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Abstract

The work presented in this thesis is concerned with the determination of the 
relationship between low velocity impacts and the failure by cracking of 420mm 
square, 6.4 mm thick, three ply, laminated glass. An hydraulic test rig has been 
constructed which allows tests involving impacts with pre-determined velocities, up to 
7 m/s, and deflections, up to 4.6mm, to be conducted upon the glass samples.

Weibull’s approach to describing the failure of brittle materials has been adopted. A 
Weibull cumulative distribution, which relates the probability of failure to the applied 
stress, has been generated from the experimental data, and the Weibull modulus or 
flaw density parameter has been determined to be 3.5.

The stress intensity factor, K  or fracture toughness value, is an indication of the 
toughness of a material. Glass, as a brittle material would be expected to have a low 
fracture toughness. Values for K can be determined experimentally, and as a material 
characteristic should not vary widely, however the value of 0.46 MPa m for the 
fracture toughness, obtained dynamically in this work, appears to differ from those 
figures determined by others, using quasi-static loading, of between 0.7 and 0.8 MPa 
m12. If the value for K determined during quasi-static loading is applicable to this 
work, then the length of surface cracks in the glass is calculated to be between 55 and 
72 x 10'6m.

The stresses generated during the dynamic loading of glass by an impact can be 
divided into two distinct elements, the stresses produced by the bending of the glass, 
and the stresses generated during the impact. However, although the resulting stresses 
can be described separately, they have a combined effect upon the glass. The stress 
combination factor /  is used to describe how the bending stresses and the impact 
stresses combine to occasion a micro-crack (which may be found on all exposed glass 
surfaces) to propagate and cause a fracture in the glass. The value o f /is  considered to 
be between 0.7 and 0.8.



Notation

length of rectangular plate, crack length 

Amplitude of wave, Area 

Breadth of beam or plate

Thickness of sandwich core, subscript for sandwich core, 
velocity of propagation of waves, intercept of a straight line

Velocity of longitudinal waves in a bounded medium

Velocity of longitudinal waves in an unbounded medium

Velocity of transverse waves in an unbounded medium

Velocity of one dimensional longitudinal wave

Phase velocity

Depth of beam or plate, distance between the centre lines of the 
upper and lower faces of a sandwich

Flexural rigidity

Young’s Modulus

Subscript for sandwich face, shape factor, stress combination 
factor

Shape factor

Thickness of sandwich, shape factor

Moments of inertia with respect to x and y  axes

Subscript for incident

Stress intensity factor

Length of bar

Length of plate

Slope of a straight line, Weibull modulus



M Bending moment

n Rate effect fitting parameter

N Number of cycles to failure

P Subscript for projectile, pressure

P Load, Probability of failure

q Uniformly distributed load

r radius of concentrated load, radius of contact circle, correlation 
coefficient

R Radius of bending of a beam, acoustic impedance, subscript for 
reflected

sf Failure stress

S Failure stress

lf Time to failure

t Thickness of a plate, subscript for target

T Subscript for transmitted

u Particle velocity

V Velocity

V Volume of stressed material

w Deflection

W Load

y The distance from the neutral axis to the outer fibres of a beam

x,y,z Rectangular coordinates

a numerical factor for deflection of a plate, angle of incidence for 
a wave

P numerical factor for stress of a plate, angle of reflection of
a wave



A Deflection, dilatation

V2

À

P

<7

&

V

V 

p

Y

Strain

Laplacian operator 

Lame’s constant, wavelength 

Lame’s constant

Normal Components of Stress parallel to x, y and z axes 

Stress

Stress at which there is a zero probability of failure 

Weibull normalising factor 

Poisson’s ratio

Co-ordinate of concentrated load on a plate 

Co-ordinate of concentrated load on a plate 

Density 

Surface energy
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1 Introduction

During low velocity impacts on glass plates, stresses are generated which will cause 

the plates to fracture, once a critical load is reached. The bending of beams and flat 

plates has been investigated in some depth over a number of years, as described by 

Love (1927). Timoshenko et al (1951,1959) described later developments in the 

theory of elasticity, the analyses of beams and plates, and their application to the 

solution of engineering problems. Love (1927) also described the early investigations 

into the propagation of waves in elastic solids, and in his book Kolsky (1963) 

reflected upon developments in understanding wave propagation, because of 

improved experimental techniques, and the importance of understanding the 

properties of solids at high rates of loading.

Many workers have explored the bending of plates, and stress waves in elastic solids, 

but few have investigated the transitional region where the quasi-static loading of 

glass plates merges with impact or dynamic loading. It was considered that this 

transitional region was worthy of further investigation. When a glass plate deflects 

due to a quasi-static load, bending stresses are generated which can be determined. 

Following an impact, stresses propagate through a material, and these stresses can also 

be determined. Although the two stresses can be described and calculated separately, 

it is considered likely that it is the combination of the stresses that determines the 

failure.
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1.1 Historical Perspective

Addis (1999) states that the first window glass to be used in Rome was in c.100 AD 

manufactured by the Romans using captured Egyptian technology, and that the first 

laminated glass was developed by the French chemist Benedictus for use in car 

windscreens. Addis states that Benedictus used a sandwich of two sheets of glass and 

an inter-layer of Celluloid. Addis further indicated that toughened glass was 

developed by Saint Gobin in 1930, also for use in car windscreens, and that PVB was 

developed in 1940 as an improved laminating interlayer.

In the late 19th century Hertz (1882) investigated the contact between glass lenses and 

observed the cone cracks that now bear his name. The Hertzian fracture, or Hertzian 

cone crack, begins as a ring, at, or just outside, the circumference of elastic contact. 

Once a critical load has been reached, the crack propagates into the material, and in 

sufficiently thick glass, continues by flaring outward into a truncated cone. Auerbach 

(1891) extended this early work into mechanics of cone crack initiation, and 

developed what is now known as Auerbach’s law, which describes the empirically 

observed linear relationship between the critical load and the impacting sphere size. 

Griffith (1921) produced a seminal paper which demonstrated that in most brittle 

materials, fracture begins at pre-existing flaws, with the further consideration that a 

larger stressed area has a greater chance of including a particularly weak flaw.

In the early part of the twentieth century Weibull (1939) published his thoughts on 

strength of materials, and developed a probabilistic approach to the failure of 

materials, which has been subsequently used for brittle materials.

When consideration is given to impacts, the nature and propagation of elastic waves 

generated as a result of the impact is important. The propagation of elastic waves is 

comprehensively described by Kolsky (1963), building on the work on acoustics 

developed by Rayleigh (1887).
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1.2 Glass and Glazing

Silica glass has been used as a building material for many years. It is demonstrably 

hard wearing, has good transparency and is cheap. However, it has relatively low 

resistance to impact, because of its brittle nature.

Glass is used in three basic forms for most applications, annealed, toughened, and 

laminated. The main constituent of practically all commercial glass is sand, however 

very high temperatures (~ 1700°C) are needed to fuse sand to produce glass, so other 

chemicals are added to reduce the fusion temperature. Traditionally, soda ash 

(Na2CC>3) was used to reduce the fusion temperature to about 800°C, but this resulted 

in a glass that was water soluble, so other chemicals such as calcium oxide (CaO) 

were added to provide stability.

In the U.K. and in the west of Europe annealed glass is manufactured using the float 

glass process developed by Pilkington Brothers Ltd., introduced in 1959. Float glass is 

produced by heating the glass in a furnace until it is molten (~1000°C) and then 

pouring the molten glass onto a large bed of molten tin. The glass floats on the tin, 

spreading out until it reaches the edges, forming flat parallel surfaces. The thickness 

of the glass is controlled by the speed at which the solidifying glass “ribbon” is drawn 

off the tin bath. The hot glass then passes into an annealing area where it cools down 

in precisely controlled conditions. Float glass is the basic product of the glass 

manufacturing industry and is used as the basis for the other two forms, toughened 

and laminated glass.

Toughened or tempered glass is produced by heating a panel of float glass until it 

reaches approximately 600°C, and then rapidly cooling it with blasts of cool air. The 

rapid cooling of the outer surfaces causes compressive forces to be induced at the 

surface which are balanced by tensile forces in the centre. Glass normally fails in 

tension, and fractures usually start at the surface, so the surface compressive forces 

prevent the surface cracks propagating, and increase the strength of the glass 

approximately fourfold. When toughened glass breaks, the release of the forces tends 

to cause the glass to fracture into small, relatively innocuous, pieces, hence its use as
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safety glazing. Toughened glass also tends to have an improved thermal stability. An 

alternative toughening method, known as chemically toughening, is to immerse the 

glass in a potassium nitrate bath which causes ion exchange to occur. The sodium ions 

are exchanged for potassium ions, whose larger size causes the surface to be in 

compression.

Laminated glass is produced by bonding two pieces of glass together with an 

interlayer. There are two alternative methods for producing laminated glass, Polyvinyl 

Butyral (PVB) laminating, and resin laminating. In PVB laminating two or more 

sheets of glass are assembled together with thin sheets of extruded PVB. (PVB is 

normally supplied in rolls with a sheet thickness of 0.38mm, but if a thicker interlayer 

is required then multiple thicknesses of PVB are used.) The resulting sandwich is then 

passed through a pre-heating oven which raises the temperature of the sandwich to 

70°C. The heated sandwich is passed through a set of rollers which squeeze the 

materials together, excluding air bubbles and providing an initial light adhesion. The 

laminate is then placed into an autoclave and is heated up to a temperature of 140°C 

and a pressure of 8 bar. Once removed from the autoclave, and having cooled down, 

the laminate is permanently bonded together and is transparent.

Resin laminating uses a measured amount of liquid polymer resin which is poured 

into the space between two pieces of glass, held apart at an appropriate distance. Once 

the resin has been poured, the glass laminae are pressed together until all air bubbles 

have been displaced, and then clamped until the resin has cured. Resin laminating 

results in a product that does not have the bonding performance of PVB laminated 

glass, but one that can be used for difficult shapes, or for patterned and textured glass.
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1.3 The Role Of Glazing In The Post Office

The Post Office is one of the largest cash carriers in the United Kingdom, and 

additionally, has large sums of money held in vaults and behind the counters at Post 

Offices. The criminal fraternity have sought to exploit this fact, so the Post Office 

continues to suffer attacks from robbers, armed or otherwise, and burglars. Both types 

of attack are on the increase, both within and outside the Post Office.

The Post Office needs to have a good communications interface with its customers, 

the general public, thus transparent materials have an important role to play. 

Additionally, in security vehicles, normal windscreen glass will not provide the level 

of protection required, so glazing with an improved attack performance is an 

important requirement.

Security glazing is used in a variety of applications, anti-vandal, anti-bandit, and 

ballistic resistant. Vandal resistant glazing is often required to resist a low level of 

attack, such as a brick or bottle thrown at a window at relatively low velocity. For this 

application a simple 3 ply laminate is used consisting of 2 laminae of 3mm glass, with 

an interlayer of 0.38mm PVB.

The anti-bandit glazing systems would be expected to resist a more concerted and 

prolonged attack; pre-meditated and often using hand tools of one form or another, 

and with an impact velocity of between four and ten metres per second. Anti-bandit 

glass would normally be thicker than vandal resistant glazing, often an 11.5 mm 3 ply 

laminate would be used, consisting of two sheets of 5mm glass and an interlayer of 

1.5mm thick PVB. A better performance can be achieved if more glass laminae are 

used, for a laminate with a similar thickness and mass; a 5 ply laminate, 11.3 mm 

thick, consisting of 3 pieces of glass, 3 mm thick, and two PVB interlayers each 1.15 

mm thick is often used. The Post Office developed an anti-bandit 7 ply glass, called 

“Secutex” which was 14 mm thick. The design of Secutex is unusual because it is not 

symmetric, and uses chemically toughened glass as the rear layer to provide 

protection to staff against spall in the first one or two blows during an attack. Secutex

1.6



also has a very thick penultimate PVB layer which is difficult to penetrate during a 

manual attack.

Ballistic resistant glazing is obviously designed to resist a different type of threat and 

consequently has to deal with a different type of dynamic loading over considerably 

different time scales. For example, in a typical ballistic attack the glazing is struck by 

a 10 gram lead slug travelling at speeds in excess of 450 m/s. Ballistic resistance 

requires a thick glass laminate of between 35mm and 50mm, depending upon the 

threat, with thick individual glass laminae which dissipate the energy of the bullet. In 

the construction there may be thicker layers of PVB, and thinner pieces of glass 

towards the rear of the laminate, which help to reduce the spall effect.

The majority of laminate designs in this important field are based upon empiricism, so 

the various elements of design are not always rigorously linked with the performance 

of different glass laminates.

Within the Post Office, a number of projects have been conducted in an attempt to 

understand the performance of glazing systems and to improve both the ballistic and 

manual attack performance. A study using high speed video techniques (Sobey 1990) 

indicated that a falling weight is not sufficiently representative of the loading that 

occurs during a manual bandit attack. An attacker does not merely take a “free swing”; 

like a pendulum, during an attack, in the case of a sledgehammer attack, the attacker 

uses his body to maintain the pressure between the sledgehammer head and the glass 

laminate. The hydraulic test rig, described in chapter four, was designed to simulate, 

in part, the action of an assailant when conducting an attack, in that the hydraulic ram 

maintains the pressure between impacter head and glass sample, in a similar fashion to 

the way an attacker would maintain pressure on the sledgehammer handle.
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1.4 The Aim Of The Current Work

The damage caused to the glass over the whole impact history of a bandit attack, when 

the glazing suffers repeated blows, is evidently quite complex. To understand how 

fractures start, and then how the material responds to further blows is obviously 

important if designs of glazing systems are to be designed to respond effectively to an 

attack. The initiation of the cracking of glass w hen subjected to a sledgehammer speed 

impact, i.e. at low velocity (up to 7 m/s) is considered to be an important step towards 

building a model of the failure of glass when subjected to the attacks mentioned 

above.

As part of this project an hydraulic impact test rig, mentioned above, was designed 

and built to explore the failure of glass at low' velocity impacts. The test rig allowed 

controlled velocity and deflection impacts to be applied to 6mm thick, 420 mm 

square, glass laminate samples, with velocities up to 7 metres per second, and 

deflections up to 4.6 mm.

The work reported here is intended to identify the relationship between low velocity 

impacts and the fracture initiation of simple three ply glass laminate panels. The 

results of the failures at the various impact velocities and deflections were analysed 

using the approach that Weibull (1939) developed for brittle materials which 

produced a cumulative distribution function.

During an impact, stress waves are generated at the point of impact which propagate 

through the material, are reflected at boundaries, and then decay because of internal 

friction. The stress waves may cause tensile fields to be created which cause failure of 

the glass if the fracture stress is exceeded. Deflection of the plate, by an external load, 

will cause bending stresses to be generated in the plate and may also lead to failure if 

the conditions for failure are exceeded. Although the two types of stresses are 

described and calculated separately, it is likely that the combination or superposition 

of the two stresses will determine the failure of the glass. The superposition of the 

stresses has been characterised in this work as the “stress combination factor”, /
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Two material characteristics investigated during the project were the stress intensity 

factor, and the strain rate dependency. The stress intensity factor is a measure of the 

fracture toughness of a material, whilst the strain rate dependency describes the 

phenomenon whereby a material fails at different loading levels depending upon the 

duration of the applied load. Both characteristics can be derived from experimental 

results, and the figures obtained were compared with those identified previously by 

others.

Other considerations addressed during this work were the influence of relative 

humidity and temperature upon the glass failures.
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2 Literature Review

2.1 The nature of Silica Glass

The term "glass" is normally used to describe the ordinary silicate glasses which are 

used to produce common household products such as bottles and window glasses. 

Glass was defined in 1945 by the American Society for Testing and Materials in the 

following way "Glass is an inorganic product of fusion which has been cooled to a 

rigid condition without crystallising"; Scholze (1990). This description encapsulates 

the most significant feature about glass when considering its mechanical properties, 

which is that it is non-crystalline. There are countless other types of glass, both 

organic and inorganic, but the present work is concerned with the fusion product of 

silicon, and to a lesser degree, other substances. Glasses do not normally have a sharp 

melting or solidification point, and they do not fracture in "preferred" directions in the 

way that crystalline materials do. A glass can be considered to reflect some of the 

characteristics of crystalline materials, such as exhibiting elastic behaviour 

comparable to crystalline materials, but also retain some of the characteristics of the 

liquid state for example; the ability to flow under a shear stress, but only when the 

shear stress is very high, such as that generated during a Vickers Hardness test (Paul 

1990).

Paul (1990) suggests that glass formation is a kinetic phenomenon, so that a material's 

ability to form a glass appears to be related to its viscosity at the freezing point, thus a 

good glass forming material is one where the rate of crystallisation is slow compared 

to the rate of cooling. At ordinary room temperatures silica glass acts as if it were a 

mechanically rigid solid, and in the majority of cases can be considered to be a 

perfectly elastic material, i.e. any deformation, due to an applied load, within the 

elastic limit, is completely recovered when the load is removed. Scholze (1990) 

illustrated the difference between crystalline materials and glasses when he discussed 

the dependence of volume on temperature. Generally, a liquid decreases in volume 

with decreasing temperature at a constant rate, until crystallisation occurs, during 

which the volume decreases at a constant temperature. A further reduction in volume 

as the temperature reduces occurs at a different rate. When a glassy material cools, no
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crystallisation occurs at the melting point, instead the volume decrease occurs at the 

same rate, this portion of the graph is described as the “supercooled” region, figure 1 

illustrates this phenomenon. The supercooled liquid is still in thermodynamic 

equilibrium. The curve shown in figure 1 does not decrease at the same rate 

indefinitely, at a certain temperature, the transformation temperature, the rate changes 

so that the curve is parallel to that for the crystal form. The deviation between the 

glass and the crystal graphs is caused by loss of equilibrium of the glass form. As the 

supercooled liquid continues to cool, the viscosity increases. The attainment of 

equilibrium of the liquid at each temperature reduction takes longer at each step, until 

the viscosity becomes so high that with further cooling it is not possible to reach the 

equilibrium state. At this point the liquid has become a solid.

Scholze (1990) states that there are several hypotheses about the structure of glass. If a 

glass can be considered as a liquid with its characteristics "frozen in" then the inherent 

disordered structure of a liquid should be reflected in the structure of a glass. 

Zachariasen (1932) established that the energy differences between glass and crystal 

of the same composition are very small and concluded that in the glass state the same 

type of bonding structure must occur as in the crystal state; in silicates the bonding 

structure is the SiC>2 tetrahedron. Zachariasen hypothesised that in the crystal these 

tetrahedrons are arranged regularly, but in the glass they form a random network. 

Warren's (1941) work on X-ray diffraction patterns of glasses appeared to confirm this 

hypothesis. Figure 2, from Scholze (1990), illustrates the difference between an 

ordered and a random SiC>2 network.

The normal type of glass used for windows, and for laminating into panels is float 

glass, typical values for the constituents are given in table 1. Various compounds can 

be added to alter the physical characteristics. Lead oxide and Boron oxide are good 

examples.
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Compound Percentage

Silicon Oxide 71-73 %

Sodium Oxide 12-14%

Calcium Oxide 8-10 %

Magnesium Oxide 1-4%

Aluminium Oxide 0.5-1.5%

Table 1. Chemical composition of float glass used for windows.

Data supplied by Colvin of Pilkington Glass Ltd. (1993) indicate that the appropriate 

value for the material characteristics of industry standard annealed float glass are as 

given in table 2.

Material Characteristic Value

Young’s Modulus, E 73 x 109 N/m2

Poisson’s ratio v 0.23

Density p 2500 kg/m3

Table 2. Material characteristics of industry standard annealed float glass.

Glass is normally considered to be strong in compression (~ 10 GN/m2) but weak in 

tension (40-80 MN/m2), however, precise figures are rarely quoted because of the 

wide spread of results normally observed in strength tests. The measured tensile 

strength of glass is often several orders of magnitude lower than the theoretical value, 

because failure is apparently controlled by the stress concentrations caused by micro-

cracks on the surface.

Early and fundamental work on the identification of the causes of the variation in the 

tensile strength of glass was performed by Griffith (1921) at the Royal Aircraft
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Establishment. Griffith's paper highlighted the difference between the theoretical 

strength and observed experimental results, and has formed a central plank in later 

work investigating the characteristics of glass. Griffith was able to prepare samples 

that, when tested, approached the theoretical strength of glass, but he observed that the 

strength reduced spontaneously until it reached a lower steady value some hours later. 

Another of Griffith’s observations was that his results demonstrated that the observed 

strength of his glass samples was less than one tenth of that suggested by indirect 

deduction from physical data, and that the strength was no greater than if the surface 

of the glass had been covered in cracks several thousand molecules long. Thus 

Griffith's work indicated that brittle bodies such as glass contain a multitude of flaws 

which cause cracks to start, and propagate, once the material is subjected to significant 

tensile loads. Emsberger (1962) argued that whilst the micro-cracks suggested by 

Griffith (1921) were important, not all the strength controlling structures within glass 

were “crack like”. Emsberger identified that inclusions of refractory material and gas 

bubbles influence the strength of glass when they are present. Emsberger also made a 

number of observations on the practical strength of glass:

(i) The measured strength is lower than the theoretical maximum by two or three 

orders of magnitude.

(ii) Fractures originate at the surface.

(iii) Measured strength increases as the size of the area tested decreases.

(iv) The scatter of results during experiments is high, with mean deviations of 

fifteen to twenty percent.

(v) The strength of glass is strain rate dependent, and increases as the strain rate 

rises, i.e. a static fatigue effect exists (static fatigue is the delayed failure of a 

material under a static load).

(vi) There is a threshold for static fatigue.

(vii) Static fatigue appears to be linked to moisture; the effect disappears in 

vacuum, dry gases and at low temperature.

(viii) The strength increases as the fresh abrasions age.

(ix) Dynamic fatigue is not observed.

(x) The strength is at a minimum between one hundred and two hundred degrees 

Celsius.
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Emsberger (1962) investigated the cause of micro-cracks and concluded that micro-

cracks in glass are always traceable to mechanical damage of one form or another. The 

mechanical damage did not take the form of gross cracks visible to the naked eye, the 

cracks were more subtle, and the cumulative damage was described by Emsberger as 

micro-abrasion.
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2.2 Polyvinyl butyral (PVB)

Polyvinyl butyral (PVB) is a polymer manufactured primarily for use in the laminated 

glass industry, although it does have other miscellaneous applications in textile and 

metal coatings and in adhesive formulations. It has been used in laminating glass, 

because of its high adhesion properties, toughness, light stability and clarity. PVB is 

rarely used in isolation, so the mechanical properties of the bulk material may not be 

of great interest. Table 3 gives figures for a mid-range PVB resin.

