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Abstract

Pharmaceutical research and development (R&D) is the scientific process by 
which new medicines are discovered, developed, and brought to market. The social 
benefits of innovative new medicines are, and have been, enormous. In fact, few other 
health care technologies have improved the social welfare of the world’s population as 
much, and as profoundly, as pharmaceuticals have. For example, breakthrough 
medicines and vaccines have played a vital role in the treatment of fatal diseases. As a 
result, most of this century’s leading causes of death have been eliminated, and people of 
all ages enjoy increased life expectancy and vastly improved qualities of life (PhRMA, 
2000).

Pharmaceutical R&D is also, not surprisingly, a very long and costly process.
The average drug spends 14.9 years in development and costs approximately 320 million 
dollars to bring to market (Tuft’s Center for the Study of Drug Development 1998, 
DiMasi, 1991). Consequently, the pharmaceutical industry has, in recent years, 
consistently ranked first in R&D investment intensity (the ratio of R&D to sales) among 
U.S. industries. Interestingly though, once the technology—and, more specifically, the 
vast safety and efficacy information accumulated through the R&D process—is fully 
established, the manufacturing costs of the pharmaceuticals are quite small compared to 
other manufacturing industries.

These unique characteristics of pharmaceuticals, and pharmaceutical R&D in 
particular, have resulted in the pharmaceutical industry being the focus of a great deal of 
political attention in recent years. This has been especially true given the perceived high 
cost of prescription medications —especially in the United States. Indeed, real 
pharmaceutical prices have been growing steadily over the past decade (U.S. Statistical 
Reports 1990-1999). As a result, there has been a pressing need, both political and 
academic, to better understand the economics of pharmaceutical R&D—the benefits, the 
risks, and the costs.

Consequently, the aim of this thesis will be to investigate, both theoretically and 
empirically, the economics of pharmaceutical R&D investment. As such, the main body 
of our research will focus on the firm R&D investment decision—with a particular focus 
paid to the role played by internal cash flows. Specifically, it will be hypothesized that, 
because of the unique characteristics associated with pharmaceutical R&D, capital 
market imperfections exist in the markets for external R&D finance. This, in turn, it will 
be argued, results in firm cash flows having a lower cost of capital relative to external 
debt and equity. Hence, a positive relationship is expected to exist between firm cash 
flows and firm R&D investment levels. This hypothesis, which runs contrary to classical 
investment theory—where internal and external capital are considered perfect substitutes 
(Miller and Modigliani 1958)—will be shown to have important policy implications.

The thesis is separated into a background section, a theoretical section, and 
several empirical sections. The background section will review the clinical and economic

xi



characteristics of the pharmaceutical R&D process, and discuss the major research 
findings in this area.

Next, the theoretical section will review the literature on capital market 
imperfections and develop, from sound microeconomic principles, a framework from 
which the pharmaceutical R&D decision may be analyzed. This section will demonstrate 
why, theoretically, cash flows are expected to exert a positive influence on 
pharmaceutical R&D investment.

Lastly, the empirical sections will estimate several models of R&D investment 
using recent data from 60 of the world’s leading pharmaceutical firms. These models, 
which employ several variables designed to measure a firm’s internal cash flow, will be 
used to test our hypothesis that cash flows are an important determinant of 
pharmaceutical R&D investment. Models will be estimated over multiple samples of 
firms and time periods.

Our general findings from this research will reveal that cash flows are a very 
significant determinant of pharmaceutical R&D investment. This is the case independent 
of the sample of firms considered or the time period studied. We found that the 
coefficient estimates for the cash flow variable ranged from 0.08 to 0.27, depending on 
the sample and model specification. This indicates, based upon our general model 
specification, that a $1 decrease (increase) in cash flows will result in an approximate 
$0.08-$0.27 decrease (increase) in firm R&D investment.

In addition to testing the capital markets imperfections hypothesis, investment 
models were also developed to address the important public policy of issue prescription 
drug price controls in the U.S. This has been a particularly controversial political topic in 
recent years. This section will use a modified version of our investment model and 
estimate the impact of a new U.S. prescription drug price control policy. We will 
demonstrate that such a policy can be expected to result in an approximate 10% to 30% 
decline in R&D investment.

Throughout the course of the aforementioned research, we will also investigate 
several other related issues. For example, in the context of our general R&D investment 
model, we will consider the issues of structural change, simultaneity, and causality.

xii



Chapter One

Introduction

Pharmaceutical Research and Development: A General Introduction

Pharmaceutical research and development (R&D) is the scientific process by 

which new medicines are discovered, developed, and brought to market. The social 

benefits of innovative new medicines are, and have been, enormous. In fact, few other 

health care technologies have improved the social welfare of the world’s population as 

much, and as profoundly, as pharmaceuticals have. Breakthrough medicines and 

vaccines have played a vital role in the treatment of fatal diseases. As a result, most of 

this century’s leading causes of death have been eliminated, and people of all ages enjoy 

increased life expectancy and vastly improved qualities of life (PhRMA, 2000). For 

example, breakthrough antibiotics and vaccines led the way in the near eradication of 

syphilis, polio, diphtheria, whooping cough, and measles. Additionally, cardiovascular 

drugs, ulcer therapies, and anti-inflammatories have dramatically improved the treatment 

of heart disease, ulcers, emphysema, and asthma.

Pharmaceutical R&D is also, not surprisingly, a very long and costly process.

The average drug spends 14.9 years in development and costs approximately 320 million 

dollars to bring to market (DiMasi, 1991). Consequently, the pharmaceutical industry 

has, in recent years, consistently ranked first in R&D intensity (the ratio of R&D to sales) 

among U.S. industries. Interestingly though, once the technology—and, more 

specifically, the vast safety and efficacy information accumulated through the R&D 

process—is fully established, the manufacturing costs of the pharmaceuticals are quite 

small compared to other manufacturing industries.

These unique characteristics of pharmaceuticals, and pharmaceutical R&D in 

particular, have resulted in the pharmaceutical industry being the focus of a great deal of 

political attention in recent years. This has been especially true given the perceived high
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cost of prescription medications —especially in the United States. Indeed, real 

pharmaceutical prices have been growing steadily over the past decade (Danzon, 2000). 

The pharmaceutical industry was also ranked first in return on equity among all U.S. 

industries in 1999 (Forbes Annual Report, 1999). Consequently, there has been a 

pressing need, both political and academic, to better understand the economics of 

pharmaceutical R&D—the benefits, the risks, and the costs. The aim of this thesis will 

be to investigate, both theoretically and empirically, a very particular issue: 

pharmaceutical R&D investment.

Research Focus: The Firm R&D Investment Decision

The main body of research in this thesis will focus on the firm R&D investment 

decision—with a particular focus paid to the role played by internal cash flows. 

Specifically, it will be hypothesized that, because of the unique characteristics associated 

with pharmaceutical R&D, capital market imperfections exist in the markets for external 

R&D finance. This, it will be shown, results in firm cash flows having a lower cost of 

capital relative to external debt and equity, which, in turn, results in a positive 

relationship between firm cash flows and firm R&D investment levels. This hypothesis, 

which runs contrary to classical investment theory—where internal and external capital 

are considered perfect substitutes (Miller and Modigliani 1958)—will be shown to have 

important policy implications.

Outline o f the Dissertation

Before considering the specifics of the pharmaceutical R&D investment decision, it will 

be useful to review both the clinical and economic characteristics of the R&D process.

As will become apparent later in the thesis, it is the highly unique nature of 

pharmaceutical R&D—both scientifically and economically—that forms the foundation 

for the hypothesis that capital market imperfections exist for pharmaceutical R&D 

finance. For this reason, Chapter Two will review the major clinical and economic 

characteristics and trends of pharmaceutical R&D. In addition to providing a detailed
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background from which we will initiate our research, this chapter will also review the 

seminal works of other authors whose research is relevant to the central issues addressed 

in this thesis. Chapter Two will be different from subsequent chapters in this thesis due 

to its generality—its main purpose is to describe the pharmaceutical R&D process.

Chapter Three will investigate the theoretical rationale for pharmaceutical R&D 

financing constraints. This chapter will begin by developing a simple analytical 

framework from which both the classical investment model, and, a new, alternative 

model—one based on capital market imperfections—can be considered and compared. 

After demonstrating the implications of such an alternative-type model specification, the 

model’s theoretical underpinnings will be thoroughly explored and developed. 

Specifically, the rest of Chapter Three will be devoted to demonstrating that, from a 

theoretical standpoint, there are several reasons to hypothesize that capital market 

imperfections may be present in the markets for pharmaceutical R&D finance. These 

reasons are based on transaction costs, tax advantages, asymmetric information, costs of 

financial distress, and agency problems.

Chapter Four will mark the first of three empirical chapters (and one appendix) 

devoted to estimating models of the determinants of pharmaceutical R&D. These 

models, which will employ various variables designed to measure a firm’s internal cash 

flows, will be used to test the hypothesis that cash flows—because of their relative cost 

advantage to external debt and equity—are an important determinant of pharmaceutical 

R&D investment. Specifically, Chapter Four will begin by critically reviewing the 

empirical work of other authors. Following this, model specifications will be developed, 

discussed, and estimated using data from 11 U.S. pharmaceutical firms from 1976 to 

1996. Given the pooled nature of the data set (i.e., the use of both time series and cross- 

sectional data), various panel data estimation techniques will be reviewed and applied.

Chapter Five will expand on the analyses in Chapter Four by estimating models 

using a larger, and international, sample of 60 firms over the period from 1983 to 1997. 

The work in this chapter is the first empirical study of pharmaceutical R&D investment 

with an international focus. Specifically, several samples of firms from Europe, the U.S., 

and Japan will be employed to further—and more completely—test the hypothesis that 

firm cash flows are an important determinant of pharmaceutical R&D investment. In
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addition to testing this primary hypothesis, several other hypotheses related to the firm 

R&D investment decision will be examined. In particular, given the dynamic nature of 

the pharmaceutical industry over time, and the vastly different regulatory environments 

for U.S- and non-U.S.-based firms, tests of structural change (and differences)—both 

over time and across firms groups—will be conducted.

Chapter Six will deviate somewhat from the focus on capital market 

imperfections and will use the models estimated in Chapters Four and Five to address the 

issue of pharmaceutical price controls in the United States. This has been a particularly 

controversial political topic in recent years. In fact, it is one the most debated policy 

issues in politics today. For this reason, and because the models estimated in the 

previous chapters are especially well suited for addressing (from an economic 

perspective) the impact of such a policy, Chapter Six will endeavor to answer the 

question: “What impact, if any, will pharmaceutical price controls in the U.S. have on 

future investment in pharmaceutical R&D?” This is an especially important question 

given the widespread benefits attributable to pharmaceutical innovation—which, of 

course, is a direct result of investment in pharmaceutical R&D. Answering this question, 

to one degree or another, will provide a very useful quantitative estimate of the economic 

consequences—in terms of the effect on R&D investment—such a policy can be 

expected to have.

Lastly, it should be mentioned that Appendix Two is, in essence, an additional 

empirical chapter—one that investigates the issue of model specification. More 

specifically, because the majority of models estimated in this thesis use reduced form 

specifications, the appropriateness of this specification had to be tested statistically. In 

fact, this constituted one of the first phases of the thesis research. Issues of model 

simultaneity and variable causality were considered in detail. The findings, which are 

discussed in detail in this appendix, support the use of a reduced form model 

specification. Therefore, this specification was deemed appropriate for testing our 

primary hypothesis that firm cash flows—because of capital market imperfections—are 

an important determinant of pharmaceutical R&D investment.

Finally, Chapter Seven will summarize the main findings from this research, draw 

conclusions, and discuss possible directions for future research.
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Pharmaceutical Research and Development: 
The Costs, Risks, and Returns

Chapter Two

Section 1: Introduction

Pharmaceutical research and development (R&D) has received a considerable 

amount of attention in recent years. In particular, the risks, the costs, and the returns of 

pharmaceutical R&D have come under much scrutiny. This attention has primarily 

arisen from the general perception that the pharmaceutical industry is excessively 

profitable, which—in light of the increased movement towards greater cost-containment 

in healthcare—has been particularly accentuated. As an illustration of this view, consider 

the following quote from Senator Pryor during a 1992 congressional debate on 

pharmaceutical price controls:

Fortune Magazine, July 29, 1991, said the manufacture of pharmaceuticals is 
America’s most profitable business. In 1990 the average rate of profit for the 
Fortune 500 companies was 4.6 percent. What about the pharmaceutical 
companies? Let us see how they are getting along— 15.5 percent, that was their 
average profit in the year 1990. Now how do they make these enormous profits? 
By outright price gouging of our American citizens . . .

Consequently, a tremendous amount of research activity has been undertaken in 

recent years to estimate the costs and returns of pharmaceutical R&D. Therefore, the first 

objective of this chapter will be to provide an overview of the key factors that affect such 

R&D costs and returns. To this end, recent studies that have estimated these costs and 

returns will be summarized along with brief descriptions of each study’s methodology. 

The second objective of this chapter will be to examine, within the same context, recent 

trends in the pharmaceutical R&D process. This will “lay the ground work” for future 

discussions and provide the reader with a broad overview of the pharmaceutical R&D 

landscape and how this landscape has changed over the years.
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In the context of a comprehensive overview of the pharmaceutical R&D process, 

it will be advantageous to examine it from two separate but related perspectives—the 

scientific perspective and the economic perspective. However, the principal focus of this 

chapter will be on the economic perspective. Specifically, as already stated, this chapter 

will be concerned with R&D in the context of its inherent costs, risks, and returns. The 

scientific perspective on pharmaceutical R&D, while not the main focus of this chapter, 

will be explored first—in particular, the R&D process, scientific developments, recent 

technological developments, and research trends. The scientific perspective will establish 

a framework in which the economic considerations relating to R&D may be couched.

Section 2.1: Scientific Perspectives on Pharmaceutical R & D  

Section 2.2.1: The R&D Process

The Pharmaceutical Research & Development process is one of discovering, 

developing, and bringing to market new ethical drug products. This process has long 

been the main means of competition among firms in the pharmaceutical industry. As 

such, understanding this process and its inherent risks, costs, and potential rewards will 

be of paramount importance to understanding how firms make strategic R&D decisions 

—the subject of this thesis.

The pharmaceutical R&D process for a new drug candidate is comprised of many 

phases. For the successful drug candidate (the one that eventually makes it to market) 

this process takes an average of 14.9 years (PhRMA, 1998). Indeed, pharmaceutical 

R&D is a very long, risky, and costly process, in which only one out of five drugs in 

clinical development reaches the market (PhRMA, 1998). The pharmaceutical R&D 

process is illustrated below in figure 2.1 along with the average length of time a 

successful drug candidate spends in each stage of development. Following this figure is a 

brief description of each stage.
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Figure 2.1
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Section 2.2.2: Synthesis and Extraction

The first step in the R&D process begins with synthesis and extraction. This 

initial process involves the identification of new molecules. New molecules may be 

produced through artificial synthesis or extracted from various natural resources such as 

plants, animals, or minerals. Specifically, new molecules are sought that have the 

potential to alter certain biological systems. For example, a molecule may be extracted or 

synthesized and found to be capable of stimulating or inhibiting an important enzyme 

within the aforementioned biological system. Alternatively, a new molecule may be 

found to have certain properties that allow it to alter metabolic pathways or change 

various cellular structures within the biological system.

Synthesis and extraction may involve many different activities directed towards 

the identification of new molecules. Initially, the disease-state may be studied and 

examined in detail to uncover or better understand the key mechanisms or biological
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processes of the disease. Additionally, the pharmacokenetics, metabolic properties, or 

other actions of known and available therapeutic agents may be researched in order to 

identify potential new molecules. Finally, the random selection and broad-based 

biological screening of extracted or synthesized molecules may lead to new molecules 

with favorable properties.

Section 2.2.3: Biological Screening and Pharmacological Testing

The second major step in the early drug discovery process involves the biological 

screening and pharmacological testing of the new molecules produced during synthesis 

and extraction. These studies are aimed at identifying the therapeutic potential and 

pharmacological properties of new compounds. This highly sophisticated process has 

evolved dramatically over the past few decades. The end result has been the 

transformation of the drug discovery process from one of random screening and 

serendipitous drug discovery to one of rational drug design. More will be said on this 

evolution in drug discovery and rational drug design later in this chapter.

The various tests and/or techniques used during the screening phase of discovery 

typically involve the use of isolated tissues and cell cultures, animals, cloned drug 

receptor sites (usually proteins), enzymes, and more recently sophisticated computer 

models. Once the above tests have identified compounds with beneficial activity and 

therapeutic potential, an iterative process of structural modification is undertaken. This 

iterative process is continued until the structure of the molecule with the highest potential 

therapeutic benefit is found.

Section 2.2.4: Pharmaceutical Dosage Formulation and Stability Testing

Following the determination of a molecule’s structural form, the active compound 

will have to be turned into a strength and dosage appropriate for use in humans. In 

addition to the different possible dosage strengths (e.g., 50, 100, 250, 500 mg), there are 

several dosage forms that may be used in administration. For example, an active
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compound may be administered in liquid form, tablet form, capsule form, or in sprays, 

ointments, and patches. Moreover, because the final formulation of any pharmaceutical 

product necessarily contains substances other than the active ingredient, the impact of 

these substances on the human body must be tested. These additional substances, also 

called excipients, are used for various reasons. For example, excipients may be needed 

to improve the taste of an oral product, to delay the absorption of the drug into the 

body’s blood stream, to prevent bacterial growth in liquid or cream preparations, or to 

allow the active ingredient to be compounded into stable tablets. Thus, the dosage 

formulation and stability testing phase of the R&D process is concerned primarily with 

turning an active compound into a strength and formulation suitable for use in human 

beings.

Section 2.2.5: Toxicology and Safety Testing

The next phase in the R&D process is toxicology and safety testing. Toxicity and 

safety tests are conducted to determine the risks and or dangers that a compound may 

pose to both human beings and the environment. Specifically, these tests are conducted 

to provide vital information on the relationships between dosage, frequency of drug 

administration, the duration of exposure, and the short- and long-term survival of living 

organisms (i.e., animals and tissue cultures). Furthermore, in addition to providing 

information on the toxicity of a compound, toxicology and safety testing also provide 

key information on dose-response patterns.

Section 2.2.6: Investigational New Drug Application (IND)

After completion of toxicity and safety testing, if a compound still seems viable, 

the company may file an Investigational New Drug Application (IND) with the United 

States Food and Drug Administration (FDA) to begin testing in human beings. The IND 

contains the findings from the pharmacological testing, stability testing, toxicity and 

safety testing, and all other known information about the compound. Moreover, a full
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and detailed clinical research plan for the compound must accompany the application. 

Unless the FDA rejects the IND, the IND is automatically approved 30 days after 

submission.

Section 2.2.7: Phase I Clinical Studies

After the IND application has been approved, phase I clinical studies may begin. 

Phase I studies are conducted primarily to evaluate the compound’s absorption, 

distribution, metabolism, and excretion patterns in healthy human beings. Furthermore, it 

is during this phase that compound tolerance is assessed and pharmacological properties 

are determined.

Section 2.2.8: Phase II Clinical Studies

Subsequent to phase I clinical evaluations, and assuming there were no unforeseen 

negative clinical findings, phase II clinical studies begin. In phase II controlled clinical 

trials are conducted. Generally, these trials are double-blinded and randomized and 

seldom involve more than a few hundred subjects. It is during this phase that the clinical 

efficacy of a compound is first examined. Typically, Phase II trials evaluate the relative 

therapeutic efficacy between the new compound and placebo and between the new 

compound and a known therapeutic agent (i.e., a marketed drug with a similar 

indication). In addition to assessing therapeutic efficacy, these trials also allow the 

company to study and evaluate any observed adverse events or side effects. Finally, the 

phase II clinical trial results play a major role in planning the phase III program for the 

compound. However, poor phase II results may lead to the termination of the 

compound’s entire development program. This decision of whether or not a compound 

should advance into a phase III program is often referred to as the Go/No-Go decision.
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Section 2.2.9: Phase III Clinical Studies

If the determination is made to take a compound into full development (i.e., a Go 

decision at the end of phase II), phase III clinical trials begin. Phase III programs often 

involve both a greater number of clinical trials and greater number of subjects per clinical 

trial. Primarily, phase III trials seek to demonstrate, at a statistically significant level, a 

compound’s therapeutic efficacy and safety. In particular, phase III trials gather precise 

information on a drug’s efficacy for highly specific indications. This is unlike the phase 

II trials, which examine a much broader base of potential indications. Furthermore, a 

broader range of potential adverse events are examined and considered in phase III trials. 

Finally, phase III trials study the best way of administering and using the drug for the 

purpose it is indicated. In more recent years, phase III programs have also started to 

include studies on the potential economic impact new drugs. That is, the impact that new 

drugs may have on health care resource utilization. While the FDA does not presently 

require these economic data, they are becoming increasingly more relevant in 

reimbursement and formulary decisions. Consequently, these economic studies— 

sometimes referred to as pharmacoeconomic studies—are becoming much more 

integrated into phase III programs.

Section 2.2.10: Process Development for Manufacturing and Quality Control

Process development for manufacturing and quality control generally takes place 

towards the end of the phase III program. This is an engineering process that develops an 

efficient, large-volume production infrastructure for the new drug should it be approved. 

This process also involves quality control issues like product or batch-to-batch uniformity 

and chemical stability. Furthermore, the initial planning for this process is conducted in 

parallel fashion to the phase III clinical trials. This ensures that the new drug may be 

launched quickly at the time of FDA approval.
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Section 2.2.11: Bioavailability Studies

Bioavailability studies take place both at the beginning of human testing and just 

prior to market launch. They are conducted in healthy volunteers to document the rates 

of absorption and excretion from the body of the active ingredient used in the formulation 

of the drug. The bioavailability studies conducted immediately prior to launch are 

required to demonstrate that the formulation of the active ingredient used in the phase III 

trials will be equivalent to the formulation distributed to the market.

Section 2.2.12: New Drug Application (NDA)

After phase III clinical trials are completed, a New Drug Application is filled with 

the FDA to market the drug. The NDA contains all the information obtained about the 

new drug from all phases of discovery and development. Upon receipt of the application, 

the FDA will review all the data from the discovery and development phases and may 

request clarifications of the data or additional information—possibly more phase III 

studies. Finally, the FDA will make a decision on whether or not to approve the drug for 

market.

Section 2.2.13: Post-approval Research and Phase IV Clinical Studies

Post-approval research and phase IV clinical studies frequently involve 

surveillance activities and new clinical trials. While the FDA sometimes mandates phase 

IV research as a contingency of drug approval, this type of research often occurs in the 

absence of such FDA requirements. Phase IV research is important for several reasons. 

These studies provide important information on yet undetected adverse outcomes. This is 

particularly true in sub-populations not studied in the phase II and III clinical trials (i.e., 

the elderly, young children, or pregnant women). Furthermore, phase IV observational 

studies and a similar type of research may be used to evaluate the drug’s long-term 

morbidity and mortality profile. Finally, phase IV economic studies may be conducted
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for marketing purposes to evaluate the potential economic benefit a new drug may 

provide the health care system.

Section 2.3: Trends in Science and Technology: Rational Drug Design

The process of drug discovery has changed dramatically in the past few decades. 

Drug discovery, once a more or less random process of screening huge volumes of 

chemicals and looking for a desired chemical or biological response, has now become a 

highly precise process of a priori drug design. Specifically, the majority of new drug 

discoveries involve a detailed study and analysis of drug receptors. Drug receptors are 

molecules that bind with specific agents to cause a change in cellular or biological 

function. A frequently used analogy for drug action and receptor molecules is that of a 

lock and key—in which the lock is the receptor molecule and the key is the drug. To 

carry the analogy a little further, developing a key to fit the lock with knowledge of the 

lock’s precise shape will be a much simpler process than randomly making keys and 

seeing if they open the lock. In scientific terms, precise information about a receptor 

molecule’s properties and characteristics makes it possible to design a chemical 

compound that will effectively bind with the receptor molecule. Furthermore, when a 

substance is capable of binding with a receptor molecule one of the following cellular 

actions may occur:

1) The receptor molecule may open the cellular “gate,” allowing for an influx of charged 

molecules through the cell membrane.

2) The receptor molecule may open the cellular “gate” for an efflux of charged 

molecules through the cell membrane.

3) The receptor molecule may catalyze a biochemical reaction.

Examples of some of the above cellular actions would be the secretion of insulin 

or the synthesis of specific proteins. Clearly, understanding the properties and structure 

of receptor molecules as well as understanding the biomedical causes of a given disease 

are the key to discovering new drugs. The technology needed to acquire this detailed
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knowledge, specifically regarding the receptor molecules, includes a variety of expensive 

analytical instruments and techniques (i.e., magnetic resonance spectroscopy and x-ray 

crystallography) and massive computer power to conduct structure activity analysis.

Both the rapid growth in technology and the rapid growth in science have resulted in an 

exponentially expanding base of knowledge about disease mechanisms. The result has 

been a virtually endless supply of potential research directions related to the use and 

discovery of new pharmaceutical products.

In addition to the aforementioned advances in the drug discovery and 

development processes, there has evolved a new and expanding field of genetic research 

known as pharmacogenomics. This new field, which involves the study of the 

relationship between genetics and drug response, will almost certainly have a tremendous 

impact on pharmaceutical R&D in the future. However, this new field of genetic 

research is beyond the scope of this thesis and will not be addressed further.

Section 3.1: Economic Perspectives on Pharmaceutical R&D

A number of changes have occurred in the past few decades that have 

dramatically altered the pharmaceutical R&D landscape. Specifically, drug development 

times have steadily increased, and FDA regulation has become much more stringent.

This has, in part, contributed to the cost of bringing a new drug to market. Despite the 

more costly drug development programs, both pharmaceutical accounting profits and 

total R&D expenditures have risen considerably. These and other trends in the R&D 

economic landscape are explored and examined in more detail in the following sections.
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Section 3.2: Growth in R&D Expenditures

Because one of the central themes of this thesis surrounds the question of how 

pharmaceutical firms make important R&D spending decisions, trends in aggregate R&D 

spending are of particular interest. Indeed, in and of its own right pharmaceutical R&D 

has received much attention due to the dramatic growth in R&D expenditures in recent 

years. Moreover, these increases in R&D expenditures have been accompanied 

simultaneously by substantial increases in R&D intensities—the ratio of R&D 

expenditures to total pharmaceutical sales. Figures 2.2 and 2.3 show these trends in R&D 

growth below.

Figure 2.2
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Figure 2.3

This steady growth in pharmaceutical R&D spending is especially interesting, 

because the pharmaceutical industry is one of the most research-intensive and innovative 

industries in the world. The R&D intensities of several key research-based industrial 

sectors are shown below in Figure 2.4.
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Figure 2.4

R&D as a Percent of Sales for Research-based Pharmaceutical 
Companies and U.S. Industrial Sectors, 1996
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Section 3.3: Trends in Drug Development Times

Investment in pharmaceutical R&D is a very long and risky process. In fact, as 

scientific knowledge and technology have increased, allowing researchers to target more 

complex diseases and test more complex drug molecules, so too has the average length of 

time it takes a pharmaceutical product to advance through the development process. In 

fact, total drug development times have been increasing steadily since the 1960s. 

Specifically, the average drug development time has increased from 8.1 years in the 

1960’s, to 11.6 years in the 1970’s, to 14.2 years in the 1980’s, and finally to 14.9 years 

for drugs approved in the 1990’s. This change in total drug development time, which is
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defined to be the time from molecular synthesis to FDA approval, is show below in 

Figure 2.5 .

Figure 2.5

Total Drug Development Time from Synthesis to Approval

1960s 1970s 1980s 1990-1996

Source: Tufts Center for the Study o f Drug Development, 1998.

There are several possible reasons for the above trend in drug development times. 

First, there has been a rapid growth in the scientific complexity of the drug development 

process. Today, as well as in the recent past, drugs áre being developed to target 

persistent, degenerative, and life-threatening diseases. These new drugs typically take a 

much longer time to research and fully develop. Another reason for this trend may be the 

growing number of FDA guidelines and data requirements—possibly the result of a more 

complex and scientifically advanced drug development process. For example, the FDA 

now requires that demographic analyses of clinical data be conducted.

Furthermore, now more than ever before clinical studies are designed to satisfy 

the regulatory requirements of many countries and not just the U.S. FDA. This has been 

due largely to the expanding global market place—in which most pharmaceutical firms
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now operate. These aforementioned scientific and regulatory dynamics have almost 

certainly been the driving force behind the observed increase in average drug 

development times1.

One effect of these new regulatory hurdles has been an increase in the quantity of 

clinical trials conducted per NDA. Specifically, this number has more than doubled since 

1980 (Boston Consulting Group, 1997). This is shown below in Figure 2.6. Similarly, 

and along the same lines, there has been a three-fold increase in the number of clinical 

trial subjects enrolled per NDA (Boston Consulting Group, 1997). This trend is shown in 

Figure 2.7.

Figure 2.6

Average Number of Clinical Trials per New Drug 
Application
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Sources: Boston Consulting Group, 1993; C. Peck., “Drug Development: Improving the Process, ” Food 
Drug Law Journal, Vol. 52, 1997.

