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Abstract

The seminal papers of Black-Scholes and Merton stimulated growth not only of equity 
commodity derivatives but also of term structure interest rate models and the valuation 
of bonds and contingent claims based on these term structure interest rate models. 
Today research into term structure models is important both to academics and 
practitioners alike. Unfortunately bond prices and interest rate contingent claim prices 
based on these term structure models, with few exceptions cannot be valued 
analytically. To date a number of numerical methods have been developed to solve 
this problem. The objective of this thesis is to test the existing numerical methods as 
well as introducing a new method within the context of the single factor interest CKLS 
model -  the CKLS model encloses the earlier single factor term structure of interest 
rate models.



CHAPTER 1.

LITERATURE REVIEW, OBJECTIVES AND OUTLINE OF THE THESIS

1.1. Introduction

The seminal paper of Black and Scholes (1973) and Merton (1973) resulted in a rapid 

growth of the financial derivatives market such that today it has become an important 

and dynamic component of the world financial markets, and an area of active research 

in academia. Since the publication of the seminal papers academic researchers have 

focused on the theoretical valuation of both equity and interest rate contingent claims 

with more emphasis on equity contingent claims. However, recently more attention 

has been focused the valuation of claims whose values depend on the term structure of 

interest rates and its evolution over time. This change in research orientation in 

academia is due to the expansion in recent years of fixed income derivatives as interest 

rate risk management tools.

Interest rate risk comprises of market risk and yield curve risk. The market risk is due 

to the changes in the level of interest rate. Yield curve risk arises due to shape risk and 

volatility risk. The shape risk is due to the changes in the shape of the yield curve, 

which in turn is, due to changes in the interest. The volatility risk is due to changes in 

interest rate volatility. In the financial markets many fixed income products are 

specifically designed to hedge against the above types of risks. For example, interest 

rate futures, forwards, floating rate notes are used for hedging against market risk. 

Swaps are used to hedge against shape risk as their returns depend on changes in the 

shape of the yield curve. Options are used to hedge against volatility risk.
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There are two aspects to the modeling of interest rate term structure models and 

interest rate contingent claims. The first is the specification of alternative interest rate 

processes leading to arbitrage-free pricing models for bonds and contingent claims. 

The second is the numerical implementation of these models, where an analytical 

solution is often not available. Numerical implementation allows incorporation of 

characteristics not possible with analytical implementation, such as the early exercise 

feature associated with American contingent claims.

In this Chapter we discuss the different term structure models which have been 

proposed, as well as the numerical methods used for both stock and interest rate 

contingent claims. In Section 2 we discuss the interest rate models. Section 3 

discusses the numerical methods. In Section 4, we state the objectives of the thesis. 

Section 5 contains an outline of the thesis.

1.2. Interest Rate Models

The valuation of fixed income instruments is more challenging than the valuation of 

equity instruments as those two categories of assets exhibit different set of 

characteristics. For example, one of the main differences between equity and a coupon-

paying bond is the certainty at some valuation date of the amounts and corresponding 

dates of the different coupons and face value. This has the implication that near the 

final maturity date of the bond; the probability of an increase in value of a par bond is 

much small than it is at some other valuation date. This is not so for equity. Yet, 

another result of this price effect is that the corresponding volatility of possible price
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movements decreases as the maturity date of the bond decreases. This leads to a 

decrease in the range of possible bond price as the maturity date increases.

One of the basic assumptions in the classical equity option valuation problem is that the 

interest rate remains constant. Clearly such as an assumption for fixed income 

instruments is theoretically inconsistent. Another feature distinguishing interest rate 

models from equity models is the need for interest rate models to exhibit mean 

reversion and for the volatility to be dependent on the interest rate. Thus the 

relationship between bond values and the term structure of interest rates implied by 

future payments leads to stochastic formulation of the yield curve over time.

To date two separate approaches that take the above-mentioned characteristics of 

fixed income instruments have been proposed. The first approach has been to propose 

a plausible model for the short-term interest rate, which depends on the market price of 

risk explicitly. Over the years a number of such short term interest rate models have 

been proposed including the most general Chan, Karolyi, Longstaff and Sanders 

(CKLS, 1992). The CKLS model encloses earlier interest rate models proposed by 

Vasicek (1977), Brennan and Schwartz (1979), and Cox-Ingersloll-Ross (CIR, 1985). 

The second approach pioneered by Ho-Lee (1986) and HJM (1992) does not take into 

account the market price of risk explicitly. This approach involves taking the current 

market term structure of interest rates to develop a no-arbitrage yield curve, which 

depends on the initial forward rate curve. For subsequent discussions we shall refer to 

the models based on the first approach as, Equilibrium approach and models based on 

the second approach as, “Arbitrage Free Models” .
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1.2.1. Equilibrium Models

In this section, we derive the mathematical structure of single-factor term structure 

models based on Vasicek (1977). Further, we discuss the major two factor interest 

rate models that have also been proposed.

We make the following assumptions with regard to single-factor term structure 

models:

1. The bond market is frictionless: no (distorting) taxes, no transaction costs, no short 

sale, and all bonds are infinitely divisible.

2. Investors always prefer more wealth to less.

3. All bond prices P(t,T) for all P > t depend only on a single state factor: the short 

rate r (in addition to t and T). The changes in the yield curve, therefore, at different 

maturities are perfectly correlated.

Let P(t, s) denote the price at time t of a discount bond maturing at time s, s < t with 

unit maturity value.

P(s,s) = 1

The yield to maturity R(t, T) on a bond with maturity date s = t + T is:

R(t,T) = - L n P ( t , t  + T)

The instantaneous spot rate at time t is given by:
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r(t) = R(t,0) = lim R (t,T )

Assume that the spot rate r(t) follows a continuous Markov process and is defined by 

the following stochastic differential equation

dr(t) = f(r, t)dt + p(r, t)dz (1.1)

where z(t) is a Wiener process. f(r, t ) , p 2 (r, t) are the instantaneous drift and variance 

respectively of the process r ( t) .

Application of Ito’s differentia] rule, leads to the following stochastic differential 

equation for bond price.

dP(t, s, r) = P(t, s, r)jn(t, s, r )dt -  P(t, s, r)cr(t, s, r)dz (1.2)

where:

|i(t,s ,r) =
P(t,s,r)

d , s. 1 2/ n d2 P(t,s, r) (1.3)

p(t,s,r) dP(r,s,r)
a(t’s’r) = _ ^ — v— 3 — ~P(t,s, r) dr

(1.4)

Suppose we have an investor who at time t issues an amount W, of a bond with 

maturity date s , , and simultaneously buys an amount W2 of bond maturity at time s , . 

The total value of this portfolio is W = W2 -  W ,. The value of this portfolio changes 

according to Merton’s accumulation equation

dW = [W2 |Lt(t, s 2, r ) -  'W ! |i(t, s ,, r)]dt -  [W2 a(t, s 2, r ) -  W, a(t, s ,, r )]dz (1.5)
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We now choose W, and W, so as to make the evolution of the portfolio riskless. 

We find that the necessary expressions for W, , W2 and dW are:

W,
c ( t ,s 2,r)W

o ( t ,S j , r ) - a ( t , s 2,r)
( 1.6)

W2 =
a ( t ,s , ,r )

c ( t , s , , r ) - a ( t , s 2,r)
(1.7)

dW =
w[|i(t,s2, r)a(t, s , , r) -  |i(t, s , , r)a (t ,s2, r)] 

a ( t ,s 1, r ) - a ( t , s 2,r)
( 1.8)

Further, we let a riskless loan W accumulate at spot rate r(t) such that: 

dW = W r(t)dt (1.9)

Equating the above two equations after algebraic manipulation gives:

p ( t , s , , r ) - r ( t )  _  p.(t,s2, r) (

a ( t ,s , , r )  a ( t ,s 2,r)

The above expression holds for arbitrary maturity dates s, and s2. Thus the following 

ratio is independent of s.

, s , r ) - r  
a(t, s, r)

We let X(r)denote the common value of such a ratio for a bond of any maturity date. 

/V(r)may be interpreted as the market price of risk, as it specifies the increase in 

expected instantaneous rate of return on a bond per an additional unit of risk.

(t) ( 1. 11)
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Thus for an arbitrary maturity date s

A,(r)a(t,s,r) = | i ( t , s , r ) - r ( 1. 12)

Substitution into our original stochastic partial differential equation yields.

ap
at

/ . \ a p  i 2+(f+px)— +—p 
ar 2

a2p
ar2

-  rP = 0 (1.13)

The short-term interest rate, which is the variable driving the above partial differential 

equation is one of the most fundamental and important prices determined in the 

financial markets. Different researchers have used alternative specifications of the 

short-term interest rate process. Chan, Karolyi, Longstaff and Sanders (CKLS) (1992) 

suggested a general formulation, which encloses the common single-factor term 

structure models. Expressing their general model using our notation:

drt = k(0 -  r)dt + o rYdzt (1-14)

(1) Merton drt= k0dt + c d z t

(2) Vasicek drt= k(0 -  r)dt + c d z t

(3) CIR SR drt= k(0 -  r)dt + aVrd:

(4) Dothan drt= ordzt

(5) GBM d rt= -k rd t + a d z t

(6) B rennan- S ch w artz d rt= k(0 -  r)dt + ardz

(7) CIR VR
3

d rt= Gr2dzt
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(8) CEV drt = -krclt + a r Ydzt

Merton (Model 1) (1973) used the simple Brownian motion with drift to model the 

short-term interest rate process. He derived analytical option prices based on this 

model. Vasicek (Model 2)( 1977) used the Ornstein-Uhlenbeck process to derive an 

equilibrium model of bond prices. Jamshidian (1989) and Gibson and Schwartz (1990) 

have further applied this Gaussian model for the interest rate. The square root (SR) 

(Model 3) process by Cox-Ingersoll-Ross (CIR)(1985) has been extensively applied to 

value interest-rate contingent claims. For, example Dunn and McConnell (1981) used 

the SR to value mortgage-backed securities, CIR (1985) to value discount bond and 

contingent claims, futures and futures option pricing models by Ramaswamy and 

Sundaresan (1986), the swap pricing model by Sundaresan (1989), and the yield option 

valuation model by Longstaff (1990). Model 4 is used by Dothan (1978) to value 

discount bonds and has been further used by Brennan and Schwartz (1977) in 

developing numerical models of saving retractable, and callable bonds. Model 5 is the 

Geometric Brownian Motion applied to interest rates. Model 6 is the log-normal 

interest rate process used by Brennan and Schwartz (1980) in deriving convertible 

bond prices, and further used by Courtadon (1982) to develop the finite difference 

numerical method to value bonds and interest rate contingent claims. Model 7 is used 

by CIR (1980) in the study of variable-rate (VR) securities. Constantinides and 

Ingersoll (1984) also use a similar model to value bonds in the presence of taxations. 

Model 8 is used by Marsh and Rosenfeld (1983) to value equilibrium bond prices.
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The resulting partial differential equation for the bond and contingent claims subject to 

the appropriate boundary conditions based on the CKLS model is:

0  [k(0 -  r ) -  X (r)a(r)]|E  + 1 ~  -  rP = 0 (115)

Researchers have given different functional relationships to A,(r)c(r). For example

Vasicek (1977) uses ÀG, CIR (1985) uses. CKLS take À = 0 , thus equation (1.15)

The main advantage of one-factor models is their simplicity as the entire yield curve is 

a function of single state variable. The single state variable is not directly observable in 

the market. Proxies are therefore used for this unobservable variable, Chapman, Long 

and Pearson (1999), hereafter, (CLP). Different researchers have used different 

proxies, for example Anderson and Stanton (1997) uses the yield on a three-month 

Treasury bill, CKLS (1992) use one-month Treasury bill yield. A more comprehensive 

survey of alternative proxies for the short rate are to be found in (CLP, 1999). There 

are, however, several problems associated with single-factor models. First, single-

factor models assume that changes in the yield curve, and hence bond returns, are 

perfectly correlated across maturities. This assumption is contradicted by the empirical 

evidence available. Furthermore, the assumption of perfect correlation is highly 

problematic for several practical purposes, for example, Value-at-Risk calculations,

becomes:

(1.16)
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and pricing derivatives on interest rate spreads as discussed by Canbarro (1995). 

Second, the shape of the yield curve is severely restricted. Specifically, the Vasicek 

and CIR models can only accommodate yield curve that is monotonic increasing or 

decreasing and humped. An inversely humped yield curve cannot be generated with 

these models. Finally, with time-invariant parameters one-factor models tend to 

provide a very poor fit to the actual yield curves observed in the market. To overcome 

the limitations of single-factor term structure models researchers have put forward a 

number of two-factor term structure models.

Brennan and Schwartz (1979) proposed a two factor model based on a mean reverting 

short-term interest rate and a long term interest rate. The long-term interest rate is 

taken to be the yield on a consol bond. However, this specification of the two-factor 

model does not lead to analytic bond or contingent claims prices. Schaefer and 

Schwartz (1984) developed an analytical bond price based on two-factor term 

structure model. Their two-factor model is very similar to the two-factor model 

proposed by Brennan and Schwartz, except with one crucial difference. Where as 

Brennan and Schwartz used a short-term rate and a long-term interest rate, Schaefer 

and Schwartz used the long term interest rate and the spread, i.e., the difference 

between the short term interest rate and the long term interest rate. Schaefer and 

Schwartz (1987) further proposed a two-factor term structure model based on the 

short-term interest rate and the duration of the bond.

Cox-Ingersoll-Ross (1985) also proposed a two-factor term structure model based on 

the short-term interest rate and the inflation rate. They develop an analytical solution 

for the real value of a nominal bond. Longstaff and Schwartz (1992) propose a two

10



factor general equilibrium model using the CIR (1985) framework. The two factors in 

the Longstaff and Schwartz model are the short-term interest rate and the 

instantaneous variance of changes in the short-term interest rate. Thus contingent 

claims based on the Longstaff and Schwartz model will be dependent on both the 

current level of interest rate and the current level of interest rate volatility. They derive 

both analytical bond prices and analytical European call option prices based on their 

model.

Das and Foresi (1997) have put forward a two-factor term structure model that allows 

for interest rate jumps. They propose that the short-term interest rate follows the 

process put forward by Vasicek (1977) superimposed with jumps. They proceed to 

consider two types of jump models. In the first model, the jumps are infrequent 

events, which change interest rates by discrete amounts but do not change what they 

call the central tendency. In the second jump model, the jumps change the central 

tendency. Further they derive analytical solution for bonds and derive numerical 

scheme for contingent claims.

1.2.2. Arbitrage Free Models

The wide spread popularity of one-factor equilibrium models, such as the Vasicek 

model, stems from their simplicity. At each date, today and in the future, the entire 

yield curve is a function of a single state variable, the short rate. Flowever, equilibrium 

models do not fit the current yield curve exactly, and this tends to limit then- 

effectiveness for pricing fixed income derivatives. By taking the current market term 

structure of interest rate as the starting point we can overcome this weakness of the
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equilibrium approach. Below we discuss the major Arbitrage Free Models, which have 

been proposed over the years.

In its basic form the Ho-Lee model can be stated as a specific case of the Vasicek 

model.

drt = 0 (t)d t+  a (t)d z t (1.17)

The Ho-Lee method involves fitting a binomial lattice for discount bond prices, with 

the restriction that the bond price is pulled to par at maturity. The lattice is 

constructed such that there is no arbitrage allowed between the pricing along the 

lattice and current market interest rates. This means that the lattice is constructed such 

that the market price of risk does not have to be specified. The lattice is analogous to 

the one suggested by Cox-Ross-Rubinstein (1979) except with three differences. First 

the lattice is in terms of forward prices rather than spot prices. Second, the up- and 

down- movements are time dependent. Third the whole term structure is shifted up or 

down, rather than a single asset price. Other researchers, including Black-Derman-Toy 

(1990) have extended the Ho-Lee approach, Hull and White (1990a) and Heath- 

Jarrow-Morton.

The Black-Derman-Toy (BDT) model is based on the assumption that the short-term 

interest rate is a lognormal process. It is a single factor model in which negative 

interest rates are prevented because of the log-normality of the short-term interest rate 

process. The BDT mode is usually constructed using a binomial tree to price exactly 

any set of bonds and hence contingent claims without requiring any investor risk

12



preference. As such it is an arbitrage free model. The continuous-time equivalent of

the BDT interest rate process is:

r(t) = u(t)exp[o(t)zt ] (1.18)

With u(t) as the median of the short-term interest rate distribution at time t, a(t) is the 

volatility of the short-term interest rate process. By making c(t) time dependent, 

BDT can be used to recover the prices of a wide range instrument.

Hull and White (1990a) generalize the CKLS model by allowing for time dependent 

mean reversion 0 '(t) and for time dependence in the mean reversion speed k(t) and 

volatility c(t)

The model corresponds to y = 0 be referred to as the Extended Vasicek (EXV). 

Further at y = 0 , the Hull and White model can be interpreted as the Ho-Lee model if 

we express the Hull and White as:

drt = k(t)(0 '(t) -  r)dt + o ( t) rYdz, (1.19)

dr, = 0 //(t)dt + a(t)dz, ( 1.20)

with 0 "(t) = k ( t) (0 '( t ) - r )

13



Finally y = leads to the Extended CIR (EXCIR) and y = 1 yields the Black-

Derman-Toy model. Hull and White (1994b) have extended their approach to two 

factors. They have achieved this, by incorporating a new stochastic function in the 

drift of the interest rate for the Extended Vasicek model.

The Heath-Jarrow-Morton (HJM) is based on the martingale approach introduced by 

Harison and Kreps (1979) and Harison and Pliska (1981). The HJM model is a 

complete model of the term structure specified in an arbitrage free framework 

According to Subrahmanyam (1996), the basic set up of the HJM model is similar in 

spirit to the Vasicek model with one crucial difference. In the case of the HJM model 

the forward rate is used rather the short rate . The stochastic differential equation for 

the forward rate is:

df(t,T) = a(t,T)dt + b(t,T)dz, (1.21)

Where a(t,T) and b(t,T) are the drift and diffusion terms of the forward rate process, t 

is the current date, T is the maturity date, and z t is a Brownian motion. Further 

f(t,T ) is the instantaneous forward interest rate at time t for delivery at date T. The 

above stochastic differential in its general form is non-Markovian which leads to non-

combining lattices when bond prices or contingent claim prices are evaluated. 

Ritchken and Sankarasubramanian (1995) have proposed a specific classes of volatility 

structures such that the diffusion process for the forward rate is Markovian.
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Below we summarise the main differences between the equilibrium and the arbitrage 

free approach to bond pricing.

Equilibrium Models Arbitrage Free Models
Main building blocks: stochastic process The prices of these securities are often 
for the short rate, and assumptions about independent of investor preferences, 
investor preferences -  market price of 
risk

The yield curve is determined 
endogenously in the model -  it is not 
constrained to match the actual market 
yield curve.

Model parameters are constant over time 
(internal consistency), and typically there 
are at least two factors.

Models include Vasicek, CIR, BS etc.

Used mainly for trading bonds (yield 
curve strategies), less useful for fixed- 
income derivatives.

Used for risk management purposes.

Implementation issues: statistical
estimation using historical data on the 
term structure.

Per construction, arbitrage free term 
structure models fit the initial yield curve 
(i.e. today’s curve) exactly

The models are not stable -  the time 
dependent parameters must be re-
calibrated over time (inconsistency).

Models include HJM, Ho-Lee, as well as 
equilibrium style models with time 
dependent parameters such as the BDT 
and HW extended Vasicek model.

In most cases, a single-factor model is 
used.

Used for pricing fixed-income derivatives 
(not bonds).

Implementation issue: calibration to initial 
yield curve, and assumptions about the 
volatility parameter.

15



1.3. Numerical Methods

Black and Scholes using no arbitrage argument developed an analytical expression for 

European type contingent claim. However, within the Black-Scholes framework an 

equivalent analytical expression for an American type contingent claim is not possible. 

American type contingent claims are distinguished from the European type on the basis 

that American contingent claims can be exercised anytime prior to the expiry of the 

option. It is this feature of possible early exercise of the American contingent claim 

prior to expiry that results in no analytical expression being available.

The key to the valuation of American contingent claims is the location of the early 

exercise boundary or the free boundary in the terminology of partial differential 

equations. The early exercise boundary is determined by comparing the intrinsic value 

with the actual contingent claims price itself. The methods developed for the 

evaluation of American contingent claims are the Lattice approaches, Analytic 

approaches, Finite Difference Method, Method of Lines and Monte Carlo Simulation. 

Below we discuss each of the above mentioned approaches first with respect to equity 

or commodity contingent claims and then secondly where applicable with respect to 

interest rate contingent claims.

1.3.1. Lattice Approaches

Based on the earlier work of Sharpe (1978), Cox-Ross-Rubinstein (CRR) (1979) 

developed the binomial lattice approach for the valuation of contingent claims. Their 

key assumptions include:

• The expected return from all traded securities is the risk-free interest rate.
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• Future cash flows can be valued by discounting their expected values at the risk-free 

interest rate.

• The probabilities sum to one.

• The mean of the discrete distribution is equal to the mean of the continuous 

distribution.

• The variance of the discrete distribution is equal to the variance of the continuous 

distribution.

Based on the above assumptions CRR proved that European option’s value in the 

binomial model converges to the value give by Black-Scholes formula. CRR (1985) 

further developed their binomial model to value American options on dividend paying 

stocks. Further they demonstrated the use of the Binomial model, when some of the 

Black-Scholes assumptions are relaxed. Boyle (1986) further developed the CRR 

binomial lattice to trinomial lattices. In this case the stock price can jump up to a 

higher value, jump down to a lower value or stay the same value after a time step. We 

can generalize the lattice of CRR and Boyle, if we consider a derivative security whose 

price depends on 1 underlying variables. The life of the security T is divided into n 

subintervals of length At. At time iAt, there exists m ( possible states which we

denote by S- ,(l < j < m ; ). Transition probabilities p ijk are defined as follows:

Pijk '  probability of moving from stateS^ to stateSi+1 j at time (i + l)A t.

Further p jjk ’s must sum to one and be between zero and one, i.e.:

XPijk = 1 for i’s ancU ’s-
k

0 < p ijk <1 for all i,j, and k.
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Once the lattice has been set up, the dynamic programming method can be used. The 

value of the contingent claim at time T is known for all m n states at that time. The 

value of all m i states at time iAt can be calculated using risk neutral valuation if the 

value is know for all m i+1 states at time (i + l)A t. By moving backwards through the 

tree, the value at time 0 can be obtained.

The lattice approach has been extended to value path dependent options such as Asian 

options by Hull and White (1993), Lookback options by Cheuk and Vorst (1993). 

Further schemes to improve the efficiency of lattices have also been developed. These 

schemes include the control variate method by Hull and White (1988), Richardson 

extrapolation by Breen (1991).

One of the most important applications of the lattice approach has been for the 

valuation of bonds and interest rate contingent claims. Rendleman and Barter (RB) 

(1980) were the first to apply the binomial lattice to value interest rate contingent 

claims. They assumed that the short term interest rate followed geometric Brownian 

motion. RB valued interest rate contingent claims as a three-step process. The first 

step involves generating a lattice of interest rates. The second step involves deriving a 

lattice of bond prices. The final step involves developing a lattice of interest rate 

contingent claims based on the lattice of bond prices. The main weakness of the RB 

lattice is that it is based on the assumption that the short-term interest rate follows a 

process similar to that of stock prices. Thus the RB lattice cannot be used if the short 

term interest rate models incorporate both mean reversion and interest rate dependent 

volatility - a feature of widely used interest rate models. Nelson and Ramaswamy
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(NR) (1990) developed a lattice approach that could incorporate both these features. 

The NR lattice is different from the RB lattice in two aspects. Whereas with the RB 

lattice, the probability value is fixed throughout the lattice, with the NR lattice, 

probability value varies from node to node. Further to ensure that the probability 

values lie between zero and one, multiple jumps are allowed within the NR lattice. The 

inclusion of multiple jumps in the NR lattice results in it being considerably slower than 

the RB lattice. Hull and White (HW) (1990) developed a trinomial lattice that 

incorporated both mean reversion and interest rate dependent volatility. HW lattice 

ensured that probabilities lied between zero and one by incorporating alternative jump 

processes. The HW lattice is therefore considerably faster than the NR lattice. Tian 

(1992) further simplified HW trinomial lattice to a binomial lattice (SB). Tian (1994) 

tested the NR lattice, HW lattice and SB lattice for bonds and interest rate contingent 

claims based on the CIR model. He found that for certain combination of parameters 

both the HW and the SB lattice did not converge to the corresponding analytical bond 

price and hence interest rate contingent claims. The NR, lattice however, did yield 

bond and interest rate contingent claim prices which converged for all combination of 

parameters - albeit at greater computational cost.

1.3.2. Analytic Methods

To avoid the use of numerical schemes for the valuation of American options a number 

of analytical schemes have been suggested. Johnson (1983) suggested an 

approximation for an American put option. Blomeyer (1986) further developed 

Johnson's approximation to value put options that have a dividend date occurring on 

the underlying asset prior to expiration. The schemes suggested by Johnson and

19



Blomeyer do not necessarily satisfy the hedging partial differential equation. To avoid 

this difficulty MacMillan (1986) suggested a numerical scheme based on the 

decomposition of the American put option as a sum of the value of a European put 

option plus the early exercise premium. The early exercise premium is assumed to be a 

function of time and asset price. Barone-Adesi and Whaley (1987) extended 

MacMillans put approximation to value both American call and put options based on 

dividend paying stocks and American commodity and futures options with a constant 

rate of dividend. Their solution is based on the similarity transformation with the 

solution satisfying the fundamental partial differential equation. The resulting partial 

differential equation based on the similarity transformation is then converted to an 

ordinary differential equation by a suitable approximation. This ordinary differential 

equation is then solved iteratively to determine the critical asset prices and the options 

prices.

The integral equation method suggested by Kim (1990) again separates the American 

option into two components. Kim assumes that the American option with time to 

maturity x can be expressed as the sum of the value of a European option at time t and 

the early exercise premium. It is possible to exercise the option at any point in time v 

where t < v < x . The early exercise premium is then valued by integrating over the 

relevant time interval. At each intermediate point of time v, the critical asset price is 

determined and thus the decision whether it is optimal to exercise or not is taken. The 

early exercise premium comprises of two integrals. The first for the probabilistic 

weighting of not exercising and the second for exercising. The resulting integral 

equation for the American option is solved using numerical integration. However, this 

integral equation requires the computation of many early exercise points, Huang,
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Subrahmanyam and Yu (1996) implement a four-point Richardson extrapolation 

scheme. As the integral representation method involves only the univariate cumulative 

normal method, their method is fast, but not very accurate, especially for long expiry 

options. Ju (1998) proposes an approximation which overcomes this difficulty by 

approximating the early exercise boundary as a multi-piece exponential function.

The compound option approach for the valuation of American put options is based on 

the papers of Geske (1977,1979). Since at every instant there is a positive probability 

of premature exercise, the American option can be interpreted as being equivalent to 

an infinite sequence of options on options or compound options. Geske and Johnson 

(1984) develop a solution for the American put. They use four point Richardson 

extrapolation on a sequence of hypothetical puts, where each put has a finite number of 

exercise points located at equally spaced time intervals. Evaluating the puts requires 

calculation of quadrivariate normal integrals. Bunch and Johnson (1992) improve the 

above scheme. They demonstrate that it is possible to obtain accurate American put 

prices using two point Richardson extrapolation that involves the valuation of bivrate 

normal integrals. Ho, Stapleton and Subrahamanyam (1994) suggest a further 

improvement on Bunch and Johnson's two point Richardson extrapolation procedures. 

Their improvement is based on an observed approximately exponentially relationship 

between the value of an American option and the number of exercise points allowed up 

to the expiry date.

1.3.3. Finite Difference Method

With the finite difference approach, we transform the partial differential equation into a 

set of finite difference equations. This set is then solved numerically to obtain the
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value of the contingent claims. Their exists basically two different finite difference 

schemes. The explicit and the implicit finite difference schemes. Although there are 

other finite difference schemes, they are essentially a combination of the two. With the 

explicit finite difference scheme, we can solve the finite difference equations 

individually. With the implicit finite difference scheme, we need to solve the whole set 

of finite difference equations simultaneously.

Brennan and Schwartz (1977) used the finite difference approach to solve the free 

boundary problem. They calculated the value of an American put option for a dividend 

paying stock and derived the critical asset prices using the implicit finite difference with 

coefficients depending on the increments of the stock. Schwartz (1977) further 

expanded this approach to value warrants. Later Brennan and Schwartz (1978) gave 

intuitive interpretation to the explicit finite difference scheme as a three-jump process. 

That is, the explicit finite difference scheme can be interpreted as a trinomial lattice. 

Finally, they interpreted the implicit finite difference scheme as a generalized jump 

process with infinitely many asset prices.

Courtadon (1982b) further improved the finite difference schemes put forward by 

Brennan and Schwartz. He used and average of the explicit and the implicit finite 

difference-schemes - known as the Crank-Nicholson method.

Geske and Shastri (1985) compared the explicit, implicit, and log-transformed explicit 

and implicit finite difference schemes. They also considered several binomial methods. 

Their main conclusion was that the explicit finite difference scheme was overall the 

fastest.
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Courtadon (1982a) applied the finite difference method for the valuation, of default- 

free bonds and interest rate contingent claims. He stated the boundary conditions 

necessary for valuing default free bonds, European call and put options as well as 

American call and put option. Using the single factor term structure model proposed 

by Brennan and Schwartz (1979), he set up the partial differential equation for both 

default free bonds and contingent claims. Using the implicit finite difference scheme 

similar to that of Brennan and Schwartz (1977), he set up a system of finite difference 

equations. By solving this system of equations he obtained the bond prices and 

contingent claims prices.

Hull and White (1990b) further developed the explicit finite difference scheme to value 

default free bonds and contingent claims. They noted the conclusion of earlier 

researchers including Brennan and Schwartz (1978), Geske and Shastri (1985) and 

others that a suitable transformation of the underlying asset increases the efficiency of 

the finite difference scheme. Generalizing from this, they introduced a new state 

variable that had constant instantaneous standard deviation to their finite difference 

scheme. They modeled their new variable in the same way as the underlying asset. 

They set up an explicit finite difference scheme in terms of the new state variable and 

interpreted the coefficients as probabilities of a trinomial lattice introduced by Boyle 

(1986). Hull and White discussed the conditions under which their proposed explicit 

finite difference scheme would converge to yield true bond prices and contingent 

claims prices. To ensure convergence they recommended that the probabilities, i.e. the 

coefficients should remain positive. This is achieved by using different branching 

procedures, rather than the usual, up, down and constant branch. Hull and White
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1.3.4. Method of Lines

The Method of Line involves converting the second order partial differential equation 

into a system of first order equations. These first order equations are then discretized 

and solved iteratively to obtain the value of the contingent claims. To date the Method 

of Lines has only been used to value put options based on equity by Meyer and Van 

der Hoek (1994).

1.3.5. Monte Carlo Simulation

The Monte Carlo simulation method for contingent claims valuation was first 

introduced by Boyle (1977). Until, recently, its main use has been to value path- 

dependent European type contingent claims. However, in recent years a number of 

researchers have put forward different Monte Carlo schemes for the valuation of 

American type contingent claims. The basis of Monte Carlo simulation lies in the 

insight of Cox and Ross (1976); that if a riskless hedge can be formed the option value 

can be expressed as the discounted expectation of the payoff it would produce in a risk 

neutral world. Monte Carlo simulation consists of the following three steps.

• Simulating sample paths of the underlying state variable such as the underlying asset 

prices over the time increment.

• Evaluating the discounted cash flows of a security on each sample.

• Average the discounted cash flows over sample path.

applied their explicit finite different branching scheme to value bonds and contingent

claims based on the short-term interest rate model proposed by Cox-Ingersol-Ross

(1985).
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Boyle (1977) used Monte Carlo simulation to value European call options on discrete 

dividend paying stocks. Hull and White (1987) used the approach to value options on 

assets with stochastic volatilities. They found that the Black-Scholes frequently 

overprices options and that the degree of overpricing increases with the time to 

maturity. Kemna and Vorst (1990) used Monte Carlo simulation as a valuation 

method for arithmetic Asian options, Clelow and Caverhill (1994) valued call and 

look-back call options using Monte Carlo simulation. Caverhill and Pang (1995) 

evaluated bond prices and call option within Heath-Jarrow-Morton (HJM) framework 

using Monte Carlo simulation.

One of the main disadvantages of Monte Carlo simulation is that a large number of 

simulation runs may be required to obtain precise results. Thus variance reduction 

techniques is required. Boyle (1977) discussed two such variance reduction 

techniques; the control variate approach and the antithetic variate approach. Kemna 

and Vorst (1990) used the control variate method in their valuation of Asian options. 

As a control variate they used the analytical formula for the geometric average option. 

Recently other variance reduction methods have been introduced. These include 

moment's matching by Barraquand and Martineau (1995); martingale variance 

reduction method by Clelow and Caverhill (1994); low discrepancy deterministic 

sequences by Joy, Boyle and Tan (1996). Low discrepancy sequences have the 

property that the sequence of points remain evenly dispersed. Deterministic series thus 

far used include Faure and Sobol.
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Tilley (1993) expanded the use of Monte Carlo simulation to value American type 

options. Till that date, widespread belief existed that Monte Carlo simulation could 

not be used to value American type options. The basic problem in using Monte Carlo 

simulation to price American type options is how to incorporate the early exercise 

feature associated with American options. Tilley dealt with this problem by storing the 

paths followed by the asset prices, ranking them and further re-ranking them at each 

possible early exercise date. Tilley uses the valuation of an equity American put option 

as an example. By grouping the ranked asset prices at each date, he is able to estimate 

for that group at that date. Barraquand and Martineau (1995) proposed an alternative 

Monte Carlo scheme for the valuation of American options. Their proposal involved 

an approach that tracks the conditional probabilities of path specific outcomes in a 

Monte Carlo simulation. They use their scheme to value put options based on multiple 

assets. Raymer and Zwecher (1997) extend the Barranquand and Martineau approach 

to two factor representation of stock prices. Broadie and Glasserman (1997) propose 

a scheme based on generating two estimates of the asset prices taken from random 

samples of future state trajectories. One estimate is biased high and one is biased low; 

both estimates are asymptotically unbiased and converge to the security price. The 

two estimates are then combined to determine a confidence interval for the security 

price. Recently Grant, Voran and Weeks (1998) have proposed another Monte Carlo 

scheme for the valuation of American options. They incorporate the early exercise 

feature in the Monte Carlo method by linking forward moving simulation and the 

backward moving recursion through an iterative search process.
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1.4. Objectives of the thesis

In the previous sections, we have discussed alternative specifications of possible 

interest rate models. Further we discussed that there was the Equilibrium approach and 

the Arbitrage-Free approach to interest rate modeling. For the remainder of the thesis 

we concentrate on the Equilibrium approach.

Ideally for risk management purposes, analytical prices both for bond and interest rate 

contingent claim prices is highly desirable. However, except for specific models such

as the Vasicek (y = 0 ), CIR f  P
Y = —

2
analytical solutions are not available. Further

CKLS (1990) state that y is the most important feature differentiating different interest 

rate models. CKLS, also show that interest rate models, which allow for y > 1 capture 

the dynamics of the short-term better than those do, which require y < 1. Finally 

CKLS show that these interest rate models differ significantly in their implication for 

valuing default-free bonds and interest rate contingent claims.

Rebanato (1995) states that 85%+ of variance across rates of different maturity could 

be satisfactorily explained by using a single factor model. More, specifically he finds in 

the case of the UK that 92.170% of the variance is explained by a single factor model 

and 6.93% of the variance (or 99.1% of the total variance) is explained by a two factor 

model. Thus clearly, a two-factor model is desirable for risk management purposes. 

However, a two-factor model requires considerably more effort to implement. In 

addition, with multi-factor models the CPU memory required increases by the power 

of the factor. As an example, if we declare an array of size N with a single factor
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model we need to declare an array of size N, x N 2 with a two-factor model, or an

array of size Nj x N 2 x ......x N m with an m-factor model. Further modeling interest rate

derivatives is more demanding than the modeling of equity derivatives. As a result 

both practitioners and academics have focused their research activities on single-factor 

term structure models. By focusing on single-factor models researchers are able to 

gain insights which can be applied in a multi-factor setting.

Our examination of the numerical approaches literature indicates that not all the 

numerical approaches suggested so far are suitable for general interest rate contingent 

claim valuation. As discussed in the previous section, different Monte Carlo simulation 

schemes have been put forward. However, no single approach has been accepted as 

the standard, unlike the lattice approach as an example. The analytic approaches are 

not suitable because their starting point is an expression for the European option - an 

expression generally not available for interest rate contingent claims. This leaves us 

with the Lattice approach, Finite Difference Method, and the Method of Lines.

The objectives of this thesis is as follows:

1. To test the convergence properties of the simplified binomial lattice of Tian (1994) 

by varying the y parameter.

2. To introduce a new numerical scheme in finance from engineering for the 

evaluation of default-free bonds and interest rate contingent claims based on the 

CKLS model.

3. To test the convergence and stability of the new method with existing numerical 

methods.
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4. To test the stability of the new numerical scheme by tracking its free boundary for 

American interest rate put options.

5. To value default-free bonds and interest rate contingent claims for different 

markets using the new numerical method.

1.5. Outline of the thesis

In Chapter 2 we apply the Simplified Binomial (SB) lattice of Tian to value both 

default-free bonds and interest rate contingent claims, based on the CKLS model. We 

test the SB lattice both for stability and convergence.

In Chapter 3 we use the partial differential equation approach to value default-free 

bonds and interest rate contingent claims. We consider the Finite Difference Method. 

We develop the Method of Lines approach which has thus far been only used to value 

equity options to value default-free bonds and interest rate contingent claims. Finally 

we introduce a new numerical scheme - the Box Method in finance from engineering. 

As in Chapter 2, we test all three numerical schemes with one another with respect to 

convergence and stability.

In Chapter 4 we use the Box Method as the starting point to develop a new method to 

track the free boundary of American interest rate put options. We attempt to track the 

free boundary of both short dated and long dated options based on widely used interest 

rate models.

In Chapter 5 we use the Box Method to value default-free bonds and interest rate 

contingent claims for different markets. In particular we consider Australia, Canada, 

Japan, Hong Kong, U.K., and U.S.A. We calculate values of default-free bonds across 

a range of maturity dates and short-term interest rates. We compare the numerical
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default-free bond values and interest rate contingent claim values with analytical values 

where available.

Chapter 6 summarizes the results of our research and suggests directions for future 

research.
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CHAPTER 2.

BINOMIAL LATTICE APPROXIMATION TO DIFFUSION PROCESSES

2.1. Introduction

The lattice approach to value contingent claims was first developed by Cox, Ross, and 

Rubenstein (CRR; 1979). They used a recombining binomial lattice to value equity 

contingent claims and proved that in the limit At -4  0 contingent claim prices 

calculated using the binomial lattice approached the contingent claim prices calculated 

using the Black-Scholes formula. Boyle (1986) further extended the CRR binomial 

lattice to a trinomial lattice and showed that the trinomial lattice was faster than the 

binomial lattice. Neither the binomial lattice of CRR or the trinomial lattice of Boyle 

are directly applicable to widely used interest rate models.

