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Abstract

Protected operating systems multiplex programs onto resources such that they are isolated 
from one another — that is, concurrently executing programs cannot interfere with each other. 
A layer of software known as the kernel provides this protection to the software layers above 
it. Untrusted, ‘user’ programs are prevented from controlling the protection hardware because 
they are executed when the processor is in user mode — a mode of reduced privilege. In user 
mode, instructions that can be used to circumvent protection are unavailable; the processor’s 
instruction-set is reduced.

This thesis introduces a new operating system protection mechanism termed SISR — Software- 
based Instruction Set Reduction (pronounced scissor). Here, all software (including the kernel) 
executes in the same processor mode, while both language independence and protection are main-
tained. Untrusted (that is, ‘user level’) code is prevented from issuing privileged instructions not 
by reducing the processor’s instruction set, but by scanning code prior to its loading; any code 
found to contain privileged instructions is not loaded. Memory protection is provided through 
segmentation. SISR leads to improved architectures (that is, simpler and more modular), and im-
proves performance significantly. Its low overheads make fine-grained protection practical, making 
it especially well-suited to component-based operating systems.

A prototype system has been built for x86-based PCs as a ‘proof-of-concept’. Significant im-
provements in architectures have been delivered. Tasks that have previously been inextricably 
linked (such as interrupt handling and CPU scheduling) have been separated into distinct compo-
nents. Experiments have demonstrated significant improvements in performance, compared even 
to the leanest research operating systems.



Chapter 1

Introduction

This thesis introduces a new operating system protection model called SISR (Software-based In-

struction Set Reduction, pronounced ‘scissor’). SISR offers improvements in performance and 

architectures, and is particularly well suited to component-based operating systems. This chapter 

identifies the responsibilities of operating systems and protection (detailed more fully in Chapter 

3), and emphasizes the short-comings of contemporary systems. The notions of component-based 

software and component-based operating systems are introduced. The motivation behind this 

work (detailed more fully in Chapter 2) is also given.

1.1 Operating Systems and Protection

Most operating systems have the ability to multiplex many programs onto one computer so that 

each program has the illusion that it is running on its own, dedicated system. The most common 

technique used to create this illusion is to run each program in turn, each executing for some small 

‘time-slice’ (typically a few milliseconds). If the illusion is to be complete, programs running ‘con-

currently’ must be isolated from each other such that one program cannot interfere with another. 

This means that programs that are erroneous (that is, buggy) or malicious (for example, a virus) 

should not be able to access other programs’ resources. These resources include memory, processor 

time and peripherals. The ability of an operating system to enforce this isolation is known as pro-

tection. Note the distinction between protection and security: protection is the mechanism used 

to isolate programs; security is the policy used to control the protection mechanism (including 

resource allocation and controlled inter-program communication).

Protection comes at a price: it is expensive in terms of computer resources. In traditional
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operating systems (for example, BSD UNIX [84]) a sub-routine call from one program to another 

takes over 3 orders of magnitude longer than a sub-routine call within the same program [74]. This 

is because protection requires that ‘walls’ be erected between programs to isolate them; traversing 

these walls is expensive.

1.2 Component-Based Software

In modern operating systems, providing the illusion that each program has its own, dedicated 

computer is less important than the provision of protection. Indeed, dividing work between several 

programs and having those programs interact to achieve some task is seen as useful for several 

reasons:

• The fault-isolation provided by protection makes systems more robust: failures are limited 

to the failed program.

• Code reuse is made easier. Different tasks often have a lot in common. If this common 

work is extracted from programs and placed in a separate program, code duplication can 

be avoided (programs written solely to support common functionality rather than achieve a 

specific task are commonly called ‘servers’).

• Software engineering is improved. Software engineers strive to write modular programs, 

where ‘cohesion’ is maximised and ‘coupling’ minimised [107]. High cohesion and low cou-

pling is forced between protected programs.

Each protected program can be thought of as a component. Several components are brought 

together in order to achieve some task. Computing with a few independent and well-defined 

programs is becoming a thing of the past. With older architectures it is clear with which program 

a user is interacting at any time. This is not so in modern systems where, for example, a user 

might be interacting with a Java ‘applet’ though their web-browser. There the user is interacting 

with several components: the browser, the Java virtual machine and the applet.

This model can be extended so that the advantages of component-based software engineering 

are exaggerated. For example, an internet client might be constructed from several components 

including an ‘HTML Renderer’, an ‘Image Viewer’, a ‘Movie/Sound Player’, a ‘Java Virtual Ma-

chine’ , ‘SMTP’ (e-mail) and ‘HTTP’ (web) clients, a ‘Text Editor’ and a ‘Spell Checker’ . Many 

of these components can be used in other applications — for example, the spell-checker and
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text-editor might be used by a word-processing package, or along with the HTML Tenderer in a 

web-authoring package.

1.3 Towards Component-Based Operating Systems

Component-based operating systems embrace component technology in two ways. Firstly, they are 

designed to support (relatively small) components and their interaction rather than monolithic, 

single-purpose programs. Traditional systems implement protection between programs where it is 

assumed that protection boundaries will be crossed rarely. A component-based OS should provide 

a protection mechanism suitable for finely-grained protection with frequent interaction between 

protected components. Secondly, the operating system itself is decomposed. That is, rather than 

providing all OS services from a monolithic entity (often known as the kernel), operating system 

services should be provided by a set of cooperating components.

In some senses, ¡i-kernels (see Section 4.2.2) and even monolithic systems such as UNIX [89] can 

be seen to be component based. For example, UNIX is comprised of many components, including 

the kernel, the log in  process, utilities such as cp and Is, shells and (on later systems) virtual file 

systems. However, contemporary operating systems cannot be considered truly component based. 

A component-based operating system should have a component model that is: explicit; consistent 

and orthogonal; lightweight; and pervasive. A more complete definition of a component-based 

operating system is given in Section 4.4.

1.4 Motivation

Despite the continuing move towards component-based operating systems, existing systems fall 

some way short of the two goals of component-based OSs (component support and OS decompo-

sition). In other words, existing systems do not provide as much support for component-based 

applications as they might, and even in /u-kernel and exokernel-based systems [30], the OS is not 

as decomposed as it would ideally be. Traditional protection mechanisms have two features that 

are the limiting factor with respect to both of these short-comings:

• Traditional operating systems’ kernels execute while the microprocessor is in a special, priv-

ileged mode. This forces all OS services to be bundled together into a single entity — the 

kernel. For example, even the smallest kernels have support for many disparate services
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including interrupt handling, paging, preemptive scheduling, memory management and re-

source allocation and ownership tracking. In a decomposed system, separate components 

should be responsible for these distinct tasks. Such decomposition would lead to improved 

configurability, dynamism, robustness and software engineering.

• Even in the leanest research systems (such as L4 [45]), protection is still so expensive as 

to prohibit protection at a particularly fine granularity (see Section 2.3.2). This means 

that if component-based operating systems’ performance is to remain acceptable then either 

decomposition must be limited, or several components must be placed into a single protection 

context.

This thesis presents a new protection mechanism, Software-based Instruction Set Reduction. 

SISR solves both the above issues at the expense of rarely-used and discouraged techniques such 

as self-modifying code1. Traditional systems have untrusted code execute while the processor is 

in a special mode of reduced privilege. This mode renders privileged instructions (usually those 

instructions that control protection) unusable. SISR is a simple technique whereby untrusted 

code is scanned prior to execution to ensure that no privileged instructions are present. All code 

then executes while the processor is in its most privileged mode. Furthermore, the code-scanning 

means that user-level components’ use of certain instructions (such as segment-register loads) can 

be restricted by the operating system. By combining code-scanning with memory protection based 

on segmentation, SISR allows better decomposition of the kernel (since it is no longer ‘special’), 

as well as significantly reducing the costs of traversing protection contexts.

Over the years, OSs have had smaller and smaller kernels, from monolithic, through /x-kernels 

and to ‘nano-kernels’ such as exokernels. A truly component-based OS can be seen as a “zero- 

kernel” , where the kernel has been replaced by a set of components that cooperate to provide 

services usually found in the kernel. SISR allows the construction of such zero-kernels through the 

abolition of separate processor modes and the dramatically decreased costs of decomposition.

1.5 Structure of this Thesis

The remainder of this thesis is structured as follows: Chapter 2 specifies the deliverables of this

work — explicit requirements are identified, on which the success of the project may be judged.
1 “Self modifying code” refers to code that writes to itself during execution. This should not be confused with 

dynamic code generation techniques where some server produces or modifies a client’s code prior to the client’s 
execution. That is, the term self-modifying code does not refer to modern techniques such as Aspect Oriented 
Weaving [75] or Java Just-In-Time compilation [23],
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Chapters 3 and 4 set the context for the rest of this thesis: Chapter 3 gives an overview of the 

protection mechanisms used by existing, main-stream operating systems; Chapter 4 introduces 

research related to that presented here (namely, significant research into new protection mech-

anisms). Chapter 5 presents the SISR protection model in detail, and explains how the goals 

outlined in Chapter 2 will be met. Chapter 6 gives an overview of an operating system con-

structed using SISR as a ‘proof-of-concept’ . Chapter 7 presents several experiments conducted 

on the new operating system and their results. Chapter 8 concludes against the goals set out in 

Chapter 2 and suggest directions for future work with SISR.
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Chapter 2

Project Goals

2.1 Introduction

This chapter introduces current OS research topics, and goes on to specify those to be addressed 

in this work. Briefly, these are: software engineering, performance, configurability (also known as 

composability) and dynamism (also known as reconfigurability). Furthermore, these goals must 

be met while maintaining language independence (that is, features of a programming language 

cannot be used to achieve these goals, since that would restrict software engineering). The chapter 

also explains how many of the goals are interdependent.

2.2 Current OS Research Goals

There are several ‘hot topics’ in operating systems research. These are:

Performance Moore’s law states that ¿¿-processor performance doubles approximately every 18 

months. However, the same cannot be said of operating system performance [86]. For exam-

ple, the performance of ‘number-crunching’ or graphics manipulation is improving rapidly, 

whereas the time taken to perform context-switches has remained largely static. Recent 

projects such as L4 have striven to redress the balance by constructing operating systems 

with the intent of allowing the OS (and thus applications) to get the most out of modern 

¿¿-processors.

Configurability Different operating system services are required in different domains. A config-

urable operating system is able to assume many guises, and so allow different configurations
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of the same operating system to be used in different domains. For example, a configurable op-

erating system might have a general-purpose preemptive scheduler in desktop distributions, 

and a real-time scheduler in embedded ones.

Flexibility Not only are different operating system services required in different domains, but 

different applications often require different services of the same operating system. Fur-

thermore, these different applications may well be executing concurrently. Systems such as 

exokernels [30] and Cache-Kernels [18] allow different applications to see different ‘views’ of 

the same OS, depending on their needs. Applications are free to customise the operating 

system, so that the OS may exhibit the behaviour most suitable to them. Note that config-

urability refers to OS customisation by the vendor or customer, whereas flexibility refers to 

OS customisation by the application designer.

Dynamism Most configurability and flexibility offered by today’s commodity operating systems 

involves the system being re-booted between changes. However, this is not acceptable where 

systems must be highly available (such as corporate servers or industrial control systems). 

Allowing operating systems to change their behaviour dynamically would bring the benefits 

of configurability and flexibility to such systems. It will also allow bug-fixing of systems 

software without requiring a suspension of service. Dynamism is also referred to as hot- 

swapping and reconfigurability.

Software-engineering Systems programming is notoriously difficult and error-prone, yet rel-

atively little effort is focused on easing the task of the systems developer. Reducing the 

cost of systems-software development will allow more individuals and companies to engage 

in such development.

Security As the world becomes ever-more reliant on computing, security becomes an increas-

ingly important issue. Current commodity operating systems offer relatively poor security, 

with all systems having a plethora of well-documented ‘security holes’ that can be exploited 

to break security.

While distinct, many of these goals are interdependent. Flexibility, configurability and dy-

namism are much more useful if application developers are able to customise the system them-

selves; something not practical until significant advances are made in systems-software engineering. 

Exokernels and Cache-kernels have demonstrated that flexibility is key to offering improved perfor-

mance. Flexibility and configurability are obviously related since they both involve customisation
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of operating system services. Furthermore, all goals can be argued to be dependent on good 

performance being maintained. That is, history has show that no matter what advantages an 

operating system offers, no OS will be accepted if it performs poorly. For example, for many years 

MS-DOS and Windows 3.1 remained more popular than Windows NT or UNIX, despite Windows 

3.1’s notorious instability. Stable systems became popular only once cheap, commodity hardware 

was capable of running OSs such as NT and UNIX responsively.

2.3 Project Goals

This thesis describes a new OS protection model which is intended to provide significant improve-

ments in many of the requirements outlined in Section 2.2. Namely: performance; configurability; 

dynamism and software-engineering.

This section examines each goal in detail, laying down criteria on which the success of the 

project may be judged. Each of the goals mentioned here must be met for the work to be judged a 

complete success. As noted in Section 2.2, many operating system research goals are interdepen-

dent. For example, the fine granularity necessary to meet the software-engineering requirements 

is dependent upon high performance — if protection is too expensive modules that would ideally 

be protected from one another end up being collocated into a single protection-context [21].

2.3.1 Software-engineering

Software-engineering will be improved through the use of a consistent component model that is 

pervasive throughout the system. These components are to be protected and finely-grained. As 

well as leading to improved system modularity, the increased granularity of fault isolation will 

ease debugging [65]. The kernel itself will be decomposed, easing the burden of systems-software 

engineering. In other words, the system will exhibit the four key properties of a component- 

based operating system identified in Section 1.3: orthogonality, consistency, pervasiveness and 

lightweightedness.

Furthermore, [99] shows that the majority of errors in systems-programming are invalid mem-

ory references. A protection model that is lightweight and flexible enough to allow fine-grained 

protection at the programmer’s abstraction boundary will improve systems-software engineering 

significantly.

Since poorly-performing systems tend to be unpopular, this finely-grained decomposition must
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not adversely effect performance. Hence this requirement is dependent on the performance re-

quirements (Section 2.3.2).

Software-exception support will also be included to aid software-engineering [91, 19].

2.3.2 Performance

The new protection model presented here should reduce protection overheads to enable fine-grained 

protection with a minimal performance hit. Traditionally, when using a component architecture 

such as CORBA [41], the high overheads of protection force the programmer to compromise 

protection by using collocation (that is, objects that would ideally be protected from one another 

are grouped together for performance reasons). The new protection model should allow protection 

of ‘finely grained’ systems with less than 10% spatial and temporal overheads.

Temporal Overheads

Traditional context-switching is slow. The penalty imposed by crossing context boundaries has 

previously acted as a deterrent to extensive decomposition of software. Java security-boundary 

crossings have been measured at 30,000 per second on a 167MHz Ultra-SPARC machine [109]. 

Rounding this figure up to 100,000 boundary crossings per second, this translates as an invocation 

approximately once every 1,500 cycles. Therefore, if protected method invocations are to impose 

no more than 10% overhead, a round-trip RPC must take no more than 150 cycles.

Note that Remote Procedure Call (RPC) is by far the most popular software-engineering tool 

for cross-protection-domain communication, hence the inter-component communication overheads 

requirements apply to RPC overheads, not some other primitive such as message-delivery times.

Spatial Overheads

The space overhead per component must remain low. Traditional, page-based memory protection 

often requires several pages per protection-context. As an example, Linux [11] requires at least 

6 pages per protection domain1 [57]. Assuming even distribution of protection-context sizes, | a 

page will be lost to internal fragmentation for each page used. Since Linux uses 6 pages per pro-

cess, this means that 3nP  bytes are lost to internal fragmentation (where P  is the page size, and 

n the number of processes). In a UNIX process model with a few dozen processes running at any

one time, this overhead is acceptable since memory is relatively cheap. However, in finely-grained
1 Linux requires at least 1 page for user-mode stack and data; at least 1 for user-mode code; 1 for a kernel-mode 

stack; 1 for a ‘Task-State Structure’ ; 1 for the process’s page directory; and at least 1 for the process’s page tables.
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component-based system, n is likely to be very large (at least several thousand). Furthermore, 

the phrase ‘memory is cheap’ applies only to desktop systems. Embedded systems typically have 

relatively tight memory requirements because memory is not free, and when manufacturing con-

sumable devices in large quantities “every penny counts” . Secondly, ‘cheap’ memory refers to 

DRAM, which has a significant power consumption that scales linearly with the memory size.

It is anticipated that the granularity of protection will be fine, with the average component 

size being perhaps as low as lkB. This means that the protection overheads must be less than 100 

bytes per protection domain if fine-grained protection is to impose no more than a 10% overhead.

2.3.3 Configurability

An operating system built of finely-grained components is likely to provide high configurability. 

The configurability of most systems is hindered because programmers employ ‘hacks’ that bypass 

interfaces, introducing strong coupling between modules (particularly as software evolves). Since 

the protection of components enforces encapsulation, protected components are guaranteed to 

communicate only via their interfaces. Thus it is argued here that any system comprising of 

protected components will naturally offer improved configurability.

2.3.4 Dynamism and Availability

Many current operating systems require a re-boot after re-configuration before changes take effect. 

This situation is improving slowly, and many modern systems allow device drivers to be installed 

with no interruption of service. However, more fundamental changes, such as the installation of 

a new kernel, still require a reboot. This is not acceptable for systems that are required to be 

available permanently. The component-model used should support ‘hot-swapping’ of components. 

This means that the implementation of a component may be swapped with another realising the 

same interface, without clients of that component being aware.

How exactly state is transferred between the incoming and outgoing implementations is not 

to be addressed here — this is left to the application programmer. Although it could be argued 

that transfer of state is the most difficult part of hot-swapping, the protection model itself is 

of no relevance here, and so state transfer between versions is beyond the scope of this work. 

Moreover, subsequent versions introducing small changes such as bug-fixes will often require no 

manipulation of a component’s state -  that is, the new version will be able to carry on with the 

old one’s state. In the case that more complicated state manipulation is required, this can be
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handled on a case-by-base basis, or by building some more complicated scheme on top of the new 

protection model.

2.3.5 Language Independence

If an operating system is to be widely accepted it is important that it is language independent. 

This means language features such as type safety cannot be relied upon to achieve any of the goals 

outlined in this section.

2.4 Research Goals Specifically Not Targeted

There are several areas of operating systems research that this work does not attempt to address 

(although it must not result in a system where these areas are any weaker than in commodity 

operating systems). The most striking goals common in modern research OSs not covered here 

are flexibility and security.

2.4.1 Flexibility

While flexibility is a ‘hot topic’ , it requires a ‘flexible architecture’ be implemented on top of 

the protection model. That is, an operating system’s flexibility is not a feature of its protection 

mechanism. Because this thesis introduces a new protection model, improvement in flexibility 

is not a goal of this work. However, the new protection model presented here should in no way 

hamper flexibility. That is, it should be at least as easy to build a highly flexible system using the 

new protection model as on other protection models such as exokernels.

2.4.2 Security

As described in Section 3.6, security and protection can be viewed as orthogonal issues. The 

protection model presented here will allow systems to be at least as secure as commodity systems 

such as UNIX [89] to be built on top. However, this work does not aim to provide any unusual 

levels of security, or any novel security mechanisms.
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2.5 Summary

This chapter has identified the active OS research goals, and the criteria by which success or 

failure of this work may be judged. The key motivation behind the project is to provide im-

proved software-engineering, mainly through lightweight, but protected components. Specifically, 

protected round-trip null-RPC must take less than 150 cycles, and the spatial overhead of a pro-

tected component must be not more than 100 bytes. Furthermore, the resulting system must be 

language-independent, and software-exception support should be included. Decomposition should 

result in improved configurability. Allowing components to be hot-swapped will allow improved 

dynamism and availability. All of these goals will be met by the new protection model, developed 

throughout the remainder of this thesis.
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Chapter 3

An Overview of Operating 

Systems and Protection

3.1 Introduction

This chapter sets the context for the work presented in the remainder of this thesis. That is, before 

a new operating system protection paradigm is presented, it is necessary to introduce the notions 

of an operating system (OS) and protection. The chapter then goes on to describe the mechanisms 

usually employed to implement protection, in particular, the hardware and abstractions used by 

most systems are examined. The terms ‘Trusted Computing Base’ and ‘OS kernel’ are also defined. 

The notion of ‘security’ is also examined, as is how security is related to (but is different from) 

protection.

3.2 Operating System Responsibilities

Although most computer-literate people understand what is meant by the term ‘operating system’ 

there is much confusion about what exactly comprises an OS. Essentially, an operating system 

can be defined as a layer of software that sits between application programs and the computer 

hardware on which they run. However, the responsibilities of different operating systems vary: 

some OSs abstract the hardware, presenting an environment more friendly to applications (for 

example, MS-DOS [100]), others multiplex several applications onto the hardware concurrently so 

that different application may not interfere with one another (for example, Exokernel [30]), and
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others do both (for example, UNIX [89]).

This thesis concentrates on the role of the operating system to support several applications 

to be run concurrently on one computer but remain isolated from one another. This feature 

is known as protection. Specifically, protection refers to the division of a computer’s resources 

between concurrently executing applications so that an application may not use any of another’s 

resources. A protected operating system ensures the integrity of the whole system even in the 

presence of malicious applications (for example, a virus) as well as legitimate applications that 

contain programming errors.

Protection is mostly concerned with the two major hardware components of any computer 

system: the central processing unit (CPU) and memory. Although most protected operating 

systems also protect peripherals (such as disk drives, network bandwidth, and visual display units), 

this thesis concentrates on the protection of memory and CPU time. This is because the overheads 

of protection are traditionally very high relative to the fast CPU and memory, but insignificant 

for the much slower peripherals. Also, most modern computer systems employ ‘memory-mapped’ 

peripherals — that is, peripherals are control by accessing certain ‘special’ memory locations. This 

means that once memory protection is enforced, peripheral protection follows naturally.

Operating system protection is often confused with OS security. While security is related to 

protection, it is a quite different topic. The term ‘security’ refers to the policy used to determine 

exactly what resources are given to an application. The protection mechanism restricts applica-

tions so that they may access only the resources allocated to them by the security policy. A brief 

overview of security issues is presented in Section 3.6.

3.3 Protection Implementation

While the security policies of different OSs are often very different, most operating systems imple-

ment protection in the same way. Protection is traditionally implemented using a combination of 

hardware and software: the hardware architecture is organised so as to make protection possible, 

but software is needed to control the protection hardware properly. This software is commonly 

known as the OS ‘kernel’ . This section describes how most OS kernels drive the hardware to 

provide protection. Briefly, there are 3 facets to protection:

Memory Protection Preventing applications accessing memory not allocated to them 

CPU Protection Preventing applications from monopolising the CPU
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Privileged Instruction Protection Preventing applications from executing instructions that 

can be used to compromise protection (this can be thought of as ‘meta-protection’ .

The following sections describe these three aspects of protection and the implementation in 

more detail. Further details of common memory-protection techniques are given in Section 3.4.

3.3.1 Memory Protection

In order to prevent one program from accessing the memory of another it is common to confine 

each program to its own protection domain (sometimes known as a process1). A protection domain 

is the memory to which the associated program has exclusive access.

The most common technique used to effect memory protection uses dedicated memory-manage-

ment hardware that limits the memory ranges accessible (see Section 3.4 for details). The kernel 

can manipulate this memory-management hardware in order to make different programs’ protec-

tion domains accessible at different times. By coinciding this with the scheduling of programs on 

a CPU, each program is limited to its own protection domain, and memory protection is achieved.

Untrusted software is prevented from manipulating the memory protection hardware by two 

means. Firstly, instructions that manipulate the memory hardware are privileged so that user-

mode programs may not execute them (see Section 3.3.3). Secondly, the memory protection 

hardware relies on certain data-structures. These structures are setup so that they themselves are 

inaccessible from all software other than the kernel — that is, they reside in the kernel’s protection 

domain.

One protection domain is active on each CPU at one time. The entire processor’s state (in-

cluding the active protection domain) is often known as a context. In older operating systems, a 

context usually had associated with it a single thread of control, which included its own ‘register 

context’ (that is, the state of CPU registers). As contexts are switched between very frequently, 

the illusion of one computer per context is created, even though several contexts are multiplexed 

onto a single CPU and memory system. In more recent operating systems, each context can 

usually have more than one thread. Each thread is associated with one protection domain at a 

time (that is, the memory that thread can access), but some systems allow threads to change the

domain with which they’re associated (see Section 3.5 for more details).
1The term process is sometimes used to describe a domain where both memory and CPU are protected (that is, 

a complete program in execution), and sometimes refers just to a memory-protection context.
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3.3.2 CPU Protection

In order to ensure fair allocation of CPU time between threads, it is most common to employ 

interrupts. This is a hardware mechanism used to force control from the currently executing 

application to a well-defined instruction within the kernel. Interrupts are triggered by peripherals 

attached to the processor. A timer device usually triggers an interrupt periodically, in response to 

which the kernel either returns control to the interrupted program, or schedules another. When 

scheduling another application the current application’s protection domain must be swapped for 

the new application’s (known as a ‘context switch’). By context switching on periodic interrupts 

like this, the kernel can ensure that no program is able to monopolise the CPU. Some systems 

(known as real-time systems) guarantee that a program will receive a certain amount of resource 

so that tasks may be performed within strict time constraints (for example, an aircraft control 

system will need to guarantee that a control-surface responds to commands within a given number 

of milliseconds if stable flight is to be assured). However, real-timeliness usually has associated 

costs: systems that are not real time (known as desktop or general-purpose systems) can usually 

achieve a higher throughput (that is, perform more work per second), at the cost of predictability.

Faults are similar to interrupts, but are triggered internally rather than in response to pe-

ripherals (usually when the processor cannot complete the current operation). For example, if a 

divide instruction is issued with a divisor of zero, the processor will trigger a fault, forcing control 

to a pre-determined offset within the kernel. Similarly, attempts to access memory not part of 

the current protection domain result in fault. On receiving faults, the default action of the kernel 

is usually to terminate the faulting application. However, depending on the nature of the fault, 

the kernel might remedy the cause of the fault and retry the faulting instruction; synthesise the 

faulting instruction and resume execution after the faulting instruction; signal the fault to the 

application; or take some other action.

In summary, interrupts are triggered by peripherals and faults are triggered by executing some 

invalid instruction, but both use the same mechanism.

3.3.3 Privileged-Instruction Restriction

Most processors’ instruction sets are defined so that most instructions can affect only the program 

that issues them. The processor can be placed into a mode of reduced privilege where only these 

instructions may be executed (known as user mode). All applications execute while the CPU is 

in ‘user mode’ , and the kernel executes while the CPU is in ‘kernel mode’. Indeed, the kernel can
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be defined as the code that executes while the processor is in kernel mode.

The few instructions that, if misused, can cause the system as a whole to fail are known as 

privileged instructions. The attempted execution of a privileged instruction while the processor is 

in user mode causes control to transfer to the kernel via a fault.

Interrupts and faults place the CPU in kernel mode, regardless of the processor’s mode before 

they are triggered. When applications require access to the kernel (in order to request some 

services) they can issue a fault. Most processors provide an explicit instruction that will ‘fault’ — 

issuing such an instruction is known as a system call. Note that because the processor is placed 

into kernel mode and transfer controlled to the kernel atomically, protection is maintained (that 

is, rogue applications cannot place the CPU in kernel mode and retain control). Because system 

calls use the same mechanism as interrupts, they are sometimes called ‘software interrupts’ .

3.4 Hardware Memory-Protection Mechanisms

Over the years, different mechanisms have been used to implement memory protection in hardware. 

The following sections explore the most common variants: paging, segmentation and a combination 

of the two. Each type of memory-management hardware described here allows memory to be 

addressed by a virtual rather than the physical address. That is, the memory addresses generated 

by the executing program are known as virtual addresses. These are not fed directly to the memory 

system. Instead, addresses are translated by memory-management hardware before being used to 

look up values in the memory system (the address used to index the memory system is known as 

the physical address). The hardware that performs this translation is usually located “on chip” 

and known as the Memory-Management Unit (MMU).

3.4.1 Paging

The most popular form of memory protection is paging. Here, memory is divided into uniformly 

sized pages (each page is typically a few kilobytes). Each page has associated with it a set of access 

permissions, and a translation. The access permissions and translations for each page are stored 

in a structure known as the page-table. Before accessing a given memory location, the memory 

subsystem checks against the permissions of that page, and performs the translation as given in 

that page’s entry in the page-table. This is shown in Figure 3.1.

In Figure 3.1, a 4kB page-size in a 32 bit system is assumed (that is, a 12 bit page offset leaving
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Virtual address

Figure 3.1: Memory protection with paging

a 20 bit page number).

Since a 20 bit page number requires 220 page-table entries, and because page-tables are usually 

sparsely populated (that is, most machines have much less than the maximum amount of memory 

physically installed), a one-dimensional linear table would usually be far too big. In reality, various 

techniques such as two-level tables, inverted tables or hash-tables are used to reduce the page 

table’s size. However, requiring several memory accesses to find the translation and access rights 

per memory reference is prohibitively expensive, particularly since memory latency is usually 

a significant bottleneck on a computer’s throughput. To avoid this penalty on each access, a 

Translation Look-aside Buffer (TLB) is typically used to store a cache of translations and access 

rights “on-chip” . Traditionally, the TLB cache is managed by the MMU. Some recent systems 

(such as the DEC Alpha [22]) require management of the TLB cache in software (via ‘TLB-miss 

faults’ ), allowing the operating system rather than the hardware to define the structure of the 

page-table, and TLB replacement policies.

Each protection domain usually has its own page table associated with it. In order to perform 

a context switch the outgoing domain’s page table is replaced by the incoming domain’s (usually 

by loading the physical address of the new page table into some register on the MMU). If a TLB 

is employed, that must also be updated so that it reflects the new page-table.

Pages’ translations are often used to implement demand-paged, virtual memory: giving the 

illusion that a machine has more physical memory than is actually installed. When physical 

memory is exhausted, the contents of infrequently used pages can be stored out on some secondary
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storage (usually disk), and the physical memory backing these pages can be reclaimed. This process 

is known as “swapping a page out to disk” . The access permissions of pages stored on disk are 

marked so that the page is not accessible at all. Any subsequent attempt to read or write a swapped 

page will trigger a page-fault. The operating system responds to such faults by allocating some 

physical memory and copying the page’s contents in from secondary storage (known as “swapping 

in” ). Note that allocating physical memory used to swap in a page often requires that some other 

page is swapped out to disk. Confusingly, the term virtual memory is often used to refer to this 

technique. For clarity, this technique will be described as “demand-paged virtual memory” in this 

thesis, and the term “virtual memory” will be used to describe hardware-based memory protection 

in general.

Pages’ translations are also used to give each protection domain its address space. For example, 

two protection domains might both grow their address-space during execution. Both domains can 

preserve a contiguous virtual address range, even if the physical memory of both address spaces 

is interleaved. The OS designer has a choice of whether to allow different protection domains’ 

virtual address spaces to overlap. Allowing virtual address spaces to overlap relieves the contention 

on virtual address ranges, but complicates shared memory. Traditionally OSs have allowed the 

virtual address ranges of protection domains to overlap. However, modern 64-bit architectures 

offer huge2 address spaces where virtual address ranges are no longer a contended resource. Many 

64-bit operating systems do not allow domains’ address spaces to overlap, allowing pointers to be 

meaningful across protection domains. Such systems are commonly referred to as single address- 

space operating systems, or SASOSs [14, 15, 16].

Paging was developed as part of the University of Manchester’s MU5 computer [50], and is 

supported by virtually all modern processor architectures.

3.4.2 Segmentation

Though not as popular as paging, segmentation is another significant hardware-based memory 

protection technique. There are several versions of segmentation: the one shown here is that 

found on the Intel IA32 architecture [52]. Other architectures present segmentation in slightly 

different ways, although all common models share the same key principles. Like a page, a segment

is a region of memory with a translation and access rights. However, unlike pages, segments have
2264 is a bigger number than there are millimetres in a light-year!
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a variable size, usually with byte or word granularity3. The processor also maintains a set of 

currently ‘active’ segments, with different segments for (say) code, data and stack — all code is 

loaded via the code segment, data accesses go via the data segment, and stack operations go via 

the stack segment. Segments are described by a descriptor (analogous to a page-table entry on 

paged systems), which contains (among other attributes) the segment’s base in physical memory, 

its size, and its access permissions. The set of segments in a system is described by a descriptor- 

table (analogous to a page-table). An individual segment is identified by its index into this table, 

known as a selector.
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Figure 3.2: Memory protection with segmentation

Figure 3.2 demonstrates such segmentation, assuming a selector size of 14 bits, and a machine- 

word width of 32 bits. Note that the permission check is performed as part of address translation.

As with paging, context switches can be effected by changing the descriptor-table so that 

outgoing segments are inaccessible, and incoming ones accessible.

