Z) where rj — X  f (Z )  will enable a 
uniform grid in r\ and Z  to be used over a finite domain 0 < rj < r]^, 0 < Z < Z^ .  
The function f (Z )  can be chosen to be unity at Z  = 0 and to have the asymptotic 
behaviour /  ~  Z -2, Z —> oo to accommodate the spreading of the layer as Z 
increases. The governing equations then become

~d20  d l
drf  + dr]

~d29 <90 89 <90 89
drj1 8Z dr] dr] 8Z

where we now regard 0 and 9 as functions of Z and rj. It is anticipated that a 
Crank-Nicolson scheme can be used to solved this system and the resulting profile 

obtained in Z > Z0 then used to find an improved solution in the horizontal 
boundary layer. The whole process will then be repeated until convergence is 
achieved. In fact, some solutions in the vertical boundary layer region were 
obtained, based on inserting artificial time derivatives on the right-hand sides 
of (6.6.7) and (6.6.8). However, this method did not prove robust and so the 
results are not described in detail here. We believe that the difficulty in using 
this method lies in the fact that it requires information to propagate into the 
layer from the region Z > Z0 as time progresses and this is contrary to the 
physical processes involved. Solution of the steady-state system (6.6.7), (6.6.8) 
will avoid this difficulty, but is less straightforward to implement and is left for 
future investigation.

Nevertheless, the results shown in figures 6.17-6.20 probably represent a good 
approximation of the final solution; the adjustment to the stream function pro-
file 0oo in this first iteration of the scheme is relatively small and suggests that 
the subsequent adjustment to the temperature profile arising from the vertical

= 0, (6.6.7)

=  0 , (6 .6 .8)
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boundary layer will also be small.

6.7 Sum m ary

In this chapter we have considered the solution of the combined horizontal/vertical 
boundary layer system involved in the leading order asymptotic structure in the 
cavity as the Darcy-Rayleigh number tends to infinity. We have found properties 
of this solution, including its limiting form as Z  —» oo, which suggest that it is 
consistent with the limiting behaviour observed in the numerical calculations of 
Chapter 3 and that it matches consistently with a solution in the core region 
of the cavity. A complete numerical solution of both the core problem and the 
boundary layer problem remains to be found. However, it is interesting to com-
pare the predictions of the preliminary results of Section 6.5 and 6.6 with the 
numerical calculations of Chapter 3. According to the results of Section 6.5, the 
temperature maximum at the end of the horizontal boundary layer is T  ~  0.313 
and occurs at a height

z =  1 -  i T 1/3L2/3Z0 (6.7.1)

where Z0 = 0.96. For a square cavity (L=l)and a Darcy-Rayleigh number R  = 
5000 the formula (6.7.1) gives z =  0.94, which compares quite well with the 
numerical results of figure 3.14. The maximum value of T is also consistent with 
the results shown in figure 3.14. According to the results of Section 6.6, the 
stream function maximum at the end of the horizontal layer occurs at

z = 1 - R ~ 1/3L2/3Zi, (6.7.2)

where Z\ = 2.4. Again, with L = 1 and R  =  5000, this gives z = 0.86 which 
compares reasonably well with the position of the centre of the eddy in figure 
3.15, given in table 3.1 as zmax = 0.90. The value of the stream function at this 
point given by the results of Section 6.6 is

^  «  i71/3T1/30oomaa, (6.7.3)

where 0oomax = 0.92. With L = 1 and R  = 5000 this gives ip ~  15.7 which 
compares well with the numerical value ipmax = 13.9 given in table 3.1. Hope-
fully these comparisons will be improved by completing the numerical solution of
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the combined boundary layer problem, although it must be recognized that the 
asymptotic theory presented here provides only leading approximations to T  and
ip as R  —» oo.
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Figure 6.1: Graph for F(fj) calculated by backward shooting method
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Figure 6.2: Graph of F"(fj) calculated by backward shooting method
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Figure 6.3: Graph of G(f¡)
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Figure 6.4: Graph of F  computed outwards using MATHEMATICA with F'(0)
1.124
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Figure 6.5: Graph of F  computed outwards using MATHEMATICA with F'(0)
1.125
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Figure 6.6: Graph of F  computed outwards using MATHEMATICA with F'(0)
1.126
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Figure 6.7: Graph of C(X)
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Figure 6.8: Graph of A(X)
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Figure 6.9: The main flow regions in the large Darcy-Rayleigh number limit.
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Figure 6.10: Isotherms between 0.23 and 0.24 from the numerical calculation for 
R — 5000 and L = 1

Figure 6.11: Streamlines from the numerical calculation for R  = 5000 and L =  1
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Figure 6.12: Graph of 9[(Z) -  9'(Z) + ^ ( 0 ( Z ) ) 4
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Figure 6.13: Temperature at X  = 0
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Figure 6.15: Isotherms in the horizontal boundary layer. The upper contours are 
at intervals of 0.05 in 9.