Different grades of PVB are used for different purposes, for example the PVB used in 

the manufacture of windscreens has a lower peel strength (to provide the required 

absorption properties), than that used for architectural applications, and both have 

plasticizing compounds added to modify the characteristics.

Property Value

Tensile strength, yield 40-47 MPa

Tensile strength, break 32-39 MPa

Elongation, yield 8%

Elongation, break 110%

Apparent modulus of elasticity 1.9-2.0 GPa

Flexural strength, yield 72-79 MPa

Table 3 Mechanical properties of Butvar B-76 Polyvinyl butyral resin.

David and Wittberg (1984) have demonstrated that the adhesion of the PVB to glass is 

so high that during peel tests the adhesion is greater than the cohesive forces keeping 

the material whole.

PVB is normally regarded as a visco-elastic material which has a low modulus of 

elasticity, and is capable of sustaining deformations in the order of 400% depending

2.7



upon the grade and the manufacturer. Rubber like polymers, such as PVB, are not, 

generally speaking perfectly elastic, they often exhibit internal damping, and the 

stiffness is frequency dependent. In most instances the modulus of elasticity is not 

used to describe the material behaviour because of the tendency of PVB to creep, 

instead a definition for an alternative modulus is used, normally referred to as the 

100% (or possibly 200%) modulus. This figure is the tensile strength of a polymer at a 

specified elongation. If a normal tensile strength is quoted it is usually in the region 

of 20-40 MN/m2.

2.2.1 The Dynamic Mechanical Properties of PVB

During quasi-static loading the deformation characteristics of a material can be 

described using the shear modulus G, and the bulk modulus B. The bulk modulus, B 

is normally used to describe the deformation of a body that does not change shape, 

and the shear modulus used to describe a shear deformation in which the body does 

not change volume. Snowdon (1968) states that the mechanical behaviour of a rubber 

like material, such as PVB, is governed primarily by the bulk modulus when the 

lateral dimensions of the sample are very large in comparison with the sample 

thickness. It is likely that a panel of laminated glass conforms to these requirements. 

In this circumstance, the material changes in both shape and volume, and the modulus 

M, which describes the ratio of stress to strain in the material in this type of situation 

approximates to the bulk modulus. The resilience that would normally be expected 

from rubber like material is not exhibited in this situation, because the bulk modulus, 

is much greater in value than the shear modulus. If resilience is required then a 

practical approach would be to use strips of PVB in the sandwich, or perforate the 

sheet of PVB, to allow the material to expand laterally when subjected to an 

orthogonal compressive load.

Snowdon (1968) indicated that the modulus, M, determines the characteristics of the 

propagation of longitudinal elastic waves in the material, provided that the frequency 

is high enough to ensure that the panel dimensions are large when compared with the 

wavelength of the elastic wave.
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The above discussion concerns the quasi-static case. When a linear visco-elastic 

material is subjected to a time varying stress or strain, the fundamental volume 

deformation of the material is no longer governed by a simple relationship defined by 

the bulk modulus, instead the relationship is far more complex and may be described 

in the general case by a linear partial differential equation.

Snowdon (1968) demonstrated that it was possible to show that the mechanical 

characteristics of materials vary with the frequency of the applied load, and that the 

stress and strain relationships may be represented using complex numbers that have 

elements which are functions of the frequency. The ratio of the complex stress to 

complex strain can be represented by a complex elastic modulus which has real and 

imaginary parts that are functions of frequency. The bulk modulus and the shear 

modulus can also be described in frequency dependant complex terms.

The imaginary part of the equation is a measure of the mechanical loss associated with 

shear deformation in the material, and is usually known as the damping factor. The 

real part of the equation is normally described as the dynamic shear modulus. The 

dynamic shear modulus has been found experimentally to increase with frequency and 

decrease with temperature. The relationship between temperature, frequency and the 

damping factor is not so obvious. Nolle (1950) indicated that at sufficiently high 

frequencies, or sufficiently low temperatures, the dynamic modulus becomes so high 

that the characteristic resilience of the rubber like materials is no longer exhibited. 

The point at which the material changes from its normal state to the new inextensible 

or glasslike state is known as the rubber-to-glass transition, and at this point the 

damping factor passes through a maximum value.

PVB is normally considered to be a high damping material. This type of material has a 

rubber-to-glass transition frequency at room temperature that is of the same order of 

frequency as those normally of interest in vibration problems. The dynamic modulus 

of PVB increases rapidly with frequency, however, the damping factor of PVB is 

large, but varies relatively slowly with increasing frequency at room temperature. For 

example at a loading frequency of 1000 Hz, the dynamic shear modulus is 9 x 108 

Dynes/cm2 but at 10 Hz falls to 2 x 108 Dynes/cm2.
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2.3 Impact

Kolsky (1963) identified that the underlying theory for the propagation of elastic 

waves in solids was, in the main, developed during the last century by Stokes, 

Poisson, Rayleigh, Kelvin, and others to deal with two things, (i) the issues 

surrounding the vibration of bodies, which was an extension to the theory of elasticity, 

and (ii) to assist in their studies of the transmission of light when treated as vibrations 

in the "ether".

The response of materials and structures to both impulsive and time varying dynamic 

loads is complex. A number of analytical approaches have been used for establishing 

the response of various materials and structures when subjected to a range of loading 

conditions. However, the analysis becomes even more complex when real problems 

are considered, with strikers and targets which have finite boundaries that can have a 

significant effect upon the result of the analysis.

Raman (1920) investigated the problem of the transverse impact of a solid sphere on 

an elastic plate of finite thickness but infinite breadth and width. Raman developed a 

relatively simple relationship for the coefficient of restitution which was a function of 

the material constants of the sphere and plate, the thickness of the plate, the diameter 

of the sphere and the impact velocity. Raman’s experimental work established that for 

thicker plates the variation in coefficient of restitution was two to three percent lower 

than indicated by theory, for moderate thickness’ of plates, and for very thin plates, 

theory and experiment agreed very well. However, for intermediate cases, where the 

thickness of the plate is in the order of half (or less) the diameter of the impacting 

sphere, the observed values of the coefficient of restitution were somewhat larger than 

the calculated values.

In the early thirties Preston (1931) presented a paper to the American Ceramic Society 

in which he attempted to clarify and correct the use of an impact modulus formula, 

known as the Tuckerman formula. Preston demonstrated that the static "modulus of 

rupture" could be obtained using a strain energy approach (and experiments using 

glass laths supported on two knife edges) Preston identified that the modulus of
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rupture was the maximum stress produced in the beam, and suggested that, for reason 

of uniformity, the impact modulus should relate to the maximum stress produced in 

the beam. However, he concluded that the theoretical basis for the extension of the 

principles used in the static case to the dynamic case were not valid.

Tillett (1954) investigated the impact of steel spheres on glass and plastic plates to 

establish the coefficient of restitution for the plate materials. Tillett stated and used 

the assumption of Hertz (1882); that in the region near the point of contact, the stress 

and strains may be computed at any instant, as though the contact were static, 

provided that the distance travelled by the elastic waves during the impact is very 

large compared with the area of impact.

Tillett (1954) concluded that when the plates are thick relative to the diameter of the 

ball, (i.e. between one and two orders of magnitude greater) the variation of the 

coefficient of restitution with the velocity of the impacting sphere was quite small, in 

the order of one half of a percent. Conversely, when considering plates that are 

thinner, with a thickness similar to the sphere diameter, the variation was much larger; 

12 % variation of the coefficient of restitution with velocity in the case of a 2 mm 

plate and a 1.25 mm sphere.

When the thickness of the plate was described in terms of the number of times a 

longitudinal wave could be reflected from rear and front surfaces of the plate during 

the time that the ball is in contact with it, then the figure for the coefficient of 

restitution for glass was reduced to approximately half of its infinite thickness value 

when the thickness of the plate was reduced to a thickness that corresponded to 30 

reflections of the longitudinal wave. The thickness of the plate was considered to be 

effectively infinite when the time of contact was greater than the time required for the 

elastic waves to return to the point of impact after having been reflected from the rear 

surface.

Tillett (1954) suggested that the reason the coefficient of restitution was not observed 

to be unity in a plate considered to be effectively infinite was because of the relaxation
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of stress in the material and because a small amount of energy goes into the elastic 

waves set up in the plate.

Tillet measured the time of contact of the spheres impacting with the plates and 

concluded that the variation of the time of contact with the velocity of impact in the 

case of thick plates of glass was in agreement with the prediction of Hertz; the time of 

contact is inversely proportional to the fifth root of the impacting velocity.

Hunter (1957) discussed the reason for the energy loss mentioned by Tillett (1954), 

and developed a relationship for the energy absorbed by the transient elastic waves set 

up during the impact. For thick plates of glass Tillett quoted a figure for the 

coefficient of restitution of 0.986 at the approach velocity of 90 m/s. The figures 

Hunter obtained are given in table 4

Approach Velocity m/s Coefficient of Restitution

1 0.999

9 0.996

30 0.993

Table 4. Variation of coefficient of restitution with approach velocity.

Hunter (1957) considered that the reason that the experimental figures for the 

coefficient of restitution, for the impacts where glass was the target, were close to the 

theoretical estimate, compared with other materials, was that there was relatively little 

viscous damping effects in the glass, unlike materials such as steel.

Glathart and Preston (1968) recognised, and addressed, the two different means by 

which glass can fail under impact, with particular reference to the failure of bottles 

and similar glassware. If a glass beam with a thickness that is small compared to a 

spherical indenter, supported at each end, is loaded quasi-statically by the spherical 

steel indenter with a large enough force, then the beam will deform under the load and
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fail in bending. A crack will develop at the centre on the underside of the beam 

opposite the point of loading. If the load is maintained the initial crack will propagate 

through the beam until the structure fails. If the thickness of the beam is increased so 

that it is large compared to the indenter, and provided that the supports are not too 

sharp, then when the load is high enough, the initial crack will form as a hyperboloid 

fracture which emerges in a circle adjacent to the contact region. These fractures are 

often described as 'percussion cones' or 'Hertzian conoids' and can be considered as 

failures under localised bearing stresses. The two methods described above for static 

failure are also applicable for dynamic failure when the glass beam is subjected to 

impact. Glathart and Preston further describe the dynamic failure; the flexural stresses 

can be considered to be essentially the same irrespective of the nature of the impact 

provided that the striking energy of the impactor is equal. The same cannot be said in 

the case of the bearing stress failures, the likelihood of failure if the impactor is soft 

and deformable (e.g. a leather bag) is different to the case when the impactor is hard 

and rigid (e.g. a steel sphere). If the impactor is too soft to initiate a percussion flaw, 

then an increase in the flexibility of the target does not improve the strength; the 

stiffer the glass the more able it is to withstand flexural stresses. If the impactor is 

made from a hard material which is able to cause a percussion failure, then there is a 

certain optimum target flexibility. The optimum flexibility is one where it is equally 

likely that a crack will be initiated on the impact surface near to the impactor as a 

bearing stress crack, or as a crack initiated on the non-impacted surface as a flexural 

stress crack. The optimum flexibility is significantly affected by the material and the 

shape of the impactor, even in the case of an impactor made of the same material and 

with the same shape, for example a sphere, a change in the diameter of the sphere will 

cause a notable change in the bearing stress with a consequential variation in the 

likelihood of a crack initiation.

Glathart and Preston (1968) believed that there should be a quantitative method of 

expressing the difference between an impact of a large soft impactor upon a target and 

a small hard impactor upon the same target, since in either case the failure is a result 

of the surface tensile strength of the glass being exceeded locally. They suggested that 

the theory underlying the explanation of the flexure failure was well established and 

relatively simple. The theory of bearing stresses was developed by Hertz, and is
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relatively complex. Subject to the modification of the analysis to cater for the duration 

of the stress, and the size of the area affected in the two different cases, the problem of 

impact could be reduced to the question; which of the two stresses, that due to flexure 

or that due to bearing, will locally exceed the tensile strength of the glass. To establish 

the answer to this question Glathart and Preston suggested that it would be necessary 

to calculate the tension first in the area directly affected and then in areas indirectly 

affected. The glass will fail at the point and at the time at which the local stress is 

greater than the failure stress. The calculation for the area directly affected by the 

bearing stresses can be made using the theory established by Hertz, the calculation for 

the flexural stress can be made if it is assumed that the deflection shape during impact 

is similar to the quasi-static case; i.e. a simple bow.

Glathart and Preston (1968) considered the analysis for the stresses in the bending 

case first. It is assumed that the deformation shape is similar to that of the quasi-static 

case, so that the bending stresses in all areas of the beam are determined by the value 

of the maximum deflection and the shape of the deformed beam. The stresses 

determine the elastic energy contained within the beam, and if the supports and the 

impacting sphere are considered to be rigid, then when the velocity of the sphere has 

reached its minimum figure, the impact energy is equivalent to the elastic energy 

contained within the beam. A low mass sphere dropping from a large distance could 

have the same elastic energy as a large mass sphere falling from a small distance.

Using an energy approach Glathart and Preston established that the reciprocal of the 

stress in the lower face is proportional to root of the beam thickness, and that the 

relationship holds provided that the surface deformation is not excessive compared to 

the overall deformation, and that the duration of the impact is sufficiently long to 

allow the beam to bend to the quasi-static shape.

A further conclusion was that for a particular glass the shape of the beam can be 

altered significantly without affecting the energy needed to fracture it provided that 

the beam can still be regarded as a beam up until failure.
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Glathart and Preston proceeded to discuss the Hertzian bearing stresses; the causation 

of a percussion cone requires a relatively hard material, this view is supported by the 

fact that the Young's modulus for the impactor forms part of Hertz's mathematical 

approach to the problem.

Glathart and Preston (1968) indicate that to develop the critical stress at the perimeter 

of the contact area in order to initiate the percussion cone, the ratio of the pressure 

divided by the diameter squared must be constant, consequently the square of that 

ratio must also be constant. If the physical characteristics of a beam are kept constant, 

such as the material, the beam dimensions, the support conditions, then to develop the 

critical stress at the periphery of the contact area the properties of the impacting 

sphere must be kept constant, so that the height the sphere is dropped, divided by the 

sphere diameter must be constant. The implications of this ratio is that a large sphere 

has to be dropped from a greater height to create the same conditions for a percussion 

failure as a smaller ball dropped from a lower height.

Glathart and Preston discuss two approaches to establish the bearing stresses during 

impact. The first uses the approach developed by Hertz, the second uses the principle 

of similitude. The Herzian approach considers the quasi-static case where a sphere 

constructed from a hard material, for example steel, comes into contact with a 

massive piece of glass. When the contact force is sufficiently high, the notional 

contact point expands to a circle whose diameter is defined by the load and the elastic 

properties of steel and glass. Using Hertz's theory Timoshenko (1934) established that 

the pressure, between the two surfaces is a maximum at the centre of the contact 

area. Glathart and Preston (1968) identified that the pressure reduces to zero in an area 

adjacent to the perimeter and that the deformation of the glass surface produces a 

radial tensile stress adjacent to the edge of the contact circle perimeter.

A crack initiated as a result of the radial stress must be nominally tangential to the 

circle of maximum stress, so that a crack form s at one point on the circle and extends 

itself around the circle until it joins. The crack extends vertically into the material of 

the glass for a short distance, and then flares out to form a conoid. The crack may not 

start on the circle of maximum stress, it may be initiated a short distance outside of
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the circle if the surface conditions are more favourable, because the radial stress is 

maintained at a significant level for short distances outside of the circle.

Glathart and Preston (1968) used Timoshenko's analysis for the determination of the 

contact circle radius, and found that in practice, the initiating crack does not start 

when the ratio of the diameter of the impacting sphere to the diameter of the contact 

area is the same for both impacting spheres. Glathart and Preston identified that when 

a crack is initiated this ratio, and the ratio of pressure divided by the square of 

impacting sphere diameter, both increase when the sphere diameter decreases, i.e. the 

smaller the area tested, the higher the value the breaking stress.

Glathart and Preston examined the case of massive glass under impact by developing 

their consideration from the case of a "dead load" or static sphere. A semi-infinite 

specimen would have a flat top surface, and extend to infinity in both the horizontal 

and vertical planes. A piece of glass could be considered to be semi-infinite if it 

extends a significant distance in all directions and is suitably supported.

If a sphere rests upon the piece of glass, it exerts a force upon the glass that is equal to 

the weight of the sphere. The stress is proportional to the force divided by the square 

of the diameter, so that the larger the sphere, the greater the stress. A depression or 

“dimple” will be formed by the sphere.

In the special case of the "live load", a sphere is lowered onto the surface of the glass 

until it makes contact, the sphere is then released. The depth of the dimple will 

oscillate but the maximum value of the depth will be twice that of the dimple which 

formed during the static loading. Using the principles of similitude, Glathart and 

Preston established that if two different spheres are to induce the same stress in the 

glass then their densities and their diameters must be inversely related, to keep the 

product of density multiplied by sphere diameter constant.

The more general case is impact loading. From Hertz, an expression can be obtained 

for the mutual compression of the glass and the sphere, using the undisturbed top 

surface of the glass as the datum. A relationship can be established which relates the
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total energy absorbed to the maximum reaction force and the deflection. The result 

obtained using the Hertzian approach is different to that identified for flexible 

impacts.

The last aspect that Glathart and Preston (1968) consider in their paper is the duration 

of contact on massive and flexible glass samples. They indicate that the duration of 

the stress is likely to have an influence on whether or not the glass will fracture.

Glathart and Preston argue that it can be shown that the contact time is very 

insensitive to the height of the drop, the height has to be reduced by three orders of 

magnitude before the duration of contact doubles. The contact time was discovered to 

be in the order of 1(T4 multiplied by the radius, i.e. approximately 1 0  ps for each 

millimetre of radius of the impacting sphere. Additionally, it is likely that the contact 

time is insensitive to the value of Poisson’s ratio, and is moderately sensitive to the 

density of the impactor, and Young’s modulus of the impactor and target.

The contact time is sensitive, however, to the radius of the sphere, so if the duration of 

contact is related to the likelihood of fracture then because the contact time increases 

with increasing diameter, the glass would be more likely to fail if the spheres were 

larger. Glathart and Preston discuss the effect of the contact duration on the breaking 

strength and suggest that the effect is not great unless the duration is increased by one 

or two orders of magnitude, however it was also suggested that the duration of stress 

is relatively more important at short durations. Mould (1961) was quoted as 

commenting that “....at extremely short durations the strength is independent of 

duration”.

Glathart and Preston (1968) indicated that impacts on flexible beams of glass could be 

considered in a similar fashion to massive beams, but with the added consideration of 

the deformation of the beam. They indicated that the contact time is not dependent 

upon the height from which the sphere drops, but it is dependent upon the shape of the 

beam and the mass of the sphere. The assumption during the analysis that the beam 

deforms during impact to a bow shape requires that the contact duration is
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significantly larger than the time required for an elastic wave to travel from the impact 

to the beam supports.

Langitan and Lawn (1969) discussed the interpretation of the empirically determined 

Auerbach’s law (i.e.; that the critical load for the production of a Herzian cone 

fracture is proportional to the radius of the indenting sphere) and its use in 

determining the validity of brittle fracture criteria, and as a means to measure surface 

fracture energies. The two alternative approaches to explain Auerbach’s law are the 

flaw statistical view, and the energy balance concept.

Langitan and Lawn (1969) found it difficult to accept that a distribution of flaws 

would always have the appropriate occurrences to fit with a simple power law and 

also that a smaller scatter of results would occur with a decreasing radius of indenter 

sphere, which was not observed during experimentation. They argue that an extension 

to Roesler’s approach viz. that Auerbach’s law follows from the Hertz equations, in 

that the total loss in strain energy following a crack is equal to the total gain in surface 

energy of the new crack surface, was more acceptable. Langitan and Lawn developed 

a stepwise application of the Griffith’s energy balance criterion to the growth of a 

cone crack predicting strict adherence to Auerbach’s law within limits of indenter 

size.

Tsai and Kolsky (1967) studied the fractures produced by steel balls after impacting 

glass blocks at different velocities, ranging from 1.5 m/s to 34 m/s. Tsai and Kolsky 

investigated four aspects during the study. Firstly, they identified the relationship 

between the appearance of cracks and the velocity of an impacting sphere. The 

Hertzian cone fracture grew and penetrated further into the body of the glass plates as 

the velocity increased, a further increase in the velocity resulted in two or more 

Herzian cracks forming, and at the highest velocities used during the tests, a 

powdering of the glass surface was observed underneath the area of impact.

The second element of Tsai and Kolsky’s work concerned the coefficient of 

restitution, they discovered that the formation of small cracks during impact had little 

effect upon the rebound height, but at higher velocities the damage caused to the glass
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dissipated more energy and thus resulted in a lower rebound height. Additionally, the 

experimental scatter at higher velocities was more marked.

The third part of the work recorded the surface waves produced on the glass blocks by 

the impact of steel spheres. Strain gauges were used to measure the stress waves. The 

gauges were placed in three different sets of positions for three different aspects of the 

experimentation. Fractures were identifiable because they caused large jumps in the 

output of the strain gauges. When fracture occurred the shape of the stain gauge 

output pulse was different in different radial directions. When the velocity of impact 

was increased, the fractures occurred earlier in the impact process, and the amplitude 

and number of jumps in the strain gauge output increased. For impacts of half inch 

steel spheres, the strain gauge output pulse shape did not vary to any great extent with 

the distance travelled, and at radial distances greater than one and a half inches, the 

pulse amplitude decreased approximately with the square root of the radial distance 

travelled.

The final part of Tsai and Kolsky’s paper described a simplified mathematical 

approach to the propagation of waves produced by Herzian impacts on an elastic half 

space which produced a close agreement to the observed operational pulse shapes.

Schonberg, Keer and Woo (1987) investigated low velocity impact of a cylindrical 

impactor upon beams and plates using a numerical approach. They concluded that 

impact force, the maximum transverse displacement and the duration of impact were 

directly proportional to the plate mass, and inversely proportional to the bending 

stiffness of the area, whilst the contact area was inversely proportional to the 

transverse stiffness of the plate.
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2.4 Contact

In his book, Johnson (1987) states that the first satisfactory theory describing the 

stresses generated during contact between two elastic solids was developed by Hertz 

(1882) when he was considering the influence of elastic deformation on the surfaces 

of the lenses due to the static contact pressure between them.

Raman (1920) mentions that one of the premises that Hertz used during the 

development of his theory was that during the collision of two elastic solids, the 

strains developed in the region of the contact area at any instant, are determined by the 

pressure between the bodies and are very close to those developed under static 

conditions.