Interest rate stochastic processes are more complex than similar stochastic processes 

for equities. For example, interest rate processes need to take mean reversion and 

interest rate dependent volatility into account. This means that when we try to value 

interest rate dependent contingent claims using the above mentioned lattice approaches 

recombining of the nodes is no longer guaranteed. Further it may not be possible in 

some instances to achieve convergence from the discrete to the continuous in the limit 

A t—» 0 .

Over the years researchers including Nelson and Ramaswamy (NR; 1990), Hull and 

White (1990b) and Tian (1992) have attempted to use the lattice approach to value the 

underlying instruments, i.e. the discounted bond and the contingent claims based on
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such bonds. The NR binomial lattice method produced both accurate discount bond 

prices and the contingent claim price based on such bonds. However, this was 

achieved at the expense of computational speed. HW trinomial lattice method 

although faster than the NR method suffers from convergence difficulties for certain 

combination of parameters. HW trinomial lattice was further simplified by Tian (1992) 

to a simplified binomial lattice (SB). Although the SB lattice is considerably faster and 

easier to implement than the HW lattice, it nonetheless suffers from the same 

convergence difficulties as the HW lattice.

Both HW and Tian applied their respective lattices to the Cox, Ingersoll, and Ross 

(CIR; 1985b) interest rate model and found convergence and stability difficulties with 

certain combination of parameters. The purpose of this chapter is to further explore 

the convergence and stability issues that arise when the SB lattice is used to value 

discount bonds for interest rte processes, that enclosed the CIR as a special case.

The main contribution of this Chapter is to generalise the work of Tian (1994) to the 

CKLS (1992) model. In Section 2 we discuss the construction of the SB lattice as in 

Tian for a general one factor stochastic process. In Section 3 we show how the work 

of Tian (1994) is expanded to the CKLS (1992) model). In Section 4 we discuss 

results obtained for the CKLS interest rate model. Section 5 concludes this chapter.

2.2. Simplified Binomial Interest Rate Lattice

Consider a general one state variable short term interest rate process: 

dr = p(r,t)d t + a (r ,t)d z t (2.2.1)
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where:

|i(r, t ) : instantaneous drift of the interest rate process.

a ( r , t ) : volatility of the interest rate process.

dzt : Standard Wiener process.

In a risk-neutral world, drift rate is adjusted by the market price of risk X(r,t) so that 

the short term interest rate process becomes:

dr, = [jLx(r, t) -  A,(r,t)]dt + c(r,t)dz, (2.2.2)

Taking the discrete time version of the Wiener process as Az = e kVAt the discretized 

verison of the above equation is:

r„+, = rn +[{M(l'n5tn)-^(rn>t„)V^t+^(rn>tn)ek(tn)V^t (2.2.3)

£ k has two and three possible outcomes for a binomial and trinomial lattice 

respectively and a mean of zero and variance of one.

The major problems with the above discretization is that the resulting lattices are non-

combining because the volatility is interest rate dependent. This means that the number 

of nodes increase exponentially as we move forward through the lattice. Such a lattice 

is said to be path dependent. An alternative lattice where the nodes combine is known
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as path independent or a simple lattice in the terminology of Nelson-Ramaswamy 

(1990). The major strength of simple lattices over path dependent lattices is that with 

simple lattices the number of nodes increase quadratically as we move forward through 

the lattice. Clearly from the computational viewpoint simple lattices are desirable.

With above researchers in all cases the starting point is to transform equation (2.2.2) to 

a form that has constant volatility i..e. where the volatility is not dependent on the 

short term interest rate. This is achieved by letting (j) = g(r,t) such that r = g _1 (c(),t)

be the relevant transformation such that process described by equation (2.2.2) 

becomes.

d(j) = q(r,t)dt + vdzt (2.2.4)

where:

q(r,t)
3<t>
¥

+ ( g ( r , t ) - M r , t ) ) ^  + ^ o ( r , t ) 2
a24)
d r 2

a<t> ..—  = v - positive constant.
3r

Thus it is possible to construct lattice either in (r,t) or in ((f), t) space. The former

approach is pursued by Nelson and Ramaswamy and the latter approach is pursued by 

Hull and White and Tian.
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The Simplified Binomial model (SB) is the binomial equivalent of the trinomial Hull 

and White model. To derive the SB lattice we partition the interval [t0,T] (where t0

is the current date and T is the maturity date of the bond or the exercise date of the 

option) into N subintervals of length At such that:

At = T - t 0
N

t„ = t 0 +nAt

for n = 0,1,2,........ ,N

Further we assume for the period ( tn, t n+1] r behaves in the following way. Initially its 

value at time t n is rn . For the period ( tn, t n+1] its value still remains at rn . However, 

at time t n+1, its value either jumps up to rn + u with a probability p or jumps down to 

rn -  d with a probability (l -  p ) . In order to derive expressions for u, d and p, we 

equate the mean and variance in discrete and continuous time as follows:

pu -  (l -  p)d = qAt (2.2.5)

pu2 + (1 -  p)d2 = v 2At (2.2.6)

prob(4>i+i =<t>j +A<(>) = p

pr°b(4>i+i = <t>i — A<J>) = 1 — p
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Thus based on the above two equations, we derive the following expressions for u, d 

and p.

u = d = Acj) = vVAt

1 1 qVAt
p = — + ----------

2 2 v

The above expression for p can either be less than zero or greater than one. This leads 

to the following expression for p.

In order to value the discounted bond prices, the first step is to generate the interest 

rate lattice by moving forward through time. The second step involves moving 

backwards through the lattice by calculating the discounted bond price at each node on 

the lattice. At maturity we take the value of the discounted as 1. Prior to maturity we 

use the following recursive formula to value the discounted bond price B nj at node j,

time n.

+ ( l-P „ j)Bn+I,j
(2.2.7)

l + rnjAt
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Once we have calculated the lattice of bond prices, we proceed to calculate the 

contingent claims based on the bonds. As with bonds we move backwards through the 

lattice but in this case by calculating the discounted options prices at each node 

through the lattice prior to the expiry of the option. At maturity we take the value of 

the call option m ax|B Nj -E ,o ja n d  put option as m a x jE -  BNj,o j. E is the exercise

price in both cases. At each intermediate step for European type call or put options, 

value at each node is given by:

P n j P n + l J + l + O - P n j j P n U j

l + rnjAt
(2 .2 .8)

However, if the options are American, then 

for call option and m ax|Pnj,E - Bnj jfo r  put

2.3. CKLS Model

where Pnj may be call or a put option, 

value at each node is m ax|Pnj,Bnj - E j  

options.

We consider the following CKLS model in a risk neutral world where the short term 

interest rate is pulled toward a long term value 0 at a speed of adjustment k . In an 

equilibrium model, the market price of risk is incorporated explicitly depending on the 

model used. For example in the Vasicek model market price of risk is a c t  . The CKLS 

model is used for the short-term riskless rate and as such the market price of risk is 

taken to be zero.

37



drt = [k0 -  rk]dt + a r Ydzt (2.3.1)

y: unrestricted parameter

We note that substituting specific values of y into the above equation leads to specific 

interest rate models. For example:

y = 0 —>

1
y =  — —>

2

y =  1

In order to transform equation (2.3.1) so that the volatility is independent of the 

interest rate,we use the general transformation 4> for the CKLS interest rate process:

Vasicek model

Cox-Ingersoll-Ross (CIR) model 

Brennan-Schwartz model

(j) = — f r~Tdr (2.3.2)
a

where v can be chosen equal to a  with no loss of generality. Taking the market price 

of risk as zero, for simplicity, the drift of the process <)>, q is given by Ito’s lemma as:

q = k(0 -  r )—  + — a 2r 2y 
v J  d r  2

d 2 <\>

d r 2

(2.3.3)

From equation (2.3.2), we note that there is a singularity at y = l. We therefore 

integrate equation (2.3.2) for y = 1 and 0 < y < 1 separately.
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Thus for y = 1, we have:

i v r dr v cf) = — J —  = — In r 
a  r o

If we let v = a

(J) = lnr (2.3.4)

Differentiating the above expression for <j) with respect to r, once and twice, we have

d §  _  1
d r  r

= 1
dr2 ~ r 2

Substituting the above expressions for q into equation (2.3.3) and simplifying gives:

q
k0
r

(2.3.5)

q = (2.3.6)

where:
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r = e

a, = k0

^■(2k + o 2)

For 0 < y < 1, use the following transformation.

<> = —Jr Tdr = 77~ r
a  c (l - y )

1“ Y

Let v = a ( l  -  y)

<J) = r 1 Y (2.3.7)

Differentiating the above expression for 0 with respect to r, once and twice, we have

3 2<|)
d r2" - y ( i - y ) r "Y_1

Substituting the above expressions for q into equation (2.3.5) and simplifying gives:
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where:

Y

r = (t)1_Y

a, = (1 -  y)k0 

a2 = - 0  -  Y)k 

a3 = - ^ y (i - y ) ° 2

A necessary condition for convergence of the <\> process to the r process is that q 

should be bounded. From equations (2.3.8) we see that q is always bounded if c|) > 0. 

However, from equation (2.3.8) we see that q becomes unbounded if ((> = 0 . By 

careful choice of parameters we can ensure that (j) = 0 is inaccessible and convergence 

is always ensured.

The general transformation of r to <\) ensures that the variance of (j) is constant and 

further r = 0 is inaccessible for k0 > Oin equation (2.3.8). k0 > 0 ensures q > 0. The 

positive values of the long-term centrality parameter and the speed of mean reversion



of the CKLS interest rate process ensures that these conditions are always met. Hence 

the interest rate process always converges for y = 1.

From equation (2.3.8) we see that for y ^  1, the leading term when (() approaches zero 

is a, for y > and a 3 for y < —. For Y > “  bond prices converge because the term

a 1 dominates. Similarly there is no convergence of bond prices for y < ~  because the 

term a 3 dominates.

2.4. Numerical Experimentation

In this section we perform numerical experiments to determine zero coupon bond 

prices when the underlying short term interest rate process follows the CKLS process. 

In particular we examine the rate of convergence and stability of the bond prices in 

depth.

Tables 2.1 to 2.16 all have the same format. The first two columns give the term to 

maturity of the bond and the instantaneous short-term interest rate. The third column

contains analytical prices calculated using the Cox-Ingersoll-Ross model i.e. fory = ~ .

The remaining columns contain zero coupon bond prices for different number of 

annual time steps calculated using Tian’s simplified binomial price. These prices will 

be referred to as SB henceforth. As in Tian (1994) we attempt to value bond prices in 

two distinctly different circumstances. In the first case we value bonds when the mean 

reversion rate is high and the volatility of the interest rate is low and in the second case
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when the mean reversion rate is low and the interest rate volatility is high. We farther 

distinguish these two situations by introducing a variable a ,  where :

4k0 -  a 2
a , = ------------

1 8

otj > 0  corresponds to low volatility and high mean reversion rate. For a ,  < 0  the 

converse conditions hold.

Tables 2.17 and 2.18 both have the same format, the first column contains the exercise 

prices. The second column indicates whether the prices are calculated analytically

(only occurs when y = — i.e. CIR) or using the Simplified Binomial Method. The

third, fourth and fifth columns contain the values of a , ,  y, and the bond prices at 

maturity respectively. The remaining columns contain call or put prices for different 

terms to expiry.

We calculate prices of zero coupon bonds for different values of y. Further we 

examine the rate of convergence and stability by considering prices for different 

number of annual time steps n. The maturities of the bonds range from 1-25 years. 

The face value of the zero coupon bond is $100. Short-term interest rates of 5% and 

11 % are considered. A difference of 6% between the interest rate scenarios ensures 

that the approach will remain stable under realistic interest rates. Further, for:

a ,  = 0.01875 > 0 , k = 0.5 , a  = 0.1, 0 = 0.08

a ,  = -0.02725 < 0 , k = 0.1, a  = 0.5 , 0 = 0.08
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a , , a 2 represent the extreme bounds for the parameters 0 and a .  In reality, the

parameters will not be as extreme. If a numerical approach yields correct prices under 

these two extreme conditions, then it will yield correct prices under regular market 

conditions.

Tables 2.1 and 2.2 show the prices of discount bonds for y = 1- Brennan-Schwartz 

(1980) model for a ,  > 0  and < 0  respectively. Both Tables show that the zero 

coupon bond prices are extremely stable with respect to the annual number of time 

steps. For example from Table 2.1 consider a 10-year bond, at short-term initial 

interest rate of 11%. The price of zero coupon bond at n = 50 is 42.3708 and the 

corresponding price at n = 250 is 42.3781. Thus an increase in the annual number of 

time steps by a factor of five has lead to less than one percent change in the zero 

coupon bond price. Tables 2.1 and 2.2 show that for y = 1 zero coupon bond prices 

are always lower than the correspond analytical CIR price. This difference in bond 

prices can be explained by noting that bond prices are dependent on the average 

volatility of the interest rate; which in turn is dependent on the value of y. A higher 

value of y leads to a higher average volatility which in turn leads to a lower bond price. 

Further this feature between the Brennan and Schwartz model and the CIR model is 

more pronounced for a ,  < 0  and for long maturity bonds.

Tables 2.3 and 2.4 repeat the same calculations but only for y = —. Note in this case 

the analytical CIR prices are directly comparable with the SB prices. Table 2.3 shows
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that for a ,  > 0  the SB prices are firstly very stable with respect to the annual number 

of time steps n and secondly are in excellent agreement with the analytical CIR prices. 

However for otj < 0  the situation is totally different as can be seen from Table 2.4. 

Examination of Table 2.4 shows that SB prices are always lower than the 

corresponding analytical CIR prices and the difference between the two sets of prices 

increases with an increase in the term to maturity. Further the zero coupon bond 

prices are unstable and the level of instability i.e. the range over which the prices 

fluctuate, increases with an increase of term to maturity of the zero coupon bond.

The sharp difference in the behaviour of bond prices in Tables 2.3 and 2.4 has been

explained by Tian (1994). According to Tian for the CIR model i.e. when y = ^ , the

sign of a ,  will determine convergence of bond prices. In particular if a , < 0  bond 

prices will not converge and if > 0 the bond prices will converge.

For y < — bond prices do not converge regardless of whether a ! is positive or

negative. Tables 2.5 and 2.6 demonstrate this feature for y = 0.25 . Again we see that 

the fluctuations are greater when otj < 0 . Indeed the fluctuations are even more

erratic than when y = ^  and further this instability increases as before with y = ~  with

term to maturity of the bond. One final feature which will be noticed by examining 

Table 2.6 is that for a ,  < 0 and long maturities the bond prices although unstable are 

extremely low compared with the corresponding CIR price and that the prices actually 

seem to be approaching zero as the term to maturity of the bond becomes longer. For
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example for a 25 year bond at initial interest rate of 11 % has bond prices varying 

between 10.7133 and 0.1759. Contrast this with a 5 year bond at the same short term 

interest rate where the bond price fluctuates between 59.1822 and 39.9553.

Tables 2.7 and 2.8 indicate that bond prices converge at y = 0.75 . For all combination 

of parameters bond prices are stable and close to analytical CIR prices. However, as 

before the discrepancy between the two sets of prices sensibly increases with an 

increase of term to maturity. This discrepancy is more stark when a ,  < 0.

In tables 2.9, 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16 we explore the behaviour of bond 

prices for different values of y ranging from 0.45 to 0.70 when a ,  < 0 .  In theory,

convergence appears at y > ~  if the annual number of time steps n is increased to

infinity i.e. with y < we would expect the bond prices to be unstable. This feature

is demonstrated in table 2.9 where y = 0.45, we see that the bond prices are erratic, 

with large fluctuations for 15 maturity bonds and apparent stability at very long 

maturities. This feature of stability at long maturity is deceptive. It can be best 

appreciated by observing the very high 5 year forward rates implied by the prices of

the longer maturity bonds. As we have argued earlier, y > is theoretically sufficient

to ensure convergence for the range of y values, maturities and annual number of time 

steps selected in our tables convergence is immediately achieved at short maturities, 

but only for y = 0.70 at 25 year maturity.
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From Table 2.17, we see that for a ,  > 0 , y  = -^ SB call prices are in excellent

agreement with analytical call prices. However, for a ,  < 0 ,y  = — SB call prices are

significantly lower than the analytical call prices. This difference is explained by 

examining the bond price. For CC; < 0 ,y  = 0.25, we find that all the call prices are 

zero indicating that for the exercise prices chosen, the call options are deep out of the 

money. The main reason for these values is the collapsed bond price of 12.7424

Table 2.18 contains put prices. As there are no analytical put prices available, direct 

comparison is not possible. For a ,  > 0 ,  we find that the put prices are reasonable 

given the exercise prices. However, for a ,  < 0 , we find that the put prices are too 

expensive due to the low bond prices.

2.5. Conclusion

The development in Section 3 and the results of numerical experimentation in Section

4 indicate that the value of y is critical for the stability of the lattice. Y > “  ensures

that the constant variance binomial tree converges to the underlying interest rate

process. Theoretically we could achieve convergence when y > , however, in such

an instance we need a ridiculously large number of time steps. From a practical 

viewpoint convergence is achieved around y = 0.7 .
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In this chapter, we have applied the lattice approach and have discovered that it has 

severe limitations. In the next chapter we use the partial differential equation approach 

to value discounted bonds and contingent claim prices based on the CKLS model.
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T able 2 .1  : Bond Prices calculated analytically (CIR) and the Simplified Binomial Tree for different

value of gamma.

«! = ( 4 k 0 - G 2) /8>O 

k = 0.5, 0 = 0.08, o  = 0.1, Ar = 0.5% ,y  = 1.0
Annual number of time steps (n)

M a t u r i t y

( y e a r s )

r(%) CIR 10 50 100 150 200 250

1 5 9 4 . 5 2 2 8 9 4 . 5 6 1 2 9 4 . 5 2 5 8 9 4 . 5 2 1 5 9 4 . 5 2 0 0 9 4 . 5 1 9 3 9 4 . 5 1 8 9

1 11 9 0 . 1 6 9 0 9 0 . 1 1 6 7 9 0 . 1 5 0 8 9 0 . 1 5 4 4 9 0 . 1 5 6 3 9 0 . 1 5 7 0 9 0 . 1 5 7 4

5 5 7 1 . 0 3 7 9 7 1 . 9 6 1 8 7 0 . 8 6 0 4 7 0 . 8 5 0 9 7 0 . 8 4 7 7 7 0 . 8 4 6 2 7 0 . 8 4 5 2

5 11 6 3 .7 1 6 1 6 3 .3 5 4 3 6 3 . 4 4 5 2 6 3 .4 5 6 1 6 3 . 4 5 9 7 6 3 . 4 6 1 5 6 3 . 4 6 2 6

10 5 4 8 . 1 6 4 7 4 9 . 1 5 4 0 4 7 . 8 3 3 2 4 7 . 7 2 6 4 4 7 . 7 2 7 0 4 7 .7 2 7 1 4 7 . 7 2 7 2

1 0 11 4 2 . 8 4 5 5 1 6 .5 7 6 6 4 2 . 3 7 0 8 4 2 . 3 7 5 3 4 2 . 3 7 6 8 4 2 . 3 7 7 6 4 2 .3 7 8 1

15 5 3 2 . 5 4 4 2 3 3 .9 2 9 5 3 2 . 2 2 9 4 3 2 . 0 4 2 2 3 2 . 0 2 2 4 3 2 . 0 2 2 9 3 2 .0 2 3 3

15 11 2 8 . 9 3 2 2 4 . 7 6 6 6 2 8 .4 0 6 5 2 8 . 4 1 2 5 2 8 . 4 1 3 7 2 8 . 4 1 4 3 2 8 . 4 1 4 6

2 0 5 2 1 . 9 8 4 0 2 2 . 2 9 6 8 2 1 .7 1 2 3 2 1 . 5 2 5 7 2 1 . 4 8 4 6 2 1 . 4 7 9 2 2 1 . 4 7 9 6

2 0 11 1 9 .5 4 3 2 1 .1 0 1 3 1 7 .8 6 4 3 1 9 .0 5 6 0 1 9 .0 5 7 2 1 9 .0 5 7 7 1 9 .0 5 8 1

2 5 5 1 4 .8 5 0 2 1 0 .3 3 0 6 1 4 .6 2 3 8 1 4 .4 6 8 0 1 4 .4 2 2 6 1 4 .4 0 8 8 1 4 .4 0 7 0

2 5 11 1 3 .2 0 1 4 0 . 2 0 3 4 1 2 .7 7 4 6 1 2 .7 8 0 3 1 2 .7 8 1 8 1 2 .7 8 2 4 1 2 .7 8 2 3

Table 2 . 2 :  B o n d  P r i c e s  c a l c u la t e d  a n a l y t i c a l l y  ( C I R )  a n d  t h e  S im p l i f i e d  B i n o m ia l  T r e e  f o r  d i f f e r e n t  

v a lu e  o f  g a m m a .______________________________________________________________________________________________________

(Xj = ( 4 k 0 - G 2) / 8 < 0

k = 0.1, 0 = 0.08, <7 = 0.5, Ar = 0.5% ,y  = 0.1
A n n u a l  n u m b e r  o f  t im e  s t e p s  ( n )

M a t u r i t y

( y e a r s )

r(%) CIR 10 50 100 150 200 250

1 5 9 5 . 1 6 3 2 9 5 . 0 6 6 6 9 4 .9 9 7 3 9 4 . 9 9 6 2 9 4 . 9 9 5 8 9 4 . 9 9 5 6 9 4 . 9 9 5 5

1 11 9 0 . 0 6 7 2 8 9 . 7 4 0 2 8 9 .7 5 3 7 8 9 . 7 5 5 4 8 9 . 7 5 6 0 8 9 .7 5 6 3 8 9 . 7 5 6 4

5 5 8 3 . 4 8 3 2 7 6 . 4 1 3 8 7 6 . 3 5 7 4 7 6 .3 5 1 1 7 6 .3 4 9 1 7 6 . 3 4 8 0 7 6 . 6 4 7 4

5 11 7 2 . 5 5 7 2 6 1 . 8 0 8 0 6 2 . 0 3 7 4 6 2 . 1 0 6 5 6 2 . 1 1 7 6 6 2 .1 2 3 1 6 2 . 1 2 6 4

1 0 5 7 5 . 3 3 3 3 5 8 . 2 0 6 6 5 8 . 2 1 3 2 5 8 . 2 1 7 2 5 8 . 2 1 8 7 5 8 . 2 1 9 5 5 8 . 2 2 0 0

1 0 11 6 5 . 0 2 2 4 4 3 . 9 3 0 8 4 4 . 3 8 9 7 4 4 . 4 5 0 5 4 4 . 4 7 0 8 4 4 . 4 8 1 0 4 4 . 4 8 7 2

15 5 6 8 .2 7 4 1 4 4 . 6 1 4 4 4 4 . 6 7 6 0 4 4 . 7 0 1 7 4 4 . 7 1 0 6 4 4 .7 1 5 1 4 4 . 7 1 7 8

15 11 5 8 . 9 1 7 7 3 3 . 0 5 1 7 3 3 .5 0 4 5 3 3 . 5 8 2 4 3 3 . 6 0 8 6 3 3 . 6 2 1 8 3 3 . 6 2 9 7

2 0 5 6 1 . 8 4 4 2 3 4 .3 5 3 1 3 4 . 3 4 8 6 3 4 . 3 9 7 7 3 4 . 4 1 5 5 3 4 .4 2 4 5 3 4 . 4 2 9 9

2 0 11 5 3 . 4 0 2 2 2 5 .0 2 1 3 2 5 . 6 3 5 7 2 5 . 7 2 9 7 2 5 .7 6 1 3 2 5 . 7 7 7 4 2 5 . 7 8 7 0

2 5 5 5 6 . 0 9 2 5 2 6 . 7 2 6 8 2 6 .3 9 8 1 2 6 . 4 7 5 0 2 6 . 5 0 1 4 2 6 . 5 1 4 6 2 6 . 5 2 2 5

2 5 11 4 8 . 4 0 5 2 1 9 .3 5 4 7 1 9 .6 6 7 5 1 9 .7 7 4 8 1 9 .8 1 1 8 1 9 .8 3 0 3 1 9 .8 4 1 5
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T able 2 .3  : Bond Prices calculated analytically (CIR) and the Simplified Binomial Tree for different
value of gamma.__________________________________________________________________

a ,  = ( 4 k 0 - a 2) / 8 > 0  

k = 0.5, 0 = 0.08, cr = 0.1, Ar =  0.5% ,y = 0.5

Maturity
(years)

r(%) CIR
Annual number of time steps (n)

10 50 100 150 200 250

1 5 9 4 . 5 2 2 8 9 4 . 5 6 6 2 9 4 . 5 3 1 3 9 4 . 5 2 7 0 9 4 . 5 2 5 6 9 4 . 5 2 4 9 9 4 . 5 2 4 5

1 11 9 0 . 1 6 9 0 9 0 . 1 2 5 6 9 0 . 1 6 0 5 9 0 . 1 6 4 8 9 0 . 1 6 6 2 9 0 . 1 6 9 9 9 0 . 1 6 7 3

5 5 7 1 . 0 3 7 9 7 1 .1 4 7 3 7 1 . 0 5 4 9 7 1 . 0 4 6 4 7 1 . 0 4 3 6 7 1 . 0 4 2 2 7 1 . 0 4 1 3

5 11 6 3 .7 1 6 1 6 3 . 5 8 2 2 6 3 . 6 8 9 7 6 3 . 7 0 2 9 6 3 .7 0 7 3 6 3 . 7 0 9 5 6 3 . 7 1 0 8

1 0 5 4 8 . 1 6 4 7 4 8 . 0 5 2 7 4 8 . 1 5 0 3 4 8 . 1 5 7 5 4 8 . 1 5 9 9 4 8 .1 6 1 1 4 8 . 1 6 1 9

1 0 11 4 2 . 8 4 5 5 4 2 .3 7 3 1 4 2 . 8 1 7 0 4 2 .8 3 1 1 4 2 . 8 3 5 9 4 2 . 8 3 8 3 4 2 . 8 3 9 7

15 5 3 2 . 5 4 4 2 3 0 . 9 0 7 0 3 2 . 5 1 2 2 3 2 .5 2 6 3 3 2 .5 3 2 3 3 2 . 5 3 5 2 3 2 . 5 3 7 0

15 11 2 8 . 9 3 2 2 2 0 . 9 7 8 0 2 8 . 8 9 2 9 2 8 . 9 1 1 4 2 8 . 9 1 8 4 2 8 . 9 2 1 8 2 8 . 9 2 3 9

2 0 5 2 1 . 9 8 4 0 9 . 2 4 2 7 2 1 .9 1 1 3 2 1 . 9 5 9 7 2 1 . 9 6 7 7 2 1 . 9 7 1 8 2 1 . 9 7 4 2

2 0 11 1 9 .5 4 3 2 1 5 .5 7 1 3 1 9 .4 9 2 7 1 9 .5 1 7 4 1 9 .5 2 6 0 1 9 .5 3 0 3 1 9 .5 3 2 8

2 5 5 1 4 .8 5 0 2 6 . 8 2 0 7 1 4 .8 0 2 5 1 4 .8 2 3 6 1 4 .8 3 1 9 1 4 .8 3 6 4 1 4 .8 3 9 2

2 5 11 1 3 .2 0 1 4 1 1 .7 9 5 7 1 3 .1 4 6 0 1 3 .1 7 4 5 1 3 .1 8 2 8 1 3 .1 8 7 4 1 3 .1 9 0 2

Table 2 .4 : B o n d  P r i c e s  c a l c u la t e d  a n a l y t i c a l l y  ( C I R )  a n d  t h e  S im p l i f i e d  B i n o m ia l  T r e e  f o r  d i f f e r e n t  

v a lu e  o f  g a m m a .______________________________________________________________________________________________________

d j = ( 4 k 0 - a 2) / 8 < O  

k = 0.1, 0 = 0.08, <7 = 0.5, Ar = 0.5% , y = 0.5
A n n u a l  n u m b e r  o f  t im e  s t e p s  ( n )

Maturity
(years)

r(%) CIR 10 50 100 150 200 250

1 5 9 5 . 1 6 3 2 9 5 . 0 2 2 4 9 4 . 8 5 3 2 9 5 . 0 0 8 9 9 5 .0 1 5 3 9 5 . 1 2 1 6 9 4 . 9 8 3 0

1 11 9 0 . 0 6 7 2 8 9 . 8 9 5 4 8 9 . 9 4 0 2 8 9 . 9 7 6 6 8 9 .9 8 7 7 9 0 . 0 4 1 9 9 0 . 0 2 0 3

5 5 8 3 . 4 8 3 2 6 6 . 0 2 0 5 7 8 . 0 6 7 7 7 6 . 4 4 5 2 7 8 . 0 4 3 2 8 1 . 5 6 6 6 7 4 . 8 0 0 2

5 11 7 2 . 5 5 7 2 6 5 . 7 0 1 7 6 4 . 5 6 2 8 6 7 . 9 1 5 7 6 5 . 7 8 7 8 6 5 . 4 4 2 0 6 5 . 8 2 0 5

10 5 7 5 . 3 3 3 3 5 1 . 0 5 3 3 5 4 . 3 5 3 8 6 2 . 3 0 3 6 8 3 .4 6 9 8 5 8 . 9 0 7 7 8 2 . 6 1 2 9

10 11 6 5 . 0 2 2 4 2 7 . 8 2 5 2 4 8 . 7 1 1 9 4 5 . 7 3 4 2 4 8 . 2 3 1 3 5 3 . 0 2 1 4 6 1 . 7 2 5 7

15 5 6 8 .2 7 4 1 4 4 . 3 6 8 7 5 9 . 7 5 6 9 3 1 . 2 8 4 6 4 9 .7 9 4 1 3 6 . 4 9 3 2 6 0 . 6 6 2 5

15 11 5 8 . 9 1 7 7 1 9 .3 9 3 6 2 0 . 6 7 6 2 2 5 . 2 3 2 8 3 2 . 5 1 3 0 4 3 . 5 0 8 6 3 0 . 4 5 0 4

2 0 5 6 1 . 8 4 4 2 4 1 . 3 5 0 7 1 1 .9 5 9 3 2 9 . 1 2 2 5 8 2 . 3 4 8 9 3 9 . 7 9 7 7 2 8 . 2 0 3 9

2 0 11 5 3 . 4 0 2 2 1 4 .4 4 5 5 1 8 .7 9 6 6 2 6 . 7 9 1 4 4 5 . 8 0 6 2 2 3 . 1 1 5 5 4 2 . 4 2 8 6

2 5 5 5 6 . 0 9 2 5 4 0 . 3 1 4 6 8 .5 5 1 3 3 0 . 9 2 6 8 1 6 .2 1 2 5 6 0 . 8 0 9 5 3 1 .8 0 8 1

2 5 11 4 8 . 4 0 5 2 1 1 .3 3 6 0 1 9 .4 3 1 8 3 6 .5 7 0 1 1 3 .0 8 8 7 3 1 .0 8 6 1 1 6 .4 3 4 2
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T able 2 .5  : Bond Prices calculated analytically (CIR) and the Simplified Binomial Tree for different
value of gamma.__________________________________________________________________

a , = ( 4 k 0 - c r ) / 8  > 0

k = 0.5, 0 = 0.08, a  = 0.1, Ar = 0.5% , y = 0.25
Annual number of time steps (n)

Maturity
(years)

r(%) CIR 10 50 100 150 200 250

1 5 9 4 . 5 2 2 8 9 4 . 5 8 2 7 9 4 . 5 4 0 9 9 4 . 5 3 5 5 9 4 . 5 4 4 2 9 4 . 5 3 4 8 9 4 . 5 4 1 4

1 11 9 0 . 1 6 9 0 9 0 . 1 4 5 5 9 0 . 1 8 2 4 9 0 .1 8 7 1 9 0 . 1 8 8 8 9 0 . 1 8 9 2 9 0 . 1 8 9 9

5 5 7 1 . 0 3 7 9 7 1 . 6 0 4 0 7 1 . 6 3 0 6 7 1 .7 0 1 1 7 1 . 3 9 7 7 7 1 . 3 2 0 4 7 1 .3 0 1 3

5 11 6 3 .7 1 6 1 6 4 . 1 3 1 0 6 4 . 1 3 1 6 6 4 . 2 8 0 5 6 4 .1 6 5 1 6 5 . 3 0 2 8 6 4 . 1 6 0 2

1 0 5 4 8 . 1 6 4 7 4 7 . 7 8 0 3 5 0 .8 8 4 7 4 9 . 3 4 5 7 4 9 . 2 7 1 9 4 9 . 5 0 1 6 4 8 . 7 2 9 6

1 0 11 4 2 . 8 4 5 5 4 1 . 7 6 1 5 4 3 . 8 4 3 0 4 3 . 5 6 5 3 4 3 . 6 6 7 2 4 3 . 9 5 1 9 4 3 . 7 1 3 9

15 5 3 2 . 5 4 4 2 2 4 . 6 0 1 4 3 4 .0 0 7 5 3 3 . 7 5 3 0 3 3 . 9 1 3 4 3 5 . 7 3 3 2 3 3 . 4 9 3 0

15 11 2 8 . 9 3 2 2 1 9 .2 1 8 5 3 0 .1 6 0 8 3 0 . 1 2 8 2 2 9 . 7 0 0 7 3 0 . 4 0 3 6 3 0 .2 0 0 3

2 0 5 2 1 . 9 8 4 0 1 8 .9 9 9 3 2 4 . 2 6 5 2 2 5 . 0 7 7 7 2 2 .8 8 8 1 2 3 . 3 0 3 8 2 2 . 7 2 4 7

2 0 11 1 9 .5 4 3 2 1 1 .6 2 1 7 2 0 . 3 5 1 8 2 0 .6 1 3 1 2 0 .3 2 7 1 2 0 . 2 5 2 4 2 0 .2 8 6 1

2 5 5 1 4 .8 5 0 2 1 5 .3 9 1 8 1 5 .7 3 2 3 1 5 .7 8 2 0 1 6 .1 1 4 4 1 5 .5 2 5 8 1 6 .0 1 3 2

2 5 11 1 3 .2 0 1 4 8 .1 4 7 7 1 4 .2 3 2 7 1 8 .5 4 0 8 1 4 .7 6 6 0 1 4 .9 0 2 9 1 3 .8 0 9 9

Table 2.6. B o n d  P r i c e s  c a l c u la t e d  a n a l y t i c a l l y  ( C I R )  a n d  t h e  S im p l i f i e d  B i n o m ia l  T r e e  f o r  d i f f e r e n t  

v a lu e  o f  g a m m a .______________________________________________________________________________________________________

cij = ( 4 k 0 - o 2) / 8 < 0

k = 0.1, 0 = 0.08, a  = 0.5, A r  = 0.5% ,y = 0.25
A n n u a l  n u m b e r  o f  t im e  s te p s  ( n )

Maturity
(years)

r(%) CIR 10 50 100 150 200 250

1 5 9 5 . 1 6 3 2 8 9 .8 4 5 5 8 9 .3 4 6 3 8 9 .8 4 1 9 9 0 . 9 2 0 3 8 9 .4 9 5 7 9 0 . 7 5 0 4

1 11 9 0 . 0 6 7 2 8 7 . 7 5 8 4 8 7 .3 9 4 3 8 6 .4 0 9 3 8 8 . 8 3 6 2 8 9 .3 4 3 1 8 6 .5 5 9 3

5 5 8 3 . 4 8 3 2 5 7 . 3 2 5 0 3 7 . 8 7 5 8 6 0 .7 4 5 1 4 4 . 4 5 1 2 3 9 .8 4 1 3 3 7 .3 2 1 1

5 11 7 2 . 5 5 7 2 3 9 .9 5 5 3 4 1 . 5 1 8 3 5 3 . 9 9 2 0 3 7 . 6 1 5 0 5 9 . 1 8 2 2 4 0 . 0 9 3 2

1 0 5 7 5 . 3 3 3 3 4 5 . 0 0 8 8 1 6 .7 0 9 6 1 1 .6 9 8 8 9 . 7 8 9 6 3 4 .2 1 7 3 2 0 . 9 3 3 7

1 0 11 6 5 . 0 2 2 4 2 1 . 5 3 7 8 7 .6 7 4 1 1 5 .4 9 7 9 1 0 .4 1 5 1 2 9 . 0 2 1 0 1 5 .8 6 2 8

15 5 6 8 .2 7 4 1 4 1 . 9 8 7 5 9 . 0 3 3 7 4 . 9 0 7 0 3 . 6 0 8 9 2 . 9 6 8 6 2 . 5 7 0 9

15 11 5 8 . 9 1 7 7 1 4 .0 9 9 4 2 .8 5 6 3 1 5 .9 8 1 7 5 .7 8 1 1 3 .6 5 0 1 2 . 7 0 7 2

2 0 5 6 1 . 8 4 4 2 4 2 . 4 1 9 4 5 .6 0 8 3 2 . 3 3 4 7 1 .4 8 5 7 1 .1 1 3 3 0 . 9 0 6 7

2 0 11 5 3 . 4 0 2 2 1 0 .2 8 2 1 1 .2 0 0 2 0 .4 8 3 1 5 .1 5 6 9 2 .1 5 6 5 1 .3 1 0 5

2 5 5 5 6 . 0 9 2 5 4 4 . 5 4 4 2 3 . 8 5 3 0 1 .2 2 6 3 0 .6 7 0 1 0 . 4 5 3 8 0 . 3 4 3 4

2 5 11 4 8 . 4 0 5 2 8 .0 3 9 3 0 . 5 5 8 7 0 . 1 7 5 9 1 0 .7 1 3 3 1 .8 1 1 1 0 . 8 0 4 4
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T able 2 .7  : Bond Prices calculated analytically (CIR) and the Simplified Binomial Tree for different
value of gamma.__________________________________________________________________

k = 0.5, 6

= ( 4 k 6 - a 2) / 8 > 0  

= 0.08, a  = 0.1, A r  =  0.5% ,y = 0.75

M a t u r i t y

( y e a r s )

r(%) CIR
Annual number of time steps (n)

10 50 100 150 200 250

1 5 9 4 . 5 2 2 8 9 4 . 5 6 2 0 9 4 . 5 2 6 8 9 4 . 5 2 2 5 9 4 .5 2 1 1 9 4 . 5 2 0 4 9 4 . 5 1 9 9

1 11 9 0 . 1 6 9 0 9 0 . 1 1 8 9 9 0 . 1 5 3 2 9 0 .1 5 7 3 9 0 . 1 5 8 7 9 0 . 1 5 9 4 9 0 . 1 5 9 8

5 5 7 1 . 0 3 7 9 7 0 . 9 8 2 9 7 0 . 9 0 0 4 7 0 .8 9 1 3 7 0 .8 8 8 3 7 0 . 8 8 6 8 7 0 . 8 8 5 9