1 The recent growth in managed care is also likely to be a contributing factor to aforementioned trends. 
Indeed, pharmaceutical firms must ultimately satisfy the data requirements of their major customers—the 
managed care plans. One such major data requirement is pharmacoeconomic studies/data. These studies 
unquestionably add to the cost and time o f conducting R&D.
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Figure 2.7

Each New Drug Application Requires More Patients
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Indeed, the average number of medical procedures performed per clinical subject has also 

risen considerably in recent years. This too is a direct result of the elevated regulatory 

requirements facing clinical trials. These data are summarized below in Figure 2.8.
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Figure 2.8

Indexed number of Procedures (1992 =100)

1992 1993 1994 1995 1996 1997

Source: DataEdge, 1998.

Furthermore, while clinical development times have increased steadily over the years, the 

opposite is true for FDA review times. The average FDA review time has decreased 

from 32.4 months in 1987 to half that, or 16.2 months in 1997 (FDA, 1998). This trend is 

depicted below in Figure 2.9.
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Figure 2.9

Mean Approval Times for New Drugs, 1987-1997
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Source: U.S. Food and Drug Administration, 1998.

The above trend in regulatory review times for new drugs may be explained 

largely by the 1992 Prescription Drug User Fee Act. This Act, which was passed in an 

effort to streamline FDA operations, was an arrangement in which the pharmaceutical 

industry agreed to supply the FDA with $327 million in funding to hire 600 additional 

NDA reviewers. More recently, the 1997 FDA Modernization Act extended the 1992 

Act and made provisions for an additional $550 million in funds to support the FDA’s 

efforts to improve and modernize its review process. This 1997 Act is likely to shorten 

review times even more. So while the length of clinical development times have 

increased substantially, regulatory review times have decreased. The net effect, however, 

has been a significant increase in the total length of time it takes the average drug to 

reach the market—from IND submission to FDA approval. These trends are shown 

together in Figure 2.10.

23



Figure 2.10

Mean Approval, Clinical, and Total Phases for New Chemical 
Entity Approvals, 1963-1996

Year of NDA Approval

Source: Tufts Center for the Study o f Drug Development, 1997.
Note: Clinical phases in Figure 2.10 do not include the pre-phase 1 discovery times.

Finally, another important, yet relatively new trend, has been the rapid growth of 

economic, or pharmacoeconomic, studies. Because these studies are conducted alongside 

most phase II and phase III clinical studies, it is possible that they, too, may add to the 

duration of a clinical development program. Pharmacoeconomic studies, which are 

quickly becoming an integral part of the drug development process, seek to establish 

economic value (or cost-effectiveness) of new therapies. Indeed, many counties and 

managed care organizations now require this type of data for approval, reimbursement, 

and or formulary acceptance.

There have been many changes in the pharmaceutical R&D landscape over the 

past few decades. Indeed, the increased complexity of modem drug development, the 

growth in FDA requirements, and several other factors have significantly lengthened drug 

development times. These changes have almost certainly increased the risk and cost of 

pharmaceutical R&D. In fact, the risk, the time, and the cost of conducting R&D are all 

very intimately related, as will be discussed in detail in the sections that follow.
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Section 3.4: Drug Research & Development Costs: The Cost o f Bringing a New Drug to 

Market

The cost of developing a new drug will necessarily be sensitive to a number of 

variables. For example, trends in science and technology, shifts in the therapeutic classes 

and types of drugs being developed, and changes in the regulatory environment. In 

recent years several studies have attempted to estimate this cost. However, these 

estimates may not reflect the contemporary cost of developing a new drug. This is 

because they are based on drugs that were recently approved—implying that they started 

through the development process many years ago. Consequently, these estimates will be, 

by definition, retrospective in nature and hence not likely to be representative of current 

development patters and costs. Nonetheless, estimates of these costs should shed light on 

the pharmaceutical R&D landscape of past decades—the focus of this thesis. That 

having been said, it is likely that the cost of bringing a new drug to market has increased 

substantially. This may be due in part to the fact that, as mentioned previously, the 

average number of clinical trials per NDA has more than doubled, and the average 

number of clinical subjects per NDA has approximately tripled since 1980. (Refer to 

Figures 2.6 and 2.7.) Moreover, the average drug development time has increased 

substantially. (Refer to figure 2.5.) Clearly, these trends towards larger and longer 

clinical development programs are likely to add to the cost of bringing a new drug to 

market.

Section 3.5: Methodologies and Estimates

Several factors play a key role in determining the cost of bringing a new drug to 

market. These factors, and the methods used to estimate them, will be discussed in detail 

below. Before delving into a review of recent study estimates, it will be necessary to first 

discuss the methodologies of how, theoretically, the cost of bringing a new drug to 

market should be estimated.
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The cost of bringing a new drug to market should, in theory, include expenditures 

on R&D projects that failed or were abandoned in the search for (and development of) 

the eventually approved drug. That is, without any a priori knowledge as to which 

projects will fail and which projects will succeed, it is impossible to avoid these 

expenditures. Indeed, pharmaceutical R&D has often been compared to drilling for oil, 

because there are many “dry holes” and relatively few “gushers.” Consequently, the cost 

of bringing a new drug to market is more than the expenditures on the successful drug’s 

R&D program. The true cost must also include the expenditures incurred by the failed 

and abandoned R&D programs.

However, there is considerably more to estimating this cost than simply 

aggregating all cash outlays for both the successful and unsuccessful R&D projects. To 

accurately estimate the cost of bringing a new drug to market it is imperative to consider 

two other key factors: time and risk. A fair amount of detail is devoted to these two 

factors in the following sections due to the importance that both have in the later chapters 

of this thesis.

In theory, the true cost of bringing a drug to market can be thought of as the 

smallest payoff required to induce investors to supply the necessary funds at each stage of 

the R&D process. This includes the funds for projects that will ultimately fail. Then, in 

order to obtain an estimate of the total cost required to bring the drug to market, each of 

the R&D cash outlays must be capitalized forward—at an appropriate rate of interest— 

to the day of NDA approval. From this perspective it is easy to see how the true cost of 

bringing a new drug to market will necessarily be greater than the sum of the 

expenditures on the successful and unsuccessful R&D projects.

The above explanation may be re-stated more precisely in the following way. For 

investors in pharmaceutical R&D to be willing to provide the necessary funds for the 

R&D, they must:

1) Expect to recoup their initial investment;

2) Be adequately compensated for the risk that they might lose their entire investment;

3) Be compensated for the time they must spend waiting for the returns from their 

investment.
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These three key components highlight the important roles time and risk play in 

determining the true cost of bringing new drugs to market. Consequently, a detailed 

explanation of exactly how time and risk affect the cost of bringing a new drug to market 

will be given. Particular attention will be focused on the component of risk and its 

influence on the cost of pharmaceutical R&D.

Section 3.6.1: Time and the Opportunity Cost o f Capital

When considering inter-temporal R&D investment decisions, the timing of the 

cash flows (i.e., investment expenditures and returns) is crucial. This is particularly true 

for pharmaceutical R&D investments because of their extremely long time horizons. The 

following section will briefly explain the fundamental principles that underlie this 

concept.

A dollar received today is not equivalent to a dollar received one year from today. 

This is because a dollar received today may be invested and earn interest for one year.

For example, assume a per annum interest rate r , where r is the interest rate on a bank 

deposit. Therefore, a dollar today will be worth, or have a future value of, 1+r dollars 

next year—clearly preferable to 1 dollar next year. Alternatively stated, 1+r dollars 

received one year from today has a present value of 1 dollar today. Thus, the benefit of 

receiving a dollar today, versus receiving it one year from today is r dollars. This may be 

expressed in another way: the opportunity cost of a one-year delay in receiving the dollar 

is the forgone interest, r .

Therefore, it is clear that in order to make comparisons between R&D investment 

dollars in different years, one must adjust for the above type of opportunity cost—the 

opportunity cost of capital. Specifically, when estimating the cost of bringing a new drug 

to market one must account for these forgone opportunities by capitalizing past R&D 

expenditures up to the year of the NDA approval. This capitalized value will then 

represent the true economic cost of bringing the new drug to market.
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Mathematically, the capitalization of R&D expenditures for an n-year drug 

development program—with an NDA approval in year t—is represented below by 

equation ( 1 ):

Where PVt is the present value of all R&D expenditures capitalized to year t (the year of 

NDA approval) and Al_l is the R&D expenditure in year t - i . Recall, however, that 

/lf„j should include R&D expenditures on the projects that failed in the process of

developing the successful drug. A theoretically more realistic representation, however, 

will take into account the fact that R&D expenditures occur in a continuous, rather than 

discreet, fashion. Hence the following:

It is crucial to note from equations (1) and (2) that this capitalized value will necessarily 

be highly sensitive to: 1 2 3

1) The length of the R&D project/program;

2) The timing of the cash outlays;

3) The opportunity cost of capital.

A simple hypothetical example will illustrates this point:

Example 1: The Cost of Bringing a New Drug to Market

Assume that a particular R&D program required investments of $1,000,000 once 

a year, each year, for 10 successive years prior to receiving an NDA approval for a new 

drug (with the last expenditure occurring a year before NDA approval). In this example,

n

p y ,=  £ 4 -,o +'-) 0 )

n
(2)
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the capitalized value of the stream of R&D expenditures at the time of FDA approval 

would be:
9

PV = 1,000,000^(1 + r)IOw (3)
;=o

Assuming an opportunity cost of capital equal to 10%, this would yield:

PV = $17,531,167 (4)

Which is substantially greater than the sum of all 10 outlays—i.e. $10,000,0002.

To illustrate within the context of the above example the sensitivity of this cost to 

various development times and costs of capital, sensitivity analyses were performed— 

refer to Table 2.1 below. Note, however, that what is not considered in Table 2.1 is the 

distribution of R&D expenditures over the total development period—this distribution 

was assumed to be uniform for simplicity. Nonetheless, Table 2.1 illustrates nicely the 

sensitivity of the cost of bringing a drug to market to both the length of the development 

program and the opportunity cost of capital.

Cost
Of

Capital

It can be seen from Table 2.1 that the opportunity cost of capital has a dramatic 

effect on the cost of bringing a new drug to market. For example, a 5% difference in the 

cost of capital (15% vs. 1 0 %) for a 15-year development program increases the true 2

Table 2.1

10MM cash outlays under different assumptions

Time in Development
5 Years 10 Years 15 Years

5% $11,603,826 $13,206,787 $15,104,994
1 0 % $13,431,220 $19,531,167 $23,299,812
15% $15,507,477 $23,349,276 $36,478,315

2 Following Hansen (1979) and DiMasi (1991), total drug development costs were evaluated at the time of 
market launch. For this reason cash outlays were capitalized instead o f discounted. If, however, total drug 
development costs were evaluated at the time o f discovery, an inverse relationship would be observed 
between total development costs and the cost o f capital. The later measure is the appropriate type for 
contemporaneous investment decision-making— when future cash flows are ex p ec ted  cash flows.
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economie cost of developing the new drug by 57%! Consequently, estimates of the cost 

of bringing a new drug to market must utilize the appropriate opportunity cost of capital. 

For this important reason the opportunity cost of capital for pharmaceutical R&D will be 

the focus of the next section.

Section 3.6.2: Risk: The Appropriate Opportunity Cost o f Capital for Pharmaceutical 

R&D

While a rigorous exploration into the theoretical determinants of the cost of 

capital for pharmaceutical R&D is beyond the scope of this chapter, a thorough 

explanation and detailed overview of some of the key concepts that underlie these 

determinants will be presented. Investors in pharmaceutical R&D invest their money 

because they expect returns that, on average, sufficiently compensate them for the time 

and risk involved in their investment. Furthermore, the returns that investors in 

pharmaceutical R&D expect are no different than, say, the interest depositors expect from 

their bank accounts. That is to say, the interest paid on a bank deposit is a payment in 

exchange for the depositers’ money (or capital). This is analogous to the returns from 

R&D being a payment in exchange for the capital needed to undertake the R&D. The 

one major difference is the level of risk involved in these two investments.

As was mentioned earlier, pharmaceutical R&D is a long and risky process with 

few drugs actually making it to market. Hence, if the expected returns from 

pharmaceutical R&D were no greater than the interest that could be earned on a bank 

deposit (which has very little risk), then investors would have no incentive to invest in the 

riskier R&D. Therefore, the expected returns on R&D must be greater than the interest 

on the bank deposit for investors to be willing to put up their money. That is, as investors 

assume more risk, they expect to be compensated with higher returns. This is the risk and 

return tradeoff. However, in the conventional view of the risk of pharmaceutical R&D it 

is not the risk per se that matters when estimating the opportunity cost of capital 

appropriate for pharmaceutical investments. This important fact will be the focus of the 

following two sections, which will characterize and discuss two types of risk, unique risk

30



and market risk, and the role each plays in determining the opportunity cost of capital for 

pharmaceutical R&D.

Section 3.6.3: The Two Types o f Risk: Unique Risk and Market Risk 

Section 3.6.4: Unique or Diversifiable Risk

What is the risk of a pharmaceutical R&D investment? This is a question that 

must be answered in order to determine the cost of capital for any R&D project. If there 

were no risk at all, the cost of capital would be the same, say, as that of a US Treasury 

Bill (a risk free investment). Indeed, pharmaceutical R&D is not risk free. In fact, 

pharmaceutical R&D is one of the riskiest types of R&D. For that matter, it is one of the 

riskiest types of investments period. However, the conventional notion regarding the risk 

of pharmaceutical R&D is quite different from the risk that ultimately influences the cost 

of capital for this type of investment.

Modem finance theory distinguishes between two different types of risk: unique 

risk, which is diversifiable, and market risk, which is not diversififable. The first type of 

risk, unique risk, is the risk that is highly specific to the individual R&D projects. This is 

the type of risk that has created the conventional notions regarding the investment risks of 

pharmaceutical R&D. However, this type of risk (which has given pharmaceutical R&D 

a reputation similar to that of drilling for oil—i.e., many dry holes and few gushers—may 

be completely diversified away by investors. The term “diversifying away” means that 

the risk of a specific R&D project (or collection of projects) may be completely 

eliminated by the investor. This is done, for example, when an investor invests in a large 

number of such projects (or companies undertaking such projects) and establishes, on 

average, a cash flow that is very predictable. Consequently, and counter-intuitive to 

many, this type of risk will not influence a project’s opportunity cost of capital and hence 

the cost of bringing a new dmg to market. A simple example nicely illustrates this point:
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Example 2: Reducing Unique Risk Through Diversification

Assume a particular R&D project has a 50% chance of being successful and 

consequently a 50% chance of being unsuccessful. Furthermore, assume that if the 

project is successful, it will result in a 20% return to the investor. Alternatively, if the 

project is unsuccessful, it will result in a 0% return to the investor. Therefore, there are 

two possible outcomes that may result from investing in this project. These outcomes are 

shown below in Table 2.2.

Table 2.2

Hypothetical Outcomes and Probabilities

Outcome (i) Return (Rj) Probability P(Ri)
Project is Successful 2 0 % 50%

Project is Unsuccessful 0 % 50%

Thus, the investor’s expected return on this project may be found by taking mathematical 

expectations as follows: 2

2

Expected Return = E(R) = ^ P (R , )(R,) =10% (5)
i=i

Hence, the expected return on this R&D project is 10%.

However, the realized return on this project can never be 10%; it must either be 20% or 

0%. This motivates the necessity for another means by which this particular R&D 

investment may be characterized: the distribution or “spread” of possible returns. This 

distribution of returns is characterized by the variance of the project’s returns. The 

variance of returns for this R&D project is calculated below:
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(6)Variance of Returns = Var(R) = ^ P ( R j)(E(R,)- R,)2 =1%
(=1

From (6 ) it can be seen that the standard deviation of returns, the square root of the 

variance, is 10%. The standard deviation and variance are measures of the risk of the 

project.

To see how diversification enables investors to reduce their investment risk (the 

variance of investment returns), consider investing equal proportions in two 

pharmaceutical R&D projects that are identical to the project just discussed. For 

simplicity, assume that the projects are statistically independent of one another. That is 

to say, the probability of the occurrence of one event does not depend on whether or not 

the other event has occurred (this assumption will be relaxed and discussed in detail 

later). Therefore, if, for example, events A and B are independent, the probability of 

event A and event B occurring ( P(AB)) is equal to the product of their individual 

probabilities ( P(A) x P(B)). By definition this is statistical independence. This is a very 

big assumption, and the point will be re-visited shortly. Therefore, in a fashion 

analogous to the investment in the single R&D project, we have the following four 

possible outcomes summarized in Table 2.3.

2

Table 2.3

Hypothetical Outcomes and Probabilities

Outcome (i) Return (R j) Probability P(Rj)

Both Successful 2 0 % 25%
Only PI is Successful 1 0 % 25%
Only P2 is Successful 1 0 % 25%
Neither is Successful 0 % 25%
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W here the Expected re tu rn  is.

E(R) = YP(R;)(R,) = 10% (7)
1=1

Hence, the expected return from investing equal proportions in both projects is 10%, the 

same expected return from investing in the single R&D project.

More interesting, however, is the variance around this expected return:

Var(R) = f tP(RiXE(Ri)~  R,)2 = 0.5% (8 )
/=1

Which gives a standard deviation of approximately 7.1%.

Thus, by diversifying across the two projects the investment risk is reduced (from a 

standard deviation of 10% to 7.1%) while the expected return remains the same, or 10%. 

Clearly, this would be a preferable investment strategy for a risk-averse individual.

In a perfectly analogous fashion, diversification in more of these R&D projects 

can be shown to further reduce the investment risk while expected returns remain at 1 0 %. 

This is shown in Figure 2.11.
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Figure 2.11

Risk Reduction Through Diversification

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of Projects in Portfolio

More generally, it can be shown that as an investor diversifies over more and 

more projects he may eliminate his unique risk completely. This is shown in the context 

of the above example. First, however, it will be necessary to recall the following 

properties of statistical expectations:

E(Rp)=  £ (£ > ,* ,)  = 2 > ,£ ( i , )
(=1 ¿=1

Equation (9) states that the expected return on an n -project portfolio (where a, is the

proportion of the portfolio invested in project i ) is equal to the weighted-average of the 

projects’ expected returns. Similarly,

Var(Rp) = Var (£ > ,* ,) = X « .2

/=! /=1

(10)
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Equation (10) states that the variance of returns from an « -project portfolio (when the 

project returns are statistically independent) is equal to the sum of the variances of each 

project’s returns—wherein each project’s variance is weighted by the square of its 

proportion to the total portfolio.

Therefore, the variance of returns for an equally weighted « -project portfolio— 

in which all projects are statistically independent and identical to the projects in the last 

example—may be expressed as follows:

 ̂i y  A
Var(Rp)= -  2> ar(tf,)

\ nJ i=i
( 11)

Where Var(R ) is the variance of returns from the « -project portfolio.

Furthermore, because all the projects are identical, Var(Ri) = .01 for Vz where 

z e (1,2,3,...«). Thus, (11) becomes:

Var(Rp) =f-T
Kn,

(.01 «) (12)

Which obviates the following:

lim Var(RP)
1

y n j
.01(.0 1 «) = —  = 0
«

(13)

Indeed, even if the « -projects had different variances (or expected returns, for that 

matter) it is easy to see that the result remains the same. In general, (13) becomes:

Z I Y  " V n r
lim rar(J?,)= -  2 > r ( * ,)  = —

1 »0 0  \ n J i = 1 ^
=  0 (14)
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W here Var is the average project variance.

From (14) it is clear that as n grows sufficiently large the distribution of returns around 

the expected return converges to a spike. This property, in a more general sense, is a 

direct result of the Law of Large Numbers.

While the above examples are insightful and useful in explaining the concept of 

diversifiable risk and the benefits thereof, they ignore the possibility that project returns 

(or returns from investments in firms undertaking pharmaceutical R&D) may not be 

statistically independent of one another. That is, the above example assumes that the 

covariance between any two projects i and j  is zero. Explicitly, the assumption is:

Cov(Ri,Rj ) = ^ ^ ( £ ( R . ) - RXE(R j ) - R j ) = 0 for V i and j  where i * j .  (15)
i=i j=i

Indeed, this is a very unrealistic assumption. There are many reasons why the returns 

from different projects may be correlated, as will be discussed in the next section. Most 

importantly, when investment returns are not statistically independent, there is a limit to 

the amount of risk reduction that can be achieved through diversification. In the extreme 

case, if all projects are perfectly correlated, then no risk may be eliminated through 

diversification. This nondiversifiable risk, as it will be shown, is the only type of risk 

that influences the opportunity cost of capital for pharmaceutical R&D projects. This 

leads naturally into the next section on nondiversifiable, or market, risk.

Section 3.6.5: Market or Nondiversifiable Risk

The other type of risk, market risk, is by definition the type of risk that cannot be 

diversified away. Market risk is determined directly by the co-variations between the 

various project returns (assumed to be zero in the examples from the last section).

When allowing for the possibility of non-zero covariance between projects, the total 

variance of a portfolio of n pharmaceutical R&D projects becomes:
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(16)
n n

Var(Rp) = ^ aiaJCov(R „RJ)
'=1 7=1

Where a, is the proportion of funds invested in project i. Furthermore, note that when 

i = j ,  Cov(Ri,Rj ) = Var(R,).

Furthermore, assuming that investments are made in uniform proportions across projects, 

(16) may be written as follows:

Var(R ) = f \
-  ^ C o v ( R „ R j )

\ nJ ;=1 7=1
(18)

Separating out the projects’ variance and covariance components, simplifying and then 

taking limits gives:

lim Var(RP)
(  i y  «
-  \ŸV ar{R ,) +

W  m

i  \ \  n "
■ZT.co^ r .-RjI.j =

Kn J i=l 7=1
(19)

Tr / n \ Var
lim Var(Rp) = ---- +i--- >oo 77 \ n J

0n2 —  ni)Covi* 7 — (20)

Fhr f 1 'j
lim Var(R) = -----+ 1 —

n \  n )n ------>oo
Covi* 7 =  Covlt (21)

In equations (20) and (21), Var is defined to be the average variance and Cov,* 7 is 

defined to be the average covariance when i * j .

Therefore, the total portfolio variance may be reduced, through divesification, to 

the average covariance of the project returns. This average covariance—the 

nondiversifiable risk—is referred to as the market risk of the portfolio. Observe from
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(21) that if the average covariance of project returns is zero—which would be the case if 

all the projects were statistically independent of one another—then the portfolio variance 

could theoretically be reduced to zero. That is to say, all risk could be eliminated through 

diversification.

The striking result from equation (21) is that the unique risk of a particular R&D 

project does not affect the risk of a well-diversified portfolio of projects. However, the 

market risk of a project, which depends solely on the covariance of that project’s returns 

with the returns from the other projects in the portfolio, does affect the risk of the 

portfolio. Specifically, its influence comes via its contribution to the average covariance 

of the portfolio. This concept is illustrated next in the Figure 2.12.

Figure 2.12

Portfolio
standard deviation

Figure 2.12 demonstrates how an investor in pharmaceutical R&D may, through 

diversification, eliminate all unique or project specific risk from his portfolio. However, 

as was shown in equation (21) and Figure 2.12, some risk cannot be eliminated. The 

portfolio’s market risk—or the average covariance of project returns—is not 

diversifiable. Market risk results primarily from the fact that there are economy-wide
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perils that threaten all projects and/or businesses. This results in the tendency of project 

returns to move together. Historical data confirm this.

Because an R&D project’s specific risk may be diversified completely away, the 

additional risk the project contributes to a diversified portfolio of projects will depend 

only on how its returns are expected to co-vary with the returns from the other projects in 

the portfolio. It is this component of a project’s risk—its market risk—which matters to 

potential pharmaceutical investors. Hence, the opportunity cost of capital, which is the 

risk-compensated expected rate of return on the project, is determined solely by the 

undiversifiabb market risk of that project.

Equipped with a better understanding of how the risk of a specific R&D project 

will impact the risk of a pharmaceutical investor’s portfolio—the supplier of the funds for 

the R&D—it now becomes necessary to address the risk-return tradeoff. That is, how 

much of an increase in investment returns will pharmaceutical investors expect in 

compensation for assuming the additional risk that the project adds to their portfolios?

The answer to this question turns out to be quite simple and, as already discussed, 

depends on the project’s covariance with the other projects in the portfolio. Specifically, 

the risk-return tradeoff depends on the project’s beta value. A project’s beta value, which 

is a measure of the project’s undiversifiable risk, is a relative measure of the covariance 

between a project’s expected returns and the expected returns from the portfolio. 

Specifically, a project’s beta value is defined to be:

Cov(R,,Rp)
Var(Rp)

(23)

Where Rp is the return from the project portfolio.

As will be discussed in a broader sense in the next section, a project’s beta value is 

linearly related to its expected returns (i.e., its opportunity cost of capital).
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Section 3.6.6: The Linear Risk-Return Tradeoff: The Capital Asset Pricing Model 

(CAPM)

Prior to discussing the CAPM, it will be helpful to view R&D projects at the firm 

level—that is to say, to view pharmaceutical firms as collections of R&D projects or 

investments. However, this is not necessary, and the following analysis is analogous to 

discussing individual projects, as has been done up to this point. Nonetheless, as will be 

discussed, there are considerable empirical difficulties in estimating the latter.

The CAPM, while not derived here, demonstrates that the expected rate of return 

on a particular pharmaceutical firm’s stock (i.e., the equity cost of capital for the firm) is 

given by the following linear equation:

re =rf + P ( rn , - rf )  (25)

Where,

(rm~rf ) =

P =

the required rate of return or opportunity cost of equity capital for the firm

the rate of return on a risk-free asset

the risk premium for the equity market as a whole

the firm-specific risk premium, which is a measure of the marginal

contribution of a firm’s stock to the portfolio risk.

Furthermore, beta, like an individual project’s beta value, is a relative measure of the 

covariance of an asset’s expected returns with the expected returns from a well- 

diversified portfolio. In this particular case, the asset is a pharmaceutical firm’s stock, 

and the diversified portfolio is the stock market portfolio. Therefore, it follows that beta 

is:
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_ Cov(R„RJ 
Var(Rm)

(26)

Where Rm are the returns from the market portfolio.

On a heuristic level, in the context of a pharmaceutical firm, beta is a measure of how 

sensitive a pharmaceutical firm’s stock price is to movements in the stock market as a 

whole.

The startling, yet simple, result derived from the CAPM is that the expected, and 

hence required, risk premium on a capital asset varies in direct proportion to the asset’s 

equity beta, where beta is a measure of the firm’s market risk or sensitivity to swings in 

the market. This fundamental relationship between risk and return is depicted below in 

Figure (2.13) on what is referred to as the security market line.

Figure 2.13

0

A few general observations from the CAPM should be noted:
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1) A pharmaceutical firm whose stock returns have a zero covariance with the market 

returns will have a beta equal to zero and, consequently, will be a risk-free 

investment. Furthermore, the rate of return expected by those investing in the firm 

would be the risk-free rate rf .

2) A pharmaceutical firm whose stock returns are perfectly associated with the returns 

from the market portfolio will have a beta equal to one. Consequently, the firm’s 

market risk is average for the stock market as a whole, and investors will require a 

risk premium of (rm -  rf ) , or an expected return of rm .

3) In general, the expected risk premium is linearly proportional to a pharmaceutical 

firm’s beta. Therefore, firms with higher betas will be required by investors to have 

greater risk premiums

It is easy to see from the CAPM, that investors have requirements regarding the 

returns they expect from their investments based on a pharmaceutical firm’s beta. Thus, 

pharmaceutical firms with higher betas are expected to generate higher returns so as to 

compensate investors for assuming more risk. Most importantly, it is this expected return 

which depends solely on a firm’s market risk, that reflects the true opportunity cost of 

capital for the investment.

Additionally, it should be noted that the risk of investing in a pharmaceutical firm 

depends on how investors, looking into the future, view the firm’s future performance. 

However, because no empirical data exist on future expectations, firm betas are estimated 

with historical data. Specifically, simple linear regression analyses are performed to 

estimate firm betas. The key assumption with this approach is that the market risk of a 

firm today is similar to its market risk over the recent past.

Equity capital, however, is only one kind of capital that pharmaceutical firms can 

raise. Debt financing may also be used to raise capital. However, the cost of debt 

financing is generally lower than the cost of equity capital. This is due to the fact that 

debt holders (corporate bondholders) must be paid before stockholders are paid 

dividends. The weighted-average cost of capital is thus a blend of the cost of equity 

capital and the cost of debt capital. Specifically, the weighted-average cost of capital is 

defined to be:
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(27)r = r A  l - 0 ( f )  + ' ; ( | )

where and re are the cost of debt and equity capital respectively, — and —

are the ratios of debt and equity to the total market value of the firm, and tc is the

corporate tax rate. The reason the cost of debt is reduced by this amount is that the 

interest on the debt is deductible from business income and, consequently, costs the firm 

less than it would if there were no taxes.

However, it should be noted that pharmaceutical firms have very little debt. 

Therefore, a further discussion of the weighted-average cost of capital will not be 

undertaken. Indeed, the fact that pharmaceutical firms have very little debt implies that 

their weighted-average cost of capital will be very close to their equity cost of capital. 