As mentioned above, Tillet measured the time of contact for a variety of materials and 

conditions and concluded that the time of contact was in agreement with the 

prediction of Hertz; the time of contact is inversely proportional to the fifth root of 

the impacting velocity. The measured contact times for a 6.35mm steel sphere 

impacting on different materials at 9 m/s are given in table 4.

Material Time of Contact 5

Perspex 73 X 10'6

Glass 32 X 10'6

Steel 2 1  X 1 0 '6

Table 4. Measured contact times for impacting 6.35mm sphere, from Tillett (1954).

Frank and Lawn (1966) discuss the stresses generated in the contact region during the 

impact of spherical indenters and brittle solids, and the subsequent generation of 

cracks in the stress field surrounding the contact area. Using the Hertzian approach to 

loading (Hertz 1882) they produced a diagram of a steel indenter striking a large flat 

steel specimen that illustrated the greatest tensile stress as a function of position
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through the axis of symmetry (see figure 3). In the zone underneath the area of 

contact, all three principal stresses are compressive. Outside of the immediate contact 

area the greatest tensile stress is quite low, and rises to a maximum at the circle of 

contact. Frank and Lawn noted, however, that the chief empirical inconsistency with 

their analysis was that a crack generally formed outside the circumference of the 

contact circle, instead of on it.

Tsai and Kolsky (1967) investigated the flaw distribution on glass surfaces subjected 

to stresses generated by small spherical indenters pressed into the surface. Tsai and 

Kolsky indicate that during this type of loading a ring crack develops and encircles the 

contact region. They point out that, according to theory, the tensile stress is at a 

maximum at the boundary of the contact area, but that the circular ring cracks were 

found to have radii slightly in excess of the circle of contact. Tsai and Kolsky note 

that approaching the boundary of the contact area from the centre the radial stress is 

compressive, whilst approaching the boundary from outside of the contact area the 

stress is tensile. Theoretically, therefore, the stress changes rapidly near the boundary. 

The rapidly changing stress gradients are likely to be smoothed out in practice in a 

way which may be related to the frictional forces between the spherical indenter and 

the glass plate. Tsai and Kolsky suggest that the smoothing could explain the 

observation that the circular crack is always found to have a diameter greater than that 

of the contact boundary circle.

Glathart and Preston (1968) discuss the bearing stresses induced in glass plates by 

spherical steel impactors, and using relationships established by Hertz (1895) and later 

by Timoshenko (1934) describe a result similar to Frank and Lawn whereby the 

pressure of contact produces a tensile stress which has a maximum value at the edge 

of the contact circumference. Glathart and Preston establish that the maximum value 

of the tensile stress is related to the force of contact, the geometry of the contact area, 

and Poisson’s ratio for glass.

Tsai (1971) investigated the theoretical dynamic contact stresses generated during an 

impact between an axi-symmetrical projectile and an elastic half space by solving 

three dimensional equations of motion. Tsai calculated the contact stresses for various
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values of the contact time and the maximum contact radius, and concluded that the 

Hertz theory is an acceptable approximation for establishing the total force produced 

by the projectile when impacting upon a half space, but that the Hertz approach for 

calculating maximum radial surface stress, is limited to moderate impact velocities 

when the contact time is more than approximately 40 psec. Tsai concluded that the 

discrepancy between the established Hertzian analysis and his approach increases with 

decreasing contact time and increasing contact radius, and is more noticeable at the 

beginning of the contact time than in the middle.

Johnson, O’Connor and Woodward (1973) indicated that Hertz’s theory should be 

modified to take into account interfacial frictional stresses. Their work indicated that 

the initiation of cracks outside of the circumference of contact can be explained by the 

result that the maximum radial tensile stress occurs outside of the contact circle if 

there is a mismatch in the elastic constants of the impactor and target plate (i.e. the 

modulus of the impactor is greater than that of the impact plate).

Chaudhri and Walley (1978) considered the damage to glass surfaces caused by the 

impact of small spheres, and indicated that if the impactor is small, (i.e. the radius of 

the impactor is small), and the loading sufficiently high, then plastic deformation will 

occur, thus Hertz’s approach will not be appropriate for the analysis. They state that 

the nature of the surface stresses change during plastic deformation of the substrate; 

the radial stress eventually becomes compressive, whilst conversely, the 

circumferential stress becomes tensile. The tensile circumferential stresses cause the 

radial cracks around plastic deformations.

Chaudhri and Yoffe (1981) investigated the apparent disagreement in published 

results between the theoretical diameter of the Hertzian contact area, and the diameter 

of the ring crack noted during experimental studies. Their studies, using small steel 

and tungsten carbide spheres impacting upon 3mm thick glass discs, fused silica and 

sapphire, indicated that there was good agreement between the Hertzian theory and 

the experimental results produced by the steel ball and glass impact combination. The 

material properties used by Chaudhri and Yoffe (1981) are given in table 5.
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Material Properties Soda-lime Glass Steel

V 0.25 0.3

E / Nm~2 69 xlOy 205x109

13.6 x 10' 12 4.44 x 1 O' 12

Table 5. Properties of material used for Hertzian analysis of area of contact, Chaudhri and Yoffe 

(1981).

Hamilton and Rawson (1970) conducted some indentation experiments on float and 

plate glass that had been etched with hydrofluoric acid, and analysed the results in 

terms of the theory of flaw statistics generated by Weibull (1939). They concluded 

that an acceptable degree of similarity was obtained between their experimental 

results, and the results predicted using simple flaw distribution functions for the five 

surfaces investigated. They identified that the tin-bath surface of the float glass is 

significantly weaker than the top surface exposed to air, and the results for the upper 

surface are very similar to those obtained for 7 minute etching of plate glass, whilst 

the results for the tin-bath surface are similar to 4 minute etching of the plate glass. 

The results were represented by two straight lines intersecting at a point, when the 

logarithm of the median fracture load is plotted against the logarithm of the indenter 

radius. The range of the indenter size below the point of intersection is usually termed 

the Auerbach range. Hamilton and Rawson identified that the upper limit of the 

Auerbach range decreased significantly as the strength of the glass increased, and that 

the slope of the median fracture load versus indenter radius on a log-log plot was 

sensitive to variations in the condition of the surface. Thus, the statement that the 

mean fracture load is linearly proportional to the indenter radius in the Auerbach 

range is not generally correct. In the final part of their paper Hamilton and Rawson 

discuss the objections raised to the application of flaw statistics analysis to their type 

of experimentation by Roesler (1956) and by Frank and Lawn (1967), they concluded 

that the objections were not justified.
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2.5 Crack Initiation and Failure Prediction.

Cottrell (1964) discussed brittle fracture and indicated that brittle solids often fail at 

approximately £71000 (the ideal strength of £710 only achievable in specially prepared 

samples such as fibres). Cottrell indicated that brittle solids are weak in normal use 

because sharp notches, cracks, rapid changes in geometry, etc., will produce localised 

concentrations of applied stress. Doremus (1994) discussed the nucleation of cracks, 

and suggested that when a glass sample is loaded, cracks will start at pre-existing 

flaws, and will then propagate. However, an existing flaw is not always necessary, 

Doremus stated that indenting a flaw-free surface of fused silica will nucleate a ring 

crack if the load is high enough. Doremus indicated that median cracks are formed by 

the need to accommodate strains at the intersection of two flaw lines, whilst lateral 

and radial cracks start at the boundary between a faulted region and the rest of the 

glass and nucleate by unloading residual compressive stresses.

Cottrell (1964) indicated that materials are considered to be “stronger” when they 

have a greater fracture toughness. Fracture toughness is often determined empirically 

by measuring the breaking strengths of a large number of samples, and fitting the 

results to an appropriate curve to provide suitable figures for fracture toughness. Lawn 

(1993) indicated that the presence of cracks does not necessarily cause a failure. 

Fracture will occur when, in a material subjected to stress, a crack reaches a critical 

size, or when a material containing cracks of a critical size is subjected to a critical 

stress. The combination of stress and crack length is often described using the stress 

intensity factor, and the combination at which the fracture commences is called the 

critical stress intensity factor. The value at which the stress intensity factor becomes 

critical is often described as the fracture toughness.

Overend et al (1999) discussed the Beason and Morgan failure prediction model 

which forms the basis of the US and Canadian codes of practice for glass design. The 

Beason and Morgan model uses a two parameter Weibull curve with an average 

maximum stress based upon a sixty second equivalent maximum principal stress. 

Overend et al extended the failure prediction model to any load, support or plate 

geometry arrangement.
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2.6 Weibull Analysis

Weibull (1939) discussed how in classical theory the ultimate strength of a material is 

determined by the internal stresses, and that the value of those stresses should be 

definitively decisive in judging whether the ultimate strength has been reached, and 

consequently when failure will occur. However, Weibull indicated that many 

experimental results did not appear to correspond with the classical theory. Weibull 

claimed that using elementary probability as a starting point it was possible to 

reconcile the apparent difference between classical theory and measured results.

Weibull (1939) used as an example, a simple tensile test on a rod, where the breaking 

load was not exactly the same but distributed around the computed mean with some 

amount of dispersion. Weibull argued that although it was not possible to indicate an 

absolute value for the breaking load, it was possible to indicate a definite probability 

of failure occurring at a given stress level. Weibull suggested that if S were the 

probability then S = /(er) would be a continuously increasing function of the 

stress, a . For very low stresses, S -  0, and for very high stresses, S = 1. Weibull 

demonstrated that an “s” shaped distribution curve can be generated which illustrates 

the relationship between the probability of failure and the stress.

Wiebull (1939) concluded that the distribution function m could be determined 

empirically by plotting the relationship between the probability and the stress after 

suitable manipulation of the equation (taking logarithms, and re-arranging), so that m 

was the slope of the rearranged linear relationship.

A number of others have used the approach that Weibull (1939) developed, for 

example, Oh and Finnie (1967) investigated the ring cracking of glass by spherical 

indenters, whilst as mentioned above, Hamilton and Rawson (1970) used Weibull’s 

approach to analyse the differences between glass samples with different polished and 

acid etched surfaces; they determined some simple flaw distribution functions for the 

various specimens, and compared the experimental results with those predicted.
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3 Theoretical Considerations

3.1 Beams in Bending

The glass samples used in the experimentation were square plates, clamped on all four 

edges. The analysis of plates for point loads is complex, so consideration was given to 

a simplified approximation using beam theory.

3.1.1. Monolithic Beams

When a simply supported beam is subjected to lateral loads, the response to that 

loading across a section of the beam can be described using bending moments and 

shear forces, Case and Chilver (1971), The load on the beam causes distortions to 

occur; for a load acting downwards on a simply supported beam, the material forming 

the lower sections of the beam will be stretched so that tensile stresses are induced. 

Similarly, compressive stress will be induced in the upper sections of the beam. The 

variation in stresses through the depth of the beam also has the effect of distorting the 

cross section.

Consider a beam bent in one of its principal planes by two equal and opposite moments 

(figure 4), according to Timoshenko and Goodier (1951) the stress components given 

by the elementary theory of bending (provided that the boundary condition 

requirements are satisfied) are;

The bending moment is given by;

(2)

which leads to the more general case;
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M  a  E
T - y - h  ^

where y  is the distance from the neutral axis to the outer edge of the beam.

The test samples under consideration were clamped along all edges. If the clamping 

were considered perfect then the representative beam could be considered as being 

“built in”. If the samples were resting upon a support frame, then they would be 

considered to be simply supported. However, it is likely that the real situation is some 

way between a built in beam and a simply supported beam. Consequently both 

approaches will be considered.

The samples used for this work were 420mm wide, 420mm long, and 6.4mm thick. 

Using simple beam theory, approximations can be made as to the expected 

deformations and stresses in the plate.

From Young (1989), for a built-in beam, for a given load, the maximum deflection,

WE
A (4)m 192 El

(5)

for a rectangular beam, /  = ( 6)

which in this case = 9.2 xlO'9 m4.

For the case of a built-in beam,
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WL
T ~ (7)=

From equation (3),

My WLy
a  -  —— -  —— and substituting using equation (5), 1 81

24Ey&m 
a  = ----E

(8 )

(9)

Assuming that the maximum deflection Am = 3mm, substituting appropriately gives a 

value of 95.3 MPa for the stress.

Similarly, from Young (1989), for a simply supported beam, 

for a given load, W the maximum deflection,

WL1 
m ~ 48E7 (10)

and M mm
WL 
4 ’ ( 11)

substituting as before gives

!2 £yAm
r2

with a value of 47.7 MPa for the stress.

(12)

Figures 5 and 6  are graphs which illustrate the relationship between deflection and 

stress for the two cases described above.
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3.1.2 Superimposed Beams

Laminated glass is constructed from three layers of material, two layers of glass with 

an interlayer of PVB. If the interlayer was considered to play no part in resisting 

applied loads, and allowed the free movement of one glass layer with respect to the 

other, then the two glass layers could be considered as a superimposed beam, Pye and 

Leadbetter (1999).

If a superimposed beam were to be loaded laterally, then the laminae would slide over 

each other once the beam started to distort. The strength of the superimposed beam is 

the sum of the strength of the two separate lamina.

If the natural tendency of the laminae to slide over each other is wholly resisted, the 

superimposed beam acts as if it were a monolithic beam.

Case and Chilver (1971) indicate that the maximum bending moment able to be 

sustained by the superimposed beam with a rigid shear connection is twice that of the 

beam with no sliding resistance. A laminated glass beam is likely to be closer to the 

former case than the latter because the PVB has high adhesion with glass, and because 

the PVB does not appear to allow significant movement of one glass lamina with 

respect to the other.

3.1.3 Sandwich Beams

The laminated glass beam may further be considered to be a sandwich beam in which 

case not only does the PVB act as a “glue” between two layers of glass, but it 

responds to the loading, in which case the flexural rigidity of the beam is the sum of 

the flexural rigidities of the component parts measured about the centroidal axis of the 

entire cross-section. Allen (1969) indicated that in the general case the flexural rigidity 

D of a sandwich beam is given by
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(13)

where Ef and Ec are the moduli of elasticity for the faces and the core, respectively, and 

d is the distance between the centre lines of the upper and lower faces, as illustrated in 

figure 7, so that

Allen’s approach to beams has been developed to deal with sandwich beams used, for 

example in the aerospace industry, where the core is usually thick in comparison to the 

outer faces.

Allen (1969) indicates that in the right hand side of equation (14), the first term 

represents the stiffness of the faces bending around their own centroidal axes, the 

second term represents the stiffness of the faces bending around the centroidal axis of 

the sandwich, and the third term represents the bending stiffness of the core. If values 

for laminated glass are used in equation (14) the third term in the equation is 

significantly less than the first two terms indicating that the core material, in this case 

PVB, contributes little to the stiffness of the structure.

Provided that the sections remain plane and perpendicular to the longitudinal axis, the 

strain, at a point a distance z below the centroidal axis, is given by M z/D . The strain 

may be multiplied by the relevant modulus of elasticity to give the stress at the distance 

z, so that

(15)

and

a c
Mz ----E (16)
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The maximum stress in the face and the core can be determined by substituting for z, 

±h/ 2  and ±c/ 2  respectively, to give,

(°>)\ J / n +-MEf  h 
D 2

and (<j c) = ±V c /  max

MEC
D

(17)

The bending moment, M, for sandwich beams with thick faces is not simple. Allen 

(1969) determined that the maximum stress in a thick faced simply supported sandwich 

beam with a central point load was given by

(18)

where i//3 is related to the ratio of the core shear stiffness to the local bending stiffness 

of the faces. However, as the core becomes stiffer, the sandwich acts more like a single 

composite beam, and hence ordinary bending theory is applicable.
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3.2 Plate Analysis

3.2.1 Quasi-static Loading of plates

Timoshenko and Woinowsky-Krieger (1959) address in some depth the analysis of 

stresses and deflections of circular and rectangular plates subjected to a variety of 

loading and support conditions.

Using the approach developed by Navier in 1820, Timoshenko and Woinowsky- 

Krieger demonstrated that deflection w in a simply supported rectangular plate can be 

represented using an infinite trigonometrical or Fourier series;

w -
f ' l  / k v

L Amn sin——sin
m= 1 n= 1 a

miy
~b~ (19)

For a given load distribution the coefficients of the series can be obtained.

To approach the problem for a rectangular plate with built in edges, Timoshenko and 

Woinowsky-Krieger solved the problem for a simply supported plate and then 

superposed on the deflection of such a plate, the deflection of the plate by moments 

distributed along the edges. They then adjusted the moments in such a manner so as to 

satisfy the condition that the deflection is equal to zero at the boundary of the clamped 

plate.

Megson (1990) uses the above in his discussion of solutions to thin plate problems 

using the energy method. Using this approach Megson demonstrated that the 

deflection of a simply supported rectangular plate, of length a and width b which 

carries a uniformly distributed load q0 is given by;

w =
\6q0a4b4 

n 6D[a2 + é 2 ) 2

. TJX . 7ty sin —  sin — 
a b

(20)
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where D =
E t 2

1 2 ( l - u 2)

and since at the centre of the plate w is a maximum,

16q0a4b4 

n 6D[a2 +b2f
(21)

Megson (1990) extended this approach to show that the energy method can be used to 

consider the deflected shape of a simply supported rectangular plate, of length a, and 

width b, carrying a concentrated load at a position (^,r/) The term Anm in the Navier 

equation, (19) can be shown to be;

Amn

mn% nnr/
4 W sin----- sin —r~__________a_____ b

n4 Dab^inr / a2 ) + {n2/b 2 )]
(22)

a
For a square plate with a central concentrated load, £ = —, 7

and a = b, so that,

b_
2 ’

=

m n tin 
4 W sin---- sin —
________ 2 2
n 4D[m2 +ti2)/a 2

the deflection at the centre is;

00 00v  ^  mn tin
w = L  L Amn sin — sin-

m=1 n=1 2 2

(23)

(24)

and considering the leading terms in the series, so that m = n=  1 ,

i.e., neglecting m,n greater than 1 , the maximum deflection can be shown to be;
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(25)w
Wa2 12(l- v2)
n Et-

In his discussion on bending of thin plates, Megson (1990) indicates that the direct 

stresses are given by,

Ez r ¿Fw (f'w'' 
d x 2 + V d y 2 j (26)

and

cr, =
Ez

l - v : ^d y ‘
w

■ +  V
¿Pr-'w
d x 2)

If the general expression for w is differentiated, this gives,

dx1

f

V
- m  n

a

2 \

y
mra nity

sin----- sin——
a b

and

S Z 4
f 2 2 ̂- n  n

V b 2 J

. m m  . wiy
sin----- sin—7—

a b

Putting a = b , x = y  = a /2, and m = n = 1,

Ez ( . k 2 . 7c2A
(j at centre = ------7  A,, — 7  + V54„ ,

1 - v V a a j

f  „ 2

cr„ at centre =
1 - v2

,2V
A —  + vA —  ^ 1 1  2 ^  ^ 1 1  2 v a y

(27)

(28)

(29)

(30)

(31)

i.e. a\. = 0 \,
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Since, in this case, A u = w  then

crr
Ez W7T2 / \ n2Ez

Ï Ï V ' ~ ^ 1 + v̂  = (i - v )a 2
(32)

The maximum stress occurs at the outer fibres of the plate where z = t/2 , 

so

x  max

K2 Et 
2(1 -  v) a 1

w (33)

In terms of the load W, 

6(1 + v)W
max —2^2n t

(34)

An alternative approach to the bending of rectangular plates, with two sides supported, 

was developed by Levy (1899). Levy transformed the double series of the Navier 

solution to a simpler series which has the advantage of being more suitable for 

numerical computation.

A number of numerical factors for different loading conditions can be obtained using 

the approaches discussed above. Young (1989) lists formulas for the two conditions of 

interest.

For a rectangular plate, with all edges built in, and with a load, W, concentrated over a 

small circle of radius r, the maximum deflection w is given by

w =
aW b2 

E t3
(35)
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Where a  is dependent upon the ratio of width and breadth of the rectangle, and for a 

square is equal to 0.0611.

The stress cr at the centre of the plate is given by;

3 W
2 nV

X 2Z>
(l + o ) l n ~  + /?

n r (36)

Where /? is dependent upon the ratio of width and breadth of the rectangle, and for a 

square is equal to -0.238.

Similarly, for a simply supported rectangular plate, with a uniform load over a small 

concentric circle of radius r the value for a  is equal to 0.1267, and the value for ¡3 is 

equal to 0.435.

In comparisons between theoretical calculations and measured stress, the approach 

suggested by Megson (1990) appeared to give a reasonable fit (figure 8).
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3.3 Stress waves

In the introduction to his book, Kolsky (1963) indicated that in rigid dynamics, it is 

assumed that should a force be applied to any point on a body, then all points of that 

body act as if the resultant stresses and strains occur instantaneously, thus every point 

is set in motion at the same time resulting in a linear acceleration of the whole body, 

together with an angular acceleration about the centre of gravity. The theory of 

elasticity requires that the body be considered to be in equilibrium under the action of 

the applied forces, and any elastic deformations are assumed to have reached their 

static values. Kolsky concluded that the above approaches are acceptable for problems 

where, the time between the imposition of forces, and the time for equilibrium to have 

been effectively reached, are short compared with the time during which the 

observations are made. However, when the reverse is the case and consideration is 

given to forces which are applied for short lengths of time, or are varying rapidly, then 

the effects should be considered in terms of the propagation of stress waves.

Section 3.2 concentrated upon the quasi-static effects of bending, which is unlikely to 

provide the full picture when considering the impact history. When investigating 

impact , it is necessary to consider the response of the material and the structure to a 

rapidly varying, or an impulsive load. Zukas (1982) suggests that for low intensity 

excitations, both the physical nature of the whole structure and the characteristics of 

the material from which the structure is built play a major role in resisting the 

externally applied load. Zukas indicated that as the intensity of the loading increases 

the material characteristics tend to dominate the structural considerations, because the 

response of the system becomes more and more localised. For loads that do not cause 

the resultant stresses to exceed the elastic limit, it is appropriate to restrict the analysis 

to elastic considerations. The present work is concerned with both the elastic case and 

also situations when the stresses exceed the elastic limit, but it is considered that the 

elastic case is an appropriate starting point.

Johnson (1972) defines a stress wave or pulse as a transient effect that results from an 

external load causing different parts of a body not to be in equilibrium, and because of 

the material characteristics, the disequilibrium takes a finite time to travel to remote
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areas of the body, i.e. there is a calculable time delay before the stress is "felt" by the 

more remote parts.

Zukas (1982) comments that elastic theory indicates that there are two wave types 

that travel through an extended solid medium, these are longitudinal, (dilatational, 

irrotational, or primary) and transverse (distortional, shear, equivoluminal, or 

secondary). In a longitudinal wave the particle motion induced by the disturbance is 

parallel to the direction of propagation of the wave, (i.e. normal to the wave front) and 

the strain is pure dilatation, whilst in a transverse wave the particle motion induced by 

the disturbance is at right angles to the direction of the propagation of the wave (i.e. 

parallel to the wave front) and the strain is a shearing strain.