5 11 6 3 .7 1 6 1 6 3 . 4 0 5 4 6 3 . 5 0 4 0 6 3 . 5 1 5 4 6 3 . 5 1 9 2 6 3 . 5 2 1 0 6 3 . 5 2 2 2

1 0 5 4 8 . 1 6 4 7 4 7 . 9 7 3 2 4 7 . 8 1 7 7 4 7 . 8 2 0 2 4 7 . 8 2 1 0 4 7 . 8 2 1 4 4 7 . 8 2 1 6

10 11 4 2 . 8 4 5 5 3 9 . 5 6 1 8 4 2 . 4 7 5 5 4 2 . 4 8 2 2 4 2 . 4 8 4 5 4 2 . 4 8 5 6 4 2 . 4 8 6 3

15 5 3 2 . 5 4 4 2 3 1 . 8 2 8 0 3 2 . 1 2 5 4 3 2 . 1 3 2 4 3 2 . 1 3 4 7 3 2 . 1 3 5 9 3 2 . 1 3 6 6

15 11 2 8 . 9 3 2 2 1 4 .4 2 9 8 2 8 . 5 2 0 7 2 8 . 5 2 7 9 2 8 . 5 3 0 4 2 8 . 5 3 1 7 2 8 . 5 3 2 4

2 0 5 2 1 . 9 8 4 0 1 5 .1 0 2 4 2 1 . 5 6 7 0 2 1 . 5 8 4 0 2 1 . 5 8 6 9 2 1 . 5 8 8 4 2 1 .5 8 9 3

2 0 11 1 9 .5 4 3 2 0 . 1 4 9 0 1 9 .1 4 9 6 1 9 .1 6 1 8 1 9 .1 6 4 7 1 9 .1 6 6 1 1 9 .1 6 7 0

2 5 5 1 4 .8 5 0 2 1 2 .4 9 4 7 1 4 .4 9 0 7 1 4 .4 9 7 6 1 4 .5 0 0 4 1 4 .5 0 2 0 1 4 .5 0 3 0

2 5 11 1 3 .2 0 1 4 0 . 0 1 0 3 1 2 .8 4 7 3 1 2 .8 7 0 2 1 2 .8 7 3 2 1 2 .8 7 4 8 1 2 .8 7 5 7

Table 2.8: B o n d  P r i c e s  c a l c u la t e d  a n a l y t i c a l l y  ( C I R )  a n d  t h e  S im p l i f i e d  B i n o m ia l  T r e e  f o r  d i f f e r e n t  

v a lu e  o f  g a m m a .______________________________________________________________________________________________________

k = 0.1, 0

a ,  = ( 4 k 0 - a 2) / 8  < 0 

= 0.08, a  = 0.5, A r  = 0.5% ,y = 0.75

M a t u r i t y

( y e a r s )

r ( % ) CIR
A n n u a l  n u m b e r  o f  t im e  s t e p s  ( n )

10 50 100 150 200 250

1 5 9 5 . 1 6 3 2 9 5 . 0 4 0 4 9 5 . 0 3 2 4 9 5 . 0 3 1 4 9 5 .0 3 1 1 9 5 . 0 3 0 9 9 5 . 0 3 0 8

1 11 9 0 . 0 6 7 2 8 9 . 8 1 8 4 8 9 .8 3 9 1 8 9 .8 4 1 7 8 9 .8 4 2 5 8 9 . 8 4 3 0 8 9 . 8 4 3 2

5 5 8 3 . 4 8 3 2 7 8 . 8 4 2 0 7 8 .8 0 9 1 7 8 . 8 1 3 0 7 8 .8 1 4 1 7 8 . 8 1 4 9 7 8 . 8 1 5 2

5 11 7 2 . 5 5 7 2 6 5 . 5 7 5 5 6 5 .9 8 1 7 6 6 . 0 3 5 5 6 6 . 0 5 1 2 6 6 . 0 6 0 2 6 6 . 0 6 5 6

1 0 5 7 5 . 3 3 3 3 6 5 . 7 6 2 4 6 5 . 5 8 6 9 6 5 . 5 1 5 4 6 5 . 5 2 7 4 6 5 . 5 3 3 3 6 5 . 5 3 7 9

1 0 11 6 5 . 0 2 2 4 5 2 . 4 3 2 8 5 3 . 3 3 2 8 5 3 . 4 0 9 9 5 3 . 4 3 2 0 5 3 . 4 4 9 0 5 3 . 4 5 8 2

15 5 6 8 .2 7 4 1 5 6 . 6 2 8 2 5 5 . 3 5 0 0 5 5 .2 5 2 1 5 5 . 1 8 3 7 5 5 . 2 2 3 5 5 5 . 2 2 1 6

15 11 5 8 . 9 1 7 7 4 5 . 0 7 4 6 4 4 . 7 6 3 9 4 4 . 8 6 3 3 4 4 . 8 7 4 3 4 4 . 8 8 6 3 4 4 . 8 8 6 2

2 0 5 6 1 . 8 4 4 2 5 0 . 1 4 0 8 4 6 . 9 7 7 3 4 6 .6 9 9 1 4 6 .5 8 2 1 4 6 . 5 5 1 9 4 6 . 5 7 5 7

2 0 11 5 3 . 4 0 3 2 3 5 . 9 2 8 6 3 7 . 4 5 2 0 3 7 .8 1 6 1 3 7 . 7 8 8 7 3 7 . 8 6 0 6 3 7 .8 3 7 1

2 5 5 5 6 . 0 9 2 5 4 3 . 3 1 9 2 3 9 .5 9 9 1 3 9 . 4 0 3 0 3 9 . 2 1 1 6 3 9 . 2 7 0 4 3 9 . 2 7 6 7

2 5 11 4 8 . 4 0 5 2 3 1 . 8 1 9 2 3 2 . 2 1 0 6 3 2 . 0 1 0 8 3 1 . 8 2 8 7 3 1 .9 5 2 8 3 1 .9 5 7 3
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T able 2 .9  : Bond Prices calculated analytically (CIR) and the Simplified Binomial Tree for different
value of gamma.__________________________________________________________________

k = 0.1, 0

= ( 4 k 0 - a 2) / 8 < O  

= 0.08, a  = 0.5, Ar = 0.5% , y = 0.45

Maturity
(years)

r(%) CIR
A n n u a l  n u m b e r  o f  t im e  s te p s  ( n )

10 50 100 150 200 250

1 5 9 5 . 1 6 3 2 9 4 . 2 0 3 2 9 4 . 6 2 9 2 9 4 . 6 3 2 5 9 4 . 9 8 8 8 9 4 . 7 2 7 4 9 4 .6 4 8 1

1 11 9 0 . 0 6 7 2 9 0 . 0 9 8 4 9 0 .0 0 9 3 8 9 . 9 5 0 6 8 9 . 8 4 1 4 8 9 .8 4 3 8 8 9 .8 9 4 5

5 5 8 3 . 4 8 3 2 6 4 . 9 4 9 3 6 4 . 8 4 8 0 6 7 . 8 8 8 7 7 2 . 8 8 5 6 8 5 . 0 4 8 6 7 1 . 6 8 8 2

5 11 7 2 . 5 5 7 2 6 9 . 6 8 2 3 7 4 .7 5 2 3 6 4 . 7 5 1 0 6 3 . 9 9 2 8 6 5 . 2 3 1 3 6 8 . 1 7 8 9

10 5 7 5 . 3 3 3 3 5 0 .6 5 1 1 6 3 .6 2 7 5 3 8 . 9 9 7 9 5 5 . 8 1 8 6 4 3 . 6 7 8 4 6 9 . 5 3 8 4

10 11 6 5 . 0 2 2 4 2 7 . 3 9 2 9 6 9 . 3 8 1 4 6 9 .7 5 7 5 3 7 . 3 0 0 5 4 5 . 9 1 9 7 7 2 . 3 4 7 6

15 5 6 8 .2 7 4 1 4 5 . 1 1 9 3 1 6 .2 9 8 2 3 5 . 1 3 6 6 2 3 . 4 2 6 0 5 3 . 0 3 6 0 3 5 . 3 0 2 9

15 11 5 8 . 9 1 7 7 1 8 .7 6 9 4 2 3 . 0 0 7 0 3 2 . 0 1 8 7 6 5 . 6 7 4 9 2 8 . 3 7 6 3 6 7 . 3 1 1 9

2 0 5 6 1 . 8 4 4 2 1 5 .1 0 2 4 2 1 . 5 6 7 0 2 1 . 5 8 4 0 2 1 . 5 8 6 9 2 1 . 5 8 8 4 2 1 . 5 8 9 3

2 0 11 5 3 . 4 0 3 2 0 . 1 4 9 0 1 9 .1 4 9 6 1 9 .1 6 1 8 1 9 .1 6 4 7 1 9 .1 6 6 1 1 9 .1 6 7 0

2 5 5 5 6 . 0 9 2 5 1 2 .4 9 4 7 1 4 .4 9 0 7 1 4 .4 9 7 6 1 4 .5 0 0 4 1 4 .5 0 2 0 1 4 .5 0 3 0

2 5 11 4 8 . 4 0 5 2 0 . 0 1 0 3 1 2 .8 4 7 3 1 2 .8 7 0 2 1 2 .8 7 3 2 1 2 .8 7 4 8 1 2 .8 7 5 7

Table 2.10  : B o n d  P r i c e s  c a l c u la t e d  a n a l y t i c a l l y  ( C I R )  a n d  t h e  S im p l i f i e d  B i n o m ia l  T r e e  f o r  d i f f e r e n t  

v a lu e  o f  g a m m a .______________________________________________________________________________________________________

OCi = ^ 4 k 0 - o 2) / 8  < 0

k = 0.1, 0 = 0.08, <7 = 0.5, A r=  0.5% ,y = 0.58
A n n u a l  n u m b e r  o f  t im e  s t e p s  ( n )

Maturity
(years)

r(%) CIR 10 50 100 150 200 250

1 5 9 5 . 1 6 3 2 9 5 .0 8 2 1 9 5 . 1 2 1 6 9 5 . 1 1 8 9 9 5 . 1 1 5 7 9 5 . 1 0 3 3 9 5 .1 1 5 1

1 11 9 0 . 0 6 7 2 8 9 .9 3 6 8 8 9 .9 7 6 3 8 9 .9 7 5 9 8 9 .9 7 5 7 8 9 . 9 7 8 8 8 9 . 9 7 8 4

5 5 8 3 . 4 8 3 2 8 1 .0 2 5 1 7 9 .8 1 1 3 8 1 .3 9 7 5 8 4 .2 6 4 8 8 3 . 3 6 9 2 8 3 . 2 3 3 2

5 11 7 2 . 5 5 7 2 7 0 . 6 5 6 0 7 0 . 0 0 4 6 7 1 . 9 7 6 9 7 2 . 2 2 1 7 7 0 . 4 2 8 6 7 1 . 8 4 8 0

10 5 7 5 . 3 3 3 3 5 1 . 2 4 5 0 6 9 . 1 0 4 9 6 6 . 6 2 7 2 6 8 . 1 8 3 7 7 0 . 9 1 8 8 7 4 . 4 9 9 2

1 0 11 6 5 . 0 2 2 4 5 7 . 3 8 1 0 5 5 . 9 1 2 6 6 0 . 6 0 8 7 5 7 . 6 3 1 0 6 7 . 7 0 8 0 6 7 . 3 6 4 5

15 5 6 8 .2 7 4 1 4 3 . 1 7 0 0 8 2 . 7 7 8 2 7 9 .0 0 1 1 5 5 . 8 3 5 3 6 3 . 7 1 5 3 7 4 . 8 2 0 7

15 11 5 8 . 9 1 7 7 1 9 .2 5 1 6 3 8 .7 9 5 8 5 4 . 8 1 8 7 5 3 . 3 4 8 6 5 5 . 1 4 2 2 5 8 .8 4 3 1

2 0 5 6 1 . 8 4 4 2 3 8 . 4 5 0 4 4 2 . 8 7 2 0 5 1 . 0 8 0 3 6 4 . 4 0 7 6 4 6 . 7 9 8 5 6 1 . 1 9 4 3

2 0 11 5 3 . 4 0 3 2 1 4 .4 0 9 1 4 2 . 2 4 6 2 3 8 .2 4 6 5 4 1 . 3 5 8 0 4 6 . 9 9 1 7 5 5 . 4 1 0 9

2 5 5 5 6 . 0 9 2 5 3 5 . 6 8 8 6 4 4 . 9 2 4 5 5 9 .6 3 9 1 3 5 . 0 9 0 6 5 3 .4 7 8 3 3 9 . 2 2 4 4

2 5 11 4 8 . 4 0 5 2 1 1 .3 5 4 2 5 2 .4 8 2 1 4 6 . 9 5 1 8 5 4 . 8 3 7 0 3 1 . 2 8 0 5 4 1 . 3 9 3 5
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T able 2 .1 1 : Bond Prices calculated analytically (CIR) and the Simplified Binomial Tree for different
value of gamma.__________________________________________________________________

a ] = ( 4 k 0 - a 2) / 8  < 0 

k = 0.1, 0 = 0.08, cr = 0.5,Ar = 0.5% ,y = 0.6

Maturity
(years)

r(%) CIR
A n n u a l  n u m b e r  o f  t im e  s t e p s  ( n )

10 50 100 150 200 250

1 5 9 5 . 1 6 3 2 9 5 . 1 0 7 5 9 5 . 0 9 9 9 9 5 . 0 9 4 3 9 5 . 0 9 4 4 9 5 . 0 9 2 0 9 5 . 0 9 4 2

1 11 9 0 . 0 6 7 2 8 9 .9 2 0 9 8 9 .9 5 1 8 8 9 .9 5 5 3 8 9 .9 5 5 5 8 9 .9 5 7 1

5 5 8 3 . 4 8 3 2 7 9 . 9 5 9 2 8 2 .4 1 7 9 8 2 . 3 2 1 6 8 1 .9 2 5 3 8 2 . 2 9 7 0 8 2 . 1 4 2 8

5 11 7 2 . 5 5 7 2 6 9 .1 9 7 1 7 0 .6 8 6 5 7 0 . 1 9 6 5 7 0 . 2 3 6 7 6 9 . 8 6 9 7 7 0 . 2 1 2 5

1 0 5 7 5 . 3 3 3 3 5 1 . 1 6 6 6 8 0 .5 5 9 1 7 4 . 4 4 9 8 7 3 . 5 7 3 5 7 4 . 1 3 7 9 7 4 . 8 9 7 0

1 0 11 6 5 . 0 2 2 4 6 6 . 3 1 9 2 6 4 .3 7 9 3 6 4 . 3 3 8 3 6 0 . 8 9 7 8 6 2 . 1 6 0 0 6 2 . 7 3 1 2

15 5 6 8 .2 7 4 1 4 2 . 7 8 0 9 6 9 . 1 8 7 9 6 5 . 6 8 3 8 6 7 . 9 1 2 9 7 1 .1 0 7 1 6 2 . 3 9 2 0

15 11 5 8 . 9 1 7 7 5 8 . 1 8 1 0 5 7 .3 4 6 8 6 3 . 9 4 2 4 6 0 . 1 8 8 0 5 9 . 2 2 4 4 5 9 .2 3 8 1

2 0 5 6 1 . 8 4 4 2 3 7 .8 0 8 5 3 9 .8 3 5 7 7 6 . 4 5 3 2 5 7 .0 4 8 1 6 1 . 9 8 3 0 6 7 . 5 7 7 6

2 0 11 5 3 . 4 0 3 2 1 4 .2 2 7 8 3 7 . 1 2 9 7 5 6 . 5 2 3 3 5 4 . 6 4 0 4 5 6 . 2 4 1 8 5 6 . 2 9 8 4

2 5 5 5 6 . 0 9 2 5 3 4 .6 9 7 3 3 9 . 6 6 0 0 4 7 . 9 7 7 8 6 0 . 0 1 0 9 6 7 . 9 7 5 0 5 6 . 5 7 2 5

2 5 11 4 8 . 4 0 5 2 1 1 .1 7 6 4 4 1 . 4 3 1 0 5 4 . 6 5 6 0 4 0 . 2 5 3 9 4 5 .8 6 8 1 5 6 . 6 2 8 9

Table 2.12. B o n d  P r i c e s  c a l c u la t e d  a n a l y t i c a l l y  ( C I R )  a n d  t h e  S im p l i f i e d  B i n o m ia l  T r e e  f o r  d i f f e r e n t  

v a lu e  o f  g a m m a .______________________________________________________________________________________________________

k  =  0 . 1 ,  0

o q  =  ( 4 k 0 - c r ) / 8  <  0  

=  0 . 0 8 ,  tr =  0 5 ,  A r  =  0 . 5 %  , y  =  0 . 6 2

Maturity
(years)

r(%) CIR
A n n u a l  n u m b e r  o f  t im e  s t e p s  ( n )

10 50 100 150 200 250

1 5 9 5 . 1 6 3 2 9 5 . 0 9 0 7 9 5 . 0 8 4 5 9 5 . 0 8 2 5 9 5 .0 8 1 3 9 5 . 0 8 1 3 9 5 . 0 8 1 2

1 11 9 0 . 0 6 7 2 8 9 . 9 0 2 8 8 9 .9 3 2 1 8 9 .9 3 5 5 8 9 .9 3 6 7 8 9 . 9 3 7 4 8 9 .9 3 7 7

5 5 8 3 . 4 8 3 2 8 3 .0 2 8 7 8 1 .2 9 4 9 8 1 .4 9 1 5 8 1 .2 5 7 1 8 1 .3 4 3 3 8 1 .3 5 9 7

5 11 7 2 . 5 5 7 2 6 9 .1 8 5 1 6 9 . 1 9 2 9 6 9 . 3 2 8 8 6 9 . 2 7 3 2 6 9 . 2 6 2 7 6 9 . 3 8 2 2

1 0 5 7 5 . 3 3 3 3 7 6 . 8 8 2 2 7 4 .0 6 6 1 7 1 . 3 6 4 9 7 2 .4 7 4 1 7 2 . 0 0 6 4 7 0 . 9 8 0 9

1 0 11 6 5 . 0 2 2 4 5 3 . 0 6 4 7 5 9 .8 2 3 3 5 9 . 6 6 0 6 6 0 . 9 3 7 0 5 9 . 9 9 9 2 5 9 . 4 9 7 0

15 5 6 8 .2 7 4 1 4 2 . 3 4 7 4 6 2 . 7 2 6 0 6 5 . 7 6 2 2 6 3 .2 0 7 1 6 3 . 2 0 7 9 6 4 . 8 8 1 0

15 11 5 8 . 9 1 7 7 5 3 . 3 7 2 9 5 1 . 3 0 0 7 5 5 . 1 8 6 5 5 2 . 5 7 9 4 5 2 . 0 2 8 8 5 2 . 3 8 9 0

2 0 5 6 1 . 8 4 4 2 3 7 . 1 1 3 0 6 6 . 0 0 6 7 6 1 .7 5 0 1 6 1 . 7 8 9 2 5 6 .0 1 0 5 5 7 . 9 7 4 2

2 0 11 5 3 . 4 0 3 2 5 8 .7 9 6 3 5 5 .8 7 5 1 4 6 . 8 7 5 6 4 5 . 5 1 7 9 4 6 . 3 9 5 9 4 7 . 9 4 6 4

2 5 5 5 6 . 0 9 2 5 3 3 . 7 2 9 9 6 9 .2 2 1 3 5 9 . 5 8 9 4 4 8 . 9 9 1 2 5 4 .9 6 8 3 4 9 . 6 3 4 7

2 5 11 4 8 . 4 0 5 2 1 0 .9 5 2 9 4 7 . 9 7 6 3 5 0 .6 3 0 1 4 8 . 2 9 7 4 4 5 . 6 6 7 0 4 0 . 9 4 2 3
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T able 2 .13: Bond Prices calculated analytically (CIR) and the Simplified Binomial Tree for different
value of gamma.__________________________________________________________________

(Xj = (4k0-G2) /8<O

k = 0.1, 0 = 0.08, <7 = 0.5, Ar = 0.5% ,y = 0.625
Annual number of time steps (n)

Maturity
(years)

r(%) CIR 10 50 100 150 200 250

1 5 9 5 . 1 6 3 2 9 5 . 0 8 9 3 9 5 . 0 8 1 0 9 5 . 0 7 9 7 9 5 . 0 7 9 2 9 5 . 0 7 8 8 9 5 . 0 7 8 7

1 11 9 0 . 0 6 7 2 8 9 . 8 9 8 7 8 9 .9 2 7 4 8 9 . 9 3 1 0 8 9 . 9 3 2 2 8 9 . 9 3 2 7 8 9 .9 3 3 1

5 5 8 3 . 4 8 3 2 8 2 .6 7 7 5 8 1 .4 8 1 8 8 1 .4 1 4 5 8 1 .0 1 7 3 8 1 . 2 4 9 6 8 1 .1 5 9 8

5 11 7 2 . 5 5 7 2 6 9 . 1 7 9 0 6 9 . 0 6 9 2 6 9 . 0 5 2 8 6 9 . 2 6 4 7 6 9 . 2 1 8 4 6 9 . 1 4 0 7

1 0 5 7 5 . 3 3 3 3 7 5 .8 8 7 1 7 3 . 0 7 4 5 7 2 . 1 2 8 2 7 2 . 2 2 4 5 7 1 . 8 8 4 9 7 1 . 4 6 7 3

1 0 11 6 5 . 0 2 2 4 6 4 . 6 3 5 6 5 9 .0 1 3 8 5 9 . 4 7 2 6 6 0 . 2 0 1 6 5 9 . 2 1 8 7 5 9 . 9 4 9 9

15 5 6 8 .2 7 4 1 4 2 . 2 3 5 6 6 1 . 5 5 8 2 6 1 . 1 2 0 0 6 4 . 5 0 1 9 6 1 .9 3 6 3 6 3 . 6 5 5 6

15 11 5 8 . 9 1 7 7 5 2 . 3 8 7 8 5 2 .5 9 5 3 5 3 .8 1 2 1 5 2 . 3 7 9 7 5 3 . 4 8 8 9 5 3 . 0 5 9 0

2 0 5 6 1 . 8 4 4 2 3 6 . 9 3 2 4 6 3 .6 1 6 1 5 9 . 7 1 2 4 6 0 . 0 5 1 8 5 7 .7 1 8 3 5 6 . 2 8 7 5

2 0 11 5 3 . 4 0 3 2 5 6 .7 9 4 1 5 3 . 5 8 5 9 4 5 . 3 1 5 0 4 7 .5 8 8 1 4 6 . 1 9 3 4 4 6 . 3 3 7 4

2 5 5 5 6 . 0 9 2 5 3 6 . 9 2 5 9 6 5 .5 9 3 3 5 8 . 2 7 1 4 4 7 .2 3 8 1 5 2 .7 8 6 1 4 8 . 4 0 5 2

2 5 11 4 8 . 4 0 5 2 5 6 .7 9 4 1 5 3 . 5 8 5 9 4 5 . 3 1 5 0 4 7 .5 8 8 1 4 6 . 1 9 3 4 4 6 . 3 3 7 4

Table 2.14 : B o n d  P r i c e s  c a l c u la t e d  a n a l y t i c a l l y  ( C I R )  a n d  t h e  S im p l i f i e d  B i n o m ia l  T r e e  f o r  d i f f e r e n t  

v a lu e  o f  g a m m a .______________________________________________________________________________________________________

CXJ = (4 k 0 -O 2) /8  < 0

k = 0.1, 0 = 0.08, cr = 0.5,A r=  0.5% ,y = 0.63
A n n u a l  n u m b e r  o f  t im e  s te p s  ( n )

Maturity
(years)

r(%) CIR 10 50 100 150 200 250

1 5 9 5 . 1 6 3 2 9 5 . 0 8 6 8 9 5 . 0 7 7 4 9 5 . 0 7 6 5 9 5 . 0 7 6 2 9 5 .0 7 6 1 9 5 . 0 7 6 0

1 11 9 0 . 0 6 7 2 8 9 .8 9 4 8 8 9 .9 2 3 1 8 9 .9 2 6 5 8 9 .9 2 7 7 8 9 .9 2 8 3 8 9 . 9 2 8 6

5 5 8 3 . 4 8 3 2 8 2 . 3 4 8 2 8 1 .4 2 6 3 8 1 . 2 4 1 8 8 1 . 0 9 7 2 8 1 . 0 6 6 4 8 0 .9 3 2 9

5 11 7 2 . 5 5 7 2 6 9 .0 4 3 3 6 9 .1 2 0 1 6 9 .0 9 1 1 6 9 . 1 0 5 9 6 9 . 0 8 8 9 6 9 . 0 5 4 7

10 5 7 5 . 3 3 3 3 7 4 . 9 8 8 3 7 2 . 2 0 2 8 7 2 . 0 8 6 2 7 1 . 7 2 5 6 7 1 . 4 3 9 3 7 1 . 2 7 9 9

10 11 6 5 . 0 2 2 4 6 3 . 6 2 8 9 5 9 . 2 2 7 8 5 9 . 9 9 5 9 5 9 . 4 8 6 2 5 9 . 6 5 9 2 5 9 . 7 5 8 0

15 5 6 8 .2 7 4 1 7 8 . 7 2 8 4 6 0 . 5 0 2 4 6 5 . 6 7 7 8 6 4 . 5 0 2 9 6 2 . 6 3 5 0 6 2 . 5 2 4 0

15 11 5 8 . 9 1 7 7 5 1 . 4 6 9 6 5 4 .3 9 6 1 5 2 . 5 9 4 6 5 3 . 3 9 1 5 5 3 . 5 5 1 5 5 3 .2 4 8 5

2 0 5 6 1 . 8 4 4 2 3 6 . 7 4 8 9 6 1 .5 7 5 7 5 7 . 9 6 2 4 5 8 . 4 6 5 6 5 7 . 7 5 7 0 5 4 . 8 0 1 9

2 0 11 5 3 . 4 0 3 2 5 4 . 9 8 7 9 5 1 . 6 4 3 0 4 6 . 0 0 3 3 4 8 . 4 8 2 4 4 7 . 5 8 8 4 4 5 . 5 5 1 7

2 5 5 5 6 . 0 9 2 5 4 9 . 2 9 9 8 6 2 .5 9 9 3 5 6 . 6 6 9 8 4 8 . 7 7 3 0 5 0 .8 9 8 3 5 1 . 7 1 8 8

2 5 11 4 8 . 4 0 5 2 1 0 .8 2 9 9 4 9 . 7 2 4 7 4 6 . 1 5 8 2 4 4 . 5 2 9 9 4 4 . 2 1 5 7 4 2 .4 2 0 1
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T able 2 .1 5  : Bond Prices calculated analytically (CIR) and the Simplified Binomial Tree for different
value of gamma.__________________________________________________________________

«! = ( 4 k 6 - a 2) /8 < 0

k = 0.1, 0 = 0.08, cr = 0.5,Ar= 0.5%,y = 0.65
Annual number of time steps (n)

Maturity
(years)

r(%) CIR 10 50 100 150 200 250

1 5 9 5 . 1 6 3 2 9 5 .0 7 6 1 9 5 . 0 6 7 9 9 5 . 0 6 7 0 9 5 . 0 6 6 6 9 5 . 0 6 6 4 9 5 . 0 6 6 3

1 11 9 0 . 0 6 7 2 8 9 .8 7 9 5 8 9 . 9 0 6 2 8 9 .9 0 9 5 8 9 . 9 1 0 6 8 9 . 9 1 1 2 8 9 .9 1 1 5

5 5 8 3 . 4 8 3 2 8 1 .3 4 4 3 8 0 .7 4 7 7 8 0 . 6 0 3 4 8 0 . 5 4 7 6 8 0 . 6 0 4 7 8 0 .5 5 2 5

5 11 7 2 . 5 5 7 2 6 8 . 3 0 9 4 6 8 .4 8 1 1 6 8 . 4 2 1 2 6 8 . 5 0 0 7 6 8 . 4 9 1 5 6 8 . 4 9 3 6

10 5 7 5 . 3 3 3 3 7 2 . 0 4 9 6 6 9 . 4 7 3 2 7 0 . 2 8 2 0 6 9 . 5 3 4 7 6 9 . 7 9 0 4 6 9 . 7 4 0 6

1 0 11 6 5 . 0 2 2 4 6 0 . 5 6 8 4 5 9 . 1 8 1 6 5 8 . 5 8 0 3 5 8 . 5 8 3 2 5 8 .1 2 1 1 5 8 . 3 9 2 2

15 5 6 8 .2 7 4 1 7 1 . 5 0 0 3 6 3 . 6 9 7 9 6 2 . 5 2 5 5 6 1 .8 2 0 1 6 1 . 7 3 7 8 6 1 . 6 0 3 5

15 11 5 8 . 9 1 7 7 4 8 . 3 2 0 5 5 3 . 2 9 9 6 5 1 .9 1 8 5 5 1 .4 5 3 1 5 0 . 7 6 5 4 5 0 . 5 7 3 5

2 0 5 6 1 . 8 4 4 2 7 0 . 2 1 5 2 5 5 .5 8 0 3 5 2 .7 1 8 3 5 3 . 4 2 4 0 5 4 . 4 1 6 8 5 4 . 4 3 9 5

2 0 11 5 3 . 4 0 3 2 4 9 . 2 1 4 3 4 5 . 9 0 7 2 4 6 .8 5 4 1 4 5 . 7 3 5 3 4 5 .2 7 5 1 4 5 . 2 5 1 7

2 5 5 5 6 . 0 9 2 5 5 7 . 8 4 3 6 5 4 .2 8 4 1 5 0 . 7 4 5 2 4 9 . 6 6 4 7 4 6 .6 6 7 1 4 7 . 9 0 2 4

2 5 11 4 8 . 4 0 5 2 5 1 . 9 7 2 8 4 4 . 9 9 6 8 3 9 . 9 2 2 2 3 8 . 7 5 7 4 3 9 . 1 5 6 8 3 9 . 8 4 3 7

Table 2.16 : B o n d  P r i c e s  c a l c u la t e d  a n a l y t i c a l l y  ( C I R )  a n d  t h e  S im p l i f i e d  B i n o m ia l  T r e e  f o r  d i f f e r e n t  

v a lu e  o f  g a m m a .______________________________________________________________________________________________________

= ( 4 k 0 - a 2 ) / 8 < 0

k = 0.1, 0 = 0.08, d  = 0.5, A r  = 0.5% , y = 0.7

Maturity
(years)

r(%) CIR
A n n u a l  n u m b e r  o f  t im e  s te p s  ( n )

10 50 100 150 200 250

1 5 9 5 . 1 6 3 2 9 5 . 0 5 5 5 9 5 . 0 4 7 8 9 5 . 0 4 6 8 9 5 . 0 4 6 5 9 5 .0 4 6 3 9 4 . 0 4 6 2

1 11 9 0 . 0 6 7 2 8 9 . 8 4 6 0 8 9 .8 6 9 4 8 9 .8 7 2 3 8 9 .8 7 3 3 8 9 .8 7 3 8 8 9 .8 7 4 1

5 5 8 3 . 4 8 3 2 7 9 . 9 2 6 5 7 9 .6 5 2 1 7 9 . 6 3 4 3 7 9 . 6 3 6 7 7 9 . 6 3 5 6 7 9 . 6 3 3 5

5 11 7 2 . 5 5 7 2 6 6 . 6 9 7 2 6 7 .1 2 2 3 6 7 . 1 7 7 7 6 7 . 1 9 7 4 6 7 . 2 0 5 0 6 7 .2 1 1 5

1 0 5 7 5 . 3 3 3 3 6 7 . 2 9 0 4 6 7 .8 4 0 3 6 7 . 6 0 7 2 6 7 . 6 1 2 9 6 7 . 5 4 1 8 6 7 . 5 4 2 5

1 0 11 6 5 . 0 2 2 4 5 5 . 7 9 1 0 5 5 . 8 1 6 8 5 5 . 7 2 6 3 5 5 . 7 8 2 3 5 5 . 7 6 8 4 5 5 . 7 8 8 6

15 5 6 8 .2 7 4 1 6 2 . 0 0 1 9 5 8 .5 4 3 8 5 8 . 3 6 2 6 5 8 . 0 6 3 8 5 7 . 9 1 6 0 5 7 . 9 1 4 0

15 11 5 8 . 9 1 7 7 4 8 . 0 8 9 3 4 7 . 6 1 3 6 4 7 . 9 3 8 4 4 7 . 7 3 4 2 4 7 . 8 5 3 5 4 7 .7 4 7 1

2 0 5 6 1 . 8 4 4 2 5 6 . 9 4 0 7 5 0 . 7 9 0 0 5 0 .4 0 1 5 4 9 . 9 5 3 3 4 9 . 9 2 0 3 4 9 . 9 6 4 2

2 0 11 5 3 . 4 0 3 2 4 0 . 2 5 9 7 4 1 . 9 7 5 5 4 1 . 3 6 7 4 4 1 .1 1 9 1 4 1 . 0 0 0 2 4 1 . 0 8 7 5

2 5 5 5 6 . 0 9 2 5 4 9 . 7 4 9 5 4 3 . 4 1 6 4 4 3 . 1 2 7 7 4 3 . 0 0 6 6 4 2 .6 7 9 1 4 2 . 9 2 2 7

2 5 11 4 8 . 4 0 5 2 3 8 . 9 2 3 4 3 5 . 3 0 5 9 3 5 . 9 6 1 7 3 5 . 1 0 3 2 3 5 . 2 0 0 4 3 5 .2 2 4 3
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T able 2 .1 7  ; Call Prices calculated analytically (CIR) or using the Simplified Binomial Method (SB)

A t  = 0.05,, r 0  =  8 %

Exercise
Price

Model « i y Bond
Price

5
E x p i r y  ( y e a r s )

4 3 2 1

3 5 S B 0 . 0 1 8 7 5 0 .2 5 4 6 . 1 4 7 9 2 2 . 4 6 3 4 2 0 .5 6 9 3 1 8 .5 1 3 9 1 6 .2 7 6 1 1 3 .8 2 9 4

4 0 S B 0 . 0 1 8 7 5 0 .2 5 1 9 .0 7 9 9 1 6 .9 1 5 3 1 4 .5 6 6 9 1 2 .0 1 3 0 9 .2 2 1 1

4 5 S B 0 . 0 1 8 7 5 0 .2 5 1 5 .6 9 6 6 1 3 .2 6 3 5 1 0 .6 3 2 0 7 . 8 1 0 2 4 .7 8 2 3

5 0 S B 0 . 0 1 8 7 5 0 .2 5 1 2 .3 1 6 1 9 . 6 3 5 5 6 . 7 9 6 2 3 .9 7 4 3 1 .3 8 9 9

5 5 S B 0 . 0 1 8 7 5 0 .2 5 8 .9 6 4 4 6 .1 3 8 3 3 . 4 0 2 0 1 .2 1 9 3 0 . 0 9 0 8

3 5 S B 0 . 0 1 8 7 5 0 .5 4 5 . 4 2 2 8 2 1 . 8 7 6 3 1 9 .9 4 6 8 1 7 .8 5 4 3 1 5 .5 8 2 0 1 3 .1 1 0 8

C I R 4 5 . 4 2 7 3 2 1 . 8 8 0 2 1 9 .9 5 0 9 1 7 .8 5 8 5 1 5 .5 8 6 3 1 3 .1 5 5 2

4 0 S B 0 . 0 1 8 7 5 0 .5 1 8 .5 1 2 5 1 6 .3 0 7 4 1 3 .9 1 6 0 1 1 .3 1 9 1 8 .4 9 4 9

C I R 1 8 .5 1 6 3 1 6 .3 1 1 4 1 3 .9 2 0 1 1 1 .3 2 3 3 8 .4 9 9 3

4 5 S B 0 . 0 1 8 7 5 0 .5 1 5 .1 4 8 7 1 2 .6 6 8 0 9 . 9 7 7 8 7 . 0 5 9 7 3 .9 0 8 7

C I R 1 5 .1 5 2 4 1 2 .6 7 1 9 9 . 9 8 1 9 7 . 0 6 3 6 3 .9 1 3 7

5 0 S B 0 . 0 1 8 7 5 0 .5 1 1 .7 8 5 0 9 .0 2 9 1 6 .0 5 2 1 2 . 9 5 1 4 0 .4 6 3 1

C I R 1 1 .7 8 6 6 9 . 0 3 3 0 6 . 0 5 6 0 2 . 9 5 1 4 0 .4 5 3 5

5 5 S B 0 . 0 1 8 7 5 0 .5 8 .4 2 2 1 5 . 4 1 2 7 2 . 3 8 3 3 0 .3 2 1 3 0.0000
C I R 8 .4 2 5 7 5 . 4 1 5 6 2 . 3 8 0 4 0 . 3 1 1 8 0.0001

3 5 S B 0 . 0 1 8 7 5 0 .7 5 4 5 . 0 7 4 6 2 1 . 5 8 8 9 1 9 .6 4 2 0 1 7 .5 3 2 2 1 5 .2 4 5 1 1 2 .7 6 4 7

4 0 S B 0 . 0 1 8 7 5 0 .7 5 1 8 .2 3 3 8 1 6 .0 0 8 7 1 3 .5 9 7 6 1 0 .9 8 3 7 8 .1 4 9 0

4 5 S B 0 . 0 1 8 7 5 0 .7 5 1 4 .8 7 8 7 1 2 .3 7 5 5 9 . 6 6 3 0 6 . 7 2 2 4 3 .5 3 3 9

5 0 S B 0 . 0 1 8 7 5 0 .7 5 1 1 .5 2 3 6 8 .7 4 2 3 5 . 7 2 8 4 2 . 4 8 1 6 0 . 0 6 7 8

5 5 S B 0 . 0 1 8 7 5 0 .7 5 8 .1 6 8 5 5 .1 0 9 3 1 .8 5 8 1 0 . 0 2 3 4 0.0000

6 0 S B - 0 . 0 2 7 2 5 0 .2 5 1 2 .7 4 2 4 0.0000 0.0000 0.0000 0.0000 0.0000
6 5 S B - 0 . 0 2 7 2 5 0 .2 5 0.0000 0.0000 0.0000 0.0000 0.0000
7 0 S B - 0 . 0 2 7 2 5 0 .2 5 0.0000 0.0000 0.0000 0.0000 0.0000
7 5 S B - 0 . 0 2 7 2 5 0 .2 5 0.0000 0.0000 0.0000 0.0000 0.0000
8 0 S B - 0 . 0 2 7 2 5 0 .2 5 0.0000 0.0000 0.0000 0.0000 0.0000

6 0 S B - 0 . 0 2 7 2 5 0 .5 5 3 .9 3 9 3 1 2 .5 1 4 9 1 0 .4 1 6 9 8 .1 6 8 5 5 . 7 1 3 0 3 . 2 3 1 4

6 9 . 9 8 8 2 2 3 . 9 0 0 8 2 2 . 8 5 6 4 2 0 . 2 5 9 6 1 9 .8 9 0 2 1 6 .9 7 9 8