This may be seen in the estimates presented below. Table 2.4 presents several 1989 cost 

of capital estimates for the largest pharmaceutical firms in the industry. Industry cost of 

capital estimates are also provided.
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Table 2.4

1989 Cost of Capital Estimates for the Pharmaceutical Industry

Firm t d t e D/V r*
Abbot Laboratories 9.8 17.1 .04 16.8

American Home Products 9.6 15.4 .01 15.3
Bristol-Myers 9.6 15.3 .02 15.1

Johnson and Johnson 9.6 16.5 .04 16.1
Lilly (Eli) & Co. 9.6 17.8 .03 17.5
Merck and Co. 9.6 14.7 .01 14.7

Pfizer Inc. 9.6 16.3 .03 16.0
Rorer Group 10.7 18.1 .28 15.5

Schering-Plough 9.8 14.7 .05 14.4
Smith Kline-Beckman 10.1 15.7 .06 15.2

Squibb 9.8 16.4 .03 16.1
Syntex Corp. 9.8 20.0 .04 19.5
Upjohn Co. 9.8 17.7 .08 16.9

Warner-Lambert 9.8 16.2 .09 15.5

Portfolio returns (nominal)

Equally weighted 9.8 16.6 .06 16.0
Market value weighted 16.2 15.9

Portfolio returns (real)

Equally weighted 4.8 11.6 .06 11.1

Market value weighted 11.2 11.0
Source: M yers a n d  M a jlu f (1994)

However, a firm’5  cost of capital estimate is an imperfect proxy for the cost of 

capital for an individual R&D project. This is because firm betas represent a weighted- 

average of betas from the various investments that the pharmaceutical firms make. 

Indeed, R&D is just one type of investment for the firm. For example, pharmaceutical 

firms may make investments in property, manufacturing plants, equipment, and
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marketing. Consequently, it is unlikely that R&D project betas will be the same as the 

firm's weighted-average beta. Indeed, it is generally believed that R&D investment betas 

are much higher than the betas for the other major types of investments just mentioned. 

Moreover, different R&D projects are likely to have different betas. Unfortunately, 

however, estimating such project betas is virtually impossible due to the fact that historic 

data on the returns from similar projects do not exist. Thus, while it is possible to make 

reasonably good estimates of firm-wide betas, estimating project specific betas is not a 

possibility.

Finally, a few general comments should be made regarding the cost of capital for 

pharmaceutical R&D. Investing in pharmaceutical R&D may be thought of as 

purchasing an option (or opportunity) to invest in the development and manufacture of a 

new drug. Thus, R&D investments are in reality sequential investments that buy 

opportunities for future R&D. Furthermore, as a drug passes through the development 

stages, information is being gathered about the drug. For example, information is 

gathered on a drug’s efficacy, its safety profile, and its commercial viability. 

Consequently, not only do investments in R&D produce options for future R&D, but also 

produce information and reduce uncertainty. Therefore, earlier R&D projects are likely 

to be more risky than later R&D projects and, consequently, will have a higher cost of 

capital. Figure 2.14 illustrates this distinction and reflects the fact that R&D projects are 

among the riskiest types of a pharmaceutical firm’s investments.
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Figure 2.14
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Section 3.7.1: Estimates o f the Costs o f R&D

As was discussed in much detail in the previous section, the cost of bringing a 

new drug to market is highly sensitive to several factors. Specifically, these factors were 

identified to be:

1) The cash outlays (for both successful and unsuccessful projects) incurred 

while bringing the drug to market;

2) The timing of the cash outlays (the length of development time and the distribution of 

expenditures over this period);

3) The opportunity cost of capital appropriate for capitalizing the cash outlays up 

to the time of NDA approval.

In studies attempting to estimate this cost, two major methodological approaches have 

been used: a project-level approach and an industry-level approach. Brief overviews and 

summaries of the findings from the major studies in both categories will be provided.

47



Section 3.7.2: Project-level Studies

The approach employed by the project-level studies involved measuring—at each 

stage in the development process—each firm’s total R&D expenditures and the number 

of drugs the firm had advancing into the next development stage. These measures were 

then used to estimate an average capitalized cost per NDA approval. The key advantage 

to this methodology is that it provides a detailed view of a project’s overall development 

costs. However, because of the non-public nature of much of the data required by this 

approach, there have been very few of these types of studies. The prototypes of these 

project-level studies are the Hansen (1979) and DiMasi (1991) studies. The specific 

approach used in these studies is described briefly below.

Section 3.7.3: The Hansen and DiMasi Studies

In his study, Hansen examined 67 drugs that were discovered and developed by 

U.S. pharmaceutical firms and that entered clinical trials in humans between 1963 and 

1975. Similarly, DiMasi’s study examined 93 drugs that were discovered and developed 

by U.S. pharmaceutical firms and that entered clinical trials in humans between 1970 and 

1982. Both studies examined only those drugs that were discovered and developed by 

the firms that initially discovered them. Hence, neither study included drugs that were 

licensed in from other firms. To estimate the average cost of bringing a drug to market, 

both Hansen and DiMasi capitalized total per annum R&D expenditures up to the date of 

FDA approval. Specifically, Hansen used an opportunity cost of capital estimate of 8%; 

and DiMasi used an estimate of 9%. The results from both of these studies are presented 

below in Table 2.5. The estimates have been inflated to 1998 dollars using the GDP 

implicit price deflator.
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Table 2.5

The Cost of Bringing a New Drug to Market (1998 millions of dollars)

Study Study Years 
(Midpoint) Clinical Cost

Preclinical & 
Discovery 

Cost

Total Cash 
Outlays

Capitalized 
Total Cost

Hansen, 1979 1969 36.9 43.9 80.8 141.6

DiMasi, 1991 1976 66.4 90.5 156.9 319.4
Rate of 
Increase 79% 106% 94% 125%

While these results are not a very good reflection of the average cost to bring a 

drug to market today, they do provide a reasonable benchmark, at least until more 

contemporary studies are undertaken. Moreover, they demonstrate the trend toward 

higher drug development costs. Indeed, there was a 125% increase in the estimated cost 

of bringing a new drug to market from the time of Hansen’s study (sample year midpoint 

= 1969) to the time of DiMasi’s study (sample year midpoint = 1976). This should not be 

too surprising due to the fact that the average development time increased from 9.6 to 

11.8 years between 1969 and 1976 (OTA, 1994). Moreover, DiMasi used a slightly 

higher cost of capital estimate.

Finally, because the average drug development time has increased substantially 

since the time of the DiMasi Study—from 11.8 years to 14.9 years—it is quite likely that 

the average cost of bringing a drug to market today is much higher than 319.4.

Section 3.7.4: Industry Level Studies

The methodological approach used by industry-level studies involved examining 

the relationship between the annual number of NDA approvals and lagged industry R&D 

expenditures. The principle advantage of industry-wide studies is that there is readily 

available data on both annual industry R&D expenditures and the annual number of new
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drugs introduced to the market. However, there are considerable disadvantages to this 

type of methodology. For example, new drug introductions in a given year will be 

related to a very complex pattern of past R&D expenditures and other external factors 

like regulatory controls. This makes assigning past R&D expenditures to a cohort of 

recently marketed new drugs very difficult and imprecise. The two industry-level studies 

discussed here are the Wiggins Study (1987) and the Grabowski and Vernon Study 

(1990).

In his study, Wiggins examined the relationship—via standard regression 

techniques—between the number of per annum NDA approvals and lagged industry 

R&D expenditures during the 1970-1985 period. Specifically, Wiggins estimated a 

regression equation that predicted the annual number of new drug approvals based on 

lagged R&D expenditures and average NDA delay times. Wiggins, like Hansen, used an 

opportunity cost of capital of 8% to capitalize R&D expenditures up to the year of NDA 

approval. However, it should be noted that unlike Hansen’s and DiMasi’s sample of 

drugs, the Wiggins sample included licensed-in drugs as well as self-originated drugs. 

From his regression models, Wiggins estimated that the additional cost of bringing a new 

drug to market was approximately 162.2 million dollars (1998 dollars).

In the other major industry-level study, the Grabowski and Vernon Study, the 

authors examined NDA approvals from 1970 to 1979. To estimate the cost per NDA 

approval they used aggregate R&D expenditure data form 1962 to 1978. Specifically, 

they made assumptions about the allocation of each year’s R&D expenditures to future 

years’ NDA approvals. For example, they made the assumption that 10% of R&D 

expenditures in 1965 were spent on drugs receiving NDA approvals in 1970, 10% on 

drugs receiving NDA approval in 1971, and so on. The appropriate allocation of R&D 

expenditures to a future year’s NDA approval was based, in part, on regression analyses. 

Grabowski and Vernon estimated that the average cost per approved drug between 1970 

and 1979 was approximately 175.1 million dollars (1998 dollars).

The four studies on the cost of drug development, described above, are virtually 

the only theoretically rigorous studies that have been conducted to date. Therefore, while 

the methodological approaches of the studies are different, it will prove useful to compare 

their results in order to approximate a range for the cost of bringing a new drug to market.
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Evidence seems to indicate that the average time from IND application to NDA approval 

was 6.5 years during the Wiggins Study (OTA, 1994). This implies that drugs in the 

Wiggins sample entered clinical testing in humans from 1963-1979. This is 

approximately the same time period examined in the Hansen study. (Hansen examined 

drugs entering clinical testing in humans from 1963-1975.) Consequently, the costs 

estimated from the two studies may be reasonably compared. Furthermore, an assumed 

8-12 year total drug development time (discovery to NDA approval—see Figure 2.5) 

would imply that the sample of drugs examined by Grabowski and Vernon entered 

human testing from 1965 to 1972. This, like the Wiggins Study, is roughly equivalent to 

drugs in Hansen’s sample. Thus, it is at least reasonable to compare the different study 

results. The results from the above four studies are summarized below in Table 2.6.

Table 2.6

The Cost of Bringing a New Drug to Market (1998 millions of dollars)

Study Study Years 
(Midpoint)

Capitalized Total Cost 
(In millions of dollars)

DiMasi, 1991 1976 319.4
Hansen, 1979 1969 141.6
Wiggins, 1987 1969 162.2

Grabowski, 1990 1969 175.1

One very important thing must be kept in mind, however. As was mentioned at 

the beginning of this section, these development cost estimates reflect the cost of drug 

development for drugs entering human testing almost two decades ago. Therefore, and 

especially in light of the significant changes in the regulatory environment since that 

time, these estimates should not be viewed as contemporary estimates of a drug’s total 

development cost. Indeed, as was mentioned earlier, this cost is likely to be substantially 

greater. Finally, because the costs of R&D are only meaningful when they may be 

compared to the returns from the projects they financed, the next section will address the 

returns on pharmaceutical R&D
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Section 3.8.1: Returns on Pharmaceutical R&D

As was discussed in much detail in the last section, investors in pharmaceutical 

R&D put up their money because they expect, on average, to be adequately compensated 

for the risk and time involved in their investment. This section will explore the returns to 

pharmaceutical R&D. Specifically, this section will examine the evidence on the returns 

from pharmaceutical R&D, the key regulatory changes that have influenced these returns 

(or are likely to influence these returns in the future), and the overall trends in 

pharmaceutical profitability.

Section 3.8.2: Estimates on the Returns from Pharmaceutical R&D

Estimating the returns from pharmaceutical R&D, like estimating the costs of 

pharmaceutical R&D, is a very difficult task. One reason is the extremely long market 

life of many drugs. Indeed, many drugs have market lives that extend well beyond 20 

years. Furthermore, the costs of producing, distributing, and marketing drugs may only 

be estimated imprecisely. Nevertheless, several authors have attempted to estimate these 

returns. Specifically, their studies attempted to estimate the net returns from new drug 

introductions. That is, they attempted to estimate both the costs attributable to new drug 

introductions (R&D, production, distribution, and marketing) and the returns (for which a 

number of assumptions had to be made regarding future sales revenue). Not surprisingly, 

these studies produced widely divergent results. The differences were due largely to the 

different time periods examined and the various assumptions made in each study. 

However, the two most recent studies of the returns on pharmaceutical R&D had 

relatively consistent findings for the same time period— 1980-1984. Moreover, these 

newer studies had a larger sample of years with actual sales data than the earlier studies, 

which relied more heavily on forecasted future drug sales. The results from these studies 

are summarized below.
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In a recent report contracted by the U.S. Congress, The Office of Technology 

Assessment (OTA) examined the returns from new drugs that were introduced between 

1981 and 1983. The OTA found that these drugs delivered, on average, a present value 

cash flow (sales less production, distribution, and marketing costs) of approximately 

283.7 million dollars (1998 dollars) after taxes. This present value cash flow estimate 

was then compared to DiMasi’s estimate of 239.3 million dollars (which was adjusted to 

reflect tax-savings from investing in R&D and a variable cost of capital3) for the average 

capitalized cost of R&D for new drugs introduced in this same period. Henceforth, OTA 

concluded that the average new drug introduction in 1981-1983 had a net present value 

(present value after-tax revenues less capitalized R&D costs) of approximately 44.4 

million dollars. Stated in slightly different way, OTA estimated that, for drugs 

introduced between 1981 and 1983, the present value of the cash flows generated by the 

average drug would be approximately 44.4 million dollars more than would be necessary 

to induce the investment in the R&D.

In the other study, Grabowski and Vernon (1994) found broadly similar results. In 

a 1994 study, they examined 67 new drug introductions in the United States between 

1980 and 1984. Using a similar approach to that of the OTA, the authors estimated an 

average rate of return on pharmaceutical R&D of 11.1%. This return was then compared 

to a cost of capital of 10.5%, which was based on a recent estimate of the cost of capital 

for the pharmaceutical industry during the same time period (Myers and Shyam-Sunder, 

1994). Indeed, these findings, like OTA’s findings, appear to indicate that, at least 

historically, the real economic returns from pharmaceutical R&D are slightly greater than 

the opportunity cost of capital for the R&D. An interesting feature of the Grabowski and 

Vernon study was that the authors also examined the actual distribution of returns from 

R&D. Specifically, they divided the 67 new drug introductions into deciles and 

calculated the average after-tax present value of revenues for each decile. These decile

J The firm’s effective cost o f  bringing a new drug to market (the appropriate cost for calculating a firm’s 
net return from R&D) is considerably reduced by the tax savings that a firm receives when it invests 
in R&D. That is, the net cost o f  every dollar expended on R&D must be reduced by the amount o f the tax 
burden avoided. OTA estimated this effective firm cost by taking into account both deductions and 
tax savings from various R&D tax credits that were available during the time period o f their study. 
Furthermore, OTA adjusted DiMasi’s estimate by allowing the cost o f  capital to decrease in a linear 
fashion from 14% to 10% over the life o f  the R&D projects. This was done to reflect more recent 
estimates o f the cost o f  capital during his period.
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averages were then benchmarked against their estimate for the average capitalized value 

of R&D cost for all 67 drugs—all on an after- tax basis. This distribution is presented 

below in Figure 2.15.

Figure 2.15

Only Three of Ten Marketed Drugs Produce Revenues that 
Match or Exceed Average R&D Costs
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Source: H. Grabowski and J. Vernon “Returns to R&D on New Drug Introductions in the 1980s, ” Journal 
of Health Economics, Vol. 13, 1994.

The striking feature from the above diagram is the skewed nature of the 

distribution of drug returns. For example, the top decile of new drug introductions had an 

estimated present value cash flow five times that of the average R&D cost. Moreover, 

only the top three deciles had present value returns that exceeded the average cost of 

R&D. Importantly, it should be noted that these estimates are based on new drug 

introductions in the early 1980s and, consequently, may not be reflective of the returns to 

R&D in more recent periods.
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Section 3.8.3: Pharmaceutical Regulation and Effective Patent Life

One of the most important factors affecting the total revenues and hence the 

returns from pharmaceutical R&D is the length of a drug’s effective patent life—or the 

drug’s period of market exclusivity. That is, a drug’s effective patent life is defined to be 

the elapsed time between FDA approval and the expiration date of the drug’s last patent. 

Therefore, pharmaceutical patents will be the focus of this section. Generally, there are 

thought to be three major barriers to entry into the market for newly introduced 

pharmaceuticals. They are:

1) Patents

2) Brand Loyalty

3) Scale Advantages in R&D

However, patents are generally regarded as the most important of the three,

because once a new chemical structure has been marketed, the cost of imitation is 

typically quite low. Thus, a pharmaceutical firm could spend several hundred million 

dollars and many years developing an important new drug only to have other firms 

imitate the chemical structure once it is marketed. Consequently, exclusive marketing 

rights are granted to the newly introduced drug via a patent. This is done in an effort to 

foster drug innovation by providing incentives (future drug sales) to invest in the 

pharmaceutical R&D. Clearly, if no such market exclusivity were awarded for new 

innovations, then incentives to invest would be almost nonexistent. This is the familiar 

public-good/free rider argument. While there is much more that could be said on this 

topic, it is beyond the scope and purpose of this chapter.

During this period of market exclusivity, or patent protection, firms are essentially 

monopolists and are able to effectively price at profit-maximizing levels. However, at 

the time of patent expiration, generic drugs are allowed to enter the market and compete 

with the brand drug. This generic competition typically results in substantial erosion of 

the brand drug’s market share and profits. Consequently, changes in the effective patent 

lives of new drugs will have a substantial impact on the profitability and returns from
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pharmaceutical R&D. Indeed, over the past several decades there have been a number of 

changes in the regulation of pharmaceuticals that have significantly impacted the 

effective patent life of new drugs. Specifically, the most influential regulatory changes 

have come via Congressional Acts and the implementation of GATT (General Agreement 

on Tariffs and Trade). These major regulatory changes are briefly discussed next.

Section 3.8.4: 1962 Kefauver-Harris Amendments to the Food, Drug, and Cosmetic Act

The 1962 Amendments were an important milestone in the regulatory regime of 

pharmaceuticals. These Amendments required that substantial evidence of clinical 

efficacy be demonstrated for all new drugs prior to marketing. Furthermore, they also 

established the investigational new drug (IND) procedures for clinical testing. The 

overall impact of these new clinical requirements was longer average drug development 

times and hence shorter effective patent lives.

Section 3.8.5: 1984 Drug Price Competition and Term Patent Restoration Act: The 

Waxman-Hatch Act

In 1984 another major legislative Act was passed that would greatly influence the 

effective patent lives of pharmaceuticals. Specifically, 1984 marked the passing of the 

Waxman-Hatch Act, which was designed to balance the competing concerns of drug 

innovation and generic competition. Title I of this Act established the Abbreviated New 

Drug Application (ANDA) for generic drugs. The ANDA process permitted generic 

drugs to rely on the clinical safety and efficacy results submitted to the FDA by the 

pioneering firm. Consequently, Title I enabled generic drugs to receive marketing 

approval much more quickly and inexpensively by only requiring them to demonstrate 

bioequivalence to the pioneer drug. In particular, this law allowed generic drug 

manufacturers to conduct their bioequivalence testing and have their ANDA reviewed in 

the pre-patent expiration period. This provided generic drugs the opportunity to enter the 

market almost immediately after patent expiration.
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Title II of this Act provided for a partial restoration of the patent time lost by most 

drugs during the clinical testing and regulatory approval periods. Specifically, the law 

allowed for extensions in patent life equal to the sum of the length of the NDA review 

time and one-half the IND clinical testing time. The Act capped this patent extension 

time to five years and further specified that the extension could not increase a drug’s 

effective patent life beyond 14 years. Furthermore, Title II included a very important 

transitional provision. Specifically, this provision capped patent extensions to a 

maximum of two years for patented drugs in clinical testing on the date the legislation 

was passed (September 24, 1984). Consequently, most new drug introductions occurring 

in the 1980s and early 1990s were subject to this cap.

While the effect of the 1984 Act on effective patent lives is obvious, what is not 

clear is the net impact on present value drug revenues, and hence returns to R&D. Figure 

2.16 demonstrates the competing effects of a longer effective patent life (market 

exclusivity) and increased generic competition.

Figure 2.16

Effect of 1984 Act on Expected Revenues of Average Drug

Source: Grabowski and Vernon, “Longer Patents for Lower Imitation Barriers: The 1984 Act, ” American 
Economic Review, May 1986.
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One possible way to gauge how the Waxman-Hatch Act has facilitated the growth of 

generic competition in the pharmaceutical industry would be to examine the trend in 

market shares for generic drugs since 1984. Indeed, as might be predicted, since the 

passing of the Waxman-Hatch Act, generic drug market shares have steadily climbed 

from 18.6% in 1984 to 44.3% in 1997. This trend is shown in Figure 2.17 below.

Figure 2.17

Generics' Share of U.S. Prescription Drug Market, 1984-1997

Source: IMS Health, 1998.
Note: Generic share of countable units, such as tablets.

Section 3.8.6: Implementation o f GATT (General Agreement on Tariffs and Trade)

On June 8 , 1995 provisions negotiated under the GATT treaty and directly 

affecting patents became effective in the United States. The specific provisions granted 

under GATT included a change in patent terms. In particular, patent terms were
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designated to be 2 0  years from the date of patent application rather than 17 years from the 

date of patent grant. Additionally, patents in effect or on file prior to June 8 th were given 

either the 2 0 -year term from application or the 17-year term from patent grant date— 

whichever was longer. For drugs in this transition set, a very crucial question was 

whether or not the 1984 Waxman-Hatch extensions could be added to the GATT-induced 

extensions (which would have resulted from the switch to the 2 0 -year from file term). 

Initially, the U.S. patent office determined that the Waxman-Hatch extensions could not 

be added. More recently, however, courts have ruled that firms can add these extensions. 

Nonetheless, the maximum 14-year requirement under the Waxman-Hatch Act remains a 

binding constraint for effective patent lives under either regime.

Clearly, the result of GATT for drugs in the aforementioned transition set will be 

beneficial, as some patent holders will gain patent extensions and no patent holders will 

lose patent time. Consequently, the average effective patent life should increase. 

However, the impact of GATT for patents filed after June 8 , 1995 will ultimately depend 

on the patent pendency period. Clearly, for patent pendency periods less than three years 

the result will be a gain in patent time. Figure 2.18 below shows how effective patent 

lives have changed over the past few decades.
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Figure 2.18

Trend in Effective Patent Life
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Source: Office o f Technology Assessment, 1994 and Grabowski and Vernon, 1994.

Section 3.9: Trends in Pharmaceutical Profitability Margins

Another measure, albeit an inferior one, of the profitability of pharmaceutical 

R&D is the profit margin on a firm’s annual pharmaceutical operations. This data is 

readily available on both the firm and the industry level. Figure 2.19 below illustrates 

how the pharmaceutical industry’s “accounting” profit margin has increased rather 

steadily over the past couple of decades.
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Figure 2.19

Industry Margin Trend, 1974-1994

Source: Scrip League Tables, and Grabowski and Vernon, 1990.

However, several caveats should be mentioned regarding these profitability 

calculations. Accounting-based profit measures can be poor approximations of a firm’s 

true returns. This is because accounting standards require that expenditures on R&D and 

advertising be recorded as current expenditures—when in reality these expenditures are 

investments whose payoffs are delayed or extended into future accounting periods. 

Additionally, financial statements frequently report income and expenses as they are 

accrued in accounting records. This may be very different from the actual cash flows of 

operations. Harvard economist F.M. Scherer expresses these points nicely:

Under standard accounting practice, R&D and new product marketing outlays, 
both of which are atypically high in pharmaceuticals, are written off as current 
expenses. Since both, and especially R&D, affect revenue for many years to 
come, it would be more accurate in principle to capitalize the outlays and then 
depreciate them over appropriate time periods. Otherwise, the rate of return on 
“investment” is calculated using an asset base that improperly excludes
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accumulated intangible R&D and marketing capital. Accounting figures tend to 
overstate the true rate of return on investment under these conditions.

In general, however, pharmaceutical R&D—at least historically— appears to 

generate a real rate of return that is slightly greater that the rate of return required to bring 

forth the investment in the R&D. The most recent published study estimated this rate of 

return to be, on average, approximately 11.1%, which was compared to a 10.5% cost of 

capital. However, there are several reasons why this rate of return should not be 

compared to the rates of return given in recent financial reports on pharmaceutical 

profitability. For one, this estimate is based on new drug introductions between 1981- 

1984. Secondly, as was just mentioned, there are many reasons why accounting rates of 

return distort the true economic rates of return for pharmaceutical R&D.

The pharmaceutical R&D process has gone through, and continues to go through, 

dramatic changes that have tremendously affected both the scientific and economic 

landscapes of this highly innovative and competitive industrial process. While this 

chapter has given a broad overview of some of the major trends and developments in 

pharmaceutical R&D, it is important to keep in mind that the information may not be 

indicative of the current R&D landscape. Nonetheless, the information provided here 

should serve as an adequate overview and background of the key issues surrounding the 

costs, the risks, and the returns of pharmaceutical R&D.
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Chapter Three

The Theoretical Foundations and Rationale for Pharmaceutical R&D
Financing Constraints

Section 1: Introduction

Analysis of the firm investment decision has occupied a prominent place in both 

the industrial organization and corporate finance literature. Indeed, the firm investment 

decision has been one of the most widely researched topics in all of economics. 

Furthermore, the majority of this research has relied heavily on the well-known 

neoclassical assumption that the source of investment finance (i.e., new debt, new equity, 

or internal funds) has no impact on the firm’s investment decision (Miller and Modiglani, 

1958). That is, the standard neoclassical investment model assumes that internal and 

external funds are perfect substitutes. Consequently, firms are assumed to be indifferent 

between financing investment projects with internal cash flows and financing investment 

projects with either new debt or new equity capital.

Over the past decade, however, many researchers have rejected this conventional 

view of firm investment and have developed models of business investment that 

incorporate a role for “financing constraints.” This recent focus on the source of 

investment finance has been driven both by theoretical and empirical concerns and 

suggests that the source of finance is an important determinant of firm investment. 

Specifically, there have been recent advances, both theoretical and empirical, that provide 

evidence supporting the hypothesis that internal funds have a lower cost of capital than 

external funds (Hubbard, 1998).1 This new hypothesis, which rejects the neoclassical 

assumption that internal and external funds are perfect substitutes, clearly implies that the 

availability of internal funds is a major determinant of firm investment expenditures. 

Therefore, because the primary hypothesis of this thesis is that internal funds are an

1 For a recent survey, refer to Hubbard’s synopsis and the references therein.
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important determinant of pharmaceutical R&D expenditures, this hypothesis will be 

thoroughly examined and reviewed in this chapter.

The present chapter will begin by presenting a simple model of firm investment 

within the conventional framework of neoclassical assumptions. Specifically, the model 

chosen will be couched in a world with perfectly functioning, centralized, capital markets 

wherein internal and external funds are perfect substitutes. A discussion of how profit- 

maximizing firms make investment decisions under these assumptions will be presented 

along with several dynamic characteristics of this model, which will be referred to as the 

conventional model of firm investment.

Immediately following this presentation of the conventional model, an alternative 

model specification, one that presupposes the existence of capital market imperfections 

—i.e., financing constraints, will be presented. It will be demonstrated that in a world 

where capital market imperfections exist, internal and external hands are not perfect 

substitutes. It will be shown that in this type of world a “financing hierarchy” may 

exist—a hierarchy in which internal funds have a substantial cost advantage over external 

funds. Hence, this model will be referred to as the alternative model of firm investment. 

The alternative model—which forms the basis for much of the empirical analyses in 

chapters 4,5, and 6 —will be examined from several theoretical perspectives. Based on 

these theoretical perspectives, it will be argued that the alternative model of investment is 

the appropriate model for describing firm investment behavior. In particular, arguments 

will be made for the existence of financing constraints based on transaction costs, tax 

advantages, asymmetric information, costs of financial distress, and agency problems. 

Furthermore, it will be contended that financing constraints are particularly important 

when analyzing pharmaceutical R&D investment behavior—the subject of this thesis.

After introducing the alternative model of investment, several of its dynamic 

attributes will be examined in the context of the pharmaceutical R&D decision.

Following this examination, several sections will be devoted to the development of the 

theoretical underpinnings and microeconomic foundations of the alternative model 

specification—i.e., the hypothesis that financing constraints lead to a cost advantage for 

internal funds. Finally, after these theoretical rationales have been presented and
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rigorously developed, potential policy implications for the pharmaceutical industry will 

be discussed.

Section 2.1: The Miller and Modigliani Conventional Model of Investment without

Financing Constraints

The vast majority of empirical models to date have relied heavily on neoclassical- 

type assumptions whereby a representative firm responds to prices set in centralized 

securities markets. Within this framework, all firms have equal access to capital markets 

and any differences in firms’ responses to changes in the cost of capital or tax-based 

investment incentives is due solely to differences in investment demand. Thus, the 

conventional model of investment is based on the premise that the source of finance (i.e., 

new debt, new equity, or internal cash flows) is irrelevant to the firm when making its 

investment decision. This is because under the neoclassical assumptions of the 

conventional model, external funds are a perfect substitute for internal funds. More 

generally, such a substitution implies that within perfectly functional centralized capital 

markets a firm’s investment decision is independent of its financial condition (Miller and 

Modigliani, 1958). A graphical representation of this single period investment model—

in the context of the pharmaceutical R&D investment decision—is presented below in
2figure 3.1. The quantity of R&D investment is on the horizontal axis, and the cost of 

capital is on the vertical axis.