Figure 6.16: Streamlines in the horizontal boundary layer
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0.35

z

Figure 6.17: Temperature at X  = 0 from the numerical solution of the horizontal 
boundary layer equations

Figure 6.18: Stream function at = 0 from the numerical solution of the hori-
zontal boundary layer equations
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Figure 6.19: Isotherms from the numerical solution of the horizontal boundary 
layer equations. The upper contours are at intervals of 0.05 in 0

Figure 6.20: Streamlines from the numerical solution of the horizontal boundary 
layer equations
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Chapter 7

Conclusion

7.1 Sum m ary

This thesis has been concerned with steady two-dimensional flow in a rectangular 
cavity filled with a fluid-saturated porous medium. The upper surface of the 
cavity is differentially heated, whereas both sides of the cavity and the bottom 
are thermally insulated. In Chapter 2 we investigated the case where the non 
dimensional temperature on the upper surface is a cosine function varying from 
zero at the cold end to unity at the hot end. Focusing on the case of a square 
cavity we found that the fluid circulates in a single-cell pattern, rising in the hotter 
half of the cavity and descending in the colder half. The centre of circulation 
moves towards the upper cold end of the cavity as the Darcy-Rayleigh number 
R  increases, with the maximum non-dimensional stream function, ipmax, varying 
from a value proportional to R  as R  —> 0 to a value proportional to R 1//3 as 
R  —> oo. The isotherms migrate towards the hot end of the cavity as R  increases, 
forming a horizontal boundary layer in the upper part of the cavity as R  —» oo. 
The temperature below the horizontal boundary layer reaches an almost constant 
value of about 0.1 in this limit.

In Chapter 3 we investigated the case where the non-dimensional temperature 
on the upper surface is a quadratic function varying from zero at the cold end 
to unity at the hot end. Numerical results were obtained for aspect ratios in the 
range 1/4 < L < 4 and in each case the behaviour of the flow with increasing 
R  was found to be similar to that observed in the case of the cosine profile, 
although the linear temperature variation in the upper cold corner leads to a 
more vigorous motion there. The temperature in the lower part of the cavity

173



was found to approach a value of between 0.2-0.3 in the limit of large R. The 
quadratic temperature variation at the upper surface allowed an exact solution 
of the horizontal boundary layer equations to be obtained in Chapter 4. This 
solution on a vertical scale of 0 ( R ~1/3) near the upper surface does not satisfy 
the correct boundary conditions at the cold end of the layer but by considering the 
heat flux though the upper surface, predicts the temperature below the horizontal 
boundary layer to be 0.229 in the limit of large R, which is in good agreement 
with the numerical results.

In Chapter 5 we investigated the implications of the horizontal boundary layer 
solution for the solution in a vertical boundary layer at the cold end. We showed 
that it is not possible to find a satisfactory solution in the vertical boundary layer 
if we use the exact solution of Chapter 4 in the horizontal boundary layer. This 
is because the vertical layer cannot accept specification of both the temperature 
and stream function at the edge of the layer in any region where the vertical 
temperature gradient is positive. Furthermore, it was found that no solutions of 
the vertical layer were possible in which the stream function approaches a nonzero 
value at the lower end of the layer. This led to the proposal, explored in detail 
in Chapter 6, that the fluid descending in the vertical layer must empty back 
into the horizontal layer on the vertical scale of 0(J?-1/3) near the upper surface, 
so that the combined horizontal/vertical boundary layer system encompasses the 
centre of the eddy observed in the numerical calculations. An asymptotic solution 
was found across the lower edge of the vertical/horizontal boundary layers which 
confirmed the consistency of this approach and the possibility of matching with 
a solution in the core region in which the variations in temperature and stream 
function are order R~y and order one respectively. The vertical layer is of width 
0(f?-2/3) but expands as the square of the downstream distance, thereby merging 
with the core in the upper cold corner. An improved solution of the boundary 
layer system was obtained using a combination of the asymptotic solution and the 
approximate solution of Chapter 4, and this led to the prediction of a constant 
core temperature of 0.213, in good agreement with the numerical computations. 
Some preliminary results were also obtained for a complete numerical solution 
of the boundary layer system which indicated reasonable agreement of both the 
position and values of maximum temperature and maximum stream function at 
the cold end of the horizontal layer.
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7.2 F u tu re  work

The immediate task following on from this work is to complete the numerical so-
lution of the combined vertical/horizontal boundary layer problem formulated in 
Chapter 6 and thus, in particular, to find an accurate prediction of the core tem-
perature. A numerical solution of the core problem (6.4.5)-(6.4.10) is also needed 
to verify the overall consistency of the large Darcy-Rayleigh number structure 
proposed here.

One modification of the present work would be to consider cases where the 
temperature profile at the upper surface is not monotonie, leading to the possi-
bility of two (or more)-cell flows and, if a temperature minimum occurs at a point 
somewhere in the middle of the upper surface, the existence of a vertical shear 
layer there in the limit of large Darcy-Rayleigh number.

The present results may be useful in describing the large Darcy-Rayleigh num-
ber structure in a number of other, related, thermally-driven flows. For example, 
the structure identified here may also be applicable(with modification) in the case 
of the side-heated cavity (T = 0 at x =  0 and T  =  1 , x  = L) with conducting 
upper and lower boundaries (T = x /L  at z = 0 and z — 1). The equivalent 
horizontal boundary layer structure in the case of insulating upper and lower 
boundaries (dT/dz  = 0 at z = 0 and z — 1) was found by Daniels, Blythe and 
Simpkins(1982) but this structure is no longer applicable in the conducting case.

Other extensions of this and related work would be to consider the solution 
structure which emerges for very tall (L —> 0) or very shallow (L —> o d ) cavities, 
where there are applications in cavity wall insulation and geophysics, respec-
tively. The numerical computations of Chapter 3 will provide useful guidance 
in this respect. Variation of material properties (such as the thermal expansion 
coefficient and the fluid viscosity) with temperature are also relevant, particularly 
in geophysical applications, and would be interesting to investigate, as would the 
various modifications to Darcy’s law.
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