6 5 S B - 0 . 0 2 7 2 5 0 .5 9 . 4 3 2 4 7 .1 9 1 3 4 .8 9 4 1 2 . 6 3 3 9 0 .5 6 3 1

2 0 . 1 7 7 0 1 9 .0 8 4 3 1 7 .7 9 6 7 1 6 .0 9 2 2 1 3 .2 4 7 0

7 0 S B - 0 . 0 2 7 2 5 0 .5 6 . 3 7 0 5 4 . 1 7 1 8 1 .9 1 9 7 0 . 0 3 6 2 0.0000
1 6 .4 8 8 7 1 5 .3 5 6 5 1 4 .0 5 3 2 1 2 .3 9 7 1 9 . 7 2 6 0

7 5 S B - 0 . 0 2 7 2 5 0 .5 3 .5 7 9 9 1 .3 6 5 2 0.0000 0.0000 0.0000
1 2 .8 4 4 4 1 1 .6 8 2 9 1 0 .3 8 1 9 8 .8 0 3 8 6 .4 4 8 7

8 0 S B - 0 . 0 2 7 2 5 0 .5 1 .0 1 6 6 0.0000 0.0000 0.0000 0.0000
9 . 2 5 7 0 8 .0 7 8 9 6 . 8 0 1 9 5 . 3 5 2 8 3 .4 5 5 8

6 0 S B - 0 . 0 2 7 2 5 0 .7 5 5 9 . 0 6 5 4 1 6 .7 8 3 9 1 4 .9 9 1 9 1 2 .9 3 3 6 1 0 .4 1 8 3 6 .9 7 8 0

6 5 S B - 0 . 0 2 7 2 5 0 .7 5 1 3 .4 9 7 4 1 1 .7 3 2 8 9 . 6 5 5 6 7 . 2 3 2 3 4 .1 8 0 5

7 0 S B - 0 . 0 2 7 2 5 0 .7 5 1 0 .3 5 5 9 8 .5 8 0 9 6 . 6 5 5 2 4 . 3 8 7 9 1 .9 8 1 8

7 5 S B - 0 . 0 2 7 2 5 0 .7 5 7 . 3 5 5 0 5 . 6 4 5 9 3 . 9 3 8 2 2 . 1 0 8 2 0 . 5 7 1 2

8 0 S B - 0 . 0 2 7 2 5 0 .7 5 4 . 5 4 8 6 3 .0 4 6 1 1 .6 7 5 3 0 . 5 4 1 5 0 .0 1 9 3

1) The call option is written on a 10 - year zero coupon bond with a face value of $100.
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T able 2 .1 8  : Put Prices calculated analytically (CIR) or using the Simplified Binomial Method (SB)

A t  = 0.05,, r 0  = 8%

Exercise
Price

Model «1 Y Bond
Price

5
E x p i r y  ( y e a r s )

4 3 2 1

4 5 S B 0 . 0 1 8 7 5 0 .2 5 4 6 . 1 4 7 9 0 . 5 4 3 8 0 . 5 4 3 3 0 . 5 2 6 7 0 . 5 2 6 7 0 .4 6 0 5

5 0 S B 0 . 0 1 8 7 5 0 .2 5 3 . 8 5 2 2 3 . 8 5 2 2 3 . 8 5 2 2 3 . 8 5 2 2 3 .8 5 2 2

5 5 S B 0 . 0 1 8 7 5 0 .2 5 8 . 8 5 2 2 8 . 8 5 2 2 8 . 8 5 2 2 8 . 8 5 2 2 8 .8 5 2 2

6 0 S B 0 . 0 1 8 7 5 0 .2 5 1 3 .8 5 2 1 1 3 .8 5 2 1 1 3 .8 5 2 1 1 3 .8 5 2 1 1 3 .8 5 2 1

6 5 S B 0 . 0 1 8 7 5 0 .2 5 1 8 .8 5 2 1 1 8 .8 5 2 1 1 8 .8 5 2 1 1 8 .8 5 2 1 1 8 .8 5 2 1

4 5 S B 0 . 0 1 8 7 5 0 .5 4 5 . 4 2 2 8 0 . 1 7 3 0 0 . 1 7 3 0 0 . 1 7 2 9 0 . 1 7 2 5 0 .1 6 5 8

5 0 S B 0 . 0 1 8 7 5 0 .5 4 5 . 4 2 7 3 4 . 5 7 7 3 4 . 5 7 7 3 4 . 5 7 7 3 4 . 5 7 7 3 4 .5 7 7 3

5 5 S B 0 . 0 1 8 7 5 0 .5 9 . 5 7 7 3 9 .5 7 7 3 9 . 5 7 7 3 9 .5 7 7 3 9 .5 7 7 3

6 0 S B 0 . 0 1 8 7 5 0 .5 1 4 .5 7 7 2 1 4 .5 7 7 2 1 4 .5 7 7 2 1 4 .5 7 7 2 1 4 .5 7 7 2

6 5 S B 0 . 0 1 8 7 5 0 .5 1 9 .5 7 7 2 1 9 .5 7 7 2 1 9 .5 7 7 2 1 9 .5 7 7 2 1 9 .5 7 7 2

4 5 S B 0 . 0 1 8 7 5 0 .7 5 4 5 . 0 7 4 6 0 . 0 4 7 2 0 . 0 4 7 2 0 . 0 4 7 2 0 . 0 4 7 2 0 .0 4 7 1

5 0 S B 0 . 0 1 8 7 5 0 .7 5 4 . 9 5 2 4 4 . 9 5 2 4 4 . 9 5 2 4 4 . 9 5 2 4 4 . 9 5 2 4

5 5 S B 0 . 0 1 8 7 5 0 .7 5 9 . 9 2 5 4 9 . 9 2 5 4 9 . 9 2 5 4 9 . 9 2 5 4 9 . 9 2 5 4

6 0 S B 0 . 0 1 8 7 5 0 .7 5 1 4 .9 2 5 4 1 4 .9 2 5 4 1 4 .9 2 5 4 1 4 .9 2 5 4 1 4 .9 2 5 4

6 5 S B 0 . 0 1 8 7 5 0 .7 5 1 9 .9 2 5 4 1 9 .9 2 5 4 1 9 .9 2 5 4 1 9 .9 2 5 4 1 9 .9 2 5 4

6 0 S B - 0 . 0 2 7 2 5 0 .2 5 1 2 .7 4 2 4 4 7 . 2 5 7 6 4 7 . 2 5 7 6 4 7 . 2 5 7 6 4 7 . 2 5 7 6 4 7 . 2 5 7 6

6 5 S B - 0 . 0 2 7 2 5 0 .2 5 5 2 . 2 5 7 6 5 2 . 2 5 7 6 5 2 . 2 5 7 6 5 2 . 2 5 7 6 5 2 . 2 5 7 6

7 0 S B - 0 . 0 2 7 2 5 0 .2 5 5 7 . 2 5 7 6 5 7 . 2 5 7 6 5 7 . 2 5 7 6 5 7 . 2 5 7 6 5 7 . 2 5 7 6

7 5 S B - 0 . 0 2 7 2 5 0 .2 5 6 2 . 2 5 7 6 6 2 . 2 5 7 6 6 2 . 2 5 7 6 6 2 . 2 5 7 6 6 2 . 2 5 7 6

8 0 S B - 0 . 0 2 7 2 5 0 .2 5 6 7 . 2 5 7 6 6 7 . 2 5 7 6 6 7 . 2 5 7 6 6 7 . 2 5 7 6 6 7 . 2 5 7 6

6 0 S B - 0 . 0 2 7 2 5 0 .5 5 3 .9 3 9 3 9 . 1 8 2 4 8 .7 7 7 3 8 . 2 4 7 0 7 . 6 3 3 4 7 . 0 0 0 0

6 5 S B - 0 . 0 2 7 2 5 0 .5 6 9 . 9 8 8 2 1 2 .0 9 5 6 1 1 .6 9 6 1 1 1 .3 6 5 0 1 1 .0 6 0 7 1 1 .0 6 0 7

7 0 S B - 0 . 0 2 7 2 5 0 .5 1 6 .0 6 0 7 1 6 .0 6 0 7 1 6 .0 6 0 7 1 6 .0 6 0 7 1 6 .0 6 0 7

7 5 S B - 0 . 0 2 7 2 5 0 .5 2 1 . 0 6 0 7 2 1 . 0 6 0 7 2 1 . 0 6 0 7 2 1 . 0 6 0 7 2 1 .0 6 0 7

8 0 S B - 0 . 0 2 7 2 5 0 .5 2 6 . 0 6 0 7 2 6 . 0 6 0 7 2 6 . 0 6 0 7 2 6 . 0 6 0 7 2 6 .0 6 0 7

6 0 S B - 0 . 0 2 7 2 5 0 .7 5 5 9 . 0 6 5 4 6 . 0 5 0 0 5 . 8 7 4 8 5 . 6 3 6 8 5 . 2 3 7 4 4 . 4 3 2 4

6 5 S B - 0 . 0 2 7 2 5 0 .7 5 8 .3 1 0 8 8 . 1 5 5 2 7 . 9 2 2 7 7 . 5 8 1 2 7 .0 5 0 9

7 0 S B - 0 . 0 2 7 2 5 0 .7 5 1 1 .4 1 5 8 1 1 .3 3 0 0 1 1 .2 2 1 8 1 1 .0 6 2 1 0 .9 3 4 6

7 5 S B - 0 . 0 2 7 2 5 0 .7 5 1 5 .9 3 4 6 1 5 .9 3 4 6 1 5 .9 3 4 6 1 5 .9 3 4 6 1 5 .9 3 4 6

8 0 S B - 0 . 0 2 7 2 5 0 .7 5 2 0 . 9 3 4 6 2 0 . 9 3 4 6 2 0 . 9 3 4 6 2 0 . 9 3 4 6 2 0 .9 3 4 6

1) The put option is written on a 10 - year zero coupon bond with a face value of $100.
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CHAPTER 3.

PARTIAL DIFFERENTIAL EQUATION APPROACH FOR THE 

EVALUATION OF DEFAULT-FREE BONDS AND INTEREST RATE

CONTINGENT CLAIMS.

3.1. Introduction

The objective of this chapter is to value default-free bonds and interest rate 

contingent claims based on the CKLS model using the following numerical 

methods:

a) Crank-Nicholson finite difference approach.

b) Box Method. The Box-Method is wholly new in finance literature

c) Method of Lines. Thus far the Method of Lines approach has only been 

applied to the valuation of contingent claims based on equity.

The contribution of this chapter is as follows:

a) Crank-Nicholson scheme is generalised to incorporate all possible values 

of y.

b) Box Method is applied to finance for the first time

c) Method of lines is extended to fixed income from equities.

We test each of the three numerical methods for their convergence 

characteristics. In section 2 we derive the numerical schemes for each of the 

above mentioned numerical methods. In section 3 we investigate each of the 

numerical methods with each other or when analytical prices are available with 

analytical prices. Section 4 concludes this chapter. However, before continuing
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to Section 2, we repeat the CKLS model for the instantaneous short term interest

rate.

drt = k (9 - r )d t + a rydzt (3.1.1)

The resulting partial differential equation based on the above stochastic equation

is:

V r * ' ^ + t ( 9
2  dr2

>du
o7

ru + -
du
di’

0 (3.1.2)

a , r, k, 9 represent the same variables as defined earlier. In equation (3.1.2) 

1 u(rt , t)m ay represent either B (r,,t,T*) or P(rt ,t,T * ,T ).

B(r, t, T*): price of a discount bond at time t, which matures at time T* with 

the generated spot rate rt .

p(t, T*, T ) : price of a contingent claim at time t, which expires at time T 

based on a discount bond which matures at time T*.

In equation (3.1.2) u(rt , t)m ay represent either B(rt ,t,T*) or p(rt ,t,T * ,T ).
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B(rt ,t,T*) is subject to the following boundary conditions:

B (0 ,t,T * )= l (B l)

B(oo,t,T*) = 0 (B2)

With P(rt ,t,T*,T) representing an American call option it is subject to the 

following boundary conditions:

P(rt , T, T \  T) = max[B(rt , T, T* ) -  E,0 (B3)

P (°o ,t,T \T ) = 0 (B4)

P(rt , t , T*, T) = max[B(rt , t,T* ) -  E, P(rt , t, T*, T)] (B5)

Finally with P(rt ,t,T*,T) representing American put options it is subject to the 

following boundary conditions:

p(rt,T ,T * ,T )= m ax[E -B (rt,T,T*),0] (B6)

1 W i t h  t h e  C r a n k - N i c o l s o n  f i n i t e  d i f f e r e n c e  a p p r o a c h  w e  u s e  t h e  v a r ia b le  S = ------------ . S a m e
1 + cr

b o u n d a r y  c o n d i t i o n s  a s  w i t h  r t a p p ly  e x c e p t  w h e n  s t a t e d  o t h e r w is e .
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P (oo ,t,T \T ) = E (B7)

We now transform equation (3.1.2) such that either the bond or the contingent 

claim evolves from the options expiration date or the bonds maturity 

date to the present, i.e. we transform the time variable:

3.2. Numerical Methods

In this section we develop in depth the three numerical methods stated in Section 

1 of this chapter to solve the partial differential equation for default free bonds 

and interest rate contingent claims. A uniform grid of size M x N is constructed 

for values of u™ - the value of u at time increment t m and interest rate 

increment rn, for each method, where:

t  = T —t (3.1.3)

Thus equation (3.1.2) now becomes:

(3.1.4)
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m =

2 u™ = u(nAr,mAt) 

t m = t 0 + mAt 

rn = r 0 + nAt n = 0 ,l,....,N

The values of u™ are computed column by column from the left column to the 

right column. And within each column, we solve from bottom to the top. To 

truncate the grid, we discretize the boundary conditions (B2), (B4) and (B7) 

respectively as:

B(jAr,t,T*) = 0 (B9)

P(jAr,t,T* , t ) = 0 (BIO)

p(jA r,t,T*,T) = E (B ll)

for j > N +1

For all susbsequent numerical development we assume that we are at point 

(nAr,mAt) or (n,m) for short on the grid. For the time derivative in equation 

(3.1.4), we use the Euler backward difference approximation

d u  u " - u r '  =  u ~ u o

r)x At At
(3.2.1)

2 S a m e  n o t a t io n  is u s e d  f o r  jAs
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Thus equation (3.1.4) now becomes:

] _

2
a 2r 2Y + k(0 - r ) —  - r u  

V J d r

u - u 0

At
(3.2.2)

3.2.1. Crank-Nicholson Method

We start firstly by transforming the interest rate grid, using the following 

transformations:

cr
s ---------

1 + cr
(3.2.3)

where c is a constant

Secondly we transform the variables in equation (3.1.2) as follows:

W (s,t)=  u(s, t) (3.2.4)

Based on the above transformations, the partial derivatives of equation (3.1.2) 

becomes:

3u _ 3W ds 
3r 3s dr
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a 2u
3r2

Ad 2s Y a w " i r d s Y i a 2w ^
+

vdr2 A 3s dr 3s2 /

3u _ aw
3x 3t

Substituting the above three transformations for u,
3u 32u 
3r ’ 3r2

into equation (3.1.2)

gives:

-a 2r2Y
( ds Y f  a2w

dr as2V y
+ ^ - a 2r2r

d s 
dr2

+ k (0 -  r)
ds
dr

r a w "
3s ,

- rW  =
3W
3x

Furthermore:

(3.2.5)

r =
c ( l - s )

ds
dr

c
(l + cr)2

= c ( l - s )2

^ds ^  

vdr /
Y i - s )4
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d2s
dr2

^ - ^ ( l - s )3

Substituting the above expressions into equation (3.2.5) gives:

c 2 ( l - s )4
a2w
3s2

( l - s )3 +
aw
3s

(3.2.6)

c(l -  s) 3t

We discretize the above equation using the following Crank-Nicholson and Euler 

Backward difference approximations:

w = -w m+-w nm_1
2  2

aw wm - wm wm_1 - wm_1u vv __ v v n+l VYn - l  | VYn+l  YVn - l

3s 4As 4As

32V
3s2

Wn™ i -  2Wnn W,n-1

2 ( A s f

+ -
W,m-1

n+1 2W„m_1 + W,n-1

2(As)2

aw _ w; 1 - w,m~'
3x At
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Substituting the above discretizations leads to the following discrete equation:

g 2 At
2

nAs Yc2( l-n A s )4 

c(l-nA s)_ 2(As)2

x k “+, - 2 W.” + w ” , + w ,:; ' -  2 w ,
r m-1

At
+ ----- <

4As

nAs
-|2y

c(l-nA s)_
c2( l-n A s )3

+ ke - ^ 5 ^ k
c(l -n A s)

;( l-n A s )2

x

n ^ S^ t  \ Y m nAsAt ^ y m - 1  _  y y m  y y m - 1

2 c(l-n A s) n 2c(l-nA s) n n

We can further simplify the above equation as:

a , k : ,  -  2w; + W",]+ A , k « ' - 2W„”m-1

+ b „ k ” , -  w ” , ] + b „ k : ; ' -  w ;_r]

+c„w“+cnw:-‘=w ;-w ; - 1

where:

(3.2.7)

(3.2.8)
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G  At nAs - f i y

c (l-n A s)
!(l -  nAs)4

2 { A s f

B„ =
At

f r 2
nAs

4As c ( l -  nAs)

- \ 2 y

c2(l -  nAs)1 + ke
nAs

:(l -  nAs)
(k +A,) ;( l-n A s )2

nAsAt
2 c(l-nA s)

Further rearrangement leads to:

= X n W n " l + T l nW " + P nW ln+1 (3.2.9)

where:

a , = - A nk v  - 2 w ; - '  + w " ; ' ] - B , [ w r  - w , " ; , ] - [ i + c , ] w nm“

7  = A - BA/ n n n

1 „ = C n - 2 A , - l  

P. = A n +B„

The matrix equation linking bond prices or contingent claim prices between 

successive time steps m and m- 1  is:
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'  a , - x , w ;  ' 1̂ p, 0 0 0 ... 0 Nr w xm '

oq %2 p2 0 0 ... 0 w xm
0 X3 e 3 p3 0 ... 0

— 0

%W-3 E/V-3 Pv-3 0

• ’• 0 X/V-2 ^lv-2 Pv-2
a  _R W m(^N-l PN-1t t N ) 0 ... ... 0 0 Xn -i Tlv-1 J w mv n ~i ;

(3.2.10)

The above matrix equation applies for n = 1 onwards. However to start the 

above iteration process, we need the option prices at n = 0 i.e. at zero interest 

rate for m > l .  We start by approximating equation (3.2.5) as s —>0. This 

yields the following equation near and at s = 0

dsdw aw
k0 ---------= ------

dr d s  3t
(3.2.11)

Noting that as r —> 0,s —> 0 , the above equation simplifies to:

k0c
aw

d s

aw
(3.2.12)

To approximate the above first order derivatives, we assume that we are at point

aw aw
(m-l,n) on the grid. Using the forward Euler difference for -----, and ------

as a t

gives.

aw _ w™ ;1 - w; - 1

d s  As
(3.2.13)
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(3.2.14)aw w; - w;-
3x At

Substitution of the above two approximations into equation (3.2.12) gives.

Note that the above approximation applies to both bonds and contingent claims 

subject to appropriate boundary conditions.

3.2.2. Box Method

The Box Method has been widely applied in engineering. However; to date this 

method has not been applied in finance. Below we apply the Box Method3 to 

partial differential equation based on the CKLS model.

3 A n  in t r o d u c t io n  t o  t h e  B o x  M e t h o d  c a n  b e  f o u n d  i n  R i c h a r d  S .  V a r g a ’ s  b o o k ,  M a t r i x  I t e r a t iv e  

A n a l y s i s  ( 1 9 6 2 ) .

As

(3.2.15)

At n = 0 i.e. at zero interest rate, the above expression simplifies to.

As
(3.2.16)
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To derive the algorithm for the Box Method we start by dividing equation

(3.1.4) by
e r r 27

2
and we further let:

2 k0

Then the resulting equation is:

+ [ar“27 — br1-27]—- — cr1 27u = dr 27 
dr

d u

d x

(3.2.17)

We combine the first term and the second term on the left hand side of the above 

equation by choosing a function ^ ( a .b ^ y )  or 'F(r) abbreviated such that

1 d  '  

Y ( r )  d r  v
■ï(r) du^

dr ,
+ [ar- 27

-1 du (3.2.18)

Expansion and simplification of the above formula leads to the following 

expression.
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(3.2.19)
1 3Y

vF(r) dr
2y u -  l -2yar 7 -  br

Integrating the previous equation gives:

'F(r) = exp
ar'-2Y h r2' 27

1 -  2 y 2  -  2 y
(3.2.20)

Note that with the above expression for *F(r) there is singularity at y = ^  and

y = 1. Thus the above expression for T^r) is not valid at these two specific

points. Further if y ^  1 or y but y is very close to y = 1 or Y = “  > then the

value of 'F(r) may be excessively because of the nature of the denominators in 

equation (3.2.20). In such cases we need to use a more complex approach or

simply switch to the expression for 'F(r) when y = l or y = ^-. To derive 

expression for 'F(r) when y = 1 or y = we substitute, these two values of y

directly into equation (3.2.19) and integrate to give

vF(r) = exp( —  |r" for y = 1

'F(r) = ex p (-b r)ra for y = — 
2
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With this choice of vF (r), our original equation becomes

Br 'f 'M
d u '  

d r  j

V (r)rI_2Tcu = dvf/(r)r"2Y
Bu
d x

(3.2.21)

For —  we use the backward Euler approximation as before, however, for
d x

convenience we let u = u ” and u 0 = u™-1. Thus equation (3.2.21) becomes:

_B /
dr l n r )

Bu^ 
d r  y

vF (r)r1 2ycu = dT/(r)r_2y
l At )

(3.2.22)

Further rearrangement leads to the expression:

Bu
Br

T '(r)—  + xf/(r)r ,_2Ycu + 
Br y

dvF(r)i -2y , dxF(r)r -2y Un
At At

(3.2.23)

We integrate the above equation over Cj

+
vF(r)dr

At

-2y 3

H
vF(r)dr"2Y

At
-u,

Approximating each of the integrals, we have for the first integral:

- ■ h o
.m A

n+1

Ar
■ u n-1

Ar
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For the second integral:

cvF(r)r ~2Y +
,.2, , «Ptridr- 21 Y

At
u

cr2-27

2 -  2y

f  f  \ l - 2 y  \

H -
U y

+
dr,l -2y (  /  \ 1-2Y 'N

r
A t(l-2 y ) VrM / J

«¡T ify ^  ~ ° r y  ^  1

'?(■', Jc(rb - r , ) + - l n
(  \

vr»y
u"1 for y = — 

n r 2

(  \  r d '  1 _  1 Y
1 — cln a + —
L I V At , fa rbJ.

u™ for y = 1

For the third integral:

vF(r)dr
At

-27

= ^ ( r n
dr,l -2y

At(l -  2y)

(  f . .  V“2Ŷ\ 
1 -

. T b  J

. m-1u„ if y ^  — or y ^  1

/  V

V rb J
u m-1 for y = —

2
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T3
l _

_ f i _ j Y

<___
i

1

r J .
for y  = 1

Substituting the above approximations into the original equation yields

« n  =  3CnU “ - l  + T l n U ” + ß n U n+1 (3.2.24)

where taking ra = — - ^ n  1 and rb = r,1+l̂ + r°

a„ d r^ 2Y
At (l -  2y)

f
f  r } l - 2y  A

l -

V K ^  > /

1
K ‘ i f y ^ - o r y ^ l

= ------In
At v r»y

, m-1 for y =
1

_ d _

At
f i P

u m-1 for y = 1

X n  =
I y ( r .)

Ar>P(rn)

j _ y h )
ArM>(r„)
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n„ = TAt * ( 0  * ( 0 .
+ X

where:

X =
cr,2-27

2  -  2 y

C  ^  y - 2Ty

V f b

+
At(l -  2y)

1 -
f x  V~2̂

V r b j
provided y ^  —  or y ^  1

c(rb - r a) + — In 
At

V b /

for y = — 
2

= -c ln f x . '

V r b )
+-

d f l 0

At

I
CJ

11 *“•

for y = 1

As with the Generalised Crank-Nicholson Method we find that the basic matrix 

equation linking all bond prices or contingent claims prices between two 

successive time steps m and m- 1 as:

f  C L 1 - X 1 K  A
a ,

V^N-l ■Pn -iu ;

Til p, 0 0 0 ... 0

X2 Tl2 P2 0 0 ... 0

0 X3 Tl3 P 3 0 ... 0

0

Xn-3 T1N-3 P N-3 0

: 0 Xn -2 T1 n -2 Pn -2

0 ... ... 0 0 Xn -i T1 n -i

u i

U,'1

(3.2.25)

V U N-1
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As with the Crank-Nicholson method, the above matrix starts at n = 1. We, 

however, need both the bond and option prices at n = 0. We approximate 

equation (3.1.4) as r —> 0:

dr
du
dx

(3.2.26)

Again, we use the forward Euler differences to discretize the above derivatives 

to yield at n = 0 :

- u m-1 (3.2.27)

3.2.3. Solution of Matrix Equation

Both equation (3.2.10) and equation (3.2.25) are general matrix equations both 

of which, may be more conveniently written as:

Mx = y (3.2.28)

where M is the general matrix and both x and y are price vectors, which 

assuming M is nonsingular leads to the direction solution x of prices where:

x = MHy (3.2.29)
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Given that the matrix M may comprise of hundreds or thousands of individual 

elements the above approach from a practical viewpoint is going to be very slow. 

We thus need to consider alternative approaches of calculating the prices. In fact 

two separate category of approaches to solve the above equation more efficiently 

is available. The elimination approach, and the iterative approach. An example 

of the former is the Gaussian approach. An example of the latter is the 

Successive Over Relaxation (SOR), approach. We discuss each of the 

approaches in depth below. For illustrative purposes we concentrate on equation 

(3.2.24), although the same analysis would hold for equation (3.2.9)

With the Gaussian elimination approach, we initially let:

Ro = 1

P o = 0

Xo = 1

a 0
ao=  —

Ro

b = £ 2.uo
Tlo

We now consider equation (3.2.24) at various points on the grid:

« „  =  X n U ” - l  + r l n U ” + P n lO l

At n = 0:
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«0  Tlou o + PoUl (3.2.30)

Rearranging the above expression gives:

u r +  M ." = a r (3.2.31)

Thus generalising the above expression we have:

u™, + b n ,u"n-1 n—1 r n-1 (3.2.32)

Substituting the above expression into discrete equation (3.2.22) and rearranging 

gives:

+ b n+1 = (3.2.33)

b n

where:

P n

- b n_,Xn

_  « n  ~ X n a n-l

Tin - b n_,Xn

Thus once we have the value of u™from the boundary condition we can use 

equation (3.2.31) to calculate u^and then u™etc until we reach N - 1 .
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To solve equation (3.2.22) using SOR our starting point is the general matrix is:

um (3.2.34)

Further m nj represents individual element of matrix M. Simplification of the 

above equation leads to equation (3.2.36). Thus the first step of the SOR 

process involves forming an intermediate quantity z™. Based on this 

intermediate quantity, a trial solution u™ is formed. This trial solution is iterated 

until, a certain accuracy is achieved between successive iterations. Having 

achieved this accuracy we move onto n + 1 point on the grid at a particular time 

step.

3.2.4. Method of Lines

We convert equation (3.2.2) into a system of two first order differential 

equations.

(3.2.35)

u™ =coz™ +(l-co)B “ - 1 (3.2.36)
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du
a7

V(r,x) (3.2.37)

d v
dr

c(r,x)u(r,x) + d(r,x)V(r,x) + g(r,x) (3.2.38)

Substituting equation (3.2.37) and equation (3.2.38) into equation (3.2.2) and 

comparing coefficients we have:

c(r,x)
2

a 2r 2y

d(r,T) = ---- ^ ( k G - r k )
a  r Y

g(r, x)
2

a V YAt
u m-1

n

Equation (3.2.37) and equation (3.2.38) is related through the Riccati 

transformation

u (r ,t)  = R (r,t)V (r,x) + w(r,x) (3.2.39)

where R(r,x) and w(r,x) are the solutions of the initial value problems

—  = l-d ( r ,x )R ( r ,x ) -c ( r ,x )R ( r ,x ) 2 
dr

(3.2.40)

81



dr
(3.2.41)

The first step of the discretization process is to numerically integrate equation 

(3.2.40) and equation (3.2.41) to obtain values for R(r,x) and w (r,t)a t each 

point on the grid. On the grid we let:

c„ = c(nAr,x) 

d n = d(nAr,x) 

g n = g(nAr,x)

R™ = R(nAr,mAt) 

w ” = w(nAr,mAt)

With equation (3.2.40), applying the implicit trapezoidal rule gives:

Rearrangement of the above equation gives the following quadratic equation.

Ar r
- R ” = —  1 - d ,R

n 2  *- n+l

(3.2.42)

(r ™)2 =0  (3.2.43)
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Thus the analytical expression for R“+1 is:

-^n +l +
r :+. =

^>n+1- 4 V ^ r nR : + c n(R : ) 2 - 2

V^Cn+l
(3.2.44)

where:

O n+1

n+1
2

+ —  
Ar

Vc n+1

Similarly applying the trapezoidal rule to equation (3.2.41) gives:

w m
n+1 W ,

Ar
2

(3.2.45)

Rearrangement of the above equation gives:

wm
n+1

- A " + f l > m
n

0 m
n

(3.2.46)
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where:

Q m = —  - c  Rn A nAr
m
n

m
n+1

Equation (3.2.43) and equation (3.2.45) are subject to the boundary conditions 

R™ = 0  and w ™ = 0 respectively.

The next step is to determine the critical exercise price for the contingent claims 

by iteratively calculating zero for the 

following function.

6 " = R ” ------ w "1 + E -  B mT n n j  T'» n ndB
(3.2.47)

At the critical exercise price let:

dP (3.2.48)
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ç = 1 for a call option and ç = -1 for a put option.

Our original partial differential equation is in terms of the derivatives of P and r 

or B and r, not P and B. We therefore use the following expression to get round 

this difficulty.

dP _  dP dr _  dr 
dB _  dr dB _  Ç dB

_Ç_
dB
dr

(3.2.49)

dB
We approximate —  using the forward central difference, 

dr

dB B ™+1 -  B™_j
dr 2Ar

(3.2.50)

Thus the final form of equation (3.2.47) is:

K = K s

2Ar
B m n m

n+1 ö n- l  )
- w ” + e - b : (3.2.51)

The root of the above equation at this time level is found by using Newton- 

Raphson iteration. Once the critical exercise price has been determined, u™ is
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calculated by numerically integrating equation (3.2.38) as below and then 

substituting the result into equation (3.2.39) to obtain u™ at time level t n .

av;
d r

= c n[ R : v ; + w : ] + d nv ; + g : (3.2.52)

Again employing the trapezoidal rule we have:

A ry m  rR m y m  m 1 . y m  m 1
v n+l v n 2  1  " + l l  »+i n+I ' w n + l J T u n+l v n+l T b n + l |

(3.2.53)

+ f { C"[R “ V ” + w ” ] + d . V " + S"}

Rearrangement of the above equation yields:

n mV my m  _  _  n n+1 H"
Y"

(3.2.53)

where:

A*.
n :  =  i - Y [ c n„ R " , + d ntl]

A rH m [ \  m , , T,m , _ m  , „ n i l
n -  “ [ C n+ l W n+l + C n W n +  § n + l  +  § n  J
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Y ^ i + y M

With bond prices, the free boundary doesn’t exist, thus at each time level, we 

start the numerical integration from the lowest point on the grid. At this point, 

we approximate V as:

rJB B ;n -  b ; 
3r Ar

(3.2.54)

Substituting n as 0 and 1 in equation (3.2.18) gives us the following two 

equations. Noting that we are interested in approximate bond prices only.

B” = B m-1 + kO^Bfm-1 B m-1

B™ = B ^ ‘ + k0^(B 2m“1 - B r 1)

(3.2.55)

(3.2.56)

V m
0

k6q
Ar

B r 1 - f  2 k 0 £ B ™-1 + i k 84 , )
{  Ar J l Ar )

m-1
0 (3.3.57)

The remaining part of the process is the same as for contingent claims..
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3.3. Analysis of Results

In this section, we investigate each of the three numerical methods. Each 

method is implemented to value bond prices. Due to convergence difficulties 

with the Method of Lines only the Box method and Crank-Nicholson method 

could be implemented to value interest contingent claims. Note that as the 

underlying instrument is a zero coupon bond, the value of the American call 

option is the same as European call option. We exploit this feature to check the 

accuracy of our numerical CIR price4

As in Tian (1994), we define a quantity a , = (4k0 -  a 2 ) /8 . a , > 0 .corresponds 

to low volatility and high mean reversion rate. For otj < 0 the converse 

condition holds. We consider the CKLS model for y taking values of 0.25, 

0.50, 0.75. The maturities of the bonds are 5 and 15 years. The face value of 

the zero coupon bond is $100. Short -term interest rates of 5% and 11% are 

considered. For > 0,k = 0 .5 ,a  = 0.1,0 = 0.08 , and for

a! < 0, k = 0.1,a  = 0.5,0 = 0.08 . Table 3.1 -  Table 3.6 contain the bond prices 

calculated using each of the suggested numerical methods for different

4 W e  a t t e m p t e d  t o  u s e  t h e  V a s i c e k  m o d e l  f o r  y  =  0  z e r o  a s  a n  e x t r a  c h e c k .  H o w e v e r ,  w e  f o u n d  

t h a t  t h e  a n a ly t i c a l  f o r m u la  w a s  u n s t a b le  a n d  le a d  t o  b o n d  p r ic e s  w h ic h  w e r e  n o t  m e a n in g f u l .  

F o r  e x a m p le  f o r  oci <  0  w e  f o u n d  t h a t  t h e  b o n d  p r i c e  w a s  c o n s id e r a b ly  g r e a t e r  t h a n  i t s  p a r  v a lu e  

-  s o m e t h in g  n o t  p o s s ib le  f o r  z e r o  c o u p o n  b o n d s .  T a b l e  3 .1 3  c o n t a in s  a  s u m m a r y  o f  b o n d  

p r i c e s  f o r  a ,  <  0  v a lu e d  u s i n g  t h e  n u m e r ic a l  m e t h o d s  c o n s id e r e d  i n  t h is  c h a p t e r .
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combinations of a , and y. For the sake of brevity, following notation will be 

used in all of the tables:

BMS: prices calculated using the Box method, which uses Successive-Over- 

Relaxation.

BMG: prices calculated using the Box method, which uses Gaussian elimination. 

CNS: prices calculated using the Crank Nicholson method, which uses 

Successive-Over-Relaxation.

CNG: prices calculated using the Crank Nicholson method, which uses Gaussian 

elimination.

ML: prices calculated using the Method of Lines

Table 3.1 -  Table 3.12 contain the bond or call prices calculated using each of 

the suggested numerical methods for different combinations of a , and y. Table 

3.1 -  Table 3.6 contains bond prices. Table 3.7 -  Table 3.12 contains the call 

option prices.

Tables 3.1 -  Table 3.6 all have the same format and comprise of zero coupon 

bond prices. In each of these tables, we alter the annual number of time steps 

from 20 to 1000. This variation serves as a check as to the stability of each of 

the numerical schemes. Examination of Tables 3.1 -  Table 3.6 leads to the 

following observations:

For y = 0.25, gaussian elimination does not lead to sensible bond prices, 

irrespective of whether a , < 0 or a! > 0 . Furthermore, for a ,  < 0 , gaussian
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elimination does not lead to sensible bond prices irrespective of the value of y .

Also for y = 0.25, we find BMS prices are higher the ML prices but lower than 

CNS prices irrespective of whether a , < 0 or a , > 0 . For example, from Table

3.3, we see that when the interest rate is 11%, maturity of the bond is 5 years 

and the annual number of time steps is 1000, BMS price is 64.3104, CNS price is 

64.8932 and ML price is 64.2355. Finally all five combinations (i.e. BMS, BMG, 

CNS, CNG, ML) lead to sensible bond prices for y = 0.75 .

When all four combinations lead to sensible prices, we find that SOR and 

gaussian elimination yield almost identical prices with each of the two methods. 

For example, from Table 3.1 consider, a 5 year bond at 5% interest rate and 50 

annual time steps. We find that the Box prices using both SOR and gaussian 

elimination is identical at $71.0754. Whilst the Crank Nicholson prices are 

$71.6853 and $71.6958, using SOR and gaussian elimination respectively.

Box bond prices are always lower than Crank Nicholson bond prices. Further, 

where analytical prices are available, the Box prices are closer to the analytical 

prices than Crank Nicholson prices. For example, from Table 3.2, we see that a 

5 year bond at 5% interest rate and 20 annual time steps is priced at $83.4832 

analytically. Whereas, the same bond is price at $84.4832 using the Box method 

and $84.3837 using the Crank Nicholson method.

Box bond prices are closer to the Method of Lines (ML) bond prices than Crank- 

Nicholson prices, where the ML prices converge fast enough. We see an
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example of the former case from Table 3.2 in the case of a 15 year bond at 11% 

interest rate with 1000 annual time steps, the BMS price is 58.9913, ML price is 

58.4592 and CNS price is 59.6010. An example of the latter is found in Table 

3.5; for the same maturity bond, at the same interest rate and annual number of 

time steps, the BMS price is 68.1061, ML price is 66.0925 and CNS price is 

69.0801

Tables 3.7 -  Table 3.12 all have the same format and comprise of call options 

based on zero coupon bond prices for various expiry dates and exercise prices. 

In Tables 3.7 -  Table 3.12 the first column indicates the range of exercise prices 

and the first row indicates the different expiry dates of the option ranging from 1 

year to 5 years. All the call options are based on a 10 year zero coupon bond, 

the call options are during the last 5 years of the bond’s maturity date. Further 

the third column entitled, “Bond Price”, indicates the price of a 10 year zero 

coupon bond based on each of the possible combinations. For example, turning 

to Table 3.7’s, third column, we find that the price of a 10 year zero coupon 

bond calculated using the Box method is $46.5992, whereas the same bond is 

priced at $47.0246 using the Crank Nicholson method. Examination of Tables 

3.7 -  Table 3.12 leads to the following observations:

Where analytical prices are available the Box prices are closer to the analytical 

prices than Crank Nicholson call prices. For example, from Table 3.8, consider a 

5 year call option, exercise at $35. The analytical call price is $21.8802; Box 

pricing using SOR is $21.9445 and the Crank Nicholson price again using SOR 

is $22.1132.
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As with bonds, Box prices are always lower than the corresponding call prices 

calculated using Crank Nicholson. However, unlike bonds, the differences are 

significant in certain cases. In fact these significant differences can be observed 

in Tables 3.7, 3.10, 3.11, 3.12. To illustrate the differences in call prices 

between the Box and the Crank Nicholson; consider an example from Table 

3.11. In particular, consider a 5 year option, exercise at $60, the analytical call 

price is $23.9008, the Box price is $23.9476, and the Crank Nicholson price is 

$32.2997. In Table 3.8 and Table 3.9, where a , > 0 and y > 0.5 , both the Box 

and the Crank Nicholson yield call prices which are close to each other, and 

close to the analytical price where available (Table 3.8).