2 A single period model is used first to simplify the exposition o f  the theory. Following this a simple
multi-period Tobin’s q model will be considered. More complex dynamic models o f  the
optimal time path for investment, using the calculus o f  variations, is beyond the scope of this
presentation. The qualitative results will not be altered by this approach. Indeed,
single period models (and modifications thereof) have been used widely in the literature for describing
the optimal level o f firm investment.
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Figure 3.1

The Optimal Level of R&D Expenditures

mcc = r

Expenditures

In accordance with basic economic theory, Figure 3.1 demonstrates how a firm 

maximizes total R&D investment returns by equating the marginal rate of return from 

R&D with the marginal cost of capital. Stated more precisely, the optimal level of R&D 

is determined by solving simultaneously the expected marginal rate-of-retum equation, 

mrr, and the expected marginal cost-of-capital equation, mcc. The mrr schedule is also 

referred to as the firm’s investment demand schedule. Specifically, it is the firm’s 

demand for R&D. This schedule is downward sloping, reflecting the fact that, all else 

held constant, increases in the cost of funds reduce the firm’s desired level of R&D 

spending. The mcc schedule is a horizontal line representing the fact that firms may 

borrow and lend freely at the market rate of interest, r. In the above figure, the optimal 

level of investment in R&D is denoted by RD *. The determination of this equilibrium 

level of R&D is developed and explained in more detail in the following sections.
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Section 2.2: The Demand for Pharmaceutical R&D: The Marginal Rate o f Return 

Schedule (mrr)

The mrr schedule for the firm is derived by arranging the firm’s potential 

investment projects in a decreasing order with respect to each project’s risk-adjusted 

expected rate of return. This clearly implies, all things held constant, that a firm will first 

choose to undertake the most profitable investment projects—those offering the highest 

expected rates of return. Indeed, the firm will then continue to undertake additional 

investment projects so long as the expected rate of return from the next project exceeds 

the cost of capital to finance it, i.e., if mrr > mcc . However, prior to ranking the 

potential investment projects in this manner, the firm must first formulate expectations 

about the future returns from each project.

The expected rate of return from a project that has a payoff after one period is 

simply the ratio of the expected payoff from the investment to the cost of the investment 

project. However, investment projects—especially pharmaceutical R&D investment 

projects—typically involve cash flows that occur over many periods. Moreover, these 

investment projects are likely to involve very complex streams of investment 

expenditures and returns. For these projects the appropriate measure of the expected rate 

of return is its expected internal rate of return, irr . The irr for a project, by definition, is 

the discount rate that results in the project’s expected cash flow stream having a net 

present value equal to zero. Specifically, a firm’s expectations about a project’s future 

expenditures and returns are formulated in the period when the initial investment 

expenditure decision is made. For example, a firm in period t = 0 formulates 

expectations about an investment project’s future expenditure requirements, the 

likelihood the project will advance and eventually become successful, and the returns the 

project will generate. Consequently, for this simple investment model, the assessment 

and subsequent ranking of potential investment projects are based on a firm’s 

expectations in period t = 0 .

Algebraically, the irr for a particular investment project, say project i , which has 

cash flows for n years, may be found by solving equation (2 ) for the discount rate r :

67



(2)
f E{CFu 1Q„0)

h  ( i+r)'

Where E(CFU | Q (=0) is the expected cash flow from project /in period / based on all 

available information in period t = 0. The information set Q, represents the information 

available to the firm in period t. It should be noted that equation (2) has no explicit 

algebraic solution. In general, when cash flows are variable over time, a solution to (2) 

must be found through an iterative process of trial and error.

Alternatively, if cash flows are better described by continuous flows, the irr for 

project / will be the discount rate that solves equation (3) below3:

Section 2.3: The Supply o f Capital: The Marginal Cost o f Capital Schedule (mcc)

The mcc equation reflects the opportunity cost of capital incurred through 

investing in R&D projects on the margin. In particular, the mcc schedule reflects the 

opportunity cost of alternative investments for the firm. In the conventional, or 

neoclassical, model of investment this would be a horizontal line at r, the real market 

rate of interest (adjusted for risk) . 4 This horizontal cost of capital schedule clearly 

demonstrates the irrelevance of the source of investment financing to the firm. The firm 

can lend or borrow freely at the market rate r . Hence, the method of investment

3 In the continuous case, under certain assumptions, Newton’s Method could be used to approximate the 
solution to equation (3).

4 This simple version o f the neoclassical investment model is used primarily for ease o f exposition. Indeed, 
all o f the models in this chapter incorporate numerous simplifying assumptions.

n
(3)

o
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financing—i.e., internal funds, new debt capital, or new equity capital—has no impact on 

the optimal level of investment in R&D. Therefore, fluctuations in the firm’s internal 

cash flows will in no way affect R&D spending. Clearly, the central assumption 

underlying the horizontal mcc schedule in the conventional investment model is that 

internal and external funds are perfect substitutes.

Section 2.4: Equilibrium Investment in the Conventional Model

As was illustrated in Figure 3.1, the equilibrium level of investment in R&D 

occurs at the intersection of the mrr and mcc schedules. This equilibrium quantity of 

R&D will necessarily be subject to changes in the demand for R&D (which may be 

represented graphically by shifts in the mrr schedule) and to changes in the cost of capital 

(which may be represented graphically by shifts in the mcc schedule). Therefore, any 

shift in the either of these two schedules will change the equilibrium level of R&D. For 

example, as Figure 3.2 illustrates below, an increase in the demand for R&D will, ceteris 

paribus, increase the optimal level of R&D from RD'X to RD2. This increase in the 

demand for R&D, which is represented by a shift in the mrr schedule from mr>\ to mrr2, 

could be the result of improved pharmaceutical investment opportunities. Alternatively, 

this increase in the demand for R&D could be the result of greater expectations 

surrounding the future profitability of the firm’s pharmaceutical business operations.

While these two examples are certainly closely related, there is indeed a 

somewhat subtle difference. The latter, while clearly a function of the expected 

performance of R&D, also incorporates expectations around the broader economic forces 

that may impinge upon the firm or industry as a whole. This distinction, which is an 

important component of several of the model specifications used in the forthcoming 

empirical analyses, will be elaborated upon in greater detail in a later chapter.
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Figure 3.2

An Increase in the Demand for R&D

R&D
Expenditures

In general, the location of the mrr schedules depicted in Figure 3.2 will depend on 

the firm’s R&D investment opportunities and their perceived future profitability. The 

location of the mcc schedule is determined by the cost of capital—which is simply the 

market rate of interest in the neoclassical, or conventional, model of investment. As was 

demonstrated in Figure 3.2, all else being equal, an increase in the expected returns to 

R&D will shift the mrr schedule to the right, increasing the firm’s desired level of R&D. 

Similarly, it can also be shown that a decline in the expected returns to R&D will shift the 

mrr schedule to the left, decreasing the firm’s desired level of R&D. On the supply side 

of the model, an increase in the cost of capital reduces the firm’s desired level of R&D, 

all else being equal, while a decrease in the cost of capital increases the firm’s desired 

level of R&D. Clearly, within the framework of the conventional model of firm 

investment there is no role for a firm’s internal funds, or cash flows, to affect the R&D 

investment decision. That is, the firm perceives the opportunity cost of internal funds to 

be the market rate of interest.
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Algebraically, the equilibrium condition for this model may be expressed by the 

following equation:

mrr(RD*, X, Y) = mcc(RD*, Z) (4)

Where,

RD * = the optimal level of pharmaceutical R&D investment expenditures

X — a vector of variables influencing expected returns to pharmaceutical R&D

Y = a vector of variables influencing the expected costs associated with

pharmaceutical R&D, and

Z = a vector of variables influencing the opportunity cost of capital

Therefore, the optimal level of R&D expenditures, RD*, is implicit within equation (4) 

and is consequently a function of the vectors X, Y, and Z. Generally, we may solve the 

above equation to obtain the reduced form solution for the optimal level of R&D:

RD* = /(X , Y,Z) (5)

Obviously, then, any change in one or more of the variables within the X, Y, and 

Z vectors is likely to alter the firm’s optimal level of R&D expenditures. Moreover, it is 

important to emphasize that within the framework of the conventional model, the 

availability of internal cash flows has no impact on the optimal level of R&D. That is, 

the availability of internal funds does not influence the cost of capital in this model (i.e., 

the Z vector in the above equations), because internal and external funds are perfectly 

substitutable.

This very crucial assumption will be relaxed in the forthcoming specification of 

the alternative model of investment. The result, as will be demonstrated in the next
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section, is a model wherein the availability of internal funds has a positive influence on 

the equilibrium level of investment in R&D. This is discussed next.

Section 3.1: The Alternative Model of Firm Investment: The Existence of Capital 

Market Imperfections and Financing Constraints

Recent work on firm investment behavior has focused on an alternative research 

agenda—one in which internal capital and external capital are not perfect substitutes. 

According to this view, the optimal level of firm investment may depend on such 

financial factors as the availability of internal funds, access to new debt and equity 

markets, or the functionality of particular credit markets. For example, a firm’s optimal 

level of investment may be significantly influenced by the availability of internal cash 

flows. In other words, because capital market imperfections lead to a financing hierarchy 

among the sources of investment finance, internal funds may have a substantial cost 

advantage over new debt or equity finance. A simple graphical representation of the firm 

investment model—in the presence of a financing hierarchy—is presented below in 

Figure 3.3. Like the conventional investment model, this model is presented within the 

context of the pharmaceutical R&D decision.

Figure 3.3

The Optimal Level of R&D Expenditures 
with Financing Constraints



As was the case within the framework of the conventional model, a firm 

maximizes expected returns by selecting the level of R&D where mrr = mcc. This 

occurs in Figure 3.3 at RD". However, unlike in the conventional investment model, in 

the presence of a financing hierarchy, the source of investment finance becomes an 

important determinant of the optimal level of R&D. In particular, as Figure 3.3 

illustrates, firms will begin by financing investment projects with internal cash flows. 

Then, only after internal funds have been exhausted, will the firm seek external sources 

of finance—so long as the expected returns exceed the cost of external funds.

Algebraically, this optimal level of R&D may be expressed as the following 

reduced form solution to equation (4):

RD* = /(X , Y,Z) (6 )

Where,

Z = a vector of variables influencing the cost of capital when capital 

market imperfections lead to a financing hierarchy for investment.

In this alternative investment model specification, the mcc schedule consists of 

two horizontal segments, one representing the cost of internal finance and the other 

representing the cost of external equity finance. As Figure 3.3 depicts, the horizontal 

segment representing the cost of internal funds is lower than the segment representing the 

cost of external finance, and extends out to the point where internal funds are exhausted. 

There have been several recent theoretical arguments presented for this expected 

difference in the cost of internal and external funds. These arguments, which are 

discussed in detail in the following sections, include transaction costs, tax advantages, 

asymmetric information, financial distress costs, and agency problems.

The upward sloping portion of the mcc schedule that connects the two horizontal 

segments represents new debt finance. The theoretical reasoning behind the increasing 

marginal cost of new debt finance is well known and is the result of financial gearing.
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That is, all things held constant, as a firm becomes leveraged with more debt, the 

likelihood that the firm will default on its debt obligations increases. This is often 

referred to as financial distress. Consequently, debt holders require a higher expected 

rate of return on the firm’s debt to compensate them for the increased risk that the firm 

will default on its debt payments. However, because debt finance is secured with 

corporate assets, and equity finance is not, the cost of new debt finance is generally less 

than the cost of new equity finance. More will be said on this later in the chapter.

Section 3.2: Dynamic Characteristics o f the Alternative Investment Model

Figures 3.4 and 3.5 provide a simple graphical analysis of the two major determinants of 

investment in pharmaceutical R&D. Figure 3.4 shows how an increase in investment 

demand (an upward shift in the mrr schedule) leads to an increase in a firm’s equilibrium 

level of investment in R&D.

Figure 3.4

An Increase in the Demand for R&D
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Figure 3.5 demonstrates how, in the presence of a financing hierarchy, an increase in the 

availability of internal funds, or cash flows, will also lead to an increase in the 

equilibrium level of R&D investment.

Figure 3.5

An Increase in the Level of Internal Funds

In both the conventional and alternative models of investment, an increase in the 

demand for R&D will, ceteris paribus, increase the optimal level of R&D. Thus, 

qualitatively, the conclusions drawn by the two models are identical. However, the 

conclusions drawn by the two models are quite different in the case of an increase in the 

firm’s internal cash flows. In the convention model, an increase in the level of internal 

funds had no impact on the equilibrium level of R&D. However, as was shown in Figure 

3.4, within the framework of the alternative investment model, when there was an 

increase in the level of internal funds, everything else held constant, investment in R&D 

increased in equilibrium. This hypothesized positive relationship between cash flows and 

R&D expenditures, as predicted within the alternative investment model specification,
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forms the crux of the empirical analyses in this thesis. The following sections develop 

the theoretical underpinnings necessary to support this hypothesis.

Section 4: The Theoretical Rationale for R&D Financing Constraints

In order to provide a microeconomic foundation for establishing links between a 

firm’s internal cash flows and its real R&D investment spending, it will be necessary to 

first establish reasons why internal and external funds are not perfect substitutes. Indeed, 

there have been several recent theoretical explanations given for why internal funds may 

be a less costly source of finance than new equity or new debt finance. The most 

prominent explanations have included transaction costs, tax advantages, asymmetric 

information, costs of financial distress, and agency problems. Therefore, to support the 

hypothesis that cash flows are an important determinant of a pharmaceutical firm’s R&D 

expenditures, the aforementioned explanations will be thoroughly explored in the 

following sections.

In the first section evidence will be provided to support the argument that there 

exist substantial transaction costs associated with raising external funds. In particular, it 

will be shown that transaction costs typically represent between 3 and 6  percent of the 

total capital raised by new equity issues. In the next section, a theoretical model 

incorporating the effects of taxes on the cost of capital will be presented.

Specifically, it will be shown that when capital gains are taxed at a lower rate than 

dividends, there exist substantial tax advantages to financing investment with internal 

funds.

Next, another model will be presented—one that is an adaptation of the 

aforementioned tax model. This model will be developed to incorporate a role for 

asymmetric information. Asymmetric information, it will be shown, can generate 

potentially significant cost disadvantages for external finance. In particular, this model 

will demonstrate that when firm managers have better information about the quality of an 

investment project than do potential investors—the suppliers of the funds for the 

project—then the investors demand a premium rate of return.
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Consequently, the rate of return required by investors, who are aware of their 

informational disadvantage, is greater than the opportunity cost of capital for the firm’s 

internal funds. Moreover, both of the above models will be couched within the 

framework of the well-known ¿/-model of investment. Therefore, prior to developing 

these models, the ^-theory of investment will be introduced. This will facilitate the 

transition into the tax and information models by providing a sound analytic framework 

within which to analyze the R&D investment decision.

Finally, in the last section, a brief discussion will be undertaken to explain how 

agency problems and financial distress can lead to an increasing marginal cost of new 

debt schedule. Specifically, it will be shown how agency problems can lead existing 

creditors to place covenants on the behavior of firm managers—particularly with respect 

to the issue of new debt. These covenants, it will be shown, place substantial restrictions 

on a firm’s financial flexibility, which in turn may lead to a higher cost of new debt. 

Likewise, it will be demonstrated how financial distress costs—which increase with a 

firm’s level of debt—can also lead to an increasing cost of new debt, on the margin. 

These aforementioned microeconomic foundations, it will be argued, provide the 

necessary theoretical rationale to support the hypothesis that internal funds are an 

important determinant of pharmaceutical R&D investment.

Section 5.1: The Transaction Costs Associated with Raising External Equity

Capital

In the neoclassical, or conventional, model of firm investment, the transaction 

costs associated with raising new equity capital are assumed to be insignificant. This 

assumption is easily challenged. Despite the fact that transaction costs are not likely to 

be the major cause of the hypothesized difference between the cost of internal and 

external capital, these costs are certainly not insignificant. Consequently, the presence of 

these transaction costs is likely to contribute to a firm’s incentive to finance investment 

with internal, rather than external, funds.

Several studies have provided substantial evidence demonstrating the existence of 

significant transaction costs in raising new equity capital. The most thorough and
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exhaustive study to date is that undertaken by Clifford Smith (1987). Smith examined 

the transaction costs associated with raising new equity capital by examining filing data 

from the Securities and Exchange Commission (SEC) between 1971 and 1975. In his 

sample he obtained detailed filing data on 578 publicly traded companies. It was 

determined that, on average, transaction costs account for between 2.45% and 6.17% of 

the proceeds ultimately obtained from a new equity floatation—depending on whether 

the new equity was raised by means of a rights offering or through an underwritten 

offering. Before discussing these findings in detail, a brief description of each type of 

offering will be provided.

Section 5.2: Methods o f Raising New Equity Capital: Underwritten and Rights Offerings

There are essentially two ways that a firm can raise new equity capital: an 

underwritten offering and a rights offering. Furthermore, rights offerings sometimes 

have what is known as a standby-underwriting proviso. This is basically a clause that 

insures the firm against an unsuccessful rights offering. Indeed, the vast majority of 

firms choose underwritten offerings.

In an underwritten offering, an underwriting syndicate is contracted to purchase 

new shares from the firm at an agreed upon price that is usually set within 24 hours of the 

offering. The underwriter then offers the shares to the public at an offer price—which is 

a price greater than what the underwriter paid to the issuing firm. Hence, this price 

differential serves as a commission to the underwriter for bearing the risks associated 

with the offering. However, if the shares cannot be sold at the offer price, the 

underwriting syndicate dissolves and the shares are sold for whatever price can be 

obtained. Thus, in an underwritten offering the firm’s proceeds are guaranteed. It is the 

underwriter that bears the risk associated with random movements in the firm’s stock 

price. In a rights offering, on the other hand, the issuing firm provides shareholders with 

rights, which are options to purchase new shares for each share owned. The right states 

the terms of the option, the subscription price of the new shares, the number of rights 

required to purchase each additional new share, and the expiration date of the option. 

Thus, in a rights offering there is no direct third party involvement in the flotation of new
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shares. As a result, rights offerings are typically associated with lower flotation costs. 

Despite this fact, underwritten offerings are still the most common means by which firms 

raise new equity capital. 5

In his study, Smith found that the average total transaction cost for a new 

underwritten offering, measured as a percent of the total proceeds from the offering, was 

6.17%. This average estimate was based on a sample of 484 firms with new offerings 

ranging in size from less than $500,000 to 500 million dollars (in 1987 dollars). 

Moreover, as would be expected, the total transaction costs—measured as a percent of 

the total proceeds raised by the offering—decreased with the size of the offering. For 

example, for offerings between $500,000 and 1 million dollars, this cost was 13.74% of 

the total offering, on average. And for the largest offerings, those between 100 and 500 

million dollars, the cost was a significantly smaller 3.95%, on average.

For new rights offerings with standby underwriting the estimated total transaction 

cost—as a percentage of the total proceeds raised by the offering—was 6.05%. This 

estimate was based on a sample of 56 firms. As was the case with new underwritten 

offerings, the cost estimates making up this composite average were inversely related to 

the size of the offering. For the smallest offerings, those less than $500,000, this cost was 

8.24%, on average. And for the largest offerings, those between 100 and 500 million 

dollars, this cost was 4.0%, on average.

The transaction costs associated with rights offerings without standby 

underwriting were much less than the other two types of offerings and amounted to 

2.45%, on average. Indeed, the transaction costs associated with pure rights offerings 

were, as was the case with the other two types of offerings, inversely related to the size of 

the offering. In particular, these costs ranged from 8.99% of the total offering for the 

smallest offerings, those less than $500,00, to 1.3% of the total offering for the largest 

offerings, those between 100 and 500 million dollars. These estimates were based on a 

sample size of 38 firms.

5 The fact that the transaction costs associated with underwritten offerings are greater than those associated 
with rights offerings would seem to indicate that firms would prefer rights offerings. In fact, the opposite 
is true. For a theoretical discussion of this apparent paradox refer to Smith (1987).
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While all three types of offerings entailed significant transaction costs, 

underwritten offerings and rights offerings with standby underwriting, as mentioned, 

were the most costly of the three. The firms in these samples reported ten categories of 

expenses to the Securities and Exchange Commission (SEC) by mandate of law. 

Furthermore, these expenses were generally incurred by all new equity offerings, albeit to 

varying degrees depending on the type of offering. These expense categories are 

summarized in the list below:

1) Commissions received by investment bankers for underwriting services 
(underwritten offerings only)

2) Legal fees
3) Accounting fees
4) Engineering fees
5) Trustees’ fees
6 ) Listing fees
7) Printing and engraving expenses
8 ) SEC registration fees
9) Federal Revenue Stamps
10) State taxes

While the above categories of costs are certainly significant, they are by no means 

exhaustive. Indeed, they may not even represent the majority of the transaction costs 

associated with new equity offerings. Categories 1 through 10 include only those costs 

that are required by law to be reported to the SEC. Hence, they do not include several 

other key categories of costs. One such example is the use of warrants as a means of 

compensation to underwriters. A warrant, which is convertible into shares of the firm at 

a price well below the new equity’s offer price, is frequently used as a supplemental 

payment to the underwriter. Furthermore, this form of compensation is not reported to 

the SEC. Another type of unreported cost is the opportunity cost of time for the firm’s 

employees. This cost is particularly relevant to underwritten offerings. This is because 

top management is usually involved in lengthy negotiations over such underwriting 

parameters as the offer price and fee structure of the new issues. However, such 

negotiations should not be unexpected as the aforementioned parameters have a 

significant impact on the wealth of both the owners of the firm and the underwriters.

In general, the transaction costs associated with raising new equity capital are not 

insignificant. The fact that the majority of firms employ underwriting services indicates
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that, on average, firms may be incurring transaction costs approximately equal to 6 % of 

the market total value of a new offering. Even for the small proportion of firms that elect 

to raise new equity capital through a pure rights offering, the average cost incurred is still 

approximately 2.5% of the value of the total offering. Hence, while transaction costs 

may not be the primary rationale for expecting a divergence in the cost of internal and 

external capital, they clearly are not insignificant.

Prior to the presentation of several theoretical models that demonstrate how taxes 

and asymmetric information may lead to a difference in the cost of capital between 

internal and external funds, a ¿/-model framework of investment will first be developed. 

Specifically, because the ¿/-model of investment provides the best framework within 

which to analyze the impact of taxes and asymmetric information on firm investment 

behavior, this approach is adopted. To be consistent, the ¿7-model will be derived in the 

conventional way, with a representative firm choosing in each period the profit- 

maximizing quantity of new investment. In this derivation, investment is investment in 

real capital—i.e., plant and equipment. Following this, a special interpretation will be 

suggested for investment in pharmaceutical R&D.

Section 6: Tobin’s q  and the <jr-Model of Firm Investment

The ¿/-model of investment asserts that a firm’s demand for capital assets varies 

directly with the ratio of the market value of those capital assets to their replacement 

value. This ratio, or q , essentially compares the yield from capital assets with the rates 

of return required by investors who supply the funds for the capital. Thus, values of q 

exceeding unity stimulate investment spending, while values of q well below unity 

discourage capital formation. The determinants of the demand for capital in the ¿/-model 

are precisely the same as those described in the previous section on the demand for 

investment in R&D—i.e., the derivation of the mrr schedule. Indeed, the description of 

the demand for capital in the ¿/-model is as old as financial theories of investment 

themselves. That is, firms calculate the demand price of capital by discounting the 

expected future returns from the capital. Likewise, the cost of producing the new capital 

assets is their supply price. Should shifts in technology or business conditions create
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profitable investment opportunities, then the demand price for capital will exceed its 

supply price. This, consequently, will stimulate investment spending. Clearly, the 4 - 

model of investment is analogous in many ways to the R&D investment model presented 

earlier in this chapter. Therefore, the 4 -model framework is a natural choice for 

demonstrating the effects of taxes and asymmetric information on the cost of capital for 

pharmaceutical R&D investment. A formal derivation of the 4 -model of capital 

investment is developed below.

A firm’s optimal stock of capital in any given period may be derived directly from 

the firm’s profit maximization problem. In particular, the firm selects a program of 

capital formation and new investment that maximizes the present value of the firm’s 

expected future profits. This problem is stated below in the context of the representative 

firm’s maximization problem:

Subject to:

(7.1)

(7.2)

(7.3)

Y,=y(L„Kt)

Kl+l= K t +it -S K ,= { \-S )K t +i, 

dy
^ > 0
dL dK

>0

The variables in this optimization problem are defined as follows:

Lt = the quantity of labor units employed in period t 
K, = the quantity of capital employed in period t 
i, = the investment expenditures in period t 
r = the market interest rate
P, = the market price of the firm’s output in period t 
Yt = the output of the firm in period t
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wt = the wage rate or price of labor in period t 
p, = the rental rate or price of capital in period t 
8  = the depreciation rate of the capital stock

Equation (7.1) is simply the technology constraint facing the firm—i.e., the firm’s 

production function. Equation (7.2) is the firm’s capital stock constraint, which, for 

simplicity, assumes a fixed depreciation rate, 8 . This constraint expresses the fact that, 

in any given period, t, the firm uses up a fixed proportion of its capital, 8K,, in the

production process, and in the same period installs new capital in the amount of it— 

which will not begin to depreciate until period (t +1). Consequently, constraint (7.2) 

gives the firm’s capital stock at the beginning of period (t +1). Finally, constraint (7.3) 

states that the marginal product of both capital and labor is positive.

Before deriving the optimality conditions associated with this maximization 

problem, several points should be made. First, the firm is assumed to operate in a 

perfectly competitive market environment. Hence, the firm is a price-taker and Pt is 

exogenous to the firm’s maximization problem. Secondly, in order to ease the 

exposition, uncertainty has been placed aside. Therefore, future profits are not written 

explicitly as expected future profits.

Because the production function holds with equality for all periods, we may 

substitute it into the maximand to yield the following expression for the firms present 

value profits:

CO 1
Present Value Profits = ^ ------- -[Ply(Ln Kl)~ w lLl -p ,i,\ (8)

The re-written maximization problem now becomes:

(9)
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Subject to:

Kl+x= (l-S )K ,+ it (9.1)

dL
>0 dy_

dK
>0 (9.2)

The problem is now set up such that the firm selects both its labor and capital inputs, Lt 

and K t , respectively, and a level of new investment /,. These endogenous choice

variables are selected to maximize the present value of the firm’s future profit stream 

subject to the multi-period capital constraint, equation (9.1). To solve this relatively 

simple maximization problem, the method of Lagrange multipliers is used. 

Consequently, the Lagrangean for this problem is:

1
£ = I « ---- TTt rKt)-w ,L , -  p,i, ] + [i, + (1 -  S)K, -  Kt+X ]

S (1  + r)
(10)

i=0

Hence, the maximization problem now becomes:

Max L = f /- J — [Ply(L„K,)~w,L, 
(_0 (1  + r) (=0

( 11)

A complete solution to this problem may be obtained by partially differentiating 

the Lagrangean with respect to all the endogenous choice variables (including the 

Lagrange multipliers) and setting these differentials equal to zero. This system of 

differential equations, i.e., the first order conditions, may be solved simultaneously for 

the optimal investment program into the infinite future. Indeed, the firm’s labor demand

84



schedule is also easily derived in this manner.6 The first order conditions for profit 

maximization are presented below:7

—  = — X— (Pl ^ — w,) = 0  
dL, (1 + r)' dL, (H .l)

^ = — L - [ P l - ^ - ] + k , ( \ - S ) - k l_l =o  
dK, (1 + r) dK,

(11.2)8

d L  - 1

d i t (1 +  r )
7 Pt +A -  0 (11.3)

d L

d k ,
-  it + (1_ d )K t - K t+l = 0 (11.4)

In order to derive q, it is first necessary to solve for the optimal capital stock condition. 

This may be done by combining the equations (11.2) and (11.3). First, solving (11.3) for 

k t clearly yields:

P
(1  + r)'

(12)

dy
’ Rearranging (11.1) yields the very familiar condition for the optimal utilization o f labor: r , ------=  w t .

dL,
That is, labor is paid its marginal revenue product in equilibrium.

7 O f course, to ensure that the constrained extremum is indeed a maximum, and not a minimum, one must 
check the second-order conditions. Specifically, the sufficiency conditions for this maximization

problem require that: (—1)" | Hn | >  0 , where, | Hn | is the n "  principal minor o f  the bordered Hessian

matrix. That is to say, for an extremum to be a maximum, the sufficiency condition requires that the 
bordered Hessian is negative definite.

8 A somewhat unusual and possibly puzzling term in this equation is k t_x . This term comes into the 

first-order condition because Kt is the end-of-period capital stock for period (t-1).
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Then, lagging this expression one period gives the following expression for T,_,:

Pt- 
(1 + r)'-1

(13)

Substituting the above expressions for Xt and Ar_, into equation (11.2) results in the 

following condition:

(l + r)‘
p ± -
' dK,

+ P A - S )  Pt-1

( 1  + r)‘ ( 1  + r)
=  0 (14)

Multiplying equation (14) through by the term (1 + r)' yields another version of the 

optimal capital stock condition:

+ p ,(\~  8 ) -  p,_, (l + r ) - 0 (15)

Finally, equation (15) may be rearranged into the following expression for the 

equilibrium, or profit maximizing, level of capital:

{W + r)) \P ,-^ -  + Pl( l-S ) )  
dK,

Pt-i
=  1 (16)

The expression on the left-hand side of equation (16) is referred to as Tobin’s 

marginal q. This ratio, as was described informally earlier, may be interpreted more
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formally in the context of the firm’s maximization problem, as follows. The numerator 

captures the incremental increase in the value of the firm resulting from a small 

increment in the firm’s capital stock, discounted back to period (t -1) . Specifically, the

term is the marginal increase in the firm’s sales resulting from a small increase in

the capital stock, and the term p t (1 -  S) represents the marginal increase in the market 

value of the firm’s capital stock. 9 This sum is then discounted back to the period 

(t -1) by dividing by (1 + r ) . The denominator is simply the cost of acquiring a small 

increment to the capital stock in period (/ -1 ). Hence, Tobin’s marginal q is simply the 

ratio of the marginal increase in the value of the firm (resulting from a marginal increase 

in the capital stock) to the marginal cost of adding the additional capital to the firm’s 

capital stock. Thus, if the firm is in equilibrium, the value of q is equal to unity. This is 

the capital stock optimality condition described by equation (16). Therefore, all 

investment opportunities that add more to the present value of the firm than they cost 

have already been undertaken.