Segmentation has the advantage over paging that segments are variable-sized, meaning one 

segment can fit any protected memory region exactly. This means that fewer segments than 

pages are required, reducing memory-management overheads, and also that memory is not lost 

to internal fragmentation. Internal fragmentation describes the situation where more memory is 

allocated than used — protecting a 1 byte region of memory with a 4-kB page size would consume 

4kB, meaning that 4095 bytes are lost to internal fragmentation. However, because segments are 

contiguous and variable-size, segmented systems are prone to external fragmentation. External 

fragmentation is used to describe the situation where memory is unused but cannot be allocated

(for example, although there may be sufficient free memory in total to satisfy an allocation request,
3Unlike pages, segments do not have a ‘typical size’ . Segments may have a size between a few bytes up to several 

gigabytes, depending on their use.
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the request fails because there is no single contiguous block of free memory large enough). Also, 

the addition required by the segmentation hardware for each memory access is considerably more 

work than the concatenation required by paging, potentially hampering a segmented architecture’s 

performance4. However, virtual caches [46] (also known as virtually indexed caches) can be used 

to avoid any overhead in the common case.

Though not as popular as paging, segmentation is a viable protection technique. The MULTICS 

system [33], IA32 [52], the POWER [3] and PA-RISC [59] architectures all use segmentation 

(although not necessarily in exactly the form described above).

3.4.3 Orthogonal Segmentation and Paging

The Monads [61, 60] project resulted in a new memory-protection model whereby paging and 

segmentation were combined orthogonally. Here, segmentation is used as normal to translate the 

logical addresses. However, the resultant address (known as the linear address) is then passed 

through page-tables to form the physical address. This is shown in Figure 3.3.

Physical
Address

Figure 3.3: Memory protection with orthogonal segmentation and paging

This scheme combines the main advantages of both paging and segmentation — most notably 

provision for the elimination of internal and external fragmentation.

Notably, IA32 uses this scheme of memory protection, although most operating systems employ 

the so called ‘flat-model’ whereby 1 segment maps the entire linear protection domain5 and all

protection is realised through paging. This is not to be confused with the Intel 8086 version of
4Naively implemented segmentation results in architectures with either longer cycles, or extra pipeline stages.
5 In reality, protected operating systems on IA32 require 4 segments: 1 data and 1 code segment for both kernel 

and user privilege-levels.
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‘segmentation’ which is not the segmentation method described, but a ‘hack’ to allow a 16 bit 

processor to address 1MB of memory. The Intel versions of L4 [45] and QNX [47] make use of 

both paging and segmentation to improve context-switch times while providing applications with 

a conventional, UNIX-like environment.

3.5 Cross-Domain Communication (IPC)

If several protection domains are to cooperate in order to perform useful work, then these domains 

must be able to communicate in a protected manner. There are several techniques used to allow 

communication between different protection domains. This section will examine the most common 

techniques. Cross-domain communication is often referred to as Inter-Process Communication or 

IPC (somewhat confusingly, the term IPC is often used even when a protection domain is not 

termed a process!).

Shared Memory. Most operating systems allow two or more domains to share a subset of 

their protection domain. This shared memory can be used to effect communication between 

domains. Shared memory is very flexible, but this flexibility can be considered a cost as well 

as a benefit — the lack of enforced semantics can complicate application design significantly.

Message-Passing. Probably the most common technique used to communicate between pro-

tected protection domains is message-passing. Here, a protection domain sends or receives 

encapsulated messages to or from another. Primitives are usually available that send a 

message and block on its reply atomically in order to optimise synchronous communication. 

Some systems allow (or require) that channels (also known as sockets) be bound between 

the communicating domains over which messages are subsequently transmitted.

Messages can be passed by explicit copying, or by re-mapping pages or segments from the 

sender to the receiver’s domain. This is useful for the transmission of large messages, provid-

ing effectively infinite bandwidth. However, this high bandwidth is provided at the expense 

of latency, and so is inappropriate for short messages.

Pipes/FIFOs. Pioneered in UNIX, pipes [62] allow one domain to transmit characters to another 

as though it were writing to a file. Similarly, characters can be received as though reading 

from a file. While a useful abstraction, pipes still require some communications primitive 

underneath. Indeed, a pipe can be thought of simply as a channel for the transmission of 

single-byte messages.
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Thread-Tunnelling. Many recent operating systems have exploited thread-tunnelling (also 

known as thread migration or the passive object-model) [35]. Thread-tunnelling is func-

tionally equivalent to synchronous message passing, except that rather than sending a self- 

contained message from the client to the server, the client thread migrates to the server’s 

protection domain. In such systems, threads of control are not statically bound to protection 

domains: a domain might have zero, one or many threads of control associated with it at 

any moment.

3.5.1 Comparison

Message-passing and thread-tunnelling can be considered functionally equivalent, particularly 

when one considers message-sending primitives that block, waiting on a reply. However, shared 

memory differs from these significantly, offering different benefits. As a result, most operating sys-

tems offer some form of shared memory, and choose one of message-passing or thread-tunnelling. 

For example, while all offer shared memory, Mach [88], QNX [47] and L4 [45] use message-passing, 

whereas Spring [87], Alpha [56] and Pebble [38] use thread-tunnelling. The choice between thread 

tunnelling and message passing is not arbitrary. There are a number of significant differences:

• Thread-tunnelling offers a lower latency than message-passing, although message-passing 

can improve performance where asynchronous communications are predominant (such as 

massively parallel systems that have a similar number of physical processors to threads).

• Message-passing is better suited to networked communications, due to physical networks’ 

inherent message-passing nature.

• Thread-tunnelling is well suited to Remote Procedure Call [82] — the most widely used 

mechanism to aid distributed programming. As such, thread-tunnelling is widely employed 

in high-performance intra-machine RPC mechanisms, such as Lightweight RPC [9].

• Thread-tunnelling reduces the number of threads required in the system, particularly useful 

with fine-grained protection where most threads in a message-passing-based paradigm would 

be blocked, waiting on replies.

• Thread-tunnelling means that a server working on behalf of a client uses that client’s thread. 

Therefore, requests are serviced with the scheduling and other properties of the client, avoid-

ing QoS crosstalk [69] and reducing (although not eliminating) priority inversion. QoS
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crosstalk and priority inversion happen when one thread is performing work on behalf of 

another — the client effectively inherits the server’s priority.

Other benefits of thread-tunnelling, along with a detailed argument in its favour are presented 

in [35].

3.6 Security

Protection divides a computer system’s resources amongst several applications. Protected domains 

often need to interact, one domain making requests of another. Security is the process of controlling 

which domains may interact, and in what ways.

There are two main aspects to security:

Authentication Securely identifying clients of services. For example the password check when 

a user logs in, or requiring a client provide an encrypted signature.

Authorisation Defining and implementing the policy: what clients can request what services. 

For example, defining that one file is world readable, while the other can be read only by its 

owner. There are two main mechanisms used to implement authorisation:

Capabilities A server allows any client that presents a valid capability [70] to perform 

certain operation (s). Different capabilities grant permission for clients to use different 

services. Capabilities are analogous to holding a key to a room: anyone who possesses 

that key may enter the room. In other words, a client’s possession of some capability is 

both necessary and sufficient to perform the task specified by that capability. A UNIX 

file descriptor is an example of a capability.

Access Control Lists ACLs [98] keep a list of what clients may perform what operations. 

If capabilities are analogous to a key to a room, ACLs are analogous to a security guard 

at the door of a building who will only let people whose names are on the ‘guest-list’ 

enter.

As with the analogies given above, capabilities can be more efficient than ACLs, particu-

larly if there are many clients of a service, but it is harder to revoke capabilities than it is 

permissions from an ACL.

Security cannot be implemented effectively without a protected operating system since pro-

grams that are not protected are free to bypass security. By the same token, security defines
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how and where protection will be enforced. In effect, security is the policy, and protection the 

mechanism by which security is enforced.

Whereas security is dependent on an effective protection mechanism, the reverse is not true. 

While in practise some security policy is required in order for protection to be useful, it is possible 

to implement such security outside of the kernel. For example, Amoeba performs authentication 

and authorisation at user level using encryption techniques on capabilities [79].

3.7 The Trusted Computing Base

An operating system’s kernel is implicitly trusted by applications not only because the kernel 

executes with full privileges (that is, while the processor is in kernel mode), but also because it 

defines and implements protection (and often security). However, many operating systems trust 

some code that does not run in kernel mode. For example, the UNIX system has many trusted 

programs, including login , passwd, swapper and other daemons. These trusted programs and the 

kernel form the trusted computing base (TCB). The TCB is the software that implements security 

and protection — all software that executes outside the TCB need not be trusted, although it 

must trust the TCB.

3.8 Summary

This chapter has introduced the mechanisms that all commodity operating systems use to employ 

protection. Essentially, a combination of software and hardware are used to allow several programs 

to run on the same computer concurrently, where each program has the illusion that it is the only 

program running. In protected operating systems the illusion is such that no program can be 

affected by another — that is, the damage that erroneous or malicious applications can cause is 

strictly limited to themselves.

Protection involves preventing programs from stealing others’ resources, most importantly 

memory and CPU time. Memory protection is usually achieved by memory-management hardware 

(usually paging, segmentation or both), and CPU usage is restricted by using a periodic interrupt. 

A layer of software known as ‘the kernel’ manages the memory protection and interrupt hardware 

on behalf of applications. Applications are prevented from manipulating the protection hardware 

by being executed while the CPU is in a special mode of reduced privilege, known as ‘user mode’ .

Security is related to (but different from) protection. Essentially, security is the policy dictating
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what applications may access what resources, and protection is the mechanism used to enforce 

this policy. Many systems use a number of user programs in conjunction with the kernel to form 

the trusted computing base. The TCB mandates the security policy that is applied to the rest of 

the system (that is, applications). This way the software that manages security can be cleanly 

separated from that which manages protection.
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Chapter 4

Related Work

4.1 Introduction

Chapter 3 introduced the mechanisms used by most operating systems in order to effect protection. 

This chapter presents research that investigates alternative protection mechanisms.

Major OS protection paradigms are identified, both from the research community and indus-

try. This includes the evolution of OS protection models from monolithic kernels, through early 

/r-kernels and software-based solutions, to the current ‘state of the art’ micro- and nano-kernel 

systems. New protection paradigms including Object-Oriented Operating Systems are also intro-

duced. Note though that this chapter is not intended to be an exhaustive summary of all operating 

systems.

4.2 The Changing Role of the Kernel

Over the years the responsibilities of the kernels of subsequent generation operating systems have 

changed, for the most-part steadily decreasing.

4.2.1 Monolithic systems

Operating systems first existed in order to help operators manage early computer systems. OSs 

subsequently evolved to provide services to application programmers, and to provide the protected 

multiprogramming environment introduced in Chapter 3. The ‘kernels’ in these early systems 

had relatively wide responsibilities. Operating systems such as UNIX [89] included not just the
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functionality that is necessarily trusted, but also abstracted hardware — that is, the hardware 

was presented in a form closer to that which is useful to programmers. For example, rather than 

presenting a hard-disk, systems such as UNIX present a file system (as shown in Figure 4.2.1).

filesystem
process
model

network
stack

M o n o lith ic^  K erne l
______ T______  T _

I

t

disk driver
protection
hardware

network
hardware

Figure 4.1: A UNIX-like monolithic kernel

4.2.2 ¿¿-kernel Systems

Since errors in the kernel typically lead to complete system failure, and the larger and more com-

plicated the kernel the more chance it has of containing errors, the large kernels of monolithic 

systems tend to decrease system stability. Also, the static nature of the kernel means that mono-

lithic systems tend to be less flexible — the kernel is complicated and therefore difficult to change. 

From the late 1980s, systems such as Amoeba [79] offered increased stability and flexibility through 

minimising the size of the kernel. In these systems, relatively high-level abstractions (such as file 

systems and networking) are not implemented by the kernel. Instead, ¿¿-kernels are responsible 

for only those abstractions that provide protection directly. Thus a ¿¿-kernel’s responsibilities are 

limited to:

• Resource-sharing: multiplexing resources fairly among several competing programs.

• Processes: providing low-level memory management.

• Inter-process communication (IPC): primitives to enable processes to communicate with one 

another when necessary, but in a protected fashion.
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• Device-management: minimal structure to allow user-level programs to drive hardware de-

vices in a protected fashion.

Higher-level services previously provided by the monolithic kernel are provided by ‘server’ 

applications. For example, file systems are not part of the kernel, but a user program acts as a 

‘file server’. Client applications connect to this file server via IPC, and make file system requests 

over such connections.

Early /¿-kernel implementations had disappointing performance because of the large context- 

switch overhead. A client-application request on a server in a monolithic system requires two 

context switches — one as control passes to the kernel (thus switching context from the application 

to the kernel), and (once the request is serviced) another as the kernel returns control to the 

application. For the same operation, a ¿¿-kernel requires at least 4 context switches: one to the 

kernel requesting a message be sent to the server; one to the server to service the request; one 

for control to return from the server to the kernel; and finally one for control to return back to 

the client. In fact, because the server itself is typically split into several applications, this can 

be multiplied many times. For example, assuming that device drivers are placed in their own 

address space (the ideal case for a /¿-kernel) the file server might need to call a disk device-driver, 

increasing the context-switch count to 8 (see Figure 4.2.2). Worse still, it is likely the file server 

will need to call the device-driver several times per operation.

Context switching in a file operation on a monolithic system

Context switching in the equivalent operation on a p-Kemel 

Figure 4.2: Context switching in monolithic and /¿-kernels
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The most common technique employed to request services on a server-application is Remote 

Procedure Call (RPC) [82]. Here, the IPC and associated context switches required in order to 

invoke some service on another process are wrapped up so that they appear to the programmer 

as a conventional sub-routine call. RPCs can be inter-machine (that is, over a network) or intra-

machine (that is, over IPC between protection domains on the same machine). If ¿¿-kernels are not 

to suffer poor performance compared to their monolithic counterparts, the overheads of an intra-

machine RPC must be low. The standard benchmark for such overheads is the intra-machine, 

null-RPC time. This is the time taken for a client application to call a procedure on a server that 

takes no inputs, performs no work, and produces no outputs — thus a null-RPC time measures 

only the overhead of the call.

The null-RPC times for early operating systems were disappointing. Even on a relatively 

modern machine (for example, a Pentium-based PC), a single null-RPC can take 100 /¿seconds on 

Linux [74]. In order to normalise against processor clock frequency, the time is often measured in 

‘cycles’ (that is, processor clock ticks). A null-RPC on Linux takes around 47,000 cycles. Such 

RPC times would render /¿-kernels unusable, so it is important that a /¿-kernel’s design allows 

RPC overhead to be minimised.

The Mach /¿-kernel [88] was designed as a base for operating systems research. Commercial 

operating systems have also been built on top of the Mach /¿-kernel, including NeXTSTEP [110], 

Apple’s Rhapsody [71] and more recently MacOS X [2]. The Free Software Foundation [37] are 

developing a new free-ware /¿-kernel based operating system, GNU Hurd [51], also based on Mach. 

The designers of Mach managed to get null-RPC times down to a little over 3,000 cycles [29]. While 

this was a considerable improvement per RPC over monolithic systems, Mach’s performance was 

relatively poor due to the large increase in the number of RPCs for a given operation.

Attempts were made to allow server-applications to be down-loaded into the kernel in order to 

improve performance [21]. While this technique (known as collocation) was successful in improving 

performance, it effectively turned Mach into a monolithic system! Indeed, Microsoft’s Windows 

NT [24] also started life as a /¿-kernel. However, the transition from version 3.51 to version 4 saw 

the graphics library incorporated into the kernel for performance reasons (even on UNIX systems, 

graphics code typically exists outside the kernel). This collocation of user-level software into /¿- 

kernels has been used as an argument that /¿-kernels are unworkable. However, this conclusion is 

hasty at best, and only serves to show that first-generation /¿-kernels performed poorly.
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4.2.3 Software-Based Protection

While a combination of hardware and software is the most common technique for implementing 

protection, it is by no means the only one: other techniques employ purely software methods, 

and some even use mathematical proofs. Note that whether protection is realised through a 

combination of hardware and software, or software alone, a kernel is still required. Note also that 

it is not practical to realise protection entirely in hardware. This is partly because such hardware 

would be very complex, and partly because the result is likely to be inflexible. Previous attempts 

to realise most (or all) of protection in hardware (such as the Intel 432 [85]) demonstrated poor 

performance and high economic cost [20]. Of course, that previous attempts to realise protection 

solely in hardware have yielded disappointing results does not necessarily mean that all attempts 

are doomed. However, we do not know presently how to make such hardware fast, and it seems 

reasonable to assume that complete hardware-implemented protection will necessarily limit OS 

flexibility.

The poor performance of /z-kernels and the subsequent re-location of server code into the 

kernels caused many to loose faith in the /x-kernel philosophy. Instead, methods were explored 

that implemented memory protection solely in software. There have been four notable approaches: 

Type-Safe Languages; Software Fault Isolation; Anonymity and Proof-Carrying Code.

Type-Safe Languages

Unsafe programming languages enable arbitrary manipulation of the hardware, including access 

to arbitrary memory locations via unchecked pointers and unbounded arrays — hence the need 

for memory-protection hardware. Type-safe languages on the other hand, can be used to re-

strict memory access so that it is not possible for programs to access data other than their own. 

Operating systems are traditionally implemented in languages that are not type-safe (such as C 

[63]).

SPIN [8] is an operating system written using the type-safe language Modula-3. Modular-3 was 

intended to be a systems programming language [83], so is ideal for this purpose. In order to be 

suitable for systems programming it is possible to make unsafe memory accesses using Modula-3, 

but such modules must be explicitly declared unsafe. SPIN’s use of a type-safe language enabled 

arbitrary programs to be placed in a common protection-domain as long as they were presented to 

the kernel as “safe” Modula-3 source code. A trusted compiler [49] is used to convert the Modula-3 

source to machine code, enabling such code to be executed with confidence.
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More recently, JavaOS [5] has been developed which uses the same technique as SPIN, but uses 

a Java [54] interpreter rather than a Modula-3 compiler to ensure protection. The use of ‘Just In 

Time’ compilation [23] can overcome the poor performance inherent in interpreted languages, and 

results in a system analogous to SPIN, with Java rather than Modula-3 as the trusted language 

(although unlike Modular-3, Java was not designed with systems programming in mind).

Language-based protection has the obvious disadvantage that all code is required to be written 

in a particular language. Not only is this restrictive, but it means that the system is dependent 

on the language’s popularity amongst programmers (a problem for SPIN since Modular 3’s de-

ployment was disappointing). These systems also suffer from requiring a trusted compiler or 

interpreter: virtually all translators have known bugs, and these can be exploited in order to com-

promise system security. Even when source code is compiled to some verifiable intermediate form, 

such as to Java byte-code, translators and verifiers are still so complicated as to expose flaws that 

can be exploited in attacks [26, 48, 72, 73].

Software Fault Isolation

Software Fault Isolation (SFI) [108] uses software to enforce memory checks usually carried out by 

memory-management hardware. When code is loaded, the operating system surrounds all indirect 

memory references with a guard. This guard is a few machine instructions used to check the 

bounds of the access.

The theory is that, while SFI slows down indirect memory accesses, the time saved on context 

switching will more than compensate. Whether or not this assertion holds obviously depends on 

the ratio of indirect memory accesses to context switches. For most cases SFI has been reported 

to perform at least as poorly as hardware-protected systems [45]. This is partly because SFI 

associates a conditional branch with each memory access. Conditional branches adversely affect 

the performance of modern micro-processors1.

The VINO operating system [93] allows arbitrary code to be downloaded safely into the kernel. 

VINO refers to code downloaded into the kernel as kernel grafts. Grafts are prevented from 

accessing memory they should not through SFI. VINO also implements a transaction system: 

side-effects of misbehaving grafts are ‘cured’ by rolling back transactions of such grafts. VINO 

has been successful in many regards, but its complicated transaction mechanism led to relatively 

poor performance.
1 Conditional branches can cause pipeline stalls. The abundance of conditional branches is also likely to cause 

contention at the processor’s buffers used for branch prediction and so adversely effect even those programs that 
make few indirect memory references.
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Anonymous R P C

Anonymous RPC [112] avoids context switching (and thus the expensive hardware memory- 

management) by using a probabilistic approach. The technique assumes a large address space 

(at least 64 bit) and the availability of memory-management hardware that can mark memory as 

‘execute-only’ (that is, the memory may be executed as code, but any attempt to read or write 

it will fail). This means that a client can be permitted to call a server directly, but is unable to 

establish the address it is calling. Assuming the machine has 4GB of memory in use, the 64-bit 

address space means that the chances of guessing (or accidentally stumbling across) an address in 

use by another program are fS , which is 232, or around one in 4 billion. However, some programs 

rely on asking the operating system to alert them when accessing bogus addresses so that they may 

recover themselves (for example, when implementing copy-on-write semantics [10]). A malicious 

program could arrange such notification and, by repeatedly writing to random locations, expect 

to corrupt another program’s memory in a few seconds. To render this technique unusable, the 

operating system can insert a delay between a program’s invalid memory reference and its notifi-

cation. A delay of one second would mean that a program repeatedly writing to random addresses 

could not expect to touch another program’s memory until it had made 232 writes, which would 

take 232 seconds (over a century).

This technique suffers a number of drawbacks. Firstly, it assumes a large ratio of address space 

to memory used. This is an inefficient use of silicon2, and therefore often not suitable for many 

systems. Furthermore, as the ratio of address-space width to memory in use continues to fall, 

so the odds of stumbling across another program’s memory shorten. Programs that legitimately 

rely on being able to access invalid memory, and then be informed by the OS, suffer unacceptable 

performance degradation. While the above mentioned 100 year mean-time between failure is 

probably acceptable for desktop systems, it may not be for embedded systems. Lastly, an attack 

could be envisaged where a number of programs repeatedly access random memory locations 

concurrently, dramatically reducing the security of this system.

Proof-Carrying Code

Proof-Carrying Code [80] applies mathematical techniques and formal methods to produce a proof 

so that a program can be trusted in advance of its use. Unlike the type-safe languages approach,

this technique can be applied to raw machine code. The proof is attached to the code, and checked
2Large protection domains not only require wider buses and ALUs on the processor, but wider pointers, thereby 

wasting memory.
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when the code is loaded. The proof is constructed such that the operating system can detect any 

attempt to tamper with either the proof or the code, unless the code still matches the proof! 

Proof-carrying code is based on concepts in logic, semantics and type theory and so the details 

are beyond the scope of this thesis.

By the inventors’ own admission in [81], this technology needs to be developed further before 

it is suitable for use in real OSs. Proof-Carrying Code is also somewhat restrictive, and is not 

applicable to all types of programs (for example, programs that use unchecked pointer arithmetic). 

However, Proof-Carrying Code may be a significant technique in the future, especially when 

combined with protection based on type-safe languages.

4.2.4 The State of the Art: Back Toward Hardware-Based Protection

In recent years a number of techniques have been used to give p-kernel systems vastly improved 

performance. The latest p-kernels appear to offer the best of all worlds: their architecture and 

programming are familiar to programmers, the techniques are well-understood (and so secure), 

and their performance is comparable to other approaches such as software-based protection or 

monolithic kernels. As a result, traditional hardware-based protection is once again popular.

L4: The re-emergence of the p-Kernel

L4 is an example of a second-generation /z-kernel that offers excellent IPC performance compared 

with previous systems. A single IPC message can be delivered from one protection domain to 

another in as little as 121 cycles on the Pentium, [32], and even faster on the DEC Alpha [92]. L4 

achieves this high performance through designing the entire system with the target of efficient IPC. 

For example, the portability at the source-code level of most first-generation p-kernels (including 

Mach) is dropped, since this adversely affects performance through preventing proper exploitation 

of specialised hardware.

Whilst impressive in their own right, these performance figures have wider reaching impli-

cations. They prove premature the perceived wisdom that a p-kernel (and more specifically, 

fine-grained protection) necessarily leads to poor performance. That is, L4 has shown that finer- 

grained decomposition of protection is still a worthy goal.

L4’s performance still falls slightly short of the goals set out in Section 2.3.2. Also, the figures 

reported (the single IPC message delivery times) are also not necessarily the most interesting 

ones. Most programs communicate using remote procedure call, and so the complete null-RPC
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time is more interesting than raw IPC-message delivery times. A complete null-RPC on L4 on 

the Pentium has been measured at approximately 280 cycles. (Still an impressive figure when 

compared to its contemporaries, such as Mach’s figure of 3,000 cycles!)

Exokernels

Recently, MIT has developed the notion of exokernels [30]. Exokernels have just one responsibility: 

to multiplex hardware resources amongst applications in a protected manner. An exokernel does 

this by presenting hardware with barely any abstraction. To affect protection, an exokernel tracks 

resource ownership and employs some ‘abort protocol’ , used to terminate misbehaving programs.

The motivation for exokernels was that no matter what abstractions an operating system 

provides, they are likely to be inappropriate for many applications. The solution: eliminate all 

OS abstractions. For example, there are no notions of processes or threads; just CPU time-slices 

and protection domains. Libraries provide applications with the abstractions they expect from 

operating systems such as threads, processes and inter-process communication. Such libraries are 

referred to as ‘Library Operating Systems’ .

One might expect that reducing the kernel to an absolute minimum would compound the per-

formance problems encountered by //-kernels. However, exokernels have demonstrated improved 

performance over even monolithic systems. Experiments with exokernels have demonstrated sig-

nificant improvements in application performance. For example, the Cheetah web-server performs 

up to 8 times better than web-servers on monolithic kernels [58].

Exokernels have proved a popular approach among researchers. There have been several 

exokernel-based implementations, including the Aegis and Xok systems [31] (developed as proto-

type exokernels that run on MIPS-Based DEC5000 machines and IA32-Based PCs respectively). 

ExOS is a prototype library-operating system that sits on top of both Aegis and Xok to provide 

the applications with UNIX-like services. The Charm Operating System [27] is a separate de-

velopment effort that uses the exokernel approach to provide a basis for a persistent operating 

system.

Cache Kernels

When developing the successor to the V /t-kernel[17], V + +  [18], Cheriton et. al. also striven 

to minimise the detrimental effects of inappropriate OS abstractions. Unlike the exokernel ap-

proach, the V + +  kernel preserved some abstractions, such as threads, but allowed applications
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(or library operating systems) fine-grained control over the multiplexing of these abstractions onto 

hardware resources. This was accomplished by calling on the application owning the resource to 

be responsible for storing that resource away while it is not currently executing on the hardware. 

For example, when a thread is preempted from the CPU, the owning application is called upon 

to save the thread’s interrupted context. Some time later, the application will be called upon 

to reload a thread, when it may chose that, or another thread. The same technique is applied 

to other multiplexed abstractions such as protection domains and physical memory. Effectively, 

multiplexed resources are managed by their owning applications, and resources such as threads 

and protection domains are cached inside the kernel when they are active.

The cache-kernel approach, though successful, has not proven as popular amongst the research 

community as the exokernel one. This is mainly due to exokernels’ simplicity and greater flexibility.

4.3 Object-Oriented Operating Systems

Over the previous decade, object-orientation has become the software development methodology 

of choice3. There have been several projects to produce object-oriented operating systems (or 

OOOSs). This section identifies the different categories of each OOOS and explores at least one 

implementation of each.

4.3.1 Object-Supporting Kernels

Much of the earlier OOOS work focused on traditional OS kernels, with primitives aimed at 

supporting object-based software. Clouds [25] was such an OS: a monolithic kernel providing 

object-based services. Later version of Clouds employed a /r-kernel (called Ra [7]) to provide 0 0  

services. Objects in Clouds were heavy-weight, consuming a comparable amount of resource to 

UNIX processes. As a result, object-based systems built on top of Clouds needed to be relatively 

course grained if poor performance was to be avoided.

4.3.2 Object-Oriented Kernels

Object-oriented kernels, such as CHOICES (Class Hierarchical Open Interface for Custom Em-

bedded Systems4) [13] are the opposite of object-supporting kernels: they are kernels providing
3A discussion of the details of object-oriented programming (OOP) is beyond the scope of this thesis (see [12] 

for a detailed description of OOP).
4Possibly one of the most contrived acronyms in computer science!
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traditional OS services, but implemented using an object-oriented approach (usually using C ++). 

The motivation for Choices was ‘to see if it could be done’ — that is, are 0 0  software develop-

ment techniques applicable to kernel design? Given the motivation, the results were encouraging: 

Choices showed that 0 0  software engineering techniques were indeed applicable to kernel devel-

opment.

Since CHOICES, there have been several commercial implementations of object-oriented ker-

nels, including Symbian’s EPOC-32 [102]. This is an embedded system, first used in ‘Palm Top’ 

computers, but now adopted by several mobile-device manufacturers such as mobile-phone com-

panies.

4.3.3 Object-Based Systems

After the success of object-supporting kernels, and object-oriented kernels, OSs were developed 

to combine the two: that is, object-oriented kernels that provide support for object-oriented 

applications.

Spring

Sun Microsystem’s Spring [87] is an example of an object-based operating system. All objects 

were specified in an Interface Definition Language (IDL) and 0 0  techniques such as inheritance 

were employed throughout the system [42]. Spring boasted an identical object-model inside its 

¿¿-kernel and out. However, the system call required to traverse privilege modes meant that the 

way an object was accessed depended on the processor mode in which it resided5.

Despite impressive IPC times (600 cycles for a cross-domain control transfer), Spring still did 

not mandate protection between all objects in order to maintain performance and allow objects to 

be relatively fine-grained (for example, one object per file). That is, protection was implemented 

at a level above objects: several objects would be grouped together into a domain. Even so, 

performance was disappointing due to the still large number of RPCs — a similar problem as with 

most ¿¿-kernels of that era. As a result, Spring never made it out of the lab.

KeyKOS

KeyKOS [44] is another example of a research object-based operating system. It has an elegant

design whereby objects are accessed via keys (KeyKOS’s term for a capability [70]). The invocation
5The distinction between user and kernel mode can be hidden by proxies.
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of a key is effectively a method call on the object referenced by that capability. The server is 

delivered a resume key which it may employ to return to its caller, effectively providing standard 

sub-routine linkage.

Because conventional access-control-list protected file systems give up the advantages of capability- 

based systems, KeyKOS uses a single-level store to implement persistence. Here, demand-paged 

virtual memory is used to provide a transparently persistent system. To cope with bugs in the 

kernel a ‘snap-shot’ mechanism is used to allow the system to be rolled back to a known consistent 

state.

EROS (Extremely Reliable Operating System) [94] is a recent re-implementation of KeyKOS. 

EROS introduces a new form of capability: the weak capability. When weak capabilities are passed 

to other principles their power is reduced. This entity has been used to verify formally EROS’s 

confinement mechanism [95].

4.4 Component-Based Operating Systems

This section introduces the most recent genre of operating systems: component-based operating 

systems. Unfortunately, there is no universally agreed-upon definition of the terms ‘component’ 

or ‘object’ , still less their differences, and so this section begins by defining some terminology. A 

good differentiator is that objects are fundamentally a programmers’ tool while components are 

more concrete entities. That is, traditional objects exist in the program’s source code only, and are 

pertinent mainly to type-theory. For example, once a C + +  program is compiled, the boundaries 

between objects disappear; indeed, it is not possible to state with 100% confidence whether a 

binary was produced using C + +  or C as its source (or even assembly). On the other hand, the 

boundaries between components are concrete and are present in a running system — it should be 

trivial to produce a tool to allow the user to examine what components exist at a any time. In 

this regard, a traditional file is closer to a component than is an object. In fact, a process is a 

better analogy still since a process includes behaviour as well as state.

By the above definition of a component, most object supporting and object-based operating 

systems can be considered component-based in all but name. In fact, component-based systems are 

even older than this: in some senses UNIX is component-based (albeit at a very course granularity). 

That is, a UNIX system is built from several components, namely: the kernel; utility programs 

such as the shell, cp and Is; device drivers; the log in  process; X-Windows; virtual file systems, 

and so on. Such decomposition of operating systems is so universally accepted as good practise
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that UNIX is not usually considered a component-based OS!

The challenge facing component-based OS researchers is to decompose systems at a finer gran-

ularity, and with more rigour so as to compound the well-accepted benefits of UNIX-style, coarse-

grained decomposition. That is, to decompose the kernel into components such as schedulers, 

memory managers and pagers. A component-based operating system is defined here as a system 

with a component model that exhibits the following properties:

Explicit. Components are clearly separated, possibly even with each component residing in its 

own protection domain. All component interaction is via well-defined interfaces, ideally 

specified in some semi-formal manner (such as with an IDL file).

Orthogonal and Consistent. The nature of a component should be independent of what tasks 

the component performs, and all components should look the same throughout the system. 

For example, UNIX cannot be considered truly component based because the nature of a 

file is determined by its function (to store data). Moreover, there are many different kinds 

of components; for example: files, processes, the kernel, utilities, shared libraries and device 

drivers.

Pervasive. The entire system should be built from components, from system-level functionalities 

such as interrupt dispatching and memory management, to higher level services such as user 

interfaces and spell checkers.

Lightweight. The component model should be lightweight to allow for fine-grained decomposition 

of services. This will mean that services can be decomposed according to design rather than 

performance considerations.

Such decomposition results in operating systems that are highly configurable, robust, employ 

modern software-engineering techniques, and (due to increased flexibility [58]) perform well.

SawMill

One of the most notable research efforts into component-based operating systems is SawMill [55], 

developed at IBM’s T.J. Watson laboratory. SawMill is based on the L4 /x-kernel to offer fine-

grained protection while maintaining performance. While components are still bundled together 

into protection domains (as with Spring), they are free to migrate between protection domains. 