Again, as with bonds, when all four combinations yield sensible prices, we again 

find that SOR and Gaussian elimination lead to almost identical call prices. For 

example, from Table 3.8, consider a 4 year call option exercised at $35, we find 

that the Box price using SOR or Gaussian elimination is identical at $20.0181. 

Whilst the Crank Nicholson prices are $20.1846 using SOR and Gaussian 

respectively.

3.4. Conclusion

Over the years a number of researchers including HW (1990b) and Tian (1994) 

have noted convergence and stability difficulties with the evaluation of bond and
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contingent claims prices, based on the CKLS model for particular combination of 

parameters.

The findings in this chapter suggests that the convergence difficulties are not 

restricted to lattice methods alone. We find there are convergence problems 

both with the Crank-Nicholson Method and the Method of Lines. With the 

Method of Lines we need to increase the annual number of time steps to a 

ridiculously high value when a ]  < 0 to obtain accurate bond prices. As the free 

boundary of a call option does not exist, our attention was focused on the put 

option. However, we were unable to locate the free boundary because the 

Newton-Raphson iteration scheme diverged. So in summary we were unable to 

locate the free boundary associated with the option and hence calculate any 

option price using the Method of Lines. With the Crank-Nicholson Method the 

bond prices show too much discrepancy with analytical prices, where available 

when a , < 0 . Of the three numerical methods studied in this chapter only the 

Box Method converges to produce accurate bond and contingent claim prices for 

all combination of parameters.

In the next chapter we use the Box Method as the basis to develop a checking 

procedure to check the free boundary associated with American put options.
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T able 3 .1 : Bond Prices calculated analytically (CIR), using the Box and the Crank Nicholson
methods.

a t = (4 k 0 -G 2) /8  > 0 

k =  0 5 ,  0 = 0.08, a  = 0.1, Ar = 0.5% , y = 0.5
Annual number of time steps (n)

Maturity
(years)

Model r(%) 20 50 100 300 500 1000

5 CIR 5 7 1 . 0 3 7 9 7 1 . 0 3 7 9 7 1 . 0 3 7 9 7 1 . 0 3 7 9 7 1 . 0 3 7 9 7 1 . 0 3 7 9

BMS 7 1 . 1 0 0 6 7 1 . 0 7 5 4 7 1 . 0 6 7 0 7 1 . 0 6 1 4 7 1 . 0 6 0 3 7 1 . 0 5 9 5

BMG 7 1 . 1 0 0 6 7 1 . 0 7 5 4 7 1 . 0 6 7 0 7 1 . 0 6 1 4 7 1 . 0 6 0 3 7 1 . 0 5 9 5

CNS 7 1 . 6 8 5 3 7 1 . 6 8 5 3 7 1 . 6 8 5 8 7 1 . 6 9 1 4 7 1 . 6 8 5 3 7 1 . 6 8 5 4

CNG 7 1 . 6 9 3 7 7 1 . 6 9 5 8 7 1 . 6 9 6 6 7 1 .6 9 7 1 7 1 . 6 9 7 3 7 1 .6 9 7 3

ML 7 0 . 8 0 6 5 7 0 . 9 4 4 5 7 0 . 9 9 0 8 7 1 . 0 2 1 8 7 1 . 0 2 8 0 7 1 . 0 3 2 7

5 CIR 11 6 3 .7 1 6 1 6 3 .7 1 6 1 6 3 .7 1 6 1 6 3 .7 1 6 1 6 3 .7 1 6 1 6 3 .7 1 6 1

BMS 6 3 . 7 8 5 0 6 3 .7 4 7 5 6 3 . 7 3 4 9 6 3 . 7 2 6 6 6 3 . 7 2 4 9 6 3 . 7 2 3 7

BMG 6 3 . 7 8 5 0 6 3 .7 4 7 5 6 3 . 7 3 4 9 6 3 . 7 2 6 6 6 3 . 7 2 4 9 6 3 . 7 2 3 7

CNS 6 4 . 3 1 2 9 6 4 . 3 1 3 0 6 4 . 3 1 3 4 6 4 . 3 1 8 8 6 4 . 3 1 3 0 6 4 .3 1 3 1

CNG 6 4 . 3 1 4 3 6 4 . 3 1 4 7 6 4 . 3 1 4 8 6 4 . 3 1 4 9 6 4 . 3 1 5 0 6 4 . 3 1 5 0

ML 6 3 . 5 2 0 7 6 3 . 6 3 7 9 6 3 . 6 7 7 2 6 3 . 7 0 3 4 6 3 . 7 0 8 6 6 3 . 7 1 2 6

15 CIR 5 3 2 . 5 4 4 2 3 2 . 5 4 4 2 3 2 . 5 4 4 2 3 2 . 5 4 4 2 3 2 . 5 4 4 2 3 2 . 5 4 4 2

BMS 3 2 . 6 4 2 8 3 2 .5 9 7 9 3 2 .5 8 2 9 3 2 .5 7 2 8 3 2 .5 7 1 1 3 2 . 5 6 8 9

BMG 3 2 . 6 4 2 8 3 2 .5 9 7 9 3 2 .5 2 8 9 3 2 .5 7 2 9 3 2 . 5 7 0 9 3 2 . 5 6 9 4

CNS 3 2 . 8 6 4 7 3 2 . 8 6 4 8 3 2 . 8 6 4 8 3 2 . 8 6 4 8 3 2 . 8 6 4 6 3 2 .8 6 5 7

CNG 3 2 .8 7 4 5 3 2 . 8 7 7 0 3 2 . 8 7 7 9 3 2 .8 7 8 5 3 2 . 8 7 8 6 3 2 .8 7 8 7

ML 3 2 .4 8 9 3 3 2 .5 2 0 9 3 2 . 5 3 1 4 3 2 .5 3 8 5 3 2 . 5 3 9 9 3 2 . 5 4 1 0

15 CIR 11 2 8 . 9 3 2 2 2 8 . 9 3 2 2 2 8 . 9 3 2 2 2 8 . 9 3 2 2 2 8 . 9 3 2 2 2 8 . 9 3 2 2

BMS 2 9 . 0 1 3 5 2 8 . 9 7 3 5 2 8 .9 6 0 1 2 8 .9 5 1 1 2 8 . 9 4 9 6 2 8 . 9 4 7 6

BMG 2 9 .0 1 3 5 2 8 .9 7 3 5 2 8 .9 6 0 1 2 8 . 9 5 1 2 2 8 . 9 4 9 4 2 8 .9 4 8 1

CNS 2 9 .2 2 5 1 2 9 .2 2 5 1 2 9 .2 2 5 1 2 9 .2 2 5 1 2 9 . 2 2 5 0 2 9 . 2 2 5 9

CNG 2 9 . 2 3 0 4 2 9 . 2 3 1 7 2 9 . 2 3 2 2 2 9 . 2 3 2 6 2 9 . 2 3 2 6 2 9 . 2 3 2 7

ML 2 8 . 8 8 4 2 2 8 .9 1 3 3 2 8 . 9 2 1 8 2 8 .9 2 8 1 2 8 . 9 2 9 3 2 8 .9 3 0 3
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T able 3 .2 : Bond Prices calculated analytically (CIR), using the Box and the Crank Nicholson
methods.

OCi = (4 k 0 -G 2) /8  < 0 

k = 0.1, 0 = 0.08, < J  =  0 5 ,  A r  =  0 5 %  , y  =  0 . 5

Annual number of time steps (n)
M a t u r i t y

( y e a r s )

M o d e l r(%) 20 50 1 0 0 300 500 1 0 0 0

5 C I R 5 8 3 . 4 8 3 2 8 3 . 4 8 3 2 8 3 . 4 8 3 2 8 3 . 4 8 3 2 8 3 . 4 8 3 2 8 3 . 4 8 3 2

B M S 8 3 . 6 0 4 0 8 3 .5 4 0 9 8 3 .5 2 4 4 8 3 .5 1 4 5 8 3 . 5 1 1 5 8 3 .5 0 9 8

C N S 8 4 . 3 8 3 7 8 4 .3 6 1 4 8 4 .3 5 5 4 8 4 . 3 5 3 8 8 4 . 3 5 1 6 8 4 .3 5 0 3

M L 8 0 . 7 7 0 7 8 2 .9 4 0 6 8 3 . 2 0 4 9 8 3 . 3 2 9 4 8 3 . 3 5 0 9 8 3 .3 6 6 8

5 C I R 11 7 2 . 5 5 7 2 7 2 . 5 5 7 2 7 2 . 5 5 7 2 7 2 . 5 5 7 2 7 2 . 5 5 7 2 7 2 . 5 5 7 2

B M S 7 2 . 6 9 5 6 7 2 . 6 1 6 6 7 2 .5 9 6 1 7 2 . 5 8 3 6 7 2 . 5 8 0 2 7 2 .5 7 8 1

C N S 7 3 . 2 6 0 9 7 3 . 2 3 8 9 7 3 . 2 3 3 8 7 3 . 2 3 1 9 7 3 . 2 3 0 5 7 3 .2 2 9 3

M L 7 0 . 4 5 2 3 7 2 . 1 3 9 9 7 2 .3 4 8 1 7 2 . 4 4 5 4 7 2 . 4 6 2 0 7 2 .4 7 4 1

15 C I R 5 6 8 .2 7 4 1 6 8 .2 7 4 1 6 8 .2 7 4 1 6 8 .2 7 4 1 6 8 .2 7 4 1 6 8 .2 7 4 1

B M S 6 8 . 4 1 2 7 6 8 . 3 8 3 6 6 8 . 3 7 3 0 6 8 . 3 6 6 8 6 8 . 3 6 5 7 6 8 .3 6 3 1

C N S 6 9 .0 9 8 1 6 9 .0 8 5 1 6 9 . 0 8 0 7 6 9 . 0 8 0 2 6 9 .0 8 0 1 6 9 .0 8 0 1

M L 6 3 . 7 7 5 9 6 7 . 0 2 7 8 6 7 . 4 3 0 0 6 7 . 6 4 2 2 6 7 . 6 8 4 6 6 7 . 7 1 9 5

15 C I R 11 5 8 . 9 1 7 7 5 8 . 9 1 7 7 5 8 .9 1 7 7 5 8 . 9 1 7 7 5 8 . 9 1 7 7 5 8 .9 1 7 7

B M S 5 9 . 0 3 4 8 5 9 .0 0 9 5 5 9 . 0 0 0 2 5 8 . 9 9 4 7 5 8 . 9 9 4 0 5 8 .9 9 1 3

C N S 5 9 . 6 1 6 8 5 9 . 6 0 5 4 5 9 . 6 0 1 6 5 9 .6 0 1 1 5 9 . 6 0 1 0 5 9 . 6 0 1 0

M L 5 5 .1 1 8 3 5 7 .8 7 5 8 5 8 . 2 1 5 7 5 8 . 3 9 4 4 5 8 . 4 3 0 0 5 8 . 4 5 9 2
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T able 3 .3 : Bond Prices calculated analytically (CIR), using the Box the Crank Nicholson
methods.

k = 0 .1 , 0

a , = ( 4 k 0 - a 2)/8 > 0 
= 0.08, a  =  0 5 ,  A r  =  0 5 %  , y  =  0.25

M a t u r i t y

( y e a r s )

M o d e l

A n n u a l  n u m b e r  o f  t im e  s t e p s  ( n )

r(%) 2 0 5 0 1 0 0 3 0 0 5 0 0 1 0 0 0

5 B M S 5 7 1 . 6 7 3 7 7 1 . 6 4 4 9 7 1 . 6 3 5 2 7 1 . 6 2 8 8 7 1 . 6 2 7 5 7 1 . 6 2 6 6

C N S 7 2 . 2 4 2 0 7 2 . 2 3 9 6 7 2 . 2 3 8 8 7 2 . 2 2 9 0 7 2 . 2 3 8 2 7 2 . 2 3 8 2

M L 7 0 . 9 9 2 3 7 1 . 2 2 4 2 7 1 . 3 4 8 0 7 1 . 4 2 5 8 7 1 . 4 4 2 4 7 1 .4 5 5 1

5 B M S 11 6 4 . 3 7 4 8 6 4 . 3 3 5 4 6 4 . 3 2 2 2 6 4 . 3 1 3 4 6 4 . 3 1 1 6 6 4 . 3 1 0 4

C N S 6 4 . 8 9 5 6 6 4 .8 9 4 1 6 4 . 8 9 3 6 6 4 . 8 8 4 3 6 4 . 8 9 3 2 6 4 . 8 9 3 2

M L 6 3 .8 7 4 1 6 4 .0 7 1 3 6 4 . 1 5 2 0 6 4 . 2 1 2 6 6 4 . 2 2 5 5 6 4 .2 3 5 5

15 B M S 11 3 4 . 0 2 9 4 3 3 .9 7 1 7 3 3 .9 7 5 3 3 3 .9 4 7 7 3 3 .9 4 6 1 3 3 . 9 4 4 6

C N S 3 4 . 4 9 1 7 3 4 .2 1 6 3 3 4 .2 1 6 3 3 4 .2 1 6 3 3 4 .2 1 6 3 3 4 . 2 1 6 2

M L 3 3 . 5 3 5 2 3 3 . 5 7 7 2 3 3 .5 9 2 3 3 3 . 6 0 2 8 3 3 . 6 0 5 0 3 3 .6 0 6 7

15 B M S 11 3 0 . 3 0 6 6 3 0 . 2 5 4 6 3 0 . 2 4 1 6 3 0 . 2 3 3 0 3 0 . 2 3 1 4 3 0 .2 3 0 1

C N S 3 0 .4 9 1 7 3 0 . 4 9 1 4 3 0 . 4 9 1 4 3 0 .4 9 1 3 3 0 . 4 9 1 3 3 0 . 4 9 1 2

M L 2 9 . 7 0 4 0 2 9 . 7 4 6 6 2 9 . 7 6 0 7 2 9 . 7 7 0 2 2 9 .7 7 2 1 2 9 .7 7 3 5
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T able 3 .4 : Bond Prices calculated using the Box and the Crank Nicholson methods.

k = 0.1, 0
a ,  = ( 4 k 0 - G 2) /8> O  

= 0.08, a  = 0.5, Ar = 0.5% , y = 0.75

M a t u r i t y

( y e a r s )

M o d e l r(%)
A n n u a l  n u m b e r  o f  t im e  s t e p s  ( n )

2 0 5 0 1 0 0 3 0 0 5 0 0 1 0 0 0

5 B M S 5 7 0 . 9 1 6 0 7 0 .8 9 0 7 7 0 .8 8 2 3 7 0 . 8 7 6 4 7 0 . 8 7 5 6 7 0 . 8 7 3 4

B M G 7 0 .9 1 6 0 7 0 . 8 9 0 7 7 0 .8 8 2 3 7 0 . 8 7 6 6 7 0 . 8 7 5 5 7 0 . 8 7 4 6

C N S 7 1 . 5 3 3 2 7 1 . 5 3 3 2 7 1 . 5 3 3 2 7 1 . 5 3 2 7 7 1 . 5 3 3 2 7 1 . 5 3 3 2

C N G 7 1 . 5 2 4 6 7 1 .5 2 2 1 7 1 . 5 2 1 2 7 1 .5 2 0 5 7 1 . 5 2 0 4 7 1 . 5 2 0 4

M L 7 0 . 6 5 2 5 7 0 . 7 9 0 6 7 0 . 8 3 6 7 7 0 . 8 6 7 5 7 0 . 8 7 3 7 7 0 .8 7 8 3

5 B M S 11 6 3 . 6 0 0 9 6 3 . 5 6 3 0 6 3 .5 5 0 3 6 3 . 5 4 1 6 6 3 . 5 4 0 3 6 3 . 5 3 7 7

B M G 6 3 .6 0 0 9 6 3 . 5 6 3 0 6 3 .5 5 0 3 6 3 . 5 4 1 9 6 3 . 5 4 0 2 6 3 . 5 3 8 9

C N S 6 4 . 1 2 5 6 6 4 . 1 2 5 7 6 4 .1 2 5 7 6 4 . 1 2 5 2 6 4 . 1 2 5 7 6 4 . 1 2 5 7

C N G 6 4 .1 2 5 5 6 4 . 1 2 5 6 6 4 . 1 2 5 6 6 4 . 1 2 5 6 6 4 . 1 2 5 6 6 4 . 1 2 5 6

M L 6 3 . 3 3 0 8 6 3 . 4 4 8 6 6 3 . 4 8 7 9 6 3 . 5 1 4 2 6 3 . 5 1 9 4 6 3 . 5 2 3 4

15 B M S 5 3 2 . 2 2 4 8 3 2 .1 7 9 3 3 2 .1 6 4 1 3 2 . 1 5 5 2 3 2 . 1 5 2 7 3 2 . 1 5 4 0

B M G 3 2 .2 2 4 8 3 2 .1 7 9 3 3 2 .1 6 4 1 3 2 .1 5 3 9 3 2 . 1 5 1 9 3 2 . 1 5 0 4

C N S 3 2 . 4 5 9 6 3 2 .4 5 9 7 3 2 .4 5 9 7 3 2 .4 5 9 7 3 2 . 4 6 0 0 3 2 .4 6 0 3

C N G 3 2 .4 5 4 5 3 2 . 4 5 3 2 3 2 . 4 5 2 6 3 2 . 4 5 2 2 3 2 .4 5 2 1 3 2 .4 5 2 1

M L 3 2 .0 8 8 3 3 2 . 1 1 9 2 3 2 .1 2 9 5 3 2 . 1 3 6 4 3 2 . 1 3 7 8 3 2 .1 3 8 8

15 B M S 11 2 8 .6 2 0 5 2 8 . 5 7 9 9 2 8 . 5 6 6 4 2 8 . 5 5 8 5 2 8 . 5 5 6 2 2 8 . 5 5 7 4

B M G 2 8 .6 2 0 5 2 8 . 5 7 9 9 2 8 . 5 6 6 4 2 8 .5 5 7 3 2 8 . 5 5 5 5 2 8 . 5 5 4 2

C N S 2 8 .8 2 7 1 2 8 . 8 2 7 2 2 8 . 8 2 7 2 2 8 .8 2 7 1 2 8 . 8 2 7 5 2 8 .8 2 7 7

C N G 2 8 .8 2 6 5 2 8 . 8 2 6 4 2 8 .8 2 6 3 2 8 .8 2 6 3 2 8 . 8 2 6 2 2 8 . 8 2 6 2

M L 2 8 . 4 9 0 2 2 8 .5 1 7 5 2 8 . 5 2 6 7 2 8 . 5 3 2 8 2 8 . 5 3 4 0 2 8 . 5 3 4 9
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a , = ( 4 k 9 - a 2 ) /8 < 0
k = 0.1, 0 = 0.08, cr = 0.5, Ar = 0.5% , y  = 0.25

T able 3 .5 : Bond Prices calculated using the Box and the Crank Nicholson methods

Annual number of time steps (n)
M a t u r i t y

( y e a r s )

M o d e l r ( % ) 2 0 5 0 1 0 0 3 0 0 5 0 0 1 0 0 0

5 B M S 5 8 7 . 3 0 0 4 8 7 . 2 6 1 4 8 7 .2 4 8 4 8 7 .2 3 9 8 8 7 . 2 3 8 0 8 7 .2 3 6 7

C N S 8 7 .8 5 8 1 8 7 . 8 3 9 9 8 7 .8 3 3 9 8 7 .8 2 9 7 8 7 .8 2 6 7 8 7 .8 2 8 4

M L 6 0 . 6 8 8 8 6 7 . 9 9 5 2 7 5 . 0 4 8 2 8 2 .6 3 2 5 8 4 . 3 9 2 7 8 5 .7 1 7 7

5 B M S 11 7 8 . 2 8 3 2 7 8 . 2 3 9 2 7 8 . 2 2 4 6 7 8 .2 1 5 1 7 8 . 2 1 2 6 7 8 . 2 1 1 5

C N S 7 8 . 7 1 4 7 7 8 . 6 9 8 2 7 8 . 6 9 2 7 7 8 . 6 8 8 9 7 8 . 6 8 0 7 7 8 . 6 8 7 7

M L 3 8 .7 1 6 5 6 3 . 9 1 4 7 6 6 . 4 3 1 2 7 0 . 3 9 8 3 7 1 . 0 1 9 2 7 1 . 4 5 6 7

15 B M 5 7 6 . 1 3 5 5 7 6 . 1 0 8 2 7 6 .0 9 9 1 7 6 . 0 9 3 0 7 6 . 0 9 2 0 7 6 . 0 9 0 9

C N S 7 6 . 5 9 4 4 7 6 . 5 8 0 7 7 6 .5 7 6 1 7 6 .5 7 3 1 7 6 . 5 7 2 2 7 6 . 5 7 1 8

M L 1 2 .9 0 0 2 5 9 . 0 5 7 8 6 8 . 3 4 9 9 7 2 . 5 9 2 0 7 3 . 2 9 1 9 7 3 .8 0 5 3

15 B M 11 6 8 .1 4 6 1 6 8 . 1 2 1 6 6 8 . 1 1 3 4 6 8 . 1 0 7 3 6 8 . 1 0 6 9 6 8 .1 0 6 1

C N S 6 9 .0 9 8 1 6 9 .0 8 5 1 6 9 . 0 8 0 7 6 9 . 0 8 0 2 6 9 .0 8 0 1 6 9 .0 8 0 1

M L 1 1 .6 7 6 1 5 2 . 9 1 1 9 6 1 . 2 1 7 7 6 5 . 0 1 0 8 6 5 . 6 3 5 2 6 6 .0 9 2 5

T o  e n s u r e  M e t h o d  o f  L i n e  c o n v e r g e s  Ar = 0.01% i s  u s e d .
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T able 3 .6 : Bond Prices calculated using the Box and the Crank Nicholson methods.

k = 0 .1 , 0

otj = ( 4 k 6 - a 2 ) / 8 < 0  

= 0.08, a  = 0.5, Ar = 0.5% , y = 0.75

Maturity
(years)

Model r(%)
A n n u a l  n u m b e r  o f  t im e  s t e p s  ( n )

20 50 100 300 500 1000

5 B M S 5 7 9 . 0 7 9 0 7 9 . 0 4 8 6 7 9 .0 3 8 3 7 9 . 0 3 2 0 7 9 . 0 3 0 6 7 9 . 0 2 9 2

C N S 7 9 .9 7 6 3 7 9 .9 7 9 3 7 9 . 4 6 8 5 7 9 . 9 7 3 4 7 9 . 9 6 9 3 7 9 .9 6 8 5

M L 7 8 . 7 0 0 5 7 8 . 7 0 0 6 7 8 . 7 9 3 8 7 8 . 8 0 5 4 7 8 . 8 1 2 4 7 8 .8 1 4 7

5 B M S 11 6 6 . 2 9 7 6 6 6 . 2 4 0 2 6 6 . 2 2 0 9 6 6 .2 0 8 5 6 6 . 2 0 5 9 6 6 . 2 0 3 7

C N S 6 6 . 9 5 6 7 6 6 .9 5 5 1 6 6 . 9 5 1 0 6 6 . 6 9 8 6 6 6 . 6 9 6 0 6 6 .7 0 0 1

M L 6 5 . 9 9 9 8 6 6 .0 5 2 1 6 6 . 0 6 9 4 6 6 . 0 7 8 0 6 6 .0 8 3 1 6 6 . 0 8 4 9

15 B M S 5 5 6 .2 4 4 3 5 6 . 2 2 4 6 5 6 .2 1 8 1 5 6 . 2 1 3 8 5 6 . 2 1 3 3 5 6 . 2 1 3 8

C N S 5 6 . 2 8 0 5 5 6 . 2 8 5 0 5 6 . 2 9 1 6 5 6 . 2 7 1 6 5 6 . 2 6 9 4 5 6 .2 8 0 5

M L 5 5 . 1 8 8 5 5 5 . 2 2 7 9 5 5 . 2 4 0 6 5 5 . 2 4 6 9 5 5 . 2 5 0 5 5 5 .2 5 1 7

15 B M S 11 4 5 . 6 8 5 3 4 5 . 6 6 8 2 4 5 . 6 6 2 6 4 5 . 6 5 8 8 4 5 . 6 5 8 4 4 5 . 6 5 8 8

C N S 4 5 . 7 3 0 9 4 5 . 7 3 4 5 4 5 . 7 3 8 3 4 5 . 7 2 3 9 4 5 . 7 2 2 0 4 5 . 7 3 0 3

M L 4 4 . 9 0 8 3 4 4 . 9 3 9 8 4 4 . 9 4 9 9 4 4 . 9 5 4 9 4 4 . 9 5 7 9 4 4 . 9 5 8 8

T o  e n s u r e  M e t h o d  o f  L i n e  c o n v e r g e s  Ar =  0.01 %  is  u s e d .
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0^ = ( 4 k 0 - o 2)/8 > 0 
A t  =  0.05, Ar  =  0 5 %  , r 0 =  8% , y = 0.25

T able 3 .7 : Call Prices calculate using the Box Method._______

Exercise
Price

Model Bond
Price

5 4 3 2 1

3 5 B M S 4 6 . 5 9 9 2 2 2 . 9 1 8 5 2 1 .0 4 9 3 1 9 .0 1 8 0 1 6 .8 0 0 6 1 4 .3 6 7 6

C N S 4 7 . 0 2 4 6 3 1 . 8 3 6 8 3 0 . 2 9 2 0 2 8 . 4 9 4 0 2 6 . 4 2 2 9 2 4 .0 8 4 1

4 0 B M S 1 9 .5 2 1 9 1 7 .3 8 5 9 1 5 .0 6 5 0 1 2 .5 3 3 4 9 . 7 5 6 7

C N S 2 8 .3 0 8 3 2 6 . 5 4 2 9 2 4 .4 8 8 5 2 2 . 1 2 2 3 1 9 .4 4 9 0

4 5 B M S 1 6 .1 2 5 7 1 3 .7 2 4 3 1 1 .1 0 6 7 8 .3 1 4 8 5 . 2 7 5 6

C N S 2 4 . 7 8 0 0 2 2 .7 9 5 3 2 0 . 4 9 0 0 1 7 .8 4 1 0 1 4 .8 3 6 0

5 0 B M S 1 2 .7 3 2 5 1 0 .0 8 3 3 7 . 2 7 5 9 4 . 4 1 5 5 1 .7 3 6 2

C N S 2 1 . 2 5 4 4 1 9 .0 6 3 4 1 6 .5 4 5 8 1 3 .6 8 5 6 1 0 .4 1 0 5

5 5 B M S 9 .3 6 4 7 6 . 5 6 3 0 3 .8 2 7 8 1 .5 2 1 0 0 . 1 8 5 3

C N S 1 7 .7 5 0 4 1 5 .4 1 6 9 1 2 .8 2 1 4 9 . 9 4 6 8 6 . 6 3 3 6
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Table 3.8: C a l l  P r i c e s  c a l c u la t e d  a n a l y t i c a l l y  ( C I R ) ,  u s i n g  t h e  B o x  a n d  t h e  C r a n k  N i c h o l s o n  

m e t h o d s .______________________________________________ __________________________________________________

a , = ( 4 k 0 - a 2)/8 > 0 
A t  = 0.05, Ar = Of % , r 0  = 8% ,y  = 0.5

M a t u r i t y  ( y e a r s )

E x e r c i s e

P r i c e

M o d e l B o n d

P r i c e

5 4 3 2 1

C I R 4 5 . 1 5 6 1 2 2 1 . 8 8 0 2 1 9 .9 5 0 9 1 7 .8 5 8 5 1 5 .5 8 6 3 1 3 .1 5 5 2

3 5 B M S 4 5 . 5 0 0 0 1 2 1 . 9 4 4 5 2 0 .0 1 8 1 1 7 .9 2 9 3 1 5 .6 6 1 5 1 3 .1 9 5 7

B M G 4 5 . 5 1 4 0 2 1 . 9 4 4 5 2 0 .0 1 8 1 1 7 .9 2 9 3 1 5 .6 6 1 5 1 3 .1 9 5 7

C N S 4 5 . 8 8 0 9 2 2 . 1 1 3 2 2 0 . 1 7 9 0 1 8 .0 9 2 1 1 5 .8 4 5 0 1 3 .4 3 6 2

C N G 4 5 . 8 8 6 6 2 2 . 1 1 7 7 2 0 . 1 8 4 6 1 8 .0 9 8 7 1 5 .8 5 2 4 1 3 .4 4 3 8

C I R 1 8 .5 1 6 3 1 6 .3 1 1 4 1 3 .9 2 0 1 1 1 .3 2 3 3 8 .4 9 9 3

4 0 B M S 1 8 .5 8 3 6 1 6 .3 6 0 5 1 3 .9 8 8 7 1 1 .3 9 6 8 8 .5 7 8 9

B M G 1 8 .5 7 7 4 1 6 .3 7 5 9 1 3 .9 8 8 7 1 1 .3 9 6 8 8 . 5 7 8 9

C N S 1 8 .7 1 8 1 1 6 .5 0 7 6 1 4 .0 5 1 3 1 1 .5 5 4 5 8 .8 0 1 5

C N G 1 8 .7 2 2 6 1 6 .5 1 3 2 1 4 .1 2 9 1 1 1 .5 6 1 8 8 . 8 0 9 2

C I R 1 5 .1 5 2 4 1 2 .6 7 1 9 9 . 9 8 1 9 7 . 0 6 3 6 3 . 9 1 3 7

4 5 B M S 1 5 .2 1 0 4 1 2 .7 3 3 6 1 0 .0 4 8 2 7 . 1 3 5 2 3 . 9 8 9 6

B M G 1 5 .2 1 0 4 1 2 .7 3 3 6 1 0 .0 4 8 2 7 .1 3 5 1 3 . 9 8 9 6

C N S 1 5 .3 2 3 0 1 2 .8 3 6 2 1 0 .1 5 3 1 7 . 2 6 6 2 4 . 1 8 3 4

C N G 1 5 .3 2 7 5 1 2 .8 4 1 8 1 0 .1 5 9 7 7 . 2 7 3 5 4 . 1 9 1 0

C I R 1 1 .7 8 8 6 9 . 0 3 3 0 6 . 0 5 6 0 2 . 9 5 1 4 0 . 4 5 3 5

5 0 B M S 1 1 .8 4 3 3 9 . 0 9 1 9 6 .1 1 9 1 3 . 0 1 2 6 0 . 4 7 8 8

B M G 1 1 .8 4 3 3 9 . 0 9 1 9 6 .1 1 9 1 3 . 0 1 2 6 0 . 4 7 8 8

C N S 1 1 .9 8 2 0 9 . 1 6 5 3 6 .1 9 4 3 3 . 1 0 2 0 0 . 5 2 6 7

C N G 1 1 .9 3 2 4 9 . 1 7 0 9 6 . 2 0 0 8 3 . 1 0 9 0 0 . 5 3 1 7

C I R 8 .4 2 5 7 5 . 4 1 5 6 2 . 3 8 0 4 0 . 3 1 1 8 0 .0 0 0 1

5 5 B M S 8 .4 7 7 2 5 . 4 7 0 5 2 .4 3 0 5 0 . 3 3 0 7 0 .0 0 0 1

B M G 8 .4 7 7 2 5 . 4 7 0 5 2 .4 3 0 5 0 . 3 3 0 8 0 .0 0 0 1

C N S 8 .5 3 3 8 5 . 5 1 4 3 2 .4 6 7 9 0 . 3 4 4 3 0 . 0 0 0 0

C N G 8 .5 3 8 2 5 . 5 2 0 0 2 . 4 7 4 6 0 . 3 4 8 6 0 .0 0 0 1
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Table 3.9: C a l l  P r i c e s  c a l c u la t e d  u s i n g  t h e  B o x  a n d  t h e  C r a n k  N i c h o l s o n  m e t h o d s .

a , = ( 4 k 0 - a 2)/8 > 0 
A t  =  0.05, Ar  = 0.5% , r 0 =  8% , y = 0.75

Maturity (years)
Exercise

Price
Model Bond

Price
5 4 3 2 1

3 5 B M S 4 5 . 2 6 0 9 2 1 . 6 5 6 9 1 9 .7 1 3 2 1 7 .6 0 7 3 1 5 .3 2 4 8 1 2 .8 4 9 9

B M G 4 5 . 1 6 6 2 2 1 . 6 5 6 9 1 9 .7 1 3 2 1 7 .6 0 7 3 1 5 .3 2 4 8 1 2 .8 4 9 9

C N S 4 5 . 5 3 4 3 2 1 .8 2 5 3 1 9 .8 7 3 6 1 7 .7 6 9 5 1 5 .5 0 7 9 1 3 .0 9 0 1

C N G 4 5 . 5 2 9 9 2 1 . 8 2 4 8 1 9 .8 7 2 9 1 7 .7 6 8 7 1 5 .5 6 7 0 1 3 .0 8 9 1

4 0 B M S 1 8 .2 9 8 5 1 6 .0 7 7 1 1 3 .6 7 0 3 1 1 .0 6 1 7 8 .2 3 3 3

B M G 1 8 .2 9 8 5 1 6 .0 7 7 1 1 3 .6 7 0 3 1 1 .0 6 1 7 8 .2 3 3 3

C N S 1 8 .4 3 8 8 1 6 .2 0 8 3 1 3 .8 0 3 6 1 1 .2 1 8 9 8 . 4 5 5 7

C N G 1 8 .4 3 8 2 1 6 .2 0 7 6 1 3 .8 0 2 8 1 1 .2 1 8 0 8 . 4 5 4 8

4 5 B M S 1 4 .9 4 0 0 1 2 .4 4 0 9 9 .7 3 3 3 6 . 7 9 8 7 3 .6 1 7 3

B M G 1 4 .9 4 0 0 1 2 .4 4 0 9 9 .7 3 3 3 6 . 7 9 8 7 3 .6 1 7 3

C N S 1 5 .0 5 2 2 1 2 .5 4 3 0 9 . 8 3 7 7 6 . 9 2 9 9 3 . 8 2 0 8

C N G 1 5 .0 5 1 7 1 2 .5 4 2 3 9 . 8 3 6 9 6 . 9 2 9 0 3 . 8 1 1 9

5 0 B M S 1 1 .5 8 1 5 8 .8 0 4 8 5 . 7 9 6 4 2 . 5 5 2 6 0 . 0 8 2 2

B M G 1 1 .5 8 1 5 8 .8 0 4 8 5 . 7 9 6 4 2 . 5 5 2 6 0 . 0 8 2 2

C N S 1 1 .6 6 5 7 8 .8 7 7 7 5 . 8 7 1 8 2 .6 5 1 5 0 . 0 9 5 6

C N G 1 1 .6 6 5 2 8 . 8 7 7 0 5 . 8 7 1 0 2 . 6 5 0 6 0 . 0 9 5 2

5 5 B M S 8 .2 2 3 1 5 . 1 6 8 9 1 .9 1 7 1 0 . 0 2 5 8 0 . 0 0 0 0

B M G 8 .2 2 3 1 5 . 1 6 8 9 1 .9 1 7 1 0 . 0 2 5 2 0 . 0 0 0 0

C N S 8 .2 7 9 2 5 . 2 1 2 6 1 .9 5 7 2 0 . 0 2 6 5 0 . 0 0 0 0

C N G 8 .2 7 8 7 5 . 2 1 1 9 1 .9 5 6 3 0 . 0 2 6 2 0 . 0 0 0 0
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T able 3 .10 : Call Prices calculated using the Box and the Crank Nicholson methods.

oc, = ( 4 k 9 - a 2 ) / 8 < 0  

A t  = 0.05, Ar  =  0.5% , r0 = 8% , y = 0.25

Exercise
Price

Model Bond
Price

M a t u r i t y  ( y e a r s )

5 4 3 2 1

6 0 B M S 7 7 . 0 8 2 0 2 7 . 9 1 7 6 2 7 . 2 1 5 0 2 6 .4 2 2 7 2 5 . 3 9 3 9 2 3 . 5 8 6 4

C N S 7 7 . 6 4 6 7 3 4 .7 9 7 3 3 4 . 7 4 7 0 3 4 . 6 0 2 9 3 4 . 1 7 9 6 3 2 .7 9 1 1

6 5 B M S 2 3 . 8 8 0 4 2 3 . 1 2 8 7 2 2 . 2 9 6 6 2 1 .2 5 9 5 1 9 .4 9 7 3

C N S 3 0 .4 4 6 1 3 0 . 3 9 9 4 3 0 .2 6 5 3 2 9 . 8 6 9 9 2 8 .5 4 8 1

7 0 B M S 1 9 .8 5 6 3 1 9 .0 5 9 0 1 8 .1 9 0 7 1 7 .1 4 6 5 1 5 .4 7 6 6

C N S 2 6 . 0 9 5 5 2 6 .0 5 3 3 2 5 . 9 3 2 0 2 5 .5 7 3 1 2 4 . 3 5 2 6

7 5 B M S 1 5 .8 4 9 3 1 5 .0 0 8 1 1 4 .1 0 6 9 1 3 .0 6 4 3 1 1 .5 2 4 1

C N S 2 1 . 7 4 5 3 2 1 .7 0 8 5 2 1 . 6 0 2 6 2 1 . 2 8 8 6 2 0 .2 0 4 1

8 0 B M S 1 1 .8 6 1 9 1 0 .9 7 8 7 1 0 .0 4 8 0 9 . 0 1 5 0 7 . 6 3 8 5

C N S 1 7 .3 9 5 4 1 7 .3 6 4 9 1 7 .2 7 7 6 1 7 .0 1 6 4 1 6 .0 9 1 2
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T able 3 .1 1 : Call Prices calculated analytically (CIR), using the Box Method and the Crank
Nicholson methods.

a ,  = ( 4 k 9 - a 2 ) / 8 < 0  

A t  = 0.05, Ar  =  0 5 %  ,  r 0  =  8% , y = 0.5
Maturity (years)

Exercise
Price

Model Bond
Price

5 4 3 2 1

C I R 6 3 . 4 5 5 7 2 3 . 9 0 0 8 2 2 . 8 5 6 4 2 0 . 2 5 9 6 1 9 .8 9 0 2 1 6 .9 7 9 8

6 0 B M S 6 9 . 9 9 6 9 2 3 . 9 4 7 6 2 2 . 9 0 0 6 2 1 .6 3 7 5 1 9 .9 1 1 2 1 6 .9 7 6 9

C N S 7 0 . 8 1 6 6 3 2 . 2 9 9 7 3 2 . 0 1 7 0 3 1 . 4 3 5 6 3 0 . 1 9 4 6 2 7 . 3 8 0 5

C I R 2 0 . 1 7 7 0 1 9 .0 8 4 3 1 7 .7 9 6 7 1 6 .0 9 2 2 1 3 .2 4 7 0

6 5 B M 2 0 .2 2 0 0 1 9 .1 2 5 5 1 7 .8 3 1 3 1 6 .1 1 0 9 1 3 .2 3 2 0

C N S 2 8 .2 3 7 3 2 7 . 9 6 7 6 2 7 .4 0 6 3 2 6 . 1 9 3 6 2 3 . 3 5 1 9

C I R 1 6 .4 8 8 7 1 5 .3 5 6 5 1 4 .0 5 3 2 1 2 .3 9 7 1 9 . 7 2 6 0

7 0 B M S 1 6 .5 2 8 1 1 5 .3 9 5 0 1 4 .0 8 6 5 1 2 .4 1 0 2 9 .7 0 6 1

C N S 2 4 .1 8 3 3 2 3 .9 3 1 3 2 3 .4 0 4 3 2 2 . 2 5 1 9 1 9 .4 6 3 6

C I R 1 2 .8 4 4 4 1 1 .6 8 2 9 1 0 .3 8 1 9 8 .8 0 3 8 6 . 4 4 8 7

7 5 B M 1 2 .8 8 0 3 1 1 .7 1 9 4 1 0 .4 1 5 1 8 . 8 2 4 6 6 . 4 3 1 7

C N S 2 0 . 1 3 5 8 1 9 .4 2 9 9 1 9 .4 2 9 9 1 8 .3 7 3 2 1 5 .7 3 7 1

C I R 9 . 2 5 7 0 8 . 0 7 8 9 6 .8 0 1 9 5 . 3 5 2 8 3 . 4 5 5 8

8 0 B M 9 .2 8 9 5 8 .1 1 3 5 6 . 8 3 5 2 5 . 3 7 8 7 3 . 4 5 2 7

C N S 1 6 .0 9 6 2 1 5 .8 9 9 0 1 5 .4 7 9 4 1 4 .5 3 1 4 1 2 .0 6 0 1
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(*! = ( 4 k 0 - c 2 ) / 8  < 0 

A t  =  0.05, Ar  =  0 5 %  ,  r 0  = 8% , y  =  0.75

T able 3 .1 2 ; Call Prices calculated using the Box and the Crank Nicholson methods

Maturity (years)
Exercise

Price
Model Bond

Price
5 4 3 2 1

6 0 B M S 5 9 . 1 1 9 3 1 7 .1 7 0 6 1 5 .4 1 9 5 1 3 .3 5 5 5 1 0 .7 9 8 9 7 . 3 4 7 9

C N S 6 0 . 1 0 2 9 2 1 . 5 1 2 5 1 9 .9 3 3 4 1 7 .9 3 1 7 1 5 .3 1 8 1 1 1 .6 4 2 6

6 5 B M S 1 3 .8 8 7 7 1 2 .1 1 5 2 1 0 .0 7 0 5 7 .6 1 0 1 4 .4 3 9 1

C N S 1 8 .1 3 6 0 1 6 .5 4 1 6 1 4 .5 3 4 1 1 1 .9 3 6 1 8 . 3 0 8 0

7 0 B M S 1 0 .7 0 9 6 8 . 9 6 6 2 7 . 0 1 4 2 4 . 7 8 8 2 2 . 1 9 5 5

C N S 1 4 .8 5 2 8 1 3 .2 8 5 5 1 1 .3 3 1 1 8 . 8 4 3 6 5 . 4 6 4 7

7 5 B M S 7 .6 7 5 1 6 . 0 2 0 3 4 . 2 6 6 2 2 . 4 4 1 9 0 .7 1 8 1

C N S 1 1 .6 9 2 5 1 0 .2 0 5 3 8 .3 7 8 7 6 .1 0 9 5 3 . 2 0 0 8

8 0 B M S 4 .8 4 5 3 3 . 3 7 0 4 1 .9 4 5 6 0 . 7 3 8 8 0 . 0 6 5 5

C N S 8 .6 9 7 2 7 . 3 5 5 6 5 .7 4 7 5 3 .8 1 9 3 1 .5 8 3 9
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a ,  = ( 4 k 0 - a 2 ) /8 < O  

k = 0.1, 0 = 0.08, cr = 0.5, A r=  0.5% ,y = 0

T ab le  3 .1 3 : Bond Prices calculated using the Box and the Crank Nicholson methods.