Kolsky (1963) demonstrated that the equations of motion of an isotropic elastic solid 

are;

<?U (
p  d t1

\ dS. _ 2 l + /l) —  + MV-„

•***, 
To

N 
< II

L + / / ) ^ + / / v 2 y
(37)

>IICt.

\ 19A .
1 + ju) —  + juV wCs 2,

where V2
f  d1 d1
yck2 dy2 dz2;

and X and ¡u are Lame’s constants. This equation (37), may be shown to correspond 

to the propagation of two types of wave through the unbounded medium. Using the 

equations of motion, Kolsky showed that the wave equation was;

p|^ = p + 2p)v2A (38)

3.14



The wave equation shows that the dilation A, travels through the medium with a 

velocity Cj where,

c,2 = [x + 2fj)l p ~ v)
p(\ + v)( \ - 2 v ) (39)

Thus the propagation speed of longitudinal waves depends upon the density, Poisson’s 

ratio, and Young’s modulus.

It can be further shown that transverse waves travel with a velocity c2, where,

2 _ M _ E
p  2p{\ + v) (40)

Kolsky (1963) considered the propagation of stress waves in any bounded isotropic 

solid and showed that the propagation of longitudinal waves along a bar with a 

velocity c0 can be given by;

Kolsky states that this relationship is approximate, because an assumption is made that 

plane transverse sections of the bar remain plane whilst the stress waves pass through 

the section, and that the stress acts uniformly over each section. Provided that the 

length of an elastic wave is large compared to the lateral dimensions of the bar, this 

approximation is acceptable.

Kolsky (1963) showed that there is a linear relationship between the stress at any point 

and the particle velocity, so that;
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(42)
'  E \̂ du du
Kc0) d  t *X ° d  t

The ratio between them corresponds to the characteristic or acoustic impedance, R, 

where,

R = c0p  (43)

The two materials of prime interest in this work are glass and steel. Glass has a 

Young’s Modulus of 73 x 109 N/m2 a Poisson’s ratio of 0.23, and a density of 2400 

kg/m3, whereas steel has a Young’s modulus of 200 x 109 N/m2 , a Poisson’s ratio of 

0.3, with a density of 7850 kg/m3.

The longitudinal wave speed for glass and steel can be calculated, and are as follows;

The “bar” longitudinal wave speed, ca for steel = 5048 m/s

The “bar” longitudinal wave speed, ca for glass = 5515 m/s

The “bulk” longitudinal wave speed cy for steel = 5856 m/s

The “bulk” longitudinal wave speed cy for glass = 5938 m/s

3.3.1 Reflection of Elastic waves at a boundary.

All media propagate stress waves, and when a stress wave impinges upon the interface 

between two different media, part of the wave is reflected, and part is transmitted 

(Kolsky (1963)). If the second medium is the special case of a vacuum (which 

obviously cannot transmit an elastic wave), then the stress wave is completely reflected 

within the body. For most engineering applications air is considered to be analogous to 

a vacuum as far as the transmission of stress waves is concerned.

Achenbach (1975) showed that if an incident stress wave can be denoted by
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° l = f
f
V C L J

t -  — (44)

where /  is a shape factor, and t time, then the reflected and transmitted waves may be 

represented by;

(45)

and

respectively, (46)

where g  and h are shape factors.

Using the relationship that relates the stress to the particle velocity, 

a  = -pc, u

Achenbach (1975) goes on to show that the reflection coefficient CR, and the 

transmission coefficient CT, are given by;

c  _ P'c 'lIpc l - \
R P’c'LlpcL + \ 

and

c  2P'c 'l/Cl
T P'c'LlpcL+\

The above equations indicate that the character of the reflection and transmission 

waves are determined by the ratio of the mechanical impedences (i.e. p'c\lpc, ). If

(47)

(48)
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p'c'J pc, -  0, as for a free surface, then the reflection coefficient = -1 and the 

transmission coefficient =0, as discussed above. The negative sign of the reflection 

coefficient shows that the sign of the stress pulse changes upon reflection, so that a 

tensile wave is reflected as a compression wave, and vice versa. It can be seen that 

since p'c'Jpc, approaches 0 for air, then air can be considered to approximate to a 

vacuum in this instance.

If p'c'J pc, =1, i.e. the mechanical impedences of the two media are identical, then the 

stress wave is completely transmitted. The transmitted wave is invariably the same sign 

as the incident wave.

Zukas (1982) demonstrated that at a free surface, the result of the reflection of a stress 

wave is that the net stress becomes zero, whilst the net displacement and particle 

velocities have values which are doubled. Similarly, the reflection of a stress wave at a 

fixed boundary results in a doubling of the total stress, with a particle speed of zero, 

assuming in both cases that no transmission of the stress wave takes place.

3.3.2 Oblique Impinging of stress waves.

The section above concentrated upon stress waves that were normal to a boundary, 

should either a longitudinal wave or a transverse wave impinge upon a boundary at an 

angle, then waves of both types would be reflected.

Kolsky (1963) has shown that when a longitudinal wave impinges on a free surface a 

longitudinal wave is reflected at the same angle as the angle of incidence, and a 

transverse wave is reflected at an angle, /?, similar to that for the refraction of light. 

The refractive index is given by the ratio between the velocities of the longitudinal and 

transverse waves, i.e.

(49)
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Similarly when a transverse wave impinges upon a free surface, a transverse wave is 

reflected at the angle of incidence and a longitudinal wave is reflected at an angle /?', 

where

sin a ' _ c, 
sin p  c2

and a' is the angle of incidence.

3.3.3 Stress wave propagation in a solid-solid impact 

In the case of the impact shown in the following diagram,

lp

■>|

V Cp

Projectile J

----- ►

>ct

Target

(50)

a steel projectile of length lp impacts upon a glass target of thickness I,, at a velocity, v 

of up to 7 metres per second. The above illustration represents the simplified one 

dimensional approach which is discussed further in section 3.3.4.

Lush (1999) discussed the relationship between pressure and particle velocity for a 

wave. For a right going wave,
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Ui

U2

Pi P2

Relative to the wave,

C- U i 
◄—

Pi

c- u2

P2

Using the principle of conservation of momentum,

P2 ~P\ = p { c -u 2\ c - u , - c + u2) (51)

i.e. p 2 ~ P] -  P ci}<2 -Wj) for c » u 2 (52)

Consider a left going wave

Ui
u2

Pi P2
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Relative to the wave,

C +  U] 
-------------------- ►

c + u2 
--------- ►

Pi P2

Applying the momentum principle,

Pi ~ Pi = p{c  + m2 )(c + u i - c -  m2) (53)

i.e. Pi~P\  -  - p  c(//2 ~ u\) f°r c »  u\ (54)

Thus, Ap = ±p cAu  which is positive for a right going wave, and negative for a left 

going wave.

Solid-solid impacts have been described using Langrangian diagrams, or x-t plots, 

(Johnson (1972), where x is the spatial co-ordinate and t is time. Figure 9 is a 

Lagrangian diagram for an impact of steel on glass in the case where the length of the 

impactor is far greater than the thickness of the target. Considering the same example, 

figure 10 is another Lagrangian diagram which illustrates the early part of the impact 

history in more detail, and illustrates the stresses and particle velocities. Given that the 

acoustic impedance of the projectile Rp is equal to ppcp and the acoustic impedance of

the target, Rt is equal to p,ct , Lush (1999) showed that solving for pressure and 

velocity from the impact gives

~P\ = (55)

and p x = Rtû (56)

f  i 1 N
hence p . ----- b —  =v

\ R ,  Rt)
(57)
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(58)RPR,V J Rpvor p x = —-----— and //, =
1 R ,+ R ,

Using appropriate values for the steel impactor and the glass target, with an impact 

velocity of 7 m/s, a figure of 73.3 MPa for p x is obtained.

For the incident wave,

Px = - Rt(ui -« 2 ) (59)

for the transmitted wave.

Px Pi = ~ Rp(u x-th) (60)

and for the reflected wave.

Pi = tf ; (w3 -w 2)

Eliminating u3 from the 3 equations above, gives

(61)

Px
R, + Pi r_l_ + ± ?

Rp + Rt
?/j u2 (62)

i.e. El
R,

(
so p  3

VJ
1 + 0 r i n

R P + R J

II 2= i! 
a, 

1

(63)

(64)

therefore, —  =Pi Rt -  RP
Px R, + Rp

(65)
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If the acoustic impedance of the projectile is greater than that of the target, then p3 

would be negative, the interface between the projectile and target would be in tension 

and they would separate.

If pi is equated to zero, so that u2 = w3 and solving for u3 in the target medium gives

Pi = -R ,(vi ~ u3) ( 66)

and similarly, solving for u3 in the projectile medium gives

Pi = ~Rp(ui ~ ui) (67)

Hence, for the target medium,

Pi 2 p x
M 3 = ^  +  M l = X

(68)

2Rpv

R ,+ RP
(69)

For the projectile medium,

Pi _ Pi ^ Pi_Hi — + U, — “h
3 R , 1 R , R t

(70)

= Pi
RP+R,

RPRt
= v (71)

When
2 R

R,+ RP
> 1 i.e. R > Rt the target will separate from the projectile.
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The separation velocity is given by

RP-R ,  
Rp +R,

(72)

So, for a glass target and a steel projectile travelling at 7 metres per second, the 

separation velocity is equal to;

39.6-13.6
-------------.7 = 3.4
39.6 + 13.6

m / s

However, in the experiments under consideration, the target glass sample is restrained 

and the projectile or in this case the hydraulic impactor continues to move forwards, 

driven by the flow through the hydraulic cylinder. Consequently, the situation existing 

just prior to the original impact reoccurs, so that further impacts will take place.

If the acoustic impedance of the target were to be greater than that of the projectile, 

i.e. p,ct > ppcp then p3 would be positive, so that the interface would not be in tension

and the projectile and target would not separate, consequently further reflections of the 

stress wave in the target would occur.

3.3.4 Release Wave

Once the stress wave has reached a boundary, part of the stress wave will be reflected, 

and part will be transmitted. If the boundary is a free surface, all of the wave will be 

reflected, Kolsky (1963). The reflected element is often called the release or unloading 

wave. If the impactor were a plain cylindrical bar, as is normally the case in Hopkinson 

bar experiments, then the release wave would take time 2  l/c to return to the impact 

point where / is the length of the bar, and c is the stress wave velocity. However, the 

impactor under consideration has a more complex shape, thus the nature and timing of 

the release wave is more involved.
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Figure 10 et seq illustrate how the stress waves may interact as they propagate through 

the material of the target and the impactor. Figure 11 shows the projectile, - the steel 

impactor, and the glass target at the point of impact. The impact is not considered to 

be a point contact because the radius of the impactor is such that there exists an 

essentially flat region of contact during the impact. Investigation into this aspect of the 

impact indicated that the contact area was in the order of 6 mm. In figure 12, starting 

from the contact area, plane stress waves start to move through the material at the 

appropriate wave velocities. At the edge of the contact area, i.e. at the free surface 

boundary, a release wave starts, and as shown in figure 13, the release waves 

propagate into the material, following the initial impact stress waves. In 13, the release 

waves have just met at the centreline of the impact.

In figure 14, the incident waves have moved well into the material, and the release 

waves have overlapped. The conditions in the overlapped area have therefore been 

affected by the incident wave and both reflected release waves. In order for one 

dimensional theory to apply to this impact, and for bar type conditions to apply, the 

release waves must die away in, at least, the projectile before the incident wave is 

reflected from the rear face of the glass target, i.e. once the release wave has traversed 

the front of the projectile, it behaves as a bar, (Lush (1999)). (Johnson (1972) 

indicated that a bar should have a length one magnitude greater than any cross- 

sectional dimension.) It takes approximately one micro-second (6.0 x 10° m divided by 

5938 m/s) for a wave to cross the contact area and approximately one micro-second 

(6.4 x 10'3 m divided by 5938 m/s) for the stress wave to reach the rear of the target, 

thus it is possible that the conditions described above are met, at least for the initial 

stage of the impact.

In the simplified one dimensional bar approach illustrated in figure 15, the projectile 

may be considered to be a stepped bar with a minor diameter of 6 mm (equating to the 

contact area) and a major diameter of 60mm. Johnson (1972) indicates that, for the 

general case of a bar having a discontinuity in both cross sectional area and material, 

an incident elastic wave of intensity a , , moving leftwards (see figure 15) with velocity 

Vj, will be partially reflected with intensity a R, velocity vR and partially transmitted
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with intensity <j t  , velocity vT at the boundary A B. If both aR and crT are taken to be 

compressive then

Ax(a, + aR) = A2aT (73)

where A / is the cross sectional area of the steel impactor to the left of section AB, and 

A 2 is the cross sectional area of the steel impactor to the right of section AB.

The incident and reflected waves are travelling in opposite directions, so that

Vj -  vR = vT or <jj -  cjr -  <j t  (74)

substituting for aR gives

2AP2C2
+ A\pxcx

cr, (75)

and substituting for <j t  gives

&R =
AXP\C\ 

A2P2C2 ^\P\C\
(76)

For a bar with a cross sectional discontinuity, and no difference in material 

composition, (the change of section leads to a mismatch in the acoustic impedance, and 

hence a virtual boundary) equations (6 8 ) and (69) can be simplified to give

CTy
2 A,
+ A j

(77)

and
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°R
^2 A
A-, + Aj

(78)

substituting appropriate values into equation (78) gives a figure for the intensity of the 

reflected stress wave of

aR -  0.82o-j (79)

Johnson (1972) noted that;

(i) if A2 / Ax —> 0, then the end of the bar is effectively free so aR —> -cr; , and 

cjt  —» 2cr, ,  and,

(ii) if A2 / Ax —> cc, then the end of the bar is effectively fixed so crR —» ct; , and

CTj —̂ 0 .

Johnson also noted that complicated stress wave interactions occur in the vicinity of 

the cross sectional discontinuity and for a length equal to about the first diameter. 

Equation (72) indicates that if the initial stage of the impact can be considered to be 

one dimensional, and also if the simplified approach as illustrated in figure 15 is 

reasonable, then a release wave of approximately 82% of the intensity of the incident 

wave will propagate back towards the contact zone causing unloading. The release 

wave would generate a tension when interacting with the reflected wave from the rear 

face of the glass target.

In the discussions above on the stress wave propagation in a solid-solid impact, 

illustrated by figure 9, it can be seen that during the impact of a steel projectile whose 

thickness is large compared to that of the glass target, many reflections of the stress 

wave occur in the glass before the release wave in the steel projectile reaches the 

impact boundary. The multiple reflections in the glass are likely to lead to a reduction 

in the peak stresses due to internal friction effects, (Kolsky (1963)), which 

consequently are likely to lead to reduced tensile stress in the glass. However, if the 

release wave follows quite closely behind the loading wave, as illustrated by figures 11
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to 14, and as indicated by the approach illustrated in figure 15, then the analysis is 

more akin to that derived for a target that is of the same order of thickness as the 

projectile.

In a similar fashion to the approach discussed above, in section 3.3.3, Lush (1999) 

showed that, for this case, starting with the solution described by equation (58), and 

illustrated in figure 16, for the incident wave,

° ~ A  = R p {u 3 - « i ) (89)

for the reflected wave,

0 ~ p 4 = -R p(u3- u 4) (90)

and for the transmitted wave,

(91)

Dividing through by R and R, gives

(92)

—  = w3 -  u4, and (93)
P

P4 ~ P\
R,

(94)

Eliminating velocities by adding or subtracting gives
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(95)Pi + P4 t P 4  ~ P\ _ Q
P P,

thus

P 4
vRP Rtj A  RP

(96)

hence,

i n  , D  ̂ r R - R ^
P 4

v y
Pi

_P____ f_
v y

(97)

so;

P4 Rp ~ R<
Pi Æ +P,

(98)

If the acoustic impedance of the projectile is greater than that of the target, then p 4 is 

positive.

Ps Pa -  Pi - 2R,
Pi Pi ^B+^r

(99)

Using appropriate values

Pi
39.6xl06 x 14.25xl06 
39.6xl06 +14.25x 106

x 7 = 73.4 MPa

39.6xl06 - 14.25xl06
p .=  73.4 x ---------- 7---------------T  =34.5 MPa

39.6xl06 +14.25x 106

3.29



and p 5 = 34.5 -  73.4 = -38.9 MPa

13 Additional Stress Waves

Kolsky (1963) indicated that along the surface of an elastic isotropic body, two 

additional wave types may propagate; Rayleigh waves and Love waves. Lord Rayleigh 

(1887) investigated surface waves in liquids, and showed that the effect of the waves 

decreases rapidly with depth, and that the wave propagation velocity is lower than that 

of the two body waves. Rayleigh waves have a significant amplitude at the surface 

only, but decay far more slowly than the body waves. The ratio between the velocity of 

Rayleigh waves and the velocity of distortional waves has been shown by Kolsky 

(1963) to be dependent only upon the elastic characteristics of the material. 

Observations of seismic phenomena by Love (1927) indicated that Rayleigh waves 

were not the only surface waves propagating after a seismic event. Love suggested 

that waves with horizontal components parallel to the wave front can be explained by 

the difference between the material characteristics of the outer layer of the earth and 

the inner. Love demonstrated that such waves can propagate through the outer layer of 

a body without penetrating into lower layers, hence this type of wave (a Love wave) 

could be of interest in layered materials, such as laminated glass.

Torsional waves and flexural waves may appear under certain loading conditions. 

Torsional waves are a special subset of distortional waves. Johnson (1972) states that 

flexural waves or bending waves have a speed of propagation that is dependent upon 

their wavelength, and hence no simple expression can be used to derive the wave 

speed, thus the simple results and values used for compressive longitudinal pulses 

cannot be used.

Johnson derives an expression for the elastic wave equation of the form,

d 2w
I r e

d  4w
¿ x 4 (100)
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where c0 = and k 2 I_
A

Johnson suggests, as a solution,

A • 2nw = ^4sin—— 
À

(101)

where A is the wave amplitude, X, the wavelength, and cp the phase speed.

Johnson states that a solution to the wave equation is found if;

cr =c« Y  ( |02>

It can be seen that the wave speed is inversely proportional to the wavelength and 

infinitely short waves will travel with infinite speed, which is clearly not possible, so 

some limiting factor will come into play. This equation is valid as long as the 

wavelength is much greater than any lateral dimension of the beam.

3.31



3.4 Contact mechanics

The bearing stresses can be determined using Hertz’s approach, for a steel sphere 

pressing with a load P onto a flat plate of glass, one form of the approach, Lawn 

(1993), gives the radius of the contact circle, a, as;

(103)

where

k
9
16 V

and r is the radius of the sphere.

The mean contact pressure is given by

P

(104)

(105)

Lawn (1993) indicates that the dimpling of the glass surface produces a radial tensile 

stress, which is a maximum at the edge of the contact area and is given by

a  = ^ ( \ - 2 v t)p0 

substituting for p 0 gives

( l -2 v,)P
(7 ------------- 5---

2n a"

(106)

(107)
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Although no measurements of the indentation load were taken, a value for P of 4000N 

would yield a maximum tensile stress of 34 MPa.

3.33



3.5 Fracture Mechanics

Uhlmann and Kreidl (1980) indicate that at an atomic level fracture occurs because a 

force exists that is large enough to break the bonds between atoms in the material 

being subjected to a load. Figure 17 indicates the relationship between the atomic 

separation and the stress created by an applied load.

As Figure 17 illustrates, the stress needed to cause a separation between the atom 

planes rises to a maximum, where fracture is considered to occur, and then falls. For a 

particular material it is possible to calculate the stresses required to cause fracture by 

consideration of the stress-displacement function. Uhlmann and Kreidl (1980) state 

that the stress-displacement curve can be approximated by a sine curve having a 

wavelength A as indicated on figure 17, so that

(108)

where x is the displacement from equilibrium. Given that at small displacements, x is 

approximately equal to sin x, equation (71) can be re-written as

(109)

If it is assumed that the solid is completely elastic, then

a  -  E  e
Ex

( 110)

where e is the strain, and ao is the equilibrium atomic spacing, so that

EA 
2 a0K

( 111)
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Two new surfaces are created each time the atomic bond is broken, so the surface 

energy can be obtained by calculating half the area under the stress-displacement 

curve, i.e.;

Y s 2 Jo
V2 2nx  X a

c r s in— — ax =
X 2 7t

( 112)

combining the two equations gives;

o-c = {E rJa0)'12 (113)

Typical values suggested by Uhlmann and Kreidl (1980) of E=7 x 104 MPa, 

ao= 30nm, y = 5 J/m2, are used then,

Ea  « — or 1 x 104 MPa 
c 7

However, glass strengths of this order of magnitude are normally only encountered in 

special circumstances, such as in pristine glass fibres. Normally, the strength of the 

glass is reduced by several orders of magnitude because of the presence of the Griffith 

flaws which are thought to be processing, machining, or handling induced flaws. The 

flaws occur as small surface cracks, and the intensification of the applied load by the 

cracks can lead to stresses of 104 MPa or greater in the vicinity of the crack tip, 

(Uhlmann and Kreidl (1980)).

Inglis (1913) discussed the stress concentration at a crack tip when a structure is 

loaded. He demonstrated that for an elliptical crack with length 2c and minor axis 2h, 

the maximum tensile strength crmax is given by;

<TnaX = a [ l  + (2c//?)] (114)
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When crmax = oc, crack growth will occur, the result being that the cracks will 

propagate, and failure will occur at much lower stresses than those indicated by the 

theoretical analysis.

In his experimental work on glass rods Griffith (1921) showed that the stored elastic 

strain energy could be equated to the surface energy formed by the propagation of a 

crack, so that

Irwin (1958) defined the stress intensity factor, K  as the product crcl/2 K  is a measure 

of the intensification of the applied stress due to the presence of a crack. For a crack in 

an infinitely wide plate, K  is given by

Ashby and Jones (1996) indicate that a reasonable value for K for glass is between 0.7 

and 0.8 MN/m3/2.

4 cys = n o 1 c2 ¡E (115)

and hence

(116)

(117)
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3.6 Strain rate

Dalgliesh and Taylor (1989) discuss the dependence of window glass strength upon the 

loading duration and rate, and also indicate that moisture entering the micro-cracks 

was considered by Michalske and Bunker (1987) to influence the strength loss as glass 

weathers and ages. Dalgliesh and Taylor suggest that the randomly distributed 

“Griffith” micro-cracks grow slowly under a tensile stress until a critical level is 

achieved at which point the cracks propagate at high speed, and that the number of 

cracks formed increases with the amount of elastic energy stored in the glass just 

before failure. They describe this effect as stress corrosion and suggest that stress 

corrusion explains the fluctuating pressures, load duration and varying loading rate 

noted during different tests. Dalgliesh and Taylor indicate that one way of describing 

the duration or rate effect is to fit a straight line to a logarithmic plot of failure stresses, 

Sf vs. time to failure, //, so that;

where Ci is a constant.