That is, SawMill aims to provide decomposition at a fine granularity by developing a new security
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model rather than a new protection model. However, this strategy introduces complicated security 

issues, and much of the SawMill development effort is spent investigating security policies [104].

Pebble

Pebble [38] is another component-based OS development effort currently under way at Bell Labs. 

Here, each component exists in its own protection domain, avoiding the security issues raised by 

SawMill. The kernel itself, although small, is not decomposed (that is, the kernel is an amorphous 

mass of code which performs several quite separate tasks such as inter-component communication 

and interrupt handling).

Protection is implemented traditionally (using paging) and so Pebble is of little relevance to 

the work presented here, other than being component based.

4.5 QoS and Protection Guarantees

This section introduces protection paradigms used to provide improved guarantees, especially with 

regards to protection of the CPU. While all protection paradigms provide some guarantee that 

programs will not be able to steal all of another’s CPU time, exactly how much CPU each program 

will receive is usually not specified. That is, the OS can guarantee that a program will get some 

CPU time, but exactly how much depends on what other programs are running and what they 

are doing. Compared to resources such as memory, CPU division and protection is somewhat 

arbitrary in conventional, desktop OSs.

Several OSs are addressing this problem, particularly with the advent of desktop machines 

capable of handling continuous, streaming media (such as video and audio). A summary of the 

most interesting techniques used to divide CPU time more accurately are given in the remainder 

of this section.

4.5.1 Conventional Real-Time Operating Systems

Real-time systems are those that must not only compute the right results in order to be correct, 

but the result must be produced before some deadline. This is often referred to as predictability. 

Conventional, desktop OSs’ scheduling (such as UNIX’s) is not predictable: instead these systems 

aim to maximise throughput — that is, the OS is built to get as much as possible done every second. 

Maximising throughput means that the OS attempts to achieve the best overall performance, even
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if this is at the expense of having performance occasionally dipping to a relatively low level. On 

the other hand, predictability means that the system must achieve some minimum performance, 

always.

Conventional real-time systems achieve these guarantees by using a simple scheduling policy. 

Each thread has some priority, such that the runnable thread with the highest priority is always 

scheduled. If each thread has a different priority, mathematical techniques can be used to prove 

that a system will always meet its dead-lines. This technique is called Rate Monotonic Analysis 

(RMA) [106]. However, RMA applies only to systems that are relatively static — usually embedded 

systems where some fixed number of threads perform a well-known set of tasks. RMA is not 

applicable to more complicated systems (such as desktop systems), where the designer cannot 

know in advance what programs will be running.

4.5.2 QoS Scheduling

QoS (Quality of Service) allows dynamic systems to provide the sort of real-time guarantees usually 

associated with static, embedded systems. The main obstacle to dynamic systems meeting real-

time guarantees is “QoS crosstalk”. This refers to the situation where tasks are performed by a 

collaboration of protection domains, and some domains perform part of more than one task. For 

example, imagine two programs, A and B, are executing on a system that implements demand- 

paged virtual memory. Program A is of low priority, frequently accessing pages that are swapped 

out, while program B is of high priority, and accesses only pages that are resident in main memory. 

The operating system will have to service many page faults (and swaps) on behalf of A, reducing 

the amount of CPU received by program B — despite protection, program A has stolen some of 

program B's resource. It is for this reason that many real-time systems do not support demand- 

paged virtual memory.

As another example of QoS crosstalk, imagine a message-based system where two clients, A 

and B, both use some server, S. Even if client A is of a lower priority than B, if A makes heavy 

use of S, it will take resource away from B.

The remainder of this section introduces research OSs that aim to overcome QoS crosstalk. 

Nemesis

Nemesis [69] avoids QoS crosstalk by implementing a vertically integrated system. This means that 

communication between protection domains is limited by having each domain contain an almost
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complete OS: in effect each application has its own library operating system.

Hardware

Figure 4.3: Vertical system integration in Nemesis

The theory is that the notion of multiplexing different programs onto one computer is taken 

to its logical conclusion in order to eliminate QoS crosstalk. For example, imagine two physically 

separate and totally isolated computers, each running a single application. It is obvious that 

one application will not affect the performance of the other. Nemesis aims to model this total 

separation on a single machine. This is achieved by duplicating the entire system, OS included, 

for each application.

Nemesis’s vertical integration is shown in Figure 4.3. Note that each separate operating sys-

tem is in reality shared code — the vertically integrated system has little or no higher memory 

requirements than conventional systems.

When several programs are multiplexed onto one computer some degree of QoS crosstalk is 

inevitable; for one thing, asynchronous interrupts and hard QoS guarantees are mutually exclusive. 

However, Nemesis’ vertical integration lowers the level at which multiplexing occurs: the smaller 

the part of the system that is shared, the smaller the potential for QoS crosstalk. Hard disk 

access [6] and even demand-paged virtual memory [43] have been implemented on Nemesis with 

no significant QoS crosstalk.

Scout

Like Nemesis, the Scout [78] operating system aims to reduce or eliminate QoS crosstalk. However, 

Scout does not rely on vertical integration; instead Scout introduces a new abstraction: paths.
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Scout is essentially a component-based operating system, although Scout components are re-

ferred to as modules. Modules may reside in their own protection domain, or share protection 

domains in a configurable fashion. The designers of Scout made the observation that to avoid 

QoS crosstalk the system should not use modules or protection domains as the schedulable entity: 

instead one should schedule tasks. A task can be viewed as a set of interconnected modules, known 

as a module-graph. An example module-graph is shown in Figure 4.4.

Figure 4.4: Module graphs and paths in Scout

The scheduled entity in Scout is a complete path (path in this context means a series of adjacent 

edges). The example in Figure 4.4 shows module graphs for a web-server and an FTP server. 

Different modules implement different protocol layers, the file system and disk device driver. Note 

that the FTP and W WW  paths are identical with the exception of the top-most protocol layer. 

If modules were the schedulable entity then it is clear how QoS crosstalk would occur between 

FTP and W WW  servers. Instead, because paths are the schedulable entity, the W WW  and 

FTP servers can be assigned different priorities without crosstalk. Also, demultiplexing incoming 

network packets early in a path can be used to limit “denial of service attacks” [96]. That is, the 

affects of attempts to bring down a host by bombarding it with network packets can be reduced 

dramatically (although the problem is still not completely ‘solved’).
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AlphaOS

AlphaOS is a more conventional real-time operating system [56], developed at Carnegie-Mellon 

University (not be confused with DEC’s Alpha microprocessor). AlphaOS avoids QoS crosstalk 

by using the simplest solution: thread tunnelling (see Section 3.5). Scout and Nemesis designers 

rejected thread tunnelling because it complicates user-level scheduling policies.

QoS and Component-Based Systems

QoS crosstalk describes the situation where one protection domain steals resources from another 

indirectly. One way to eliminate QoS crosstalk is to instantiate each process on a physically 

separate and totally isolated machine. This is undesirable for many reasons, and so the Neme-

sis system provides this separation in software through vertical integration. This reduces QoS 

crosstalk because essentially, the less of a system that is shared, the less the potential for QoS 

crosstalk. The inverse must therefore be true: the more of a system that is shared, the greater 

the potential for QoS crosstalk. Since in a component-based system more work is shared than in 

conventional systems, all other things being equal, a component-based system is more susceptible 

to QoS crosstalk.

Unfortunately, the complete separation of services implemented in Nemesis is directly contrary 

to decomposition, code re-use and inter-operation that component-based systems strive for. That 

is, more is shared in component-based systems. Thus the policies implemented by Scout and 

AlphaOS are more appropriate for the elimination of QoS crosstalk in component-based systems 

than those of Nemesis.

4.6 Summary

Over the years, OS research has led to (on the whole) progressively smaller kernels. The early and 

mid-nineties saw a brief deviation from hardware-based protection to language-based protection 

because of perceived performance barriers. However, such perceptions have been shown to be 

overly pessimistic, with recent hardware-based protection systems out-performing language-based 

ones. Also, doubts have been cast on the feasibility of language-based protection meeting security 

requirements. Consequently, state-of-the-art operating systems base protection on hardware once 

again.

Simultaneously, there have been several efforts to base OSs on objects, with the object-
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orientation becoming stronger, and a more integral part of the OS — from traditional kernels 

developed in C + + , to objects (or components) becoming the system’s principle abstraction.

Different object-models inside and outside the kernel complicate the programming model, and 

the system as a whole, by elevating what is essentially an implementation detail to the interface 

(that is, in which processor mode a component executes effects how a component is called).

If possible, the elimination of separate processor modes while maintaining protection promises 

to provide significant advances in all of the areas highlighted in section 2.3. However, to be 

truly useful this elimination of separate processor modes must not place constraints on software 

engineering, such as dictating the use of a particular high-level language.
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Chapter 5

SISR: A New Protection Model

5.1 Introduction

This chapter introduces a new OS protection mechanism, SISR (Software-based Instruction Set 

Reduction). After examining why the protection models presented in Chapter 4 are unsuitable 

for realising the goals outlined in Chapter 2, the new protection model is described (the crux of 

this thesis).

Essentially, this model restricts the use of privileged instructions not through separate processor 

modes, but by scanning untrusted code prior to its execution. That is, all code executes while the 

processor is in kernel-mode, but the system rejects any user-level components found to contain 

privileged instructions. Code-scanning works on the premise that if a component’s code does not 

contain any privileged instructions then that component cannot execute any privilege instructions 

(providing of course that all code is in read-only memory).

Although code-scanning is effective at preventing the execution of privilege instructions, it 

cannot prevent illegal memory accesses (memory protection), nor cannot it solve the halting prob-

lem (CPU protection). SISR implements memory and CPU protection through segmentation and 

interrupts respectively.

Code-scanning is also used to ensure that segment registers are not loaded with arbitrary 

values. That is, segment-register loads are considered a privileged operation; the code-scanner 

rejects untrusted code sections that contain instructions that cause the loading of a segment 

register. Segmentation is used to provide memory protection since contexts are switch using 

explicit instructions that load segment registers meaning that the code scanner can trivially identify
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protection-context traversal.

All inter-component method calls are indirected via a special component: the Object Request 

Broker (ORB). The ORB is responsible for allowing components to call one another in a protected 

fashion; it loads segment registers on behalf of components that wish to call another.

Executing all code in kernel-mode has several advantages. Most notably the temporal per-

formance of a context switch is improved dramatically because a few segment-register loads are 

required, rather than trapping to kernel mode, altering page tables (potentially invalidating the 

TLB), and switching back to user mode, as in traditional protection models. There are several 

other advantages to this model including simplicity, low spatial overheads and flexibility that all 

help to meet the goals outlined in Chapter 2.

Note that SISR is a protection model, and does nothing to provide security. Security policies are 

delegated to components inside the SISR system — that is, security policy is properly decomposed 

from the protection mechanism.

5.2 Protection with SISR

To achieve the performance goals cited in Section 2.3.2, it is clear that traditional protection is 

inadequate. This section examines the reasons behind traditional protection’s poor performance 

and inflexibility, and presents a new protection paradigm. This new paradigm promises to deliver 

the required performance improvements while maintaining language independence. The low over-

heads imposed by this new model lead to protection being practical at a much finer granularity 

than with traditional protection. This fine-grained protection has the potential to lead to consid-

erable improvements in software engineering, dynamism, and configurability. Flexibility depends 

on implementation (see Chapter 2), but SISR provides for systems that are at least as flexible as 

exokernels.

5.2.1 Memory Protection

Traditional memory protection is based on paging, requiring that each protection domain must be 

a multiple of the page size. This means that if paging is used, each protection domain will loose 

on average half the page size to internal fragmentation (because the context’s memory size must 

be rounded up to an exact multiple of the page size). This means that even in the leanest design, 

an average of \nP bytes are lost to internal fragmentation (where n is the number of protected
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domains and P  the page-size in bytes). The finer grained the protection, the larger n becomes. 

The system outlined in Section 2.3.1 will have fine grained protection, so n will be large. Since 

pages are typically several kilobytes in size, paging will result in unacceptable spatial overheads, 

violating the space requirements specified in Section 2.3.2. Furthermore, the requirement for 

language independence (Section 2.3.5) renders language-based protection techniques unsuitable.

Due to these space and language requirements segmentation is used to effect memory protec-

tion. Each component’s data reside in one data segment, and a component’s code resides in a 

code segment. Each component instance has its own data segment, but components of the same 

type share a code segment. There is also one stack segment per thread.

As mentioned in Section 5.1, segmentation is also used to effect memory protection because it 

allows the code scanner trivially to identify context switches.

5.2.2 Privileged Instruction Protection

As identified in Chapter 3, protection cannot be implemented by memory protection alone, but 

also requires that untrusted code is prevented from executing privileged instructions. This section 

examines the limitations of traditional techniques, and presents a novel but simple technique to 

prevent inappropriate execution of privileged instructions.

Limitations of Separate Processor Modes

As described in Section 3.3.3, untrusted programs are traditionally prevented from executing 

privileged instructions by the use of a separate processor mode of reduced privilege. Any system 

with multiple privilege-levels must be able to switch between these levels. These switches are 

temporally expensive, typically requiring many dozens of cycles1. The overheads of this privilege- 

level switching are compounded since each RPC requires 4 such transitions (see Figure 4.2.2). The 

DEC Alpha [22] is an example of a very fast architecture in this regard, requiring just 8 cycles per 

transition: most architectures impose a far higher penalty (usually around an order of magnitude 

higher). Even on the Alpha, 32 cycles per RPC (for the 4 privilege-level transitions required) is a 

significant amount of the 150 cycle limit imposed in Section 2.3.2.

There is a less obvious reason why separate processor modes are not well-suited to component- 

based systems. This separation of user and kernel mode (referred to from here on in as the

‘system-call barrier’) works well for traditional kernel operating systems. However, in systems
1An intra-domain function-call will typically take less than 10 cycles. Inter-domain calls impose orders of 

magnitude more overhead.
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that use an identical object-model in both user and kernel mode (such as Spring [87]), the system- 

call barrier renders the object-model of each side invisible to the other. This means that many 

of the benefits of object-oriented applications are denied to the kernel, and vice-versa. Modern 

component-based operating systems work hard to hide the distinction between user mode and 

kernel mode2.

The system-call barrier imposes both architectural and performance bottlenecks on component- 

based systems and thus is an inappropriate protection mechanism.

Catching Privileged Instructions using Code-Scanning

With SISR, all code executes in a single processor mode (with full privileges). However, code 

that is not trusted is prevented from containing any privileged instructions. This is achieved by 

scanning code prior to its loading, and rejecting any code containing instructions that it is not 

sufficiently privileged to execute. This code-scanning will not impose significant overheads: only a 

few cycles are required per instruction. When one considers that this code will need to be loaded 

from a source typically orders of magnitude slower than modern micro-processors (such as a disk 

or network), such analysis can be seen to impose no significant penalty. Furthermore, the scanning 

need only be performed when a new type of component is installed on the system, not each time 

an instance of a component is created. For example, the file system could use a bit that is set 

when the file contains a component image that has been scanned, similar to the UNIX setu id bit 

[89] (assuming that the file system is trusted by the security mechanism). Note that it is similarly 

not necessary to scan code sections which are loaded during demand-paged virtual memory since 

whatever components provide demand paging are necessarily trusted.

In some ways code-scanning is similar to Java’s bytecode verification [77], since binary code is 

scanned prior to installation to ensure that it is ‘safe’ . There are however, many differences. Firstly 

and most obviously, code scanning works with native machine code and so is language-independent 

(as required in Section 2.3.5). Secondly, because the byte-code verifier does not rely on memory- 

management hardware, many types of memory access cannot be reliably verified and so must be 

prevented by the source language (for example, unbounded array accesses or pointer arithmetic). 

Lastly, code-scanning is much simpler than bytecode verification: code-scanning requires searching 

for certain bit-patterns in some binary code, whereas bytecode verification requires several ‘passes’ ,

one of which performs data-flow analysis of the code.
2Whether a component executes in kernel mode or user mode is of concern only to its implementation. It should 

not be necessary or possible for a component’s client to determine in which processor mode it operates, since this 
is of no consequence to the interface.
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At first glance, code scanning can appear similar to software fault isolation (SFI) [108]. On 

closer inspection, the two techniques can be seen to be quite different. SFI inserts instructions into 

object code in order to effect memory protection. Code scanning works with unmodified binaries3, 

scanning them for the presence of certain instructions. SFI effects memory protection through 

software. SISR uses segmentation hardware to effect memory protection, and code-scanning to 

provide privileged-instruction protection. The two techniques are similar only in so far that they 

both provide protection through working with code prior to its loading.

Context Switching

If the code-scanning technique is extended to prevent applications loading segment registers with 

arbitrary values then holding a segment’s selector in a segment register can be considered a ca-

pability to access that segment [61]. Thus context switching is made much more efficient: rather 

than the usually expensive manipulation of complicated page/descriptor-tables to effect a context 

switch, the code, data and stack segment registers are loaded with new values.

The time saved on switching processor modes (identified in Section 5.2.2) is only a small part of 

SISR’s efficiency. Since code-scanning allows the operating system to define what instructions are 

privileged, SISR’s main speed advantage comes from defining segment-register loads as privileged 

instructions — a context switch can now be effected by simply loading a few segment registers.

Code Containment

Code is prevented from calling arbitrarily into other protection domains because inter-segment 

branches are classed as segment-register loads and so prohibited by code-scanning. However, 

almost all components will need to able to communicate with others, at least via the TCB. In 

order to allow components to call the TCB at well-known entry-points, a few immediate inter-

segment branches must be permitted by the code-scanner. For example, assuming the TCB’s code 

segment is addressed by selector 0, the instruction c a l l  0 :0  might be permitted by the scanner. 

This instruction will call the TCB’s first instruction, transferring control to a well-known entry- 

point and swapping contexts atomically: the analogue of a system call. All other inter-segment 

branches (including indirect) are treated as normal segment-register loads and so prohibited.

Note that this property of segmented architectures is necessary if code-scanning is to work

well. That is, unlike with page-based protection, explicit segment-register load instructions make it
3Some modification of binaries is required in order for code scanning to work with variable-length instruction 

sets. See Section 5.7.2.
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trivial for the code-scanner to identify code that refers to another protection domain. Furthermore, 

assuming that the instruction-set architecture allows immediate inter-segment branches (such as 

c a l l  0 :0), it is trivial for the code scanner to allow a few, specific ways for a component to call 

into another protection domain. Since page-based memory protection does not have this property, 

using code scanning on a page-based architecture is much more complicated and expensive than 

with segmented architectures (see Section 5.7.2 for details).

5.2.3 CPU Protection

SISR provides nothing new with respect to CPU protection: interrupts are used as normal. That 

is, callers must arrange to respond to some ‘watchdog’ time-out if they do not trust their callee 

to return. Along with thread preemption, such time-outs can be implemented by responding to a 

timer interrupts. Note that this is no different from traditional protection models’ solution to the 

halting problem.

5.2.4 Summary of Section

In summary, SISR has the advantages of (a) reducing dramatically the usually high penalties of 

context switching, and (b) simplifying architectures by removing the ‘system-call barrier’. The 

technique is also more flexible than catching privilege instructions using hardware: certain code 

sections can be allowed restricted use of some privileged instructions but not others (for example, 

a device driver might be permitted use of certain I/O  control instructions but not the ability to 

disable interrupts).

In the unlikely event that support is required for components that cannot satisfy code-scanning 

(for example, self-modifying code is required) those few components can be executed in a less 

privileged mode. Although such components would suffer the associated performance penalties, 

the effects on the rest of the system would be minimal.

5.3 Components

In SISR a component is a code segment with a data segment and a table of method entry-points 

known as its Method-Table. There is a code segment and method-table per implementation type, 

as well as an initial data segment. There is one data segment per instance of that implementation. 

This means that a component instance can be identified by its data segment selector, and a type
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by its code segment selector. This model of component types and instances is similar to that found 

in other object-based systems such as KeyKOS [44] and Monads [61].

5.4 The Object Request Broker

As mentioned above, nearly all components will need to call upon the services of others. This 

requires a context switch (from the caller to the callee), which is effected in SISR by loading new 

values into the stack, data, and code segment registers. However, if protection is to be maintained, 

the segment-register loads required for context switches must be controlled. Code-scanning cannot 

easily distinguish between the legitimate loading of segment-registers to effect a context switch, 

and malicious behaviour to gain illegal access to another component.

To ensure that contexts are switched in a protected fashion, some trusted, generic, context-

switching code is used. This trusted code is known as the Object Request Broker (ORB). The 

ORB is similar to a CORBA ORB [41], although it does not adhere to the standard (that is, 

the ORB fulfils a similar role to a CORBA ORB, but the details are different). This is shown 

graphically in Figure 5.1.

Client component Server component

Figure 5.1: Calling via the Object Request Broker

If the ORB’s code exists in a segment with a well-known selector, untrusted code can then call 

into it at well-known entry-points using immediate inter-segment calls. For example, assume that 

the context-switching code resides in the segment identified by selector 0. Assume also that the 

context-switching code has the following entry-points:

c a l l  at offset 0 which causes the context to switch to a callee component, and control to jump 

into that component’s code segment at an offset specified by its method table.

return at offset 38h which causes a return to caller. That is, the context is switched back to the 

most recent component to invoke c a ll , returning as if from a conventional function call.
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In order to call into another context, the caller issues the instruction c a l l  0 :0  with the target 

component identified by the contents of a general-purpose register. In order to return from a 

previous call, the callee executes jmp 0:38h. As stated previously, code-scanning will prevent the 

loading of any code section that contains instructions to load a segment register. However, in 

order for untrusted code to able to call upon the ORB, there are necessarily a few exceptions to 

this rule. The code scanner allows code that contains immediate inter-segment calls to valid ORB 

entry points. For the example implementation given here, code sections may contain instructions 

c a l l  0 :0  and jmp 0:38h.

C om ponent Com ponent
4 ’s D ata 5 's  D ata
Segm ent Segm ent

(selector 4) \ (selector 5)

Figure 5.2: The Object Request Broker, method-tables, and segments

Figure 5.2 shows a simple example. There are two components (numbered 4 and 5), both of 

type A. The ORB contains A ’s method-table, which points at the entry-points of each of type 

A ’s 3 methods. The ORB also contains the Segment-Descriptor-Table, which describes the data 

segments for components 4 and 5, the code and initial-data segments of type A, and the ORB’s 

code and data segments.

5.4.1 ORB Implementation Details

In order to explain more accurately the ORB’s behaviour, an algorithm for the c a l l  primitive is 

given below:

1. push data-segment selector onto stack

2. load ORB data-segment selector into data-segment register
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3. validate callee component reference and method number

4. push details of previous call onto the stack (e.g. previous stack size)

5. increment callee’s call-count

6. shrink stack by manipulating segment-descriptor-tables (assuming stack grows towards zero, 

set d e s cr ip to r .ta b le [ stack.segment ] .l im it  to the value of current stack pointer)

7. increment call-depth associated with current stack segment

8. look-up callee code segment and offset in method table

9. load callee data segment into the data-segment register

10. place callee data segment in general-purpose register (for authentication)

11. jump into callee code segment at offset indicated by method table

And to return:

1. load ORB data-segment selector into data-segment register

2. re-grow stack by manipulating segment-descriptor tables to refer to the previous stack’s size

3. pop details of previous call from stack (e.g. previous stack size)

4. decrement call-depth associated with current stack segment

5. decrement callee component’s call count

6. pop caller’s data-segment selector into data-segment register

7. issue an inter-segment return, returning control to caller

Note that the callee must be denied access to the caller’s stack-frame if protection is to be 

maintained. Note also that the data-segment selector of the caller is passed to the callee. This is 

how the ORB performs authentication (that is, securely identifying a client to a server). Unlike 

most operating systems, the ORB does not provide authorisation: it is left to servers to determine 

what clients are able to perform what operations (perhaps using capabilities or ACLs). Server 

components can either perform authentication directly, or plug into some authorisation mechanism 

built on top of the ORB: security policy (specifically, authentication) is component-based too (that 

is, the protection and security mechanisms are decomposed).
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If required, (preemptive) multithreading can be implemented by components outside of the 

ORB. The above algorithm is implicitly thread safe since all manipulated variables are associated 

with the current stack segment, which is thread specific.

Component 4

mov rO, #5 .•calling component 5
mov rl, #1 ;calling method 1
call 0:0 ;jump to ORB::call()

ORB

Component 5

method_l_entry:

;do the work

jmp 0:38h ;return to caller-

call_entry: 
mov r2, DS 
push DS 
mov DS, #1 
call validate_tgt 
push cmp_table[ss].old_limit 
mov r3, desc_table[ss].limit 
mov cmp_table[ss].old_limit, r3 
mov descr_table[ss].limit, SP 
mov ss, ss
inc cmp_table[ss].call_count 
mov r3, cmp_table[rO].mt 
mov r4, r3[rl].cs 
mov r5, r3[rl].offs 
jmp r4:r5

;place caller in gp. reg.
;push the out-going data segment
;load ORB data segment
;validate parameters
;push SS-limit from component table
;get SS's limit before we clobber it
;remember SS's old limit
;shrink stack (alter descriptor tbl)
;re-load newly shrunk stack segment
;increment call count
;get callee's method table
;get callee's code seg
;g e t  c a l l e e 's  entry-piTtTTt
;jump into callee

return_entry: 
mov DS, #1

mov 
mov 
pop 
dec 
pop 

- retf

SP, cmp_table[ss].old_limit 
descr_table[ss].limit, SP 
s s, ss;
cmp_table[ss].old_limit 
cmp_table[ss].call_depth 
DS

;load ORB'S DS 
;get old stack pointer 
;restore old-SS-limit 
;re-load originally-sized stack segmen 
;restore previous old-SS-limit 
.•decrement stack's call depth 
;restore previous data segment 
;inter-seg-return to caller

Figure 5.3: Calling a method on another component via the ORB

Figure 5.3 shows a more complete implementation of the ORB’s c a l l  and return methods 

using pseudo-assembly language.

5.5 Redressing the TCB

As stated in Section 2.3.1, it is desirable to decompose the TCB itself. The use of separate 

processor modes in traditional systems restricts decomposition of the TCB (or at least makes 

TCB components special, since they are required to execute in a different processor mode). While 

the TCB needs to be involved in all implicitly trusted operations (such as interrupt/fault handling, 

thread preemption, paging and code-scanning), these operations should ideally be separated into
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different components. Furthermore, if the architecture is to be decomposed yet simple, these 

components should not differ from components outside the TCB4.

The single processor mode used with code-scanning allows components to perform system-level 

tasks such as interrupt-management, providing that the code-scanner knows to trust such com-

ponents. Note that the code-scanner might be programmed statically to know which components 

to trust, might know to trust all components installed before it, or might need to be told by the 

system administrator which components to trust. The point is that unlike with most systems, 

which components form the TCB is not mandated by the protection model. In this new model, 

the ORB handles component-management only — that is, creation, destruction, (un)installation 

and inter-component method invocation/return.

Since everything executes in kernel mode, one might argue everything is downloaded into the 

kernel. However, the concept is quite different: there is no kernel/user mode divide at all; one 

could equally argue that all code is uploaded out of the kernel.

Internet
Package

Browser Mail Client Word Processor Desktop Publisher Office-Package

Network-
Stack

HTTP SMTP

TCP Stack

IP Stack

Text Editor Spell Checker Image Viewer

Window Button Menu

Graphical User Interface Multiplexor
Graphical User 

Interface

Network Keyboard Video Mouse
Driver Driver Driver Driver

Driver
Collection

Interrupt
Dispatcher Scheduler Code-

Scanner
Memory-
Manager

ORB

Figure 5.4: Protection is just a service provided by several cooperating components

Figure 5.4 shows an example collection of components. Different components group together 

to provide a service on which the components comprising the layers above rely. In this respect, 

the TCB is no different from the network-stack or office-package. The only special component 

is the ORB, which, since its chief role is to mediate inter-component invocation, must be called

differently (otherwise calling the ORB will be recursive).
4Being part of the TCB (and therefore being trusted) might be argued to make a component special. However, 

there is no concrete difference between a set of components cooperating to provide a TCB than a set providing any 
other service such as a graphical user interface, or an e-mail client.
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5.6 Performance

Presuming a competent implementation (such as the one suggested in Section 5.4.1), SISR should 

lead to dramatically improved performance on a context switch. Note though that the improved 

performance is not an end in itself: the improved performance allows increased decomposition, 

where components are protected from one another. Other systems are forced to have either very 

course-grained decomposition, or allow collocation of components into one protection context in 

order to maintain performance. Such collocation is nearly always done for performance rather than 

architectural reasons: if two components need to trust each other for architectural reasons then 

those components should probably be collapsed into one. The low overheads of SISR means that 

trust can be pessimistic — components need not trust any other components (apart from those 

comprising the TCB). In other words, encapsulation can be enforced by the protection mechanism 

while reasonable performance is maintained.

5.7 Subtleties

This section introduces the limitations of SISR, and explains how they can be overcome. There 

are three ‘issues’: self-modifying code, variable-length instruction sets, and page-based protection. 

These subtleties are explored in more depth in the remainder of this section.

5.7.1 Self-Modifying Code

Code scanning is incompatible with self-modifying code, since such code could break protection by 

writing privileged instructions to itself after code-scanning has been performed. It also prevents 

arbitrary data being embedded in code sections, because such data might appear to the code-

scanner to be privileged instructions. However, both these techniques are rarely used in modern 

computing, and modern microprocessors severely penalise the use of such techniques anyway [53] 

(that is, the use of self-modifying code and embedding data in code sections severely degrade per-

formance). Note that this system does not preclude dynamic code-generation — some component 

can dynamically generate new component types (providing the new types are passed through the 

code-scanner).

However, a SISR-based system can still allow self-modifying code if required as long as such 

components execute while the processor is in user mode. Calls to the ORB will need to be made 

via traps, and not inter-segment branches as with code-scanned components. In such a scenario,
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some ‘sandbox’ component would attach to the relevant trap vector, and forward calls to the ORB.

5.7.2 Variable-Length Instruction Sets

While most modern CPU architectures are RISC and so have fixed-length instructions, older 

designs (such as Intel x86) have variable-length instruction sets. Variable-length instructions 

complicate code scanning because immediate data can be executed as if they were instructions. 

For example, consider the Intel x86 code:

mov al, OxFA 

jmp -2

The first instruction places FAh into general-purpose-register al, and the second jumps back to 

the mov instruction, repeating indefinitely (the first instruction consumes two bytes, hence -2). 

This will cause the executing thread to live-lock, but will not affect the system as a whole. Now 

take the code:

mov al, OxFA 

jmp -1

This branches into the middle of the mov instruction, and attempts to execute the immediate data 

FAh as if it were an instruction. FAh is the opcode to disable interrupts on Intel x86 processors 

so this sequence of instructions will live-lock the entire system. In fact, since the branches in the 

above code snippet are immediate, code scanning could detect this problem by simply stepping 

through the code. However, if the branches are indirect then it is more difficult for the scanner to 

determine the branch-target before run time.

The problem can be overcome by having a tool insert a few extra instructions into code at 

compile time. These extra instructions force all indirect-branch targets to be aligned to some 

multiple of bytes. The code scanner then only allows indirect branches if they are preceded 

by some mask, forcing alignment. For example, the x86 instruction ret (which returns from a 

subroutine) is required to be preceded immediately by an instruction forcing the function to 

return to an 8-byte aligned address, such as “and byte [ esp ] , 0xF8”. This means that rets 

are only valid if they are part of the code snippet:

and byte [ esp ], 0xF8 ; zero bottom 3 bits of return address ... 

ret ; ... forcing returns to be 8-byte aligned
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Note that while indirect branches are forced to target 8-byte aligned addresses, they themselves 

must not lie on 8-byte aligned boundaries. This way, the alignment mechanism protects itself. This 

is because if control is able to jump in between the mask and its associated indirect branch then 

the mask is not executed and the second indirect branch is not forced to be 8-byte aligned. Note 

also that this mechanism assumes that each thread has its own stack segment, so there is no race 

condition allowing concurrent threads to change the return address between it being masked and 

used. This “Time-Of-Check-To-Time-Of-Use” race can be avoided on systems where threads share 

stack-segments by forcing function returns to pop the return address into a register. The lower 

bits are cleared in the register and the return is a branch indirected through said register.

The algorithm for scanning using this mechanism is as follows. The flow of control is simulated, 

scanning for privileged instructions. Simulation in this context means that scanning starts at the 

first instruction and steps through until termination. One simulation-pass is started at each 

alignment interval (that is, a simulation-pass is performed starting at each 8 byte offset within the 

code). During the simulation-pass unconditional branches are followed, and conditional branches 

cause the simulation to fork: one simulation-pass executing as though the branch is taken, and 

one as though it is not.

If implemented naively, the above algorithm would have a complexity of 0 (n 2). However, the 

algorithm can be optimised so that a simulation can be terminated under a number of conditions. 

These conditions are:

• Discovery of an undefined instruction (or any instruction that would cause the processor to 

fault, even in supervisor mode).

• Any indirect branch.

• A call to the ORB’s return method (see Section 5.4).

• Any time a simulation comes across an offset already scanned. That is, the scanner marks 

which instructions have been scanned, and simulation-passes are terminated when an offset 

is simulated that is already marked.