A n n u a l  n u m b e r  o f  t im e  s t e p s  ( n )

Maturity
(years)

Model r(%) 20 50 100 300 500 1000

5 B M S 5 8 9 . 4 1 2 4 8 9 .3 8 1 1 8 9 . 3 7 0 6 8 9 . 3 6 3 9 8 9 . 3 6 2 4 8 9 . 3 6 1 4

C N S 8 9 .8 0 6 1 8 9 .7 8 9 7 8 9 . 7 8 0 6 8 9 .0 2 7 3 8 9 . 7 7 9 8 8 9 . 7 7 9 2

M L 1 9 .0 7 7 4 2 3 .4 2 2 3 2 9 . 6 7 7 8 4 6 . 4 5 4 6 5 6 . 0 5 2 5 6 8 .0 9 0 1

5 B M S 11 8 1 . 7 6 0 2 8 1 .7 2 7 7 8 1 .7 1 6 1 8 1 .7 0 9 5 8 1 . 7 0 8 0 8 1 .7 0 6 7

C N S 8 2 .0 5 0 8 8 2 .0 3 5 8 8 2 . 0 2 7 6 8 2 .0 2 7 3 8 2 . 0 2 6 6 8 2 .0 2 6 1

M L 1 8 .2 2 5 2 2 2 .1 0 6 3 2 7 . 7 0 5 6 4 2 .7 7 9 1 5 1 . 4 4 1 2 6 2 .3 4 6 1

15 B M S 5 8 0 .1 5 9 3 8 0 .1 3 4 7 8 0 .1 2 6 5 8 0 . 1 2 1 6 8 0 .1 2 0 1 8 0 .1 1 9 5

C N S 8 0 .4 3 3 7 8 0 .4 2 0 5 8 0 .4 1 6 1 8 0 .4 1 3 1 8 0 . 4 1 2 4 8 0 .4 1 1 9

M L 8 .7 0 2 1 1 4 .5 9 0 0 2 2 .5 3 5 3 4 1 . 3 6 1 8 5 0 . 8 4 5 0 6 1 .7 6 3 5

15 B M S 11 7 3 . 2 5 1 0 7 3 .2 2 9 3 7 3 . 2 2 1 4 7 3 . 2 1 7 2 7 3 . 2 1 6 0 7 3 . 2 1 5 2

C N S 7 3 .4 7 4 1 7 3 . 4 6 2 0 7 3 . 4 5 8 0 7 3 . 4 5 5 2 7 3 . 4 5 4 6 7 3 .4 5 4 1

M L 7 .9 4 8 1 1 3 .3 2 1 6 2 0 .5 7 5 3 3 7 . 7 7 3 8 4 6 . 4 4 2 4 5 6 . 4 2 7 7

G a u s s i a n  e l im in a t i o n  d i d  n o t  p r o d u c e  a n y  m e a n in g f u l  p r ic e s  b o t h  w i t h  t h e  B o x  M e t h o d  a n d  th e  

C r a n k - N i c h o l s o n .  A n a l y t i c a l  b o n d  p r i c e s  w e r e  u n m e a n in g f u l .  F o r  e x a m p le  5  y e a r  b o n d  a t  5 %  

in t e r e s t  i s  v a lu e d  a t  $ 2 8 7 3 . 8 6  w h e n  i t s  v a lu e  i s  r e s t r i c t e d  t o  b e  e q u a l  t o  o r  le s s  t h a n  $ 1 0 0 .
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CHAPTER 4.

A NEW APPROACH TO CHECK THE FREE BOUNDARY OF SINGLE 

FACTOR INTEREST RATE PUT OPTION

4.1. Introduction

In options pricing literature the location of the free boundary is used to determine the 

option price. The value of the free boundary at a particular time step before the expiry 

of the option is the underlying asset value at which an American option ceases to exist. 

The basis of the analytical option pricing methodology is the location of the free 

boundary. Thus in traditional option pricing literature the free boundary is assumed to 

have been correctly identified and the option price calculated.

An alternative scheme is to assume that the option price has been calculated, and use 

this option price as the basis to locate the free boundary. This approach serves two 

purposes. First it indicates whether the numerical scheme is stable; secondly it tells us 

the nature and shape of the free boundary. To date only Courtadon (1982b) has used 

option prices as the basis to locate the free boundary. Courtadon’s approach was, 

however, very simple in that he used linear interpolation to track the free boundary. In 

this Chapter we use Green’s theorem in conjunction with the Box Method to locate the 

free boundary. This Chapter represents the first attempt in Finance to track the free 

boundary in this manner. Section 2, 3 and 4 contain original work.

In Section 2 we set up the American pricing problem as an obstacle. In Section 3 we 

derive the integral equation in terms of the free boundary at successive time steps. In 

Section 4 we discretize the integral equation. Section 5 compares the free boundaries
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of American put options based on the Vasicek model (y = 0), CIR model (y = 0.5 )

and Brennan and Schwartz model (y  = l). Section 6 contains a summary and 

conclusion.

4.2. An American Put Option As An Obstacle Problem

The basic starting equation is:

i a V v p + k (6 _ , #2  dr dr
■re = -

de
dx

(4.1.1)

where e = P(rt ,t,T*,T) + ß (rt ,t,T*) = Put on bond + Bond Price .

Further at the free boundary the two following boundary conditions hold:

de(s(T),x) = 

dr

e(s(x),x) = E (Exercise Price)

(B l)

(B2)
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In the diagram above the curve r = s(x) is the free boundary. We integrate equation 

(4.1.1) in the region R bounded by the free boundary curve r = s(x). In particular 

along the time axis we integrate from 0 —> x m at time increment mAtand 

0 —> s(x) along the interest rate axis.

11 ~2”r 2Y drdx + | |  k9 -^drdx -  | |  rk drdx
r  5 r  r  ô r

(4.1.2)

| |  redrdx = | |  ̂ d rd x
dr

We now integrate and simplify each component of the above equation, starting with

' 2 d2e
the first component IT— r 2Y— 7- drdx . In particular with the first component, we

2  dr

consider four distinct cases, first y = 0 , second y = ^ , third y = 1 , and for y between

0 and 1 excluding the previous values of y.

First consider the case for y = 0

a 2 d2e s(-} a 2 d2e
2  dr 2  dr2 0 0 2  dr2

drdx

Now integrating by parts and incorporating boundary condition B1 gives:
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3e(0,x)
9rI

0

a 2£
3r2

dr = -

Further integration of the above expression with respect to time gives:

Tm S( 0  2 - \2  2  1c r  d e  , , o
---------drdx = ------
2 3 r2 2If

0 0

13e(0, x)
dx

Second consider the integral for y = —

3 2e
3r2

drdx 11
a 2r d 2 e  

~ 2 ~ d ?

drdx 1 1
0 0

g 2r d 2 e  

2  d r 2

drdx

Integrating the integral
s ( t )

1
0

G2r d 2 e

2  d r 2

dr by parts and inserting the second boundary

condition (B2) gives:

1o

Further integrating the above expression with respect to time gives us:

Tm!(X)I j G9r I > dx =  - ^ ~ E(mAt) + je(0,x)dx
0 0 2  dr"

G
2

110



Thirdly consider the integral for y = 1

l l v r
d 2e
d r 2

d r d x TmS(T) a 2r 2 d 2£11
0 0

2  d r 2
d r d x

Integrating the component
s ( t ) q 2 r 2 d 2e  

2  d r 2 dr by parts and incorporating the boundary

condition B2 gives:

s ( t ) q 2 r 2 d 2e  

2  d r 2

s ( t )

dr - a 2 |  r — dr = a 2s(x)E
dr

s(x)

- a 2 J e ( r , x ) d r

Once again further integrating the above expression with respect to time gives us:

TmS(XV r 2 d 2eJ  |  -  ^ ,  d r d x  = - g 2E J  s ( x ) d x  + a 2
0 0

Tms(T)
J  J e ( r , x ) d r d x
0 0

Now for the general case of y between 0 and 1 and excluding the particular values 

mentioned above, we have by integrating by parts and by incorporating the boundary 

condition B 1 :

2y d 2e
d r 2

d r d x
'tmsb)CJ2r2Y ^2

1 1
0 0

d 2e TmS(T)
d r d x  =  - y a 2 J  J  r 2y 1 — d r d x

d r 0 0 dr
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We now further integrate the component 

condition (B l) to give:

s ( t )

0
— dr by parts and insert boundary 
dr

J j. 2y i ^£¿5- -  Es(x )2y 1 - ( 2y — l) J r2Y 2e(r,x)dr
s ( t )

dr

Thus in the expanded form, the double integral for the general case is:

J j  —̂ -^-|drdx = o 2y(2y - 1) j  J r 2Y 2e(r,x)drdx-a2yE js (x )2Y 'dx
sb)

0 0 2  dr" 0 0

Note that the above expression also holds for y = 1. Thus summarizing all the 

possible expressions:

LHS0 = IT—  r2Y -^-^drdx 
0 JDJ 2  dr2

a 2 Trde(0,x)dt
i  J dr

,y = 0

^ _ Z  Z vm 1

-  y  E(mAt ) + —  J e(0 , x)dx, y = -

a 2y (2 y -l)J  Jr2Y_2e(r,x)drdx-G2yEjs(x)2Y ’d x ,y ^ 0 ,y ^ -
0 0

Now integrating the second component of equation (4.1.2) and inserting boundary 

condition B2 gives:
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k0 J J  -^d rd r = k0 1 |  ^ d r d r  = k0E(m A t)- k0 J  e(0 ,x)dx
s(x)

de
dr 0 0 dr

Finally integrating the third component of equation (4.1.2) by parts and inserting 

boundary condition B2 gives us:

r — drdt = -E k  
dr

We now consider the term on the right hand side of the original equation. The figure 

below indicates the path of integration followed.

Applying Green’s theorem gives us:

f f de(r.x) 
\  dr C1+C2+C3+C4

e(r,r)dr

We now evaluate each of the components of the above integral separately:
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|  e(r,x)dr = 0 as we are moving along the time axis only where the interest rate is
C4

constant.

s(0)

Je(r,x )d r = j*£(r,0)dr
Cl 0

We note that C2 is the free boundary ans such from boundary condition B2 along C2 

e(r,x) = E . Hence:

|e (r ,x )d r  = J  E ^ d x  = E [ s ( x J - s ( 0)]
C 2 x=0 ^

Je(r,x )dr
C3

S( T m )

-  J 8(r >xm)dr
0

Collecting all the terms on the right hand side gives us:

sEm) S(0)J 8(r >xm)dr + E[s(0) — s(xm) ] -  J  e(r,0)dr

Collecting and rearranging the terms both on the left-hand side and the right hand side 

of equation (4.1.2) gives us:

LHS0 + LHS, + LHS, + LHS. + LHS. + LHS5 + L H S 6 = R H S 0 +RH S, (4.1.3)
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where:

LHSj = k0E(mAt)

LHS2
m

- k 0 J e ( 0 ,x)di

y(‘)
LHS3 = J  J(k-r>(r,T)drdT

0 0

l h s 4

LHS5 = -Es(0)

s(0)

LHS6 = |  e(r,0)dr
o

RHS0
s(Tm)

J e ( r ,x m)dr
0

RHS, = - E s (t „ )
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Observing equation (4.1.3) we see that at any general time step T m there is no 

analytical solution for s(xra) . In the next section we use numerical integration to solve 

equation (4.1.3)

4.3. Discretization of the Integral Equation

Each of the single integral is discretized using the implicit trapezium rule. We start by 

discretizing the simplest integrals first:

m
J e(0 , t)dx = At
0

1
— £
2

(0,0) + e(0, At) + £(0,2At)+__+8^0, ( m -  l)At) + ^-e(0,mAt)

J  s(x)dx = At — s(0) + s(At) + s(2At)+...+s((m- l)At) + —s(mAt) 
2  2

|s ( x ) 'Y *dx = At — s(0)'T 1 +s(A t)2y 1 +s(2At)2Y 1+...+s((m -l)A t)"Y ' + — s(mAt)2Y '
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S(0)

At time 0 , we separate the integral J  e(r,0)dr into two components as follows with
o

n 0Ar < s(0) < (n 0 + l)Ar

s(0) n 0Ar s(0)

|  e ( r ,0 ) d r  =  J e ( r , 0 ) d r +  J e ( r , 0 ) d r
0 0 noAr

We discretize each of the two integrals using the implicit trapezium rule as follows:

£(0,0) + e(Ar,0 ) + £(2 Ar,0 )+__£^(n0 l)Ar,0) + t-e(n„Ar,0)

s(0)

J  e ( r , 0 ) d r
n„Ar

(s(Q) -  n 0Ar) 
2

[£(n0Ar,0) + E]

Combining the above two discretizations gives us:

j£(r,0 )dr = Ar — e(0,0) + £(Ar,0) + £(2Ar,0)+...+£((n0 -  l)Ar,0) + —£(n0Ar,0)
o L2 2

> f e % n„Ar,0 ) + E]

s0 m)
At t i m e  xm, a s  a t  t i m e  0 , w e  s e p a r a t e  t h e  in t e g r a l  J * £ ( r ,x m )d r  in t o  t w o  c o m p o n e n t s

0

as follows with n mAr < s(xm) < (nm + l)Ar
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SM  " mAr s(xm)

J e ( r , T m ) d r =  J e ( r , x m )d r  +  J e ( r , x m )d r
n mAr

We discretize each of the two integrals using the implicit trapezium rule as follows:

n„ArJ e(r,x m)dr = Ar ^e(0,Tm ) + e(Ar,Tm) + e(2Ar,Tm)+....£((nm-l)A r,T m) + :J-e(nmAr,Tm)

S(Xm)
J  e(r,0)dr «

(St'T i n ) _ n mAr)
[e(n „Ar.0) + E]

nmAr

Combining the above two discretizations gives us:

Am)m / 1 I
J e ( r > )dr -  Ar - e ( 0 , x m )  +  e(Ar,x m )  +  e(2Ar, x m ) + . . . + e ( ( n m -  l)Ar,x m ) +  - e(nmAr,x m )

(s(^m) - n mAr)
[e(nmAr,0) + E]

a 2 Tr^ e(° ’x) 3e(0,x)For the integral — — —  dx we first discretize — ^— - using the forward
2  J0 d r d r

difference approximation such that:

3e(0,x) e (A r,x )-e (0 ,x )

3r Ar

Substituting the above expression into the original integral gives us:
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2
Tf 3g(Q,T)dt =  g 2
|  dx 2Ar

J  e(Ar,x)dx +
o 2Ar

m
J e ( 0 , x ) d x
o

Discretizing each of the components of the above equation gives gives us:

- c r
2Ar

J e ( 0 , x ) d i - a 2 At 
2Ar

^-e(0,0) + e(0, At) + e(0,2At)+... .+e(0, (m -  l)At) + e(0, mAt)

_ 2

2Ar
J  e ( 0 , x ) d x  ~ a  At 

2Ar
—  e(Ar ,0) + e(0, At) + e(Ar ,2At)+... .+e(Ar, ( m -  !)At) + ~£(Ar, mAt)

Combining the above two discretizations gives us:

a 2 Tr 9e(0,x) _ o 2At
2 |  dx ~ 2Ar

2(e(0 ,0) -  e( Ar ,0)) + (e(0, At) -  e(Ar, At))+...

+(s(0,( m -  l)At) -  e(Ar, (m -  l)At)) + ~ ( e(0, mAt) -  e(Ar, mAt))

To discretize the double integrals we first change the order of integration as follows:

s(x)n v / s(T)m V /  v / m

|  |  (k + X  -  r ) e ( r , x ) d r d x  = |  J  (k + A, -  r ) e ( r , x ) d x  d r
o o

s(x)

|  |  r 2r 2e ( r , x ) d r d x  =  J  J r 2Y 2e ( r , x ) d x  dr
0 0
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We now discretize the above double integrals at successive time steps

First at time period A t:

*W

1

At A t A t  
|  (k -  r)e(r, x)dx dr = —  J  (k -  r)t(r,0)dr h-----J  (k -  r)e(r, At)dr

s(-c) ■At

J  J  r 2y 2e(r,x)dT dr At f 2Y-2, 
2 J

s(0)

£(r,0)dr + —  [ r 2y 2s(r, At)dr 
2 J

s(At)

At time period 2A t:

s ( t ) 2Atj |  (k -  r)e(r, x)dT dr
s(0) s(At)

—  J(k  + -r)E(r,0)dr +At j*(k -  r)e(r, At)dr 
^ o o

. s(2At)

H-----|  (k -  r)s(r,2At)dr
2 o

s ( t ) 2At

J  J r 2y 2e(r,x)dT dr
At s(°) s(At)
—  |  r 2y~2e(r,0)dr + At J  r 2y-2£(r,At)dr 
^ o o

A s(At)
+ —  J r 2y~2e(r,2At)dr

2 o

At time period m A t:

120



s (t ) mAtj |  (k -  r)e(r, x)dx dr = —  j (k -  r )e(r,0)dr + At j (k -  r)e(r, At)dr
s(0) s(At)

s(2At) s((m -l )At)

+ At J(k-r)E(r,2A t)dr + ... + At J(k -r)& (r,( m -  l)At)dr + ̂  J ( k - r > ( r  , mAt)dr
s(mAt)

s ( t )(T)["~ mAt “I A  s(0) s(At)

|  J  r 2Y”2e(r,x)dx dr = —  |  r 2Y~2e(r,0)dr + At |  r 2Y~2e(r,At)dr
s(At)

s(2At) s((m -l)A t)

+At | r 2Y 2£(r,2At)dr+...At J r 2y 2e (r ,(m -l)A t)d r+ —  J r 2Y 2e(r,mAt)dr
s(mAt)

sbm)
We note that the above integrals are similar to j£ ( r ,x m)dr and hence discretized as

follows:

s(mAt)

Ym = J(k -r)E (r,m A t)d r:

|  ke(0, xm) + (k -  Ar)e(Ar, xm )Ar

+ (k -  2Ar)s(2Ar, xm )Ar 

+... + (k -  (n m -1  )Ar>((n m -  l)Ar, xm )Ar

+ ^ (k -m A r)e (n mAr,xni)Ar +

s(mAt)-m Ar 
2

((k -  mAr)e(nmAr,Xm)+ (k -  s(mAt))E)
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s(mAt)

J r 2Y”2e(r,mÀt)dr =
o

(Ar)2Y"2e(Ar,Tm)Ar + (2Ar)2Y' 28(2Ar,Tm)Ar 

+ -+ ( (n m- l)A r)2Y' 2e((nm - l)A r ,x m)Ar

+ ̂ ( mAr)2Y"2e(nmAr,xm)Ar +

2s(mAt) -  mAr 
—----------------  x

l 2 j

((mAr)2Y"2e(nmAr,Tm) + (s(rnAt))2Y ' e )

Thus summarizing both the above double integrals,we have:

J j ( k  + ^-r)E(r,-c)drdx = ^ Y l + AtY2 + ...+AtYm_, + ^ Y „
0 0 ^ ^

XmS(T) A t  A t
j  | r 2« e ( r , t ) d r d t = T Z, + AtZ2+...+A tZ„.] + — Z m
0 0 ^ ^

4.4. Locating the Free Boundary

At the maturity date of the contingent claim we define the following function 

discretized at interest rate point rk:

< K = E - B ( r i )
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k+l

A(r ) =  5 > . L . ( r )
l= k -2

where

If we let rk_2, rk_1, rk and rk+1 be interest rate points and (¡)k_2, <J)k_,, <J)k and (¡>k+1be

values of the above function at these interest rates. Then, we can derive the following

polynomial:

k+l

L i(r) =  n
r - r ,

l= k -2 ,l* k  r k h

with the following property:

()>! = A(r,) 1 = k - 2 ,  k - 1 ,  k ,  k + l

We now use Newton-Raphson iteration, to derive the critical interest rate s(0)at expiry 

date of the put option.

A (r)<0) r -

ds NO]

At general time step m At, the free boundary is located by solving for the zero of the 

function:

$  — ^ L H S  ^ R H S

where:

(|)LHS = LHS0 + LHS, + LHS2 + LHS3 + LHS4 + LHS, + LHS6 

R̂HS = RHS0 + RHS!

Numerical experimentation indicates that Newton-Raphson is not suitable except at the 

maturity date of the option. Thus at general time step m At, we start with a value of 

s(mAt) which by examination of the grid at this time step is known to be lower than
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I^LHS ~  ^RHsI =  |

Once this criterion is met we move to the next time step to calculate s((m + 1)At) and 

so on until we reach to end of the grid at time step MAt .

the actual value of s(mAt). To estimate a more accurate s(mAt) we iterate upwards at

interest rate steps of Ar/20 until the following criterion is met:

We now investigate the nature of the free boundary of American put options based on 

widely used single factor term structure models. In particular we consider the Vasicek

(  nmodel (y = 0), CIR model y = — and Brennan-Schwartz model (y = l ) . Ail three
V 2 )

models are of course enclosed by the more general CKLS model. We investigate the 

free boundary both for short expiry and long expiry put options. The short expiry 

options are based on bonds with 5-year maturity bond and expiry of 1 year. The 

longer expiry put options are based on 10-year bonds and expiry of 5 years. The 

bonds are zero coupon and have a face value of 100.00. The parameters take the 

following values: c  = 0.5 , k = 0.1, 0 = 0.08. On the grid the interest rate spacing is 

Ar = 0.05 and the time intervals of At = 0.002 .

4.5. Analysis

We plot the free boundaries for y = 0 (Vasicek), y = 0.5 (CIR) and y = l (Brennan- 

Schwartz). For each y value two sets of free boundaries are plotted at different 

exercise prices. The terms to expiry of the put options are either 1 year or 5 years.
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The 1 year put options are priced on a 5-year bond during the last year before it 

matures. The 5 year put options are priced on a 10-year bond during the last 5-year 

before it matures. All the free boundaries are plotted backwards in time that is, we 

start plotting from the expiry date of the options to current date at which the put 

option is written.

For y = 0 , 1 year put option (Figure 1) the critical interest rate increases rapidly. 

However, as the current date of the option approaches, the critical interest rate 

increases asymptotically; such that by the current date the free boundary is almost flat. 

For 5 year options (Figure 2), the critical interest rate increases rapidly close to the 

expiry date of the option as with y = 0 . Although the free boundary is almost flat by 

the current date careful examination of the graph indicates that critical interest rate 

actually start to decrease as the current date of the put option approaches. This is in 

contrast to the free boundary of the one-year option.

For y = 0.5, 1 year put option (Figure 3), the free boundary evolves in the same way 

as for y = 0 . For 5 year put option (Figure 4), the free boundary increases close to the 

maturity date of the option. However as the current date of the option approaches, the 

critical interests show a noticeable decline. The end result is that for a 5 year put 

option, the free boundary initially increases and then declines asymptotically.

For y = 1, 1 year put option (Figure 5), the free boundary initially increases close to 

the maturity date and the declines as the current date approaches. This is in contrast to 

the behavior of free boundaries for y = 0 and y = 0.5. For 5 year put option (Figure
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6), the critical interest initially increases, but then quickly declines. Although the free

boundary in this case shows the same overall behaviour as the free boundaries for 

y = 0 and y = 0.5, there is in this case two distinct observable differences. First the 

critical interest rate starts to decline much closer to the maturity date than for y = 0 

and y = 0.5. Secondly the rate of decline i.e. the downward steepness of the free 

boundaries is greater than for y = 0 and y = 0.5.

Figure 1 - Figure 6 all exhibit discontinuities at the expiry date and close to the expiry 

date of the options. This is due to an inconsistency in our model at maturity because at

of the free boundaries show any discontinuities except at and near the expiry date, the 

free boundaries nonetheless do exhibit small oscillations. This oscillation is due to the 

approximations we have made in setting up the grid and secondly the small errors in 

the critical interest rate from previous time periods feeding through to the critical 

interest rate at the current time period.

4.6. Conclusion

Since Courtadon (1982) used a linear interpolation approach to track the free 

boundary of interest rate contingent claims, no further research has been done to 

extend this work. In this chapter we have provided a new method to check and track 

the free boundary. We have applied this new approach to check the free boundary of 

short dated and long dated American put options based on widely used one factor 

interest rate models. Our finding suggests that the shape of the free boundary varies

maturity we assume = 0 , when Further, although none
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from model to model and with the term to expiry of the options. Generally, we

observe that the risk boundary increases asymptotically towards the current date, such

that by the current date the free boundary is almost flat or slightly declining.
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Figure 2: Vasicek model, 10 year bond, 5 year put option
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Figure 3: CIR model, 5 year bond, 1 year put option
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Figure 4: CIR model, 10 year bond, 5 year put option
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Figure 5: Brennan-Schwartz model, 5 year bond, 1year put option
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Figure 6: Brennan-Schwartz model, 10 year bond, 5 year put option
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CHAPTER 5.

AN EVALUATION OF CONTINGENT CLAIMS USING THE CKLS 

INTEREST RATE MODEL: AN ANALYSIS OF AUSTRALIA, CANADA, 

HONG KONG, JAPAN, U .K ., AND U.S.A

5.1. Introduction

In Chapter 3, we compared three numerical methods using assumed parameter 

values. Our main finding was that only the Box method converged to produce 

accurate bond and contingent claim prices for all combination of parameters. In 

this chapter using historical estimates of the CKLS model obtained for Australia, 

Canada, Hong Kong, Japan, U.K. and U.S.A., we calculate implied bond and 

contingent claim prices. The outline of this Chapter is as follows: Section 2 

describes the data used in the study and Section 3 presents the implied bond and 

contingent claim prices. Section 4 contains a summary and conclusion.

5.2. Data

Over the years interest rate researchers have used different estimation methods. 

The most recent of these estimation methods is the non-parametric estimation 

method introduced by Ait-Sahalia (1996). This method is used primarily to test 

any non-linearity in the drift. As the CKLS (1992) model assumes that the drift 

is linear non-parametric method is not considered. The most widely used 

estimation method by researchers is GMM as used by CKLS (1992), Gibbons 

and Ramaswamy (1986) amongst other researchers. CKLS (1992) used an
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approximation in their estimation which introduced a bias term. The Gaussian 

method of Nowmna (1997a) reduces this effect of the bias term by using an 

analytical expression. Thus to estimate the CKLS model historically we use the 

approach of Nowman (1997a) who estimated the CKLS model on US and UK 

data. The discrete model used for estimation by Nowman (1997a) was derived 

by Bergstrom (1984, Theorem 2) and modified for heteroskedasticity in 

Nowman (19997a) given by equation (5.2.1) below.

r ( t ) = e pr ( t - l )  + | ( e p - l ) + i i t (t = 1,2,.....,T) (5.2.1)1

where r |t (t = 1,2,.....,T) satisfies the conditions given Nowman (1997a).

Following Bergstrom (1983) we let L(0) be minus twice the logarithm of the 

Gaussian likelihood function where the complete vector of parameters is 

0 = [a,(3,y,a2]. The Gaussian estimates are obtained from equation (5.2.2) 

where m 2 was given in Nowman (1997a).

L(e)=Z 21ogmtt + (5.2.2)

CKLS use the one-month Treasury bill yield as the proxy. However, Duffie 

(1996) finds Eurodollar rates are more suitable. The short-term interest rates 

used in this study are monthly one and three month Euro-currency rates for
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Australia, Canada, Hong Kong, Japan, UK and US currencies (middle rate) 

obtained from D a t a s t r e a m .  Table 5.1 reports the summary statistics. The mean 

and standard deviations of the different series are as follows: Australian one and 

three month means are (0.09822) and (0.09881) respectively with standard 

deviations of (0.04152) and (0.04191); Canadian one and three month means are 

(0.08992) and (0.09108) respectively with standard deviation of (0.03924) and 

(0.03859); Hong Kong one and three month means are (0.05928) and (0.06105) 

respectively with standard deviations of (0.02123) and (0.02029); Japanese one 

and three month means are (0.04693) and (0.04714) respectively with standard 

deviations of (0.02421) and (0.02440); UK one and three month means are 

(0.10009) and (0.10050) respectively with standard deviations of (0.03112) and 

(0.03063) and finally US one and three month means are (0.07645) and 

(0.07770) respectively with standard deviations of (0.03371) and (0.03419). 

The highest mean is for the UK and the lowest for Japan. The standard 

deviations of Hong Kong and Japan are the lowest.

5.3. Analysis of Results

In this section we discuss the results. The tables are organised such that in the 

first section of the table we analyse the bond prices. Bond prices are calculated 

for maturities ranging from 5 to 15 years and across short-term interest rates 

from 5% to 11%. Bond prices are calculated using the Box method for the 

Vasicek model (y = 0), Cox, Ingersoll and Ross (CIR) model (y = 0.5), Brennan 1

1 C K L S  ( 1 9 9 2 )  t a k e  a n  a p p r o x im a t io n  o f  t h is  e x p r e s s io n
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and Schwartz model (y= l) and the actual market y. Further we also calculate 

analytical bond prices for the CIR model using the formula in the original CIR 

paper. In the second part of each table we calculate both American type call and 

put options based on the zero coupon bonds. Note that as the underlying 

instrument is a zero coupon bond the value of the American call option is the 

same as European call option. We exploit this feature to check the accuracy of 

our numerical CIR2 call price. We calculate analytical call prices using the 

formula provided by CIR in their original paper. We calculate both short dated 

and long dated call options. The short dated call options are based on a 5-year 

bond with an expiry date of 1 year and is during the last year before the bond 

matures. Similarly long dated options are based on 10-year bond with an expiry 

date of 5 years during the last 5-year’s of the bond. Finally call and put option 

prices are calculated across a wide range of exercise prices. The exercise prices 

are chosen so as to highlight the variation of contingent claim prices across the 

standard models. We take the market price of risk to be zero. The analysis is 

based on annualised estimates in the tables to make it consistent with the grid. 

Table 5.2 contains the estimates of the historical parameters of the different 

countries considered.

5.3.1. Australia

The results for Australia dollar imply an unrestricted estimate of y =  1.4052 for 

the one month and y = 1.0515 for the three months rate. These results compare

2 W e  a l s o  a t t e m p t e d  t o  c a l c u la t e  t h e  a n a ly t i c a l  p r i c e s  f o r  t h e  V a s i c e k  m o d e l .  H o w e v e r ,  w e  

f o u n d  t h a t  t h e  a n a ly t i c a l  f o r m u la  d i d  n o t  le a d  t o  m e a n in g f u l  p r i c e s  e x c e p t  in  t h e  c a s e  o f  H o n g
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to Tse’s (1995) estimate for three-month money market date of 0.6763 and 

implies that the volatility of rates has become more dependent on the rate level in 

recent years. The three-month rate is very close to the assumed value of the 

Brennan and Schwartz model.

With regard to Table 5.3 the market y bond prices differ enormously when 

compared with the standard models. The discrepancy increases as the term to 

maturity of the bond increases. For example, if we consider a 15-year bond at 

11% interest rate, we see that market y price is 33.1099, y = l  price is 61.2186, 

y = 0.5 price is 81.4529 and y = 0 price is 85.0643. For y = 0.5 and y = 0bond 

prices are very similar across both interest rate and maturity dates. Both call and 

put option prices vary widely depending on which model is used. Market y call 

prices are close to zero indicating that for the exercise prices chosen, the options 

are out of the money. For y = 0.5 call prices vary widely indicating that the 

exercise prices chosen ensure that the call options are both in the money and out 

of the money. For market y put prices we find the exercise prices chosen lead to 

the puts being deeply in the money and as a result the intrinsic value dominates.

Turning to Table 5.4, we find that market y and y = 1 bond prices are similar 

irrespective of the term to maturity of the bonds. For y = 0.5 and y = 0bond 

prices are very similar whereas between y = l a n d  y = 0 .5 they are not. As a 

result we find that market y and y = 1, puts and calls are similar.

K o n g .  F o r  e x a m p le  f o r  1 m o n t h  A u s t r a l i a ,  5 %  in t e r e s t  r a t e ,  5  y e a r  m a t u r i t y ,  b o n d  p r i c e  u s in g  

t h e  a n a ly t i c a l  f o r m u a l  i s  9 . 8  x  1 0 10.
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5.3.2. Canada

The results for the Canadian dollar imply an unrestricted estimate of y = 0.3912 

for the one month rate and y = 0.3700 for the three-month rate. These results 

compare to Tse’s (1995) estimate for three-month money market data of -  

0.3600, which was not statistically different from zero.

Turning to Table 5.5 the market y bond prices are similar to y = 0.5 bond prices. 

For y = 1 bond prices collapse as the term to maturity increases. For example, 

for y = 1, a 15 year bond at 11% is only valued at 9.8069. As a result we find 

that market y and y = 0.5 option prices are very similar and y = l a n d  

y = 0 option prices are substantially different.

Turning to Table 5.6 market y bond prices are similar to y = 0.5 bond prices. As 

before y = 1 bond prices collapse as the term to maturity increases, for example 

for y = 1, a 15-year bond at 11% is only valued at 10.2977. As a result we find 

that the market y and y = 0.5 option prices are similar whilst y = 1 and 

y = 0 option prices differ substantially from market y prices.

5.3.3. Hong Kong

The results for the Hong Kong dollar imply an unrestricted estimate of 

y = 0.0076 for the one month and y = 0.3221 for the three months rate. These
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results compare to Tse’s (1995) estimate for three-month market date of 1.5997 

and implies that the volatility of rates has become less dependent on the rate level 

in recent years.

Turning to Table 5.7 as the term to maturity increases bond prices collapse for all 

models. For example, for a 15-year bond at 11 %, the market y bond price is 

2.9151, y = 0.5 bond price is 0.6895 and y = 0bond price is 2.9967. There was 

no convergence for y = 1, this is not surprising we take into that actual market 

y = 0.0076. Further this is the only model where the analytical formula for 

default free bonds derived by Vasicek (1977) produces acceptable bond prices. 

These are given below:

5% 8% 11%

5 51.4756 45.2315 39.7448

10 22.1594 17.7003 14.1385

15 13.3821 9.9633 7.4179

This indicates than only when market y is close to zero will numerical prices be 

of the same order as analytical Vasicek prices. Market y bond prices are similar 

to y = 0 bond prices. This results with y = 0 option prices being similar to 

market y prices. This is in sharp contrast to y = 0.5 option prices.

In Table 5.8 as the term to maturity increases bond prices collapse except for 

y = 0 .  For y = 0 .5 bond prices are the closest to market y prices. For
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y = 1 bond prices are considerably lower than market y bond prices, whereas

y = 0 bond prices are higher than market y bond prices. This results with the 

y = 0 option prices being substantially different from the prices of other models.

5.3.4. Japan

The results for Japanese yen imply an unrestricted estimate of y = 0.3985 for the 

one-month rate and y = 0.3870for the three-month rate. These results compare 

to Tse’s (1995) estimate for three-month money market data of 0.6187, Shoji 

and Ozaki’s (1996) estimate of 1.5443 for the one-month CD rate; Hiraki and 

Takezawa’s (1996) estimates using offshore rates of 0.392 for the one-month 

rate and 0.367 for the three-month rate. Nowman (1997b) reports using also the 

Euro-currency one-month rate as used here an estimate of 0.9838 indicating the 

volatility has fallen over the last two years. Finally Chan et al (1992b) using the 

Gensaki rate reported y = 2.4353.