The fitting parameter n was found to be 16 or 17 for soda-lime glass in small specimen 

tests and in many tests of large panels as well, but some large panel tests resulted in 

larger values of n and hence indicated a weaker dependence on load duration.

(118)
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4 Experimental Equipment and Methodology

The purpose of the test rig was to create the right conditions to enable a thorough 

investigation of the transitional region between quasi-static loading and low velocity 

impact loading to be conducted.

4.1 Industry Standard Impact tests.

The British Standards Institute publish two standards that are relevant to the impact of 

glass, and at present, CEN have a standard advancing through the drafting process; 

prEN356:1990. The first BSI standard is BS 6206:1981; Impact performance 

requirements for flat safety glass and safety plastics for use in buildings, the second is 

BS5544:1978; Anti-bandit glazing (Glazing resistant to manual attack).

BS 6206 describes a test procedure that utilises a pendulum type impactor. The 

pendulum consists of a 3mm stranded steel cable and a leather "bag" which is 

intended to represent a 45 kg child. The leather bag is filled with lead shot and is 

swung from set heights. The pivot point of the pendulum is arranged so that the bag 

strikes the centre of a test specimen 865 mm wide, by 1930 mm high. The objective 

of the test is to classify the samples tested into satisfactory (no breakage, or breaks 

safely) and unsatisfactory (breaks dangerously). The three specified drop heights of 

305mm, 457mm and 1219mm correspond to impact energies of 135 J, 202 J, and 

538J.

BS5544 describes a simple free drop ball test, where a 2.26 kg, 82 mm diameter steel 

ball is dropped from 3m and 9m onto an horizontal 590 mm2 test piece. If the ball 

passes completely through the test piece during the impact, or within five seconds, 

then the test piece is failed.

European standard prEN 356:1990 describes two tests; the first is a drop ball test 

similar to BS5544, but with a 100mm diameter steel sphere (4.11 kg), dropped from 

four different heights ; 1500 mm, 3000 mm, 6000 mm, and 9000 mm. The second test
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is a spring driven axe impact test, with impact velocities of 11 m/s for a cutting strike 

and 12.5 m/s for a blunt strike.

There are other impact tests that are in general use in industry, for example the Izod 

test and the Charpy test, but these tests are undertaken to test material properties such 

as fracture toughness and do not normally use glass as a sample material.

The principle of the falling weight tests was considered to be unrepresentative of the 

loading history encountered by a glazing panel when subjected to a manual attack 

(such as a sledgehammer). Studies undertaken at the Royal Mail Research Centre 

Sobey (1990), using high speed video recording of manual attack tests indicated that 

there were a number of key differences between an actual sledgehammer impact and 

falling mass tests. Consequently, it was necessary to design a test rig that simulated, as 

far as was possible, the type of impact that glass panels suffered during an actual 

attack. The design and fabrication of the test rig formed the first part of the research 

activity.

Blows in a drop test are normal to the surface, whilst in a sledgehammer impact the 

blows are oblique, and the head has a translational motion across the face of the panel. 

Secondly, during a drop test the impactor is effectively free, but the rebound of a 

sledgehammer head during a manual attack is constrained by the handle and thus by 

the attacker. The high speed video results confirmed the intuitive view that an attacker 

continues to expend effort on the strike during and immediately after the impact, and 

appears to "relax" only when the head has started to rebound away from the panel. 

Thirdly, drop test samples are normally horizontal (the British pendulum tests and the 

European axe tests have vertical samples), which on a repeated attack might be 

significant if the material breaks up and cannot move away from the impact site.

When the design of the test rig was undertaken the second element described above 

was considered to be the most significant, thus the test rig was designed with a 

loading system that allowed the load to be maintained for a short period of time after 

the initial impact had taken place.
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After the test rig had been completed, it was established that Kamal et al (1987) 

evaluated an hydraulic ram impact tester; the Rheometrics variable-speed impact 

tester (RVSIT). The RVSIT is a linear displacement, velocity controlled, system 

which drives a penetrating rod into contact with the material, in the case investigated 

by Kamal, the material was polyurethane panels. They concluded that there were 

inaccuracies between the set impact speed and the speed actually measured, and poor 

reproducibility of information generated by the load cell at high speed. However, they 

concluded that the RVSIT provided a flexible impact testing system for flat and 

formed polymeric materials.
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4.2 Test Rig Design and Construction

The test rig used to conduct the experiments was constructed in the main from mild 

steel box and angle sections and consisted of two parts; the sample holder, and the 

impactor structure, see figure 18.

The impactor structure consisted of a framework constructed from mild steel box 

section fixed to the floor, a horizontal aluminium alloy “table”, and the actuator 

support structure as shown in figure 19. The actuator was bolted to a mild steel box 

section frame which could be rotated around the nominal impact point to represent 

oblique impacts.

The impactor head was a 60mm hemi-sphere mounted onto a high response hydraulic 

actuator. The hydraulic actuator was manufactured by Avon Controls of Tewkesbury, 

and had a 22mm bore, a 16mm rod, and a stroke of 120mm, as shown in figure 20. A 

Model 25 servo valve manufactured by Dynamic Valves of California was used to 

control the hydraulic oil supply to the actuator, and the servo valve, in turn, was 

controlled by an Avon Controls linear servo drive amplifier. Figure 21 is a schematic 

diagram of the hydraulic circuit and components. The amplifier had the capability to 

be used in either positional control mode or velocity control mode. In all the 

experiments velocity control mode was selected. A Linear Variable Differential 

Transformer (LVDT) was installed inside the actuator which enabled the relative 

position of the actuator rod to be determined during its stroke. Figure 22 illustrates the 

hydraulic pump, and the fast response hydraulic accumulator .

The sample holder consisted of a square structure manufactured from mild steel box 

section with a ledge to support the sample in an upright position, see figure 23. A ring 

frame was used to hold the sample in position using appropriate spacers, and eight 

fixing bolts, two on each side of the ring frame. The bolts were tightened with a 

torque wrench in a sequence determined to reduce mis-alignment of the ring frame as 

the bolts were tightened. Correct tightening procedures minimised the number of 

glass panels that cracked during initial installation. The bolts were tightened to a 

torque of 10 Nm.
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Aluminium spacers (or ring frames) were used to set the relative position of the 

sample and the impactor head, and thus were the device by which it was possible to 

pre-set the maximum displacement of the glass panel. The relative position between 

the actuator and the frame support structure was fixed, however it was possible to 

introduce a variable into the experiments by placing an aluminium ring frame between 

the sample support structure and the front face of the sample.

The servo drive amplifier was set to the velocity control mode for all the tests, thus 

disabling the positional control for the actuator. Since it was not possible to set the 

position of the actuator, the actuator ram moved through the full extent of its possible 

travel, i.e. until the ram end stop was reached, for each test. The instrumentation and 

servo drive amplifier are shown in figure 24.
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4.3 Experimental Procedure

During the early part of the project (the first 50 or so results) impact velocity and pre-

set deflections were selected randomly. For the majority of the project the tests were 

arranged so that gradually increasing stresses were generated in the glass samples as 

the test progressed. For each new sample, the test cycle commenced with both the 

minimum deflection and the minimum velocity. If the sample survived the first set of 

ten impacts at the lowest velocity, then the velocity was increased whilst keeping the 

pre-set deflection constant. The velocity continued to increase up to the maximum, or 

until the sample failed. If the sample did not fail at the maximum velocity then it was 

removed, and a new spacer fitted which incrementally increased the pre-set deflection. 

Once the spacer had been fitted a new set of tests commenced at the lowest velocity, 

and again increased until either failure occurred or the maximum velocity was 

reached. The incremental increase of both pre-set deflection and velocity increased 

until the sample failed.

The procedure was as follows:

The appropriate pre-set was determined, and the aluminium ring frame selected, and 

checked for flatness and damage.

A glass laminate sample was selected and checked for damage, both on the surface 

and around the edges.

The sample was loosely placed onto the sample support structure behind the ring 

frame. The bolts were inserted into the clamping plate, and tightened up in the correct 

sequence, using the correct torque.

The appropriate adjustment was made to the servo drive amplifier to provide the 

required hydraulic actuator ram velocity.

Instrumentation output was selected and enabled.
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The hydraulic actuator ram was activated and once the ram struck the panel, the ram 

was withdrawn back to its rest position.

The sample was checked for cracks. A breakage was considered to be a failure of the 

sample, so that if a crack was observed the sample was removed, the result noted, and 

the procedure re-initiated. If no crack was observed the result was noted, and the 

sample re-tested with the next velocity or displacement.

The output from the instrumentation was noted manually, printed at the time or stored 

on a computer.
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4.4 Controllable variables

4.4.1 Nominal Velocity of the ram

The required test velocity was selected using a vernier adjustment potentiometer as an 

input to the servo drive amplifier, which controlled the servo valve. The vernier dial 

was used to pre-set the ram velocity by selecting the resistance corresponding to the 

required velocity. The hydraulic ram is supplied via the servo valve by an hydraulic 

accumulator. The hydraulic accumulator ensures that the flow of oil to the hydraulic 

ram is sufficient to maintain the velocity of the ram over its full travel.

4.4.2 Pre-set deflection

As described above, ring frame spacers are used to pre-set the maximum deflection 

that the test panel experiences. Choice of an appropriate ring frame therefore 

determines the maximum deflection that the panel would undergo during the dynamic 

test, provided that the loading capabilities of the hydraulic ram exceeded the stiffness 

and bending resistance of the test panel.

4.4.3 Contact area

The impact test rig has 6 interchangeable heads, but all of the impact tests conducted 

during this work used the same impactor head; the 60 mm diameter hemispherical 

impact head. The impact head was machined from mild steel, and is affixed to the 

hydraulic ram centre rod with an internal screw thread and a conical bearing surface. 

The contact area described by the Hertzian approach should be consistent throughout 

the tests, however it is possible that the effective change in geometry during tests 

where the deflection is large, i.e. where the panel could be considered to be curved, 

may cause a change in the contact area.
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4.5 Non-controllable variables

4.5.1 Flow through valve

The flow of oil through the valve starts when the electronic control system allows 

current to flow in the coil of the servo valve which then allows the valve spool to 

move. Variations in timing of the electronic circuit, variations in the electric field in 

the servo coil and delays in the movement of the spool will all cause variations in the 

flow of the hydraulic fluid. Minor variations in the positioning of the vernier 

potentiometer, will also influence the electronic control circuit.

4.5.2 Actual Velocity Of Ram

The variations discussed in section 4.5.1 will have an impact upon the repeatability of 

the ram velocity, as will variations in the ram response caused by friction, turbulence 

in the hydraulic fluid, and temperature.

4.5.3 The material characteristics

The steel impactor was not changed during the experimentation, and no significant 

changes to the material of the steel were identified.

All glass samples were purchased at the same time from the same glass laminate 

manufacturer. The glass laminate was examined to establish which surface of the glass 

lamina were uppermost; “tin side” or “air side”. Variations in temperature and 

humidity were noted during the experimental procedure.
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4.6 Instrumentation

The determination of the forces generated during impact is problematical. The results 

derived from the use of transducers physically attached to the striker can lead to 

problems arising from stress waves within the striker and transducer assembly. The 

interfaces between the striker, the transducer and the hydraulic actuator central shaft 

will also add noise to the output from the transducer. Other noise can be introduced 

from electrical and electronic sources, such as induced voltages in cables and leads 

and control electronics amplifiers. It is possible to filter the output from transducers 

electronically at the time of measurement, or mathematically after the information has 

been captured, but because filtering, by its nature, affects the signal form, appropriate 

filtering must be used.

Four sets of instrumentation were used during the work, a force transducer, a linear 

variable differential transformer (LVDT), a laser velocity transducer, and strain 

gauges.

4.6.1 F orce T ransducer

The force transducer is a Kistler 9041a “load washer” mounted between the impact 

head and the actuator shaft, thus it is 47.5 mm away from the actual impact point 

when the 60mm large hemispherical impactor is used. The load washer has a range of 

0 to 90 kN, and has a resonant frequency of 65 kHz. The load washer is connected to a 

type 5007 Kistler charge amplifier, which has a cut off frequency of 180 kHz. The 

output from the Kistler charge amplifier is connected to a Gould digital storage 

oscilloscope, which had a sampling rate of 200 Msamples/second. Figure 25 is an 

example of the output from the load washer.

4.6.2 Linear Variable Differential Transformer

The displacement measurement was made using the linear variable differential 

transformer (LVDT) which was fitted internally to the actuator ram. The LVDT was 

an Avon Controls type MTN/DL50 which had a linearity better than 0.5%. The output
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signal from the LVDT was stored on a Gould digital storage oscilloscope. Figure 26 

illustrates a typical output from the LVDT device.

4.6.3 Laser Velocity transducer

The velocity is measured at the rear of the impact panel, opposite the impact point, 

using a Bruel and Kjaer laser velocity transducer, type 3544. The output from the 

signal processor was stored by the oscilloscope. An example is shown in figure 27.

4.6.4 Strain gauges

The strain gauges used were standard pattern 120° rosettes, with thermal 

characteristics that matched those of glass. A typical Wheatstone bridge amplifier 

manufactured by Measurement Systems was used. The output was recorded on a 

Gould storage oscilloscope.
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4.7 Effectiveness of the Test Rig Design

As discussed above, the design of the test rig attempted to replicate, as far as was 

possible with a relatively simple approach, the loading that a glass panel would 

experience when subjected to a physical attack. It was considered that the design was 

reasonably representative of an idealised sledgehammer strike, but that the shape of 

the impact head, and the “angle of attack” between the sledgehammer head edge and 

the glass, were areas where the test rig was probably not representative of a real 

attack.

The instrumentation did not appear to be as successful as it might have been. Both the 

Kistler “load washer” force transducer and the Bruel and Kjaer laser velocity 

transducer did not have a dynamic range capable of recording the very high speed 

phenomena occurring. However, the Bruel and Kjaer laser velocity transducer was 

capable of recording the relatively slow vibration of the panel after the impact had 

occurred.

The strain gauges were not used very often because of the time required to install the 

gauges, but the few results obtained appeared to indicate that they would be more 

responsive than either the laser velocity transducer or the Kistler force transducer. 

However, the output from the gauges was quite “noisy” , making interpretation 

difficult.

The output from the LVDT appeared to be quite accurate and demonstrated that the 

velocity of the hydraulic ram was repeatable.

The use of aluminium spacers to provide a pre-set maximum deflection was quite time 

consuming each time the deflection needed to be changed, but was considered to be 

accurate and repeatable.
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5 Results

The main series of experiments yielded a summary data set of 329 rows. The summary 

data were generated by logging each of the test impacts recorded on the test sheets. 

Each row corresponds to a single glass sample. For each test set the following were 

noted, the sample number, the pre-set deflection, the temperature, the relative 

humidity, the velocity pre-set, and the total impacts for the set of tests, or to failure.

5.1 The relationship between the deflection at failure and the velocity at 

failure.

Figure 28 is the graph of the deflection at failure versus the velocity at failure. A linear 

regression analysis was conducted upon the full data set. The correlation coefficient, 

r, was calculated to be -0.435. When considering the significance of r, and whether the 

observed correlation coefficient is significantly different from zero, Chatfield (1983) 

states that the statistic

has a t-distribution with n-2 degrees of freedom, provided that both variables are 

normally distributed. Thus, to be considered significant the value of the statistic above 

must be greater than the value given in the Student’s t-distribution table for the 

appropriate degrees of freedom, and significance level. For large samples, and for a 

significance level of 5%, the value is close to 2. (The critical points for the absolute 

value of the correlation coefficient at the 5 per cent level for a number of sample sizes 

were determined by Pearson and Flartley (1966). For degrees of freedom values 

greater than 120, the minimum value to demonstrate significance is 1.960.)

For figure 28 the value for the significance test is 7.6, i.e. significant at the 5 per cent 

level. Chatfield (1983) indicated that for a sample size of 100, the critical value of the 

correlation coefficient, r, to show a significant correlation is 0.20. Consequently, the

( 1)
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correlation coefficient can be considered to be statistically valid, but the relationship 

that the regression line is illustrating is, at best, of medium strength.

In chapter 3, equation (33) indicates that the stress in a square plate is given by,

n 2 Et
rr — ----------------------W

*max 2 ( l  -  O )  a 2 maX
(2)

so that for a test pieces of the same size and material, the deflection at failure is 

representative of the maximum bending stress in the glass plate.

In chapter 3, equation (58) indicates that the impact stress is obtained using

a„ =
R R  vg s

8 + K
(3)

so that for test pieces of the same material, in similar experiments, the velocity at 

failure may be representative of the impact stress in the plate, although it should be 

noted that the impact stress is initially compressive, whereas tensile stress is required 

for the glass to fail.

As discussed above, Figure 28 indicates that there is a weak to medium strength 

relationship between the velocity and deflection when the samples fail. It was not 

possible to de-couple the two variables during the low velocity impact experiments, 

but if the correlation is an accurate portrayal of the relationship, then it is reasonable to 

infer that it is the combination of both the impact velocity and the size of the deflection 

which leads to the failure. As the impact velocity decreases, the deflection needs to 

increase to achieve the failure of the sample, and conversely, as the deflection 

decreases, the velocity of impact needs to increase.

It is not apparent from figure 28 that some of the data points represent multiple 

occurrences. Although the tests are representative of a continuous distribution, the 

experimental procedure created a discrete distribution, so that, for example, three
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failures at the same velocity and impact are coincident when plotted. Figure 29 

illustrates this aspect of the experiments by illustrating the number of occurrences at 

each data point with a third dimension, which is drawn as a circle whose diameter is 

related to the number of occurrences.

The data in Figure 28 are widely scattered so a sub-set of graphs was constructed 

which partitioned the x axis to establish if there were any variation in the slope of the 

correlation line, and consequently to identify points at which the behaviour of the 

material changed.

Figure 30

The data for figure 28 were separated into two different groups, a deflection at failure 

of 3mm and above, and below 3mm deflection. The regression was plotted and the 

correlation coefficient calculated. For the portion of the graph below 3mm, the 

correlation coefficient was -0.36, a medium to low, but significant correlation. For the 

portion of the graph including and above the 3mm deflection point, the correlation 

coefficient was -0.09 , a low figure.

Figure 31

The data for figure 28 were separated into two different groups, a deflection at failure 

of 2.5 mm and above, and below 2.5mm deflection. The regression was plotted and the 

correlation coefficient calculated. For the portion of the graph below 2.5 mm, the 

correlation coefficient was -0.31, a medium to low correlation. For the portion of the 

graph including and above the 2.5 mm deflection point, the correlation coefficient was 

-0.18, a low figure.

Figure 32

The data for figure 28 were separated into two different groups, a deflection at failure 

of 2.0 mm and above, and below 2.0 mm deflection. The regression was plotted and 

the correlation coefficient calculated. For the portion of the graph below 2.0 mm, the
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correlation coefficient was -0.22, a low correlation. For the portion of the graph 

including and above the 2.0mm deflection point, the correlation coefficient was -0.21, 

also a low figure.

Figure 33

The data for figure 28 were separated into two different groups, a deflection at failure 

of 1.5 mm and above, and below 1.5 mm deflection. The regression was plotted and 

the correlation coefficient calculated. For the portion of the graph below 1.5 mm, the 

correlation coefficient was -0.003, a low, insignificant correlation. For the portion of 

the graph including and above the 1.5 mm deflection point, the correlation coefficient 

was -0.25, a low figure.

Figure 34

The data for figure 28 were separated into two different groups, a deflection at failure 

of 1.0 mm and above, and below 1.0 mm deflection. The regression was plotted and 

the correlation coefficient calculated. For the portion of the graph below 1.0 mm, the 

correlation coefficient was -0.29, a low correlation. For the portion of the graph 

including and above the 1.0 mm deflection point, the correlation coefficient was -0.4, a 

low to medium figure.

None of the sub-sets of data described above gave a significant indication that there 

were any step changes in material behaviour when considering changes in the 

deflection at failure.
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5.2. The relationship between the deflection at failure and the velocity at 

failure divided by the deflection at failure (v/d).

If as, discussed above, the deflection at failure is representative of the bending stress, 

and the velocity of the impact is representative of the impact stress, then it may be 

considered that the velocity divided by the stress for any one impact is representative 

of the rate of strain, i.e.,

m 1 1
-  (4)

s m s

Figure 35 is the graph of deflection at failure versus the velocity at failure divided by 

the deflection at failure. An exponential regression line of the form

y  = ae~b* (5)

was fitted to the data, giving values of 67.4 for a, and 4.4 for b with a correlation 

coefficient of -0.91.

Figure 36

If equation (5) is rearranged to give

\ny = \n a -b x  (6)

then values for lna and b can be determined by plotting the deflection versus the 

natural log of the velocity at failure divided by the deflection at failure.

The data points in figure 35 are concentrated towards the axes, especially the x axis, 

the deflection at failure. Figure 36 uses the same data as figure 35, but with the linear y 

axis replaced by a natural logarithm axis. The regression correlation coefficient was 

calculated to be -0.86 for this graph.
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5.3 The relationship between the deflection at failure and the total number of 

impacts.

If the deflection at failure is indicative of the bending stress, then Figure 37 which is 

the graph of deflection at failure versus the total number of impacts may illustrate the 

influence that the bending stress has upon the distribution of the number of impacts to 

failure. The total number of impacts for each test piece may be analogous to a fatigue 

characteristic in glass, in that the stress required to cause failure after a test piece has 

suffered a large number of impacts would be comparatively lower if some form of 

fatigue phenomenon was occurring. The data points appear to be quite widely 

distributed, but with a cluster of points in the medium deflection, (between 1.5mm and 

3.5mm) low number of impacts, (less than 10), region of the graph. The linear 

regression correlation coefficient was calculated to be -0.17, with a Student t-test 

significance value of 2.6, which is significant at the 5 per cent level.

Figure 38

Re-plotting the data for figure 37 using a natural logarithmic scale for the y axis, the 

total number of impacts, reduced the scatter to a certain extent, and increased the 

correlation coefficient to -0.47. However, the improvements were not considered to be 

significant.