The last of these optimisations (terminating a simulation pass when a location has already been 

scanned) means that the algorithm’s complexity drops to O(n): in the worst case the scanner will 

check an instruction at every byte offset.

Note that this technique could still produce ‘false-positives’ in the code scanner since the 

scanner might find privileged instructions that will never actually be executed. However, this can
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be overcome by inserting NOPs before the apparently faulty instruction.

This technique will produce slight code-bloat, although less than the code-bloat associated 

with the move from CISC to RISC instruction sets. A prototype post-processor tool has been 

developed, that inserts the masks, alignments and NOPs to allow user components to be passed by 

the code scanner. Early experiments have shown code bloat of 5-10%.

5.7.3 Code Scanning with Paged Memory Protection

So far it has been assumed that SISR will use segmentation memory-management hardware to 

effect protection. Indeed, segmented memory protection is an integral part of the model described 

in this thesis. However, the code-scanning technique itself does not require segmentation in order 

to be effective: code scanning and segmentation complement each other to give SISR. Segmenta-

tion is useful with code-scanning because address-space changes are made visible in static code 

through segment-register-load instructions. Code-scanning compliments segmentation because it 

allows relatively complicated, OS-specific rules to be implemented that mandate under what cir-

cumstances what segment registers can be loaded.

Code-scanning is difficult to implement on paged architectures since context-switches are not 

statically visible as are segment-register loads. However, assuming a page-table load requires an 

explicit instruction, code-scanning could be implemented on paged architectures by allowing page- 

table loads under certain circumstances. Specifically, the code-scanner would permit instructions 

that load a new page table providing that such an instruction is followed immediately by an 

unconditional branch to a TCB entry point. This would mean that while untrusted code could 

load a new page table, it could not do any damage since control would be transferred immediately 

to the TCB. Note that if the page table loaded did not map in the TCB’s entry point, then the 

following branch-to-TCB would fault, ultimately transferring control to the TCB anyway.

There are two problems with this approach. Firstly, most paged architectures have no notion of 

‘execute permission’ — any readable page can be executed. This means that components would be 

free to execute their data as if they were instructions, thus rendering the code scanning useless. To 

overcome this problem, one can use a technique similar to the one used to enable code-scanning 

on variable-length instruction architectures (see Section 5.7.2). For example, all data could be 

placed in the top half of the machine’s virtual address space, and all code placed in the lower 

half (pages marked read-only). All immediate branches can be checked by the scanner to ensure 

that they only branch into the lower half of the address space. The scanner ensures that indirect
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branches have a mask inserted before them to ensure that the branch-target is in the lower half of 

the address range. E.g. jmp rO must be preceded by and rO, 0x7FFFFFF8, and indirect branches 

cannot be on addresses that are multiples of 8.

The second problem with this approach is less easy to solve: it almost certainly isn’t worth it! 

That is, once the lengths described above have been gone to in order to allow code-scanning on 

paged systems, most benefits of SISR have disappeared. Most obviously, the low spatial overheads 

have disappeared since components’ data and text sections are required to be a multiple of the 

page size. Also, temporal performance would likely be considerably worse than with conventional 

systems due to a page-table switch on every call to, and exit from, the TCB. The constraints mean 

that the simplicity of SISR on segmented architectures is lost too.

In summary, code-scanning itself does not require segmented-memory-management hardware 

to work. However, segmentation is an integral part of the SISR model — code-scanning and 

segmentation compliment each other to provide SISR which is more than sum of its parts: code-

scanning is much more than simply eliminating “expensive processor mode changes” .

5.8 Summary

This chapter has outlined SISR, a novel protection model. The model enables true decomposition 

of the TCB through the elimination of separate processor modes. Protection is maintained by 

combining segmentation with ‘code-scanning’ (that is, scanning components’ code and rejecting 

those components that contain instructions which they are not privileged to execute). The code-

scanning allows loading a segment-register to be considered a privileged operation, so that placing 

a component in its own segment protects it from others. More precisely: holding a segment’s selec-

tor in a segment-register becomes a capability to access that segment. Code-scanning compliments 

segmentation because it allows relatively complicated, OS-specific rules to be implemented that 

mandate under what circumstances what segment registers can be loaded. Segmentation com-

pliments code-scanning because an address-space switch is performed through a segment-register 

load; an explicit instruction easily visible to the code scanner.

This new model will allow a context switch to be effected by three segment-register loads 

(code, data and stack), and so will result in a significant reduction in context-switching temporal 

overheads. However, because a segment-register load is a privileged operation, a component 

must call upon the Object Request Broker (ORB) in order to load segment-registers and effect 

a context switch on its behalf. This indirection is just one inter-segment branch and a data-
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segment-register load, and so will increase a context switch to five segment register loads in any 

real implementation. Note that the omission of processor-mode switches is a relatively small 

aspect of SISR’s performance advantage — most of the advantage comes from requiring just a few 

segment-register loads in order to effect a context switch. Furthermore, there are many advantages 

other than reductions in protection and context-switching overheads including simplicity, improved 

decomposition and flexibility.

A suitable implementation of this model is likely to meet the requirements set out in Section 

2.3. The low context-switching overheads and use of segmentation to effect memory protection 

will allow protection at a fine granularity while maintaining good performance. Together with 

the abolition of the system-call barrier, this will in turn lead to improved software-engineering (at 

both the system and application levels).
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Chapter 6

Go! and GTE —  A Proof Of 

Concept SISR Implementation

6.1 Introduction

In order to prove the concept of SISR, a prototype ORB —  called Go! — has been implemented. 

Go! runs natively on the Intel 80386 and above (known as IA32) [52]. The Go! ORB must meet 

the goals set out in Section 2.3. Although Go! is a prototype, it is intended to be a complete 

system, suitable for use in real-world applications. Note that if Go! were to be used in a real-world 

application it is likely that several changes would be required. However, no “short-cuts” have been 

taken in Go!’s development.

Go! is not an operating system in the conventional sense, but rather a component architecture 

and infrastructure which is suitable for the construction of (amongst other things) operating 

system services. To provide a useful proof-of-concept, it is important to show that traditional OS 

services can be implemented in this framework. To this end, a collection of components has been 

developed that runs on top of the Go! ORB to provide a library operating system. This library 

OS is called GTE (the Go! Test Environment). Unlike Go!, GTE is purely an experimental system 

— that is, it is not intended that GTE offer a system complete enough for real-world use, just to 

prove that Go! is suitable as a base for operating system construction.

This chapter describes the architectures of both Go! and GTE, and then Go!’s interface and 

implementation in more detail.
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6.2 Architecture Overview

Go! provides an architecture quite different from that of traditional operating systems. A kernel 

and applications are replaced by a collection of components, some of which offer OS services, and 

others application ones. This architecture can be thought of as a ‘zero-kernel’ — there is no longer 

a kernel, just components.

6.2.1 Components: Types, Methods and Instances

All code and data in Go! are encapsulated into components. Each component is an instance of 

some type. Every datum belongs to exactly one instance, and every instruction to exactly one 

type1. There may be many, one or no instances of a given type at any time. Note that the terms 

‘component’ and ‘instance’ can be used interchangeably.

, 1
1

Com ponent 
Instance 4 

(data)

C om ponent 
Instance 5 

(data)
C om ponent 

Instance 7 
(data)

Figure 6.1: Types and instances of Go! components

Figure 6.1 shows an example system with the ORB, two instances of type 3 (instances 4 & 5), 

and many instances of type 6 (starting from instance 7). The ORB is instance 2, and of type 1. 

Note that types and instances share a common namespace. Note also that in this example base 

types and initial data segments are ignored in the interests of simplicity.

Component types export to the ORB a set of methods. These represent specific entry points

within that type’s code segment. A component may invoke the service of another by requesting
1 Sharing data between components is facilitated through granting a type access to another type’s data. See the 

description of the null base type in Section 6.3.3 for details.
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that the ORB invoke a given method on its behalf (known as a ‘method call’). A type’s methods 

are numbered (starting from zero), so “to call method number 3” on a component means to call 

the fourth method enumerated on that component’s type. Note that in Figure 6.1 type 3 has three 

methods, and type 6 has four.

Each component has two extra methods, not enumerated in the normal way: a constructor 

and a destructor. The constructor is called by the ORB when an instance is created. The instance 

does not appear in the namespace until the constructor has completed (thus no other methods 

will be invoked until after the constructor has returned). Similarly, the destructor is called on 

component destruction. The component instance disappears immediately before the destructor is 

called: no methods will be called on an instance once its destructor has been invoked.

6.2.2 ORB Methods

Like all components, the ORB’s services are invoked through calling one of its methods. The 

most interesting ORB methods are c a l l  which invokes a given method on a given component, 

and return which returns from the most recent ca ll . The ORB also has methods to create and 

destroy components, as well as to in s ta ll  and u n in sta ll implementation types. Several other 

ORB methods are necessary for a complete implementation; a full list is given in Section 6.4.

Since it is necessary to invoke an ORB method (c a ll)  in order to invoke methods on other 

components, the ORB is necessarily invoked differently (otherwise infinite recursion would result!). 

As outlined in Section 5.4, other components call ORB methods by issuing an immediate inter-

segment call. A Go! ORB method is invoked by the instruction c a l l  8:8n, where n represents 

the ORB’s method number to call.

Only certain ORB methods are safe to be called by untrusted components. These are those 

that control inter-component communication (such as c a l l  and return) and read-only methods 

(such as get_type). All other ORB methods (such as in s ta ll  or destroy) are known as privileged 

methods — these methods are intended for use only by the library operating system (and other 

trusted components). The code scanner is able easily to detect exactly which ORB methods are 

invoked by each component type: if the type’s code segment contains the instruction c a l l  8:8n 

then it is assumed to invoke ORB method number n. The code scanner is thus able to restrict 

which ORB methods are available to untrusted components — that is, the code-scanner ensures 

that untrusted components may contain inter-segment branches only immediately to safe ORB 

methods.

75



Because certain ORB methods can be called safely only by trusted components, in the interests 

of efficiency the ORB need not perform sanity checks on the parameters passed to these privileged 

methods. That is, if invalid parameters (such as an invalid reference) are passed to privileged 

methods the ORB’s behaviour is undefined2.

Safe ORB methods are analogous to UNIX system calls: control is transferred atomically and 

securely from an untrusted to a trusted entity.

6.2.3 Inter-Component Communication

As already explained, components communicate with one another by invoking methods via the 

ORB. Go! uses thread-tunnelling for inter-component communication. Thread-tunnelling was 

chosen over message-passing for the following reasons:

• If fine-grained decomposition is to incur low overheads, then components themselves must 

be lightweight. The association of at least one thread of control with each component will 

be detrimental to this cause: it is anticipated that most finely-grained decomposed systems 

will have many more components than threads.

• The most common means of cross-protection-domain communication at the programmer’s 

level is RPC. Thread-tunnelling is well suited to this. While message-passing is better suited 

to asynchronous communications, it is not anticipated that asynchronous communications 

will play a big role in component-based systems. In [101], Andrew Tannenbaum writes “...in 

Amoeba 2.0 we made a truly dreadful decision to have asynchronous RPC...Our advice to 

future designers is to avoid asynchronous messages like the plague.”

• In a finely-grained, synchronous, decomposed system, the latency of inter-component com-

munication is likely to present the biggest performance bottleneck. Thread-tunnelling offers 

very low latency.

• Go! is intended to be suitable for use in real-time systems. Real-time systems typically 

require low, but more importantly, predictable and bounded latency. This is simpler with 

thread-tunnelling. In addition, thread-tunnelling can be used to eliminate QoS crosstalk 

(see Section 4.5). This is because a single thread is used to carry out one operation, even if 

that operation is performed by different domains. That is, the same scheduling attributes

remain associated with a given operation as its thread crosses protection domains.
2 However, the ORB is free to perform sanity-checks on certain parameters and throw exceptions should these 

checks fail (for example, the current implementation does so only when built with the -DEBUG macro defined).
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In fact, Go! takes thread-tunnelling even further. Not only does the operating system sup-

port thread-migration across components, but fully-fledged RPC is promoted to the principle OS 

communications primitive. That is to say, RPC is not implemented in language libraries (as is 

normally the case), but directly through an ORB method. This is made possible because Go! 

promotes the status of a procedure to a fundamental OS primitive (through component types’ 

methods).

6.2.4 Less is More: the Zero-Kernel Approach

To allow for simple architectures, the Go! ORB is designed to be the ‘lowest layer’ of software in 

any system. That is, the ORB does not rely on the services of any other components. This allows 

a strict separation of the component infrastructure and the operating system.

Go! defines a component architecture and provides a basic infrastructure through an ORB and 

a small set of base component types (the n u ll type, a stack type and a few exception types — 

see Section 6.3.3). System functionality such as interrupt handling or memory management is 

provided by components that operate within this framework.

Note that the statement that system services such as interrupt handling are implemented 

by components does not mean that interrupts are farmed out to user level via veneers as with 

exokernel-like systems. The ORB remains blissfully unaware of interrupts, paging and even code-

scanning. Operating system services such as interrupt handling and memory management can be 

implemented by components that have no architectural difference from components that implement 

user-level services such as spell-checking. Normal components are able to implement system-level 

services because all code executes while the processor is in kernel mode (see Section 5.2.2).

This architecture of a simple ORB with all OS services delegated to components facilitates the 

construction of an operating system that is truly component based.

6.2.5 The Go! Component Model and Object Orientation

Over the last decade, object-orientation has become the software-engineering tool of choice. It is 

therefore desirable that the Go! component-model can be viewed as object-oriented. There are 

two aspects to Go!’s component-model: the programmer’s view, and the implementation.

High-level programming abstractions like inheritance (and to some extent interfaces) are not 

supported directly by Go!. Instead, the ORB implements only rudimentary support for object-
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orientation, on top of which the programming environment (specifically the “IDL-compiler” 3) can 

create the illusion of a fully-featured, object-oriented system.

Most obvious is the lack of specific support for interfaces in the traditional sense. An interface 

in Go! is simply a set of methods, which are just entry-points into a component’s code segment. 

Go! provides no facilities to match or type-check interfaces. However, such support can be added 

easily by the library operating system. For example, an interface management component might 

record the interface that each implementation realises, and provide services to locate a component 

instance based on interface.

There is also no explicit support in the ORB for an implementation with more than one inter-

face. However, the library operating system can provide support for this by overlaying different 

components at the same linear address. There is rudimentary support for the programming- 

environment to present an object-oriented view where different levels of the inherited interface 

can be realised by different implementations (known as implementation inheritance). This sup-

port takes the form of the ability to allocate several consecutive object references at component 

construction. Refer to Appendix C for a complete description of how this works.

Providing only support for object orientation (rather than full object orientation) at the ORB 

level improves both performance and flexibility. Performance because the ORB is not weighed 

down by expensive and complicated features such as multiple-inheritance, and flexibility because 

the exact component-model used can be specified by the programmer. For example, two program-

mers might access the same service differently: one using an object-oriented IDL compiler that 

generates C + +  header files, and one using a procedural IDL compiler that generates C headers.

6.3 Go! and GTE Architecture in Detail

This section presents Go! and GTE’s architectures in more detail. This includes a description of 

the different inter-component communication primitives, software exception support and the Go! 

base types. An overview of OS service presentation and GTE is also given.

6.3.1 RPC Variations and Optimisations

Go! offers several inter-component communication primitives, all based on RPC call and return

semantics. The different ‘flavours’ of c a l l  offered by Go! are discussed in this section. Briefly
3An IDL compiler is a tool that takes as its input a specification of a component’s interface in some ‘Interface 

Definition Language’ (IDL) and outputs ‘skeleton code’ and ‘header files’ which aid the programmer significantly.
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there are three types of call offering different trade-offs between latency, protection and setup 

overheads. There is also a non-returning variant — Gol’s analogue of a goto.

It is important that method implementations are not required to be aware which variant of 

c a l l  was used to call them. To facilitate this, despite the ORB providing 4 primitives with which 

to call a method, there is just one primitive with which to return: return is able to determine 

which variant of c a l l  was last issued, and return appropriately.

f - c a l l

As shown in Section 7.2.1, timings for c a l l  have shown impressive latency. However, this is 

considerably worse than the optimum performance. Based on instruction latencies documented 

in [53], the theoretical performance of a null-RPC using Gol’s c a l l  primitive is 83 cycles. The 

measured latency is somewhat worse than this at 252 cycles. This sub-section starts with an 

investigation as to the reasons for this discrepancy, and then presents Gol’s solution.

Experiments have shown that the discrepancy in predicted and measured performance is due to 

a processor stall caused by writing to the Pentium’s segment-descriptor table. Initial investigations 

have demonstrated that such a write stalls the processor for approximately 50-60 cycles. Although 

the exact reason for this stall is not known, it is likely due to a flush of the processor’s internal 

state. Note that a write to the segment-descriptor table does not affect the normal operation of 

the processor until a segment register is next loaded, and so one would not expect such writes 

to the descriptor table to be ‘special’ . However, IA32 executes several segment-register loads 

in order to service an interrupt or fault. It also requires that faults are delivered immediately 

after the instruction that triggered them (know as ‘precise exceptions’ [46]). Since the instruction 

immediately following a write to the descriptor table might fault, attention must be paid to the 

synchronisation of the delivery of this fault (and the segment-register loads this implies), with the 

new descriptor table. Since most systems do not alter segments’ sizes dynamically, it is reasonable 

that the Intel engineers paid little attention to optimising this case. That is, it is unlikely that 

these stalls are intrinsic to segment-based systems, or even to the IA32 design; merely that Intel 

did not spend silicon budgets or design-time optimising this unusual case. Unfortunately, a round- 

trip RPC on Go! requires two writes to the descriptor table: one on the c a l l  to shrink the stack, 

and one on the return to re-grow it.

In the case that particularly low-latency RPC is required, the f - c a l l  (fast-call) primitive can
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be used, f - c a l l  requires the invoking thread has several stacks in a doubly-linked list4. Stacks 

are pre-created at suitable sizes, and switched to the next in the list on an f - c a l l  and switched 

back to the previous one on a return. The stacks overlap one another so that parameters can be 

passed on the stack as normal.

Figure 6.2: Overlapping f - c a l l  stacks

Figure 6.2 shows three stacks set up for use with the f - c a l l  primitive. Here, execution starts 

with stack 0 active, linked to stacks 1 and 2, as shown. If an f - c a l l  is issued, the active stack 

will be switched from stack 0 to stack 1 (the next in the list). To enforce protection, the caller 

must ensure that, at the time the f - c a l l  is issued, all its stack-based state is stored in the region 

of stack 0 that does not overlap stacks 1 or 2 (that is, the top-most region). Parameters must be 

passed starting from the top of stack 1 so that the callee may access them. Note that this requires 

the caller know where stack 1 starts within stack 0. This should not be a problem because it is 

anticipated that the caller will create stack 1 itself before issuing the f - c a l l  (probably indirecting 

via some memory-management component). Note that stack 1 will probably be created just once 

(possibly during the caller’s initialisation) since f - c a l l  would not offer low latency if each f - c a l l  

was associated with a stack creation!

A second f - c a l l  can be issued with stacks as in Figure 6.2, which would switch from stack 

1 to stack 2 in exactly the same way stack 0 was switched for stack 1. If the callee then issues a 

return stacks will be switch back to stack 1, and finally to stack 0 on a subsequent return.

Note that the stacks used with f - c a l l  are in no way special — any two stacks can be linked
4Each stack may exist in only one f - c a l l  ‘stack chain’ at a time.
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to together in an f - c a l l  chain. Conventional ca lls  (or t - c a l l  or x fer  — see subsequent subsec-

tions) can be safely issued from methods called with f - c a l l .  For example, with the layout shown 

in Figure 6.2 one might issue the following sequence: f - c a l l ;  c a l l ;  f - c a l l ;  return; return; 

return. Here, stacks would be switched on the first f - c a l l  to stack 1, and then on the c a l l  stack 

1 would be shrunk. The second f - c a l l  would switch to stack 2. A subsequent return would 

switch back to the shrunk stack 1. The next return would re-grow stack 1 to its original size, and 

the final return would switch back to stack 0.

Note that pre-creating stacks means that the caller must know in advance how much stack 

space will be required for each call. This is no different from stack creation in conventional 

systems however since only at least enough stack space must be provided. Note that if paging is 

enabled the stacks can be backed by physical memory only as required.

Since each f - c a l l  requires a new, pre-created stack, and the standard c a l l  primitive offers 

quite reasonable RPC latency, it is anticipated that f - c a l l  will be used only where RPC latency 

is critical (such as within a tight loop, or when under stringent real-time constraints).

t - c a l l

Often a client trusts its server. For example, a user application is likely to trust the file server and 

GUI implicitly. In such cases it is not necessary to protect the client’s stack frame during RPC 

(although, by the nature of the Go! component-model, the client’s state will be protected since 

only one data segment can be active at a time). This means that if the client is prepared to trust 

the server not to corrupt its stack frame, t - c a l l  (trusting-call) can be used to give the speed 

advantages of f - c a l l  without the penalty of requiring another stack. In short, programmers can 

choose any two from low RPC latency, low/zero setup overheads (that is, no stack creation), and 

protection.

Note that t - c a l l  requires that the issuing client trust the server, but not that the server trusts 

the client. It would also be unacceptable if other components needed to trust a server called with 

t - c a l l .  Hence the ORB guarantees that the server can return only to the client that issued the 

t - c a l l .  Otherwise, if client A trusts server B and issues an f - c a l l ,  even though a third party 

C does not trust B, B would still be able to return into an arbitrary location of C. When one 

considers that the same programmer might develop client A and server B, the security requirement 

that t - c a l l  is guaranteed to return only to its caller is clear, t - c a l l  is also guaranteed to return 

to the relevant instruction within the caller, useful when clients do not trust the server, but can
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afford to ‘loose’ the calling thread.

xf er

A client does not always require that control be returned to it after an RPC. For example, de-

stroying the current thread or servicing an interrupt will not require control to return. A more 

common example however is when the last thing that a method does before returning is to call a 

method on another component (return is defined to return control to the last call, f-call, or 

t-call). This situation is shown in the C code:

int

foo() {

/* •

do some processing here 

. */

return bar();

}

In this situation the function f oo could issue an xf er to bar knowing that when bar eventually

returns it will return directly to fo o ’s caller. This is illustrated in figure 6.3.

A B C A B C

c a l l ;  c a l l ;  r e t ;  r e t ; c a l l ;  x f e r ;  r e t ;

Figure 6.3: Returning from a previous xfer

This technique can save several useful cycles if used as above, and can lead to significant 

performance improvements if used repeatedly, such as with tail-recursion optimisation [97]. It is 

also necessary for the implementation of certain algorithms if stack overflow is to be avoided (that

is, where a programmer would traditionally require a goto rather than a function call5).
5 Despite ‘text-book-teaching’ [28], if used sensibly, goto can be a useful programming primitive [64, 90].
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6.3.2 Software Exceptions

Often control flow must indicate the occurrence of erroneous or exceptional circumstances. The 

desired behaviour for such control often differs from the standard call and return semantics seen 

so far. This section details Gol’s support for software exceptions and gives examples of their use.

Software-Exception Support

Most modern software engineering practises make use of exceptions to have a server signal its 

inability to continue execution to a client [91]. However, most operating systems provide little 

support for this, instead relying on software layers above (usually the high-level language) to 

implement exceptions if required. This technique makes it difficult for exceptions to propagate 

across modules implemented in different languages (or even different compilers), and modules are 

usually restricted to signalling a server’s inability to continue via integer error codes. Also, because 

Go! provides RPC primitives, it is necessary that Go! provide at least some way to unwind the 

call stack if exception support is to be enabled. It is also desirable that components are able 

to intercept certain exceptions. Such ability would allow efficient and elegant software solutions 

impossible in other systems. For example, the Go! ORB provides no support for distribution. Such 

behaviour could be added by other components either through the use of proxies, or by having 

some locator service intercept all exceptions as a result of using invalid component references (see 

Section 8.3.1). Similarly, the ORB has no direct support for paging. Instead, a pager component 

might intercept all ‘out-of-memory’ and ‘page-not-present’ exceptions to provide demand paging.

Exception Implementation

If a server wishes to throw an exception to a client, it must create a component to represent 

that exception, and invoke the ORB’s throw primitive (see Appendix A.3.1). This is used to 

throw an exception to the most recent caller. Its behaviour is similar to that of the return 

primitive, except that once the stack is unwound, rather than transferring control to the instruction 

following the most recent c a ll , a software interrupt is triggered (on vector 30h). Some exception 

manager component can then attach to this interrupt vector (probably via some interrupt-handling 

component). In response to receipt of such interrupts, the exception manager will most likely xf er 

to the caller. However, if the exception manager realises the interception of exceptions, it might 

pass certain exceptions on to interested third parties.

Throwing software exceptions via interrupts means that not only can exceptions be intercepted,
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but that the same mechanism can be used to deal with software exceptions and hardware exceptions 

such as page-faults or divide-by-zero errors. It also means that the ORB can throw exceptions 

without being aware of what component is responsible for exception management.

Preemption

Go!’s thread-tunnelling RPC model means that it is sometimes necessary to preempt a thread 

from a server. This is because when a client requests some service, the client’s thread is migrated 

to the server. If the server then times out (for example, through entering an infinite loop), the 

client must have some way to ‘reclaim’ that thread. This problem is non-trivial, because it is not 

possible to tell whether the server is in an infinite loop or if the operation will complete given 

enough time [105], and because the server may have claimed resources that need releasing.

Exactly how this is done is not defined by Go!, but left to the library operating system. One 

solution is to set up a time-out which expires on receipt of a timer interrupt6. If the server has 

not completed by receipt of the time-out, an exception is delivered to it. This exception is known 

as a ‘two-minute-warning’, which gives the server some period to complete its operation (likely 

to be of the order of milliseconds). Failure to respond to the ‘two-minute-warning’ exception in 

time will result in control being revoked from the server. How this is done will depend on the 

library-OS policy; one such policy is to terminate the server without prejudice; another to have 

the offending thread preempted, and an exception thrown to the client.

Another solution is for the caller to arrange for a new thread to be invoked in response to 

some time-out. If the server responds in time, the time-out is cancelled. If the server does not 

respond, the client continues execution with the time-out thread. If the caller detects the return 

of the original thread after the time-out, it must take appropriate action (such as terminating the 

timed-out thread, or using it to throw an exception).

The Call Chain

As execution continues and threads tunnel through several components, a ‘call-chain’ is built 

up. Assuming correct operation, given time this call-chain will unwind. However, it cannot be 

guaranteed that the caller component will still exist when the callee returns control (due to the 

caller’s normal or erroneous termination). This is a problem that needs solving in any thread-

tunnelling RPC system. Go!’s solution to this is to throw an exception if control is returned to a
6 H o w  exactly interrupts are handled is defined by the library operating system. For the purposes of this discussion 

it is assumed that there is some collection of components capable of receiving interrupts, suspending the current 
thread, and scheduling a new one (see Appendix B.6 for an example implementation of such a mechanism).
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non-existent component. Recall that the final recipient of an exception is defined by the library 

operating system — however, it is anticipated that most library operating systems will throw the 

exception to the caller’s caller. See Figure 6.4 for an illustration of this.

Way-out (A calls B which calls C) Way-back (B no longer exists)

Figure 6.4: Unwinding a broken call chain

This is implemented by having components enter a special ‘zombie’ state between their de-

struction and any threads returning. A zombie component is not really a component at all -  

in reality a record is kept of the zombie’s reference so that it may not be re-used. The zombie’s 

reference is stored so that any attempted return to a zombie is caught via a hardware-protection 

fault (see Section 6.5.1 for details). This is possible because the ORB keeps a ca ll.cou n t for 

each component (that is, how many threads have entered a component, but are yet to leave via a 

return, throw or x fer  — see Section 6.3.1).

6.3.3 Base Component Types

As well as the ORB, Go! defines several ‘base’ component types. These base types are:

n u ll A ‘memory object’ . The null type contains no behaviour, but instances of it may have 

state. That is, it is a data segment with no associated code segment or initial data segment. 

The n u ll type is necessary because the ORB requires that new types are presented to it 

as a n u ll component with its data in the appropriate format. It is also the primary means 

for sharing data between components. To share data, an instance of the n u ll type can 

be created that overlaps another component’s data. Data are shared by placing the null 

component’s data segment selector in the IA32’s es segment register.

stack Similar to the null-component, except that the component can be used as a stack by 

switch_stack. This is necessary for the ORB’s rudimentary support for multithreading (see 

Section 6.3.4 and Appendix A.5 for more details). Stack components can also be linked to 

form a stack-chain for use with f - c a l l  (see Section 6.3.1).
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xcp The xcp interface is used for the ORB to signal various error conditions. This is necessary 

since the exception mechanism requires that the error is identified by a component. The xcp 

type has one method: uint in fo ( ) ,  which returns an integer giving further details of the 

cause of the exception.

In reality, the xcp type is just a (notional) interface which is shared by seven implementation 

types. These are:

xcp .orb-invalid  An instance of this type is thrown via an exception in response to an 

attempt to invoke any ORB method with invalid parameters (for example, calling a 

method that doesn’t exist, or attempting to install a new type using an invalid data 

format (see Appendix A.2)). in fo  returns an ORB-implementation-specific value for 

use with debugging.

xcp_orb_noref An instance of this type is thrown via an exception in response to an 

attempt to invoke a method on a component using an invalid reference, in fo  returns 

the faulting component reference. This exception can be intercepted by the library 

operating system to aid distribution (see Section 8.3.1 for details).

xcp_orb_nomem An instance of this type is thrown via an exception if the ORB requires 

more linear space in order to continue. Any component servicing this exception should 

respond by calling the ORB’s lin ear method, passing a region of linear memory for 

the ORB’s use. in fo  returns the amount of memory by which the ORB is short, or 

zero if the exception is as a result of an attempt to create a component that overlaps 

the ORB’s internal data structures (see Section 6.3.4) — in effect, when in fo  returns 

zero this indicates that linear memory has been exhausted. Note that the ORB re-

quires some dynamic memory in order to create exceptions, meaning dead-lock can 

occur (that is, the ORB needs to throw an xcp_orb_nomem exception to state that it 

needs more memory, but it cannot create such an exception because its memory is ex-

hausted). To avoid this dead-lock, an xcp_orb_nomem component instance is pre-created 

and associated with each stack when it is created.

xcp_orb_nostack An instance of this type is thrown via an exception if there is an attempt 

to f - c a l l  from the final element in a stack-chain, in fo  returns an undefined result. 

This exception can be intercepted by the library operating system to provide demand- 

allocated stack-chains for use with f - c a l l .
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xcp_orb_noret An instance of this type is thrown via an exception if there is an attempt 

to return from a stack with no returns pending — that is, an attempt to return off the 

top of the call stack. For example, if the first method called on a new thread attempts 

to return the ORB will throw an xcp_orb_noret exception, in fo  returns an undefined 

result.

xcp_orb_zombie An instance of this type is thrown via an exception if there is an attempt 

to return to a zombie (see Section 6.3.2).

xcp_orb_gdtfull An exception of this type is thrown when a slot is required in the 

segment-descriptor table (known as the ‘GDT’ on IA32) but none are available (due to 

the GDT being full of ObjRefs which are locked in — See Section 6.5.1). This situation 

is analogous to a demand-paged virtual memory system not being able to reject a page 

from physical memory because all pages are locked down. That is, this should never 

happen in normal operation, but it is better to throw some exception rather than have 

the system just lock up. in fo  returns an undefined result.

6.3.4 Presentation of OS Services

Traditional operating system services such as memory management, interrupt dispatching, and 

even code-scanning are provided by different components running on top of the ORB. This section 

describes first the interaction between the Go! ORB and library OS components in the general 

case, before describing an example library OS implementation: GTE.

Decomposition of Memory Management

In order to support dynamic creation and destruction of components (and dynamic installa- 

tion/uninstallation of types) memory must be managed dynamically. However, in the name of 

decomposition, the ORB requires that some external component manage linear space. This is 

achieved by requesting that a client specify not only a component’s type on creation, but also its 

linear address. It is anticipated that most clients will not care where a component is placed in 

linear memory, and indeed allowing clients to specify their children’s linear address is a security 

flaw. In protected systems, clients will be forced to create other components indirectly via some 

component that manages linear space. This is shown graphically in Figure 6.5.

Such indirection is forced because the code-scanner considers the ORB’s create and destroy 

methods as privileged (see Section 6.2.2). This means that untrusted components are prevented
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Figure 6.5: Component creation via a memory manager

from specifying their children’s linear addresses.

Decomposition of Code-Scanning

So far it has been implied that code-scanning is performed by the ORB as part of component-type 

installation. However, since code-scanning is a fundamentally different task than component- 

management, the code-scanner is a separate component in order to minimise coupling. In other 

words, code-scanning is left to the library operating system constructed on top of the ORB. To 

ensure protection, all component type installation must be forced to go via the code-scanner (oth-

erwise untrusted components could directly install new types that contain privileged instructions). 

Thus the ORB’s in s ta ll  method is privileged. This means that the code scanner will identify 

calls to the ORB’s in s ta ll  method and so prevent components from installing new types di-

rectly. That is, the code-scanner refuses to allow types to be installed that install other types 

directly, forcing installation to go via the scanner. Thus code-scanning can be used to enforce that 

code-scanning is performed!