Turning to Table 5.9 there is wide difference in bond price amongst the models. 

With y = 1 bond prices are always lower than the market y price and y = 0 bond 

price always higher than market y bond prices. This difference leads to the y = 0 

option prices being higher than the option prices of other models. In Table 5.10 

we have the same trends as for Table 5.9.

5.3.5. United Kingdom
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The results for British sterling pound imply an unrestricted estimate of 

y = 1.0461 for the one-month rate and y = 1.3564 for the three-month rate. 

These results compare to Tse’s (1995) estimate for three-month money market 

data of 0.1132, Dahlquist’s (1996) estimate of 0.1562 using monthly one-month 

Euro-currency rates, and Nowman’s (1997a) estimate using monthly one-month 

interbank rates of 0.2898. This implies the volatility of rates has become more 

dependent on the level of rates in recent years.

In Table 5.11 market y and y = 1 bond prices are very similar across all range of 

maturities considered. For y = 0 .5 and y = 0bond prices are higher than actual 

market y prices across all maturity ranges. These differences translates onto 

option prices, with market y and y = 1 option prices being substantially different 

than y = 0.5 and y = 0 option prices.

Turning to Table 5.12 we see that all models yield bond prices, which are 

substantially higher than market y bond prices. This leads to option prices for 

market y which are substantially different.

5.3.6. United States

The results for U.S. dollar imply an unrestricted estimate of y = 1.122 for the 

one-month rate and y = 1.2660 for the three months rate. These results compare 

to Tse’s (1995) estimate for three month money market data of 1.7283, Shoji 

and Ozaki’s (1996) estimate of 1.1473 for the one month US T. bill rate and
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CKLS’s estimate of 1.4999 using one US T. bill data. Nowman (1997b) who

also used the one-month Euro-currency rate used here reported an estimate of 

1.0519 indicating only a marginal increase in volatility over the last two years.

In Table 5.13 all models yield bond prices which are higher than the market y 

bond prices. However, y = 1 is reasonably close to market y bond prices. This 

leads to market y and y = 1 option prices being different order from y = 0.5 and 

y = 0 option prices.

In Table 5.14 all models yield bond prices which are higher than market y bond 

prices. This leads to market y option prices, which are of different order from 

the options of other models.

5.4. Conclusion

In this Chapter we have applied the Box method to value default free bonds and 

contingent claims starting from the CKLS model. Using the Box method and 

historical estimates of the CKLS model obtained for Australia, Canada, Hong 

Kong, Japan, UK and US we calculated implied bond and contingent claims 

prices for these currencies. Our results indicate that the Box method can be used 

to value default free bonds and contingent claims in a wide range of economies. 

Secondly that default free bond prices and contingent claim prices are sensitive 

to the underlying interest rate model used.
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Table 5.1.

Summary Statistics

r(t) T Mean Standard Deviation
Australia May’86-Dec’97
1-Month 140 0.09822 0.04152
3-Month 140 0.09881 0.04191
Canada Feb’81-Dec’97
1-Month 203 0.08992 0.03924
3-Month 203 0.09108 0.03859
Hong Kong Feb’86-Dec’97
1-Month 143 0.05928 0.02123
3-Month 143 0.06105 0.02029
Japan Feb’81-Dec’97
1-Month 203 0.04693 0.02421
3-Month 203 0.04714 0.02440
UK Feb’81-Dec’97
1 -Month 203 0.10009 0.03112
3-Month 203 0.10050 0.03063
US Feb’81-Dec’97
1-Month 203 0.07645 0.03371
3-Month 203 0.07770 0.03419
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Table 5.2.

Gaussian Estimates of CKLS short-term Interest Rate Model

dr(t)=  {a + ßr(t)]dt + o rYdZ

AUSTRALIA
1-Month 0.0008 -0.0164 0.1415 1.4052

(0.0009) (0.0132) (0.0510) (0.1477)

3-Month 0.0008 -0.0157 0.0636 1.0515

CANADA
(0.0009) (0.0127) (0.0212) (0.1367)

1 -Month 0.0015 -0.0240 0.0180 0.3912
(0.0011) (0.0129) (0.0046) (0.1001)

3-Month 0.0014 -0.0227 0.0166 0.3700

HONG KONG
(0.0011) (0.0127) (0.0041) (0.0962)

1 -Month 0.0046 -0.0755 0.0086 0.0076
(0.0016) (0.0295) (0.0040) (0.0020)

3-Month 0.0030 -0.0455 0.0161 0.3221

JAPAN
(0.0017) (0.0283) (0.0088) (0.1891)

1-Month -0.0001 -0.0061 0.0125 0.3985
(0.0003) (0.0078) (0.0021) (0.0489)

3-Month -0.0002 -0.0034 0.0090 0.3870

UK
(0.0002) (0.0059) (0.0016) (0.0519)

1 -Month 0.0015 -0.0183 0.0719 1.0461
(0.0012) (0.0138) (0.0347) (0.2046)

3-Month 0.0013 -0.0161 0.1403 1.3564

US
(0.0011) (0.0136) (0.0636) (0.1925)

1 -Month 0.0014 -0.0258 0.0927 1.1122
(0.0007) (0.0124) (0.0216) (0.0858)

3-Month 0.0011 -0.0203 0.1224 1.2660
(0.0006) (0.0110) (0.0305) (0.0927)
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Table 5.3,

1 Month Australia, a  = 0.0096, |3 = -0.1968, a  = 1.6980, Market y = 1.4052
At = 0.05, Ar = 0.5% :

All options are written on zero coupon bonds with a face of $100.00

M a t u r i t y  

o f  B o n d

E x p i r y  o f  

O p t i o n

r(%) E x e r c i s e

P r i c e

A s s e t /

O p t io n

OII A n a l y t i c  

Y =  0 .5

IOÖII
Y =  1 M a r k e t  y

5 5 B o n d 9 4 . 1 6 9 6 9 2 . 7 2 8 2 9 2 . 6 3 4 4 8 3 .9 3 6 4 7 4 .1 2 6 2

8 9 2 . 3 0 7 7 9 0 . 4 8 5 5 9 0 . 3 6 8 0 8 0 .0 4 9 8 6 7 .8 3 8 3

11 9 0 .4 5 0 3 8 8 . 2 9 7 0 8 8 .1 4 6 7 7 6 . 6 8 1 7 6 2 .9 4 0 5

10 5 B o n d 9 1 . 3 2 2 9 8 9 .1 6 5 9 8 9 . 0 4 1 5 7 4 .9 9 1 3 5 4 .2 9 8 3

8 8 9 .5 1 7 3 8 7 .0 0 9 3 8 6 . 8 5 4 6 7 1 .4 8 8 1 4 9 . 0 9 5 4

11 8 7 . 7 1 6 0 8 4 .9 0 4 8 8 4 . 7 1 9 7 6 8 .4 5 8 1 4 5 .2 1 0 1

15 5 B o n d 8 8 . 5 6 2 2 8 5 .7 4 0 4 8 5 .5 7 9 7 6 7 . 0 6 1 4 3 9 .8 5 9 6

8 8 6 . 8 1 1 2 8 3 .6 6 6 7 8 3 .4 7 7 8 6 3 . 9 2 8 4 3 5 .9 8 7 3

11 8 5 .0 6 4 3 8 1 .6 4 3 1 8 1 . 4 5 2 9 6 1 . 2 1 8 6 3 3 .1 0 9 9

5 1 8 8 0 C a l l 1 6 .7 4 0 0 1 5 .8 9 2 8 1 5 .7 2 7 1 7 . 8 4 9 2 0 . 3 6 2 2

8 5 1 2 .0 4 6 8 1 1 .3 0 1 2 1 1 .1 4 5 8 4 .1 8 0 1 0 .0 0 7 9

9 0 7 .3 5 6 3 6 . 7 1 8 9 6 . 5 8 3 9 1 .2 3 9 0 0.0000
9 5 2 . 6 6 8 4 2 . 1 4 6 0 2 . 0 5 1 6 0.0000 0.0000

5 1 8 8 0 P u t 3 .0 8 5 7 3 . 0 4 9 7 3 . 7 5 1 4 1 2 .1 6 1 7

8 5 3 . 5 4 7 2 3 . 4 6 8 0 5 .8 3 6 1 1 7 .1 6 1 7

9 0 4 . 0 9 2 7 4 . 4 2 3 0 9 . 9 5 0 2 2 2 .1 6 1 7

9 5 4 . 8 0 2 2 5 . 6 2 0 9 1 4 .9 5 0 2 2 7 .1 6 1 7

10 5 8 8 0 C a l l 1 5 .8 2 7 9 1 4 .8 8 7 0 1 4 .7 1 9 6 7 .8 5 9 3 0 . 1 3 4 0

8 5 1 1 .2 3 6 9 1 0 .3 9 7 7 1 0 .2 4 1 8 4 . 1 4 6 9 0.0001
9 0 6 . 6 4 8 2 5 . 9 1 0 7 5 . 7 7 6 4 0 . 8 7 0 7 0.0001
9 5 2 . 0 6 1 7 1 .4 2 6 0 1 .3 3 5 7 0.0000 0.0001

10 8 0 P u t 4 . 4 1 5 7 4 . 4 5 9 4 8 .6 7 5 2 3 0 .9 0 4 6

8 5 5 . 0 7 3 8 5 . 3 3 4 8 1 3 .5 1 1 9 3 5 .9 0 4 6

9 0 5 . 8 4 5 9 6 . 4 8 9 7 1 8 .5 1 1 9 4 0 . 9 0 4 6

9 5 6 . 8 8 8 9 8 . 3 9 4 2 2 3 . 5 1 1 9 4 5 . 9 0 4 6
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Table 5.4

3 Month Australia, a  = 0.0096, ß = -0.1884, a = 0.7632 , Market y= 1.0515
At = 0.05, Ar = 0.5% :

All options are written on zero coupon bonds with a face of $100.00

M a t u r i t y  

o f  B o n d

E x p i r y  o f  

O p t i o n

r ( % ) E x e r c i s e

P r i c e

A s s e t /

O p t i o n

OII A n a l y t i c  

Y =  0 .5

ÖII

Y =  1 M a r k e t  y

5 5 B o n d 9 0 .7 2 0 1 8 5 . 9 6 1 4 8 6 .0 4 6 7 7 5 . 0 1 4 3 7 4 .2 9 0 8

8 8 7 . 6 5 8 0 8 1 .5 5 8 9 8 1 . 6 4 3 6 6 8 . 1 4 5 7 6 7 .1 8 1 7

11 8 4 .6 1 6 5 7 7 . 3 8 1 8 7 7 . 4 6 6 0 6 2 .3 1 9 5 6 1 .1 8 9 9

10 5 B o n d 8 6 .1 6 1 1 7 8 . 9 2 0 0 7 9 . 0 1 7 0 5 6 .8 6 8 5 5 4 .7 9 8 5

8 8 3 .2 4 9 5 7 4 . 8 4 4 2 7 4 . 9 3 5 5 5 0 . 7 7 4 0 4 8 . 5 0 0 7

11 8 0 .3 5 7 4 7 0 . 9 7 8 9 7 1 . 0 6 4 9 4 5 . 7 9 6 4 4 3 . 4 3 4 2

15 5 B o n d 8 1 .8 3 5 7 7 2 .5 0 0 1 7 2 . 6 1 1 4 4 3 . 5 0 9 3 4 0 . 6 8 5 4

8 7 9 . 0 7 0 2 6 8 . 7 5 5 7 6 8 . 8 6 0 6 3 8 . 7 5 4 2 3 5 .8 8 4 5

1 1 7 6 .3 2 3 3 6 5 . 2 0 4 7 6 5 . 3 0 3 6 3 4 . 8 9 0 6 3 2 .0 5 1 1

5 1 8 7 0 C a l l 2 3 .7 1 0 8 1 9 .4 1 7 1 1 9 .1 7 9 3 6 . 2 0 5 4 5 .2 4 4 9

7 5 1 9 .2 6 4 2 1 5 .4 0 7 0 1 5 .1 4 6 7 3 .2 8 3 1 2 .5 0 8 4

8 0 1 4 .8 2 7 9 1 1 .4 8 4 3 1 1 .2 1 5 8 1 .2 4 0 7 0 .7 7 1 1

8 5 1 0 .4 0 1 8 7 . 6 5 4 5 7 . 4 0 0 7 0 . 2 2 0 5 0 .0 8 7 1

5 1 8 7 0 P u t 3 . 8 2 9 6 3 . 9 8 2 4 3 .9 2 1 1 4 .0 4 4 5

7 5 4 . 4 5 6 6 4 . 9 9 8 7 6 .9 9 2 8 7 .8 1 8 3

8 0 5 . 1 6 0 6 6 . 2 2 5 3 1 1 .8 5 4 3 1 2 .8 1 8 3

8 5 5 . 9 6 7 4 7 .7 4 2 1 1 6 .8 5 4 3 1 7 .8 1 8 3

10 5 8 6 5 C a l l 2 6 .5 6 8 9 2 2 .6 0 6 1 2 2 . 3 0 3 0 8 .0 9 5 8 6 . 6 7 6 2

7 0 2 2 . 2 4 0 7 1 8 .6 5 9 7 1 8 .3 3 1 6 5 .4 0 3 5 4 .1 8 4 5

7 5 1 7 .9 1 8 0 1 4 .7 2 4 2 1 4 .3 8 4 0 3 . 0 3 5 6 2 . 1 0 5 4

8 0 1 3 .6 0 1 0 1 0 .7 9 9 7 1 0 .4 6 7 7 1 .1 8 9 0 0 . 6 4 2 0

10 6 5 P u t 4 . 7 3 7 2 5 . 4 9 4 2 1 4 .2 2 6 0 1 6 .4 9 9 3

7 0 5 . 5 3 0 4 5 . 5 3 0 4 1 9 .2 2 6 0 2 1 .4 9 9 3

7 5 6 . 4 1 4 8 6 . 4 1 4 8 2 4 . 2 2 6 0 2 6 .4 9 9 3

8 0 7 . 4 1 1 6 7 . 4 1 1 6 2 9 . 2 2 6 0 3 1 .4 9 9 3
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Table 5.5,

1 Month Canada, a  = 0.0180,(3 = -0.2880, a  = 0.2160, Market y= 0.3912
At = 0.05, Ar = 0.5% :

All options are written on zero coupon bonds with a face of $100.00

M a t u r i t y  

o f  B o n d

E x p i r y  o f  

O p t i o n

r ( % ) E x e r c i s e

P r i c e

A s s e t /

O p t i o n

OII A n a l y t i c  

Y =  0 .5

ÖII

Y =  1 M a r k e t  y

5 5 B o n d 7 7 .4 6 4 5 6 8 . 8 4 9 5 6 9 . 0 1 3 3 6 6 . 0 1 6 6 7 0 .6 5 8 1

8 7 1 . 7 2 5 0 6 1 . 6 1 4 5 6 1 . 7 6 9 5 5 8 . 3 8 6 6 6 3 . 6 2 6 6

11 6 6 . 1 6 1 2 5 5 . 1 3 9 7 5 5 .3 0 2 1 5 1 .6 1 7 8 5 7 . 2 4 1 6

10 5 B o n d 6 1 . 9 7 9 8 4 3 .2 4 1 1 4 3 . 5 9 0 2 3 4 .2 9 3 8 4 7 .8 2 3 5

8 5 7 . 0 2 2 4 3 7 . 2 6 1 8 3 7 .5 3 7 1 2 8 . 1 6 4 6 4 1 . 8 6 6 0

11 5 2 .2 2 4 7 3 2 . 1 0 9 4 3 2 . 3 3 6 7 2 3 .1 7 1 5 3 6 .5 8 0 3

15 5 B o n d 4 9 . 7 8 4 0 2 6 . 8 0 3 2 2 7 . 1 9 0 9 1 5 .6 1 2 6 3 2 .3 9 7 9

8 4 5 . 7 8 7 7 2 2 . 8 8 9 8 2 3 . 1 9 3 9 1 2 .3 4 7 9 2 8 . 2 2 0 4

11 4 1 . 9 2 0 3 1 9 .5 4 7 8 1 9 .7 9 2 4 9 . 8 0 6 9 2 4 .5 2 9 3

5 1 8 5 5 C a l l 2 3 .8 4 3 3 1 2 .1 8 9 9 1 2 .3 4 8 1 7 . 9 8 8 8 1 4 .5 9 6 3

6 0 2 0 .1 4 9 3 8 .5 5 8 4 8 .7 0 2 7 3 . 7 6 6 0 1 1 .0 0 4 5

6 5 1 6 .5 8 2 1 5 . 4 7 4 8 5 . 6 0 1 4 0 . 8 5 0 0 7 .8 3 9 8

7 0 1 3 .1 4 1 3 3 .0 6 3 3 3 . 1 7 3 0 0 . 0 3 4 2 5 .1 6 9 3

5 1 8 5 5 P u t 3 .8 7 3 7 1 .5 0 5 0 0 .1 3 4 5 2 .0 1 5 4

6 0 5 . 1 2 5 0 2 . 8 8 0 2 1 .6 1 3 4 3 .4 0 0 1

6 5 6 . 6 5 6 9 5 . 1 2 2 8 6 . 6 1 3 4 5 .4 0 1 4

7 0 8 .2 0 5 1 8 . 5 1 8 5 1 1 .6 1 3 4 8 . 1 4 5 0

10 5 8 3 0 C a l l 3 5 . 9 4 7 6 1 9 .0 5 3 2 1 9 .4 0 5 0 1 0 .7 0 7 8 2 3 . 2 3 7 0

3 5 3 2 . 5 6 0 6 1 6 .2 0 5 8 1 6 .6 0 3 0 7 .9 1 4 8 2 0 .3 4 0 5

4 0 2 9 .2 1 5 5 1 3 .4 7 6 7 1 3 .9 2 5 4 5 . 3 0 9 8 1 7 .5 4 1 6

4 5 2 5 . 9 1 3 4 1 0 .8 9 7 2 1 1 .3 8 6 8 3 .0 6 5 3 1 4 .8 5 5 3

10 3 0 P u t 2 . 7 3 3 0 2 . 2 9 1 5 1 .9 0 4 2 2 .4 9 0 4

3 5 3 . 8 2 2 0 3 . 8 4 6 4 6 . 8 3 5 4 3 .9 0 1 4

4 0 5 . 0 9 5 6 6 .0102 1 1 .8 3 5 4 5 . 7 2 7 0

4 5 6 .5 6 2 5 8 . 9 1 7 0 1 6 .8 3 5 4 8 .0 1 9 2
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Table 5.6,

3 Month Canada, a  = 0.0168,(3 = -0.2724, a  = 0.1992, Market y = 0.3700
At = 0.05, Ar = 0.5% :

All options are written on zero coupon bonds with a face of $100.00

M a t u r i t y  

o f  B o n d

E x p i r y  o f  

O p t i o n

r ( % ) E x e r c i s e

P r i c e

A s s e t /

O p t io n

II o A n a l y t i c  

Y =  0 .5

y = 0 . 5 y =  1 M a r k e t  7

5 5 B o n d 7 7 . 5 2 6 6 6 9 . 2 8 7 5 6 9 . 4 3 5 9 6 6 . 7 9 6 6 7 1 .2 7 4 8

8 7 1 . 5 4 0 6 6 1 . 8 5 3 9 6 1 . 9 9 6 0 5 9 .0 4 7 3 6 4 . 0 7 0 4

11 6 5 . 7 5 4 2 5 5 . 2 1 7 9 5 5 . 3 7 0 4 5 2 .1 5 2 3 5 7 .5 2 9 9

10 5 B o n d 6 2 . 1 9 9 0 4 3 . 7 1 7 9 4 4 . 0 5 1 0 3 5 . 5 9 7 6 4 8 . 9 4 4 0

8 5 6 . 9 4 7 6 3 7 .3 9 7 3 3 7 . 6 5 6 2 2 9 .1 3 8 1 4 2 .6 6 7 1

11 5 1 . 8 8 1 9 3 1 .9 9 6 5 3 2 . 2 0 3 5 2 3 . 8 6 6 5 3 7 .1 0 6 5

15 5 B o n d 5 0 . 1 4 2 4 2 7 . 1 5 3 6 2 7 . 5 3 1 9 1 6 .6 5 4 2 3 3 . 6 8 5 2

8 4 5 . 8 8 7 7 2 2 . 9 6 1 4 2 3 . 2 5 1 9 1 3 .0 7 6 8 2 9 . 1 9 3 0

11 4 1 .7 8 4 1 1 9 .4 1 6 4 1 9 .6 4 6 4 1 0 .2 9 7 7 2 5 .2 3 2 0

5 1 8 5 5 C a l l 2 3 . 5 8 0 0 1 2 .2 4 0 5 1 2 .3 6 6 3 8 .5 9 4 7 1 4 .9 0 2 7

6 0 1 9 .9 1 4 4 8 . 5 4 5 2 8 .6 4 7 3 4 . 2 4 3 2 1 1 .2 7 5 1

6 5 1 6 .3 8 9 1 5 . 4 1 4 6 5 . 4 9 5 2 1 .0 3 7 0 8 .0 7 7 1

7 0 1 3 .0 1 4 8 2 . 9 8 7 9 3 . 0 4 8 4 0 .0 4 5 3 5 . 3 7 5 0

5 1 8 5 5 P u t 3 . 7 4 5 4 1 .2 2 5 2 0 . 0 7 7 4 1 .8 7 0 5

6 0 5 .0 2 8 1 2 .5 6 2 1 1 .1 2 0 9 3 . 2 0 0 2

6 5 6 . 5 1 4 9 4 .7 5 9 1 5 .9 5 2 7 5 .1 5 8 5

7 0 8 .2 1 4 9 8 .2 0 5 7 1 0 .9 5 2 7 7 .8 5 0 8

10 5 8 3 0 C a l l 3 5 . 9 9 3 0 1 9 .1 4 1 5 1 9 .4 0 9 5 1 1 .4 5 6 7 2 3 .8 8 9 3

3 5 3 2 .5 6 2 1 1 6 .2 9 5 1 1 6 .5 8 1 3 8 . 5 8 8 2 2 0 . 9 5 7 6

4 0 2 9 . 2 3 4 7 1 3 .5 7 0 2 1 3 .8 7 6 7 5 .8 6 8 5 1 8 .1 3 4 3

4 5 2 5 . 9 5 2 8 1 0 .9 9 7 7 1 1 .3 2 3 4 3 . 4 6 9 2 1 5 .4 2 1 7

10 3 0 P u t 2 .6 9 4 1 2 . 0 7 2 4 1 .2 2 7 5 2 .3 5 9 9

3 5 3 . 7 8 5 4 3 . 5 7 7 7 5 . 8 6 1 9 3 .3 7 0 3

4 0 5 . 0 6 8 4 5 . 7 2 0 8 1 0 .8 6 1 9 5 .5 0 2 6

4 5 6 . 5 4 4 2 8 . 6 4 9 7 1 5 .8 6 1 9 7 .7 3 4 9
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Table 5.7,

1 Month Hong Kong, a  = 0.0552,(3 = -0.9060, a  = 0.1032, Market y = 0.0076
At = 0.05, Ar = 0.5% :

All options are written on zero coupon bonds with a face of $100.00

M a t u r i t y  

o f  B o n d

E x p i r y  o f  

O p t i o n

r ( % ) E x e r c i s e

P r i c e

A s s e t /

O p t i o n

OIIc
- A n a l y t i c  

y -  0 .5

II p l/
l

Y =  1 M a r k e t  y

5 5 B o n d 4 9 . 3 4 0 5 4 4 . 0 1 0 2 4 4 .0 4 1 1 N C 4 9 .2 0 3 3

8 4 4 . 0 2 3 0 3 8 .8 5 2 7 3 9 . 0 2 2 9 N C 4 3 .8 8 3 8

11 3 9 .1 1 9 5 3 4 .2 9 9 5 3 4 . 5 3 4 7 N C 3 8 .9 8 6 2

10 5 B o n d 1 5 .5 6 1 0 8 .4 5 8 3 8 . 6 7 3 6 N C 1 5 .3 6 8 4

8 1 3 .2 4 2 9 6 . 9 2 8 0 7 .1 4 8 1 N C 1 3 .0 6 2 7

11 1 1 .1 5 6 8 5 . 6 7 4 6 5 . 8 7 8 0 N C 1 0 .9 9 3 1

15 5 B o n d 4 . 3 1 2 6 1 .0 3 3 9 1.1000 N C 4 .2 1 3 1

8 3 .6 1 9 3 0 . 8 1 4 2 0 .8 7 2 1 N C 3 .5 2 6 6

11 2 .9 9 6 7 0 . 6 4 1 2 0 . 6 8 9 5 N C 2 .9 1 5 1

5 1 8 3 5 C a l l 1 3 .4 6 3 5 6 . 0 9 3 4 7 . 6 3 0 2 N C 1 3 .3 0 4 4

4 0 1 0 .0 6 0 9 1 .7 3 5 8 3 . 7 0 2 9 N C 9 .8 9 5 9

4 5 7 . 2 1 4 9 0 . 1 8 4 5 1 .0 8 4 2 N C 7 .0 5 3 8

5 0 4 . 9 2 2 6 0 . 0 0 4 7 0 . 1 2 8 7 N C 4 .7 7 7 6

5 1 8 3 5 P u t 1 .4 5 9 6 0 . 2 3 0 9 N C 1 .4 3 0 9

4 0 3 .0 0 3 7 1 .5 9 6 6 N C 2 .9 7 1 5

4 5 5 . 2 7 9 0 5 .9 7 1 1 N C 5 .2 5 7 9

5 0 8 .2 6 6 3 1 0 .9 7 7 1 N C 8 .2 7 3 7

10 5 8 5 C a l l 1 1 .0 5 2 9 4 . 5 2 0 4 5 . 1 9 7 8 N C 1 0 .8 7 3 9

10 8 .9 8 9 3 1 .3 8 1 4 3 .2 9 7 1 N C 8 .8 2 1 5

15 7 . 1 7 1 0 0 .2 0 2 3 1 .6 9 4 2 N C 7 .0 1 0 4

20 5 . 6 2 4 0 0 . 0 1 6 4 0 . 6 6 3 4 N C 5 .4 7 3 8

10 5 P u t 0 . 2 4 1 0 0 . 0 6 0 4 N C 0 .3 0 3 2

10 1 .6 6 0 6 2 . 8 5 1 7 N C 1 .6 6 3 8

15 4 . 2 9 2 8 7 . 8 5 1 7 N C 4 .3 2 3 8

20 7 . 8 3 9 6 1 2 .8 5 1 7 N C 7 .9 1 3 3
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Table 5.8,

3 Month Hong Kong, a  = 0.0360, (3 = -0.5460, a  = 0.1932, Market y= 0.3221
At = 0.05, Ar = 0.5% :

All options are written on zero coupon bonds with a face of $100.00

M a t u r i t y  

o f  B o n d

E x p i r y  o f  

O p t i o n

r ( % ) E x e r c i s e

P r i c e

A s s e t /

O p t io n

OII A n a l y t i c  

Y =  0 .5

y  =  0 .5 Y =  1 M a r k e t  y

5 5 B o n d 6 6 . 0 3 6 8 5 6 . 6 2 2 9 5 6 .7 7 0 3 5 3 . 1 2 9 7 5 9 .4 8 6 0

8 6 0 .7 4 4 5 5 0 . 5 5 9 0 5 0 . 7 1 9 9 4 7 . 8 4 9 8 5 3 .5 4 2 3

11 5 5 . 6 4 6 2 4 5 . 1 4 4 5 4 5 .3 2 6 1 4 2 . 4 7 3 0 4 8 . 1 2 6 7

10 5 B o n d 4 0 . 7 0 2 5 2 2 . 8 5 2 5 2 3 .1 1 4 1 1 6 .8 5 6 9 2 8 . 5 9 7 0

8 3 7 .0 7 2 3 1 9 .5 3 8 7 1 9 .7 6 0 7 1 4 .3 0 7 4 2 4 .9 7 1 4

11 3 3 . 5 8 5 0 1 6 .7 0 5 5 1 6 .9 0 0 0 1 1 .8 7 5 1 2 1 .7 4 3 3

15 5 B o n d 2 5 .0 1 0 3 8 .3 6 8 1 8 . 5 3 6 7 4 . 0 9 0 8 1 3 .2 3 8 8

8 2 2 .7 6 3 3 7 . 0 6 8 3 7 . 2 0 5 7 3 . 3 7 7 0 1 1 .4 9 1 7

11 2 0 . 6 0 5 2 5 .9 7 0 3 6 . 0 8 4 7 2 . 7 1 8 2 9 .9 4 3 1

5 1 8 4 5 C a l l 2 1 .8 2 0 9 1 0 .0 8 6 6 1 0 .4 7 6 4 7 .0 0 2 1 1 3 .7 8 4 4

5 0 1 8 .2 3 5 5 6 . 3 7 3 5 6 . 8 2 9 9 2 . 8 5 6 6 1 0 .2 2 5 7

5 5 1 4 .8 5 6 8 3 . 4 3 3 6 3 .8 6 8 1 0 . 3 7 9 4 7 . 1 4 3 7

6 0 1 1 .6 7 7 8 1 .4 5 7 9 1 .7 8 6 2 0 . 0 0 1 3 4 . 6 0 4 4

5 1 8 4 5 P u t 2 . 9 8 9 0 1 .0 2 4 5 0 . 1 2 1 8 1 .6 7 6 3

5 0 4 . 3 1 5 8 2 .4 1 5 1 2 .1 5 0 2 3 .0 6 4 7

5 5 5 . 9 2 1 2 5 . 0 0 8 5 7 . 1 5 0 2 5 .1 3 3 5

6 0 7 .8 0 4 5 9 .2 8 0 1 1 2 .1 5 0 2 8.0001

10 5 8 15 C a l l 2 8 . 1 4 6 6 1 1 .7 9 4 2 1 2 .2 6 0 2 7 . 1 4 3 9 1 7 .0 9 0 2

20 2 5 . 3 0 9 0 9 .2 4 3 1 9 . 9 2 3 3 4 . 8 3 3 5 1 4 .6 2 9 4

2 5 2 2 .5 5 4 3 6 . 8 7 7 4 7 . 7 5 6 3 2 .7 5 6 1 1 2 .3 0 3 6

3 0 1 9 .8 8 5 8 4 . 8 8 7 4 5 . 8 1 0 2 1 .1 8 4 5 1 0 .1 3 5 0

10 15 P u t 1 .2 4 7 5 0 . 9 3 5 4 0 . 8 1 6 0 1 .0 9 2 4

20 2 .3 7 2 7 2 . 5 8 9 2 5 . 6 9 2 6 2 .4 5 3 4

2 5 3 .8 5 0 5 5 . 6 0 4 7 1 0 .6 9 2 6 4 . 4 9 7 5

3 0 5 . 6 7 0 2 1 0 .2 3 9 3 1 5 .6 9 2 6 7 . 2 7 1 6
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Table 5.9,

1 Month Japan, a  = 0.0012,P = -0.0732,a  = 0.1500 , Market y = 0.3985
At = 0.05, Ar = 0.5% :

All options are written on zero coupon bonds with a face of $100.00

M a t u r i t y  

o f  B o n d

E x p i r y  o f  

O p t i o n

r ( % ) E x e r c i s e

P r i c e

A s s e t /

O p t io n

OII A n a l y t i c

7 = 0 . 5

toÖII

Y =  1 M a r k e t  y

5 5 B o n d 8 6 . 5 6 0 2 8 0 .0 1 0 4 8 0 . 0 8 3 7 7 8 .4 3 0 1 8 1 .1 5 1 6

8 7 8 .1 6 9 1 6 9 . 3 7 4 3 6 9 . 4 7 8 3 6 7 . 2 3 0 2 7 0 .7 9 2 8

1 1 7 0 .1 7 1 3 6 0 .1 5 2 1 6 0 . 2 8 4 7 5 7 .7 0 5 9 6 1 .6 8 4 8

10 5 B o n d 8 6 . 2 3 5 4 7 1 . 1 6 1 2 7 1 . 1 9 7 6 6 2 . 7 0 5 5 7 5 .0 3 8 9

8 7 6 . 5 7 3 0 5 6 . 1 8 4 8 5 6 . 2 6 4 5 4 5 . 9 9 4 6 6 0 . 8 9 2 0

11 6 7 . 4 1 2 8 4 4 . 3 6 0 3 4 4 . 4 6 2 3 3 4 . 0 2 6 0 4 9 . 2 0 5 6

15 5 B o n d 8 7 .8 0 4 1 6 9 . 7 5 9 7 6 9 . 9 7 1 3 5 1 . 6 8 7 8 7 5 . 3 9 6 2

8 7 7 . 8 5 6 5 5 2 . 7 4 5 9 5 2 . 7 2 3 7 3 2 .6 5 5 5 5 9 . 7 4 9 0

11 6 8 .4 3 0 5 3 9 . 8 8 1 7 3 9 .8 9 4 1 2 1 .1 5 9 3 4 7 .0 8 2 1

5 1 8 6 0 C a l l 2 5 .7 4 7 1 1 4 .5 8 6 2 1 4 .6 6 0 9 1 1 .8 3 4 9 1 6 .3 5 6 5

6 5 2 2 .1 5 6 5 1 0 .6 5 9 5 1 0 .7 1 1 5 7 .2 5 3 5 1 2 .5 4 5 8

7 0 1 8 .7 2 2 8 7 .2 2 5 1 7 . 2 5 0 4 3 .0 2 7 1 9 .1 5 9 1

7 5 1 5 .4 3 4 0 4 . 4 3 3 0 4 . 4 4 6 4 0 . 1 5 3 0 6 . 2 8 4 2

5 1 8 6 0 P u t 4 . 0 3 7 4 0 . 8 3 5 3 0 . 0 0 5 4 1 .3 2 7 6

6 5 5 .3 7 2 9 1 .8 0 0 0 0 . 1 4 0 2 2 .4 2 7 4

7 0 6 . 9 1 6 6 3 . 5 2 3 7 2 . 7 7 0 0 4 .1 2 8 3

7 5 8 .6 6 0 1 6 . 3 3 4 5 7 . 7 7 0 0 6 .5 7 7 9

10 5 8 5 0 C a l l 3 8 . 3 4 2 0 22.6866 2 2 . 7 7 1 6 1 2 .4 9 1 6 2 6 . 9 5 0 4

5 5 3 4 .5 8 4 5 1 9 .7 0 9 1 1 9 .8 0 7 1 9 . 3 1 4 8 2 3 .9 0 2 7

5 0 3 0 . 8 3 2 0 1 6 .8 5 8 0 1 6 .9 7 1 1 6 . 3 6 9 9 2 0 . 9 4 7 6

6 5 2 7 . 0 8 3 0 1 4 .1 4 8 5 1 4 .2 7 7 8 3 . 8 3 2 4 1 8 .0 8 8 0

10 5 0 P u t 5 . 2 7 5 2 4 . 9 3 5 3 4 . 0 0 5 0 5 .4 2 4 7

5 5 6 .3 2 2 5 6 . 8 1 3 6 9 . 0 0 5 0 7 .1 2 0 4

6 0 7 .4 6 4 3 9 . 1 2 6 7 1 4 .0 0 5 0 9 . 1 0 9 6

6 5 8 .7 0 9 5 1 1 .9 1 3 7 1 9 .0 0 5 0 1 1 .4 0 8 6
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Table 5.10

3 Month Japan, a  = 0.0024,(3 = -0.0408, c  -  0.1080, Market y = 0.3870
At = 0.05,Ar = 0.5%:

All options are written on zero coupon bonds with a face of $100.00

M a t u r i t y  

o f  B o n d

E x p i r y  o f  

O p t i o n

r ( % ) E x e r c i s e

P r i c e

A s s e t /

O p t i o n

OII A n a l y t i c  

Y =  0 .5

lOÖII y =  1 M a r k e t  y

5 5 B o n d 8 4 .5 6 0 1 7 8 . 4 2 6 7 7 8 . 4 9 7 3 7 7 . 4 1 8 9 7 9 . 3 7 9 0

8 7 4 . 3 9 6 0 6 6 . 4 8 6 0 6 6 . 5 7 8 7 6 5 . 1 2 7 2 6 7 .6 2 7 7

11 6 4 .9 3 1 3 5 6 .3 6 3 3 5 6 . 4 8 5 7 5 4 .8 5 3 1 5 7 .5 5 7 5

10 5 B o n d 8 4 .5 1 7 4 6 6 . 2 2 7 8 6 6 . 2 3 0 7 5 9 . 3 1 0 4 7 0 .6 5 4 3

8 7 1 . 5 5 3 5 4 7 .7 9 5 1 4 7 . 8 9 3 2 3 9 . 9 8 1 0 5 2 .7 6 7 7

11 5 9 .6 6 3 1 3 4 . 4 9 2 7 3 4 .6 2 5 1 2 7 . 2 0 0 7 3 9 .1 4 0 9

15 5 B o n d 8 8 .5 6 5 9 6 3 .7 3 5 1 6 3 .2 7 4 3 4 5 . 4 1 4 4 7 1 .7 6 0 4

8 7 4 . 5 9 1 8 4 0 . 9 4 5 0 4 0 . 8 2 9 0 2 3 . 3 8 1 4 5 0 . 0 6 2 6

11 6 1 .8 0 3 3 2 6 . 3 0 4 2 2 6 . 3 1 1 2 1 2 .4 6 8 5 3 4 .4 9 3 3

5 1 8 8 0 C a l l 2 2 . 1 9 5 9 1 1 .6 2 4 5 1 1 .7 1 3 1 9 . 7 9 7 2 1 3 .1 5 7 4

8 5 1 8 .8 4 1 7 7 . 7 6 3 8 7 . 8 3 1 9 5 . 2 3 0 7 9 .4 5 6 9

9 0 1 5 .7 2 5 9 4 .5 9 3 1 4 . 6 4 0 5 1 .3 4 8 8 6 . 3 2 5 6

9 5 1 2 .8 4 0 1 2 . 3 1 0 0 2 . 3 4 2 3 0 . 0 5 6 9 3 .8 7 7 5

5 1 8 8 0 P u t 4 . 0 6 3 8 0 . 7 1 6 5 0 . 0 0 6 9 1 .2 2 7 1

8 5 5 .6 4 2 7 1 .8 7 8 1 0 . 4 0 6 3 2 . 5 2 5 6

9 0 7 . 5 2 1 6 4 . 2 4 9 4 4 . 8 7 2 9 4 .6 8 3 5

9 5 9 . 6 9 1 5 8 . 2 4 1 4 9 . 8 7 2 9 7 .9 1 3 5

10 5 8 8 0 C a l l 4 3 . 0 3 5 4 2 1 . 8 1 5 8 2 1 . 9 8 8 2 1 3 .9 4 8 3 2 6 . 7 3 2 0