The g-model framework just described addresses how a firm maximizes profits by 

selecting the optimal quantities of labor and capital inputs over time. While this model 

applies to investments in real capital, these same principles may generally be applied to 

investment in research and development (Hall 1990, 1991, and 1992). In particular, this 

model may be applied to pharmaceutical R&D investment. Pharmaceutical firms are 

peculiar in that they employ very little real capital. In fact, the largest input into the 

production of new drugs is R&D. However, despite their obvious differences, R&D 

investment and real capital investment are quite similar—at least within the context of the 

specification of the aforementioned ¿/-model. For example, R&D may be thought of as a 

stock flow much like real capital. That is, most research and development programs

The term P, dy_
' dK,

is the marginal revenue product o f capital— i.e., this term captures the

marginal revenue to the firm ( Pt ) obtained from employing capital on the margin (the marginal product

dy
of capital: —— ).

dK,
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extend over many years and accumulate a base of knowledge over time. This is how new 

drugs are discovered and developed. Hence, new information does not evaporate at the 

end of the period or when new research agendas take precedence—this information is a 

valuable corporate asset and is utilized by the firm to produce new drugs. This is similar 

in many respects to the accumulation of real capital over time. Additionally, like the 

depreciation of real capital, clearly some research agendas will be completely exhausted, 

leaving no opportunities for future development. That is, some R&D programs will fail 

or produce information that has no future value to the firm.

Despite their obvious differences, investment in real capital and investment in 

pharmaceutical R&D may be analyzed in the same way. Essentially, for profit- 

maximizing pharmaceutical firms considering R&D on the margin, if the ratio of the 

expected discounted marginal returns from the R&D to the cost of the R&D exceeds 

unity, the firms should undertake the prospective R&D investment. This is analogous to 

saying that if Tobin’s marginal q exceeds unity, firms increase investment spending in 

real capital. Indeed, from a conceptual point of view the two statements are identical. 

Thus, in the context of the models presented at the beginning of this chapter (i.e., the 

conventional and alternative models of pharmaceutical R&D investment) marginal q may 

be thought of as the following:

mcc

The relationship between these two models, which are essentially the same model, is 

depicted below in Figure 3.6.
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A q -Model Interpretation with Financing Constraints

Figure 3.6

Having introduced the ¿/-model framework, the effects of taxes and asymmetric 

information on the cost of internal and external capital may now be addressed.

Section 7.1: The Effect of Tax Policy on Firm Investment Behavior: The Cost

Advantages of Internal Finance

The structure of the corporate tax system in the United States and other countries 

has historically imparted a substantial cost advantage to financing investment projects 

with internal funds (Myers, 1984). This is because, for several years now, capital gains 

have been taxed at a lower rate than dividends. This lower tax on capital gains, it will be 

shown, can result in a substantial tax savings to the firm’s shareholders when earnings are 

retained and realized as capital gains, instead of paid out as dividends. This is because a
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dividend tax is replaced with a lower tax on capital gains. This tax-induced incentive for 

firms to retain earnings, in lieu of paying dividends, leads to different decision criteria for 

investment projects—depending on whether they are financed with internal or external 

funds. Specifically, the after-tax cost of internal finance is lower than that of external 

equity finance. On a heuristic level, this is quite intuitive and may be explained nicely 

within the previously developed framework of the q -model of investment.

According to Poterba and Summers (1985), because of the different tax rates, 

firms, acting to maximize shareholder wealth, will undertake all internally financed 

investment projects when:

q> 0 - 0 )

(1 - 0
(18)

Where,

td = the tax rate on dividends, and 

tc = the tax rate on capital gains

Thus, if the personal tax system favors capital gains, such that td >tc, then the threshold 

marginal q for investment projects financed with internal funds is less than unity. This 

may be explained as follows. A dollar paid out in the form of dividends and taxed at the 

rate td yields shareholders (1 — td) dollars after taxes. Alternatively, if the firm retains

the dollar and shareholders realize the capital gain, their after-tax yield is ( 1  - t c) dollars. 

This clearly implies that shareholders will be indifferent between a dollar paid out in 

dividends and (1 -  td) /(I - t c) dollars retained by the firm and realized as a capital gain.10 

Consequently, a dollar in retained earnings need only generate an expected present value

10 Algebraically, this result is derived from the following indifference condition, where X is the before-
tax capital gain that equates with a before-tax $1.00 dividend payment before taxes:

$ 1.00(1 ~ td) = x(l —tc). Dividing both sides by (1 — tc ) yields: X = -------—  .
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investment return slightly greater than ( 1  - t d)/(I - tc) to yield more in after-tax income to

shareholders than a dollar paid out as a dividend. On the other hand, if this dollar were 

raised through a new share offering, shareholders would only benefit from those 

investments with a marginal q greater than unity. This is the idea behind Tobin’s q . 

Thus, the “hurdle,” or “threshold,” marginal q for internally financed investments is 

lower than that for externally financed investments due to this distortionary effect from 

taxes.

Therefore, under a tax system where td > tc, a financing hierarchy is created 

whereupon the threshold marginal q required for investment projects is dependent upon 

the source of finance. The firm’s decision criteria for investments under these two 

financing schemes are presented below in Table 3.1.

Table 3.1: R&D Investment Project Acceptance Criteria

Source of Finance Accept
Investment Project

Reject
Investment Project

Internal Funds

0 - 0 0 - 0

External Equity q> \ q <  1

Therefore, when td >tc, the after-tax cost of internal funds is less than the after-tax cost 

of external equity. The implication is clear: firms will exhaust all available internal funds 

before seeking external equity to finance investment—assuming, of course, that 

shareholders have no explicit preference for dividends. This fundamental relationship 

between q , td, and tc is illustrated below in Figure 3.7.
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A q -Model Equilibrium with Tax-Induced Financing Constraints

Figure 3.7

This highly intuitive result may be derived formally within the context of the 

representative firm’s maximization problem. Specifically, firm managers, acting on 

behalf of shareholders, seek to maximize the after-tax present value of the firm.

Section 7.2: A Simple Model o f Equity Finance, Dividends, and Investment

The following exposition was adapted from the seminal work of Poterba and 

Summers (1985). In any given period t , an existing shareholders after-tax rate return 

may be expressed as follows:

* ,= (i — {d ) D t + (i -  )C K+i ~ K )

V.
(19)11

11 In their original article, Poterba and Summers used m and z to denote the tax rates on dividends and 
capital gains, respectively. However, for the sake o f  consistency throughout the chapter, td and tc will
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Where,

Dt = the dividend payment by the firm in period t

Vt = the value of the firm’s equity in period t , and

, Vl+1 = the value in period (/ +1) of the shares outstanding in period t

Equation (19) expresses the fact that in any given period t , an existing shareholder’s 

after-tax return is simply the sum of the dividend return (taxed at the rate td) and the 

capital gain (taxed at the rate tc).

Consequently, the total value of the firm in period (t +1) may be expressed as 

follows:

=, K+l + V,N (20)

Where,

VtN = the value of the new share issues.

In equilibrium, shareholders earn their required rate of return so that Rt = r e; therefore, 

equation (19) may be re-written and expressed as follows:

reVt = { \ - td)D, - { \ - t c)V,N + ( \ - tc)VM - ( \ - t c)V, (21)

Equation (21) is a difference equation for the value of the firm, Vt . Solving (21) for Vr+] 

yields:

continue to be used for these tax rates. It should be noted that t, when appearing as a subscript, denotes the 
time period.

93



V,/+] 1+ -
(1 - t c h

v, + v, -
v 0 " O ,

D, (22)

Equation (22) may be solved forward, subject to the following transversality condition:

lim
/ —>00

i  e V '
1 + '

V (1 -o v,=o (23)
C'J

The result is the following expression for the value of the firm in period t :

oo

y . - Y .i=0

f
1 +

V

r e ] -i
7  a - t d)

o - o j . l a - o
D, (24)

Equation (24) demonstrates that the value of the firm in period t is the present value of 

the post-tax dividend stream adjusted for the present value of new equity issues that 

existing shareholders would be required to purchase in order to maintain their 

proportionate ownership of the firm.

The firm’s maximization problem is consequently the following:

Max V = Y
1=0

1+ -

(1 - O y 0-0 ,
D . - V^t+l r t+l

Subject to,

K, = (1 -  S)Kt_x + 7, 

( \ - T ) n , + v , N = D ,+ it 

Dt >0

v,N >vN ,V N <0

(25)

(25.1)

(25.2)

(25.3)

(25.4)
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The first constraint, (25.1), is the firm’s capital accumulation constraint. This constraint, 

as was previously described, maps out the evolution of the firm’s capital stock. 

Constraint (25.2) is the cash flow identity. This constraint equates the sources of funds 

with the uses of funds. Therefore, If, = TI( AT,) is the firm’s pre-tax profit, which is a

function of the current period’s capital stock, and z is the corporate tax rate. 12 The two 

inequality constraints, (25.3) and (25.4), are restrictions on the firm’s financial policies. 

In particular, constraint (25.3) ensures dividends are nonnegative, and constraint (25.4)
. . . —Nrequires that new share issues be greater than some minimum level V . The condition

—  N  .

V <0 restricts the firm’s ability to repurchase shares or engage in transactions that 

have the same tax consequences.

This maximization problem may be re-written using the method of Lagrange 

multipliers as follows:

Max
i=0

1+ -

( 1  - O j ( l - ' c )y
D - V N^t+l v t+l (26)

Where Àt,/ut,?it , and are the Lagrange multipliers associated with the aforementioned

constraints. The first-order necessary conditions for an optimal program are presented 

below: 13

12 The specification o f the firm’s profit function presumes that profits are solely a function o f the current 
period’s capital stock. Thus, labor is excluded from this particular specification. This is a simplifying 
assumption to minimize the algebra of the optimization problem—the qualitative results will not be 
affected.

13 To ensure that the capital investment program satisfying the first-order conditions is indeed at maximum, 
the bordered Hessian must be negative definite. That is, the principal minors of the bordered Hessian

must alternate signs such that (— 1)" \H n \ >  0 .

95



(26.1)dL

d L

~8Kt

8l

dV,N

dL

~dD,

■ = -A , + ' 1+ ' '  v '
V 0 - 0c >  J dK

= -TJ, =0

t

—  N  sv,(Y,-v  ) < 0

" ( 1  - t * *)' + **, -€ '=0  £  A  < 0

(26.2)

(26.3)

(26.4)

These optimality conditions may be used to interpret the marginal value of an additional 

unit of capital in equilibrium (i.e., marginal q ) for capital financed with retained 

earnings. In particular, for mature firms that have after-tax profits in excess of desired 

investment expenditures, their marginal source of finance for investment will be retained 

earnings. Consequently, dividends are determined as a residual and equal to the excess of 

profits over investment. This is shown below in equation (27).14

A = ( l - r ) I I  t - I ,+ V N (27)

14 When firms cannot find tax-free channels to transfer income to shareholders, the V N —V constraint 
binds and dividends are determined as a residual. This well-known feature o f  the above model implies 
that it will never be optimal for firms to issue new shares and pay dividends simultaneously when

N ~ N
*d > ‘ c ■ In particular, if a firm follows a financial policy such that both Dt >  0  and Vt >  V in any

period, there would exist a feasible perturbation in financial policy such that share values could be 
raised without affecting investment or profits. Specifically, this perturbation involves a policy o f  
dividend reductions compensated for by a reduction in new share issues, where these reductions would

be governed by the identity dVtA = dDt to ensure investment and profits are unaffected by the policy. 

From this identity and equation (24), the maximand in the firm’s maximization problem (i.e., the present 
value o f the firm), it is easily demonstrated that when t d >  t c reducing dividends whenever feasible

will raise the present value o f  the firm. Consequently, firms with sufficient profits in excess of  
investment needs should reduce new share issues and repurchase outstanding shares whenever possible.

Hence, V = V binds and dividends equal Dt — (1 — r)TI, —It +V .
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For a firm in this situation it is known that Dt > 0. Consequently, this implies that 

= 0, which results in the following expression for (26.4):

q - o
o - o _

(28)

Substituting (28) into (26.1) yields the following first-order condition for investment:

4  =
(1 - 0

. 0 - 0

(29)

The Lagrange multiplier in equation (28) may be interpreted in the usual way. 

Specifically, A, represents the marginal, or shadow, value of an addition unit of capital to

the firm. That is, it reflects the incremental, after-tax increase in the present value of the 

firm attributable to an incremental increase in the firm’s capital stock. This is Tobin’s 

marginal q . Furthermore, when td > tc the following condition holds:

4  =
(1 - 0

.( 1 - 0 .
<1 (30)

Hence, the marginal q of investment in equilibrium is less than unity. As was described 

earlier, firms will continue to invest in capital until shareholders are indifferent on the 

margin between receiving a dollar in dividends and having the firm reinvest the dollar. 

That is, when a firm pays a dollar in dividends, shareholders receive (1 -  td) dollars after

taxes. Alternatively, if the firm retains the dollar and uses it to purchase new capital, the 

firm’s share value will increase by q dollars. Consequently, shareholders will receive

q( 1 - t c ) dollars after taxes in the form of capital gains. Therefore, investors are

indifferent between these two alternatives in equilibrium, giving the following 

indifference condition:
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( l - t d) = q ( l - t c) (31)

Thus, it is clear that the marginal q in equilibrium, qe, is less than unity.

q
e (1 - 0

. 0-0
< 1 (32)

This formal result confirms the intuitive argument made earlier regarding the 

impact of a higher tax rate on dividends relative to capital gains, i.e., when td >tc. In 

particular, as was summarized in Table 3.1, investments financed with external funds will 

benefit shareholders only if their marginal q exceeds unity. On the other hand, as 

equation (32) demonstrates, shareholders will benefit from investments financed with 

internal funds as long as q > *s 1. Consequently, the after-tax cost of

internal finance will be lower than the cost of external equity finance. However, the 

quantitative impact of this tax advantage for internal finance is probably not that large. 

There have been several tax reforms over the past few decades that have reduced the 

personal tax advantage of capital gains. Nonetheless, as was the case with transaction 

costs, this tax-induced incentive to finance investment projects with internal funds, while 

possibly only a minor incentive, cannot be dismissed.

Probably the strongest argument for the existence of a significant difference in the 

cost of capital between internal and external finance is based on asymmetric information. 

This is discussed in the following section.

Section 8.1: Asymmetric Information and the Cost of External Equity Capital

There are many markets that may be characterized by informational asymmetries 

between buyers and sellers. In financial markets this asymmetry is likely to be 

particularly pronounced. For example, in financial markets the borrowers of funds
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typically know their collateral, technology, industriousness, and moral rectitude far better 

than the prospective lenders of the funds do. Hence, borrowers possess “inside” 

information about the prospects of their investment projects that lenders do not have.

This is particularly true for investments in research and development, and especially true 

for pharmaceutical R&D—as was discussed earlier in this chapter. This asymmetry of 

information can create a significant deviation between the cost of internal and external 

capital—one whereby external capital is at a significant cost disadvantage. This is 

because rational investors, aware of their informational disadvantage, demand a 

premium—which is referred to as a “lemons” premium—on the capital they supply to 

finance investment.

This section will build upon the last section and incorporate asymmetric 

information into the model of firm investment. First, however, a discussion will be 

provided to describe the theoretical rationale for financing constraints based on 

asymmetric information.

The core theoretical argument behind the “lemons” premium draws heavily on the 

pioneering work first presented by George Akerlof (1970). Essentially, the argument is 

that sellers, because they possess “inside information” about the quality of their product, 

are unwilling to accept the terms offered by a less informed buyer. The result can be a 

complete breakdown in the market—or at least a situation in which the seller is forced to 

sell the product at a lower price than what would have been obtained if there were 

symmetric information. This basic idea may be applied to financial markets very easily. 

The result, as will be shown, is a financial hierarchy, or pecking order, whereupon 

internal funds have a significant cost advantage over external funds.

In the well-known Myers and Majluf model (1984), which extended Akerlof s 

ideas about asymmetric ideas into financial markets, the authors considered the case in 

which investors could not distinguish between the different qualities of firms. 15 As a 

consequence, investors valued each firm at the population average. The resulting 

implication—it was shown—was that investors required a premium rate of return on the

15 Certainly, with time the true value o f the firm will eventually be revealed. However, new shares will 
likely need to be issued before that, or the investment opportunity will be lost. This type of situation 
is particularly realistic for firms in industries undergoing rapid technological advancement. The 
pharmaceutical industry is clearly one such industry (refer to Chapter Two).
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new equity issues of above-average-quality firms, or good firms. This premium 

compensated the investors for their losses—which they incurred by financing the low- 

quality firms, or “lemons”. This, in turn, was shown to raise the cost of equity capital 

above that of internal funds—for the good firms.

The intuition behind the lemons premium may be explained nicely within the 

framework of the (/-model of investment. As was demonstrated in an earlier section, the 

(/-model of investment establishes that investments will only be undertaken if they 

increase the present value wealth of the existing shareholders. In particular, the Myers 

and Majluf model demonstrated that for good firms, new shares will be issued only when:

R
I  V

(33)

Where,

R = the true gross returns from assets in place;

R' = the returns from a potential new investment project;

/  = the cost of the new investment;

V = the market value assigned to both good firms and lemons alike.

As Fazzari, Hubbard, and Petersen (1988) pointed out, condition (33) is equivalent to 

requiring that a new project’s marginal q be at least equal to the ratio of the firm’s true 

average q (represented by Q) to the average q assigned to all firms by the market—the 

population average (represented by q ) 16. That is,

q (34)

16 A firm’s average q, sometimes expressed as Q, is simply the average return on capital investment. 
Indeed, assuming constant returns to scale for capital, marginal q  and Q are equal.
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If information is symmetric, such that firm managers have no inside information about 

the quality of an investment project, then

~r =1 (35)
<■.1

Consequently, the threshold marginal q for investments financed with new equity will be 

unity. However, in the presence of asymmetric information, when investors cannot 

distinguish between good firms and lemons, this ratio will exceed unity for the good 

firms. Specifically,

% > 1 (36)
q

In particular, when there is asymmetric information this ratio depicts how much dilution 

occurs when a good firm issues new shares. Furthermore, subtracting one from this 

quantity yields the lemons premium, which is denoted by Q .

(37)

Incorporating the lemons premium, and hence asymmetric information, into the 

previously developed model is quite simple, and is done in the next section.

Section 8.2: Financing Hierarchies and Investment: A Model o f  Taxes, Dividends, and 

Asymmetric Information

Adapting the firm’s maximization problem to incorporate a lemons premium may 

be done by modifying the maximand in equation (24). Specifically, the present value of
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the firm Vt is reduced by the quantity Q, per each additional dollar of new equity issued, 

where again Q ,, the lemons premium, reflects the additional dollar value that new

investors demand per share from above-average firms to compensate them for 

unknowingly funding lemons.

Therefore, according to Fazzari, Hubard, and Petersen (1988), the firm’s new 

maximization problem should be re-stated as the following:

Max
i,.K,y,N,D, K = Z

'=o V 0-0c )  J (1 - 0
A * -C ( i+ n ,J

Subject to,

Kt = (l-S )K ,_ i+ I t 

( \-T )U t +VtN = D ,+ It 

D,>  0

V,N > V , V <0

(38)

(38.1)

(38.2)

(38.3)

(38.4)

Re-writing this maximization problem to obtain the Lagrangean yields:

Max
1=0

lj, '• Ì"1Ya-oir  o-oj 1i l i + a , J

~X,[K, - ( \ - S ) K

- f t [ ( l - r ) n  (K,) +  F, 

-T l.iV ," -V k ) - { ,D ,}

(39)
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Where A, , and d, are the Largrange multipliers associated with the constraints. 

The first-order necessary conditions for an optimal program are presented below: 17

d£_
dl, A, + Mt -  0

d£
~dKt

d£
dv,N

d£
dD.

— A, + 1 +  -

(1 - O y
/L,+1- / / , (  1 - t )— = 0

' +1 ' dK,

l(l + Q , ) - ^ ,  - j j , =  0
—  N

' v - t Sla-oJ+ M, -Ç, = 0

v C V ^ - V  ) <0

(39.1)

(39.2)

(39.3)

(39.4)

This set of optimality conditions may be used to interpret firm behavior when 

asymmetric information prevails in the market and when firms must issue new equity to 

finance investment. In particular, when firms exhaust internal funds and seek investment 

finance in external equity markets, firms will not be paying dividends. That is, as was 

explained in the previous section, it is never optimal for firms to issue new shares and 

pay dividends simultaneously. Consequently, the knowledge that a firm is financing

investment with new shares implies Dt = 0. Therefore, because (F/v -  V A ) > 0, the 

inequality in (39.3) implies 77, = 0. Consequently, equation (38.3) may be solved for n t 

to yield:

//, = - l - Q ,  (40)

17 Again, one needs to ensure that the capital investment program satisfying the first-order conditions is 
indeed at maximum, i.e., the bordered Hessian must be negative definite. That is, the principal minors of

the bordered Hessian must alternate signs such that (— 1)"\Hn > 0 .
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Substituting (40) into (39.1) yields the following optimality (i.e., equilibrium) condition 

for investment:

T, =1 + Q, (41)

Where A, , the Lagrange multiplier, is interpreted as the marginal, or shadow value, of an 

additional unit of capital. As was discussed earlier, this is simply the marginal q . 

Consequently, asymmetric information will lead some firms to turn down investment 

projects offering positive net present values. This is because the project’s marginal q is 

greater than unity, but less than one plus the lemons premium. This situation is described 

by equation (42) below.

1 < <7 < (1 + Q ,) (42)

Therefore, pooling the results from the last two sections, one may express the following 

investment decision rules within the ¿/-model framework. These decision rules are 

summarized below in table 3.2.

Table 3.2: R&D Investment Project Acceptance Criteria Under Asymmetric

Information

Source of Finance Accept Investment 
Project

Reject Investment 
Project

Internal Funds

(1 - 0

A

T 
T

External Equity <7 > ( 1  + Q,) q < 0  + ß ,)
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These results are also illustrated graphically in Figure 3.8 below.

Figure 3.8

A q -Model Equilibrium with Taxes and Asymmetric Information

Figure 3.8 demonstrates a financing hierarchy resulting from the combined effects of 

both taxation and asymmetric information. It should be noted that firms finance 

investment with external equity only after all internal funds have been exhausted, and 

only then if the marginal q of the potential investment project exceeds 1 + Q ,. 

Furthermore, whereas externally financed investment projects must have a marginal q 

greater than 1 + Q ,, internally funded investment projects need only have a marginal 

q that exceeds (1 — td) /(I - t c). Consequently, internal funds are clearly an important

determinant of the firm’s profit maximizing level of R&D. This was shown previously in 

Figure 3.5.

The relative position of the two horizontal segments in figure (3.8), which 

represent the threshold marginal qs for internally and externally financed investments, is 

determined by the difference between the tax on dividends and capital gains and the
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extent of the informational asymmetries. In particular, as the difference between the tax 

rate on dividends and capital gains approaches zero, the horizontal segment representing 

the threshold marginal q for internal funds shifts upward and approaches unity. In a 

similar fashion, as the extent of informational asymmetries is reduced, the horizontal 

segment representing the threshold marginal q for equity funds shifts down and also 

approaches unity. It will equal unity when all asymmetries have been eliminated and 

information is symmetric between investors and firm managers. Hence, to the extent that 

dividends and capital gains are taxed at the same rate and no informational asymmetries 

exist, capital markets will, ceteris paribus, function perfectly, and no financial hierarchy 

will be present.

In the pharmaceutical industry, asymmetries of information are likely to be 

particularly important. This is because new information obtained from R&D is the 

primary means of competition among firms in the pharmaceutical industry. As such, this 

proprietary information plays the central role in the race to patent and develop new 

compounds. This is likely to lead to considerable information gap between firm 

managers and potential investors. This information gap is likely to be accentuated by the 

high degree of uncertainty and long development times that characterize pharmaceutical 

R&D. The result may be higher threshold marginal q for pharmaceutical R&D projects 

than for other investment projects—when these projects are financed with new equity. 

This potential scenario is depicted below in Figure 3.9.
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Figure 3.9

Asymmetrie Information in the Pharmaceutical Industry

Threshold
Marginal q  i

1+ n p New  Equity Financing: Drug Industry

1+ n N ew  Equity Financing: Industry X

( 1 - i d )

( 1 - f c ) Internal

Funds

------------------------------------W

R&D
Expenditures

Dynamic analysis within this g-model framework (when debt finance is not 

considered) may also be illustrated. Moreover, this may be a more appropriate 

framework within which to analyze the pharmaceutical R&D investment decision, 

because pharmaceutical firms, on average, carry very little debt. Indeed, the total market 

value of most pharmaceutical firms is made up almost entirely of equity—most firms 

have less than 5% debt (refer to Table 2.5 in Chapter Two). One possible reason for this 

low debt to equity ratio may be the fact that the production of pharmaceuticals requires 

relatively little physical capital—which typically secures the firm’s debt issues. Indeed, 

the primary input into the production of pharmaceuticals is R&D—which employs 

relatively little real capital. Therefore, when considering only internal funds and new 

equity, the cost of capital schedule—which is proxied by the firm’s threshold marginal 

q schedule—has a discontinuity at the point where a firm exhausts its internal funds. The 

qualitative results obtained from this g-model specification are identical to those obtained
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earlier from the alternative investment model. Specifically, the only difference is that 

new debt finance is not considered. This does, however, lead to one very interesting 

possibility. Under certain circumstances, without access to new debt, a change in the 

demand for R&D, or a change in the level of firm cash flows, will not affect the 

equilibrium level of firm R&D spending. Indeed, the greater the disparity between the 

cost of internal and external funds, the greater the likelihood of this phenomenon 

occurring. This possibility is demonstrated in Figure 3.10, which shows how an increase 

in demand for R&D may lead to no change in the firm’s optimal level of R&D 

spending18.

Figure 3.10

A g -Model Equilibrium with Taxes and Asymmetric Information

However, the consideration of new debt issues as a possible source of finance for new 

investment may easily be incorporated into the model. This is briefly discussed in the 

following section.

18 Along similar lines, if  a firm is financing some o f its investment with external equity, an increase in cash 
flows may not impact the optimal level of R&D. However, in the pharmaceutical industry, R&D is 
financed almost exclusively with internal funds.
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Section 9: The Rising Marginal Cost of New Debt: Financial Distress and Agency

Incorporating new debt finance into the investment model may also be 

particularly important for firms that rely heavily on debt financing. As was mentioned 

earlier in this chapter, debt finance would be represented graphically by an upward 

sloping line segment that connects the two horizontal line segments associated with 

internal and external equity. Insofar as new debt is secured, or obtained from lenders like 

commercial banks that specialize in monitoring the borrower, information asymmetries 

will be less severe in debt markets than in equity markets. Hence, the cost of new debt 

will be less than the cost of new equity19. However, the marginal cost of new debt will be 

greater than that of internal finance and will increase as the quantity of new debt issued 

by the firm rises. The theoretical rationale for the increasing marginal cost of new debt is 

largely based on financial distress and agency problems.

Financial distress costs arise when a firm encounters difficulties meeting its debt 

obligations. In particular, the firm has difficulties meeting its principal and interest 

obligations. In the extreme case the firm would be forced to file for bankruptcy. Hence, 

all things held constant, as a firm becomes leveraged with more and more debt, the 

likelihood that the firm will default on its debt payments increases. This is also referred 

to as financial gearing. Consequently, debt holders require a higher expected rate of 

return on the firm’s debt to compensate them for the increased risk the firm will default 

on its debt payments. Furthermore, informational asymmetries aside, because debt 

finance is secured with corporate assets and equity finance is not, the cost of new debt 

finance is generally less than the cost of new equity finance.

Agency costs arise out of the limited-liability feature of most debt contracts. This 

feature may create incentives for firm managers—who are acting on behalf of firm 

shareholders—to act counter to the interests of the firm’s debt-holders. This will be 

particularly true as a firm becomes more leveraged with debt. The result may be the 

acceptance of investment projects with negative net present values or the failure to accept 

projects with positive net present values. Furthermore, firm managers will have the

19 Debt financing will also be less costly than equity financing because debt financing reduces a firm’s tax 
liability. That is, interest on the debt is deductible from before-tax income.
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incentive to issue new debt that will raise the riskiness and lower the value of existing 

debt. Debt-holders, who are well aware of this conflict of interest, will consequently set 

restrictive covenants on the firm’s management—especially with respect to new debt 

issues. Frequently these covenants will stipulate a target debt-to-equity ratio and hence 

limit management’s choices among potential investment projects. Moreover, if these 

covenants place restrictions on working capital such that the supply of funds available to 

finance investment is reduced, shocks to working capital (such as debt deflation or a 

decline in cash flows) will make debt finance more costly at the margin. Indeed, the 

theoretical arguments behind financial distress and agency costs, and how these costs 

lead to an increasing marginal cost of debt schedule, are quite old and well documented 

in the finance literature.

In summary, capital market imperfections may arise for any number of reasons. 