Note how the indirection of component installation via some privileged scanner component 

mirrors the indirection of instance creation via some memory-management component.

Multithreading in Go!

The Go! ORB does not provide multithreading, but is designed so that multithreading can be 

provided easily by a library operating system. Multithreading support is provided through the 

ORB being re-entrant. To achieve this it is necessary that the ORB support multiple concurrent 

stacks and be able to switch between them on a thread switch (since the ORB manipulates stacks 

in order to provide protected RPC). It is anticipated that with each thread the library OS will 

associate one stack (or more specifically, one stack-chain —  see Section 6.3.1). All ORB call- 

related state is stack specific: the ORB maintains a separate copy of each stack-specific variable. 

All other ORB state is manipulated in such a way that the ORB is completely preemptable (that
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is, non-blocking, lock-free synchronisation [40] is used throughout the ORB).

Up until now, return has been defined as returning from the most-recent ca ll . These se-

mantics are extended so that return will return from the most-recent c a l l  of the current stack. 

Since each thread has its own stack, this means that the ORB’s c a l l  and return primitives are 

thread-safe7.

The exact architecture of multithreading is — naturally — defined by the library operating 

system. Most likely some scheduler component will switch threads by responding to a timer 

interrupt, saving the currently running thread away and scheduling some new one. See Section

6.3.5 for an example implementation.

More details are given in Section 6.3.5.

6.3.5 GTE: An Experimental Library OS for Go!

To provide a complete proof-of-concept of the protection model presented in Chapter 5, a set 

of components has been developed for Go! that provides a ‘toy’ library operating system. Ten 

components cooperate to provide interrupt handling, multithreading, error handling, protection, 

device drivers and applications. Although minimal, GTE is complete enough to show that it would 

be possible to develop a more complete system on top of Go! (for example, a POSIX [39] compliant 

one). This set of components has been called GTE (Go! Test Environment), and is made up of 

the component types shown in Table 6.1.

comp_lib Component library and GTE boot-strapper
mem_mgr A simple linear-memory manager
id isp An interrupt dispatcher
sched A preemptive, round-robin, single-priority scheduler
scanner A simple code-scanner
xcp_mgr An exception manager
thread A component to represent a thread
video A console driver
keyb An interrupt-driven keyboard driver
c l i A basic command-line interface (that is, a simple shell)

Table 6.1: The component types comprising the Go! Test Environment

Note that the video, keyb and c l i  components are not so much part of the library OS, rather 

they represent 2 device drivers and a small application. The interface, design and implementation

of each of these components is described in detail in Appendix B.
7 Multiprogramming models that do not associate a stack with each thread of control (such as with continuations 

[29]) cannot maintain procedure-call state between context switches, and so will still be ‘thread-safe’ with this model.
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There follows a brief description of the three GTE components most interesting from a decom-

posed OS point of view: the memory manager, interrupt dispatcher and scheduler.

Memory Management in GTE

The GTE mem_mgr component provides memory management. Since GTE is a proof-of-concept 

system only, the mem_mgr is very simple, using a free-list implementation to manage free and 

allocated linear memory. The memory manager exports four methods: in s ta ll , create, destroy 

and u n insta ll, which correspond to the ORB methods of the same name. The memory manager 

allocates linear space on a create and releases it on the corresponding destroy. Only types 

installed with the mem_mgr’s in s ta ll  method may be created through its create method.

The in s ta ll  method forwards an installation request to the Go! ORB only after a successful 

pass by the scanner component, which implements the code scanning mechanism described in 

5.7.2. If the component calling in s ta ll  is known by mem_mgr to be one of the core GTE com-

ponents then privileged instructions are permitted (although the scan is still performed in order 

to properly manage I/O  port allocation). This way OS components can contain the privileged 

instructions necessary, including calls to privileged ORB methods. The mem_mgr can determine 

easily whether in s ta ll  was invoked by a core GTE component or an unknown (so untrusted) one 

using the ORB’s simple authentication mechanism (see Section 5.4.1).

Interrupt Management in GTE

Along with sched (the scheduler), id isp  is the most interesting component from a decomposed-OS 

point of view [67]. id isp  demonstrates nicely the decomposition of OS kernel services made pos-

sible by SISR. The id isp  component (interrupt dispatcher) is unique amongst operating systems: 

it is an application-level component that manages interrupts in their entirety, id isp  contains 

an interrupt-vector table in its data segment, and points the CPU’s interrupt mechanism at it. 

Because of Gol’s simple architecture, no special arrangements need to be made for the interrupt 

dispatcher. Since id isp  is a core GTE component, the scanner permits its use of the privileged 

instruction l id t .  This is used by id isp  to direct all interrupts to its own code segment. Because 

l id t  is a privileged instruction, untrusted components cannot install themselves as an interrupt 

dispatcher.

Other components can register an interest in a particular interrupt by calling id is p ’s attach 

method. The attach method takes a GTE thread to attach to a given interrupt vector. The thread
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is normally blocked; it is unblocked (via the sched component) on receipt of the relevant interrupt. 

The current implementation allows only one thread per interrupt vector, issued on a first-come 

first-served basis. Protection is maintained by having components that receive interrupts installed 

early in the boot sequence.

Preemptive Multithreading in GTE

The sched component provides preemptive multithreading. It does this by receiving timer inter-

rupts from id isp  (via an x fer), in response to which the state of the currently active thread is 

saved, and a new thread scheduled. The scheduler operates with interrupts disabled to ensure 

that it is only called by the interrupt dispatcher when it is ready.

The implementation of sched is somewhat intricate, and its interface is intertwined with 

id is p ’s. Note that despite the interfaces of sched and id isp  being mutually dependent, the 

implementations are properly separated.

On construction, a ‘scheduler-thread’ is created, and sched attaches this thread to itself so 

that its c l ic k  method will be called. The ‘scheduler-thread’ is then attached to the id isp  on 

vector 32 — the timer interrupt. This means that the c l ic k  method is called on each timer 

click (approximately 18.2 times per second). The c l ic k  method does nothing except x fer  to the 

id is p ’s intr_done method, which in turn xfers to sched’s b lock  method which chooses a new 

thread. The result is that each clock results in the currently executing thread being suspended, 

and a new one being scheduled. Therefore in response to a time interrupt: (1) the current thread 

is suspended; (2) the scheduler-thread is woken; (3) the scheduler-thread is suspended; (4) the 

next thread is resumed. This is shown in more detail in Figure 6.6.

O ut-going thread

i d i s p  s c h e d

__vec32_entry intr()
suspend! current ) 
presume ( handler )

A
clickf)

__1

xfer |

xfer
intr_done

xfer block() / 
block( current ) / 
resume! next!) )

:on^ng thread

Figure 6.6: sched and id isp  interaction

This mechanism results in extra temporal overhead due to the unnecessary resumption of the
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intermediate ‘scheduler-thread’ between thread switches. However, this mechanism means that 

the timer interrupt is handled just as any other interrupt. Furthermore, in a more complete system 

it is likely that sched’s c l ic k  method will perform useful work, such as checking for time-outs.

6.3.6 Summary of Section

GTE has done more than show that the Go! ORB is a suitable base for the construction of library 

operating systems. Its development demonstrated advantages in systems-software engineering — 

the system is decomposed into separate components giving benefits associated with modularity 

[76]. Most notably, during GTE’s evolution, modifications to a component’s behaviour were well 

isolated (that is, changes did not propagate throughout the system). Also, protection faults can 

be easily traced back to the offending component — the fine granularity of protection means the 

scope of the bug’s source is reduced, dramatically easing debugging.

Note that apart from a simple greeting message being displayed on start up, the Go! ORB has 

no requirement that it be run on the IBM PC (although an IA32 processor is presumed). GTE 

however is required to be run on an IBM PC, with components such as video, id isp  and keyb 

presuming PC-specific features. This is more evidence of the extent to which Go! is decomposed — 

even in the final binary images, which software components require the presence of which hardware 

components is clearly separated. That is, the ORB, sched, thread, comp_lib, scanner, xcpjngr 

and c l i  components are platform independent (although tied to IA32), while mem_mgr, id isp , 

video and keyb require the presence of an IBM-compatible PC.
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6.4 ORB Interface Overview
The ORB exports several methods used to manage components. Specifically, these methods are:

c to r  called by the multiboot [36] compliant boot-loader at boot time 

c a l l  call a given method on a given component (four ‘flavours’):

c a l l  call a given method on a given component, protecting the stack 
f - c a l l  ‘fast-call’ a given method on a given component, switching stacks 
t - c a l l  ‘trusted-call’ a given method on a given component without protecting the stack 
x fer  enter a given method on a given component (equivalent of goto; no return possible)

return return from the previous c a l l  (two ‘flavours’):

return return from the most recent ca ll , f - c a l l  or t - c a l l  
throw throw an exception

create create a new component instance of an installed implementation type

destroy destroy an existing component instance

in s ta l l  install a new implementation type

u n in sta ll uninstall an existing implementation type

lock  locks a component in the GDT cache (see Section 6.5.1)

unlock unlocks a component from the GDT cache (see Section 6.5.1)

switch_stack used to change the current stack (for example, when scheduling a new thread) 

get_stack used to get the component reference of the currently active stack (or other in chain) 

get_se lf returns the calling component’s reference 

get_type returns the reference of a given component’s type

set-type switch the type of a component (for use with hot-swapping implementations) 

set_desc used to manage the segment descriptor associated with a component 

fa u lt  this method must be called if the ORB causes a hardware protection fault 

lin ea r used to either give linear space to, or take free linear space from, the ORB

To provide a protected system, the code-scanner must consider most ORB methods privileged; 

user components must be forced to direct via the library operating system to call privileged ORB 

methods (see Section 6.3.4 for an example). The only ORB methods that are guaranteed to be 

safe for any component to call are the inter-component communication methods: ca ll ; f - c a l l ;  

t - c a l l ;  x fer; ret; and throw, as well as the read-only methods: get_se lf; get-type; and 

get_stack.
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6.5 ORB Implementation Details

This section gives an overview of the less obvious implementation techniques used to realise the 

Go! ORB. An overview of the main ORB data structures is given, along with a description of the 

ORB’s management of object references, dynamic memory allocation and hot swapping.

6.5.1 Object References

Section 5.3 describes a model in which each component instance can be identified by its data- 

segment selector, and each type by its code-segment selector. However, IA32 segment selectors are 

16 bit, of which only 13 are used are used to identify the segment. This means that a maximum 

of 8,191 segments (and therefore components) are addressable at any one time8 (selector 0 is 

reserved as the ‘null selector’). In fact, if a component’s data-segment selector is used to address 

it, significantly less than 8,191 components are available, since 2 segments are required for each 

type. This maximum number of components is likely to be insufficient for many systems, and so 

a mechanism must be found to extend this addressing. The solution employed is to associate a 

32-bit reference with each segment. This reference (known as an ObjRef9) is independent of the 

component’s data-segment selector. In effect, the GDT (Global Descriptor Table — the IA32’s 

segment descriptor table) becomes a cache of up to 8,191 segment descriptors.

The ORB maintains a table known as the Component Descriptor Table (CDT), which contains 

all ObjRefs in the system. The CDT maps ObjRefs to selectors — the relevant selector if the 

given ObjRef is valid and cached in the GDT; an invalid selector otherwise. The entries indicating 

that an ObjRef is uncached or invalid are chosen so that attempting to load a segment register 

with a segment not cached in the GDT results in a hardware protection fault. The ORB responds 

to faults triggered by ObjRefs not cached in the GDT by retrying the operation after loading 

the relevant ObjRef into the GDT. If necessary, ObjRefs are rejected from the GDT (currently 

using a FIFO policy). Faults due to a component’s attempted use of an invalid ObjRef (rather 

than a valid but uncached one) result in the ORB throwing an xcp_orb_noref exception to said 

component (see Section 6.3.3). Further details are presented in [66].

Figure 6.7 shows an example GDT and CDT, and an example translation for ObjRef 2. ObjRef

2 points at the third entry in the CDT. The third entry in the CDT contains selector 5, indicating
®The use of Local Descriptor Tables would double this, but LDTs are not relevant to SISR’s ‘selector as a 

capability’ model.
9ObjRefs are used to identify all segments in the system (for example, types are identified by their code segment’s 

ObjRef), hence the term ObjRef and not CompRef.
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Figure 6.7: 32 bit ObjRefs with 16-bit selectors

that this ObjRef is cached in the GDT at entry 5. That is, the CDT shows that ObjRef 2 maps 

to selector 5. The diagram also shows that 2 other segments are cached in the GDT, with ObjRefs 

1 and 4. ObjRefs 0 and 5 are invalid, since their selector fields in the CDT are FFFFh. ObjRef 3 

is valid but not cached in the GDT, since its selector field in the CDT is FFFEh. Note that the 

component’s data-segment descriptor from the GDT is duplicated in the CDT. This allows the 

descriptor to be reloaded into the GDT when an an ObjRef not cached in the GDT is referenced. 

Note also that invalid entries in the CDT shown in Figure 6.7 have their descriptor field undefined, 

as do unused entries in the GDT. This is because there are no circumstances under which these 

descriptors will be referenced.

In the above example, when the component referenced by ObjRef 3 is accessed, the ORB 

will attempt to load the data segment register with FFFEh (ObjRef 3’s selector field in the CDT). 

FFFEh is an invalid selector, so this will cause a hardware-protection fault, which will be received by 

whatever component is responsible for interrupt management. On noticing that the fault occurred 

in the ORB’s code-segment (selector 8) the interrupt-management component must call the ORB’s 

fa u lt  () method. In response, the ORB copies the component’s data-segment descriptor from the 

CDT to a free entry in the GDT, rejecting ObjRefs from the ‘GDT cache’ as necessary.

Assuming the ObjRef is cached in the GDT, using the CDT in this way means that adding a 

level of indirection and using 32-bit ObjRefs is actually faster than identifying components by their 

16-bit data-segment selectors as suggested in Chapter 5. This is because identifying components 

by their data-segment selector requires that the selector be validated before use; this validation 

requires a (potentially expensive) conditional branch. Replacing this conditional branch with an 

indirect load and hardware-protection check is faster in the common case (that is, when the ObjRef
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is both valid and cached in the GDT). See Section 7.2.5 for exact figures.

This ‘trick’ works because IA32 is limited to 8,191 segment selectors, but there is no such limit 

on the number of descriptors (up to 263 distinct descriptors are available).

64-bit ObjRefs were considered, but the idea was rejected because the benefits (simpler dis-

tributed object management) were not seen to outweigh the costs (more complicated and expensive 

communication in the general case).

The technique of using selectors designed to trigger a hardware-protection fault rather than 

use a software-check with conditional branch is also used to eliminate the check for an attempted 

return-to-zombie (see Section 6.3.2). That is, to optimise the common case (the caller not being 

a zombie during an RPC return) zombies’ data segments are invalidated. This means that any 

attempt to return to a zombie will cause a protection fault when the zombie’s data segment is 

loaded. The ORB responds to this by throwing an xcp^orb_zombie exception.

Because a given segment is identified by different selectors at different times, care must be 

taken never to load a data-segment register directly from a selector, but always via the CDT. This 

means that selectors must never be cached in memory or general-purpose registers. For example, if 

ORB methods were to push the caller’s data-segment selector onto the stack at the beginning and 

pop them at the end, while the segment-selector is stored on the stack the segment that selector 

identifies might change (due to its rejection from the GDT). This applies equally to the ORB and 

components such as schedulers that might wish to load segment registers (even via a TSS switch 

[52]). Unfortunately, the IA32 instruction-set makes it impractical to always load code-segment 

selectors via the CDT. This means that any scheduler component must take care to lock code 

segments in the GDT when they are preempted.

6.5.2 Component Descriptor Table

The Component Descriptor Table (CDT) records information on all component instances, types 

and initial data segments. The CDT is indexed using ObjRefs, hence instances, types and intial 

data segments all share a common namespace10. Each entry in the CDT contains more than just 

the selector and descriptor fields shown in Figure 6.7. In the current implementation, each CDT 

entry contains the following fields:

10Note that namespace does not refer to textual names, rather numeric identifiers.
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se l The 16 bit selector of the associated segment if this ObjRef is valid and cached in the GDT. 

If the ObjRef is invalid, this field contains FFFFh. If the ObjRef is valid but not cached in 

the GDT, this field contains FFFEh. If the ObjRef refers to a ‘zombie’ component, this field 

contains FFFCh.

ref^type If this ObjRef refers to a component instance, this is the 16 bit selector of the com-

ponent’s code segment if it is cached in the GDT, or FFFEh if uncached. If this ObjRef is 

invalid, this field contains FFFFh. This field contains FFFDh if the ObjRef refers to a type, 

and FFFBh if it refers to a type’s initial-data segment.

descr The 64 bit descriptor of the ObjRef’s associated segment. When the segment is cached, 

this field is duplicated in the GDT.

mtable If this ObjRef refers to a component instance or a type, this is the 32-bit offset of the 

component’s method table within the ORB’s data segment. If the component is of type 

stack, this field is overloaded to contain the address of the stack’s stack_descriptor (see 

Appendix A.5).

mcount A duplicate of the component’s 32-bit method count (also stored in the component’s 

method table).

call_count The number of times the current component has been called, but has not yet issued 

a return or x fer  (that is, the number of threads active within the component). If this 

ObjRef refers to a type, this field contains the amount of zero-initialised data the type 

contains (that is, the size of the type’s BSS).

gdt_lock A 32-bit integer that counts the number of request to lock the component in the GDT. 

A non-zero value means that the component’s selector will not be eligible for rejection from 

the GDT. However, a non-zero value does not guarantee that the selector is present in the 

GDT (that is, a gdt_lock can be taken without the ObjRef being cached in the GDT — it 

just ensures that if already cached, it will not be rejected).

typenref If this ObjRef refers to a component instance, this field is the pointer to the CDT 

entry of the instance’s type. If this ObjRef refers to a type, this field is the type’s initial 

data segment ObjRef (or zero if the type has no initial data). If this ObjRef refers to an 

initial data segment, the field contains FFFFFFFFh.
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6.5.3 ORB Memory Management

Since it is desirable to allow an arbitrary number of components to be created, the CDT must 

be free to grow and shrink dynamically. Furthermore, in order that CDT look-ups are optimally 

fast (in order to keep RPC overheads low) the CDT needs to be a simple, one-dimensional array. 

Therefore the CDT starts at the lower addresses in memory, and grows upwards. Components 

should be allocated from the top of linear memory, towards lower addresses (although the details 

are the responsibility of the library OS) — any attempt to create an instance that will overlap 

with the CDT will result in an xcp_orb_nomem exception being thrown. The ORB also needs 

certain dynamic structures (see below). Since memory management is delegated to the library 

operating system that sits on top of the ORB, the ORB requests dynamic memory by throwing an 

xcp_orb_nomem exception (see Section 6.3.3). The library operating system’s component respon-

sible for managing linear memory must intercept this exception (see Section 6.3.2 for details on 

exceptions and their interception). The library operating system can then determine how much 

memory is required by the ORB by calling the exception’s in fo  method, and then allocate a 

suitable range by calling the ORB’s lin ear method.

As mentioned above, potentially expensive conditional branches are avoided by arranging that 

loading an uncached or invalid ObjRef’s descriptor into a segment register will trigger a hardware 

protection fault. If loading any invalid ObjRef is to fault, the ORB’s data segment must implement 

bounds checking on the CDT. This is done by matching the size of the ORB’s data segment to the 

size of the CDT. However, the ORB’s data segment also needs access to memory outside of the 

CDT. For this reason, the ORB has two data segments: one covering the CDT, and one covering 

all linear space. This is illustrated in figure 6.8: the ‘static’ data segment covers the CDT and 

ORB static data only, whereas the ‘dynamic’ data segment covers all linear space11. Since the 

‘static’ data segment ends at the top of the CDT, the ORB can avoid checking that an ObjRef does 

not refer to a location that is out of bounds, instead relying on the hardware’s segment-protection 

mechanism. This is shown in Figure 6.8.

Note that if the ObjRef used to index the CDT is negative, an out of bounds access on the 

CDT might still go undetected. To avoid this, the top bit of an ObjRef is cleared before it is used 

to access the CDT: only the bottom 31 bits of an ObjRef are significant. In fact, because each 

CDT entry is 32 bytes wide, only the bottom 26 bits are significant on the current implementation.

Since this number is implementation dependent, the ORB interface guarantees that at least the *
n The ORB starts at linear address 1MB. However, the ORB ‘dynamic’ data segment wraps round to cover the 

lower 1MB too.
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Figure 6.8: Management of linear memory

bottom 24 bits of an ObjRef will be significant, giving a maximum of approximately 16 million 

ObjRefs.

Inter-component RPCs require access only to the CDT and static data (except for t-call; see 

Appendix A.3.1). This means that only the ‘static’ data segment need be loaded during a call, 

saving several cycles. The exception to this is that access is required to the callee’s method table, 

which is dynamic data. However, the method table is accessed only as part of the final jump 

into the callee’s code segment. This requires a segment override12 anyway since the data segment 

register contains the callee’s data segment selector at this point (see Section 5.4.1 for details).

6.5.4 Dynamic Implementation Replacement (Hot-Swapping)

The simple architecture of Go! makes hot-swapping almost trivial. The ORB’s set_type method 

simply destroys the component identified by the given reference, and instantiates a component of 

a new type on the same reference. It is left to the library operating system (or whatever manages 

hot-swapping) to ensure that the new type’s interface is compatible with the old one, and manage 

transfer of state between implementations. This is consistent with the rest of the Go! ‘philosophy’ : 

Go! provides only the infrastructure necessary to implement the more complicated primitives at 

higher levels.
12A segment override refers to use of a segment other than the default data segment.
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The only slight difficulty with realising set_type is that threads might be executing ‘inside’ the 

outgoing component. This includes threads that have left the component through an RPC and are 

yet to return, and threads that are blocked. As mentioned before, the ORB is unaware of threads 

per se. However, the ORB maintains a ca ll-count for each component that is incremented on 

each call and decremented on each return. This count therefore specifies how many threads are 

active in said component, including those threads that have left through a nested call and are yet 

to return. It is normally only possible to switch implementations when this call_count field is 

zero.

There are three policies if the ca ll-count of the outgoing implementation is not zero when 

set-type is called:

W eak Do nothing — the hot-swapping mechanism will simply wait and try again at some later 

time in the hope that call_count will then be zero.

Strong Block all incoming calls. The component’s method-count field is set to zero, meaning that 

future calls will result in an exception being thrown. The hot-swapping framework can inter-

cept such exceptions and block the threads that triggered them. When the implementation 

is swapped the call that generated the exception can be retried.

Brutal Replace the implementation, regardless of the ca ll-count. This is not safe in the 

general case. However, the hot-swapping mechanism or programmer may know that a swap 

will be safe, and so wish to force the switch anyway. Note that since set_type is a privileged 

ORB method (that is the code scanner prevents untrusted components calling set_type) 

this does not represent a protection flaw.

set-type therefore consumes three arguments: the reference of the component instance whose 

type is to be switched, the reference of the new type, and the policy (weak, strong or brutal).

6.6 Summary

This chapter has given an overview of Go!. Specifically, the programming-model, component- 

model, ORB interface and ORB implementation have been examined.

Go! presents programmers with a significantly different model than do conventional operating 

systems. Perhaps most notably, the kernel is replaced by an ORB managing components. The 

ORB does not offer any of the services usually associated with kernels (even very minimal systems
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such as exokernels). Instead, Go! provides a component architecture and infrastructure. All 

services, including OS services, are implemented by components that reside within this framework.

Go! provides for protection using SISR, the novel protection model presented in Chapter 5. The 

ORB is minimal and lightweight, yet complete; and has shown that this new protection model can 

be used to implement efficient and elegant solutions. Delegating behaviour traditionally associ-

ated with operating systems to library operating systems provides the improved systems-software 

engineering, performance, dynamism and configurability outlined in Section 2.3. To complete the 

proof-of-concept, such a library operating system (known as GTE) has been constructed.

101



Chapter 7

Experiments

7.1 Introduction

Chapter 6 documented the development of Go! and GTE. In effect, the development of Go! and 

GTE was an experiment in itself (the results of which demonstrated that development an OS with 

protection based on SISR is practical). This chapter documents experiments more specific than 

this ‘proof-of-concept’ .

There are three types of experiments presented here: temporal performance, space requirements 

and stability. Temporal performance measures the time taken to perform various operations. Space 

requirements document how much memory various components and operations require. Stability 

is measured by a ‘stress test’ , designed to load the system heavily, with the intention of exposing 

any bugs.

Most temporal experiments are ‘micro-benchmarks’ — that is, they measure specific, limited 

operations of the ORB. Wider benchmarks are not used for two reasons. Firstly, the focus of this 

work is about providing a lightweight protection model: the performance of a protection model 

itself is most accurately measured through micro-benchmarks. Secondly, since Go! is a proof-of- 

concept system only, it is not complete enough to run more wide-ranging benchmarks such as the 

time taken for a compilation or to service an HTTP request.

There are two figures for each temporal performance measurement: best case and worst case. 

The best-case results measure the time taken when all memory references hit the level-1 cache 

and branches are in the ‘Branch-Target Buffer’ (that is, branch-prediction succeeds). Worst-case 

measurements are made immediately after the cache and branch-target buffers have been flushed.
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No average-case timings are given, because what constitutes an average case depends on Gol’s use. 

Assuming high cache-hit rates and branch-prediction success, the average case can be assumed to 

be close to the best case.

All experiments on Go! were conducted on an Intel Pentium P54C running at 90 MHz, with 

32 MB of 90 ns EDO DRAM. The P54C uses 8I< two-way set-associative caches for both code 

and data. All results are in machine cycles, measured using the Pentium’s rdtsc instruction (an 

instruction intended specifically for obtaining cycle-accurate measurements for help with micro-

benchmarking).

In addition, some experiments were conducted to measure the cost of the code transformations 

necessary to allow code containing variable-length instructions to be scanned (as outlined in Section 

5.7.2). Unlike other experiments, these were not conducted on Go! since they are not measuring 

operating system performance.

7.2 ORB Performance

This section documents experiments carried out on the ORB, and their results. The temporal 

performance is measured for all ORB methods. For the more ‘interesting’ ORB methods, temporal 

performance is predicted and compared against the measurements. These ‘interesting’ methods 

are those that are core to the protection model — more specifically the times required for context 

switching (that is, call/return, f-call/return, t-call/return and xfer). The performance 

of those ORB methods needed for completeness only (for example, get_self and switch_stacks) 

is not so interesting in the context of this work, and so only measured results are reported in the 

interests of conciseness.

The performance of the RPC call and return operations is documented first. Then RPC 

optimisations are documented along with exception-throwing latencies, followed by the costs of 

a ‘GDT miss’ . Finally, for completeness, a full list of measured performance for all other ORB 

methods is presented.

7.2.1 RPC Latency

The most important performance characteristic of a protection model aimed at supporting fine-

grained protection with high performance is the ‘null-RPC time’. This is the time taken to call a 

method on a server component that takes no inputs, performs no work and produces no outputs:
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only the overheads of crossing protection boundaries are measured.

As detailed in Section 6.3.1, there are several ways a client may call a method on a server. 

Recall that the x fer  operation is one-way only, hence the x fer  experiment measures only the 

time to x fer  to a method on another component, not to return. The results for c a l l , t - c a l l  

and f - c a l l  report round-trip latencies: the time taken to invoke the callee’s method and return 

to the caller.

This section gives the theoretical performance of null-RPC followed by the measured perfor-

mance. The theoretical performance is calculated by decomposing the operation into its con-

stituent parts, and using the Intel Pentium Optimisation Manual [53] to obtain the documented 

cycle counts for each operation. Note that for simplicity’s sake, processor implementation com-

plexities such as dual dispatch, data dependencies and pipeline stalls are not taken into account 

(hence the theoretical performance is not a theoretical maximum performance).

The theoretical and measured results are compared and reasons are suggested for any significant 

discrepancies.

Theoretical Perform ance

As outlined in Section 5.4.1 there are 11 steps to issuing a call and 7 steps to return (although 

the algorithm here changes slightly, due to the CDT and ObjRefs — see Section 6.5.1). Table 7.1 

gives estimated cycle counts for each step. Similarly, Table 7.2 shows the theoretical performance

Operation Cycles
load ORB data-segment selector into the data-segment register 3
push caller’s reference onto the stack 2
increment callee’s call-count 3
validate callee method number is within callee’s method count 2
push details of previous call onto the stack (e.g. previous stack size) 5
shrink stack by manipulating segment-descriptor tables 12
increment call-depth associated with current stack segment 3
look-up target code segment and offset in method table 2
load callee data segment into the data-segment register via the CDT 4
place caller ObjRef in general-purpose register (authenticate) 1
jump into callee code segment at offset indicated by method table 3
total 40

Table 7.1: Theoretical performance of the c a l l  primitive.

of the return primitive when used to return from a c a ll . This gives a total of 77 cycles for a 

ca ll/re tu rn  pair. To predict the complete null-RPC time one must simply add this figure to the 

time taken for the caller and callee to enter the ORB (that is, the time taken for the inter-segment

104



O peration Cycles
load ORB data-segment selector into the data-segment register 3
determine type of return (assuming return from c a ll) 4
re-grow stack by manipulating segment-descriptor tables 12
pop details of previous call from stack (e.g. previous stack size) 5
decrement call-depth associated with current stack segment 3
decrement callee’s call-count 3
pop caller’s ObjRef from the stack and load data segment via the CDT 4
issue an inter-segment return, returning control to caller 3
total 37

Table 7.2: Theoretical performance of a return from a ca ll .

jumps to the ORB’s c a l l  and return routines). Intel documents inter-segment jumps at taking 

3 cycles each on a Pentium, giving a predicted null-RPC overhead of 83 cycles.

The measured latency for best-case null-RPC round-trip is somewhat higher than the predicted 

performance, at 252 cycles. This is considerably worse than predicted, mainly due to the two stalls 

caused by writing to the GDT (see Section 6.3.1).

7.2.2 RPC Variations and Optimisations

As mentioned in Section 6.3.1, Go! provides several variations on the standard RPC c a l l  primitive: 

f - c a l l ,  t - c a l l  and x fer. This section presents the predicted and actual temporal performance 

of these primitives.

P redicted  f - c a l l  Latency

The algorithm and associated cycles for f - c a l l  are given in Table 7.3. Table 7.4 gives the the-

O peration Cycles
load ORB data-segment selector into data-segment register 3
push caller’s ObjRef onto the stack 2
increment callee’s call-count 3
validate method number is within callee’s method count 2
push details of previous call onto the stack (e.g. previous call-depth) 5
find the ‘next’ stack in chain 3
switch to the next stack in chain 6
place caller’s ObjRef into a general-purpose register (authenticate) 1
look-up callee’s method table 2
load callee’s data segment into data segment register via the CDT 4
jump to callee’s entry point 3
total 34

Table 7.3: Theoretical performance of the f - c a l l  primitive.
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oretical performance of a return from an f - c a l l .  This gives a total of 71 cycles for null-RPC

O peration Cycles
switch to ORB’s data segment 3
determine type of return (assume return from f - c a l l ) 2
find ‘previous’ stack in chain 4
switch to ‘previous’ stack in chain 7
pop details of previous call from stack (e.g. previous stack size) 5
decrement callee’s call-count 3
pop callee’s ObjRef from the stack, and load data segment via the CDT 4
issue inter-segment return to caller 3
total 31

Table 7.4: Theoretical performance of a return from an f - c a l l .

using f - c a l l  (including the 6 cycles required to enter the ORB at its f - c a l l  and return entry- 

points). f - c a l l ’s measured latency is 73 cycles. These slight differences can be attributed to the 

subtleties of running the tests on real hardware, such as dual dispatch and inter-instruction data 

dependencies).

t - c a l l  P redicted Latency

The t-call operation is similar to ca ll , except that the callee’s stack is not protected. However, 

some protection is still necessary in order to prevent a component called with t - c a l l  returning 

to an arbitrary location in another component. Table 7.5 gives the theoretical performance of 

the t - c a l l  operation. Table 7.6 gives the theoretical performance for a return from a t - c a l l .

O peration Cycles
load ORB data-segment selector into data-segment register 3
push caller’s ObjRef onto the stack 2
increment callee component’s call-count 3
validate caller ObjRef and method number 4
obtain element for ‘t-call list’ to record return information 15
record return information and link element into the stack’s t-call list 10
increment call-depth associated with current stack segment 3
look-up callee’s method table 2
place caller ObjRef in general-purpose register (authenticate) 1
load callee’s data segment into data-segment register via the CDT 4
jump to callee’s entry point 3
total 50

Table 7.5: Theoretical performance of the t - c a l l  primitive

Including the 6 cycles required to enter the ORB by the caller and callee, this gives a total of 101 

cycles: not signficantly different from the measured performance of 96 cycles.
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O peration Cycles
load ORB’s static-data-segment selector into the data-segment register 3
determine type of return (assume return from t - c a l l ) 4
restore the return information stored in element from ‘t-call list’ 10
free the return element to ORB’s internal memory 15
decrement callee’s call-count 3
decrement the call-depth associated with the current stack 3
pop callee’s ObjRef from the stack, and load data segment via the CDT 4
issue inter-segment return to callee 3
total 45

Table 7.6: Theoretical performance of a return from a t - c a l l .

x fe r  P redicted  Latency

The x fer  primitive has relatively little work to perform since no stack protection or recording of 

return information is necessary. The algorithm and associated costs are shown in Table 7.7.