The data used for figure 37 were divided up into sets by keeping one of the variables, 

velocity, constant. Figures 39 to 58 show the relationship between the deflection at 

failure, and the total number of failures whilst keeping the velocity constant for each 

graph. The first figure in each set (i.e. 39,41,43, etc.) shows the frequency curve, 

whilst the second graph in each set (i.e. 40,42,44, etc.) shows the cumulative 

distribution function.
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5.4 The relationship between the velocity at failure and the velocity at failure 

divided by the deflection at failure (v/d).

Figure 59 is a graph of the velocity at failure plotted against the velocity at failure 

divided by the deflection at failure, (v/d), the latter term is considered representative of 

the rate of strain as discussed above. Most of the data points are positioned at the 

lower part of the graph, but there are recognisable lines of data points away from the 

main concentration of points. On a linear plot the correlation coefficient was calculated 

to be 0.417. The Student significance test gives a value of 7.2, higher than the value 

required to indicate significance level at the 5% level.

Figure 60

Figure 60 uses the same data as figure 59, but replaces the linear axes with natural 

logarithm axes. The regression correlation coefficient was calculated to be 0.81 for this 

plot, but the data appear widely scattered.

5.5 The relationship between the velocity at failure and the total number of 

impacts.

Figure 61 is a graph of the velocity at failure versus the total number of impacts. The 

data at the lower section of the graph (below 100 total impacts to failure)are close to 

the regression line. The points between 100 and 200 total impacts are approximately 

on a line parallel to the regression line, whilst those points above 200 total impacts 

appear to be randomly distributed. The Student significance test gives a value of 5.97, 

higher than the value required to indicate significance level at the 5% level.

The data used for figure 61 were divided up into sets by keeping one of the variables, 

deflection, relatively constant (i.e. within uniformly spaced intervals). Figures 62 to 77 

show the relationship between the velocity at failure and the total number of failures, 

whilst keeping the deflection constant for each graph. The first figure in each set (i.e.

62.64.66, etc.) shows the frequency curve, whilst the second graph in each set (i.e.

63.65.67, etc.) shows the cumulative distribution function.
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5.6 The relationship between the velocity at failure divided by the deflection 

at failure (v/d) and the total number of impacts.

Figure 78 is a graph of the velocity at failure divided by the deflection at failure plotted 

versus the total number of impacts. The data points on the graph are quite widely 

scattered, and , in the main, are clustered adjacent to the y axis (the total number of 

impacts). When plotted on linear axes, the linear regression analysis produced a low 

figure of 0.15 for the correlation coefficient.

Figure 79

Figure 79 was plotted using the same data, but using natural log axes. The data were 

located in a broad band with a positive slope, around the regression line. The 

correlation coefficient for this graph was found to be 0.63.

5.7 The Influence of Relative Humidity.

Figure 80

Figure 80 uses the same data as used for the Figure 61 graph, but the data have been 

divided into three sub-sets depending upon the value of the relative humidity at the 

time that the tests were conducted. There does not appear to be a large difference 

between the three regression lines. The correlation coefficient for the 40-60% relative 

humidity line is 0.44, for the 26-39% line, 0.23, and for the 10-25% regression line, 

0.56. The Student significance test gives a value of 5.03 for the 10-25% relative 

humidity data, 2.37 for 26-39%, and 4.63 for the 40-60% relative humidity data, all of 

which exceed the critical value for significance at the 5% level.

Figure 81

Figure 81 is a similar graph to figure 80, but a reduced data set has been used. The 

information for the first 53 samples, considered to be distorted by a variation in
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experimental procedure (see chapter 6) have been removed. The correlation 

coefficients for 10-25%, 26-39%, and 40-60% relative humidity were 0.78, 0.28 and 

0.47, respectively.

Figure 82

Figure 82 uses the same data as used for the Figure 28 graph, but as above, the data 

have been sub-divided into three sub sets depending upon the value of the relative 

humidity at the time that the tests were conducted. The data are widely scattered, and 

there does not appear to be a strong relationship indicated by the graph. The 

correlation coefficient for the three regression lines is fairly low. There appears to be 

little difference between the 40-60% RH regression line and the 26-39% RH regression 

line. The regression correlation coefficient for the two lines is also similar with a value 

of -0.40 for the former, and -0.43 for the latter. The regression line for the 10-25% 

relative humidity data is at a steeper angle, with the data points mostly residing in the 

central part of the x (deflection at failure) axis. The data points for the other two data 

sets are more widely scattered. The correlation coefficient is -0.52 for the 10-25% 

relative humidity data. The Student significance test gives a value of 4.5 for the 10- 

25% relative humidity data, 4.7 for 26-39%, and 4.1 for the 40-60% relative humidity 

data, all of which exceed the critical value for the 5% significance test.

5.8 The Influence of Temperature

Figure 83

Figure 83 uses the same data as used for the Figure 61 graph, but the data have been 

sub-divided into three sets depending upon the value of the temperature at the time 

that the tests were conducted. In a similar fashion to the analysis for the relative 

humidity discussed above, the regression lines for two of the sub-sets are close 

together with the 15-19.9 °C data having a regression line similar to the line for the 20-

23.9 °C data. The regression correlation coefficient for the 15-19.9 °C data was 0.97,
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and for the 20-23.9 °C data was 0.90, with significance test figures of 27.3 and 23.7 

respectively. The regression correlation coefficient for the 24-28 °C data was 0.62, 

with a significance test figures of 6.23, indicating that the data were more scattered in 

this temperature bracket.

Figure 84

In a similar fashion to figure 81, a reduced data set was used for figure 84; the 

information for the first 53 samples has been removed. The correlation coefficient for 

15-19.9 °C, 20-23.9 °C, and 24-28 °C was calculated to be 0.988, 0.994 and 0.988 

respectively.

Figure 85

Figure 85 uses the same data as used for the Figure 28 graph, but the data have been 

sub-divided into three sub sets depending upon the value of the temperature at the time 

that the tests were conducted. As with figure 82, the data are widely scattered, and 

there does not appear to be any clear pattern to the behaviour at different 

temperatures. The regression lines were similar for all three sets of data, but with 

differing correlation coefficients and statistical significance. The regression correlation 

coefficient for the 15-19.9 °C data was -0.3, for the 20-23.9 °C data was -0.51, and 

for the 24-28 °C data was -0.46. The 15-19.9 °C data had a fairly low significance test 

value of 2.3, whilst the 20-23.9 °C and 24-28 °C data had significance figures of 6.6 

and 4.2 respectively.

5.9 The comparison between the measured stress and the calculated stress.

Figure 86

Figure 86 is a graph showing the difference between the measured bending stress 

(derived from the strain) and the calculated bending stress for the glass samples under 

consideration. The stress (strain) measurement was made with a rectangular strain
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gauge rosette fixed to the rear of the glass sample. The plate was incrementally loaded 

at the centre. The regression correlation coefficient for the measured stress relationship 

was 0.97, and the Student significance test gave a value of 15.76, which indicates that 

the regression is statistically significant. The measured stress appears to lie on two 

separate lines, however, as the stress was measured at various levels whilst the plate 

was being loaded, and at similar points whilst the plate was being unloaded, it is 

considered that the two lines observed in figure 86 are indicative of an hysteresis 

effect.

Figure 87

Figure 87 is a graph showing the maximum principal stress, derived from 

measurements made with a strain gauge rosette fixed to the rear of the glass, to 

illustrate the levels of bending stress as the vibration of the panel decays after the 

impact.
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6 Discussion of results

6.1 General Discussion

As indicated in the introduction, the intention of this work was to establish the nature 

of the initiation of fracture caused by low velocity impacts, and to identify the 

difference in importance between the dynamic impact effects and the bending of the 

glass plate during the transitional region where the quasi-static loading of glass plates 

merges with impact or dynamic loading.

The test rig consisted of a hemi-spherical impactor which came into contact with the 

glass test sample. At the first instant of contact neither the material in the steel impact 

head nor the material of the silica glass test sample has been subjected to any increase 

of stress. As the impactor starts to penetrate the surface of the glass, stress fields start 

to build in the glass and the steel impactor. The glass and the steel both deform at the 

point of contact, and the stress effects start to propagate away from the point of 

impact at the appropriate sonic velocity for the stress wave characteristic. A 

Langrangian diagram can be used to explore the timings of the important moments 

during the impact history.

The Lagrangian diagram has distance as the horizontal, x, axis, and time as the vertical, 

y, axis. Referring to figure 9, the point of impact is marked A. The steel impactor 

approaches the glass test piece at velocity, v. Starting at the point of impact, A, the 

two stress waves propagate through each material at the respective sonic velocities. 

The slope of the line, with reference to the y axis, is equivalent to the velocity of the 

stress wave. The determination of the velocity of the stress waves in the steel impactor 

and the glass target was discussed in chapter 3. It was established that the velocity of 

the stress wave in the steel impactor was in the order of 5050 m/s, and that the velocity 

of the stress wave in the glass sample was in the order of 5515 m/s, hence on the 

Lagrangian diagram, the slope of the glass stress wave is steeper than that of the steel 

stress wave.
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At point B the elastic compressive wave reaches the rear face of the glass panel and is 

reflected at the same velocity, but now travels as a tensile wave, until it reaches point 

C. As it travels, the tensile wave acts as an unloading wave, “cancelling” the stress 

produced by the original impact compressive wave. When the tensile wave reaches the 

interface it is likely that at that time, or shortly afterwards, the plate and the impactor 

will separate. However, since the impactor is not a dropped weight that will rebound, 

but is driven by an hydraulic ram, the impactor will continue moving forwards and will 

then come back into contact with the restrained glass test piece re-initiating the impact 

and the consequential stress waves.

If the impactor were to be considered a plain bar, then it would be significantly thicker 

than the glass target so the compressive wave travelling through the steel would not 

reach the rear of the impactor (at point D) until after the stress wave in the glass has 

reached point C. Consequently, it is some time, relatively speaking, before the release 

wave in the steel reaches the interface between the impactor and the target. Thus, it is 

likely that the stress wave in the glass travels backwards and forwards a number of 

times until the release wave in the steel impactor reaches the interface. The stress wave 

in the glass takes approximately 2.3 x 10'6 seconds to travel to the rear of the glass and 

return, and approximately 7.4 x 10‘5 seconds to reach the edge of the glass and return. 

The stress wave produced in the steel is likely to take in the order of 1.2 x 1CT5 seconds 

to travel through the steel and return to the interface between the two materials. Thus, 

in that time, the incident stress wave in the glass is likely have traversed the glass back 

and forth many times. As discussed above, when the compressive wave in the glass is 

reflected from the rear surface of the glass it becomes a tensile wave, as does the 

stress wave reflected at the rear face of the steel. When the two tensile stress waves 

intercept each other, tension in the material is generated, which if it exceeds the local 

failure stress, will result in a crack forming.

If the glass panel suffers repeated impacts, as appears likely, the stress history of the 

glass over the whole of the impact event is likely to be complex. Although the stress 

history will contain peaks of tensile stress able to cause a fracture in the glass, it is 

considered that only when those peaks coincide with an appropriate Griffiths micro-

crack at or near the surface, or a flaw within the body of the glass, will a failure crack
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in the glass be initiated. It is considered that part of the explanation for the wide 

variation in the failure of glass, and in the experiments discussed in this work, are 

caused by transient peak stresses coinciding (or, often, not coinciding) with susceptible 

micro-cracks, or internal flaws.

6.1.1 Impact of different materials

The analysis in chapter 3 concentrated upon a projectile of steel impacting a target of 

glass and indicated that if the acoustic impedance of the projectile Rp was greater than 

that of the target Rt, then the interface between the projectile and target will be in 

tension and thus the projectile and target will separate when the compressive wave is 

reflected from the free surface of the glass. Wood is a material which has a wide range 

of material properties, but for the purposes of illustration it is considered that a figure 

of 3.2 Kg/m2s for the acoustic impedance is reasonable. Substituting the value of 

acoustic impedance for wood into the equations in chapter 3 indicate that a wooden 

projectile and a glass target would not separate when the initial stress wave reflected 

from the glass surface reaches the boundary, furthermore, from equation (58), the 

initial compressive stress would be 18 MPa and from equation (65) the tensile stress 

resulting from the reflected stress wave would be 11 MPa. This result reflects the 

intuitive conclusion that; a glass sample is less likely to fail when struck by a wooden 

object than a steel one.

If the impact of a piece of flint is considered, then the following results can be 

obtained. The material characteristics of flint are very similar to that of glass, so that if 

appropriate figures are used for equation (58) then the initial compressive stress 

generated by the impact would be 46.2 MPa, but the reflected tensile wave as 

described in equation (65) would be close to zero. If the tensile stress is calculated 

after the release wave from the impacter passes into the glass target, then using 

equation (99) the same figure of 46.2 MPa is obtained for the tensile stress. The result 

of this is that, although a steel projectile is likely to result in a higher compressive 

stress following an impact, for a similar impact from a flint projectile, the tensile stress 

will be higher, thus the likelihood of a flint projectile initiating a fracture is greater.
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6.2 The influence of the PVB interlayer.

In chapter 2 two important aspects of PVB were discussed, viz., that although the 

damping factor is large, it decreases as the frequency increases, especially through the 

range of frequencies likely to be of interest for impact problems. Secondly, the physical 

characteristics of the PVB observed when unconstrained are likely to be significantly 

different when the material is constrained between two sheets of glass. Since the 

damping effect is minimised by both the PVB being constrained, and the frequency of 

vibration being high, it is considered that the stress wave will pass through the PVB 

with little dispersion. The physical characteristics of constrained PVB have not been 

assessed, all data relate to the material in its unconstrained state, (although PVB is a 

soft, plastic elastomer, some text books quote an “apparent” modulus of elasticity of 

2.7-3.1 GPa). So, although it is likely that the velocity of the stress wave as it passes 

through the PVB is lower than that of the glass or the steel, it has not been possible to 

quantify the resultant reduction in time for the stress wave to pass from the impact 

point to the rear of the glass.

Achenbach (1975) states that when a stress wave strikes the interface between two 

media of different material properties, part of the wave is reflected and part is 

transmitted. The reflection and transmission characteristics are determined by the ratio 

of acoustic, or mechanical, impedances;

When the ratio is equal to 1, the stress wave is completely transmitted, when the ratio 

is equal to 0, which corresponds to a free surface, the stress wave is completely 

reflected. Using the values for the unconstrained PVB, the ratio was calculated to be 

0.14, with a transmission coefficient of approximately 0.24. However, as discussed 

above, the PVB is constrained between the two layers of glass, consequently, the 

effective stiffness of the PVB is likely to be significantly greater than the apparent 

modulus of elasticity quoted. If the constrained PVB is considered to have a value of
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Young’s Modulus approximating to half that for glass, then the transmission 

coefficient rises to 0.7.
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6.3 Full Data Set

6.3.1 The Deflection At Failure Versus The Velocity At Failure

Figure 28 is the graph of deflection at failure versus the velocity at failure. The 

deflection at failure represents the maximum bending stress, whilst the velocity 

represents the impact stress in the plate. To compare the experimental results with 

previous work or analytical considerations, it would be desirable to map similar 

relationships. However, to produce an effective comparison, it may also be necessary 

to include the variation in the results described by the Weibull distribution.

If the regression line is indicative of the nature of the relationship, then the failure of 

the glass panels appears to be a response to the combination of the different loading 

conditions. As the deflection increases, the impact velocity at which failure occurs 

decreases. Conversely, as the velocity of impact increases, the deflection at which 

failure occurs decreases. The impact and bending stresses can be calculated using the 

equations for stress wave propagation and bending discussed in chapter 3.

The regression line generated for figure 28 is of the form;

y  = mx + c (2)

where the slope of the line, m = -7.4, and the intercept, c = 4.5.

However, the regression line may not be indicative of a direct relationship between the 

velocity at failure and the deflection at failure. If the variables are changed to the 

deflection stress at failure versus the impact stress at failure (figure 88) the graph looks 

the same, but the values for the regression line change to reflect the different values for 

the variables. The value for the slope, m, becomes -0.522, and the intercept, c, changes 

to 44.96. The regression line on this graph would be, in effect, the boundary between 

failure and survival if all points were located upon it, (see figure 89) however, the 

correlation coefficient is quite low, with a value of -0.51, (although it is statistically
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significant) so the regression line could be considered to be the mid line of a broad 

boundary between failure and survival, as shown in figure 90. The broad boundary 

reflects the variability in failure loads for glass. The boundary between failure and 

survival is equivalent to a failure stress in the material, so the combination of the 

impact stress and the bending stress should equate to the failure stress. Merely adding 

the value for impact stress to the value for bending stress is probably not suitable and 

gives a value for the total stress that appears to be too high. Furthermore, the impact 

stress appears to be the dominant influence (see below) so it was considered 

appropriate to apply a modification factor, the stress combination factor, / ,  to the 

bending stress, to reduce its contribution to the total stress, and also to reflect the 

apparent lesser importance of the bending stress to the initiation of failure of the glass 

sample.

It would be expected that the combined impact and bending stress would follow a 

normal type distribution, albeit with a fairly large standard deviation, in common with 

other brittle materials. Figure 91 illustrates the distribution for the combined bending 

and impact stress for all failures, for both th e /=  1 and the/ =  0.7 cases. A Gaussian 

distribution has been fitted to both curves. The “noisy” nature of both curves may be 

indicative of the experimental procedure, in that both the velocity at impact, and the 

deflection at impact were discrete values.

One feature of figure 28 that is worthy of further discussion is the apparent 

contradiction between the reasonably high correlation coefficient and the appearance 

of widely scattered data points on the graph. The experimental procedure results in a 

number of points that are coincident, so the graph does not give a true indication of the 

distribution of all the points. Figure 29 is a “bubble graph” which shows a third 

dimension, the number of occurrences at each data point, as a circle at each point, with 

the diameter of each “bubble” related to the number of occurrences. This graph 

illustrates that, whilst the data are quite scattered, there is a concentration of points at 

the lower part of the graph, and in the middle section of the graph.
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6.3.2 The Deflection At Failure, And The Velocity At Failure Divided By The 

Deflection At Failure (V/D).

Figure 35 illustrates the relationship between the deflection at failure, and the velocity 

at failure divided by the deflection at failure (v/d). The former term can be considered 

to represent the bending stress in the plate, whilst the latter, the rate of strain. If v/d is 

an accurate description of the strain rate then the graph appears to indicate that at the 

comparatively high rates of strain (within the context of the experimentation) the 

deflection and hence stress necessary to cause failure was low, and vice versa. 

Following tests conducted upon glass rods Oliver (1975) indicated that stress levels 

required to cause failure fell as the duration of the load increased, i.e. apparently a 

result contradictory to figure 35. Ruiz (1989) reached similar conclusions to Oliver. If 

the inverse of the strain rate term used in figure 35 is plotted, as in figure 92 i.e. a 

graph indicative of the duration of load, the relationship is again apparently different to 

that determined by Oliver. It is possible that the velocity term is dominant and that 

figure 35 illustrates the relationship that high velocities cause failures even when the 

deflection is quite small.

As a comparison to Oliver’s results, a theoretical analogue was generated using the 

calculated values for the total stress loading plotted against the deflection divided by 

the velocity to provide a figure for loading time; figure 93. The resulting graph did not 

appear to be conclusive.

6.3.3 The Relationship Between The Deflection At Failure And The Total Number Of 

Impacts To Failure For Each Sample.

Figure 37 is a graph which plots the deflection at failure versus the total number of 

impacts to failure for each sample. There is a significant amount of scatter on the 

graph, and the regression analysis indicated that the relationship between the two 

variables was fairly weak. If the regression model is indicative of a valid relationship 

then, as the deflection increased, fewer impacts were necessary to cause the glass to 

fail, and conversely, larger number of impacts were required to cause failure when the 

deflections were small. Figure 38 which used the same data, but plotted the total
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number of impacts on a natural log axis appeared to reduce the concentration effect 

towards the lower area of the total number of impacts axis. Although different in 

appearance, the scatter did not appear to have significantly reduced.

The implication of the relationship described in the paragraph above is that the 

likelihood of failure of a particular sample or test piece is not a simple relationship 

between load and failure stress. Test results on brittle materials have shown the wide 

variation in results that occur. Thus the failure of the glass is likely to be influenced by 

a material characteristic - surface cracks, as well as the propagation of stress waves 

and the impact conditions at a “micro” scale as well as at the macro-scale. The Weibull 

distribution recognises the material variability by ascribing a power term, m, the flaw 

density parameter, to the material. The Weibull distribution describes the probability of 

a test piece failing at a certain stress level, so at small deflections, the impacts need to 

be repeated until the conditions for failure have been satisfied. At higher deflections it 

is more likely that the stress field is higher than that required for failure, hence the 

probability of failure is raised.

6.3.4 The Relationship Between The Velocity At Failure And The Velocity At Failure 

Divided By The Deflection At Failure.

Figure 59 is a graph of the velocity at failure versus the velocity at failure divided by 

the deflection at failure. The latter term is representative of strain rate, whilst the first 

term is indicative of impact stress. As mentioned in chapter 5, although the majority of 

the data are concentrated near the x-axis, there are two distinctive areas that do not 

appear to be associated with the majority of the data. There is one line of data at 

approximately 45°, and another at approximately 22°. It is considered that the lines are 

an artifice of the experimental procedure, the deflection at failure variable is not a 

continuous variable, different ring frames were used to provide the variation in 

deflection (see chapter 4). Additionally, there were a small number of failures at low 

deflections; seven at 0.1, and five at 0.2. Considering that the failures at low 

deflections happened at various velocities, and that the velocity appears on both axes, 

the effect of the relatively few low deflection failures was to create a few data points

6.10



that appeared on the 45° and 22.5° line, i.e.; x v. x/0.1, and x v. x/0.2. The relatively 

minor significance of these data points is indicated by the reasonably strong correlation 

coefficient of 0.417 for the whole data set, and the fact that the regression line is close 

to the majority of the data points at an angle to the x axis of approximately 10°.

If the regression line is indicative of a real relationship, it appears to indicate that the 

likelihood of failure increases as both the velocity increases and as the rate of strain 

increases, but that the relationship appears more sensitive to the increase of velocity 

than the increase of rate of strain.

As discussed above, Oliver (1975) and Ruiz (1989) concluded that the stress levels 

required to cause failure fell as the duration of the load increased, which appears to 

agree with the results illustrated by figure 59. If the inverse of the strain rate term in 

figure 59, i.e. a term which is indicative of the load duration, is used (see figure 94) the 

relationship is similar to that obtained by Oliver (1975). Figure 94 appears to indicate 

two things, the first that most of the failures appear to occur at a low loading time 

period, and secondly, that impacts at a velocity of 1 m/s seem to be relatively 

insensitive to the loading duration. The correlation coeificient of -0.76 indicates a 

reasonable correlation, even though the regression line doesn’t appear to fit the data 

points particularly well. Using natural logarithm axes leads to a regression line that 

appears to be more well behaved (see figure 95), and which has a slightly better 

correlation coefficient of -0.81.