For example, transaction costs, taxes, asymmetric information, financial distress and 

agency problems may all lead to a breakdown in financial markets. The result may be a 

significant difference between the cost of internal and external funds, i.e., a financing 

hierarchy. Consequently, this financing hierarchy is likely to have an effect on the 

investment practices of some firms. Specifically, it may result in internal cash flows 

being a major determinant of investment spending. Hence, fluctuations in firm cash 

flows are likely to be accompanied by fluctuations in firm investment spending. As was 

discussed previously, this relationship may be particularly important to pharmaceutical 

R&D investment. This conclusion is in direct contrast with the neoclassical belief that 

real investment spending is independent of a firm’s financial condition. This is because 

the neoclassical view maintains that internal capital and external capital are perfect 

substitutes.

If a financing hierarchy does exist for R&D investments in the pharmaceutical 

industry, then there may be some very important policy implications as a result.
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Section 10: Policy Considerations

As was addressed previously, there are several reasons to believe that financing 

constraints may be more prevalent in the pharmaceutical industry. That is, in the 

pharmaceutical industry, R&D investment is characterized by above average uncertainty 

and extremely long development times (the average length of the R&D process is 14.9 

years—see Chapter Two). Moreover, unlike fixed investment in plant and equipment, 

the product of drug R&D is simply new knowledge that may have no resale value. For 

these reasons, as was discussed, the difference between the cost of internal funds and 

external funds may be especially large for pharmaceutical R&D (refer to Figure 3.9).

This difference between the cost of internal and external funds has a number of important 

policy implications. In particular, any government intervention affecting the returns to 

R&D, and hence the supply of funds needed to undertake the R&D, will necessarily 

impact new drug innovation. That is, if firms rely heavily on internal cash flows to 

finance their R&D—due to the presence of a financing hierarchy—then any policy 

intervention affecting these cash flows will necessarily affect R&D expenditures, which 

in turn will affect new drug innovation. This causal relationship is illustrated below in 

Figure 3.1120

Figure 3.11

The Potential Impact of a New Policy on Drug Innovation

20 It is important to note that the extent to which innovation will be stifled depends heavily on firm 
efficiency and the marginal productivity o f the R&D. For example, a 25% reduction in R&D investment 
will reduce innovation by 25% only if  the R&D production function is homogeneous of degree 1 (i.e., it 
exhibits constant returns to scale). It is very likely, however, that there are diminishing returns to R&D
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There are a number of policy interventions that may affect firm cash flows and 

hence the supply of funds to undertake pharmaceutical R&D. These interventions 

include, for example, pre-market regulatory controls, drug price and reimbursement 

controls, regulation affecting the effective pharmaceutical patent lives, tax policies, and 

policies affecting product formulary decisions. A recent example of a government 

proposal affecting pharmaceuticals was the 1994 Clinton Health Care Reform Act. This 

Act would have extended government price controls over a large portion of the 

pharmaceutical market place. While the Clinton Administration commissioned several 

studies to gauge the impact of price controls on such things as Medicare drug budgets and 

the demand for pharmaceuticals, very little attention was paid to the potential long-term 

affects such price controls would have on pharmaceutical R&D and, consequently, new 

drug innovation. Given the important role pharmaceutical R&D plays in new drug 

innovation, which in turn influences economic welfare and economic growth, it would 

seem important that prospective analyses be undertaken to ascertain the potential impact 

of such governmental policies. Therefore, one of the primary objectives of the next 

several chapters of this thesis is to better understand the relationship between cash flows 

and pharmaceutical R&D. Hopefully, a better understanding of this key relationship will 

shed light on the potential economic repercussions of various government regulations and 

policies on the pharmaceutical industry.

investment; hence, a 25% reduction in R&D investment will result in less than a 25% reduction in 
innovation.
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Chapter Four

The Determinants of Pharmaceutical R&D and the Role of Internal 
Funds in Firm Investment Behavior: A Study of Eleven Leading U.S.

Firms

Section 1: Introduction

Having developed the theoretical rationale for investment financing constraints, 

and their particular relevance to investment in pharmaceutical R&D, it is now appropriate 

to study the empirical role such constraints play in a firm’s R&D decision. More 

specifically, to test the hypothesis that financing constraints impart a substantial cost 

advantage to internal funds (over external equity and debt), several models of the 

determinants of pharmaceutical R&D will be estimated.

This chapter will estimate several models of the determinants of pharmaceutical 

R&D using data from eleven leading U.S. pharmaceutical firms from 1976 to 1996. As a 

result, this analysis will be the most contemporary empirical study of the determinants of 

pharmaceutical R&D to date. Furthermore, in addition to using more recent data, the 

analyses in this chapter will differ from the earlier studies in two principle ways. First, 

the current models will be based on a more complete data sample than was used in the 

earlier studies. In particular, the earlier studies were hampered by limited data on one of 

the key independent variables in their regression models. 1 Secondly, the model 

specifications estimated in the current analyses will be substantially different from those 

of the earlier studies. For example, all of the early studies relied strictly on classic 

ordinary least squares (OLS) estimation techniques—the models in this chapter will not 

be so restrictive. Furthermore, as will be explained later in the chapter, several other 

innovations were made to both the model specifications and variable formulations in the

The earlier studies relied upon linear interpolation for missing values o f  one o f the key 
independent variables. In fact, so severe was the limited availability o f  this variable, that some 
models— which were based on 15-year time series— were estimated using only one or two observations 
per firm.
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present analysis. Hence, it is hoped that the results reported here will more accurately 

reflect the true determinants of pharmaceutical R&D.

The collection of empirical analyses undertaken in this chapter should sufficiently 

test the hypothesis that cash flows, because of capital market imperfections, are an 

important determinant of pharmaceutical R&D. Furthermore, because of the more 

complete data sets employed, the more contemporary time periods studied, and the 

multiple refinements made to the previously employed model specifications, several new 

facts and details regarding the influence of internal funds on firm R&D investment 

should be uncovered.

Section 1.2: Why Only U.S. Firms?

All previous studies of the determinants of pharmaceutical R&D have been based 

exclusively on U.S. firm data. Therefore, for comparability reasons, an empirical 

investigation using recent U.S. firm data will be undertaken first. This will allow for 

more direct comparisons with, and critiques of, the earlier studies of the determinants of 

pharmaceutical R&D. Furthermore, and of central importance to this thesis, this study of 

U.S. firms will provide a bridge into the global R&D models that will follow in 

subsequent chapters—which will be based on a substantially larger and international 

sample of firms.

It is clear why this study will begin with U.S.-firm based models, but why have all 

previous studies been based exclusively on U.S. firm data? The principle reason is 

because U.S. firm data is readily available from many sources; the U.S. Securities and 

Exchange Commission (SEC) mandates that publicly traded firms disclose detailed 

financial information on a regular basis. Primarily, this information is submitted to the 

SEC in the form of 10-K and 10-Q reports—which are detailed annual and quarterly 

financial reports. Because 10-K and 10-Q filings are publicly available, it has been 

relatively easy, and of low cost, for researchers to gather the necessary U.S. firm data for 

a wide range of analyses. On the other hand, however, for firms not publicly traded on 

the U.S. financial exchanges—i.e., most non-U.S. firms—such detailed financial 

information is not readily available (at a low cost, anyway). In fact, due to the vastly
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different disclosure requirements across most non-U. S. countries, much of the data 

procurable for U.S. firms is not available for non-U.S. firms. As a result, studies of the 

determinants of pharmaceutical R&D have historically been limited to analyses using 

strictly U.S. pharmaceutical firm data. This, however, will not be the case for the 

analyses in this thesis. As will be elaborated on in greater detail in the following 

chapters, the empirical models in this thesis will be based upon a strikingly larger data 

sample—one that actually contains a greater number of non-U.S. firms than U.S. firms. 

However, as was already mentioned, there are good reasons to begin the empirical 

analyses with U.S.-firm data.

This chapter proceeds as follows. First, a description of the firm selection criteria 

is provided. This is then followed by an overview of the resulting data sample and firms 

selected for the present analyses. Following this is a discussion of plausible model 

specifications and variable formulations. In particular, a brief review of the theoretical 

model is presented, and a justification for an intensity measure of R&D investment (the 

dependent variable in the forthcoming model specifications) is established. A review of 

the earlier studies, model specifications, and empirical findings is conducted along with 

the general model specification used in this analysis. Finally, the empirical findings are 

presented and discussed.

Section 2: Data Sample

The majority of the data used in this chapter were obtained from Standard and 

Poor’s Compustat data. In particular, financial data were obtained on 11 of the largest 

U.S. pharmaceutical firms over the period from 1976-1996.

The firm selection criteria that resulted in this sample were dictated by four key

factors:

1) Market capitalization
2) Years of established operations
3) Mergers
4) Percent of total firm sales accounted for by pharmaceutical sales
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Therefore, for a firm to be included in the sample, the firm had to be, essentially, 

a major U.S pharmaceutical firm. This criterion generally excluded both biotech and 

smaller pharmaceutical firms from the sample. It was felt that, at least for a first analysis, 

it would be better to concentrate on the major pharmaceutical firms, and then expand the 

sample size in subsequent analyses by including smaller biotech and pharmaceutical 

firms. The second criterion excluded firms without a substantial number of years of 

pharmaceutical operations—a minimum of twenty years was required. This restriction 

was imposed for two principle reasons. First, because the first criterion considerably 

limited the number of firms remaining in the sample, it was necessary to have a 

substantial number of years of data on each firm in the sample in order to bolster the 

sample size. Secondly, and along the same lines, because several of the model 

specifications contained lagged variable formulations, a substantial number of years of 

data were required in order to maintain a reasonable sample size. The third criterion 

eliminated firms that went through significant mergers during the years in this study. It 

was believed that such mergers would substantially alter the internal capital structure of 

the merging firms and, consequently, compromise the integrity of the data. Finally, in 

order for a firm to be included in the sample, at least 30% of the firm’s total sales had to 

be accounted for by pharmaceutical sales. That is, the firm’s involvement in the 

pharmaceutical industry had to account for roughly one-third of the firm’s total business 

operations. Most firms’ pharmaceutical sales, did, however, account for over 50% of 

total firm sales.

The firms meeting the above criteria were identified to be the following:

1) Abbott Laboratories
2) American Flome Products
3) Bristol Myers
4) Johnson & Johnson
5) EliLilly
6 ) Merck
7) Pfizer
8 ) Schering-Plough
9) Syntex
10) Upjohn
11) Warner-Lambert
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Section 3.1: Model Specifications and Variable Formulations

Before presenting the model specifications used in the forthcoming analyses, a 

brief overview of the theoretical model will be provided. This model was presented in 

full detail in the preceding chapter.

Section 3.2: The Optimal Level o f R&D Intensity: A Rate o f Return Analysis

The optimal level of research and development may be determined by 

simultaneously solving an expected marginal rate-of-retum equation, mrr, and an 

expected marginal cost-of-capital equation, mcc. The marginal rate of return on R&D 

investment may be thought of as the expected rate of return on the next R&D project. 

Specifically, the expected rate of return on the next project is assessed by the firm to be 

the expected present value revenues from the next project less the expected present value 

operating costs from the next project all divided by the present value R&D expenditures 

for that project. This is expressed algebraically by equation (1).

mrrl = E(Rj) — E(C') 
RD, 0)

The subscript i denotes the z'th R&D project in the firm’s R&D project portfolio. Refer 

to Chapter Three for a more rigorous development of this expected marginal-rate-of- 

retum concept. Projects are arranged in the R&D project portfolio in a decreasing order 

with respect to their risk-adjusted expected rate of return.

The mcc equation similarly reflects the opportunity cost of capital incurred 

through investing in R&D on the margin. The opportunity cost of capital is the expected 

rate of return on the next best alternative investment of similar risk. As has been 

previously discussed, the focus of this research, and consequently the model 

specifications that follow, will be devoted to testing the hypothesis that capital market 

imperfections exist and result in a lower cost of capital for internal funds relative to 

external funds (i.e., new debt and equity finance). This, as was elaborated on in Chapter
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Three, results in a positive relationship between firm R&D expenditures and changes in a 

firm’s cash flow. Explanations of why internal finance may be less costly than the 

issuance of new shares or debt abound and have already been rigorously developed in this 

thesis. To summarize, these explanations include:

1) Transaction Costs
2) Tax Advantages
3) Asymmetric Information
4) Agency Problems
5) Costs of Financial Distress

Algebraically, the general form of this model may be expressed as follows:

MRR(RD*, X, Y) = MCC(RD", Z) (2)

Where,
3fc

RD = the optimal level of pharmaceutical R&D investment 
expenditures

X = a vector of variables influencing expected returns to 
pharmaceutical R&D

Y = a vector of variables influencing the expected costs associated with 
pharmaceutical R&D, and

Z = a vector of variables influencing the opportunity cost of capital

Hence, it is clear that the optimal level of R&D is implicit within the above equation and 

is a function of the vectors X, Y, and Z.

Generally, we may solve the above equation to obtain the reduced form solution 

for the optimal level of R&D expenditures:

RD* = /(X , Y, Z) (3)

Equation (3) clearly implies that any change in one or more of the variables contained in 

the X, Y, or Z vectors is likely to alter the optimal level of R&D.
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Section 3.3: Rate-of-Return Analysis and the Specification o f the Dependent Variable: 

R&D Intensity (R&D-to-Sales)

One consideration regarding the rate-of-retum analysis just mentioned is that firm 

managers may not be reasonably capable of assessing the expected steam of revenues and 

costs associated with a given R&D project during the very preliminary development 

stages. For example, in the preliminary stages of development, numerous tests must be 

conducted on laboratory animals before a firm applies to the U.S. FDA for clinical trials 

of a product on humans. The attrition rate during this stage is extraordinarily high; on 

average, only one out of several hundred new chemical entities (NCEs) makes it to the 

clinical stage for trials with humans. For this reason, rate-of-retum analyses are virtually 

impossible to conduct at this preliminary development stage.

Partially mitigating this problem is the fact that R&D costs do not start to escalate 

significantly until after these very preliminary stages of development. Once a product 

makes it beyond the earliest stages of drug development, a rate-of-retum analysis is 

possible. Information regarding the efficacy and safety of a compound in human subjects 

gives firm managers more insight into the probability of FDA approval, the costs of 

subsequent tests and clinical trials, and the expected future revenues from, and costs of, 

the compound. The attrition rate after a compound reaches this stage in drug 

development is much less—approximately one in eight NCEs eventually gains FDA 

approval and is launched on the market (PhRMA 1998).

Moreover, even though firms may not be able to assess project-specific future 

revenues and costs in the earliest stages of drug development, they will nevertheless be 

sensitive to industry-wide changes and expectations, such as new tax laws, new FDA 

regulations, or industry-wide economic conditions. Theoretically, such factors will be 

highly influential variables within the X, Y, and Z vectors previously specified.

Additionally, firm managers have been reported to deal with the aforementioned 

uncertainties by following a “rule of thumb” relationship between R&D and sales 

(Grabowski 1968, Grabowski and Vernon 1981). This short-run management device 

enables firms to avoid unstable expansions or contractions of their R&D departments. 

Furthermore, because there is considerable variance in R&D intensities over time and
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across firms, this rule-of-thumb investment model appears to be highly plausible. 

Consequently, in the model specifications that follow, the dependent variable will be 

defined as the ratio of R&D-to-sales to reflect management’s rule-of-thumb approach to 

R&D allocation.

Section 4.1: Past Research on the Determinants of Pharmaceutical R&D:

The 1960’s, 1970’s, and 1980’s

Section 4.2: Earlier Model Specifications: The 1960’s and 1970’s

In modeling the determinants of R&D intensity for the period from 1959 to 1975, 

Grabowski (1968) and Grabowski and Vernon (1981) specified four variables thought to 

be deterministic of the allocation of funds to R&D. Their model specification was of the 

general form:

RDS„ = f  (NRlt, D VRi, CFM it, PCU ) (4)

Where,

RDSlt = the ratio of R&D expenditures to total firm sales for the zth firm in 
year t .

NRlt = an index of past R&D success—in particular, it equals the sales of
a firm's new product introductions, during the first three years of 
the product's commercial life, for all of a firm's introductions in 
years: 0, -1,-2,-3,-4, all divided by R&D expenditures in year -2.

DVRl = a Herfindahl-type index of firm diversification that equals
n

1 -  ̂  Sj , where i . equals the fraction of a firm's ethical drugs
M

sales in the jth  class, calculated at the midpoint year of the sample.

120



CFMit = firm V s cash flow margin in year t—in particular it equals lagged
profits after taxes plus depreciation divided by sales (a two-year 
lag was utilized).

PCU = the percentage of the z'th firm’s total sales accounted for by ethical 
drug sales during year t.

The rationale for the formulation of the above variables is quite intuitive and captures 

many of the theoretical considerations presented in detail in Chapter Three. Because the 

models in this chapter will be based on similar specifications to the above model, a brief 

explanation of this specification is provided below.

A primary factor in the decision to allocate funds to R&D must be the expected 

returns from the R&D2 3. Grabowski and Vernon measured this expectation with their 

NRU variable. This variable was designed to be a rough “productivity of R&D” measure 

at the firm level.

Additionally, it was posited that scientifically diversified firms would have higher 

profit expectations than less scientifically diversified firms. The basic idea underlying 

this assumption was that a more diversified firm would have a greater capacity to exploit 

serendipitous research findings than would a firm with a more specialized research and 

development program. Theoretically, this variable, while appropriate for the time period 

studied here, would be much less likely to affect profit expectations in more recent times. 

This is because of the advent of rational drug design. As was discussed in Chapter Two, 

in the late 1970’s the rational drug design technology was emerging rapidly and changing 

the way drugs were being discovered. Firms were no longer randomly testing and 

screening large volumes of chemicals—firms were instead beginning to design molecules

2
Firm R&D expenditures, per SEC regulation, include all expenses associated with the different stages of 

drug discovery and development described in detail in Chapter Two.
3 This variable formulation clearly implies that firm managers form their expectations o f the returns from 

R&D based on past returns from R&D. Contemporary thought, however, would challenge this 
assumption on the grounds that such adaptive expectations ignore the possibility that a firm’s future 
prospects may be completely unrelated to its past performance. In fact, a firm manager forming 
expectations about the future returns to R&D would theoretically only consider contemporaneous 
information. Consequently, in theory, firm decision-makers will not base future expectations on the 
success (or failure) o f  the firm’s past R&D investments. This is the well-known Rational Expectations 
(REH) Hypothesis first put forth by John Muth (1961) and later developed fully by Robert Lucus.
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with known chemical or biological responses (refer to Chapter Two). A major effect of 

the arrival of rational drug design was the elimination of most serendipitous drug 

discoveries—which characterized the major drug discoveries in the pre-1975 period. 

Hence, for more contemporary time periods, a variable similar to DVR, would

theoretically be inappropriate for models of the determinants of R&D.

A cash flow variable designed to estimate a firm's internal cash flow was also 

hypothesized to be an explanatory variable in this model. As was argued extensively in 

Chapter Three, firms are likely to impute a lower cost of capital to internal funds. Hence, 

increases in the level of internal funds were expected to positively affect R&D 

investment. This is likely to be the case for the reasons sited earlier: transaction costs, tax 

advantages, asymmetries of information, agency problems, and the costs associated with 

financial distress.

Finally, because the firms in this study were diversified across several industries, 

the pharmaceutical industry being just one of these industries, it was necessary to include 

the variable PCit. This variable was defined as the ratio of pharmaceutical sales to total 

firm sales, and was designed to control for the varying levels of firm involvement in the 

pharmaceutical industry. In particular, because the pharmaceutical industry is one of the 

most research intensive industries in the world (refer to Figure 2.3 in Chapter Two), the 

more concentrated a firm is in the pharmaceutical business the higher the anticipated 

level of total R&D spending.

Clearly, all of the aforementioned variables were hypothesized to have positive 

signs. In a series of simple linear regressions, Grabowski and Vernon found all the 

variables to be statistically significant with the exception of the DVRt variable. A

summary of these empirical results is provided below in Table 4.1. Coefficient t- 

statistics are reported in parentheses.
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Table 4.14

Summary of Linear Regression Results from the Grabowski and Vernon 1981 Study

E quation 
Sam ple N In tercep t CFM NR DVR PC r 2/f Tim e Period

1.1
N=140

-.051
(-1.86)

.268
(6.07)

.019
(3.80)

.045
(1.73)

.063
(5.11)

.49/32.6 1962-1975

1.2
N=140

-.005
(-.73)

.224
(6.16)

.015
(3.36)

.064
(5.18)

.48/41.9 1962-1975

1.3
N=70

-.057
(-1.36)

.282
(4.38)

.016
(2.49)

.035
(.88)

.084
(5.01)

.53/18.9 1962-1968

1.4
N=70

-.021
(-L81)

.249
(4.76)

.013
(2.45)

.085
(5.10)

.53/25.1 ' 1962-1968

1.5
N=70

-.033
(-.85)

.255
(3.81)

.029
(1.96)

.042
(1.09)

.041
(2.18)

.44/13.1 1969-1975

1.6
N=70

.007
(.72)

.209
(4.01)

.030
(2.01)

.043
(2.30)

.43/17.1 1969-1975

These results demonstrate a highly robust model—one in which expected returns and 

cash flows play an important role in a firm’s allocation of funds to R&D.

Section 4.3: The Models o f the 1980 ’s

The decade of the 1980’s was a particularly interesting period for the 

pharmaceutical industry. During this period, absolute R&D spending increased 

dramatically. In fact, not only did absolute R&D spending increase, but the intensity of 

R&D spending (defined as the ratio of R&D expenditures to total firm sales) rose 

significantly as well. Figure 1 depicts the aggregate R&D-to-sales ratio for seven major 

U.S. firms that reported R&D data over the full 27-year period, 1962 to 1989.3 * 5

3 The firms in this study were Abbott, Eli Lilly, Merck, Pfizer, Robins, Schering-Plough, SmithKline,
Syntex, Upjohn, and Carter-Wallace.

5 The seven firms are Abbott, Bristol Myers, Eli Lilly, Merck, Pfizer, Schering-Plough and Upjohn.
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Figure 4.1

This unprecedented climb in the allocation of funds to pharmaceutical R&D 

stimulated much new research in the area of the determinants of R&D investment. Out of 

this research came several competing hypotheses for the observed increase in R&D 

intensity during this period. In particular, McCutchen (1993), Jensen (1994), and 

Vernon (1995) all utilized new variables in their model specifications, variables that were 

not included in the earlier Grabowski and Vernon specification, to test their respective 

hypotheses. These variables and hypotheses are discussed next.

In her 1988 study of the determinants of pharmaceutical R&D, Jensen used a time 

trend variable to capture, what she argued were, the increasing levels of scientific 

knowledge that were evolving during the eighties. She contented that a dramatic 

expansion in scientific knowledge was beginning around the turn of the decade, one that 

opened up an unprecedented number of new avenues for research and development. It 

was this expansion in scientific opportunities—she hypothesized—that was primarily 

responsible for the dramatic rise in R&D activity during the 1980s.
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In his 1993 study, McCutchen utilized a tax dummy variable that was devised to 

capture the impact of the R&D tax credits that were instituted in the early 1980s. 

McCutchen argued that it was the advent of pharmaceutical R&D tax credits, which were 

established by the Economic Recovery Tax Act of 1981, that was responsible for rising 

R&D expenditures during the 1980s. This Act provided a 25% tax credit on all increases 

in R&D expenditures. Even though the tax credits expired on December 31,1985, 

subsequent legislation extended them throughout the decade. In fact, a 20% R&D tax 

credit is still in effect for all increases in R&D expenditures.

Finally, Vernon, in his 1995 research, focused on a new “rational” expectations 

variable—one that was designed to more accurately capture the expected returns from 

R&D. He argued that the rising expectations of the returns to R&D were responsible for 

the higher R&D spending. He used this new variable to replace Grabowski and Vernon’s 

adaptive expectations variable—which he found to be only marginally statistically 

significant in models of determinants of pharmaceutical R&D in the 1980’s. Specifically, 

he argued that firms formed profit expectations by looking at the current industry profit 

margin, in which the industry profit margin was defined to be the weighted-average, pre-

tax, price-cost margin for the pharmaceutical divisions of the largest U.S. pharmaceutical 

firms. The basic idea behind his formulation was based on the fact that firms, which 

often have parallel paths of research and spillover opportunities, are well aware of the 

performance of their peers. Consequently, they view current pharmaceutical profit 

margins as a reasonable proxy for the future returns to their own current R&D 

expenditures.

This rational-expectations variable was clearly quite different from the Grabowski 

and Vernon variable, which presumed that firms based future profit expectations on their 

individual past successes or failures. Furthermore, Vernon argued that the industry 

margin was a better proxy for expected returns to R&D because it was subject to much 

less variability than an individual firm’s past successes or failures. He concluded that the 

mis-specified profit expectations variables used by Jensen and McCutchen—which 

utilized Grabowski and Vernon-type adaptive expectations formulations—resulted in an 

overestimation of the influence of the tax credits and new research opportunities, which 

he found to be statistically insignificant in the majority of his models. Grabowski and
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Vernon largely replicated these results in their later 1997 study of the determinants of 

pharmaceutical R&D. For this reason, their empirical findings for the decade of the 

1980’s will be presented next.

Section 4.4: The Grabowski and Vernon 1980 ’s Model

Using a slightly modified specification from their earlier model, one that included 

Vernon’s forward looking profit expectations variable, Grabowski and Vernon estimated 

several models of the determinants of R&D intensity for the decade of the 1980’s. Their 

general model specification was the following:

RDSlt = f  (IRR, , CFM ,t,PCit) (4)

CFMit and PCU were the same variables from their earlier study, and IRR, was a profit 

expectations variable which had two new, and slightly modified, formulations. These 

expectation variables are defined below:

Newsal = an index of past R&D success—in particular, it equals industry 

sales of new product introductions, during the first three years of 

the product's commercial life, for all industry introductions in 

years: 0, -1, -2, -3, -4 all divided by R&D expenditures in year -2.

Imarg = the industry profit margin—the weighted-average, pre-tax, price- 

cost margin for the pharmaceutical divisions of the largest U.S. 

pharmaceutical firms.

The formulation of the Newsal variable was similar to Grabowski and Vernon’s 

earlier NR„ variable, except NR„ measured an individual firm’s past successes rather
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than industry-wide successes. By using this industry-wide variant of expected R&D 

productivity, they argued it partially mitigated the theoretical problems associated with 

adaptive expectations. In particular, they argued that rationale firm managers formed 

expectations by looking at the overall industry performance with respect to R&D, not 

simply their own past performance. This was deemed highly plausible due to the high 

degree of parallel research activities and spillover opportunities amongst pharmaceutical 

firms during this period.

Furthermore, Grabowski and Vernon, much like Vernon, found little evidence to 

suggest that either a time trend variable (designed to capture expanding scientific 

knowledge) or R&D tax credits were influential in the determination of R&D intensity. 

The results from their linear regression analyses, which were very similar to Vernon’s 

1995 findings, were quite robust and are reported below in Table 4.2.

Table 4.26

Summary of Linear Regression Results from the Grabowski and Vernon 1997 Study

Equation 
Sam ple N In te rcep t Im arg Newsal C FM PC r 2/f Tim e Period

2.1
N=176

-0.20
(-7.00)

0.74
(6.58)

0.27
(9.88)

0.05
(4.57)

0.71/140.8 1974-1989

2.2
N =110

-0.17
(-4.75)

0.62
(4.46)

0.29
(8.01)

0.05
(3.65)

0.72/91.6 1980-1989

2.3
N=176

-0.06
(-8.04)

0.17
(7.95)

0.28
(11.05)

0.04
(4.58)

0.74/159.2 1974-1989

2.4
N=110

-0.07
(-4.02)

0.19
(3.55)

0.31
(8.40)

0.04
(3.25)

0.70/84.2 1980-1989

The results from both of the Grabowski and Vernon studies indicate a broadly 

consistent role for cash flows in the determination of firm investment spending on 

pharmaceutical R&D. Not only was the cash flow variable highly significant in every 

model estimated, but also the coefficient for this variable was relatively stable over both

6 The firms in this study were Abbott, American Home Products, Bristol-Myers, Johnson & Johnson, Eli 
Lilly, Merck, Pfizer, Schering-Plough, Syntex, Upjohn and Warner-Lambert.
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different time periods and different model specifications—ranging from 0 . 2 1  to 0.31. 

Indeed, this was true despite the vastly different industrial climates that characterized the 

different time periods. For example, during the 1962 to 1975 time period, R&D intensity 

was declining, whereas during the latter time period, R&D intensity was increasing 

dramatically. This was demonstrated previously in Figure 4.1.

Before presenting the new and more contemporary U.S. firm models, it should be 

mentioned that the earlier studies were based on a somewhat limited data sample. 