O peration Cycles
load ORB’s static-data-segment selector into the data-segment register 3
validate method number within callee’s method count 2
decrement caller component’s call-count 3
increment callee component’s call-count 3
look-up callee’s method table 2
place caller’s ObjRef in general-purpose register (authenticate) 1
load callee’s data segment into data-segment register via the CDT 4
jump to callee’s entry point 3
total 21

Table 7.7: Theoretical performance of the x fer  primitive.

This is a total of 21 cycles, plus 3 cycles required to enter the ORB (once), giving a predicted 

latency of 24 cycles. Again, not significantly different than the measured latency of 28 cycles.

7.2.3 Control-Transfer Measurements

To summarise, the various control-transfer primitives’ latencies are presented in Table 7.8.

Primitive Worst Case (Cycles) Best'Case (Cycles)
ca ll/re tu rn 1859 252
t -c a l l /r e tu r n 1693 96
f -c a l l /r e tu r n 1091 73
x fer 738 28

Table 7.8: Summary of null-RPC times using the various primitives offered by Go!

Note that despite not providing protection, t - c a l l  is still slower than f - c a l l .  This is because
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t - c a l l  must ensure that control returns to the appropriate component, while not protecting the 

stack (which means that the ORB must store the return address internally).

7.2.4 Exception Latency

As detailed in Section 6.3.2, Go! supports software exceptions. Throwing an exception is much 

like issuing an RPC return, except that control does not return normally, but via interrupt vector 

30h.

The results for throw measure the time taken between throwing the exception, and receiving 

the interrupt. However, since this involves unwinding the stack, the time will depend on what 

type of call was last issued (ca ll, f - c a l l  or t - c a l l ) .  For this reason there are three pairs of 

results for throw: one for each type of call. Table 7.9 shows the time overheads for throwing an 

exception predicated on whether a c a ll , f - c a l l  or t - c a l l  was most recently used.

Last Call Worst Case (Cycles) Best Case (Cycles)
c a ll 465 116
f - c a l l 318 63
t - c a l l 409 86

Table 7.9: Measured exception latencies depending on the most-recent call primitive.

7.2.5 GDT miss

It is reasonable to assume a high hit-ratio of components cached in an 8K slot GDT (although 

exact figures will depend on the application). Still, it is important to ascertain the penalty for 

a ‘cache miss’ (that is, the penalty involved when invoking a method on a component with its 

data-segment descriptor not cached in the GDT). It is even more important that the scheme does 

not adversely affect the inter-component method call latency when a component’s data-segment 

descriptor is cached in the GDT (that is, the common case).

The experiments examine the time taken to transfer control between two components using 

Go!’s x fer  primitive [68]. Three experiments were conducted: one for an implementation using 

data-segment selectors to identify components (as suggested in Chapter 5), and one each using 26 

bit Obj Refs (as described in Chapter 6), where the callee-component’s data-segment descriptor

was and was not cached in the GDT1. Table 7.10 presents the results. The experiments show *
The caller component will always be in the GDT since its data-segment selector is loaded into the data-segment 

register.
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Primitive Time (Cycles)
Using 16 bit selector 30
Using ObjRef cached in GDT 28
Using ObjRef not cached in GDT 1080

Table 7.10: The overheads of extending the GDT using the CDT.

a hit of around 30 fold when a call is made on a component with its data segment not cached 

in the GDT. Given that taking a miss on the GDT is analogous to taking a page-miss on a 

virtual-memory system, the miss penalty is quite acceptable (as with virtual memory systems, 

components with critical or sensitive performance can be locked in the GDT). More importantly, 

indirecting ObjRefs via the CDT does not affect performance in the common case (other than a 

slight improvement!).

7.2.6 Other ORB Methods

This section presents the times taken for all other ORB methods. Where the time is dependent 

on the parameters, the time is taken for the least amount of work possible. For example, create 

implicitly calls a component’s constructor: times are given where the constructor performs no work 

other than issuing an RPC return. This way the results measure the impacts of Go!’s protection 

model, rather than (say) the performance of copying large amounts of data. Table 7.11 gives a 

complete list of the measured overhead of each ORB method.

7.2.7 Comparison with other OSs

To set the results of the experiments outlined above in context, they are compared to similar 

experiments conducted on other operating systems. Unfortunately, Go!’s novel architecture means 

that most ORB methods do not have direct equivalents in other operating systems. However, most 

systems do support intra-machine RPC and one-way cross-protection-domain communication, 

enabling comparison of Go!’s c a l l  and x fer. Also, Go!’s g e t .s e lf  operation is analogous to 

UNIX’s get_pid.

Go!’s performance was compared with the following OSs’: Linux (an example of a widely used, 

commodity OS), Mach (an example of a first-generation /¿-kernel), Pebble (an example state-of- 

the-art, component-based OS), and L4 and the Xok exokernel (two other example state-of-the-art 

research systems). While this list is obviously not exhaustive, it includes at least one example of 

all the main categories (it also includes the three fastest kernels the author is aware of).

10 9



Operation Worst Case (Cycles) Best Case (Cycles)
create 2795 673
create (null component) 1247 131
create (unlinked stack) 2065 320
create (linked stack) 2657 416
destroy 2043 522
destroy (null component) 1509 289
destroy (unlinked stack) 1811 444
destroy (linked stack) 2110 497
in s ta ll 2298 965
u n in sta ll 564 187
g e t .s e lf 435 17
get_type 524 22
get_stack 650 22
switch_stacks 641 34
lock 560 29
unlock 650 28
se l2 re f 432 23
r e je c t 337 23

Table 7.11: Measured cycles-counts for every ORB method.

Figures have been taken from various publications [86, 29, 32, 38, 74], as well as experiments. 

When possible, the same hardware is used (that is, where available, results are taken for the 

Pentium). However, such figures are unavailable for Mach and Pebble. Figures for OSs running 

on different platforms are still useful, since they provide a comparison for ‘orders of magnitude’. 

The only non-Intel OS that gets within an order of magnitude of Go! is Pebble. However, it is 

likely that Pebble would take significantly longer on the Intel, since for a one-way IPC L4 takes 

just 86 cycles on the MIPS R4600, but 121 cycles on the Pentium (Pebble takes 114 cycles on the 

MIPS R5000).

The best-case of Go!’s figures are taken, since the figures taken for other systems are best-case 

too. Null-RPC corresponds to an f - c a l l /r e tu r n  pair for Go!, ‘one-way xfer’ corresponds to the 

lowest time for cross-domain communication in each system (x fer for Go!). Table 7.12 presents 

the timings obtained for Go! and other OSs.

OS Platform Null RPC (Cycles) xfer (Cycles) get-pid (Cycles)
Linux Pentium 42,750 3,990 225
Xok Pentium 4,440 N/A 176
Mach 2.5 MIPS 3,000 1,600 276
L4 Pentium 288 121 N /A
Pebble MIPS N /A 114 N /A
Go! Pentium 73 28 17

Table 7.12: Temporal overheads of Go! with comparison to other OSs.
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Table 7.12 shows that a null-RPC on Go! out-performs commodity systems by around almost 

3 orders of magnitude, and the fastest, state-of-the-art research systems around four-fold.

7.2.8 Spatial Performance

The ORB uses very little memory. Perhaps most impressive is the space required per component: 

just 32 bytes overhead (the CDT entry). This is around two orders of magnitude improvement 

over traditional, page-based protection models.

The ORB itself is also small. The code section is just 12K, with 2K of static data. The size 

of the ORB’s data segment depends mostly on the size of the GDT (configurable at compile time 

from IK to 64K). The larger the GDT, the fewer selector misses will be incurred — this is a 

conventional trade-off of space against time.

7.3 GTE Performance

Unlike the Go! ORB, GTE has not been aggressively optimised. Given the number of GTE 

operations, and that most have not been optimised, an extensive break-down of the timing for each 

GTE method would be laborious and of little interest. Instead, this section presents experiments 

that look at performance in a wider context, such as scheduling or code scanning overhead. The 

size of each GTE component is also given, to give an idea as to the granularity with which GTE 

is decomposed.

7.3.1 Component Sizes

As mentioned, GTE consists of 10 distinct components. This section lists the code size, data size, 

and BSS size for each component. Code size corresponds the number of bytes a component’s code 

segment consumes, data size is the amount of statically-initialised data, and BSS the amount of 

zero-initialised data. Table 7.13 presents the size of each component.

7.3.2 sched overhead

Each timer interrupt schedules a new thread, resulting in the interaction of 7 distinct components 

(the outgoing and incoming thread and stack components, the interrupt-dispatcher, the scheduler 

and the ORB). Contrasting this with conventional systems (including //-kernels) that incorporate
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Component Code (bytes) Data (bytes) BSS (bytes)
comp_lib 5,664 1,742 0
mem_mgr 2,432 704 232
id isp 6,912 944 832
sched 3,040 512 196,656
scan 4,288 3,488 1,067,616
xcp_mgr 560 240 0
thread 176 128 16
video 1,344 80 0
keyb 1,056 288 80
c l i 13,974 800 3,200

Table 7.13: The Size of Each Component Type

these 7 distinct components into a single entity (namely, the kernel), it is clear that this approach 

might incur performance problems due to the increased context switching.

An experiment was conducted to assess whether the decomposition of scheduling introduces 

unacceptable overhead. The experiment was conducted with two runnable threads, operating 

with interrupts disabled. A timer interrupt was simulated by issuing an in t 32 instruction from 

the first thread, and the time was measured for the second thread to receive control. Using the 

Pentium’s rd tsc instruction to count processor cycles, this time was found to be just under 2,500 

cycles.

With a timer-interrupt frequency of 100 ticks per second, this is an overhead of less than 

0.3% on the 90MHz test machine used. Furthermore, relatively little of this overhead can be 

attributed to the decomposition. Firstly, the single interrupt causes two threads to be scheduled 

(the scheduler-thread, as well as the second runnable thread), it would be trivial to reduce this to 

just one. Secondly, for simplicity the current implementation uses the Intel’s TSS hardware-task- 

switching mechanism, known to perform poorly (most commodity OSs save and restore context 

purely in software). Thirdly, the scheduling code generally is not heavily optimised. Implementing 

these three optimisations is likely to reduce significantly this already small overhead.

7.3.3 Code Scanner

As mentioned in Section 5.7.2, code scanning on architectures with variable-length instruction 

sets is non trivial. Table 7.14 shows the time taken to scan all components within GTE. Table 

7.14 shows that as predicted, the code-scanner has linear complexity, at approximately 90 cycles 

per byte of code scanned. The cycles per byte measurement is less variable than the cycles 

per instruction count, since scan runs are issued from 8-byte offsets, regardless of how many
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Component Bytes of Text Instructions Cycles per Byte per Instruction
thread 176 56 16,088 91 287
stress 192 53 15,834 82 298
xcp_mgr 784 252 65,709 83 260
keyb 1056 366 97,511 92 266
video 1,344 422 118,855 88 281
mem_mgr 2,432 753 255,465 92 339
sched 3,040 901 274,989 90 305
id isp 6,921 2,374 633,330 91 266
e l i 13,794 3,816 1,185,377 86 310

Table 7.14: Scan Times of the Various GTE Component Types.

instructions are actually present. That is, the same piece of binary code will contain different 

numbers of x86 instructions depending on at what offset code is considered to start.

7.4 Stability

To measure the overall system’s stability, a stress-test was conducted. This test consisted of 

creating 1,000 instances of a stress component, and 1,000 threads. Each stress component 

either called into one of the others using c a ll , f - c a l l ,  t - c a l l  or x fer, or returned (the choices 

are made randomly). When stack space was low a return was forced to prevent stack overflow.

Note that ‘random’ in this context obviously means pseudo-random: the lower bits of the sum 

of the cycles elapsed since reboot are used. This is known to be a poor general-purpose pseudo-

random number generation algorithm, but is “good enough” in this context. Furthermore, to 

produce genuinely random (and asynchronous) stimuli, key-presses were generated and processed 

at various times during the test.

This stress test was run for 4 days without failing (the choice of 4 days is somewhat arbitrary, 

but certainly long enough to give some confidence in the stability of a prototype system). Note 

that the test did not fail after 4 days, but was terminated.

The stress test is important because it shows that performance figures can be taken seriously 

— bug fixing of the critical paths would likely adversely affect performance.

7.5 Dynamism

An experiment was conducted to demonstrate Gol’s suitability for dynamic implementation re-

placement. That is, replacing a component’s implementation for a new one with minimal inter-
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ruption of said component’s service.

As stated in Section 2.3.4, supporting the transfer of state during the evolution of a component 

is not a goal of this work. However, the component framework must support the hot-swapping 

of implementations, and allow the programmer or layers above to handle the transfer of state. 

Therefore, it must be possible to ‘hot-swap’ components on top of Go! As a demonstration of 

this, GTE’s keyb component (which has UK layout) was dynamically replaced by a version for 

US layout keyboards.

7.6 Code Scanning and Variable-Length Instructions

As mentioned in Section 5.7.2, code scanning is non-trivial for variable-length instruction sets, but 

the problem can be overcome by inserting a few instructions into the code at compile time. This 

allows the code scanner more easily to verify that code containing variable-length instructions will 

not execute privileged instructions, even in the light of indirect jumps.

Obviously, such insertion of instructions will have adverse impacts on code size and speed. The 

final cost of this will depend on the program being modified — a program with a large number of 

indirect jumps will be more affected. To obtain the approximate costs, the Dhrystone benchmark 

[111] was performed with and without application of the modifications described. Dhrystone 

was chosen because it is a well-known yet relatively simple test that models typical code use, 

incorporating function calls and switch statements. The benchmark was run on an Intel Pentium 

III with 128MB of SDRAM running Linux2.

Table 7.15 gives the “Dhrysontes per Second” for the modified and unmodified Dhrystone 

benchmark — that is, the temporal overhead of the modifications is measured for typical code.

GCC Optimisation Modified Code Unmodified Code Slowdown
Off
On (-02)

616,649
871,912

636,942
920245

3.2 %
5.3 %

Table 7.15: Temporal overheads of modifications for CISC code-scanning.

Table 7.16 shows the spacial overheads incurred by the Dhrystone benchmark when it is mod-

ified for use with code-scanning. Sizes are in bytes.

The results in Tables 7.15 and 7.16 show that code modified so as to enable code-scanning on
2Note that it was not necessary that this experiment was run on Go! (or any other particular system) since 

measurements were obtained using a single process only —  that is, the operating system code was not being 
benchmarked; only “application code” . The Linux platform was chosen for convenience only.
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GCC Optimisation Modified Code Unmodified Code Increase
Off 9,908 9,492 4.4 %
On (-02) 8,840 8,488 4.1 %

Table 7.16: Spacial overheads of modifications for CISC code-scanning.

architectures with variable-length instructions incurs low overheads.

Even so, atypical code may incur worse penalties when modified for use with code-scanning. 

In such cases, it will still be possible to run those particular code sections with the processor in 

user mode. That is, if the costs of code-scanning on variable-length instruction-set architectures 

are seen to outweigh the benefits, code-scanning need not be used for such components.

7.7 Summary

This chapter has presented several experiments and their results. Performance experiments have 

provided very pleasing results: Go! is approaching 3 orders of magnitude faster than commodity 

systems, and one order of magnitude faster than even the leanest research systems. The speed 

improvements compared with lean research systems such as L4 are due to the new protection 

model rather than small optimisations and tweaks — this can be asserted since L4 is already a 

heavily optimised system.

A stress-test has also shown that the system is stable. Without this stability, the impressive 

performance results would be meaningless, since bug-fixes would likely adversely affect perfor-

mance.
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Chapter 8

Conclusion

8.1 Introduction

This thesis has presented a novel operating system protection model, and then presented a proof- 

of-concept implementation. With this new protection model (known as SISR), user-level code is 

prevented from executing privileged instructions not through a special processor mode, but by 

scanning the code before it is loaded to ensure no privileged instructions are present. Privileged 

instructions are those that can be used to circumvent protection.

This chapter draws conclusions from this work, with reference to the goals set out in Section 

2.3. Each goal is shown to have been met, thus the work presented here can be considered a 

success. Possible directions for future work are also given.

8.2 Thesis Review

The first and most obvious conclusion to draw is that the “proof-of-concept implementation proved 

the concept” . That is, the implementation of Go! and GTE (see Chapter 6) have shown that the 

development of a system using SISR is feasible. However, Go! and GTE have shown more than 

this — they have shown that the new model is useful. Here, ‘usefulness’ is measured in terms of 

meeting the goals outlined in Chapter 2, specifically:
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Most operating systems treat the kernel as an inseparable, immutable whole. By decomposing 

the kernel, Go! has simplified significantly the task of systems-software development. Tradition-

ally, kernels have provided many different services, including (at least): protection-domain man-

agement and cross-domain communication; interrupt dispatching; memory management; fault- 

management; paging; (preemptive) scheduling; device management and security policy. Some 

recent kernels such as /¿-kernels and exokernels provide these services only at a rudimentary level, 

requiring user-level ‘servers’ to perform most of the work. However, the kernel still needs to pro-

vide some sort of support. For example, although many /u-kernels allow user-level applications to 

define their own page-replacement policies, the kernel still takes page-faults and ‘farms them out’ 

to applications.

Go! is different. Its component-model meets all four of the key requirements identified in 

Section 1.3 in that it is orthogonal, consistent, pervasive and lightweight. As shown with GTE, 

different services can be truly separated into distinct components so that one component pro-

vides just one service. For example, different components offer one of: protection-domain man-

agement and cross-domain communication (the ORB); interrupt-dispatching (id isp ); memory- 

management (mem_mgr); fault-management (xcpjngr); preemptive scheduling (sched and thread); 

device management (video and keyb). Paging and explicit security management have not been 

added since they are beyond the scope of this project, but it is easy to imagine how pager and 

secu rity  components could be developed.

It has been shown that implementing fault containment modules at the same boundaries as 

the conceptual abstractions of a design improves reliability of software and improves debugging 

[65]: the low overheads of SISR permit this while maintaining performance.

In some respects Go! is similar to the exokernel approach, except that the concept of a minimal 

kernel is taken to its logical conclusion — in effect a ‘zero-kernel’ has been constructed. However, 

there are major differences between Go! and exokernels, most notably that an exokernel provides 

a base on top of which programs and library operating systems can be multiplexed in a pro-

tected fashion. Go! provides just a component architecture — components such as a code-scanner 

and interrupt dispatcher collaborate to provide protection. Note that there is no impediment to 

developing one or more components that sit on top of Go! to provide an exokernel.

8.2.1 Software Engineering
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8.2.2 Performance

The experiments presented in chapter 7 have shown that Go! out-performs even the leanest research 

operating systems significantly. This lightweight protection can be used to decompose systems to 

a finer granularity while maintaining end-to-end performance. Section 2.3.2 specified that the new 

system allow round-trip, intra-machine, null-RPC in less than 150 cycles. Go!’s f - c a l l  provides 

this in just 73 cycles — less than half the maximum latency specified. Similarly, Section 2.3.2 

specified that placing a component in its own protection-domain must incur no more than 100 

bytes overhead — Go! imposes just 32 bytes overhead per protection domain.

This performance also improves software engineering and reliability through the fine granularity 

made possible. While traditional protection models do not place architectural restrictions on the 

decomposition of user-level services, performance considerations render fine-grained decomposition 

impractical on conventional systems.

8.2.3 Configurability

Decomposition of the TCB as achieved with GTE means that the operating system can be highly 

configurable. During development, implementations of GTE components have been radically 

altered, with no changes required to other components.

8.2.4 Dynamism

The Go! ORB has support for dynamic replacement of implementations while such components’ 

clients remain completely unaware (providing the interface contract is still realised). The experi-

ment in Section 7.5 demonstrates the ORB’s suitability for such behaviour.

Note however that transfer of state between implementations is left to the programmer or 

library operating system to manage — Go! provides only the infrastructure for hot swapping.

8.2.5 Language Independence

The code-scanning model introduced in Chapter 5 is concerned only with machine code and so 

is language-independent. Despite being implemented solely in C, C + +  and x86 assembler, Go! 

presents no impediment to implementing components in any compiled language (although the best 

strategy for implementing interpreted languages on Go! is less clear — see Section 8.3.3).
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8.2.6 Software Reliability

The finer granularity of protection will also allow systems to be more reliable through fault con-

tainment. There are three main types of software behaviour: crashes, erroneous results and correct 

operation. Erroneous results are by far the most dangerous of the three since they are difficult 

to detect and can propagate throughout the program. Realising protection at a finer granularity 

will make it more likely that programming errors are caught, and so move instances of ‘erroneous 

results’ into the ‘crashed’ category, yielding safer software. This is corroborated in [99] that shows 

how most erroneous results (particularly in the operating system) are the result of undetected er-

roneous memory references. The finer granularity of protection made possible by SISR will mean 

that more erroneous memory references will be detected.

8.3 Future Research

The development of Go! and GTE has brought to light many further research directions that are 

beyond the scope of the work presented here. These are documented in this section, along with 

hints towards possible solutions.

8.3.1 Distribution

The Go! ORB has no notion of distribution. However, it is designed in such a way that a number 

of distribution mechanisms and policies may be constructed on top. The simplest strategy for 

implementing distribution on top of Go! is to use proxies. However, the proxy method suffers from 

a number of drawbacks, mainly due to the requirement of extra component instances (proxies 

can also introduce ‘existential issues’ ; should an equivalence test between a reference to a server 

component and a reference to one of its proxies produce true or false?).

One solution is to intercept exceptions thrown by the ORB in response to the use of an in-

valid component reference. A distribution-management component can be instantiated on each 

machine, which intercepts all such exceptions. In response to such an exception, the distribution- 

management component must determine whether the reference is genuinely invalid, or if the com-

ponent with the faulting reference exists on another machine. In the case of the latter, the 

distribution manager must forward the call over the network to the relevant remote machine.
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8.3.2 Resource Leaks

Decomposition of a system into hundreds of thousands of components is likely to create adminis-

trative problems — ‘leaky’ systems can quickly clog up resources. Traditional garbage collection

[1] is not possible with SISR since it is impossible to determine which words in memory contain 

component references.

One solution is to introduce a concept of ownership, such that a component owns any compo-

nents it creates. This will lead to a tree of component ownership: an administrator could manually 

‘prune’ this tree to free up resources, particularly if destruction of an instance causes the destruc-

tion of all components owned by that component. Furthermore, the number of components a 

component is permitted to own (and thus create, directly or indirectly) can be strictly limited. 

The notion of ownership would most likely be built into the library OS component responsible for 

linear-memory management.

8.3.3 Interpreted Languages

The suitability of SISR’s component-based architecture with regards to interpreted languages 

is not clear. The interpreter will need direct access to its components’ code and data, possibly 

requiring many segment-register overrides, and thus adversely effecting performance. Furthermore, 

the benefits of protecting interpreted components from one another are not clear.

One solution is to have one large component contain the interpreter and all its programs’ 

objects. For example, a java component might contain the code of the interpreter, and the 

state of all Java objects in a running Java program. In this scheme there would be one type per 

interpreted language, and one instance per interpreted program. The interpreter might create 

proxy components for communication between interpreted programs’ objects and the ‘outside 

world’.

Just In Time compilation raises more issues. Depending on the exact nature of the compilation, 

component types could be created dynamically (such types would need to be passed through the 

code scanner before being installed). In the case where self-modifying code is genuinely required,

such components will need to execute in user mode (or the JIT compiler be trusted1), 
^roof-carrying code [80] promises to help here.
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8.3.4 A  Developers’ ORB

Because the Go! ORB does not handle interrupts or exceptions, programming the early stages of 

library operating systems can be tedious. This is because until a library OS capable of receiving 

and handling faults is up and running, any faults generated cause a reboot (this includes attempted 

use of invalid ObjRefs; see Section 6.5.1). Since one of Go!’s goals was to improve systems-software 

engineering, this is less than ideal. To remedy this, a developers’ ORB could be constructed that 

handles exceptions internally, unless overridden by the library operating system. This way, faults 

generated by errors in the core of the library OS can be caught and their details reported to the 

library OS programmer — a vast improvement over a machine reset.

8.3.5 ORB-Level Security

The Go! ORB implements authentication only (by supplying the caller’s reference on each call); 

any authorisation mechanisms must be built outside (see Section 5.4.1). This has the advantage 

of decomposing security from protection, but the disadvantage that the security framework will 

likely slow down RPC, due to indirections via some ‘authoriser’ component. This performance issue 

could be overcome by adding a ‘secure-call’ ( s -c a l l )  ORB method that will provide authorised 

RPCs.

This could be implemented by adding the notion of secure interfaces. These are ObjRefs onto 

a component with method tables which have a subset of methods available. For example, there 

might be two secure interfaces onto a file component, a read/write one with all methods available, 

and read-only one where the w rite method-table entry points not to the real w rite entry point, 

but to an alternative method that simply throws an exception.

Secure interfaces do not have their ObjRefs stored in the CDT as normal and so cannot 

be called using c a ll , f - c a l l ,  t - c a l l  or x fer  — the s - c a l l  primitive must be used. Each 

component capable of using s - c a l l  has associated with it an array of pointers to secure-method 

tables. This array is filled by calling another (privileged) ORB method, link_secure( ob jre f 

c l ie n t ,  o b jre f secure_in f, uint method-no ). Establishing a pointer to a secure method 

table from this array is effectively establishing an authorised channel or capability to the server.

The implementation suggested should provide secure RPCs with at most only a few extra 

cycles overhead compared to the inter-component primitives in the current implementation of Go! 

Note that this is a performance optimisation only — the same architecture could be setup on the 

current implementation where secure calls are indirected to some security component that then
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calls the real server on the client’s behalf via an xfer. Here, the real server would only accept 

calls that originate from the security component.

8.4 Wider Implications

This section examines the wider implications of SISR. If widely adopted, SISR and component- 

based development are likely to have a significant effect on the way software is developed.

8.4.1 Implications for Software Development

Computer programs are constrained and influenced by the environment in which they run. For 

example, programs are developed very differently depending on whether they are written to run 

on massively parallel machines, vector computers, scalar machines, or some other architecture. 

This applies equally to the operating system as it does to the hardware architecture. If SISR is 

widely adopted, it is likely to affect the way that programs are developed, and even lead to the 

developments of entirely new types of computer program.

For example, ‘A Life’ software [34] works radically differently than conventional software. Mil-

lions of small components ‘evolve’ and interact to produce systems far more complex than humans 

can design. The protection model presented here could allow new types of A-life components 

which are truly independent and can interact in controlled ways. Similarly, SISR might have 

implications for agent-based software. Here, agents can be encapsulated into components, and 

systems interacting with an agent need not necessarily trust that agent.

Less ‘grand’ but perhaps more likely is that component-based systems developed using this 

new model will be developed differently. The low overheads will mean fine-grain decomposition is 

practical, and that encapsulation will be enforced. This means that software engineers will not be 

tempted to ‘cut corners’ and break encapsulation in order to effect quick fixes.

8.4.2 Implications for Chip Designs

Although not totally dependent on segmented architectures, code scanning is much more effective 

with segmentation. This work has shown that contrary to contemporary belief, segmentation 

can be a useful and powerful tool with respect to memory protection. Like most of computer 

science (and indeed all engineering), different strategies come in and out of vogue over time. It 

is not anticipated that the work presented in thesis alone will alter future microprocessors, but
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the research has demonstrated a hitherto unrealised benefit of segmentation. With other similar 

work and the advent generally of component-based operating systems it is possible that future 

microprocessors’ MMUs will once again offer segmentation.

8.5 Summary

This chapter has presented the conclusions of the work that lead to SISR, thoughts on future work, 

and possible wider implications. In so doing, the goals outlined in Chapter 2 have been shown to 

have been met, and SISR has been shown to offer a useful protection mechanism, particularly in 

the context of component-based operating systems.
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Appendix A

Go! ORB Specification

This appendix gives a full specification of the Go! ORB, described generally in Chapter 6. The 

ORB’s behaviour is broken into 7 categories: Booting; Type and Instance Management; Inter- 

Component Method Invocation; Linear Space Management; Stack Manipulation; Component In-

terrogation; and ORB Protection Faults.

A .l Booting

Go! is Multiboot [36] compliant. The Multiboot standard specifies that the operating system 

will be presented to the boot-loader as an ELF [103] or a raw binary image. The boot-loader 

boots the Intel-80386-based PC, puts it into protected mode, creates a flat 32-bit memory model, 

and transfers control to the image’s entry point. In Go!’s case, this entry point is the ORB’s 

constructor. This environment required by the constructor is essentially the Multiboot-defined 

one (that is, flat mode), except that the ORB’s data segment is modified to fit the image precisely.

The ORB is built in ELF format, with a single library OS component1 at the end of the ELF 

image’s data section. The library OS component is analogous to the UNIX in it  process [4].

The ORB’s constructor first sets up the segment-descriptor table, mapping its own code and 

data segments. The constructor then locates the library-OS component image, installs the type 

and creates a single instance of it. Once the library-OS component type is installed and a single 

of instance of it created, the library OS’s first method is called. When the this method returns,

this indicates that the Go! session has finished, and the system is halted. *
Tn reality this library OS component is likely to contain several others in its data section. See Appendix B.l 

for an example.
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The Multiboot standard specifies that interrupts are disabled when control is transferred from 

the boot-loader to the kernel. Go! will not re-enable interrupts (that is, interrupts are guaranteed 

to be disabled when the library operating system is called).

A .1.1 Specifications

void ctor  () c to r  is called by jumping to the first byte of the ORB’s code section. The proces-

sor must be in 32-bit protected mode, as specified by the Multiboot standard, except that 

the code and data segments must fit the ORB image’s code and data sections exactly (the 

data section includes the image of the single library-OS component appended to the end).

Algorithm

• build temporary GDT that maps ORB’s code and data segments exactly

• examine processor state to find location and size of both the ORB and library operating 

system images

• move the library operating system image in memory to make room for ORB’s unini-

tialised data (BSS)

• initialise ‘Global-Descriptor Table’ and load ORB’s code and data segments

• display welcome message

• create a stack component to represent current stack

• initialise ORB free-lists (CDT, GDT, stack descriptor and private-t-call-stack)

• initialise CDT entries

• install library-operating-system component type

• create an instance of library-OS component, and invoke the first method

• display ‘good-bye’ message, and shutdown the system

A .2 Type and Instance Management

Before a component of a given type can be created, that type must be registered with the system 

— that is, installed. Only implementation types are installed —  if required, interface types are 

managed by the library OS. To install a new component type, the ORB’s in s ta ll  method is called,
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and a null component passed as the single parameter. The nu ll component passed contains the 

image of a new type to install at the end which specifies locations of the image’s various sections. 

The ORB registers the interface and implementation types along with the code segment and 

initial-data segment.

It is also possible to uninstall types after their use. The u n in sta ll method is provided to 

de-register types from the ORB.

A .2.1 Specifications

o b jre f in s t a l l ( o b jre f image )

in s ta ll  will install a new type. The method is invoked by issuing the instruction c a l l  8:56, 

with image in register ebx. Only the esp and ebp registers are preserved, image should be the 

ObjRef of a n u ll component, that specifies a component implementation as contiguous sections 

of text, data, BSS and a method table. Appended to the end of the image is a table that describes 

these sections’ locations. This table looks like (in C ++)

struct {
struct section  { 

unsigned s ta rt ; 
unsigned s ize ;

>;

section  te x t ; 
section  in it_d ata ; 
section  BSS; 
section  method_table;

The method table should be in the following format:

struct mt {

struct mt_entry { 
void  * sta rt; 
unsigned pad;

unsigned
unsigned
void*
unsigned
void*
unsigned

method_count; 
padl;
ctor_entry; 
pad2;
dtor_entry; 
pad3;

mt_entry ta b le [0 ];
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>;

where the mt_table field contains method-count mt.entry structures, one for each method 

entry point.

If installation succeeds, the null-component specified by image is destroyed, and the new type 

is referred to by the ObjRef image. The ObjRef of the new type’s initial-data segment is returned 

in eax. The new type is installed ‘in place’ —  that is, the library operating system should not 

allocate any new memory, or reclaim the memory from the n u ll component (with the exception 

of the sections descriptor at the end of the image which can be freed).

Algorithm

• switch to ORB ‘dynamic’ data segment

• ‘destroy’ the null-component referred to by image by writing FFFFh to its sel field in the 

CDT.

• allocate a new ObjRef for the initial-data segment from the ORB’s CDT free-list (the 

compare-and-exchange instruction is used to allocate the reference in a non-blocking and 

thread-safe manner)

• modify image’s associated segment to become a code segment, and modify its base and limit 

to map the image’s text section

• use the compare-and-exchange operation to allocate a new ObjRef from the CDT free-list 

in a thread-safe, but non-blocking manner

• map the new ObjRef’s data segment to reference the initial data (that is, so that its base is 

the sum of image’s base and data, and its size is mt less data)

• set the new ObjRef’s mtable entry in the CDT to bss

• set image’s typejref field in the CDT to the new ObjRef

• set image’s mtable field in the CDT to method table’s offset from the ORB’s data segment 

(that is, the sum of image’s segment’s base and mt, less the ORB’s data segment base)

• mark the new type as valid

• switch back to caller’s data segment, and return the new ObjRef
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void u n in s ta ll( o b jre f type )

u n in sta ll will de-register the type identified by type from the system, u n in sta ll is invoked by 

placing type in the register ebx, and issuing the instruction c a l l  8:64. All registers apart from 

ebx and eax are preserved.