6.3.5 The Relationship Between The Velocity At Failure And The Total Number Of 

Impacts To Failure.

Figure 61 is a graph of the velocity at failure versus the total number of impacts to 

failure. The apparent relationship illustrated by the graph is that the number of impacts 

required to fracture the glass increases as the velocity of impact increases. It is 

considered that this result has occurred because of the method used for the 

experimentation, and the nature of the material being tested. The majority of the 

samples were tested using the same approach; (see chapter 4). After the sample had
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been mounted with the appropriate maximum deflection, the minimum velocity was set 

before the hydraulic ram was activated. The impact was repeated nine more times at 

that velocity, provided that the glass had not fractured. If after the set of impacts had 

been completed, the glass remained unbroken, the velocity pre-set was increased to the 

next point. The procedure continued until either the glass broke or the set of tests had 

been completed. As discussed above, glass does not fail at a specific stress level, the 

distribution of flaws on the surface lead to a broad distribution of failure loads. 

Consequently, this characteristic of glass, when combined with the experimental 

procedure used, is likely to lead to the failure of “weak” samples at low velocities, and 

“strong” samples at higher velocities, i.e. as soon as the velocity is high enough to 

create a stress field that is higher than the glass can withstand, the sample fails.

It can be seen that data are arranged in three regions of interest. The first region is for 

data points between 0 and 100 total impacts to failure. The data in this region are 

approximately aligned along two lines; the first line adjacent to the regression line, the 

second line at a lesser angle. It is considered that the line adjacent to the regression line 

is a result of the experimental methodology, as discussed above. The line of data points 

close to the x axis correspond to the early set of tests (approximately 50) which 

employed a different experimental procedure.

In the second region of interest, between 100 and 200 total impacts to failure, the 

straight line represents the second phase of the experimental process, whereby if a 

sample does not fail after 100 impacts the pre-set deflection is incremented, and the 

experimentation restarts at the minimum velocity.

The third region of interest, between 200 and 500 total impacts, illustrates the 

performance of a small number of samples with a high failure stress.

6.3.6 The Relationship Between The Velocity At Failure Divided By The Deflection 

At Failure And The Total Number Of Impacts.

Figure 78 is a graph of the velocity at failure divided by the deflection at failure 

(representing strain rate) versus the total number of impacts. With linear axes, the
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graph doesn’t appear to illustrate any strong relationship. The majority of the data 

points are positioned towards the y axis (total number of impacts), and the lower 

portion of the x axis, but there appears to be a significant amount of scatter. When the 

axes are changed to logarithmic axes, (figure 79) the data appear to be better aligned, 

at approximately forty-five degrees, but there is still a significant amount of scatter. 

The correlation coefficient for figure 79 is 0.63.

6.3.7. The Influence Of Relative Humidity.

Overend et al (1999) discussed the failure prediction of glass and indicated that when 

the micro cracks present on the surface of the glass are exposed to water vapour, 

whilst the sample is subjected to a tensile load, the flaws grow more rapidly in depth 

than in width, leading to higher stress concentrations, and thus potentially a failure at a 

lower stress level. Overend described this effect as static fatigue.

Figure 80 was intended to identify any relationships that could be attributed to changes 

in the relative humidity of the atmosphere at the time of testing. The lower line of 

figure 80 consists mainly of the 10-25% relative humidity data points, but there appear 

to be a significant number of points in this sub-set also scattered at the higher end of 

the graph. Both the set of points in the 26-39% relative humidity range and the set in 

the 40-60% range are close together and appear to lie close to a straight line at 

approximately 45 degrees. The indication is, therefore, that above 25% the relative 

humidity does not appear to be a contributing factor to the failure of the glass samples, 

but that below 25% the relative humidity may be a contributing factor in the resistance 

of glass to impact, or may cause some variation in the results. However, if the reduced 

data set is used (see below), the relative humidity does not appear to influence the 

relationship at all.

Figure 82 graphs the relationship between the deflection at failure and the velocity at 

failure, but again the data points are separated into different relative humidity regions. 

As before, the data points in the 26-39% relative humidity range and the points in the 

40-60% range have similar regression lines. The regression line for the 10-25% relative 

humidity data points deviates from the previous two cases but is still close enough to
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indicate a similar relationship. As before, the variation in the graphs may be an 

indication of greater experimental scatter at the lower end of the relative humidity 

scale, or it may just be a general feature of the widely scattered data set.

6.3.8. The Influence Of Temperature.

Figure 83 was intended to illustrate any relationship that could be attributed to 

variations in temperature. Most of the data points in the 15-19.9 °C range, and in the 

20-23.9 °C range lie on a line, similar in position and angle to the regression line. The 

data points for the temperatures above that, the 24-28 °C band, appear more scattered, 

and the regression correlation coefficient concurs with that perception. The reduced 

data set did not indicate any variation in the relationship with a variation in 

temperature. Figure 85 was analogous to figure 82 discussed above, in that the data 

were separated into ranges of temperature. The lower temperature band data points 

appear to occupy an area close to the left hand end of the graph, viz., at low deflection 

but at a variety of velocities. The regression lines for all three sets of data are 

reasonably consistent, but have fairly weak correlation coefficients.
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6.4 Reduced Data Set

In the early stages of the experimentation the samples were tested using a vaguely 

random approach to determination of the impact velocity and the pre-set deflection. 

The intention was to test the full range of permutations of deflection and velocity 

options by selecting the combinations of impact velocity and deflection that had not 

been previously tried. It became clear that the approach was unlikely to be rigorous 

enough for a full understanding of the problem when apparent inconsistencies 

appeared, viz.; a test piece failed to fracture even though a similar sample had 

fractured at a lower impact velocity or pre-set deflection. A revised experimentation 

procedure was implemented which commenced the testing of each sample at the same 

point; the minimum deflection and the minimum impact velocity, and then 

progressively increased both the deflection and the velocity, as described in chapter 4. 

Unfortunately, it has not been possible to accurately identify when the experimentation 

procedure was changed, because the original records were destroyed by fire, but it is 

considered that the change was introduced after approximately fifty samples had failed.

The following part of the chapter considers the relationships for the reduced data set, 

i.e., with the first fifty results removed.

The graphs shown on figures 28, 35, 37, 59, 61, and 78 were re-plotted with the 

reduced data set, as figures 96 to 101 respectively.

Most of the graphs have an improved result for the correlation figure as illustrated in 

table 6.1, below, as would be expected if the revised experimental procedure had been 

an improvement resulting in reduced experimental scatter. However, the graph shown 

in figure 100 is worthy of further discussion
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Figure r Figure r

28 0.435 96 0.505

35 0.55 97 0.568

37 0.165 98 -0.159

59 0.417 99 0.475

61 0.355 100 0.432

78 0.147 101 0.129

Table 6.1 Comparison of correlation coefficients.

As discussed above in the section on figure 61, figure 100 illustrates the relationship 

between the impact stress represented by the velocity at failure, and the total number 

of impacts, and indicates that the graph illustrates a feature of the experimental 

approach in that “weak” test pieces fail first, i.e. when the impact stress has exceeded a 

“low” threshold. However, the velocity at impact is not the only contribution to the 

stress history experienced by the test piece, the bending stress as represented by the 

deflection at failure also makes a contribution. If the bending stress produced a similar 

effect, then the graph of deflection at failure versus the total number of impacts (figure 

98) would be expected to indicate a similar relationship, viz., that “weak” test pieces 

would fracture once the test piece reached a relatively low bending stress threshold. 

This is not the case, the data points are quite widely scattered, and the regression line 

has a low correlation coefficient of -0.159. It is possible that the velocity at impact is 

more important in determining the likelihood of failure than the deflection, but because 

the two variables are linked during the experimental procedure it is not possible to 

divorce one from the other. If the graphs are re-plotted, but keeping one of the 

variables constant (or at least within a narrow band) whilst varying the other, the 

following results are obtained.

The following table lists the variation in correlation coefficient for each constant 

velocity.
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Figure Constant Velocity m/s Correlation Coefficient

102 1.05 0.24

103 1.9 0.26

104 2.6 0.11

105 3.3 -0.29

106 3.8 -0.22

107 4.3 -0.03

108 4.75 0.33

109 5.3 0.76

110 5.85 -0.24

111 6.6 0.39

Table 6.2. Comparison of Correlation coefficients for varying deflections at constant velocity.
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The table below lists the variation in correlation coefficient for each band of 

deflections.

Figure Deflection, mm between; Correlation Coefficient

112 0-0.5 0.09

113 0.6-1.0 0.59

114 1.1-1.5 0.70

115 1.6-2.0 0.60

116 2.1-2.5 0.21

117 2.6-3.0 0.88

118 3.1-3.5 0.84

119 3.6-4.0 0.71

Table 6.3. Comparison of Correlation coefficients for varying velocities at constant 

deflection.

Table 6.2 highlights the scattered nature of the data when plotted using the two 

variables deflection at failure and total number of impacts.

Table 6.3 indicates that the relationship between velocity at failure and the total 

number of impacts to failure in most cases appears reasonably strong, and does not 

appear to be sensitive to the variation in bending stress.

The above discussion would appear to indicate that, generally speaking, on its own, the 

value for the pre-set deflection does not greatly influence the probability that the glass 

will fail, but that the impact velocity does tend to influence the probability of failure. If 

a series of plots for the set of fixed velocities (figures 102 to 111) are drawn on the 

same graph (figure 120) the broadly stratified nature of the graph can be observed, 

although there is significant scatter. When examined together with the series of graphs 

at fixed deflections, (figures 112 to 119) it is considered that these graphs illustrate an
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artifice of the experimental procedure, as discussed above viz.: The nature of the 

experimentation is one of exposing the glass samples to an ever increasing stress level. 

At the beginning of the process the pre-set impact was low, and the velocity was low. 

If, after a number of tests the glass had not failed, the velocity was gradually increased. 

If the glass sample remains undamaged, the pre-set impact was increased and the test 

cycle restarted with a low velocity. The consequence of this approach is that “weak” 

glass samples will fail early in the procedure, equating to a low number of total 

impacts, whilst “strong” glass samples will fail late in the procedure, equating to a high 

number of total impacts. This would lead to a graph which would have a positive 

correlation at approximately 45 degrees if the scales for the axes were similar, and if 

the relationship was linear, which is indeed, broadly speaking, what can be observed in 

figures 112 to 119. However, no similar conformity can be seen in figures 102 to 111, 

and consideration of the stratified nature of figure 120 leads to the conclusion that the 

impact velocity is the predominant influence, and that the probability of failure is not 

sensitive to the pre-set deflection figure, except perhaps at velocities lower than 1.9 

metres per second.

If the stress combination factor,/ is used to plot a total combined failure stress versus 

the total number of impacts, then the sensitivity of the experimental “artifice” discussed 

above to the combined stress can be investigated. Although the data are reasonably 

well ordered when a stress combination factor of 1 is used (Figure 121), figures 122 to 

130 illustrate that as the stress combination factor is reduced, the data points are less 

scattered and the correlation coefficient for the regression line improves. It is possible 

that this result is an alternative way of illustrating the apparent predominance of the 

impact stress over the bending stress when considering the failure of the glass sample.

Table 6.4 and figure 131 show the variation in the correlation coefficient as the stress 

combination factor reduces.
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Stress combination factor, f correlation coefficient, r

1.0 0.28

0.9 0.31

0.8 0.34

0.7 0.37

0.6 0.39

0.5 0.41

0.4 0.43

0.3 0.43

0.2 0.44

0.1 0.44

Table 6.4 Comparison of stress combination factor and correlation coefficient.
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6. 5 Weibull Analysis.

Weibull (1939) indicated that some materials, did not appear to have a unique ultimate 

strength, but that the failure load was distributed around a computed mean with an 

amount of dispersion. Weibull argued that although it was not possible to determine an 

absolute value for the breaking load, it was possible to calculate a definite probability 

of failure occurring at a given stress level.

The failure of glass samples has been identified by Oh and Finnie (1967), amongst 

others, as following a Weibull distribution, hence there is no unique strength or 

fracture stress for glass. The Weibull distribution relates the probability of failure, P, 

to the applied stress with the relationship;

(from Harris (1998)) where V is the volume of stressed material, a  is the applied 

stress, cr' is the stress at which there is zero probability of failure, cr" is a normalising 

factor, and m is the Weibull flaw density parameter.

The distribution reflects the nature of the material, and with glass is dependent upon 

the interaction between the tensile stress and the microscopic surface flaws. The 

Weibull flaw density parameter, m, is related to the coefficient of variation (the ratio of 

standard deviation to mean failure stress), and would be preferably high, because a 

high figure would produce a low scatter for test results, a lower safety factor for 

practical usage and would require fewer test results to identify a satisfactory figure. 

For glass fibres, m has been quoted as varying between 5 and 10. For steel this figure 

would be nearer to 60. Norville et al (1991) indicate that for weathered glass samples 

tested at Glass Research Testing Laboratory at Texas University, values of m were 

estimated to be between 4.0 and 6.0, but they also state that the ASTM Task Group 

E06-51.13 has agreed that the value for m for new window glass lights should be 7.

(3)
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However, the value of m used by Norville et al (1991) for their investigations of 

thermally tempered window glass was 3.0.

Using appropriate values for equation 6.3 for the volume of the test pieces, and the 

stress levels discussed in chapter three, a theoretical graph of applied stress versus the 

probability of failure can be drawn, (figure 132). This graph illustrates the nature of the 

theoretical Wiebull distribution for glass, and more specifically the glass test pieces 

currently under consideration.

To establish the Weibull cumulative probability of failure for the experimental data, 

illustrated in figure 133, the range of the combined stress values (impact stress plus 

bending stress) was divided up into 20 intervals. Next, the number of times a failure 

occurred in each stress range was noted. The frequency of failure was used to 

determine the likelihood of failure, which was then normalised with respect to the total 

number of failures. The cumulative probability of failure was then calculated by 

summing the appropriate values.

It should be noted that the shape of the graph in figure 133 is influenced by the stress 

combination factor, / , and the Weibull flaw density parameter, m, the nature of this 

variation is discussed below.

By rearranging equation (3), to give

(4)

it is possible to obtain values for m by plotting

ln(- ln(l -  P)) versus In
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Using these axes, the graph of the experimental results (with a value for the stress 

combination factor of 0.75), was plotted, and the slope of the graph was calculated, 

which was equivalent to the value for the Weibull flaw density parameter, m. The slope 

of the graph, and hence the value for m was calculated to be 3.456. Figures 134 to 138 

show the differences between the experimental results and a range of theoretical 

results, varying the theoretical flaw density parameter between 2.0 and 7.0.

Figures 139 to 144 are a similar set of graphs, but the theoretical Weibull flaw density 

parameter was fixed at 3.456, whilst the experimental stress combination factor was 

varied between 0.4 and 1.0. The best fit between the graph of the experimental results 

and the graph of the theoretical calculation appears to be with a stress combination 

factor of 0.75, and a flaw density parameter of 3.456.

The figure for the flaw density parameter, or Weibull modulus is lower than figures 

identified by previous studies, Norville et al (1991), but this may be caused by the 

combination of loading conditions, the impact and the bending. The figure for the 

Weibull modulus is often obtained using a distributed, or pressure loading 

methodology, not a dynamic point load such as an impact. A pressure loading 

approach may be more consistent, and hence result in higher values for the Weibull 

modulus, which would imply a reduced experimental scatter.

Figure 145 illustrates the way that the flaw density parameter, m, changes with the 

variation of the stress combination factor, /  Using Student’s t-distribution the 95 % 

confidence intervals were also shown on the graph. Figure 145 appears to indicate that 

for values for / o f  0.5 and above, m is not related t o /  but that for values of /below  

0.5, m reduces as/ reduces.
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6.6 Stress intensity factor

Scholze (1990) discusses the response of a material to the stresses generated around 

the tip of a crack, and defines the stress intensity factor K  as a measure of the 

intensification of the applied stress due to the presence of a crack. K  is normally 

determined using;

K = <j^7ia (5)

where a the crack length, and a  is the applied stress, with units of MPa m12 for K.

Figure 146 is a graph which illustrates the frequency of a number of values of K, 

derived from the total stress, with a value of the stress combination factor of 1, and a 

value for the crack depth of 5 x 10‘6, m, which was the value indicated by Griffith 

(1921) for fibres. The figures 147 to 150 illustrate the same relationship, but with 

varying values for the stress combination factor,/

Figures 151 to 155 are similar to the graphs described above, but a value of 30 x 10'6 

m, which has been used for bottle and bulk glass previously, Frechette (1990), and is 

considered more appropriate for this application, has been used for the crack length.

The critical stress intensity factor Kc is the value for K at which a crack occurs. Since 

the values for K  discussed above are calculated once the glass test piece has failed, all 

the values for K obtained are effectively the critical values.

A Gaussian curve was fitted to each of the distributions plotted in figures 151 to 155, 

and the arithmetic mean of the values for critical stress intensity factor calculated. The 

table below lists the figures and the values for the correlation coefficient for the 

Gaussian fit, and for the mean K. It can be seen that the fit is best for the stress 

combination factor of 0.7, and that the correlation coefficient is high. For this graph, 

the value for K occurring at the peak of the Gaussian curve is between 0.4 and 0.5. 

with a value for the arithmetic mean of 0.46. Ashby and Jones (1996) quote a range of
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0.7-0.8 for K. Substituting a value of 0.45 MPa m12 for K  into equation (5) gives a 

critical stress value of 47.4 MPa.

Figure f mean value of K  MPa m12 r

151 1 0.55 0.94

152 0.8 0.49 0.95

153 0.7 0.46 0.97

154 0.5 0.40 0.91

155 0.3 0.35 0.77

Table 6.5 Variation of the correlation coefficient, r, mean value of K with stress combination factor,/ 

in figures 151 to 155.

The approach above assumes that the value for the crack dimension used is accurate 

and representative of the majority of cases. However, if the range of values for K used 

by Ashby and Jones (1996) is applicable for dynamic loading, and is a material constant 

which does not vary, then equation (5) can be used to determine the corresponding 

range of crack lengths. Using the mean value for the failure stress of 53MPa, (with a 

stress combination value of 0.7), gives a range for the crack length of between 55 and 

72x1 O'6 m.
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6.7 Strain rate dependency

In section 6.3.2 the relationship between the deflection at failure (d) and the velocity at 

failure divided by the deflection at failure (v/d), is discussed. It was suggested that 

(v/d) was indicative of strain rate, and that the results appeared to indicate that at high 

strain rates, the failure bending stress was low, and vice versa.

In section 6.3.4, the relationship between velocity and (v/d) was considered, and again, 

if (v/d) can be considered to be representative of strain rate then the results appeared 

to indicate that at high strain rates, the samples failed at high impact stresses, and at 

low strain rates, the samples failed at lower impact stresses.

Oliver (1975) indicated that as the duration of the load decreased, the stress at which 

the glass failed increased, or in other words, as the strain rate increased, the stress at 

which the glass failed increased. Thus, the relationship between the velocity (or impact 

stress) and the strain rate, discussed above, appears to be consistent with Oliver 

(1975), but the relationship between deflection (or bending stress) and Oliver (1975) 

does not appear to be consistent.

Dalgliesh and Taylor (1989) described the duration or rate effect of glass failure using 

the equation

where C/ is a constant, 5 /is the failure stress, tf is the time to failure, and n is a fitting 

parameter that is often 16 or 17 for large panel tests.

The loading duration that Dalgliesh and Taylor (1989) used for their tests on 107 

panes of new glass was 60 seconds, or normalised to equivalent 60 second pressures. 

Dalgliesh and Taylor assumed that under constant pressure the stresses are constant 

and produced a graph effectively showing ln(sj) versus ln(tj) to determine the values of 

Ci and n. Using this approach Dalgleish and Taylor fitted a straight line to their data,

(6)
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the slope of which was -0.067, giving a value for the fitting parameter, n, of 14.9. 

Dalgliesh and Taylor indicated that the negative slope of the graph showed that the 

strength of the glass plates decreased as the loading rate decreased, i.e., as the load 

duration increased.

Figure 156 is a graph illustrating the relationship between the load duration, (as 

indicated by dividing the deflection at failure by the velocity at failure) and the total 

combined stress (with a stress combination factor of 1.0). The data appear quite widely 

scattered. The slope of the linear regression line is slightly positive but the correlation 

coefficient is very low, indicating a weak, or statistically insignificant, relationship 

between the two variables. However, as the stress combination factor reduces, the 

correlation coefficient increases, rising to 0.69 when the stress combination factor is 

0.2, as illustrated in the table below.

f slope fitting parameter r

1 0.023 43.4 0.098

0.8 -0.019 52.6 0.08

0.7 -0.04 22.8 0.18

0.6 -0.071 14.08 0.29

0.4 -0.141 7.1 0.51

0.2 -0.24 4.17 0.69

Table 6.6 Comparison of the fitting parameter, n and the correlation coefficient, r with varying values 

of the stress combination factor, f.

Table 6.6 indicates that a stress combination factor of 0.6 produces a figure for the 

fitting parameter that is very close to that obtained by Dalgliesh and Taylor, but that 

the statistical significance is weak. Table 6.6 also indicates that for values of the stress 

combination factor of less than one, a negative slope is produced, thus indicating that 

the strength of the glass samples decreased as the loading rate decreased, which is 

consistent with the findings of Oliver (1975) and Ruiz (1989) discussed above.
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6.8 The Influence of the stress history

Some materials, such as steel and aluminium, fail under fluctuating load at a level 

lower than their normal static failure stress. The response of materials to fluctuating 

stress is often illustrated using S-N graphs, which plot the number of cycles to failure, 

N, versus the failure stress, S. An S-N graph is a description of the idealised case, 

Megson (1990) discusses the use of a linear cumulative damage law to establish a 

practicable fatigue failure prediction relationship. This approach reflects the practical 

situation where the fatigue failure of a component is caused by many different stress 

amplitude cycles. The appropriate S-N graph can be obtained by testing a large number 

of small specimens.

Figure 37 illustrates the relationship between the deflection at failure, and the total 

number of impacts experienced by a test piece before failure. There does not appear to 

be a significant relationship between the total number of impacts and the deflection 

recorded at failure. Figure 61 does appear to illustrate a meaningful relationship, but, 

as discussed above, this is considered to be a natural result of the experimental 

process. An alternative approach is to consider the number of failures at specific 

impact velocities and deflections. Figures 39 to 58 show the relationship between the 

number of failures and the pre-set deflection at impact, whilst the velocity remains 

constant, the first figure in each set (i.e. 39, 41, 43, etc.) shows the distribution of the 

failures, whilst the second figure (i.e. 40, 42, 44, etc.) shows the cumulative result. 