Specifically, these studies were constrained by a limited number of observations on 

annual firm pharmaceutical sales (as opposed to total firm sales)—a variable necessary 

for the computation of the previously discussed PCU variable. In fact, Grabowski and 

Vernon’s 1962-1975-study had only two years of data on this variable— 1970 and 1975.
n

Their 1974-1989-study had only one year of data—a 1980 observation. Therefore, in 

their first study, the 1970 values of PCn were applied to all years prior to 1970, and linear 

interpolation was used to obtain values for the years between 1970 and 1975. In their 

1974-1989-study, the 1980 PCU values were applied to every year in the sample. This 

data deficiency may have led to an imperfect measure of a firm’s involvement in the 

pharmaceutical industry over time. It is unlikely, however, that it significantly affected 

their empirical results. This is because the majority of the variability in the PC,, variable

was across firms—not over time. Nonetheless, the models estimated in this chapter will 

be based on a more complete data sample—one that does contain annual data on the firm 

pharmaceutical sales, and hence annual data for the PCU variable. 7

7 However, because the two studies contained different samples o f firms, the 1975 PC„ values from the 

first study could not be used in the later study.

g
These data were obtained from Scrip Annual Company League Tables. These reports are not generally 
available to the public. More will be said about this data source in the next chapter.
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Section 5.1: New Research Findings and Empirical Models

Section 5.2: The New Models and the 1990 ’s: Specifications and Statistical Findings

The 1990’s have witnessed a continued growth in pharmaceutical R&D 

expenditures. In fact, R&D expenditures have grown at a real rate of more than 10% 

each year since the turn of the decade. R&D-to-sales percentages also continued to climb 

in the early 1990’s before declining slightly in 1994 (for the firms in this sample). This 

aggregate R&D intensity variable is plotted below in Figure 4.2. The firms used to 

construct this graph are, for comparability reasons, the same firms as those used in the 

Figure 4.1. 9

Figure 4.2

9 Upjohn was excluded from the sample due to its 1995 merger with Pharmacia.
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To test the primary hypothesis of this thesis that market imperfections exist in the 

capital markets for pharmaceutical R&D—and consequently impart a substantial cost 

advantage to R&D financed with internal funds, several different model specifications of 

the determinants of pharmaceutical R&D will be estimated. In particular, models similar 

to Grabowski and Vernon’s earlier specifications will be employed. The empirical 

results that follow should, however, more accurately reflect the influence of cash flows 

on firm R&D intensity due to the more complete and contemporary data sets used in 

these analyses.

Section 5.3: Econometric Issues and Model Specifications

Before delving into the various model specifications and empirical findings in this 

and other sections, a brief discussion should be undertaken regarding the econometric 

analyses of pooled data samples. In general, there exist three approaches to model 

estimation when using a pooled data set: classic ordinary least squares (OLS), fixed 

effects, and random effects. The basic framework of the regression model can be 

represented by the following equation:

y„ = + P'xu + e„ (5)

Where a it is the intercept term, f  is the coefficient vector, X it is the matrix of regressors, 

and s it is the vector of the classic linear regression model disturbance terms (i.e., error 

terms).

Section 5.4.1: The OLS Model

The general form of the classic OLS model assumes a common intercept term for 

all cross sections—i.e., a lt = a . Hence, the general form of the classic OLS model is:

130



y  u = « + P'x u + £„ (6)

With the standard assumptions made about the disturbance terms:

hi TT ii o (7)

E{el) = a 2 (8 )

Cov{su, eJs ) = 0 if / or /Vj (9)

Equations 7-9 imply that the disturbance terms in equation (6 ) have an expected value of 

zero, a constant variance (i.e., they are homoskedastic), and are independent (i.e., they are 

not contemporaneously or serially correlated). Furthermore, the disturbance terms are 

assumed to be normally distributed around zero—their expected value. An alternative— 

but equivalent—expression for these assumptions may be represented by the following:

£« ~ IN (0 ,cj2) (10)

All previous studies of the determinants of pharmaceutical R&D have strictly utilized this 

classic OLS model specification. The analyses in this chapter, however, will explore 

several other model specifications.

Section 5.4.2: Fixed-Effects Models

Another specification that may be employed is the fixed-effects model. This 

model specification allows for a separate constant term to be estimated for each cross- 

sectional unit—i.e., a u = a i . Consequently, this specification is commonly referred to as

the least squares dummy variable model (LSDV) and is represented by the following 

equation:
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y„ = ai+fi'Xtt +su (10)

Like the classical OLS model, the standard assumptions about the disturbance 

terms (equations 7-9) are also presumed to hold. From a theoretical perspective, the 

fixed-effects model is a reasonable specification if it is believed that there exist 

systematic differences between cross-sectional units (firms in this study). If this is 

believed to be the case, a separate constant term is estimated for each cross-sectional unit 

and the differences between units (i.e., firms) are viewed as parametric shifts of the 

regression function.

The fixed-effects model has a number of limitations, however. First, the results 

from models using this specification should only be interpreted within the context of the 

cross-sectional units in the study. Hence, generalizing the findings beyond the data 

sample is inappropriate (Green 1993, Kennedy 1992). Therefore, the appropriateness of 

the fixed-effects model depends on the context of the data and the intended use of the 

empirical findings. If the data exhaust the population—for example all of the firms in a 

particular industry—then the fixed-effects specification may be reasonable. However, if 

the data represent only a portion of the entire population—i.e., only a few firms in a 

particular industry, and the objective is to draw inferences about the entire population — 

i.e., the entire industry—then this model specification may no longer be appropriate. 

Secondly, the fixed-effects model cannot deal with regressors that are time invariant (or 

cross-sectionally invariant variables if a two-way fixed-effects model is assumed). More 

will be said on this limitation shortly. Finally, and from a more practical perspective, 

fixed effects models generally take up a large number of degrees of statistical freedom— 

especially when the number of cross sectional units is large. For this reason, for data sets 

that have a large number of cross sectional units and relatively few time periods, it is 

often unreasonable to estimate a fixed-effects model. Under these circumstances a 

random-effects model is typically selected.
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Section 5.4.3: Random-Effects Models

The random-effects model, unlike the fixed-effects model, assumes that the 

individual specific constant terms are randomly distributed across the cross-sectional 

units in the sample. That is, there exists a true population constant term about which the 

individual cross-sectional units' constant terms are randomly distributed. Hence, the 

differences in the intercept values across cross-sectional units are due to a random 

process—not a systematic process, as was assumed by the fixed-effects model. In 

particular, the random-effects model assumes that a H is generated by the following 

stochastic process:

ui is the random disturbance term characterizing the z'th observation—which is assumed

to be constant over time. Consequently, this model can be represented by the following 

equation:

a lt = a  + ui ( 11)

yu = a + /3'Xll+ u ,+ sll (12)

Where the following assumption are made about the two disturbance terms:

E (O =E (u ,)  = 0 (13)

(14)

(15)

E (euUj) = 0 for all i, t, and j (16)

E ( f f ^ )  = 0  [ft * s or / * j (17)

E {utUj) = 0 if i *  j (18)
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There exists one major drawback to the random-effects model presented here, 

however: it assumes that the random effects associated with each cross-sectional unit are 

uncorrelated with the other regressors in the model—this may be difficult to justify. This 

assumption, however, may be tested econometrically to determine the appropriateness of 

the random-effects model specification. Clearly, the obvious appeal of this model, 

especially for models estimated using a large number of cross-sectional units, is that it 

does not use up very many degrees of statistical freedom. Sometimes this practical 

consideration outweighs more theoretical considerations in applied econometric research 

(Greene 1993, Kennedy 1994).

Less frequently, two-way fixed and random-effects models are estimated. These 

models are an extension of the previously discussed fixed and random-effects models in 

that they allow for the possibility of time-specific effects. While the analyses in this 

chapter will not focus on these two-way-effect models, a brief description is nonetheless 

provided. The two-way fixed-effects model can be represented by the following 

equation:

a, is the systematic cross-sectional effect (i.e., the constant term for the z'th cross sectional 

unit) and y, is the systematic time effect (i.e., the constant term for each time period).

Similarly, the two-way random-effects model can be represented by the following 

equation:

yu=<*i+Yt+0Xu+ett (19)

ylt = a + r + P'x„ + £„ + u, + co, (20)

Where a, and y, are generated by the following stochastic processes:

a, = a  + u, and y, =y + a), (21)
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Furthermore, the disturbance term cot is assumed to have a set of properties analogous to

those depicted previously by equations (12)-(17).

The key question that remains is the following: which model specification is 

appropriate for testing the hypothesis that internal cash flows are an important 

determinant of pharmaceutical R&D intensity? In some cases, the choice of model 

specification will largely be driven by the structure of the data set employed for a given 

analysis. For example, because several of the independent variables in the forthcoming 

models were either time-invariant or cross-sectionally invariant, the utilization of various 

fixed-effects models was not possible. Furthermore, because some of the data samples 

used in the next chapter were very wide (i.e., they contain a large number of cross- 

sectional units, or firms), with relatively few time periods, fixed-effects models were 

generally not estimated for practical reasons. That is, it was too costly in terms of the 

number of degrees of freedom that had to be given up. A further discussion of this point 

will be deferred until Chapter Five.

With these considerations in mind, the approach followed in this chapter will be 

that suggested by Greene (1993). Models will first be estimated using the classical OLS. 

Then, both fixed-effects and random-effects models will be estimated—when reasonable. 

Econometric tests will be performed to assess the appropriateness of each specification. 

Specifically, the estimated models will be inspected for cross-sectional 

heteroskedasticity, for contemporaneous correlation, and within group serial correlation. 

When—and if—detected, the appropriate estimation technique will be employed in an 

attempt to correct for the econometric problems identified—i.e., the identifiable 

violations of the properties imposed upon the disturbance terms in the classical linear 

regression model. A full discussion of the diagnostic tests and estimation procedures 

undertaken will be provided along with each model estimated.

The general model used to estimate the determinants of pharmaceutical R&D for 

the 1976 to 1996 time period is presented below:
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RDS„ = f  (En,, CF„_X, P ct„ ) (22)

Where,

RDS„ = research and development expenditures divided by total firm sales 
for the /th firm in year t.

Ent = an index of the expected profitability of R&D investments.

CF„_X = cash flow for firm i in period /-I divided by sales in period t-1.

Pet,, = the percentage of the /th firm’s sales accounted for by pharmaceutical 
sales in year t.

A brief description of the formulations of the dependent and independent variables is 

provided next.

Section 5.5.1: Research and Development Intensity

The ratio of R&D to sales was selected as the dependent variable for two principal 

reasons. First, as was mentioned earlier, because firm managers use this ratio as a 

budgetary device when making R&D allocation decisions, it makes sense to use this 

intensity measure instead of absolute R&D expenditures. Secondly, by expressing the 

variables as intensity measures (or size-deflated ratio variables), one often—but not 

always—may avoid the econometric problem of heteroscedasticity that is present in most 

cross-sectional models estimated using absolute values.

Section 5.5.2: Expected Returns to R&D: The Profit Expectations Variables (En,)

Specifically, two formulations of the expected returns to R&D expenditures were 

utilized. The first of these was PharMarg. This variable was defined to be the weighted- 

average, pre-tax, profit margin for the pharmaceutical divisions of the industry’s largest
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firms. This variable is different from Grabowski and Vernon’s Imarg variable in two 

principle ways. Firstly, it was based on a larger sample of firms—making it a more 

representative measure of the industry’s economic climate. Secondly, this variable was 

lagged one period. Lagging this variable allowed it to enter into the model exogenously; 

it also resulted in less co-linearity with the other variables in the model. Moreover, from 

a statistical standpoint, the one-period lag formulation of this variable performed 

marginally better than the other variable formulations tested.

The other profit-expectations variable was NewRxs. This variable, like the 

previously discussed NewSal variable, was designed to be a rough measure of the 

industry’s R&D productivity. Specifically, this variable was defined to be the first three 

years of new product sales for dmgs introduced in years -1, -2, -3, -4, -5, all divided by 

total industry R&D expenditures in year -3. New drug sales data and industry R&D 

expenditures were converted into constant dollars using the GDP deflator. Data on the 

annual sales of new drug introductions were obtained from IMS America.

These two profit-expectations variables may be viewed as substitutes. However, 

they may also be thought of as capturing different aspects of the expected returns to 

R&D. In particular, NewRxs may be thought of as an industry-level measure of R&D 

productivity—where R&D productivity is measured by the sales of new drug 

introductions. Hence, NewRxs reflects the productivity of R&D. PharMarg, however, 

while certainly a function of R&D performance, is likely to capture a different aspect of 

the expected returns to R&D. This variable is likely to reflect the broader economic 

forces impinging upon the industry, and hence the profitability of R&D. For this reason, 

models will be estimated using both of these expectations variables separately as well as 

together. As was discussed in Chapter Three, profit expectations will impact the optimal 

level of R&D through changes in the demand for R&D. This, as was previously 

demonstrated mathematically in Chapter Three, may be represented graphically as a shift 

in the expected marginal rate-of-retum schedule for R&D. This is seen below in Figure 

4.3.
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Figure 4.3

An Increase in the Demand for R&D

mcc

mrr2

Expenditures

Figures 4.4 and 4.5 plot the values of these profit expectations variables over the 

1976-1996 time period.
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Figure 4.4

Industry Price-Cost Margin

Figure 4.5

Index of R&D Productivity
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It should be mentioned that in addition to estimating models with these profit- 

expectations variables, a third variable was also tested; however, it was not found to be 

statistically significant in the majority of the models estimated. Specifically, following 

the approach taken by Grunfeld (1958) and Grunfeld and Griliches (1960) in their classic 

study of investment demand using data for 10 major U.S. corporations, firm market value 

was tried as a measure of the profit expectations. Theoretically, as was discussed in 

detail in Chapter Three, the value of a firm’s securities is the discounted stream of the 

firm’s expected future profits. Hence, the market value of a firm’s securities at, say, the 

beginning of the year, should be a reasonable proxy for expected returns to investment 

spending (Grunfeld and Griliches 1960). It is possible that this variable did not perform 

well because the market value of a firm’s securities reflects the expected future earnings 

for all of the firm’s business operations—not simply its pharmaceutical operations. 

Consequently, in an attempt to mitigate this problem, a new variable was created. This 

variable was defined to be the product of a firm’s market value in year (M) and the 

proportion of its total sales accounted for by pharmaceuticals in year (M)—a proxy for 

its pharmaceutical industry involvement (i.e., the previously discussed Pct,t variable). 

Hence, for a firm that has no operations outside of the pharmaceutical industry (i.e., its 

Pet» is equal to 1) the market value of the firm’s securities may reasonably reflect the 

expected profitability of the firm’s pharmaceutical activities. On the other hand, for a 

firm whose pharmaceutical operations account for only one-half of the firm’s business 

activities, the market value of the firm’s securities will be a reflection of profit 

expectations made up of two components. One is the expected future profit from the 

firm’s pharmaceuticals operations, the other the expected earnings from the firm’s non- 

pharmaceutical operations. For this reason, it seemed reasonable to begin by assuming 

that profit expectations were uniform across business activities—hence justifying this 

multiplicative formulation. Following this approach, the statistical performance of this 

variable improved considerably. 10 However, this variable still did not perform as well

10 In addition to imposing uniform expectations across business activities, different weighting schemes 
were also tried. For example, to allow for the possibility that a firm’s pharmaceutical operations may 
contribute more to the expected profitability o f the firm than other business operations, a weight 
greater than unity was applied to P e t  prior to multiplying it by the firm’s market value. Various
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statistically as the NewRxs and PharMarg variables. Therefore, this variable was not 

included in the final analyses. Several of the regression equations that were estimated 

using variants of this variable are reported in Appendix 1.

Section 5.5.3: Internally Generated Funds: The Cash Flow Variable

Because the primary hypothesis of this research is that cash flows are an 

important determinant of pharmaceutical R&D investment, lagged cash flows were also 

entered into the model as an explanatory variable. This cash flow variable was intended 

to measure a firm’s internally generated funds before investment in R&D, other capital 

assets, and the payment of dividends. Specifically, it consisted of the sum of after-tax net 

income, depreciation, and after-tax R&D outlays. Because R&D is expensed for tax 

purposes (hence it receives an implicit subsidy compared to other capital assets), it was 

necessary to add-back after-tax R&D expenditures to after-tax income and depreciation 

in order to obtain a firm’s pre-investment cash flow. This method of estimating firm cash 

flows has been well documented in the literature (Hall 1992, Grabowski and Vernon 

1997). A flat tax rate of 33% was used to estimate after-tax R&D outlays.

The reasons why internal funds may affect investment in R&D were rigorously 

developed in Chapter Three and included arguments based on transaction costs, tax 

advantages, asymmetric information, agency problems, and the costs of financial distress. 

Specifically, the aforementioned reasons are likely to result in a substantial cost 

advantage to financing R&D with internal funds instead of external debt or equity.

Hence, increases in a firm’s internally generated cash flows are hypothesized to increase 

R&D investment. This, as was demonstrated in Chapter Three, may be illustrated 

graphically. This is seen below in Figure 4.6.

weights were tested, but this had little impact on the results.
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Figure 4.6

An Increase in the Level of Internal Funds

This cash flow variable, aggregated over all firms in this sample, is presented below in 

Figure 4.7.
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Figure 4.7

Lagged-Industry-Cash-Flow-to-Sales Ratio from 1976-1996

Section 5.5.4: Firm Pharmaceutical Concentration and Industry Involvement

Pctu was included as a regressor in the model to control for the fact that firms 

have secondary, but not insignificant, operations in other industries that are likely to 

affect a firm’s research intensity. Because the pharmaceutical industry is among the most 

research-intensive sectors of the U.S. economy, diversification into other industries will 

generally imply a lower overall research intensity. As was mentioned previously, the 

Pctu data used in this analysis is a vast improvement over that which was used in the

earlier studies. Therefore, it is expected to perform as a better control variable. This will 

presumably improve the estimates of the other coefficients in the model. While the 

majority of the variance in this variable was across firms, and not over time (recall that 

some of the earlier studies used a time invariant estimate of this variable), there were 

several firms whose involvement in the pharmaceutical industry did change considerably 

over time. For example, in 1980 Warner-Lambert’s pharmaceutical sales accounted for 

only 36 % of their total firm sales—by 1989 this percentage was 64%. Similarly, over
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the same time period, the Shering-Plough and Syntex Pet„ values rose from 54 and 6 6  %

to 77 and 84 %, respectively. Hence, by only using the 1980 value for this variable for 

all the years in their last study, Grabowski and Vernon may have introduced bias into 

their models. This may be particularly true for their models estimated over the 1980- 

1989 time period (equations 2.2 and 2.4 in Table 4.2).

Aside:

A tax variable reflecting the R&D tax credits that were initiated in 1981, and 

periodically amended throughout the 1980’s and 1990’s, was also tested in these models, 

and was found to be statistically insignificant. Several approaches were employed. The 

first approach was similar to McCutchen’s, and utilized year dummy variables. The other 

approaches were different from McCutchen’s. In particular, both statutory and effective 

R&D tax credits were tested in the models. Effective tax credits were tested as a variable 

because the implicit assumption behind McCutchen’s use of a tax dummy variable was 

that the incentives to increase R&D spending on the margin were uniform throughout the 

decade. 11 This, theoretically, should not be the case. While the legislated, or statutory, 

tax credit remained relatively constant over the decade, the effective R&D tax credit was 

changing significantly (Baily and Lawrence 1990). The first of these R&D tax credits 

came under The Economic Recovery Tax Act of 1981 and provided a 25 % tax credit for 

all increases in R&D expenditures. Despite the fact that this particular tax credit expired 

on December 31, 1985, subsequent legislation, such as The Tax Reform Act of 1986, 

extended the tax credit at a 20 % rate. This tax credit was extended on an annual basis 

throughout the 1980’s and 1990’s. In fact, the 20 % R&D tax credit is still in effect 

today. The major findings from the Baily and Lawrence study are summarized below in 

Table 4.3.

11 Obviously, this approach is applicable only to models estimated over time periods that span both the 
pre- and post-tax credit eras— i.e., models estimated over the en tire  1976-1996 time period. For 
models estimated over the 1980’s and 1990’s, this approach would clearly be inappropriate.
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Table 4.3

Statutory versus Effective R&D Tax Credit Rates12

Year o f tax law change Statutory tax credit Baily and Lawrence effective 
tax credit esthnate

1981 25% 9.3%

1986 20% 6.1%

1988 20% 4.0%

1989 20% 13%

However, as was previously mentioned, this variable did not perform well 

statistically. This was the case for every formulation tested. Specifically, in addition to 

estimating models with McCutchen’s dummy variable, models were estimated using both 

statutory and effective tax rates. Consequently, this variable was dropped from the 

model.

In sum, the expected signs for the explanatory variables in the current models are 

the following:

dRD
dEn

>0 Increases (decreases) in the expected returns from R&D increase 

(decrease) the optimal level of R&D.

dRD
dCF

>0 Increases (decreases) in the level of internal cash flows increase (decrease) 

the optimal level of R&D.

dRD
Pet

>0 The greater (lesser) the degree of firm specialization in pharmaceuticals, 

the greater (lesser) the level of R&D.

12 The reasons why the effective marginal credit rates differ from the statutory tax rates are the following.
1) Interactions o f the tax credit with other provisions o f the internal revenue code.
2) Future tax savings are discounted to their present value.
3) Not all firms have sufficient tax liabilities to use the tax credits in the same year they are earned.
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Section 5.6: Empirical Results

Using data from the 11 aforementioned pharmaceutical firms, several models of 

the determinants of R&D were estimated over two different time periods: 1976 to 1996 

and 1983 to 1996.13 The regression results and statistical diagnostics are reported and 

discussed for each model. Full regression and diagnostic results, however, are provided 

in Appendix 1. Coefficient t-statistics are reported in parentheses underneath the 

coefficient estimates. Finally, in order to simplify the presentation of results, the NewRxs 

variable was scaled down by a factor 0.001.

All regressions were estimated using EViews Pooled data estimation techniques 

(Quantitative Micro Software, Irvine California). EViews was formally known as Micro 

TSP.

Table 4.4

Classic OLS Linear Regression Results for 11 U.S. Firms

Equation  
Tim e Period

Intercept PharM arg N ew R xs CF Pet r 2/f

4 .1
1 9 7 6 -1 9 9 6

-0 .1 4
(-6 .5 0 )

0 .4 8
(5 .6 4 )

0 .2 2
(8 .0 6 )

0 .0 8
(8 .4 4 )

0 .7 3 /2 0 6

4 .2
1 9 7 6 -1 9 9 6

-0 .0 6
(-8 .3 2 )

0 .1 6
(6 .9 5 )

0 .2 4
(1 0 .0 6 )

0 .0 8
(8 .4 6 )

0 .7 5 /2 2 5

4 .3
1 9 7 6 -1 9 9 6

-0 .11
( - 5 .4 5 )

0 .2 7
(2 .8 5 )

0 .1 3
(4 .8 1 )

0.21
(8 .0 3 )

0 .0 8
(8 .9 4 )

0 .7 6 /1 7 6

4 .4
1 9 8 3 -1 9 9 6

-0 .1 0
( -3 .4 7 )

0 .3 4
(3 .0 8 )

0 .2 2
(6 .3 8 )

0 .0 8
(7 .4 6 )

0 .7 0 /1 1 7

4 .5
1 9 8 3 -1 9 9 6

-0 .0 5
( -2 .9 9 )

0 .1 3
(2 .3 8 )

0 .25
(8 .0 5 )

0 .0 8

(7 -1 1 )
0 .7 0 /1 1 3

4 .6
1 9 8 3 -1 9 9 6

-0 .1 0
( - 3 .5 4 )

0 .2 8
(2 .2 0 )

0 .0 6
(1 .0 6 )

0 .2 2
(6 .4 1 )

0 .0 8
(7 .4 2 )

0 .6 9 /8 8

13 This time period was selected because the global models o f  R&D investment in the next chapter 
were estimated over a similar time period, hence, allowing for more direct comparisons to be made 
between models.
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Table 4.5

Linear Regression Results for 11 U.S. Firms 
(Fixed Effects Model Specification)

Equation  
Tim e Period

PharM arg N’ew Rxs CF Pet r 2/ f

5.1
1 9 7 6 -1 9 9 6

0 .6 2
(7 .4 2 )

0 .1 7
(5 .7 7 )

0 .0 8
(6 .6 7 )

0 .8 9 /8 4 2

5 .2
1 9 7 6 -1 9 9 6

0 .1 6
(9 .3 6 )

0 .2 4
(1 1 .6 4 )

0 .0 8
(8 .3 2 )

0 .9 0 /9 5 7

5.3
1 9 7 6 -1 9 9 6

0 .4 7
(6 .2 1 )

0 .1 3
(8 .3 1 )

0 .13
(5 .0 8 )

0 .0 7
(6 .9 2 )

0 .9 1 /7 6 3

5 .4
1 9 8 3 -1 9 9 6

0 .5 8
(6 .5 5 )

0 .1 0
(2 .9 0 )

0 .0 6
(5 .4 7 )

0 .9 1 /7 3 2

5 .5
1 9 8 3 -1 9 9 6

0 .0 8
(1 .8 4 )

0 .23
(9 .4 0 )

0 .0 8
(6 .0 4 )

0 .8 9 /5 5 6

5 .6
1 9 8 3 -1 9 9 6

0 .5 7
(6 .2 6 )

0 .03
(0 .8 1 )

0 .0 9
(2 .9 2 )

0 .0 6
(5 .3 6 )

0 .9 1 /4 8 7

The pooled regression results reported in Tables 4.4 and 4.5 appear to indicate a 

highly robust model, one with similar results to those reported by the earlier studies. 

However, the OLS model specifications employed by these analyses implicitly assume a 

number of restrictions on the variance-covariance matrix of the error terms—i.e., the 

classical error term assumptions depicted by equations (7)-(10). Therefore, in order to 

determine the appropriateness of these assumptions, and hence the validity of the 

regression results reported in Tables 4.4.and 4.5, several diagnostic tests were employed.

First, the models were examined for the presence of cross-sectional 

heteroskedasticity. Because the models were estimated using size-deflated values instead 

of absolute values, it was anticipated that cross-sectional heteroskedasticity would not be 

a major problem. This, however, turned out not to be the case. To determine whether or 

not the error terms were cross-sectionally heteroskedastic, the null hypothesis of equality 

in error term variance across firms was tested. EViews reports three test statistics for this 

purpose: the Bartlett Test, the Levene Test, and the Brown-Forsythe Test.

Briefly, the Bartlett Test compares the logarithm of the weighted-average 

variance with the weighted-sum of the logarithms of the variances. The joint null 

hypothesis assumes that the cross-sectional variances are equal, and the samples are
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normally distributed. This test statistic is approximately distributed as chi-squared with i- 

1 degrees of freedom—where i is the number of cross-sectional units in the sample. The 

Levene Test is based upon an analysis of variance (ANOVA) of the absolute value of the 

difference from the mean. Specifically, the Levene statistic has an approximate F- 

distribution with i-l numerator degrees of freedom and N-i denominator degrees of 

freedom under the null hypothesis of equal variances in each cross-section. The Brown- 

Forsythe Test is a modification of the Levene test in that the absolute mean difference is 

replaced with the absolute median difference.

Diagnostic testing overwhelmingly rejected the null hypothesis of equal variance 

across firms. A summary of the test results for each model specification estimated is 

provided below in Table 4.6. Full results from these tests, along with residual tables, are 

provided in Appendix 1.

Table 4.6

Diagnostic Tests for Cross-sectional Heteroskedasticity

Equation Bartlett Test Levene Test Brown-Forsythe Test

4.1 33.83’" 3.63
**

3.02

4.2 26.05" 1.99* 1.47

4.3 25.33" 1.97* 1.72

4.4 28.75" 3.18*" 2.88"

4.5 34.40*" 3.94’** 3.04”

4.6 32.69*" 3.55*“ 3.09"

5.1 33.33*** 3.45**’ 2.85"

5.2 24.96" 1.94* 1.46

5.3 33.73*" 2.66** 2.37*

5.4 39.38*** 3.99*" 3.33*"

5.5 35.75*’’
. *** 

4.02 3.19*’*

5.6 40.31***
. *** 

4.09 3.45***

significant at the .05 level 
significant at the .01 level

*** significant at the .001 level
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The results in Table 4.6 are especially important because the earlier studies, which 

only estimated models using classic OLS, assumed that that cross-sectional 

heteroskedasticity was not present in the data. This was assumed because many of the 

variables were deflated by firm sales—a frequent remedy to the problem of 

heteroskedasticity in cross-sectional models (Greene 1993, Maddala 1992, and Kennedy 

1994). The presence of cross-sectional heteroskedasticty has important implications for 

the OLS estimators. In particular, while the OLS parameter estimates will remain 

unbiased, they will no longer be efficient. That is, OLS estimators will no longer have 

the minimum variance among all linear unbiased estimators. To correct for this problem, 

models have to be estimated using feasible generalized least squares (FGLS).

This feasible generalized least-squares approach first estimates the error term 

variances for each cross-sectional unit using first-stage pooled OLS—i.e., the equations 

estimated in Tables 4.4 and 4.5:

T t Ï
*  \  2
y u) (23)

Estimates of cr2 are then used to transform the data—using standard generalized least- 

squares (GLS) techniques—in order to obtain a new coefficient vector ¡3. This 

coefficient vector, also referred to as J3GLS, can be shown to be the best linear unbiased 

estimator in its class. Hence, unlike the OLS estimated coefficient vector f iOLS, this 

estimator is both unbiased and efficient.

Before presenting the models estimated using FGLS, it is necessary to note that 

like the earlier Grabowski and Vernon Studies, it was determined that cross-sectional 

correlation and within-group serial correlation were not present in the models. A visual 

inspection of the residuals, correlograms, and cross correlograms was undertaken first. 

This revealed no cross-sectional or temporal associations among the residuals. Formal 

testing subsequently confirmed these initial inspections. In particular, the Lagrange 

multiplier test developed by Breusch and Pagan (1980) was employed to test for cross- 

sectional correlation, and Durbin-Watson statistics were examined to test for first-order
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serial correlation. 14 Both tests failed to reject the null hypotheses of no cross-sectional 

correlation and within group serial correlation, respectively. The results from these 

diagnostic tests for the OLS and FGLS fixed-effects models are reported in Appendix 1.