It is assumed u n in sta ll is only called once there are no instances of that type (that is, it is up 

to the library operating system to ensure types aren’t uninstalled while instances still exists). This 

policy of delegating synchronisation allows the library operating system to specify the policy (for 

example, reference counts) as well as easing the task for managing the linear memory associated 

with the type.

Algorithm

• switch to ORB ‘dynamic’ data segment

• invalidate the type by setting the ca ll.cou n t field in type’s CDT entry to 0

• take a GDT lock on type’s code and initial-data segments

• if they’re cached in the GDT, free up the selectors

• release the GDT locks in type’s code and initial-data segments

• free type’s code and initial-data ObjRefs

• switch back to caller’s data segment

• return by issuing the inter-segment return instruction

o b jre f crea te ! uint count, ob jre f type, uint lin ea r , uint para_sz, . . .  )

Calling create with count of 1 will create an instance of the type type at linear address linear, 

and calls its constructor, passing para_sz bytes of parameters which follow on the stack. To invoke 

create with a count of 1, place 1 in register eax and push type, lin ear and param_sz onto the 

stack, followed by any parameters (parameters to the constructor and create should be pushed in 

the reverse order that they appear in the signature). Finally, issue the instruction c a l l  8:40. On 

return, eax contains an ObjRef that identifies the new instance. All other registers are preserved.

create can be used to create several instances with adjacent ObjRefs, by calling with count 

greater than one. In this case the type, lin ear , param_sz and constructor parameters should be
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pushed for each instance to create in turn. Instances are created in the opposite order to that in 

which they are pushed onto the stack. The ObjRefs of each new instance are contiguous, starting 

from the one returned in register eax.

Algorithm

• switch to ORB’s ‘dynamic’ data segment

• allocate count consecutive ObjRefs (leaving the sel fields as FFFFh)

• while count is greater than zero:

— create a segment referencing the new component’s location in linear memory as specified 

by linear and of the size specified by type

— associate the ObjRef with the new segment and type, but set the mcount field to zero

— copy type’s initial-data segment into the newly-allocated data segment

— take a GDT lock on the new ObjRef

— allocate a new selector in the GDT for ObjRef

— copy the constructor’s parameters 24 bytes beyond the current stack-pointer (for use 

with ca ll)

— if type specifies a stack, call the stack constructor (see Section A.5.1), otherwise if 

type does not specify a null component, call the constructor on the new ObjRef

— set the new ObjRef’s mcount field (thus allowing methods to be called)

— release the GDT-lock on the new ObjRef

— decrement count

• switch to caller’s data segment, and return the first of the new ObjRefs in eax 

void destroy! objref to_go, uint count )

destroy destroys count components identified by consecutive references starting from to_go, and 

frees resources held by the ORB associated with to.go (note that this does not include linear 

space, which is managed by the library operating system). To invoke destroy, place to^go in 

register ebx and count in eax, and issue the instruction call 8:48. eax is ‘clobbered’ , but all 

other registers are preserved.
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If there are any returns pending or GDT locks held on the component it becomes a zombie 

(see Section 6.3.2). However, even if there are GDT locks held, the selector associated with to_go 

is still freed —  it is up to the library operating system to ensure that if a component’s selector 

must remain valid then it is not destroyed.

Algorithm

• switch to ORB’s dynamic data segment

• for each of the count references to destroy:

— use the compare-and-exchange operation to mark to_go as invalid by atomically setting 

its se l field in the CDT to FFFFh only if it is a valid component instance

— take a GDT-lock on to_go

— call the destructor

— release the data segment from the GDT by placing the selector in the GDT free-list

— if the lock_count and call_count are zero, there are no pending returns: release the 

ObjRef by adding it to the CDT free-list2, otherwise mark the ObjRef as a zombie

• switch back to the caller’s data segment and issue an inter-segment return instruction

A .3 Inter-Component Method Invocation

An overview of inter-component method invocation was presented in Section 5.4. The various 

‘flavours’ of c a l l  and return have also been outlined in 6.3.1. This section explains in detail how 

the Go! ORB implements the different flavours of c a l l  and return.

A .3.1 Specifications

any c a l l (  o b jre f ca l le e , uint method )

c a l l  issues a method-call on method number method on the component identified by ca llee . To 

invoke, place ca lle e  in register ebx and method in register ecx before issuing the instruction c a l l  

8:8. Only register esp is guaranteed to be preserved, even between control leaving the caller and

arriving at the callee (that is, the ORB will clobber registers). The ORB will also clobber the
im mediate re-use of ObjRefs may present a problem in certain systems. In this case, a ‘death-row’ free-list 

should be maintained to force a period between an ObjRef being freed and reused
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next 20 bytes of the stack: any arguments should be placed starting from 24 bytes beyond the 

stack-pointer. Control is guaranteed to return to the next instruction of the caller component, 

but no bounds are given on the time this takes. Note that at entry to the callee method esp will 

have been incremented by 24, ready for the callee to read these arguments.

If ca lle e  does not specify a valid component an xcp_orb_noref exception is thrown. If method 

is out of range of the methods in c a l le e ’s interface, an xcp_orb_invalid exception is thrown.

Algorithm

• load ORB data-segment selector into the data-segment register

• push caller’s reference onto the stack

• increment callee’s call-count

• validate callee method number is within callee’s method count

• push details of previous call onto the stack (e.g. previous stack size)

• shrink stack by manipulating segment-descriptor tables

• increment call-depth associated with current stack segment

• look-up target code segment and offset in method table

• load callee data segment into the data-segment register via the CDT

• place caller ObjRef in general-purpose register (authenticate)

• jump into callee code segment at offset indicated by method table

any f - c a l l (  o b jre f c a l le e , uint method )

f - c a l l  issues an f - c a l l  on method number method on the component identified by ca llee . To 

invoke, place ca lle e  in register ebx and method in register ecx before issuing the instruction c a ll  

8:16. Only register esp is guaranteed to be preserved, even between control leaving the caller and 

arriving at the callee (that is, the ORB will clobber registers). Stacks are changed to the next 

stack in the stack-chain before control enters ca lle e  — if the callee requires parameters these

must be placed on the next stack in the stack-chain3.
3This can be done by having the library OS arranging stacks in a stack chain to overlap the same linear memory, 

and caller retrieving from or specifying to the library OS where the next stack ‘starts’ .
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If there is no next stack in the current stack-chain, an xcp_orb_nostack exception is thrown. 

If ca lle e  does not specify a valid component an xcp_orb_noref exception is thrown. If method 

is out of range of the methods in c a lle e ’s interface, an xcp_orb_invalid exception is thrown.

Control is guaranteed to return to the caller’s next instruction, but no bounds are given on 

the time this takes.

Algorithm

• load ORB data-segment selector into data-segment register

• push caller’s ObjRef onto the stack

• increment callee’s call-count

• validate method number is within callee’s method count

• push details of previous call onto the stack (e.g. previous call-depth)

• find the ‘next’ stack in chain

• switch to the next stack in chain

• place caller’s ObjRef into a general-purpose register (authenticate)

• look-up callee’s method table

• load callee’s data segment into data segment register via the CDT

• jump to callee’s entry point

any t - c a l l (  o b jre f c a lle e , uint method )

t - c a l l  issues a t - c a l l  on method number method on the component identified by ca llee . To 

invoke, place ca lle e  in register ebx and method in register ecx before issuing the instruction c a l l  

8:24. Only register esp is guaranteed to be preserved, even between control leaving the caller and 

arriving at the callee (that is, the ORB will clobber registers). The stack is not protected (that 

is, the callee has full access to the caller’s stack frame). However, control is guaranteed to return 

to the next instruction, although no bounds are given on the time this takes.

If ca lle e  does not specify a valid component an xcp_orb_noref exception is thrown. If method 

is out of range of the methods in c a lle e ’s interface, an xcp_orb_invalid exception is thrown.
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Algorithm

• load ORB data-segment selector into data-segment register

• push caller’s ObjRef onto the stack

• increment callee component’s call-count

• validate caller ObjRef and method number

• obtain element for ‘t-call list’ to record return information

• record return information and link element into the stack’s t-call list

• increment callee’s call count

• look-up callee’s method table

• place caller ObjRef in general-purpose register (authenticate)

• load callee’s data segment into data-segment register via the CDT

• jump to callee’s entry point

noreturn x fe r (  o b jre f ca l le e , uint method )

x f er performs a control transfer to method number method on the component identified by ca llee . 

To invoke, place ca lle e  in register ebx and method in register ecx before issuing the instruction 

c a l l  8:32. Only register esp is guaranteed to be preserved, even between control leaving the caller 

and arriving at the callee (that is, the ORB will clobber registers). The stack is not protected 

(that is, the callee has full access to the caller’s stack frame). Control will not return — if the 

callee issues a return, control will return as if the caller had issued it.

If ca lle e  does not specify a valid component an xcp_orb_noref exception is thrown. If method 

is out of range of the methods in c a l le e ’s interface, an xcp_orb_invalid exception is thrown.

Algorithm

• load ORB’s static-data-segment selector into the data-segment register

• validate method number within callee’s method count

• decrement caller component’s call-count
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• increment callee component’s call-count

• look up callee’s method table

• place caller’s ObjRef in general-purpose register (authenticate)

• load to callee’s data segment into data-segment register via the CDT

• jump to callee’s entry point

noreturn return ()

return will cause control to return to the instruction following the most recent c a ll , f - c a l l  or 

t - c a l l  of the current stack. Registers eax and edx are preserved so that they may be used for 

return values, esp is set to its value at the corresponding c a ll , f - c a l l  or t - c a l l .  No other 

registers are preserved. To invoke a return, issue the instruction jmp 8:176. If there are no 

returns pending on the current stack an xcp_orb_noret exception is thrown.

Algorithm

• load ORB ‘dynamic’ data segment

• if current stack’s ca ll-d ep th  is zero, return from an f - c a l l  by:

-  find ‘previous’ stack in chain

-  switch to ‘previous’ stack in chain

— pop details of previous call from stack (e.g. previous stack size)

-  decrement callee’s call-count

— pop callee’s ObjRef from the stack, and load data segment via the CDT

— issue inter-segment return to caller

• if the t-call-list is empty, return from a c a l l  by:

-  load ORB data-segment selector into the data-segment register

— determine type of return (assuming return from c a ll)

-  re-grow stack by manipulating segment-descriptor tables

— pop details of previous call from stack (e.g. previous stack size)
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— decrement call-depth associated with current stack segment

— decrement callee’s call-count

— pop caller’s ObjRef from the stack and load data segment via the CDT

— issue an inter-segment return, returning control to caller

• otherwise, return from t - c a l l  by:

— load ORB’s static-data-segment selector into the data-segment register

— determine type of return (assume return from t - c a l l )

— restore the return information stored in first element from ‘t-call list’

— free the return element to ORB’s internal memory

— decrement callee’s call-count

— pop callee’s ObjRef from the stack, and load data segment via the CDT

— issue inter-segment return to callee

noreturn throw( o b jre f xcp )

This method throws an exception. To throw an exception, the ObjRef xcp is placed in register 

eax, and jmp 8:168 is issued. The stack is unwound and the caller4 ObjRef, then the offset 

that control would have returned to, and the component that issued the exception are placed in 

general-purpose registers eax, ebx and ecx respectively. Finally an interrupt is triggered on vector 

30h.

Algorithm

• load ORB ‘dynamic’ data segment

• unwind call-stack (as in return)

• place return target ObjRef (callee) and return target offset in general-purpose registers

• generate a software interrupt on vector 30h

4The ‘caller’ is the component to which control would have returned if a return was issued.
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A .4 Linear-Space Management

This section documents the ORB methods concerned with the management of linear space. An 

introduction to Gol’s linear-space management is given in Section 6.3.4.

A .4.1 Specifications

uint linear( bool grant, uint free-list )

linear is called in order to provide linear space to, or revoke linear space from, the ORB. It 

is called by issuing the instruction call 8:136, with the grant parameter in register ebx, and 

free-list in ecx. The return value is placed in register eax. All other registers are preserved.

If the grant parameter has the value true, then the ORB claims the linear space specified 

by free-list for its internal data structures. Otherwise the ORB relinquishes the linear space 

specified by a returned free list. The return value (or free-list if grant is true) is the linear 

address of a block of linear memory. The first 4 bytes of the free block give its size, the second 

give the linear address of another such block (an address of FFFFFFFFh indicates that there are 

no more free blocks). It is anticipated that library operating systems will call linear with grant 

equal to true in response to orb_xcp_nomem exceptions, and with grant equal to false when the 

library operating system is running out of free memory. If linear is being used to pass linear 

space to the ORB in response to an xcp_orb_nomem exception, the blocks should be the same size 

as that returned by the exception’s info method. The free-list returned (even when linear was 

called with grant equal to true) are not being used by the ORB, and should be reclaimed by the 

memory manager to avoid leaks — that is, when memory is given to the ORB with linear, the 

ORB is free to return blocks it cannot use or does not require.

Algorithm

• switch to ORB ‘dynamic’ data segment

• set the return value to FFFFFFFFh

• if grant is equal to true, for each element in free_list:

— if the element is not 16 or 32 bytes, set the second 4 bytes of the block to the return 

value, and set the return value to the linear address of this block.
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-  otherwise, use the atomic compare-and-exchange instruction to add the block to the 

relevant free list in a thread-safe, but non-blocking manner

• if grant is equal to fa lse , for both the 16 and 32 byte free-lists, while they are not empty:

-  use the compare-and-exchange operation to remove the first element of the free-list in 

a thread-safe but non-blocking manner

-  set the second 4 bytes of the removed block to the return value, and set the return-value 

to the linear address of the removed block

• switch back to the caller’s data segment and return the return-value

A .5 Stack Manipulation

As mentioned in Section 6.3.3, Go! defines the stack base component type. If create is called to 

create a stack type, instead of the normal component creation, a “stack descriptor” is allocated, 

defining:

next_esp stores the incoming stack pointer value of the next stack to be loading during f - c a l l  

(that is, the next stack’s data-segment size)

next_ss the stack segment of the next stack in the f - c a l l  stack chain

prev_ss the stack segment of the previous stack in the f - c a l l  stack chain

prev.esp used to store away the outgoing stack pointer for outgoing stacks during f - c a l l

nextnref the ObjRef of the next stack in the f - c a l l  stack chain

prevjref the ObjRef of the previous stack in the f - c a l l  stack chain

call_depth the number of ca lls  issued on this stack (that is, since the last f - c a l l )

private  the offset within the ORB’s ‘dynamic’ data segment of this stack’s ‘private call stack’: 

a linked list of elements containing return information for t - c a l ls

th is_re f this stack’s ObjRef

lim it the size of this stack’s data segment

prev^ptr a pointer to the previous stack descriptor
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next.ptr a pointer to the next stack descriptor

nomem_xcp an ObjRef of a pre-created xcp_orb_nomem exception (to avoid dead-lock when run-

ning out of memory)

The stack type’s constructor takes an ObjRef argument. This should be either zero or another 

stack type to which this stack will be attached in order to form a stack-chain for use with f-call.

It is anticipated that instances of the stack type will be created by library operating systems 

as part of thread creation, and (indirectly) by components preparing to use f-call. The library- 

operating-system scheduler will need to call switch_stack to set up the new stack segment when 

new threads are scheduled. This changes the ORB stack specific data (such as call_depth). 

Unlike all other ORB methods, switch_stack and stack’s constructor are not re-entrant. 

Note that the various call primitives require access to these structures, but they are dynamic 

data. As mentioned in Section 6.5.1, this is undesirable: call primitives are restricted to accessing 

static data only. To overcome this, during stack_switch, the incoming stack-chain is copied to 

buffers in the ORB’s ‘static’ data segment.

A .5.1 Specifications

void stack::ctor( uint size, objref link_to )

The ‘stack constructor’ is called if create is invoked specifying a type of stack. Once the create 

completes, the new component may be used as a target to switch-stack.

stack’s constructor is not re-entrant. The library operating system must prevent concur-

rent attempts to attach new stacks to a stack-chain.

Algorithm

• switch to ORB’s ‘dynamic’ data segment

• claim a stack descriptor from the ORB’s stack_descriptor free-list

• overwrite this component’s mtable field in the C D T  to contain a pointer to the new stack 

descriptor

• set the new descriptor’s next_xef, call-depth and private fields to zero

• set the new descriptor’s next_ss field to FFFFh
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• if link_to is non-zero, link the new stack into the chain by:

— set lin k _to ’s new_esp to size

— set lin k _to ’s next_ss to comp’s selector from CDT

— set lin k _to ’s next_ref to the new stack component’s ObjRef

— set the new descriptor’s prevjref to link_to

— set the new descriptor’s prev_ss to lin k .to ’s this_ss

• switch back to the caller’s data segment, and return using an inter-segment return 

void switch_stack( comp new_stack )

The switch_stack method is called to switch the active stack. It is anticipated that this will be 

done as part of thread scheduling by the library operating system. The method is invoked by 

issuing the instruction call 8:160 with the ObjRef of the new stack in ebx.

N ote: switch_stack is not re-entrant. The library operating system must prevent concur-

rent calls to switch_stacks.

Algorithm

• switch to the ORB’s ‘static’ data segment

• set the ORB’s current_stack pointer to new.stack

• switch back to the caller’s data segment, and return using an inter-segment return 

objref get_stack( objref chain, uint walk )

Returns walk elements along the stack-chain from stack chain. If chain is passed as zero the 

current stack is used.

Algorithm

• if first is zero, set chain to the currently active stack

• while walk is non-zero:

— set chain to the next stack from chain in the stack-chain

— decrement walk

• switch to caller’s data segment and return chain
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A .6 Component Interrogation/Manipulation

A .6.1 Specifications

uint lo ck ( o b jre f re f )

The segment associated with re f is locked in the GDT at least until a subsequent call is made to 

unlock ( re f  ). If locking re f in the GDT is not possible (due to the GDT being full of locked-in 

segments) an xcp_orb_gdtfull exception will be thrown. Concurrent calls to lock  and unlock 

for the same ObjRef are supported for up to 232 concurrent attempts — that is, lock  increments 

a count which unlock decrements. The selector of the ObjRef’s segment is returned.

To call lock, place re f in register ebx and issue the instruction c a l l  8:72. The result is 

returned in register eax. All other registers are preserved.

Algorithm

• switch to the ORB’s static data segment

• increment the ObjRef’s lock count

• cache the ObjRef in the GDT if not so already

• switch back to caller’s data segment

• return the GDT selector of the ObjRef

void unlock! o b jre f r e f )

The segment associated with re f is unlocked from the GDT, and so may be rejected sometime in 

the future. Concurrent calls to lock  and unlock for the same ObjRef are supported for up to 232 

concurrent attempts — that is, lock  increments a count which unlock decrements.

To call unlock, place re f in register ebx and issue the instruction c a l l  8:80. All registers 

other than eax are preserved.

• switch to the ORB’s static data segment

• decrement the ObjRef’s lock count

• cache the ObjRef in the GDT if not so already

• switch back to caller’s data segment
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• return the GDT selector of the ObjRef 

objref sel2ref( uintl6_t s )

This method returns the ObjRef that was associated with selector s at the time of calling. It 

is called by placing the selector s in register ebx and issuing the instruction call 8:96. The 

associated ObjRef is returned in register eax. All other registers are preserved.

Note that to use safely whatever component is associated with selector s should be known to 

be locked in the GDT (otherwise a race occurs between the return value and the ObjRef being 

rejected from the GDT).

Algorithm

• switch to ORB’s ‘static’ data segment

• look up the selector’s associated reference from the ’reverse’ CDT, and place in eax

• switch back to caller’s data segment and issue an inter-segment return

objref get_self()

A component can determine its own reference by calling the get.self ORB method. This is the 

analogue of the UNIX get.pid system call. This method simply returns the ObjRef of the caller. 

It is called by issuing the instruction call 8:104. The objref is returned in register eax. All other 

registers are preserved.

Algorithm

• take a local copy of the data-segment register

• switch to ORB’s ‘static’ data segment

• place the caller’s ObjRef in register eax

• switch back to caller’s data segment and issue an inter-segment return 

objref get_type( objref comp )

This method simply returns the ObjRef identifying comp’s type. It is called by issuing the instruc-

tion c a l l  8:112, and placing comp in register ebx. The objref is returned in register eax. All 

other registers are preserved.
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Algorithm

• switch to ORB’s ‘static’ data segment

• validate that comp is a valid instance ObjRef (otherwise throw an xcp_orb_invalid excep-

tion)

• place comp’s typejref field from the its entry in the CDT into register eax

• switch back to caller’s data segment and issue an inter-segment return

o b jre f se t-ty p e ( o b jre f comp, uint new_type, uint lin e a r , uint fo r ce  )

This method switches the ObjRef identifying comp’s type. If the call succeeds, the outgoing im-

plementation’s destructor is called, before the incoming’s constructor. The new implementation’s 

data segment is located at linear address linear.

If fo rce  contains 2 then the type is changed, even if there are returns pending on some of 

the implementation’s methods. If fo rce  contains the value 0 or 1 then the swap only happens if 

there are no threads pending on the implementation. If fo rce  contains 1, all future calls onto the 

implementation on this ObjRef are blocked by setting its method count to zero. If fo rce  contains 

0, other methods are allowed in as normal.

set_type is called by pushing any parameters to pass to new.type’s constructor, followed by 

the size in bytes of these parameters, new.type, and lin ear onto the stack. Then placing comp 

in register ebx, and fo rce  in register ecx and issuing the instruction c a l l  8:120. If the swap 

succeeds, comp is returned in register eax, otherwise zero is. All other registers are preserved.

Algorithm

• switch to ORB’s ‘static’ data segment

• if the fo rce  parameter is not 2:

— if comp’s entry has a non-zero call-count then switch to caller’s DS and return zero

— set comp’s method count to zero

— if comp’s entry has a non-zero calLcount then:

— if fo rce  is equal to 1 then switch to caller’s DS and return zero

— reinstate comp’s original method count
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— switch to caller’s DS and return zero

• call the ORB’s destroy method on comp after setting comp’s call_count to 1 so that comp 

will be left as a zombie

• create a new instance of type new_type at linear address linear, including calling the con-

structor

• switch back to caller’s data segment and issue an inter-segment return

o b jre f setd esc( o b jre f r ,  uint o r l ,  uint or2, uint andl, uint and2 )

This method changes the descriptor associated with reference r. A bit-wise AND is performed 

with the bottom double-word of the descriptor and the andl parameter, and the top double-word 

of the descriptor and and2. Similarly, a bit-wise OR is performed between the bottom double-word 

of the descriptor and o r l and the top double-word of the descriptor and or2. The bottom-half of 

the original descriptor is returned in register eax and the top half in edx. All other registers are 

preserved.

To call setdesc place r in ebx, o r l in ecx, or2 in edx, andl in e s i and and2 in edi and issue 

the instruction c a l l  8:128.

Algorithm

• switch to ORB’s ‘static’ data segment

• perform the bit-wise AND and ORs as specified in the specification, leaving original descrip-

tor in eax : edx

• switch back to caller’s data segment and issue an inter-segment return 

void o b jre f r e je c t  ( o b jre f r )

This method simply rejects ObjRef r from the GDT. It is intended for use by the library operating 

system to optimise rejection policy from the GDT.

To call r e je c t  simply place the ObjRef to reject in register ebx and issue the instruction c a ll  

8:152. All registers are preserved.
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Algorithm

• switch to ORB’s ‘static’ data segment

• if ObjRef r is cached in the GDT, reject it

• switch back to caller’s data segment and issue an inter-segment return

A .7 ORB Protection Faults

As mentioned in Section 6.3.3, components that invoke ORB methods with invalid parameters 

will receive exceptions. The ORB can generate hardware-protection faults in four scenarios (not 

withstanding bugs!):

• The attempted return to a zombie as outlined in section 6.3.2 will mean that the ORB faults. 

This is because the attempted return goes via the ORB, and it is from here that the zombie’s 

data segment is loaded.

• Attempting to call a method on an invalid component reference causes a protection fault. 

This is a deliberate action, and allows the ORB to omit a potentially expensive conditional 

branch to speed up ca ll.

• Attempting to load a valid component reference, but one that is is not cached in the segment 

descriptor table (see Section 6.5.1). Again, this avoids potentially expensive conditional 

branches during RPCs.

• Attempting to f  c a l l  when there is no next stack in the current stack-chain, or return when 

there is no return pending.

• Calling the ORB without sufficient space remaining on the current stack (a stack-fault will 

be triggered). In this case, it is up to the library operating system to provide sufficient stack 

space to complete the operation and restart the faulting instruction. Note that all ORB 

methods (other than create) are guaranteed to require no more than 128 bytes of stack 

space; most will require much less, create will use no more than the largest amount of 

parameters to send to any constructor plus 32 bytes times the number of components to 

create.

Whatever component is managing exceptions need not be aware of these details (indeed, they 

may change for different implementations of the ORB). It is trivial to discover the code segment
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at the time of a protection fault. If the library operating system discovers that the faulting code 

segment was indeed the ORB’s (selector 8) then it can conclude that the ORB generated the fault. 

The ORB’s fa u lt  method must be called in response to the ORB generating a ‘general protection 

fault’ (note this does not include faults such as page faults). Arguments to be passed to fa u lt  

should be pushed on to the stack right-most first.

A .7.1 Specifications

noreturn fa u l t ( uint DS, uint regset [8 ], uint ec, uint e fla g s , uint stack [4] )

ORB faults must be dealt with by invoking the ORB’s fa u lt  primitive in the context of the 

faulting thread, fa u lt  requires several arguments to be pushed on the stack:

uint DS The data-segment register at the occurrence of the fault (either the ORB’s ‘static’ or 

‘dynamic’ data segment)

uint regset [8] The general-purpose registers in the order pushed by IA32’s pushad instruction

uint ec The ‘error code’ field stacked by the processor in response to the protection fault

uint eip  The program counter that faulted

uint e fla g s  The e fla g s  register at the time of the fault

uint stack [4] The top 4 words of the stack at the time of the fault

fa u lt  is called by issuing the instruction jmp 8:144, with the stack set up as above. If the fault 

is due to the attempted reference of a segment not cached in the GDT, said segment is brought 

into the GDT, and the faulting instruction retried. If the fault was caused by the attempted use of 

an invalid ObjRef (either through a method call with invalid parameters, or a return to a zombie), 

the operation is ‘undone’ and an xcp_orb_noref exception is thrown. If the fault is for some other, 

undetermined reason, the system is halted, and a diagnostic message displayed.

Algorithm

• load the ORB’s ‘dynamic’ data segment

• examine eip: if it denotes that the fault happened when attempting to load the next stack 

in the current stack chain this indicates that an f - c a l l  was issued when there are no more 

stacks: throw an xcp_orb_nostack exception
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• examine eip: if it denotes that the fault happened when attempting to load the previous 

stack in the current stack chain, this indicates that a return was issued when there were no 

RPC returns pending: throw an xcp_orb_noret exception

• examine eip. If it denotes that the fault happened when attempting to load any other invalid 

selector into a segment register:

-  if regs [2] (ebx at the time of the fault) indexes a CDT entry with selector FFFFh, an 

attempt was made to use an invalid ObjRef: throw an xcp_orb_noref exception

-  if regs [2] (ebx at the time of the fault) indexes a CDT entry with selector FFFEh, 

an attempt was made to reference a valid, but uncached ObjRef. Find a free selector 

(rejecting eligible segments from the GDT if necessary), copy the ObjRef’s descriptor 

to its entry in the GDT, set the selector field in the CDT to the new selector, and retry 

the faulting instruction

-  if regs [2] (ebx at the time of the fault) indexes a CDT entry with type FFFCh, a return 

was made to a zombie component. Throw an exception of type xcp_orb_zombie.

• if control reaches here, the ORB has faulted unexpectedly, almost certainly due to a bug or 

improper use of a privileged method. Display a diagnostic message, and halt the system
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Appendix B

GTE Programmer’s Manual

This manual gives an overview of GTE — the Go! Test Environment. GTE is not meant as a 

complete system, simply one to explore the issues of building library operating systems on top of 

the Go! ORB, and more specifically to complete the proof-of-concept of SISR.

Each GTE component has a section dedicated to it, describing that component in terms of:

Overview A brief description of the component’s expected use, its motivation, and its role within 

GTE.

Interface The IDL of the component’s interface, followed by descriptions of each method. Un-

less stated otherwise, each component’s ctor  method simply initialises it and dtor closes it 

down.

Implementation An overview of the component’s implementation is given. This is most useful 

as a companion to the component’s source code.

B.l comp_lib

As described in Section A .l, Go! requires that a single component representing a library operating 

system is incorporated into the ORB’s data section. In GTE’s case, this component is comp_lib. 

comp-lib contains a simple, read-only, single-directory RAM file-system. The image for this file 

system resides in compAib’s data section. The file-system contains the images of all the other 

components that make up GTE.
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B .1.1 Overview

compelib inherits from GTE’s name_ctx interface. Components can be looked up (and installed) 

by name, using the lookup method. In effect, it uses the name_ctx type to realise a single-directory, 

read-only filesystem. Figure B.l shows how component images are embedded in other component 

images’ data sections.

ORB

Text Section

Data Section 
ORB data

c o m p _ lib  

Text Section

Data Section 
c o m p _ l i b  data 

s c a n n e r

Figure B.l: Component images embedded in other component images’ data sections

B .l. 2 Interface

in terface  name_ctx { 
void  c t o r () ; 
void d to r ( ) ;

ob jre f lookup( gstr  name ) ;

in terfa ce  comp_lib : name_ctx { 
void handleQ ; 
void n u l l ( ) ;

} ;

o b jre f lookup( gstr name )

lookup returns a component from the comp_lib that corresponds to name.
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A n u ll component is returned that contains a component implementation in the format re-

quired by Gol’s in s ta ll  method (see Section A.2.1). The image returned depends on the name 

passed as the single parameter. The gstr  type refers to a 32-bit, unsigned integer representing a 

string’s length pushed onto the stack, followed by an ASCII representation of said string.

If no match is found for the name, an xcp_namectx_nomatch exception is thrown.

There is a caveat to this description of lookup. The first time lookup is called is by the ORB 

on startup (see Section A .l). This means that rather than performing a lookup as above, the first 

invocation will in fact bring up GTE, installing and creating instances of all the GTE components. 

All subsequent calls to lookup will behave as documented above.

void  handle()

This method is used internally by comp_lib. It is used for entry when control is transfered to 

a fully-fledged GTE thread. If called by any component other than comp_lib, an xcp_gte_prot 

exception is returned.

void  n u llQ

Used internally by comp_lib to test null-RPC times, this method returns immediately.

B.1.3 Implementation

The comp_lib data section consists of a lists of (name, o f  f  set) pairs, where name is the name of 

the component, and o f f s e t  is a pointer to the image within com p.lib’s data section. The list is 

followed by the image of each component in the list.

A tool has been developed called libgen  that constructs the data section from a directory of 

component images on the build operating system (currently only tested under Linux).

B.2 mem_mgr

The mem_mgr component is responsible for managing linear space. Future versions of mem_mgr might 

include support for demand-paging, or exotic allocation schemes. However, the current version of 

mem_mgr implements only simple, free-list-based allocation/de-allocation of linear memory.
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B.2.1 Overview

Go! uses an external component to manage linear memory, as described in Section 6.3.4. mem_mgr 

is GTE’s version of that component. Creation/destruction and (un)installation are directed via 

this component, which selects the linear addresses at which components’ data reside.

B.2.2 Interface

interface mem_mgr {
void ctor();
void dtor();

objref install! objref image );
void uninstall! objref type );

objref create! objref type, uint arge
void destroy! objref instance );

uint get_addr( objref c );

void install( objref image )

This method is essentially a veneer for the ORB’s install method, image is the ObjRef of a null 

component with a data segment that describes an implementation type in a proprietary format. 

The null component referred to by image is destroyed as part of the installation. The ObjRef of 

the new type is returned.

Successful installation of the type is subject to it passing a code scan. The text section of the 

image described by image is scanned prior to installation by calling the scan method on scanner. 

Following successful installation of the type, instances may be created using the create method.

If image is not a valid ObjRef referring to a null-component containing a valid description of a 

type in its data segment, an xcp_gte.invalid exception is thrown. If code-scanning fails (that is, 

the image’s text section contains privileged instructions) an xcp.gte_unsafe exception is thrown.

void uninstall! objref type )

If type is not an ObjRef of a type previously installed an xcp_gte_invalid exception is thrown. 

Before uninstallation the release method is called on scanner.
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void create! objref type, uint argc, ... )

If type is not an ObjRef referring to a type successfully installed via in s ta ll  (and not subse-

quently uninstalled ), an xcp^gte_invalid exception is thrown. If there is insufficient memory 

to create an instance of said type, an xcp_gte_nomem exception is thrown. Otherwise, an instance 

is created of the type specified by type, argc bytes of arguments are passed to the constructor.