8 5 3 9 .6 1 5 9 1 8 .8 8 2 3 1 9 .0 9 0 6 1 0 .7 4 7 6 2 3 .8 3 2 5

9 0 3 6 . 2 1 8 0 1 6 .0 9 7 9 1 6 .3 5 4 2 7 . 6 6 8 6 2 1 .0 5 9 1

9 5 3 2 .8 3 8 7 1 3 .4 8 7 2 1 3 .7 7 1 4 4 . 8 7 0 5 1 8 .4 2 0 2

10 8 0 P u t 4 . 8 2 4 6 3 . 1 2 2 4 1 .0 5 3 3 3 .7 7 8 9

8 5 6 . 0 0 2 4 4 . 8 1 7 4 5 . 0 1 8 9 5 . 3 8 5 0

9 0 7 .2 8 6 1 7 . 0 3 6 7 1 0 .0 1 8 9 7 .3 4 6 1

9 5 8 .6 7 4 8 9 . 8 3 4 7 1 5 .0 1 8 9 9 . 6 7 6 0
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Table 5.11

1 Month United Kingdom, a  = 0.0180, P = -0.2196, a  = 0.8628,
Market y = 1.0461 

At = 0.05, Ar = 0.5% :
All options are written on zero coupon bonds with a face of $100.00

M a t u r i t y  

o f  B o n d

E x p i r y  o f  

O p t i o n

r ( % ) E x e r c i s e

P r i c e

A s s e t /

O p t i o n

OII A n a l y t i c  

Y =  0 .5

inÖII

Y =  1 M a r k e t  y

5 5 B o n d 8 8 .3 7 1 8 8 3 .1 9 6 1 8 3 . 3 0 8 2 7 1 .1 8 0 5 7 0 .4 0 1 3

8 8 5 .6 6 5 0 7 9 . 4 7 2 5 7 9 . 5 8 0 5 6 5 .5 2 1 3 6 4 .5 5 4 4

11 8 2 .9 7 3 7 7 5 . 9 1 5 4 7 6 . 0 1 9 6 6 0 . 6 5 5 9 5 9 .5 6 1 5

10 5 B o n d 8 0 .9 2 8 7 7 2 .4 6 0 1 7 2 . 5 8 4 2 4 9 . 2 2 5 7 4 7 . 3 6 5 7

8 7 8 .4 4 8 3 6 9 . 2 0 3 8 6 9 . 3 2 1 3 4 4 . 9 3 2 4 4 2 .9 7 8 1

11 7 5 .9 8 2 1 6 6 . 0 9 3 9 6 6 .2 0 5 1 4 1 . 3 1 3 7 3 9 .3 2 2 9

15 5 B o n d 7 4 .1 1 4 3 6 3 . 1 2 3 6 6 3 . 2 5 6 3 3 4 . 0 5 6 6 3 1 .8 1 8 6

8 7 1 . 8 4 2 8 6 0 . 2 8 6 8 6 0 . 4 1 2 7 3 1 .0 6 8 1 2 8 . 8 4 6 0

11 6 9 . 5 8 4 2 5 7 . 5 7 7 6 5 7 . 6 9 7 0 2 8 .5 5 2 5 2 6 .3 7 4 6

5 1 8 7 0 C a l l 2 1 . 6 4 8 5 1 7 .3 6 7 4 1 7 .0 3 3 8 4 . 3 3 6 0 3 . 5 1 2 2

7 5 1 7 .1 9 9 3 1 3 .3 2 9 4 1 2 .9 6 9 7 1 .8 2 0 5 1 .2 5 8 5

8 0 1 2 .7 6 3 4 9 . 3 6 9 6 9 . 0 0 8 0 0 . 3 7 6 8 0 .1 8 0 1

8 5 8 . 3 4 0 4 5 . 4 9 2 4 5 . 1 7 4 5 0 . 0 0 5 5 0.0000

5 1 8 7 0 P u t 3 .8 3 8 3 4 . 0 6 4 4 5 .1 6 4 9 5 .3 6 5 2

7 5 4 . 4 8 3 9 5 . 0 6 4 4 9 . 4 7 8 7 1 0 .4 4 5 6

8 0 5 . 2 2 8 9 6 . 3 4 9 9 1 4 .4 7 8 7 1 5 .4 4 5 6

8 5 6 . 0 9 2 4 8 . 0 1 6 6 1 9 .4 7 8 7 2 0 .4 4 5 6

10 5 8 6 0 C a l l 2 7 .4 3 3 1 2 2 .4 2 6 5 2 2 . 0 4 8 0 6 . 9 7 1 6 5 .7 8 7 5

6 5 2 3 . 2 2 8 2 1 8 .6 2 3 2 1 8 .2 0 3 5 4 . 3 9 3 7 3 .3 9 9 4

7 0 1 9 .0 3 1 9 1 4 .8 3 5 7 1 4 .3 9 0 2 2 .1 9 5 3 1 .4 8 1 1

7 5 1 4 .8 4 4 5 1 1 .0 6 4 1 1 0 .3 1 7 4 0 . 6 2 8 2 0 . 2 9 3 2

10 6 0 P u t 4 . 9 0 0 6 5 . 3 9 9 4 1 5 .0 6 7 6 1 7 .0 2 1 9

6 5 5 . 7 9 3 8 6 . 6 7 2 7 2 0 . 0 6 7 6 2 2 .0 2 1 9
7 0 6 .7 8 9 8 8.2021 2 5 . 0 6 7 6 2 7 .0 2 1 9

7 5 7 . 9 0 8 9 1 0 .0 7 2 2 3 0 . 0 6 7 6 3 2 .0 2 1 9
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Table 5.12

3 Month United Kingdom, a  =  0.0156,(3 = -0.1932, a  = 1.6836,
Market y = 1.3564 

At = 0.05, Ar = 0.5% :
All options are written on zero coupon bonds with a face of $100.00

M a t u r i t y  

o f  B o n d

E x p i r y  o f  

O p t i o n

r ( % ) E x e r c i s e

P r i c e

A s s e t /

O p t io n

OII A n a l y t i c  

Y =  0 .5

II p in y =  1 M a r k e t  y

5 5 B o n d 9 2 . 5 9 2 0 9 0 . 7 8 5 4 9 0 . 6 8 7 4 8 1 . 1 1 5 4 7 1 .8 6 5 3

8 9 0 .7 6 9 3 8 8 .6 0 0 7 8 8 .4 7 1 9 7 7 .4 5 7 3 6 6 . 5 0 8 6

11 8 8 . 9 5 1 0 8 6 .4 6 8 5 8 6 . 3 0 8 9 7 4 . 2 7 1 9 6 2 .2 2 3 7

10 5 B o n d 8 8 .1 0 4 9 8 5 .2 1 3 8 8 5 . 0 5 6 6 6 8 .9 8 1 7 5 0 .1 5 6 9

8 8 6 .3 7 0 5 8 3 .1 6 3 1 8 2 . 9 7 8 6 6 5 . 8 4 8 2 4 6 .1 3 8 5

11 8 4 .6 4 0 3 8 1 .1 6 1 7 8 0 .9 4 9 9 6 3 . 1 2 3 9 4 2 .9 9 6 1

15 5 B o n d 8 3 . 8 3 5 2 7 9 .9 8 4 1 7 9 . 7 7 5 4 5 8 .6 9 7 8 3 4 .9 8 7 6

8 8 2 .1 8 4 9 7 8 . 0 5 9 2 7 7 . 8 2 6 5 5 6 . 0 3 1 4 3 2 .1 7 2 4

11 8 0 .5 3 8 5 7 6 . 1 8 0 7 7 5 . 9 2 3 7 5 3 .7 1 3 1 2 9 .9 7 3 8

5 1 8 8 0 C a l l 1 5 .4 3 0 4 1 4 .3 1 8 1 1 4 .0 8 0 3 5 . 7 2 0 9 0 . 1 1 9 4

8 5 1 0 .7 6 1 6 9 . 7 6 0 9 9 . 5 3 7 9 2 . 3 8 7 4 0 .0 0 0 0
9 0 6 . 0 9 7 0 5 . 2 1 5 2 5 . 0 2 6 0 0 . 2 3 0 2 0 .0 0 0 0
9 5 1 .4 3 6 5 0 .6 8 1 1 0 . 5 7 2 2 0 .0 0 0 0 0 .0 0 0 0

5 1 8 8 0 P u t 3 . 2 9 2 6 3 . 2 7 4 9 4 . 4 9 5 9 1 3 .4 9 1 4

8 5 3 . 8 0 2 0 3 . 9 5 4 7 7 . 5 6 5 8 1 8 .4 9 1 4

9 0 4 .4 1 4 1 4 . 8 7 6 5 1 2 .5 4 2 7 2 3 .4 9 1 4

9 5 5 . 2 5 9 6 6 . 5 9 4 5 1 7 .5 4 2 7 2 8 . 4 9 1 4

10 5 8 7 5 C a l l 1 8 .5 1 2 6 1 7 .0 8 7 9 1 6 .8 3 6 0 8.2122 0 . 2 5 8 9

8 0 1 4 .0 1 0 9 1 2 .7 1 1 5 1 2 .4 6 7 7 4 . 6 4 7 0 0.0002
8 5 9 . 5 1 2 7 8 .3 3 8 8 8 . 1 1 4 9 1 .4 6 3 2 0.0002
9 0 5 . 0 1 8 2 3 . 9 6 9 9 3 . 7 8 7 0 0 .0 0 0 0 0.0002

10 7 5 P u t 4 . 7 4 3 9 4 .7 0 0 1 9 . 1 6 8 0 2 8 .8 6 1 5

8 0 5 . 4 7 3 5 5 . 6 3 7 5 1 4 .1 5 1 8 3 3 .8 6 1 5

8 5 6 .3 1 1 5 6 . 8 2 3 6 1 9 .1 5 1 8 3 8 .8 6 1 5
9 0 7 .3 3 6 3 8 .4 8 5 8 2 4 .1 5 1 8 4 3 .8 6 1 5
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Table 5.13

1 Month United States, a  = 0.0168,(3 = -0.3096, a  = 1.1124, Market y= 1.1122
At = 0.05, Ar = 0.5% :

All options are written on zero coupon bonds with a face of $100.00

M a t u r i t y  

o f  B o n d

E x p i r y  o f  

O p t i o n

r ( % ) E x e r c i s e

P r i c e

A s s e t /

O p t io n

oii A n a l y t i c

7 = 0 . 5

y = 0 . 5 II M a r k e t  y

5 5 B o n d 9 0 . 1 6 3 5 8 6 . 3 6 0 0 8 6 . 4 2 2 4 7 3 . 6 8 9 5 7 1 .0 4 4 1

8 8 7 .8 0 4 3 8 3 .2 3 8 1 8 3 .2 9 4 3 6 8 . 6 4 9 4 6 5 .4 9 8 5

11 8 5 .4 5 4 9 8 0 .2 2 9 1 8 0 . 2 7 9 2 6 4 . 3 3 1 9 6 0 .8 5 3 8

10 5 B o n d 8 4 .0 2 5 7 7 7 . 8 9 1 6 7 7 . 9 5 8 3 5 4 .8 8 3 3 4 9 . 1 1 2 4

8 8 1 .8 2 6 8 7 5 . 0 7 3 8 7 5 . 1 3 4 4 5 0 . 9 4 8 0 4 4 .9 6 6 1

11 7 9 .6 3 7 1 7 2 . 3 5 7 9 7 2 . 4 1 2 5 4 7 .6 1 1 1 4 1 .5 6 0 5

15 5 B o n d 7 8 .3 0 6 1 7 0 . 2 5 6 2 7 0 . 3 2 6 0 4 0 . 9 6 9 3 3 3 .9 6 4 9

8 7 6 . 2 5 6 9 6 7 . 7 1 4 6 6 7 . 7 7 8 5 3 8 .0 2 6 6 3 1 .0 8 4 2

11 7 4 . 2 1 6 2 6 5 . 2 6 4 9 6 5 .3 2 3 1 3 5 .5 3 2 5 2 8 .7 2 0 8

5 1 8 7 5 C a l l 1 8 .4 5 6 0 1 5 .7 3 0 0 1 5 .4 3 5 5 3 . 6 0 7 4 1 .6 0 3 0

8 0 1 3 .9 1 4 8 1 1 .4 7 6 6 1 1 .1 8 4 4 1 .2 7 4 6 0 .2 6 9 8

8 5 9 . 3 8 1 8 7 . 2 6 2 9 7 . 0 0 0 3 0 . 1 2 7 6 0 .0 0 1 3

9 0 4 . 8 5 6 8 3 .0 9 0 1 2 . 9 0 9 5 0.0000 0.0000

5 1 8 7 5 P u t 3 .8 3 0 3 4 . 0 9 4 9 6 . 7 0 1 9 9 .5 0 1 5

8 0 4 . 4 3 8 5 5 . 0 2 1 4 1 1 .3 5 0 6 1 4 .5 0 1 5

8 5 5 . 1 4 2 8 6 . 1 9 4 8 1 6 .3 5 0 6 1 9 .5 0 1 5

9 0 6 .0 0 3 3 7 . 8 7 7 3 2 1 . 3 5 0 6 2 4 .5 0 1 5

10 5 8 6 5 C a l l 2 5 . 0 7 0 4 2 1 . 6 3 1 9 2 1 . 3 4 7 5 7 .4 2 5 3 4 . 1 4 8 8

7 0 2 0 . 7 3 8 9 1 7 .5 8 0 4 1 7 .2 7 7 4 4 . 5 7 7 8 1 .9 5 0 5

7 5 1 6 .4 1 3 4 1 3 .5 7 3 8 1 3 .2 2 9 3 2 . 1 0 9 6 0 . 4 7 0 6

8 0 1 2 .0 9 4 1 9 .5 0 4 1 9 . 2 1 0 8 0 . 3 9 8 6 0 . 0 0 5 2

10 6 5 P u t 4 . 8 4 0 0 5 . 1 2 8 7 1 4 .0 5 2 0 2 0 .0 3 3 9

7 0 5 .6 4 9 3 6 . 2 3 0 2 1 9 .0 5 2 0 2 5 .0 3 3 9

7 5 6 . 5 5 4 2 7 . 5 5 5 6 2 4 . 0 5 2 0 3 0 .0 3 3 9

8 0 7 . 5 7 9 7 9 . 9 1 8 6 2 9 . 0 5 2 0 3 5 .0 3 3 9
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Table 5.14

3 Month United States, a  = 0.0132,(3 = -0.2436, a  = 1.4688, Market y =  1.2660
At = 0.05, Ar = 0.5% :

All options are written on zero coupon bonds with a face of $100.00

M a t u r i t y  

o f  B o n d

E x p i r y  o f  

O p t i o n
r ( % ) E x e r c i s e

P r i c e

A s s e t /

O p t i o n

oII A n a l y t i c  

Y =  0 .5

inÖII

Y =  1 M a r k e t  y

5 5 B o n d 9 2 . 6 2 6 5 9 0 . 4 2 5 5 9 0 . 3 9 8 2 7 9 . 9 6 9 2 7 2 .9 3 5 5

8 9 0 . 6 1 5 8 8 7 . 9 1 6 4 8 7 . 8 7 1 4 7 5 .6 8 4 1 6 7 .3 0 8 8

11 8 8 . 6 1 1 0 8 5 . 4 7 7 0 8 5 .4 1 4 3 7 1 . 9 9 6 9 6 2 . 7 6 5 0

10 5 B o n d 8 8 .4 4 2 8 8 4 .9 9 6 7 8 4 . 9 4 7 0 6 7 . 4 0 9 6 5 2 .4 7 5 2

8 8 6 . 5 2 3 0 8 2 . 6 3 8 2 8 2 .5 2 7 5 6 3 . 7 3 0 4 4 8 . 0 8 5 6

11 8 4 .6 0 8 7 8 0 . 3 4 5 0 8 0 . 2 6 3 4 6 0 .5 7 7 5 4 4 .6 2 5 3

15 5 B o n d 8 4 .4 4 8 1 7 9 .8 9 4 1 7 9 . 8 2 4 6 5 6 . 9 2 1 9 3 7 .8 0 3 7

8 8 2 . 6 1 5 0 7 7 .6 7 7 1 7 7 . 5 9 3 3 5 3 . 8 1 4 2 3 4 .6 2 3 8

11 8 0 .7 8 7 1 7 5 . 5 2 1 6 7 5 . 4 2 3 5 5 1 . 1 5 1 2 3 2 .1 2 1 3

5 1 8 8 0 C a l l 1 5 .6 0 7 1 1 4 .2 4 7 9 1 4 .0 3 6 0 4 . 8 3 6 3 0 .3 8 0 9

8 5 1 0 .9 6 5 7 9 . 7 6 2 8 9 . 5 6 5 8 1 .9 1 0 0 0 .0 0 4 7

9 0 6 . 3 2 8 6 5 .2 9 4 1 5 . 1 3 2 4 0 . 1 9 8 0 0.0000
9 5 1 .6 9 5 8 0 .8 4 2 1 0 .7 6 3 1 0.0000 0.0000

5 1 8 8 0 P u t 3 . 5 2 8 6 3 . 6 3 2 8 5 . 5 4 1 4 1 2 .6 9 1 2

8 5 4 . 0 7 0 2 4 . 3 9 5 6 9 . 3 1 5 9 1 7 .6 9 1 2

9 0 4 . 7 1 8 3 5 .4 1 5 1 1 4 .3 1 5 9 2 2 . 6 9 1 2

9 5 5 . 5 9 8 2 7 . 2 3 4 9 1 9 .3 1 5 9 2 7 . 6 9 1 2

10 5 8 7 5 C a l l 1 8 .7 9 2 2 1 7 .1 2 0 2 1 6 .9 1 0 7 7 . 6 4 5 0 0.8868
8 0 1 4 .2 9 9 3 1 2 .7 8 3 8 1 2 .5 7 9 0 4 .2 8 1 1 0 .0 4 9 1

8 5 9 . 8 1 0 0 8 .4 5 1 5 8 .2 6 4 1 1 .3 6 9 7 0.0001
9 0 5 .3 2 4 3 4 . 1 2 3 2 3 . 9 7 5 8 0 . 0 0 0 4 0.0001

10 7 5 P u t 4 . 8 1 4 6 4 . 9 4 1 5 1 1 .2 6 9 6 2 6 .9 1 4 4

8 0 5 . 5 5 1 4 5 .9 3 2 3 1 6 .2 6 9 6 3 1 .9 1 4 4

8 5 6 . 3 9 0 0 7 . 1 7 9 8 2 1 . 2 6 9 6 3 6 .9 1 4 4

9 0 7 . 4 2 0 8 8 . 9 1 0 9 2 6 . 2 6 9 6 4 1 . 9 1 4 4
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CHAPTER 6.

CONCLUSIONS AND FUTURE RESEARCH

6.1. Summary

In this research we have examined numerical issues in the valuation of default free bonds 

and American interest rate contingent claims. The main focus has been on the problems 

that arise in the pricing of default-free bonds and American interest rate contingent claims 

based on the single factor CKLS short term interest rate model.

One of the major contributions of this work has been the introduction of a new numerical 

method. By making suitable transformations, we were able to develop the Box Method. 

This allowed us to value default-free bonds and American interest rate contingent claims 

based on the single factor CKLS model.

This thesis by focusing on the CKLS short term interest rate model, makes the following 

contributions to the numerical methods for the valuation of default-free bonds and 

American interest rate contingent claims.

First, we found that the use of Tian’s Simplified Binomial lattice did not always lead to 

meaningful values of default-free bonds and interest rate contingent claims. We found that 

the value of y is critical for the stability of the lattice. Theoretically we could achieve
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convergence when y > —, however, in such circumstances we need a large number of

time steps. From a practical viewpoint, we found that for a certain combination of 

parameters, convergence is achieved around y = 0.7 .

Second we introduced a new numerical method. We extended the Method of Lines to 

value default free bonds. Further it was not possible to calculate any contingent claim 

values using the Method of Lines, due to the difficulty of locating the free boundary. The 

Crank-Nicholson bond prices and Box Method prices were close to each other. However, 

we found that where analytical prices were available Box bond prices where closer to the 

analytical bond prices than the Crank-Nicholson bond price. This lead to the Crank- 

Nicholson bond price being radically different from analytical call option prices for certain 

combination of parameters. As for general matrix valuation, we found that overall 

Successive Over Relaxation (SOR) approach was superior to Gaussian elimination. The 

SOR approach for all combination of parameters lead to sensible bond and hence 

contingent claim prices.

Third using the Box Method as the basis, we developed a new procedure both to track 

and check the free boundary associated with American interest rate put options. By 

setting up the American pricing problem as an obstacle problem, we derived an integral 

equation. We used this scheme to track the free boundaries of both short and long dated 

put options based on commonly used single factor interest rate models. We found that the

159



nature of the free boundary is dictated by the term to expiry of the put option as well as 

the underlying interest rate model used.

Fourth, this thesis explores prices of default-free bonds and interest rate contingent claims 

based on the estimates of the CKLS model obtained for Australia, Canada, Hong Kong, 

Japan, U.K. and U.S.A. using the Box Method. We compare the default free bond prices 

and contingent claim prices implied by the market y with those implied by the widely used 

single factor models; namely Vasicek, CIR and Brannan and Schwartz. We also calculate 

the analytical default-free bond prices and call prices for the CIR model. This allowed us 

to check analytical default-free bond prices and calls with numerical default-free bond 

prices and calls. Clearly any significant discrepancy between the two would indicate that 

our numerical scheme has broken down. Our analysis firstly, suggests that both default- 

free bond prices and interest rate contingent claim prices are sensitive to the underlying 

short-term interest rate model used. We find for example, that the actual y prices vary 

significantly from those of the standard models. Secondly we find that the Box Method is 

robust enough to be applied to a wide range of y values.

6.2. Issues for further research

In this study we have introduced a new numerical method for the valuation of default-free 

bond prices and interest rate contingent claim prices. We have developed the algorithm 

such that it can be applied to a wide range of single factor interest rate models. We have 

further demonstrated that the Box Method outperforms all the existing numerical schemes.
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Thus a clear extension of our work would be to extend the Box Method to two factor

models. For example, we can use the Box Method to value default-free bonds and interest 

rate contingent claims based on an extended form of the Brennan and Schwartz (1979) 

model. In this instance term the CKLS process models interest rate and the long-term 

interest rate is taken to be the yield on the consol bond.

The checking procedure of Chapter 4 can be further expanded to track the free boundary 

surface associated with two factor American interest rate contingent claim. Indeed as 

numerical schemes for two factors are more complicated than for single factors, a 

checking procedure may be vital to ensure that the numerical scheme has not broken 

down.

Recently a number of papers have been published which have attempted to expand the use 

of Monte-Carlo simulation to value American contingent claims. However, none of these 

papers have suggested a scheme on how to value American interest rate contingent claims. 

Of all the Monte-Carlo schemes suggested for the valuation of American interest rate 

contingent claims, perhaps the approach of Grant, Vora and Weeks holds the most 

promise. Grant, Vora and Weeks value a single factor American Asian option by linking 

forward moving simulation and backward moving recursion through an iterative search 

process. An obvious extension to their scheme would be to use it value default free bond 

prices and American interest rate contingent claims based on multi-factor models.

161



BIBLIOGRAPHY

Ahn, C.M., and H.E. Thompson (1988): “Jump-Diffusion Process and Term Structure 
of Interest Rates,” Journal of Finance, 43,155-174.

Ait-Sahalia, Yacine (1996): “Testing Continuous-Time Models of the Spot Interest 
Rate,” Review of Financial Studies, 9, 385-426.

Ball, C.A., and W.N. Torus (1983): “Bond Price Dynamics and Options,” Journal of 
Financial and Quantitative Analysis, 18, 517-531.

Barone-Adesi, G., E. Dinenis, G. Sorwar (1997): “A Note on the Convergence of 
Binomial Approximations for Interest Rate Models,” Journal of Financial 
Engineering, 6 ,1 , 71-78.

Barone-Adesi, G., R.E. Whaley (1987): “Efficient Analytic Approximation of 
American Option Values,” Journal of Finance, 42, 301-320.

Black, F. (1976): “The Pricing of Commodity Contracts,” Journal of Financial 
Economics, 3,167-179.

Black, F., E. Derman, and W. Toy (1990): “A One-Factor Model of Interest Rates and 
its Application to Treasury Bond Options,” Financial Analysts Journal, 46, 33-39.

Black, F., and M. Scholes (1973): “The Pricing of Options and Corporate Liabilities,” 
Journal of Political Economy, 81, 637-659.

Bloomeyer, E.C.(1986): “An Analytic Approximation for the American Put Price for 
Options on Stocks with Dividends,” Journal of Financial and Quantitative 
Analysis, 21, 229-233.

Boyle, P.P. (1977): “Options: A Monte Carlo Approach,” Journal of Financial 
Economics, 4, 323-338.

Boyle, P.P. (1988): “A Lattice Framework for Option Pricing with Two State 
Variables,” Journal of Financial and Quantitative Analysis, 23,1-12.

Boyle, P.P., J. Evnine, and S. Gibbs (1989): “Numerical Evaluation of Multivariate 
Contingent Claims,” The Review of Financial Studies, 2, 241-250.

Boyle, P.P., Broadie M. and Glasserman P. (1997): “Monte Carlo Methods for 
Security Pricing,” Journal of Economic Dynamics and Control, 21,1267-1321.

Broadie M. and Glasserman P. (1996): “Estimating Security Price Derivatives by 
Simulation,” Management Science, 42, 269-285.

Broadie M. and Glasserman P. (1997): “Pricing American Style Securities Using 
Simulation,” Journal of Economic Dynamics and Control, 21,1323-1352.

162



Breen, R., (1991): “The Accelerated Binomial Option Pricing Model,” Journal of 
Financial and Quantitative Analysis, 26,153-164.

Brennan, Michael and Eduardo Schwartz (1977a): “The Valuation of American Put 
Options,” Journal of Finance, 32, 449-462.

Brennan, Michael and Eduardo Schwartz (1977b): “Convertible Bonds: Valuation and 
Optimal Strategies for Call and Conversion,” Journal of Finance, 32,1699-1715.

Brennan, Michael and Eduardo Schwartz (1978): “Finite Difference Method and Jump 
Processes Arising in the Pricing of Contingent Claims,” Journal of Financial and 
Quantitative Analysis, 13, 461-474.

Brennan, Michael and Eduardo Schwartz (1979): “A Continuous-Time Approach to 
the Pricing of Bonds,” Journal of Banking and Finance, 3,133-155.

Brennan, Michael and Eduardo Schwartz (1980): “Analyzing Convertible Bonds,” 
Journal of Financial and Quantitative Analysis, 15, 907-929.

Brown, S., and P.H. Dybvig (1986): “The Empirical Implications of the Cox, Ingersoll, 
Ross Theory of the Term Structure of Interest Rates,” Journal of Finance, 41, 616- 
628.

Brown, R.H., and S.M. Schaefer (1994): “The Real Term Structure of Interest rates 
and the Cox, Ingersoll and Ross Model,” Journal of Financial Economics, 35, 3-42.

Canabarro, E. (1995): “Where Do One-Factor Models Fail?,” Journal of Fixed 
Income, 31-52.

Caverhill, A. and Pang K., (1995): “Efficient and Flexible Bond Option Valuation in 
the Heath, Jarrow and Morton Framework,” Journal of Fixed Income, 5, 70-77.

Chan, K.C., G.A. Karolyi, F.A. Longstaff and A.B. Sanders (1992): “An Empirical 
Comparison of the Short-Term Interest Rate,” Journal of Finance, 1, 7,1209-1227.

Chapman, A.C., J.B. Long, F.A. and N.D. Pearson (1999): “Using Proxies for the 
Short Rate: When Are Three Months Like an Instant?,” The Review of Financial 
Studies, 12, 4, 763-806.

Chen, Ren Raw and Louis Scott. (1993a): “Pricing Interest Rate Options In A Two- 
Factor Cox-Ingersoll-Ross Model Of The Term Structure,” Review of Financial 
Studies, 5, 613-636.

Courtadon, G. (1982): “The Pricing of Options on Default -free Bonds,” Journal of 
Financial and Quantitative Analysis, 17, 75-100.

163



Constantinides, George M. and Jonathan E. Ingersoll (1984): “Optimal Bond Trading 
with Personal Taxes,” Journal of Financial Economics, 13, 299-335.

Cox, J.C, S. Ross, and M. Rubinstein (1979): “Option Pricing: A Simplified 
Approach,” Journal of Financial Economics, 7, 229-264.

Cox, J.C., J.E. Ingersoll and S.A. Ross (1980): “An Analysis of Variable Rate Loan 
Contracts,” Journal of Finance, 35, 389-403.

Cox, J.C., J.E. Ingersoll and S.A. Ross (1985a): “An Intertemporal General 
Equilibrium Model of Asset Prices,” Econometrica, 53, 363-384.

Cox, J.C., J.E. Ingersoll and S.A. Ross (1985b): “A Theory of the Term Structure of 
Interest Rate,” Econometrica, 53, 385-407.

Cox, J. C., and M. Rubinstein (1985): Options Markets, Englewood Cliffs, N.J.: 
Prentice-Hall, Inc.

Dahlquist, M. (1996): “On Alternative Interest Rate Processes,” Journal of Banking 
and Finance, 20,1093-1119.

Dothan, L.U. (1978): “On the Term Structure of Interest Rates,” Journal of 
Financial Economics, 6, 59-69.

Duffie, D. and Glynn P., (1995): “Efficient Monte Carlo Simulation of Security 
Prices,” Annals of Applied Probability, 5, 897-905.

Duffie, G.R. (1996): “Idiosyncratic Variation of Treasury Bill Yields,” Journal of 
Finance, 51, 527-551.

Dunn, K. and John J. McConnell (1981): “Valuation of GNMA Mortgage-Backed 
Securities,” Journal of Finance, 36, 599-616.

Geske, R. (1979): “A Note on Analytic Valuation Formula for Unprotected American 
Call Options on Stocks with Know Dividends,” Journal of Financial Economics, 7, 
375-380.

Geske, R., and H. E. Johnson (1984): “The American Put Valued Analytically,” 
Journal of Finance, 39,1511-1524.

Geske, R., K. Shastri (1985): “Valuation of Approximation: a Comparison of 
Alternative Approaches,” Journal of Financial and Quantitative Analysis, 20, 45- 
72.

Gibbons, M.R., and K. Ramaswamy (1993): “A Test of the Cox-Ingersoll-Ross Model 
of the Term Structure,” Review of Financial Studies, 6, 619-658.

Gibson, R. and Eduardo S. Schwartz (1990): “Stochastic Convenience Yield and the 
Pricing of Oil Contingent Claims,” Journal of Finance, 45, 959-976.

164



Goldenberg, D.H. (1991): “A Unified Method for Pricing Options on Diffusion 
Processes,” Journal of Financial Economics, 29, 3-34.

Grant, D., .G. Vora, and D. Weeks (1997): “ Path Dependent Options: Extending the 
Monte Carlo Simulation Approach,” Management Science, 43,11,1589-1602.

Hiraki, T. and Takezawa, N. (1996): “How Sensitive is Short-Term Interest Rate 
Volatility to the Level of the Interest Rate,” forthcoming, Economic Letters.

Ho, T., S. Lee (1986): “Term Structure Movements and Pricing Interest Rate 
Contingent Claims,” Journal of Finance, 41,1011-1029.

Heath, D., R. Jarrow, and A. Morton (1992): “Bond Pricing and the Term Structure of 
the Interest Rates: A New Methodology,” Econometrica, 60,1, 77-105.

Huang, J., M.G. Subrahmanyam, and G.G. Yu (1996): “Pricing and Hedging American 
Options: A Recursive Integration Method,” The Review of Financial Studies, 9,1, 
277-300.

Hull, John and Alan White (1988): “The use of Control Variate Technique in Option- 
Pricing,” Journal of Financial and Quantitative Analysis,” 23, 237-251.

Hull, John and Alan White (1990a): “Pricing Interest-Rate Derivative Securities,” 
Review of Financial Studies,” 3, 573-592.

Hull, John and Alan White (1990b): “Valuing Derivative Securities Using the Explicit 
Finite Difference Method,” Journal of Financial and Quantitative Analysis,” 25, 
87-100.

Ingersoll, J.E., (1977a): “An Examination of Corporate Call Policies on Convertible 
Securities,” Journal of Finance, 32, 463-478.

Ingersoll, J.E., (1977b): “A Contingent Claims Valuation of Convertible Securities,” 
Journal of Financial Economics, 4, 289-322.

Jamshidian, F. (1989): “An Exact Bond Option Formula,” Journal of Finance, 44, 
205-209.

Johnson, H.E., (1983): “An Analytic Approximation to the American Put Price,” 
Journal of Financial and Quantitative Analysis, 18,141-148.

Ju, N. (1998): “Pricing an American Option by Approximating Its Early Exercise 
Boundary as a Multipiece Exponential Function,” The Review of Financial Studies, 
11, 3, 627-646.

Kim, In Joon. (1990): “The Analytic Valuation of American Options,” Review of 
Financial Studies, 3, 547-572.

165



King, R., (1986): “Convertible Bond Valuation: An Empirical Test,” Journal of 
Financial Research, 9, 53-69.

Kolodner, 1.1. (1956): “Free Boundary Problem for the Heat Equation with 
Applications to Problems of Change of Phase,” Communications in Pure and 
Applied Mathematics, 9,1-31.

Kotlow, D.B., “A Free Boundary Problem Connected with the Optimal Stopping 
Problem for Diffusion Processes,” Transactions of the American Mathematical 
Society, 184, 457-478.

Longstaff, Francis A. (1990): “The Valuation of Options on Yields,” Journal of 
Financial Economics, 26, 97-122.

Longstaff, F.A., and E.S.Schwartz. (1992): “Interest Rate Volatility and the Term 
Structure: A Two-Factor General Equilibrium Model,” Journal of Finance, 47,1259- 
1282.

Macmillan, L. W., (1986): “Analytic Approximation for the American Put Options,” 
Advances in Futures and Options Research, 1,119-139.

Marsh, T.A. and E.R. Rosenfeld. (1983): “Stochastic Processes for Interest Rates and 
Equilibrium Bond Prices,” Journal of Finance, 38, 635-646.

McKean, H. P. Jr. (1965): “Appendix: A Free Boundary Problem for the Heat 
Equation arising from a Problem in Mathematical Economics,” Industrial 
Management Review, 6,13-32.

Merton, R.C., (1973): “The Theory of Rational Option Pricing”, Bell Journal of 
Economics and Management Science, 4,141-183.

Meyer, G.H (1977): “One-dimensional Parabolic Free Boundary Problems,” SIAM 
Review, 19,17-34.

Meyer, G.H. and J. van der Hoek (1996): “The Evaluation of American Options with 
the Method of Lines,” Working Paper.

Munnik, J.FJ.D (1996): The Valuation of Interest Rate Derivative Securities,
Prentice-Hall, Inc.

Nelson, D.B. and K. Ramaswamy (1990): “Simple Binomial Processes as Diffusion 
Approximations in Financial Models,” Review of Financial Studies, 3, 393-430.

Nowman, K.B. (1997a): “Gaussian Estimation of Single-Factor Continuous Time 
Models of the Term Structure of Interest Rates,” Journal of Finance, 52,1965-1976.

Nowman, K.B. (1997b): “Continuous Time Short Term Interest Rate Models,” 
Applied Financial Economics, 8, 401-407.

166



Omberg, E. (1987): “The Valuation of American Put Options with Exponential 
Exercise Policies,” Advances in Futures and Options Research, 1, 117-142.

Parkinson, M. (1977): “Option Pricing: The American Put,” Journal of Business, 50, 
21-36.

Pennachi, G.C. (1991): “Identifying the Dynamics of Real Interest Rates and Inflation: 
Evidence Using Survey Data,” Review of Financial Studies, 4, 53-86.

Pearson, N.D., and T.S. Sun (1994): “An Empirical Examination of the Cox-Ingersoll- 
Ross Model of the Term Structure of Interest Rates,” Journal of Finance, 49,1279- 
1304.

Ramaswamy, K. and Suresh M. Sundaresan (1986): “The Valuation of Floating-Rate 
Instruments,” Journal of Financial Economics, 17, 251-272.

Rendleman, R., and B. Bartter (1980): “The Pricing of Options on Debt Securities,” 
Journal of Financial and Quanatitative Analysis, 15,11-24.

Ritchken, A.P., and L. Sankarasubramanian. (1995a): “Lattice Models for Pricing 
Interest Rate Claims,” Journal of Finance, 50, 719-737.

Ritchken, A.P., and L. Sankarasubramanian. (1995b): “Volatility Structure of Forward 
Rates and the Dynamics of the Term Structure,” Mathematical Finance, 5, 55-72.

Roll, R. (1977): “An Analytic Valuation Formula for Unprotected American Call 
Options on Stocks with Known Dividends,” Journal of Financial Economics, 5, 251- 
258.

Schaefer, S.M., and E.S. Schwartz. (1984): “A Two-Factor Model of the Term 
Structure: An Approximate Solution,” Journal of Financial and Quantitative 
Analysis, 19, 413-424.

Schoji, I., and Ozaki, T., (1996): “A Statistical Comparison of the Short Term Interest 
Rate Models for Japan, U.S., and Germany,” Financial Engineering and the 
Japanese Markets, 3, 263-275.

Schwartz, E.S. (1977): “The Valuation of Warrants: Implementing a New Approach,” 
Journal of Financial Economics, 4, 79-93.

Stapleton, R.C., and M.G. Subrahmanyam (1993): “Analysis and Valuation of Interest 
Rate Options,” Journal of Banking and Finance, 5,1079-1095.

M.G. Subrahmanyam (1996): “The Term Structure of Interest Rates: Alternative 
Approaches and Their Implications for the Valuation of Contingent Claims,” Geneve 
Papers on Risk and Insurance Theory, 21,1, 7-28.

167



Sun, T.S. (1992): “Real and Nominal Interest Rates: A Discrete-time Model and its 
Continuous Time Limit,” Review of Financial Studies, 5, 581-611.

Sundaresan, Shuresh M, (1984): “Consumption and Equilibrium Interest Rates in 
Stochastic Production Economies,” Journal of Finance, 39, 77-92.

Tian, Yisong (1992): “A Simplified Binomial Approach to the Pricing of Interest-Rate 
Contingent Claims,” Journal of Financial Engineering, 1,14-37.

Tian, Yisong (1994): “A Reexamination of Lattice Procedures for Interest Rate- 
Contingent Claims,” Advances in Options and Futures Research, 7, 87-111.

Van Morebeke, P. (1976): “On Optimal Stopping and Free Boundary Problems,” 
Archives of Rational Mechanical Analysis, 60,101-148.

Tse, Y.K. (1995): “Some International Evidence on the Stochastic Behaviour of 
Interest Rates,” Journal of International Money and Finance, 14, 721-738.

Varga, Richard S. (1962): Matrix Iterative Analysis.

Vasicek, Oldrich A (1977): “An Equilibrium Characterization of the Term Structure,” 
Journal of Financial Economics, 5,177-188.

168