There does not appear to be any strong relationship that can be deduced from the 

figures. In addition, the sample size is small and may not be statistically valid. 

Similarly, figures 62 to 77 are graphs illustrating the relationship between the number 

of failures and the velocity at impact, whilst keeping the pre-set deflection constant. 

There does not appear to be any strong relationship illustrated by the latter graphs 

either, which would seem to indicate that a stress history of the kind experienced by 

test pieces during the experimentation described is not significant.

It is conceivable that the surface micro-cracks that form on the surface of silica glass 

could grow when the material is subjected to a repeated loading cycle, and 

consequently could exhibit some form of fatigue failure. The nature of the experimental
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process used for this work caused an incrementally increasing load to be applied to the 

test pieces, and then removed. If the test piece did not fail during a series of ten 

repeated impacts at the same velocity and deflection, then the velocity of impact was 

increased and another set of impact tests conducted. Thus, the test pieces were 

subjected to what was effectively a cyclic loading of low frequency. The total number 

of impacts for each test piece may be analogous to a fatigue characteristic in glass, in 

that the stress required to cause failure after a test piece has suffered a large number of 

impacts would be comparatively lower if some form of fatigue phenomenon was 

occurring. No suggestion that silica glass is vulnerable to fatigue failure has been 

identified, so a linear cumulative damage law approach, such as Miner’s Rule, Ashby 

and Jones (1996), is unlikely to be appropriate. Paul (1990) discusses both static and 

dynamic fatigue, but in the context of variation in loading rate, as opposed to the 

material response to cyclic loading. Consequently, it is assumed that the failure of the 

glass test pieces is determined by the stress level alone, and that the history of the 

impacts to failure is irrelevant.
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7 Conclusions and Recommendations for future work

7.1 Test Rig And Testing Process.

As part of this project an hydraulic test rig was designed and constructed which 

simulated the early impact phase of an attack upon a laminated glass panel by an 

assailant. The test rig was used to obtain a set of measurements of deflection and 

velocity at which the 420mm by 420mm, 6.4mm thick, glass laminate samples failed. 

Concurrent to the deflection and velocity measurements, relative humidity and 

temperature measurements have also been taken.

In the early stages of this work the testing procedure was to randomly select a pre-set 

deflection and an impact velocity and then to conduct the test and note the result. In 

the latter, and main part of the project, the pre-set deflection and velocity were 

incrementally increased from a low starting point, with repeated impacts at the same 

level, until failure occurred.

7.2 Weibull Analysis

The strength of a glass panel subjected to an impact is largely determined by the 

number and severity of the flaws on its surface. When comparative tests are made on a 

number of nominally identical samples there is normally a considerable spread in the 

results, the coefficient of variation (the standard deviation divided by the mean) is 

often fifteen percent or more. Weibull showed how the features of the strength of 

brittle materials, in this case glass, could be predicted quantitatively, once a function 

was specified which describes the flaw distribution on the surface of the material. The 

Weibull cumulative distribution function is crucial to the correct prediction of 

material response, and is obtained using experimental results. The cumulative 

distribution function relates the probability of failure to the strength. The Weibull 

modulus, or flaw density parameter, is a dimensionless shape parameter which is 

determined by measuring the slope of the cumulative distribution graph after the 

natural logarithm of the original expression has been taken twice. The Weibull 

cumulative distribution function may be regarded as a skewed Gaussian distribution, 

with a skewness determined by the value of the Weibull modulus. The loading
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conditions for the impact tests discussed in this work meant that the stress normally 

used for a cumulative distribution function was a combined stress, with an element of 

bending stress and an element of impact stress. Values used by others for the Weibull 

modulus were identified as normally being between four and seven for flat panels, and 

between five and ten for glass fibres. The best fit for the data generated during this 

work gave a statistically significant figure of 3.456 for the Weibull modulus. It is 

considered that this relatively low figure reflects the variation in results caused by the 

combined impact and deflection stresses, and the point loading, compared with the 

quasi-static, uniformly distributed loading that has often been used to establish the 

Weibull modulus of between four and seven.

7.3 Stress Intensity Factor

The stress intensity factor, K, or fracture toughness value, is an indication of the 

toughness of a material. Glass is a brittle material, so it would be expected to have a 

low fracture toughness. Using a value for a surface crack length of 30 x 10'6 m, the 

stress intensity factor was calculated from the experimental results using different 

critical stress values (determined by varying the stress combination factor) and 

subsequently plotted. The best fit for a Gaussian distribution was for a value of the 

stress combination factor of 0.7, with a value for the arithmetic mean of the stress 

intensity factor of 0.46 MPa1/2. This figure is lower than the 0.7-0.8 MPa172 determined 

by others quoted in chapter 6. However, if the range of values for K  used by Ashby 

and Jones (1996) is an appropriate material characteristic, then using a mean value for 

the failure stress of 53MPa, gives a range for the crack length of between 55 and 72 

x l O ' 6 m .

The stress intensity factor is a measure of the fracture toughness, and hence is a 

material characteristic which should not change, however, the stress intensity factor is 

normally determined using quasi-static loading and as Anderson (1995) states, the 

dynamic fracture toughness may be drastically different from the quasi-static case, 

because the reflecting stress waves influence the local crack tip stress and the strain 

fields. This project has focussed upon point impact loads, and since the combined
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impact and bending stresses have been used to generate the stress intensity factor this 

may result in a difference between that derived, and figures quoted by other workers.

7.4 Strain Rate Dependency

The level of stress at which glass fails is dependent upon the rate at which the glass is 

loaded. This phenomenon is described as strain rate dependency and has been 

discussed in chapter 6. A value of 16 or 17 for a fitting parameter, n, which relates the 

failure stress with the time to failure has been identified in work on quasi-static, 

(normalised for sixty seconds) loading of large panels of glass. In this study a range of 

values for the fitting parameter between 4.17 and 43.4 was obtained, as the stress 

combination factor was varied, with a wide range of statistical certainty about these 

values. So it is considered that either the term used for the loading duration (the 

deflection at failure divided by the velocity at failure i.e.v/d) is not appropriate, or that 

the relationship utilised for strain rate dependency is not pertinent for impact loading.

7.5 The Influence Of Relative Humidity

Glass has been described as being vulnerable to a static fatigue condition because the 

micro-cracks present on the surface of the glass grow when subjected to a tensile load 

in the presence of water vapour, but the data obtained in this work did not appear to 

show any relationship between failure and relative humidity. The tests covered a range 

of relative humidity from 12 % to 50 %, thus it is possible that the influence of 

relative humidity is only discernible outside of this range, or that its significance was 

not apparent.

7.6 The Influence Of Temperature

Silica glass is a non-crystalline “glass”, and as such its properties will change as the 

temperature changes, however examination of the experimental data indicates that the 

temperature effects in the range of the experimentation, 15° C to 27° C, are not large 

enough to influence the experimental results.
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7.7 The influence of lamination and PVB

The tests pieces used were constructed from laminated glass. The PVB interlayer 

between the two glass laminae can be considered as flexible and incompressible. 

During bending the glass laminate will act as a composite beam, which will be some 

way between the response of a layered beam (i.e. two beams on top of each other with 

no adhesive medium joining them) and a monolithic beam. During impact it is likely 

that the stress wave at the PVB interlayer will be partially reflected and partially 

transmitted. Unfortunately, it has not been possible to investigate the influence of the 

PVB in any great depth.

7.8 The Nature Of The Stress Combination Factor /

It was suggested in the discussion of the results that the dynamic loading of the glass 

plate can be divided into two distinct elements, the stress generated by the bending of 

the glass, and the stress generated by the impact. However, although the stresses can 

be described separately, they have a combined effect upon the glass, and consequently 

need to be superposed when considering the conditions for failure. Consideration of 

the relationship between impact velocity, the pre-set deflection and the total number 

of impacts to failure indicated that the impact stress was more significant than the 

bending stress so a less than unity multiplier, the stress combination factor, f  was 

applied to the bending stress.

When considering the Weibull distribution, it was established that altering the value 

of the stress combination factor affected the shape of the distribution, and the fit of the 

experimental data with the theoretical analysis. Using an iterative approach, a value 

for /  of 0.75 was obtained that gave a good fit between the experimental and 

theoretical models. The correlation coefficient for the best fitting regression line was 

equal to 0.973, and was statistically valid, using Student’s t-test at the 99% level.

Consideration was given to the relationship between the Weibull modulus or flaw 

density parameter, m, and the stress combination factor, f  It was established that for 

the experimental data, for values fo r/o f 0.5 and above, m was not related to f  but that
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for values of /below  0.5, m reduces as / reduces. Since the region of interest for the 

stress combination factor is greater than 0.5, this result is not considered to be 

significant.

The stress intensity factor K  was determined using the quasi-static approach, and did 

not appear to be consistent with figures obtained by others, but, as discussed above, 

this deviation may be explained by the differences between the static and dynamic 

response of the material. The best fit for the data was obtained using a value for the 

stress combination factor of 0.7

As discussed above, the values obtained for the fitting parameter for the strain rate 

dependency relationship have dubious statistical validity, but a value of 0.6 for the 

stress combination factor produced a figure for the fitting parameter close to that 

obtained by others.

In conclusion, it is considered that there is sufficient evidence identified to justify the 

hypothesis that during low velocity impacts the stresses from the impact, and the 

stresses from the bending, combine to occasion a micro-crack to propagate and cause 

fracture, and that the combination of stresses can be described using a stress 

combination factor,/ whose value is between 0.7 and 0.8.

7.9 Future Work

During the course of this work there were two areas that were explored, but not 

pursued in any great depth, they were finite element analysis, and crack measurement. 

In the early part of the study some work was conducted to compare the experimental 

results with those achieved using a non-linear, dynamic finite element package (FEA 

Lusas). Unfortunately, at that time, the computer power available, both in terms of 

processor speed and storage, made the running of repeated, detailed, non-linear 

dynamic models unrealistic. Recent expansion in computational power has made the 

analysis of glass computationally feasible. Secondly, the material characteristics for 

the finite element modelling of PVB had not been fully developed, but recent 

developments in the modelling of visco-elastic materials should improve the analysis.
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Some work was conducted using digital image processing to establish the position and 

length of all cracks on a failed sample in an attempt to establish if there was a 

relationship between the energy applied to the system by means of an impactor, and 

the energy dissipated in initiating and growing the crack pattern. The work was 

abandoned because no practicable way of automating the measurement of the crack 

length was identified.

In addition to the above, it is considered that one area of worthwhile investigation 

would be the very high speed filming of the first stage of the crack initiation and 

propagation. Such an investigation would shed more light on the interaction between 

the bending stress and the impact stress, and may identify at what time the applied 

stress exceeds the fracture stress for the sample.

Finally, although it was considered that the design of the test rig was reasonably 

representative of an idealised sledgehammer strike, work on improving the 

instrumentation used would provide a better picture of the loads and stresses 

generated during the impacts.
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Figure 1 Schematic diagram of the temperature 
dependence of volume from Scholze (1990)
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Contours of greatest principal stress in a semi-infinite elastic media in 
contact with a spherical indenter. From Frank and Lawn (1967).

Note: The contour numbers relate to the unit of stress, the mean pressure acting between
the indenter and specimen.
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Figure 7 Dimensions of a section of a sandwich beam
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Figure 17 The stress required to separate atomic planes; a« is the equilibrium 

separation at zero stress. (From Uhlmann and Kreidl (1980))
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Deflection at failure v. Velocity at failure 
Figure 28
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Regressions for two segments of Deflection v Velocity
Figure 30
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Regressions for two segments of Deflection v Velocity
Figure 31
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Regressions for two segments of Deflection v Velocity 
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Regressions for two segments of Deflection v Velocity
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Deflection at failure v. velocity at failure/deflection at failure
Figure 35
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Deflection at Impact v. Number of failures for an
impact velocity of 1.05 m/s
Figure 39
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Deflection at Impact v. Cumulative number of failures
for an impact velocity of 1.05 m/s
Figure 40
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impact velocity of 1.9 m/s
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Deflection at Impact v. Number of failures for an
impact velocity of 3.3 m/s
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Deflection at Impact v. Cumulative number of failures
for an impact velocity of 3.3m/s
Figure 46
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Deflection at Impact v. Number of failures for an
impact velocity of 3.8 m/s
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Deflection at Impact v. Cumulative number of failures
for an impact velocity of 3.8 m/s
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Deflection at Impact v. Number of failures for an 
impact velocity of 4.3 m/s 
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Deflection at Impact v. Cumulative number of failures
for an impact velocity of 4.3 m/s
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Deflection at Impact v. Number of failures for an
impact velocity of 4.75 m/s
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Deflection at Impact v. Cumulative number of failures
for an impact velocity of 4.75 m/s
Figure 52
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Deflection at Impact v. Number of failures for an
impact velocity of 5.3 m/s
Figure 53
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Deflection at Impact v. Cumulative number of failures
for an impact velocity of 5.3 m/s
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Deflection at Impact v. Number of failures for an
impact velocity of 5.85 m/s
Figure 55
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Deflection at Impact v. Number of failures for an
impact velocity of 6.6 m/s
Figure 57
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Velocity at failure v. Velocity at failure/Deflection at failure
Figure 59
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Velocity at Impact v. Number of failures for a
deflection of 0 to 0.5 mm
Figure 62
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Velocity at Impact v. Cumulative Number of
failures for a deflection of 0 to 0.5 mm
Figure 63
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Velocity at Impact v. Number of failures for a
deflection of 1.1 to 1.5 mm
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Velocity at Impact v. Number of failures for a
deflection of 1.6 to 2.0 mm
Figure 68



Velocity at Impact v. Cumulative Number of
failures for a deflection of 1.6 to 2.0 mm
Figure 69
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Velocity at Impact v. Number of failures for a
deflection of 2.1 to 2.5 mm
Figure 70
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Velocity at Impact v. Cumulative Number of
failures for a deflection of 2.0 to 2.5 mm
Figure 71
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deflection of 2.6 to 3.0 mm
Figure 72

Velocity at Impact, m/s



Velocity at Impact v. Cumulative Number of
failures for a deflection of 2.6 to 3.0 mm
Figure 73

Velocity at Impact, m/s



Velocity at Impact v. Number of failures for a
deflection of 3.1 to 3.5 mm
Figure 74

Velocity at Impact, m/s



Velocity at Impact v. Cumulative Number of
failures for a deflection of 3.1 to 3.5 mm
Figure 75

Velocity at Impact, m/s



Velocity at Impact v. Number of failures for a
deflection of 3.6 to 3.8 mm
Figure 76
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Velocity at Impact v. Cumulative Number of
failures for a deflection of 3.6 to 3.8 mm
Figure 77

Velocity at Impact, m/s
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Figure 81

Reduced Data Set



Deflection at failure v. Velocity at failure
Figure 82

© 10-25 rh def vs 10-25 rh vel
Plot 1 Regr

E 26-39rh def vs 26-39 rh vel
Plot 2 Regr

A 40-60 rh def vs 40-60 rh vel
Plot 3 Regr
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Reduced Data Set



Deflection at failure v. Velocity at failure
Figure 85

0 15-19.9 tem p defl vs 15-19.9 tem p vel
Plot 1 Regr

0 20-23.9 tem p defl vs 20-23.9 tem p vel
Plot 2 Regr

A 24+ tem p defl vs 24+ tem p vel
Plot 3 Regr



Comparison between measured and calculated stress
on sample loaded centrally.
Figure 86

© deflection vs calculated stress
Plot 1 Regr

A deflection vs measured stress
i— Plot 2 Regr
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bending stress at failure v. impact stress at failure
Figure 88
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Bending stress at failure v. Impact stress at failure
Figure 89

Bending stress, MPa



Bending stress at failure v. Impact stress at failure
Figure 90

Regression line
95%  Regression Prediction Interval
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Figure 91

Stress levels v. Occurence , f = 1.0 
Gaussian curve fit 
Stress levels v. Occurence, f = 0.7 
Gaussian curve fit



Deflection at failure/velocity at failure v. deflection at failure
Figure 92
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Deflection/velocity v. Total stress 
Figure 93

deflection/velocity, seconds

defl/vel vs total stress



ve
lo

ci
ty

 a
t f

ai
lu

re
 m

/s

Deflection at failure/velocity at failure v. velocity at failure
Figure 94

deflection at failure/velocity at failure, seconds



ve
lo

ci
ty

 a
t f

ai
lu

re
 m

/s

Deflection at failure/velocity at failure v. velocity at failure
Figure 95

deflection at failure/velocity at failure, seconds



D
eflection at failure, m

m

Velocity at failure, m/s
o - ^ i\ d c o 4 ^ o i o 5 - vi

Deflection at failure v. velocity at failure 
Figure 96



Deflection at failure v. velocity at failure/deflection at failure
Figure 97
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velocity at failure v. velocity at failure/deflection at failure 
Figure 99
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Constant Velocity, 1.9 m/s
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Constant Velocity, 2.6 m/s
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Constant Velocity, 3.3 m/s
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Constant Velocity, 3.8 m/s
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Constant Velocity, 4.75 m/s
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Constant Velocity, 5.3 m/s
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Constant Velocity, 5.85 m/s
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Constant Velocity, 6.6 m/s
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Constant deflection between 0 and 0.5
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Constant deflection between 0.6 and 1.0
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Constant deflection between 1.1 and 1.5
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Constant deflection between 2.1 and 2.5
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Constant deflection between 2.6 and 3.0
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Constant deflection between 3.6 and 4.0
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• d 1.05 vs 1 1.05
o d 1.9 vs 1 1.9

d 2.6 vs t2.6
V d3.3 vs t3.3
IB d3.8 vs t3.8
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O d4.75 vs t4.75
o d5.3 vs t5.3
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A d6.6 vs t6.6

d, deflection at failure, mm
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Figure 121

Stress combination factor of 1.0
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Figure 122

Stress combination factor of 0.9
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Figure 123

Stress combination factor of 0.8
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Stress combination factor of 0.7
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Stress combination factor of 0.6
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Figure 126

Stress combination factor of 0.5
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Stress combination factor of 0.4
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Figure 128

Stress combination factor of 0.3
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Figure 129

Stress combination factor of 0.2
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Figure 130

Stress combination factor of 0.1
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Figure 131

Stress combination factor, f
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Weibull Distribution
Figure 132

Applied Stress vs Probability of failure



Weibull Distribution
Figure 133

Applied Stress vs Probability of failure

Stress Combination factor, f =0.75



Comparison of Theoretical and Experimental
Wiebull Variables
Figure 134

© x exp vs y exp
Plot 1 Regr

A x theor. vs y theor.
Plot 2 Regr

lnv*(s-s'/s")

Stress Combination factor, f = 0.75
W eibull flaw  density parameter, m = 3.0



Comparison of Theoretical and Experimental
Wiebull Variables
Figure 135

© x exp vs y exp
Plot 1 Regr

A x theor. vs y theor.
Plot 2 Regr

Inv*(s-s7s")

Stress Combination factor, f = 0.75
W eibull flaw density parameter, m = 2.0



Comparison of Theoretical and Experimental
Wiebull Variables
Figure 136

© x exp vs y exp
Plot 1 Regr

A x theor. vs y theor.
Plot 2 Regr

lnv*(s-s'/s")

Stress Combination factor, f = 0.75
W eibull flaw density parameter, m = 4.0



Comparison of Theoretical and Experimental
Wiebull Variables
Figure 137

© x exp vs y exp
Plot 1 Regr

A x theor. vs y theor.
Plot 2 Regr

lnv*(s-s'/s")

Stress Combination factor, f = 0.75
W eibull flaw density parameter, m = 7.0



Comparison of Theoretical and Experimental
Wiebull Variables
Figure 138

© x exp vs y exp
Plot 1 Regr

A x theor. vs y theor.
Plot 2 Regr

lnv*(s-sVs")

Stress Combination factor, f = 0.75
W eibull flaw density parameter, m = 3.456



Comparison of Theoretical and Experimental
Wiebull Variables
Figure 139

© x exp vs y exp
Plot 1 Regr

A x theor. vs y theor.
Plot 2 Regr

lnv*(s-s'/s")

Stress Combination factor, f = 0.4
W eibull flaw density parameter, m = 3.456



Comparison of Theoretical and Experimental
Wiebull Variables
Figure 140

©  ! x exp vs y exp
Plot 1 Regr

A x theor. vs y theor.
Plot 2 Regr

lnv*(s-s'/s")

Stress Combination factor, f = 0.5
W eibull flaw density parameter, m = 3.456



Comparison of Theoretical and Experimental
Wiebull Variables
Figure 141

© x exp vs y exp
Plot 1 Regr

A x theor. vs y theor.
Plot 2 Regr

Inv*(s-s7s")

Stress Combination factor, f = 0.6
W eibull flaw density parameter, m = 3.456



Comparison of Theoretical and Experimental
Wiebull Variables
Figure 142
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Plot 1 Regr

A x theor. vs y theor.
Plot 2 Regr

lnv*(s-s'/s")

Stress Combination factor, f = 0.75
W eibull flaw density parameter, m = 3.456



Comparison of Theoretical and Experimental
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Figure 143
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Stress Combination factor, f = 0.9
W eibull flaw density parameter, m = 3.456



Comparison of Theoretical and Experimental
Wiebull Variables
Figure 144

© x exp vs y exp
Plot 1 Regr

A x theor. vs y theor.
Plot 2 Regr

lnv*(s-s'/s")

Stress Combination factor, f = 1.0
W eibull flaw density parameter, m = 3.456



Graph of f v. m
with upper and lower 95% confidence intervals
Figure 145

+ f vs m
+ f vs 95%  conf high 
♦ f vs 95%  conf low
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Stress Intensity Factor,K v. Frequency
Figure 146
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Stress Intensity Factor,K v. Frequency
Figure 147
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Stress Intensity Factor,K v. Frequency
Figure 148
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Stress Intensity Factor,K v. Frequency
Figure 149
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K MPa m 1/2 vs occurrence
a0= 5E-6, f = 0.5



Stress Intensity Factor,K v. Frequency
Figure 150
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Stress Intensity Factor,K v. Frequency
Figure 151
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K MPa m 1/2 vs occurrence
a0= 30E-6, f = 1



Stress Intensity Factor,K v. Frequency
Figure 152
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a0= 30E-6, f = 0.8



Stress Intensity Factor,K v. Frequency
Figure 153
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Gaussian fit
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Stress Intensity Factor,K v. Frequency
Figure 154

K

K MPa m 1/2 vs occurrence
a0= 30E-6, f = 0.5



Stress Intensity Factor,K v. Frequency
Figure 155

K

K MPa m 1/2 vs occurrence
a0= 5E-6, f = 0.3
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