If successful, an ObjRef referring to the new instance is returned.

void  d estroy ( o b jre f instance )

If instance is not a valid ObjRef referring to a component instantiated via create, an xcp_gte_invalid 

exception is thrown. Otherwise, the component referred to by ObjRef instance is destroyed, and 

its memory freed.

Hint: if a component calls destroy on itself (thus ‘self-destructing’), it can avoid generating 

an xcp_orb_zombie exception by xfering to, rather than calling  mem_mgr: : d estroy !).

uint get_addr( o b jre f instance )

The linear address at which the component referenced by ObjRef instance was created is re-

turned. If instance does not refer to a type created by comp_lib an xcp_gte_invalid exception 

is thrown.

B.2.3 Implementation

The current version of GTE has very simple, and naive memory management (the purpose of GTE 

is not to investigate novel memory-allocation algorithms). mem_mgr uses a simple free-list, with 

very little concern for fragmentation (the only protection is that free-list blocks are not ‘split’ if 

the remainder would be less than some minimum size (lkB by default)).

To manage the free-list, mem_mgr needs access to all linear memory. Therefore the memungr 

component has a BSS of the maximum amount of linear space, and must be installed at linear 

address 0. This means that the memungr overlaps all other components (including the ORB).

B.3 scanner

The scanner component is responsible for using code-scanning in order to determine whether or 

not an untrusted component can safely execute while the microprocessor is in kernel mode (see
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Chapter 5).

B.3.1 Overview

This component has two methods. scan() is used to scan the code section of a given component 

image (possibly claiming 10 ports), and re le a se () releases any 10 ports claimed.

Certain components (such as device drivers) require access to certain I/O  ports. Access is 

restricted to specifying the port in immediate form (that is, instructions in /ou t reg , imm are 

allowed, but in /ou t reg , reg are not). Furthermore, only one untrusted component type may 

contain instructions accessing a given port at any time. Access is granted on a first-come, first- 

served basis. If a type is successfully scanned that contains an instruction in reg.n , port n is 

claimed for read-access. Any subsequent scanning of a component containing a read on port n 

will fail until the component is released.

As mentioned in Chapter 5, implementing code-scanning on machines with variable-length 

instructions is non-trivial. Since IA32 uses variable-length instructions, the code-scanning imple-

mented here uses the method introduced in Section 5.7.2.

B.3.2 Interface

in terfa ce  scanner { 
void c t o r ( ) ;  
void d to r ( ) ;

bool scan( ob jre f image, bool trusted  ) ;  
void re lea se ! o b jre f type ) ;

} ;

bool scan( o b jre f image, bool trusted )

This method must be called by memungr — any attempt to call by another component will trigger 

an xcp_gte_prot exception.

If the component image in image contains a code section, and that code section contains any 

privileged instructions or segment-register loads, fa lse  is returned. Otherwise true is returned.

As well as restricting the use of privileged instructions, scan also restricts access to I/O  ports. 

If the trusted parameter is true any instructions are permitted. However, the type still claims 

access to I/O  ports (even if those ports have already been claimed). Multiple types may claim 

concurrent access to ports if scan is called with trusted passed as true, but only one type that
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calls scan with trusted of false may have access to a given port concurrently, and then only 

if no privileged components claimed the port previously — that is, regardless of trusted’s value 

when scan is called, a ‘claim-count’ is incremented for each port referenced.

void release( objref type )

This method must be called by mem_mgr — any attempt to call by another component will trigger 

an xcp_gte_prot exception.

This method should be called when type is uninstalled if that type has claimed any I/O ports. 

All ports that are referenced by the type’s code section are declaimed.

B.3.3 Implementation

The implementation follows the algorithm outlined in Section 5.7.2.

scanner also maintains a 32 bit ‘read-claim-count’ and a 32 bit ‘write-claim-count’ for each 

port using an array of pairs of integers.

B.4 id isp

Even the most minimal kernels (such as exokernels [30]) handle interrupts at some level, if only 

to farm them out to user-level modules. One of the most striking aspects of Go! is that the ORB 

remains completely oblivious to interrupts. This section describes GTE’s id isp  component, used 

to handle interrupts.

B.4.1 Overview

On its own, idisp will do nothing with interrupts other than to resume execution in the interrupted 

context immediately after their receipt. In order to perform useful work, components such as 

device drivers attach to the interrupt vector in which they are interested. More specifically, a 

(blocked) thread component is attached that will resume execution in the context of the interested 

component.

id isp  is very simple. There is no interrupt priority management: the receipt of an interrupt 

always results in the attached thread being resumed in a scheduler that does not support thread 

priorities. There is only limited security policy: interrupts are attached to on a first come, first 

served basis. That is, once a thread is attached to a given interrupt vector, no other threads may
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attach to it until the said thread is unattached. Only the component that attached a thread may 

unattach it.

B.4.2 Interface

id isp  provides methods to attach and unattach thread components and also to indicate that an 

interrupt has been received.

interface idisp { 

void ctor(); 

void dtor();

void attach( thread t, uint vector ); 
void detachC uint vector ); 

void intr_done( uint vector );

void attach( thread t, uint vector )

Thread t will be woken up on receipt of an interrupt on vector. If there is already a thread 

attached to interrupt vector, an xcp_gte_prot exception is thrown.

void detach( uint vector )

The thread attached to interrupt vector is unattached. The calling component must be the 

one that has most recently attached a thread to interrupt vector, otherwise an xcp_gte_prot 

exception is thrown.

void intr_done( uint vector )

This method should be called in the context of the handling thread when the interrupt has been 

serviced. Interrupts on vector are re-enabled, and the thread put to sleep, pending receipt of 

another interrupt on vector.

If this method is called by a thread other than the one attached to interrupt vector a 

gte_xcp_prot exception is thrown.

B.4.3 Implementation

In order to understand id is p ’s implementation details it is first necessary to understand the 

interrupt mechanism employed by the Intel 80386 and the IBM PC. Such details are explained
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here.

The PC interrupt architecture is made up of two parts: the IA32 (CPU) mechanism, and 

the surrounding hardware defined by the PC (motherboard). Readers familiar with the 8086 

interrupt mechanism should note that the interrupt handling mechanism changed radically with 

the introduction of protected mode on IA32.

The IA32 chip uses vectored interrupts. There are up to 256 interrupt vectors, each with its 

entry point defined by an entry in the Interrupt Descriptor Table (IDT). The IDT is an array 

of interrupt or TSS descriptors, and is pointed to by the IDT register (IDTR). On receipt of an 

interrupt, control is transferred to the code segment and offset specified by the vector’s entry in 

the IDT. The first 32 vectors are reserved by Intel for use with faults.

The IBM PC uses the 8259 Programmable Interrupt Controller (PIC), which manages up to 15 

hardware interrupt request lines (IRQs). The IRQs can be redirected to any interrupt vector, and 

should always map to at least vector 32 to avoid conflicting with Intel’s reserved vectors. There 

are actually two PICs cascaded and multiprocessor motherboards employ an APIC (Advanced 

Programmable Interrupt Controller), although the details of this are beyond the scope of this 

overview.

On construction, id isp  assumes that interrupts are disabled (guaranteed by the ORB). As 

part of its constructor, id isp  initialises the 8259 PIC to direct all IRQs to vector 32 and above, 

id isp  contains a static array of interrupt descriptors (the IDT) which is initialised so that every 

interrupt enters the id isp , behaving as described below. The data segment’s base address is 

obtained from the mem_mgr component and the IDT’s linear address calculated. The IDTR is 

pointed at the IDT linear address, and interrupts are enabled.

On receipt of an interrupt, id isp  first examines whether or not there is a handler-thread 

attached to that vector. If not, execution is resumed immediately through issuing an ir e t  in-

struction. If there is a handler-thread registered and the vector is an IRQ (that is, the vector is 

in the range 32-48), id isp  programs the PIC to mask out future interrupts on that IRQ. id isp  

then sends the End-Of-Interrupt (EOI) signal to the PIC, indicating that the pending IRQ has 

been received, id isp  then calls the sched component’s in tr  method, passing the ObjRef of 

the handler-thread. This results in the current thread’s suspension and the resumption of the 

handler-thread. The intr_done method is called to indicate that a specific interrupt vector has 

been serviced, and the handler-thread is ready to receive further interrupts. If vector is an IRQ, 

that IRQ is unmasked on the PIC. Regardless of the vector, control is then x ferd  to sched’s
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b lo ck () method.

B.5 thread

The thread component is used to keep track of threads, mainly between clients and the scheduler.

B.5.1 Overview

The thread interface is designed to be useful for the implementation of more advanced scheduling 

without modifying sched. Unlike sched, new implementations of this interface may be freely 

created by arbitrary components without compromising protection.

B.5.2 Interface

interface thread {

void ctor( comp start_comp, uint start_method ); 
void dtor();

void start(); 

void resume(); 
stack get_stack();

void ctor( comp start.comp, uint start_method )

The arguments to the constructor are used to specify the method (start_method) and component 

(start.comp) in which the thread should start execution when it is first scheduled.

void start()

start is called by the scheduler the first time the thread is executed — if the thread implemen-

tation needs to perform any implementation-specific work at this point, this method can be used 

to perform it. The default implementation does nothing other than calling the method on the 

component specified during the thread’s construction.

void resume()

Depending on how the thread is attached to the scheduler (see Section B.6), this method might 

be called before the thread is scheduled. The default implementation does nothing.
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stack get_stack()

Return the ObjRef of the (first) stack component associated with this thread.

B.5.3 Implementation

The default thread is trivial. There are two words of state, used to store the two parameters 

passed in at construction. This state is referred to during execution of start () in order to start 

the thread in the appropriate component and method.

B.6 sched

This component provides a simple, round-robin, single-priority, preemptive scheduler.

B.6.1 Overview

As described in Section 6.3.4, Go! is implemented so that preemptive multithreading can be added 

relatively easily. This is implemented in GTE by the sched component, sched provides preemptive 

multithreading by attaching to the timer interrupt via idisp (Section B.4). sched also provides 

methods to block and unblock threads.

B.6.2 Interface

interface sched { 

void ctor() ; 

void dtor();

void intr( thread handler ); 

void click();

void attach( thread t, uint flags ); 

void detach( thread t );

void block ();

void unblock( thread t );

thread get_current_thread();

>;

167



void intr( thread handler )

This method should be called in response to receipt of an interrupt to pass control to the thread 

handler.

in tr  must be called with interrupts disabled. Any attempt to call this method with interrupts 

enabled will result in an xcp_gte_prot exception being thrown. This ensures that only privileged 

components can call in t r ( )  since only privileged threads will execute with interrupts disabled.

id isp  calls this method via an x fer  in response to receipt of an interrupt with a registered 

handler. The currently executing thread is suspended, and thread handler is resumed in its place.

void c l ic k Q

This method is called in response to the timer interrupt. It does nothing except x fer  control 

to the id isp ’s intr_done method. Calling this method with a thread other than the scheduler 

thread yields the current time slice (that is, the caller thread is suspended (but left runnable) and 

another thread chosen).

void  attach( thread t ,  u int fla g s  )

Call this method in order to attach a thread to the scheduler. The thread will be started according 

to the scheduling rules — that is, when its time-slice next arrives; no timing guarantees are made. 

When its time-slice arrives, thread t ’s start method is called.

The following bits of fla g s  are significant:
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31 If set, the thread is attached in a runnable state, otherwise the thread is attached 

blocked.

30 When method t ’s start method returns, thread t is deemed to have completed. If 

bit 30 is set then the thread will be restarted (that is, the thread’s start method 

will be called again). The thread starts in its original state — that is, if bit 31 is 

clear then on completion the thread will be blocked, with a call to start pending.

29 If bit 30 is clear then bit 29 defines the action taken on the thread’s completion.

If set, an xcp.thread.complete exception is thrown on completion of the thread. 

Otherwise thread t is destroyed on completion.

28 If set, the thread’s resume () method is called prior to its resumption at the start of 

each of thread t ’s time-slice (with the exception of the first).

27 If set then any other thread can wake the new thread. Otherwise only interrupts can 

unblock the new thread.

void detach( thread t )

Call this method in order to detach a thread from the scheduler, 

void  b lo ck ()

Suspends and blocks the current thread. The thread will not be run again until it is explicitly 

woken by a call to wake.

void wake( thread t )

Marks thread t  as ‘runnable’. If there is no thread t, or thread t is not in a ‘blocked’ state, an 

xcp_gte_invalid exception is thrown.

thread get.current.thread()

This method is the equivalent of the ORB’s get.self — it returns the ObjRef of whatever thread 

is used to call it.

B.6.3 Implementation

The implementation of sched is somewhat intricate, and its interface is intertwined with id is p ’s1.
LNote that despite the interfaces of sched and idisp being mutually dependent, the implementations are not.
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On construction, a ‘scheduler-thread’ is created, and sched attaches this thread to itself so that 

it will call its c l ic k  method. The ‘scheduler-thread’ is then attached to the id isp  on vector 32 — 

the timer interrupt. This means that the c l ic k  method is called on each timer click (approximately

18.2 times per second). The c l ic k  method does nothing except x fer  to the id is p ’s intr_done 

method, which in turn xfers to sched’s b lock  method which chooses a new thread. The result 

is that each clock results in the currently executing thread being suspended, and a new one is 

scheduled. Therefore in response to a time interrupt: (1) the current thread is suspended; (2) the 

scheduler-thread is woken; (3) the scheduler-thread is suspended; (4) the next thread is resumed. 

This is shown in more detail in Figure B.2.

O ut-going thread

i d i s p  s c h e d

__vec32_entry intr()
suspend! current ) 
^resume( handler )

click()

_ l

xfer \

xfer
intr_done

xfer block() , 
block( current ) / 
resume( next() )

on^ng thread

7

Figure B.2: sched and id isp  interaction

This mechanism results in extra temporal overhead due to the unnecessary resumption of the 

intermediate ‘scheduler-thread’ between thread switches. However, this mechanism means that 

the timer interrupt is handled just as any other interrupt. Furthermore, in a more complete system 

it is likely that sched’s c l ic k  method will perform useful work, such as checking for time-outs.

B.7 xcpimgr

A minimal exception handler. When as exception is caught its details are displayed on the screen 

and the system halted.

B.7.1 Overview

xcp_mgr attaches to interrupt vector 30h via id isp . On receipt of an exception, the exception’s 

details are displayed on the screen and the system halted.

170



B.7.2 Interface

in terfa ce  xcp_mgr { 
void  c t o r ( ) ;  
void  d to r ( ) ;

void  handle( o b jre f xcp, uint o f f s ,  o b jre f c a l le r ,  o b jre f ca lle e  ) ;

void  handle! o b jre f xcp, uint o f f s ,  o b jre f c a l le r ,  o b jre f ca lle e  )

This method is attached to interrupt vector 30h via id isp . On invocation diagnostic information 

is displayed and the system halted. On entry, eax must contain the value 1 (indicating that 

the method was called via the ORB) — any attempt to call handle directly will result in an 

xcp .gte.prot exception being thrown.

B.7.3 Implementation

The implementation of xcpungr is trivial. The constructor attaches xcp_mgr’s handle method 

to interrupt vector 48 via id isp . On invocation of handle from the ORB the system is halted 

(interrupts disabled and the h it  instruction issued).

B.8 video

The video component provides a simple text-based console driver for CGA, EGA and VGA colour 

monitors.

B.8.1 Overview

Every component in GTE makes some use of video. The component renders strings, individual 

ASCII characters, and signed & unsigned integers on the screen. A cursor keeps track of the 

current output position. Text is scrolled up the screen as necessary.

B.8.2 Interface

in terfa ce  video { 
void  c t o r ( ) ;  
void  d to r ( ) ;
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void prin t_ch ar( char c ) ;
void p r in t_str in g ( uint str_ len , char s tr [0 ] ) ;  
void  prin t_u in t( uint i ,  uint b its  ) ;  
void  p r in t_ in t( in t i  ) ;  
void  gotoxy( in t x , in t y ) ;

void print_char( char c )

The ASCII representation of c is placed at the current cursor, and the cursor moved to the next 

location. If necessary, the screen is scrolled one line upwards. ASCII codes 32 (space) through 126 

(“ ), 8 (backspace) and 10 (newline) are handled correctly — other ASCII codes are not guaranteed 

to function correctly (although implementations are free to support them).

void  prin t_strin g ( g str  str in g  )

The string str in g  is taken from stack and displayed on the screen. Each character is printed 

using print_char. The gstr  type refers to a 32-bit, unsigned integer representing a string’s 

length pushed onto the stack, followed by an ASCII representation of said string.

void print_uint( uint i ,  uint b it s  )

The unsigned integer i  is displayed in hexadecimal format, padded to b its  divided by 4 characters. 

Each character is printed using print_char.

void printJLntf in t i  )

The signed integer i  is displayed using decimal format. No padding is performed (that is, the 

minimum number of characters needed to represent the number are used). Each character is 

printed using print.char.

void  gotoxy( in t x, in t y )

Positions the output cursor at row x, column y. Subsequent output will start from here.

B.8.3 Implementation

The IBM PC architecture defines that memory from B8000h is mapped to the screen for all colour 

video devices (GTE does not support monochrome video cards). The memory is a row-major, 2d 

array of 16 bit elements. Even bytes within the array contain the ASCII code of the character
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displayed on the screen. Odd bytes contain a set of attributes with which to display the character 

in the preceding byte. The video component implements a put .char method that copies ASCII 

values to the appropriate location within this memory-mapped video space. put_char also provides 

scrolling.

All methods call upon this put-char routine to plot characters. print_int and print_uint 

convert their parameters to the relevant ASCII codes before passing them to put.char.

B.9 keyb

This component provides a simple, interrupt-driven keyboard device driver.

B.9.1 Overview

The component responds to the ‘key-down’ and ‘key-up’ interrupts generated by the PC’s 8042 

keyboard controller, and buffers keystrokes. Arbitrary clients may remove characters from this 

buffer. Only UK layout keyboards are supported (although it would be trivial to provide slightly 

altered implementations; one for each layout).

B.9.2 Interface

in terfa ce  keyb { 

void  c t o r ( ) ;  

void  d to r ( ) ;

void  r e s e t ( ) ;  

char g e t c ( ) ;

char getc()

This method will return the ASCII code of the first character from the driver’s FIFO buffer. If 

the buffer is empty the thread is blocked, waiting on the arrival of a keystroke. ‘Meta-keys’ such 

as shift are not returned, but interpreted appropriately (for example, depressing an alphabetical 

key while holding shift will produce the capital of that letter).
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void reset()

Called to reset the keyboard. This routine must be called before the keyboard is guaranteed to 

function correctly.

B.9.3 Implementation

During construction the keyboard controller is reset, and a keyboard test performed. Assuming 

all goes well, the keyboard driver’s buffer (implemented as a circular array) is initialised. A thread 

is created and attached to sched as an interrupt handler. The interrupt handler thread is then 

attached to id isp  on vector 33 (IRQ 1 — the keyboard IRQ).

On receipt of an interrupt, the ‘scan-code’ is retrieved from the keyboard (using IA32’s I/O  

ports), and examined. If either shift key is depressed, the ‘shift-flag’ is set. When the shift key 

is released, the ‘shift-flag’ is cleared. If the scan-code denotes an alphabetic key, it is converted 

to the appropriate ASCII code (capital thereof if the ‘shift’ flag is set), and stored in the buffer. 

Appropriate conversions are also applied to the number and punctuation keys if the shift flag is 

set. The condition variable associated with the buffer is also set in order to wake any threads 

waiting for keyboard input.

B .1 0 cli

cli is GTE’s Command Line Interface. It obeys just 5 commands: help, stress, tt, exit and 

reboot.

B.10.1 Overview

c l i  simply takes keystrokes from the keyb component and interprets them. If the user types help, 

the following message is displayed:

GTE Command Line Interface.

The following commands are recognised: 

help - print this message 

stress - perform a stress-test

tt - timing test: report on times taken by various operations
exit - quit GTE

reboot - reboot the system
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If any command is entered that is not recognised, the c l i  displays the message:

Command not recognised

The ‘stress-test’ performed is described in Section 7.4. The ‘timing-test’ measures the time 

taken (in cycles) for various operations. The tests and their results for the latest version of GTE 

are documented in Chapter 7.

B.10.2 Interface

in terrfa ce  c l i  { 
void  c t o r ( ) ;  
void  d to r ( ) ;

void  p ro cess ( ) ;
} ;

void  p rocess !)

This method repeatedly reads and processes lines of input from the keyboard. If the user types 

reboot the system is rebooted. If the user types help, the help message is displayed. If the user 

types e x it  then the method returns. Typing stress or t t  results in the execution of a stress-test 

or the timing tests respectively. If anything else is typed, the error message is displayed. The 

routine repeats until the e x it  command is typed.

B.10.3 Implementation

The c l i  implementation is trivial. The process method simply takes characters from keyb’s getc 

method, searching for valid commands when a new-line is received.
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Appendix C

Object Orientation on Go!

C .l Introduction

Over the last decade, object orientation has become the software-engineering tool of choice. It 

is therefore desirable that the Go! component-model is (or at least can be) viewed as object 

oriented by the programmer. However, object-orientated programming should not be mandated, 

and should not adversely effect performance, at least if not used. Therefore, there are two aspects 

to Go!’s component model: the programmer’s view, and the implementation.

High-level programming abstractions like inheritance are not supported directly Go! In-

stead, the ORB implements only rudimentary support for object-orientation, on top of which 

the programming environment (specifically the “IDL-compiler” 1) can create the illusion of a fully- 

featured, object-oriented system. Providing only support for object orientation (rather than full 

object orientation) at the ORB level improves both performance and flexibility. Performance 

because the ORB is not weighed down by expensive and complicated features such as multiple- 

inheritance, and flexibility because the exact component-model used can be specified by the pro-

grammer. For example, two programmers might access the same service differently: one using an 

object-oriented IDL compiler that generates C + +  stubs, and one using a procedural IDL compiler 

that generates C stubs.

This appendix is divided into two parts: the programmer’s view which specifies the features

that programmers can use, and the implementation which explains how the “IDL compiler” can
A n  IDL compiler is a tool that takes as its input a specification of a component’s interface in some ‘Interface 

Definition Language’ (IDL) and outputs ‘skeleton code’ and ‘header’ files which abstract the implementation to aid 
the programmer significantly.
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use this to present the the programmer’s view on the implementation.

C.2 The Programmer’s View

The component-model presented to programmers is similar to that found in most object-oriented 

systems. Each component is an instance of an implementation and each implementation realises 

an interface. An interface is a set of method signatures and is defined in some Interface Defini-

tion Language (IDL). The interface defines a contract, which is a semi-formal2 definition of the 

behaviour of the component and its methods. Both interfaces and implementations may inherit 

singly or multiply.

C.2.1 Interfaces and Implementations

Each component has an interface and an implementation (in fact, a component may have several 

of each, as described in Sections C.2.3 and C.2.4). The interface’s methods (functions) are realised 

by the component’s implementation. The interface is properly separated from the implementa-

tion (that is, unlike models such as C+ + , there is no way for other components to access the 

implementation’s state other than by calling methods on the interface).

Each interface defines 2 ‘special’ methods: the constructor and destructor. The constructor 

is the first method to be called after the component instance is created, and the destructor the 

last method to be called before the instance destroyed. Methods other than the constructor and 

destructor are called by other component implementations (via the ORB).

C.2.2 Interface Inheritance

Interface inheritance allows a new interface to be derived from an existing one (that is, standard 

inheritance as found in most object-oriented systems). The new interface contains all of its base’s 

methods, and optionally adds some of its own. The derived type has is a sub-type of its base. In 

other words, the derived type has an is-a relationship with its base — if B derives from A, then B 

is-a A. This means that anywhere a component of type A is expected, one of type B may be used 

instead. More formally, any use of B requires no additional pre-conditions than the corresponding 

use of A, but pre-conditions may be dropped, and post-conditions may not be loosened on B, but 

they may be tightened.
2The IDL specifies the syntax formally, but the semantics informally.
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Interfaces may inherit indirectly (that is, C may inherit from B which inherits from A) and 

multiply (that is, interface E can inherit from D and C).

Figure C.l: An example of indirect and multiple interface inheritance

As an example, take the inheritance graph as shown in Figure C.l. The network device 

driver can be used anywhere a data sink or source can be. As with all devices in this example, 

it is necessary to open and close the network device before and after use. Note that if several 

interfaces are inherited from that themselves inherit from the same interface (as shown in the 

‘diamond’ pattern of Figure C .l), there is only one instance of the base interface (known as virtual 

inheritance in C + + ). If several instances of one interface are required, the object can export 

multiple interfaces (see Section C.2.4).

C.2.3 Implementation Inheritance

It is sometimes necessary for an implementation of a derived interface to realise its base methods 

in terms of an existing base implementation. Figure C.2 gives an example of this for a graphical 

user interface (GUI), where the interface appl_wnd is used to realise application-specific windows 

(the inset gives the IDL of these components). In this example, the appl_wnd interface derives 

from window which defines the standard windowing behaviour. The base interface is extended with 

a paint method that is called whenever the application should re-paint the contents of its main 

window (note that this differs from the base draw method that is used to draw the window border 

and controls). It is undesirable for each implementation of appl_wnd to be required to implement 

the entire windowing behaviour — instead such responsibilities should be delegated to a default 

window implementation provided by the GUI. The example shown in figure C.2 (a) demonstrates
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custom GUI provided
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-------------------------- ID L----------------------------
i n t e r f a c e  w i n d o w  {

v o i d  d r a w l  c a n v a s s  ) ;  
v o i d  m o v e !  p o i n t ,  r e c t  ) ;

);
i n t e r f a c e  a p p l _ w n d  : w i n d o w  { 

v o i d  p a i n t ( c a n v a s s  ) ;
};

ctor O 

dtor (_̂ 

draw() 

move{) 

ctor() 

dtor M 

paint()

GUI provided 
implementation

________  custom
implementation

(b)

Figure C.2: Implementation inheritance vs delegation

the case when an implementation of a derived interface delegates the base behaviour to an instance 

of the base implementation. This requires two extra context switches per base method call (one 

each for the call to, and return from the GUI provided window implementation). Although a single 

context-switch in Go! is relatively cheap, these extra context switches can become significant when 

there are several levels of inheritance with delegated behaviour.

The example in figure C.2 (b) demonstrates implementation inheritance. Here, the base meth-

ods point directly to the GUI-provided implementation. This means that calling base methods 

(those implemented by the GUI library) requires no extra context switches. Note that the GUI 

and application supplied implementations are still protected from each other. Note also that each 

inherited implementation requires its own constructor and destructor methods.

C.2.4 Multiple Interfaces

Just as implementation inheritance results in a component with multiple implementations, a com-

ponent can support multiple interfaces. More specifically, several interfaces can point to the same 

implementation, and one interface can point to several implementations: interfaces map to imple-

mentations in a many to many fashion. Multiple interfaces are useful in cases where multiple views 

onto the same object are required. As an example, take a proxy implementation of a component 

on a remote machine. The proxy component provides ‘location transparency’ — clients of the 

component are unaware that it is resident on a remote machine. The proxy realises the interface
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by directing requests over the network to the ‘real’ implementation on another machine. Such a 

proxy implementation might also have methods to interrogate the physical location of the remote 

component, as illustrated in Figure C.3. As another example, a ‘file’ component might provide a 

POSIX and a native interface.

widget
Interface

c t o r ()

d t o r ()

do_work()

proxy proxy
implementation lnterface

fi_____ c t o r ( )

d t o r ()

l o c a t i o n ()

Figure C.3: Multiple Interfaces

Multiple interfaces are also useful when evolving an interface during hot-swapping. The incom-

ing implementation can export a new (modified) interface as well as the original one to continue 

supporting legacy clients.

C.3 Object Model Implementation

The object model described in Section C.2 is a conceptual model that is supported at the pro-

gramming level if required. Go! does not support object orientation directly partly because this 

would compromise efficiency, but also because object-orientation is closely linked to type-safety, 

and so is better implemented at the language level.

However, Go! does provide support so that the above object model can be implemented eas-

ily. This is achieved by allowing several components to be created atomically, all with consecutive 

references. A separate interface is created for each possible implementation inherited. If implemen-

tation inheritance is employed, each interface references a different implementation. Otherwise, 

each interface refers to the same implementation. For the GUI example in Figure C.2, Go! would 

be called upon to create the GUI implemented window component and the application realised 

appl_.wnd component, with consecutive references. If implementation inheritance is not required, 

and appl.wnd is required to implement all methods, and both the window and appl_wnd interfaces 

reference the same implementation. An automatically generated C + +  header file for this case 

might look like:

c lass  window {  
p u b lic :

void draw( canvass &c )
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{  push( c ) ;  orb::call( (objref) this, 0 ) ;  }  
void move( point p, rect r )

{  push( p.x ,  p .y ,  r . x ,  r . y  ) ;  o r b : : c a l l (  ( o b j e f ) t h i s ,  1 ) ;  }
>;

c la ss  appl_wnd : public window { 
p u b l i c :

void p a in t( canvass &c )
{  push( c ) ;  o r b : : c a l l (  ( ( o b j r e f ) t h i s )  + 1, 0 ) ; } ;

>;

Note that the class’s th is  pointer is not really a pointer, but the window’s ObjRef. Because 

appl_wnd is one level down inheritance hierarchy, its methods are accessed via the object’s second 

interface, hence 1 must be added to window’s ObjRef when calling the appl_wnd’s methods. Note 

also that although the example is given in C++,  the mapping of object-orientation to components 

is not language specific: that is, other object-oriented languages could be used (although the 

details would differ).

Note also that because linear space is not managed by the ORB (see Section 6.3.4) no ex-

plicit support is necessary for allowing multiple interfaces onto one implementation. In order to 

create two references both pointing at the same implementation, both references’ data and code 

segments should overlap. It is left to whatever component is responsible for memory management 

to orchestrate such overlapping segments.

C.3.1 Multiple Inheritance and Polymorphism

The above scheme needs to be extended to cope with multiple inheritance. This is because a given 

interface’s reference is calculated from the sum of its base interface’s reference, and the level in 

the inheritance hierarchy of the given interface. However, with multiple inheritance this means 

that distinct interfaces are required to share a reference.

Figure C.4 shows an example of this. Because sink and source are both at level 1 in the 

hierarchy, they share a reference. To overcome this, the base reference is duplicated, as shown in 

Figure C.5. Note that although there are two references to the sink interface (103 and 105), these 

refer to the same implementation (that is, references 103 and 105 are two (identical) interfaces 

onto one implementation).

Polymorphism means that a client must be able to use a specialisation of a more general type 

without being aware. In other words, wherever an object of some type is used, a specialisation of 

that type (that is, a derived interface) can be used transparently. However, clients must be careful
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Figure C.4: Multiple inheritance with several interfaces at one level

level 0
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Figure C.5: Duplicating interfaces in multiple inheritance

to cast the specialised type appropriately. For example, imagine two methods foo  and bar that 

each take 1 parameter of the type source and sink respectively. Polymorphism dictates that a 

component of type net can be supplied instead to either, but in doing so, one must be careful 

to modify the reference appropriately. Specifically, with the example in Figure C.5, foo  must be 

passed reference 105, and bar reference 103.

Fortunately, object-oriented compilers are required to exhibit this behaviour too. For example, 

the following C + +  will be compiled correctly:

/  *
*IDL compiler generated code 

*/
class device { 

char dummy; 

public:

void open( int mode )
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{ orb::call( (objref)this, 0, mode ); }; 

void close()

{ orb::call( (objref)this, 1 );

} ;

class sink : public device { 

char dummy; 

public:
void put( memobj m )

{ orb::call( (objref)this + 1 ,  0, m ); };

} ;

class source : public device { 

char dummy; 

public:

memobj get()

{ return orb::call( (objref)this + 1 ,  0 ); };

} ;

class net : public sink, public source { 

char dummy; 

public:

char[6] get_addr()

{ return ret_obj<char[6]> orb::call( (objref)this + 2, 0 ); }; 
void set_premiscuous()

{ orb::call( (objref)this + 2 ,  1 ); };

} ;

/*
*Note: the following code is not automatically generated, but is here to 

»demonstrate the compiler’s behaviour with the above code.

* /
void write( sink &s ); 

void read( source &s ); 

void connect( net &n );

void 

main() {

net &n = »(net*)103;
write( n ); //will be passed ref 103

read( n ); //will be passed ref 105

connect( n ); //will be passed ref 103

>

Note that each interface has a char member, dummy. This forces the compiler to offset the 

object’s this pointer by the appropriate amount in order to obtain the correct ObjRef for the 

interface’s level in the inheritance hierarchy. Care must be taken to ensure that the compiler does 

not ‘pad’ the offsets, as C and C + +  compilers are free to do (the above example is known to work 

correctly with gcc).
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C.4 Summary

This appendix has presented how object-oriented compilers can be used to provide programmers 

an object-oriented view of Go! while only minimal support is provided by the ORB (namely the 

ability to allocate consecutive references at component instantiation). Providing rudimentary 

support like this rather than full-blown support increases both performance of the ORB, and 

flexibility of the programmer’s view.
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