The re-estimated models—corrected for cross-sectional heteroskedasticity—are 

presented below in Tables 4.7 and 4.8.

Table 4.7

FGLS Linear Regression Results for 11 U.S. Firms 
(Common Intercept)

E quation 
Tim e Period

In tercep t P h arM arg PvewRxs CF Pet r 2/f

7.1
1976-1996

-0 .14
(-8 .76)

0.51
(7 .70)

0 .22
(10 .33)

0 .08
(9 .7 0 )

0 .84 /395

7.2
1976-1996

-0.05
(-10 .17 )

0.15
(8 .21)

0.25
(12 .93)

0 .07
(9 .51)

0 .86 /468

7.3
1976-1996

-0 .12
(-7 .80)

0 .32
(4 .62)

0.11
(5 .59)

0 .20
(10 .16)

0 .08
(1 0 .4 9 )

0 .86/353

7.4
1983-1996

-0 .10
(-5 .25)

0 .36
(4 .65)

0.21
(8 .61)

0 .08
(9 .5 6 )

0 .91 /495

7.5
1983-1996

-0 .05
(-4 .58)

0 .12
(3 .40)

0 .27
(11 .84 )

0 .08
(9 .0 8 )

0 .93 /676

7.6
1983-1996

-0 .10
(-5 .24 )

0 .29
(3 .23)

0 .06
(1 .55)

0.22
(8 .77)

0 .08
(9 .49)

0 .92 /414

n M

The Breusch-Pagan statistic has the following general form: ^  r:j
1=1 7=1

Where r tj  is the ;/'th residual correlation coefficient. The large sample distribution o f this statistic is 
chi-squared with n(n-l)/2 degrees o f freedom— where n is the number o f cross-sections in the sample 
and T is the number o f years in the sample. Furthermore, due to the implicit assumption o f a single 
parameter vector, the appropriate residuals for computing this statistic are those from the groupwise 
heteroskedastic model presented in Tables 4.7 and 4.8 (Greene 1993).
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Table 4.8

FGLS Linear Regression Results for 11 U.S. Firms 
(Fixed Effects Specification)

Equation 
Time Period

PharMarg NewRxs CF Pet RTF

8.1
1976-1996

0.65
(8 .99)

0.17
(6 .62)

0.06
(5 .80)

0 .87 /739

8.2
1976-1996

0.15
(10 .18)

0.23
(11 .84)

0 .09
(8 .54)

0 .91 /1110

8.3
1976-1996

0.55
(8 .48)

0.13
(9 .12)

0.11
(4 .91)

0.06
(6 .67)

0 .93 /925

8.4
1983-1996

0.65
(9 .13)

0.09
(3 .39)

0.05
(5 .67)

0 .97 /2180

8.5
1983-1996

0.08
(2 .44)

0.24
(10 .31)

0.07
(5 .85)

0 .96 /1697

8.6
1983-1996

0.63
(8 .62)

0 .04
(1 .30)

0.09
(3 .48)

0.05
(5 .52)

0 .97 /1489

Lastly, models were estimated using the random-effects specification. This 

specification, because of its composite error term (which results in a particular type of 

heteroskedasticity), is estimated using the previously discussed FGLS. These results are 

presented in Table 4.9.

Table 4.9

Linear Regression Results for 11 U.S. Firms 
(Random Effects Model Specification)

E quation 
Tim e Period

In tercep t P harM arg NewRxs CF Pet R 2

9.1
1976-1996

-0.16
(-9 .50)

0 .60
(7 .59)

0.18
(6 .27)

0.08
(7 .31)

0.88

9.2
1976-1996

-0 .06
(-8 .38)

0 .16
(9 .53)

0.24
(11 .78)

0.09
(8 .57)

0.90

9.3
1976-1996

-0.14
(-9 .52)

0.43
(5-97)

0.13
(8 .13)

0.14
(5-74)

0.08
(7 .76)

0.91

9.4
1983-1996

-0.11
(-5 .87)

0.53
(6 .13)

0.11
(3.53)

0.07
(6 .20)

0.91

9.5
1983-1996

0.03
(-1 .88)

0 .08
(1 .84)

0.23
(9.60)

0.08
(6 .40)

0.88

9.6
1983-1996

-0.12
(-5-72)

0.51
(5 .79)

0.03
(0 .76)

0.11
(3 .59)

0.07
(6 .13)

0.91
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Section 5.7: Random Effects or Fixed Effects?

Before undertaking a full discussion of the results, one very important question 

needs to be addressed first: which, if any, of the regression models estimated in this 

section are appropriate for drawing inferences around the role cash flows play in a firm's 

R&D investment decision? More specifically, which specification, fixed effects or 

random effects, is appropriate for this study of U.S. firms? A number of important 

considerations to both approaches have already been discussed. For example, if the data 

do not exhaust the population, how will the results be used? Will they be used to make 

generalizations beyond the data sample? If so, a fixed-effects model specification is 

inappropriate (Greene 1993, Kennedy 1994). However, if it is believed that certain 

institutional factors exist, and result in, a systematic—not random—difference across 

units (i.e., firms), then clearly the fixed-effects model is required, and inferences are 

strictly limited to the sample.

Mundlak (1978), on the other hand, has argued that the distinction between fixed 

effects and random effects is an erroneous interpretation, and that a random-effects model 

should always be used. This, he argues, is because the fixed-effects model is simply a 

model estimated conditionally on the effects present in the sample. From a purely 

practical standpoint, the random-effects specification has a very appealing characteristic: 

it saves a lot of degrees of freedom—especially if the data sample has a large number of 

cross-sectional units.

Clearly then, arguments can easily be made for one specification or another based 

on various theoretical considerations. For the models estimated here, because the sample 

of firms used does not exhaust all the firms in the pharmaceutical industry, a random- 

effects model would have the advantage of being generalizable to the industry at 

large. 15,16 However, as was discussed previously, the random-effects model has one 

major drawback. Unlike the fixed-effects model, the random-effects model assumes that 15 16

15 Indeed, several o f  the major U.S. pharmaceutical firms are not contained in this sample— due to the 
reasons sited previously in the data section.

16 For this particular sample, a fixed-effects model only uses up ten additional degrees o f freedom.
Hence, the practical advantage o f a random-effects model— based on the number o f degrees of 
freedom— is only marginal.
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the random errors associated with each cross-sectional unit are uncorrelated with the 

other regressors in the model. This is something that often is not the case. Thus, the 

random-effects model may suffer from inconsistency due to omitted variables (Greene 

1993, Hausman and Taylor 1981, and Chamberlain 1978). Therefore, to test for 

orthogonality between the random effects and the regressors and, hence, the 

appropriateness of the random-effects model for this study, a test developed by Hausman 

(1978) will be employed.

Hausman devised a test statistic based on the following idea. Under the null 

hypothesis of no correlation between the random effects and regressors, the random- 

effects model is appropriate, and the FGLS estimator is consistent and efficient. Under 

the alternate hypothesis, the FGLS estimator is efficient but inconsistent. Furthermore, 

the OLS estimator in the fixed-effects model is consistent under both the null and 

alternate hypotheses. Consequently, the two estimates should not differ systematically, 

and a chi-squared test can be based on this difference to see if it is significantly different 

from zero. Hausman’s test is based on the following Wald statistic:

W = [pOLS -  P FGLS J \yar(pOLS ) -  Var(pFGLS)] ' [pOLS -  p FGLS ] (24)

This statistic is asymptotically distributed as chi-squared with K degrees of freedom— 

where K  is equal to the number of regressors in the model.

The Hausman test results are reported in Table 4.10 and are based on the 

regressions in Tables 4.5 and 4.9—the OLS fixed-effects models and the random-effects 

models. The results clearly suggest that the random-effects model should be favored over 

the fixed-effects model.
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Table 4.10

Hausman Test for Random Effects Model

Equation Number Wald Statistic (d.f.s)

1 5.71 (3)

2 6.48*(3)

3 5.02 (4)

4 3.93 (3)

5 5.19(3)

6 3.15(4)

* significant at the .10 level

Section 6: Discussion

The results reported in this chapter clearly support the hypothesis that cash flows 

are an important determinant of firm R&D investment intensity17. In all of the model 

specifications and time periods examined, the cash flow variable was found to be 

statistically significant. Furthermore, the estimated coefficients for this variable were 

relatively stable—ranging from 0.09 to 0.25. This range, however, was slightly wider 

than the coefficient range reported by Grabowski and Vernon in their earlier studies (0.20 

to 0.31). This is not surprising, however, because of the vastly different, and numerous, 

model specifications estimated in present analyses. In fact, the coefficient range obtained 

from the classical OLS equations (Table 4.4) was remarkably narrow (0.21-0.25)—well

It should be acknowledged that while the results apper to be very robust, there are important caveats to 
be considered. In particular, as Hubbard (1998) has pointed out, a signficant cash flow variable does not 
necessarily indicate the presence o f capital market imperfections. For such a finding to support the capital 
market imprefections hypothesis, the model must adequately control for investment opportunities; because 
investment opportunities are associated with profitability which, in turn, determines cash flows. Hence, 
failure to appropriately control for firm investment opportunities could led to a significant cash flow 
variable in an environment with perfectly functioning capital markets. Similarly, the same finding could 
be the result o f a reverse causality (or simultaneity) between cash flows and profitability. These issues are 
explored in detail in Appendix 2.
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within the range of the estimates reported by Grabowski and Vernon, which used similar 

OLS specifications.

An interesting feature of these results—compared to the results of the earlier 

studies—is the smaller coefficients on the cash flow variable found in some of the fixed 

and random-effects models. In particular, regressions that contained the PharMarg 

variable tended to report both lower coefficients and t-statistics. This was probably due 

to the higher correlation between the cash flow variable and PharMarg (0.52) than 

between the cash flow variable and NewRxs (0.41). Furthermore, in models that 

contained both demand-effect variables, this coefficient was particularly low.

Equations were also estimated using other lag formulations of the cash flow 

variable. Specifically, two and three period lags were investigated. These lagged 

variables were entered both separately and simultaneously into the different equations. In 

each equation estimated, the three different lag specifications had virtually identical 

coefficients; but the one-period lag performed marginally better in terms of statistical 

significance. Furthermore, the one-period lag performed better when all three lagged 

terms were entered simultaneously. Interestingly, when this was done, the sum of their 

respective coefficients approximately summed to the value observed when these terms 

were entered separately.

In general, the preceding results seem to favor the hypothesis that—at least for 

models based on U.S. firm data—cash flows are a major determinant of firm R&D 

investment intensity. Therefore, it seems reasonable to conclude that market 

imperfections exist in the capital markets for pharmaceutical R&D.

Over the 1976-1996-time period, the estimated coefficients on both of the 

demand-effects variables, PharMarg and NewRxs, carried the theoretically correct 

algebraic sign and were highly significant statistically. This was true even when both of 

these variables were entered into the model simultaneously to capture different aspects of 

the expected returns to R&D. However, the NewRxs variable did not perform as well 

statistically in the models covering the shorter time period from 1983-1996. In fact, 

NewRxs was statistically significant at the 5% level in only three of the models estimated 

(equations: 4.5, 7.5, and 8.5). One explanation for this may be the emergence of rational 

drug design in the early 1980’s. This new technology made past R&D successes—even
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at the industry level—a poor indicator of future successes due to the vastly different, and 

dynamic, scientific environment—at least during the evolutionary phase of this 

technology. 18 That is, for several decades prior to the 1980’s, pharmaceutical firms 

discovered and developed drugs in very much the same way, randomly screening large 

volumes of chemicals with little or no a priori research strategy to guide the process. 

Hence, in the years prior to the early 1980’s, past returns generated by this type of R&D 

activity might be a reasonably good indicator of potential future returns. However, with 

the advent of rational drug design, this random discovery process quickly became 

obsolete—possibly making the returns generated by the older type of discovery process 

less indicative of the anticipated returns from rational drug design. Thus, while 

appropriate for earlier time periods, NewRxs appears less appropriate for more current 

periods. 19 While the merit of this argument may certainly be challenged, it seems at least 

plausible.

Furthermore, because the formulation of the NewRxs variable was quite arbitrary 

(a five-year moving average), several other formulations were also investigated. In 

particular, shorter time intervals were tested (two, three, and four years), but from a 

statistical perspective, the five-year formulation performed marginally better.

Polynomial and geometric lag formulations were also tested. However, these 

formulations did not perform very well statistically. The five-year moving average 

formulation was consequently selected for these reasons. Moreover, because the earlier 

studies utilized a similar five-year formulation (they used a slightly different lag 

structure), direct comparisons between models was more appropriate.

The Pet variable—which indicates the percentage of total firm sales accounted for 

by pharmaceutical sales—also carried the correct algebraic sign and was highly 

significant in every equation estimated. In fact, as was hypothesized, this variable

18 Presumably, if—and when— firms became fully acquainted with this new technology— and the returns 
it was capable of generating—an adaptive expectation formulation would be more appropriate (insofar 
as such a formulation is appropriate in the first place). It is likely that it took many years for firms to 
fully realize both the financial and scientific impact rational drug design would have. This fact may 
have made N ew R xs a poor expectations variable for most o f the years in the 1983-1996 models.

In fact, when tested in models using a larger sample o f firms (and over the same time period),
N eu’Rxs was found to be statistically insignificant in every specification. More will be said on this in 

the next chapter.

19
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appears to perform better as a control variable than the version of this variable used in the 

earlier studies. In particular, in the directly comparable classical OLS models, the t- 

statistics for this variable were considerably higher (ranging from 7.11 to 8.94 versus 

2.18 to 5.18) and the coefficients remarkably more stable (ranging from 0.077 to 0.080 

versus from 0.040 to 0.084).

For comparability with the analyses in forthcoming chapters, models were also 

estimated over a shorter time horizon—from 1983 to 1996. These results largely 

replicated the findings of the longer time period. However, as was discussed earlier, over 

the shorter time period PharMarg statistically outperformed NewRxs in every model 

estimated. In fact, in the models that contained both variables, NewRxs was consistently 

found to be statistically insignificant.

Section 7: Conclusions

The analyses undertaken in this chapter mark the most contemporary empirical 

study to date of the determinants of pharmaceutical R&D. Hence, these results are likely 

to be more reflective of the current industrial climate for pharmaceutical R&D 

investment. Furthermore, these analyses made several refinements to the earlier models 

of R&D investment. In particular, a more complete data sample was employed, and, 

several new, and more appropriate, model specifications were estimated.

The regression results in this chapter provide substantial evidence to support the 

hypothesis that internally generated funds are an important determinant of pharmaceutical 

R&D. In fact, in every model estimated, a statistically significant and stable positive 

relationship was found between firm research intensities and their lagged cash flow 

margins. This was the case both for models estimated over different time periods and for 

models estimated using different specifications. This finding is consistent with the 

theoretical model developed in Chapter Three. The results from the different models 

estimated are summarized below in Tables 4.11 and 4.12. However, diagnostic testing 

revealed that the random-effects model specification is likely to be the most appropriate 

specification for testing our hypothesis. Therefore, caution should be exercised when
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considering the other models. In addition to reporting the estimated coefficients for the 

cash flow variable, the elasticity of R&D intensity with respect to cash flow is also 

reported for each model. In order to estimate this elasticity, sample means were 

calculated for both R&D intensity and cash flow margin.
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Table 4.11

Summary of Empirical Findings on the Role of Cash Flows in Firm R&D 

Investment Behavior: 1976-1996

Model Cash Flow 
Coefficient Range

Mean RD/Sales for 
the Sample

Mean CF/Sales 
for the Sample

Cash Flow 
Elasticity

Classic OLS 0.21-0.24 0.085 0.213 0.525-0.600

Classic LSDV 
Fixed Effects 0.13-0.24 0.085 0.213 0.325-0.600

FGLS
(Common Intercept) 0.20-0.25 0.085 0.213 0.500-0.625

FGLS
Fixed Effects 0.11-0.23 0.085 0.213 0.275-0.575

Random Effects 0.14-0.24 0.085 0.213 0.350-0.600

Table 4.12

Summary of Empirical Findings on the Role of Cash Flows in Firm R&D 

Investment Behavior: 1983-1996

Model Cash Flow 
Coefficient Range

Mean RD/Sales for 
the Sample

Mean CF/Sales 
for the Sample

Cash Flow 
Elasticity

Classic OLS 0.22-0.25 0.099 0.259 0.576-0.654

Classic LSDV 
Fixed Effects 0.09-0.23 0.099 0.259 0.235-0.602

FGLS
(Common Intercept) 0.21-0.27 0.099 0.259 0.549-0.706

FGLS
Fixed Effects 0.09-0.24 0.099 0.259 0.235-0.623

Random Effects 0.11-0.23 0.099 0.259 0.288-0.602
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The results from the classic OLS models summarized in Tables 4.11 and 4.12 are 

highly consistent with the earlier findings reported by Grabowski and Vernon—who used 

a similar specification. In particular, Grabowski and Vernon estimated this range from 

0.21 to 0.31.20 The range found in this study—which was based on more current data— 

was from 0.21-0.25. However, as was discussed previously, the classic OLS 

specification may be too restrictive. At least in this study, this was found to be the 

case—due to the econometric problems identified earlier in the chapter

These findings have some very important policy implications. In particular, 

because both R&D and cash flows are deflated by total firm sales, the coefficient on the 

cash flow variable represents the average reduction in R&D investment that is associated 

with a $1 loss in cash flow. Hence, the coefficient ranges reported in Tables 4.11 and 

4.12 are of great importance when considering how a new policy, which results in 

reduced firm cash flows, may impact total R&D investment and, consequently, new drug 

innovation. One relevant example would be policies that mandate pharmaceutical price 

controls.

Pharmaceutical price controls have been a widely discussed issue in recent years. 

This has been due largely to the possibility of including expanded coverage for 

prescription drugs under various health care reform proposals, and the perceived need for 

accompanying price controls. While more will be said on the impact of pharmaceutical 

price controls in a later chapter, one thing appears certain: a substantial reduction in firm 

cash flows, for whatever reason, is likely to be accompanied by declines in R&D 

investment, which in turn would affect innovation.

In sum, the results presented in this section generally confirm the investment 

models estimated in the earlier studies and provide further evidence to suggest that cash 

flows are an important determinant of pharmaceutical R&D investment. However, it is 

important not to generalize these results to the global pharmaceutical marketplace. The 

current analyses, as well as all previous analyses, have been based solely on relatively 

small samples of U.S. firms. Consequently, it is unclear what role, if any, cash flows

This range was based on all o f  their previous studies.20
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play in the larger global pharmaceutical marketplace. In order to sufficiently test the 

hypothesis that cash flows positively influence R&D investment, it will be necessary to 

estimate models based on a more representative sample of firms—a sample that contains 

both U.S. and non-U.S. firms. Therefore, the following chapter will be devoted to this 

objective and will estimate models similar to those presented here, using dramatically 

larger and more diverse samples.

■ \
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Chapter Five

The Determinants of Pharmaceutical R&D and the Role of Internal 
Funds in Firm Investment Behavior: A Study of 60 of the World’s 

Leading Pharmaceutical Firms

Section 1: Introduction

The empirical results estimated in Chapter Four, which utilized exclusively U.S. 

firm data, provide compelling evidence to support the hypothesis that internally generated 

cash flows have a positive—and quite substantial—impact on the level of firm R&D 

investment (intensity). This is because of their lower cost of capital relative to external 

debt and equity. These new results, which are consistent with the earlier studies of the 

determinants of pharmaceutical R&D, have one major limitation: they are based on a 

relatively small sample of exclusively U.S. firms. Consequently, it may be inappropriate 

to generalize the results reported in Chapter Four—and the results reported in the earlier 

studies—to the global pharmaceutical industry at large. For this reason, Chapter Five 

will estimate several models of the determinants of pharmaceutical R&D using different 

sub-samples of 60 of the world’s largest drug firms. This dramatic increase in the 

number of firms studied—which results in a more representative sample of the global 

pharmaceutical marketplace—will make the forthcoming analyses the first empirical 

examination to date of the determinants of pharmaceutical R&D investment using non- 

U.S. firm data. Consequently, these analyses should provide additional empirical tests of 

the thesis that cash flows are an important determinant of pharmaceutical R&D 

investment.

This chapter will proceed as follows. Section 2 will estimate models using data 

from 32 of the largest U.S. and European pharmaceutical firms during the period from 

1984 to 1997. Specifically, models will be estimated over two different time periods.

The first time period is from 1984 to 1997 and will be based on data from 24 firms. The 

second time period studied—for which all of the 32 firms had complete, or near 

complete, data—is from 1991 to 1997. In this latter period, because much of the 

European-firm data were available only after 1990, separate models for U.S. and
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European firms will also be estimated. Following this, Section 3 will estimate models 

based on data from 28 of the largest Japanese pharmaceutical companies using data from 

1994 to 1997—the only years for which sufficient data could be obtained for these firms. 

Section 2 will also combine all of the aforementioned firms and estimate cross-sectional 

models for the entire industry over the period from 1994 to 1997. As previously 

mentioned, these sections will be based on a considerably larger data set, one with an 

international focus. Consequently, these analyses will mark the first empirical study ever 

made of the determinants of pharmaceutical R&D with a global perspective. Lastly, 

Section 4 will discuss the findings and conclusions that may be drawn from this new 

research.

The collection of empirical analyses undertaken in this chapter should sufficiently 

test the hypothesis that cash flows, because of capital market imperfections, are an 

important determinant of pharmaceutical R&D. Furthermore, because of the markedly 

expanded number of firms (both U.S. and non-U.S.), the more complete data sets 

employed, and the more contemporary time periods studied, several new facts and details 

regarding the influence of internal funds on firm R&D investment behavior are expected 

to be uncovered.

Section 2.1: The Determinants of Pharmaceutical R&D: A Study of the 

Leading U.S. and European Drug Makers

All of the studies of the determinants of pharmaceutical R&D to date have been 

based exclusively on small samples of U.S. firms. In order to gain a fuller understanding 

of how cash flows affect R&D investment, a larger and more representative sample of 

international firms is needed. Consequently, this section contains several models 

estimated using data from 32 of the world’s leading U.S. and European pharmaceutical 

firms over the period from 1983 to 1997.

This section begins by presenting the firms in the sample and discussing the data 

characteristics. Following this, model specifications are outlined and empirical results 

reported. The results are then discussed and conclusions drawn.
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Section 2.2: Data Sample

The majority of the data in this sample were obtained from Scrip Pharmaceutical 

Company League Tables and Scrip Annual Reports1. These publications are not 

generally available to the public, and very few complete sets of these volumes exist. In 

fact, discussions with the publisher (PJB Publications, Ltd.) revealed that only eleven 

complete sets of these publications are held by external institutions—all but one of these 

being large pharmaceutical firms. This is not surprising given the fact that each volume 

costs approximately $900 and the information contained in each is highly specific to the 

pharmaceutical industry. All but one of the variables required for the forthcoming 

models were obtained from these reports. The variable not available in these reports was 

the firm depreciation variable—which was needed to calculate firm cash flows. (Refer to 

Chapter Four for details on how this variable was calculated.) Therefore, firm 

depreciation values were obtained from a large number of independent sources, such as 

company annual reports, SEC filings (when applicable), and various online financial 

databases (e.g., Hoovers, Edgar Online, PRARS, and CAROL). Sufficient data were 

available to estimate models based on the following sample of 32 firms:

1 ) Abbott (U.S.) 14) Forest Labs (U.S.)
2 ) Akzo Nobel (Netherlands) 15) Hoechst (Germany)
3) Alza (U.S.) 16) Johnson & Johnson (U.S.)
4) American Cynanamid (U.S.) 17) Eli Lilly (U.S.)
5) American Home Products (U.S.) 18) Glaxo (U.K.)
6 ) Amgen (U.S.) 19) Merck (U.S.)
7) Astra (Sweden) 2 0 ) Monsantos (U.S.)
8 ) Bayer (Germany) 2 1 ) Mylan (U.S.)
9) Block Drug (U.S.) 2 2 ) Pfizer (U.S.)
1 0 ) Bristol Myers (U.S.) 23) Pharmacia (Sweden)
1 1 ) Carter-Wallace (U.S.) 24) Rhone Poulenc (France)
1 2 ) Dow Chemical (U.S.) 25) Roche (Switzerland)
13) E Merck (Germany) 26) Sandoz (Switzerland)

These data are somewhat less reliable due to the fact that they are self-reported, and hence not subjected 
to the rigorous regulatory requirements o f officaial financial data reporting (i.e., SEC filings).
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27) Shering-Plough (U.S.) 30) Syntex (U.S.)
28) SmithKline Beecham (U.K.) 31) Warner-Lambert (U.S.)
29) Solvay (Belgium) 32) Zeneca (U.K.)

It should be noted that many of the U.S. firms listed above were not included in the 

empirical analyses undertaken in Chapter Four. This was because of the more restrictive 

firm selection criteria used in the last chapter. Specifically, in Chapter Four the market 

capitalization criterion eliminated many of the smaller U.S. firms that are included in the 

present sample. In general, after converting foreign currencies to U.S. dollars, it was 

determined that in order to have a sufficient sample size, the threshold market 

capitalization level had to be lowered.

Of the 32 U.S. and European drug-makers listed above, 24 had data covering the 

period from 1984 to 1997.2 All of the firms had complete—or near complete—data for 

the period from 1991 to 1997. Therefore, models will be estimated over both of these 

time horizons. The trend in global R&D intensity based upon the weighted-average 

R&D-to-sales ratio for the 24 U.S. and European firms with data from 1984-1997 is 

represented below in Figure 5.1.

Figure 5.1

2
The firms for which no data were available prior to 1991 were the following: Amgen, Bayer, E Merck, 

Forrest Labs, Roche, Mylan Labs, Pharmacia, Sandoz, and Zeneca.
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Global R&D/Sales from 1984 to 1997
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An interesting observation to note from Figure 5.1 is that the R&D-to-sales ratio is lower 

than it was for the exclusively U.S.-firm sample over the same time period (11 large U.S. 

firms). To analyze why this was the case, R&D-to-sales ratios were examined separately 

for each type of firm. Figure 5.2 graphs the R&D-to-sales ratio for the European firms, 

the smaller-U.S. firms, and the large U.S. firms individually.

Figure 5.2
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Firm R&D/Sales by Firm Type

Section 2.3: Model Specifications and Empirical Findings

Having developed previously in Chapter Four what appear to be several highly 

robust model specifications for the determinants of pharmaceutical R&D, it makes sense 

to utilize similar specifications within the current sample of firms. The rationale being is 

that capital market imperfections are not likely to be specific to U.S. capital markets for 

pharmaceutical R&D, but rather to all capital markets for pharmaceutical R&D—U.S. 

and ex-U.S. 3 The first models estimated will be based on data from 24 firms over the time 

period 1984 to 1997.

Section 2.4.1: The Determinants o f Pharmaceutical R&D: A Study o f 24 U.S. and 
European Drug Firms over the Time Period 1984-1997

3 It should be noted that by including non-U.S. firms in the sample, the previously developed capital-gams 
tax advantage associated with the U.S. tax system (refer to Chapter Three) does not necessarily apply. 
Indeed, the tax systems outside the U.S. vary considerably. However, the rationale for capital market 
imperfections based upon asymmetric information still holds. In fact, as was mentioned earlier in the 
thesis, it is highly plausible that asymmetric information— across borrowers and lenders in the capital 
markets for pharmaceutical R&D funds— is the p r im a ry  cause o f  the higher cost o f external finance relative 
to internal finance (i.e., cash flows).
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To estimate the influence of a firm’s internally generated cash flows on R&D 

investment, several models of the determinants of pharmaceutical R&D were estimated. 

Using the model specifications and variable definitions previously developed, linear 

regression analyses generated the findings in Table 5.1 4

Table 5.1

Linear Regression Results for 24 U.S. and European Firms 
Over the Period from 1984 -1997

Equation
Model Specification Intercept PharMarg CF Pet r 2/f

5.1.1
Classic OLS

-0.05
(-1.66)

0.21
(2.05)

0.20
(6.03)

0.07
(6.65)

0.50/92

5.1.2
Classic LSDV 
Fixed-Effects

0.22
(5.30)

0.09
(5.40)

.09
(6.93)

0.93/1672

5.1.3
FGLS

(Common Intercept)

-0.01
(-0.33)

0.07
(1.97)

0.18
(11.66)

0.07
(15.29)

0.91/936

5.1.4
FGLS

Fixed Effects

0.12
(5.56)

0.08
(4.86)

0.10
(12.08)

0.97/4385

5.1.5
Random Effects

-0.04
(-2.56)

0.22
(5.33)

0.09
(5.57)

0.09
(7.62)

0.93

Table 5.1 reports the statistical results from the five different model specifications 

estimated. Before discussing the empirical findings in detail, a brief discussion of the 

different specifications will be undertaken first.

Section 2.4.2: Cross-sectional Heteroskedasticity and Feasible Generalized Least 

Squares

As was the case with the Classic Ordinary Least Squares (OLS) and the Classic

An interesting feature o f the present analyses, which will be discussed in full detail in a forthcoming 
section, was the fact that the previously statistically significant N ew Rxs variable lost its significance. 
Consequently, unlike the preceding chapter, which estimated models using both profit expectations 
variables, the current chapter only employees the P harM arg  profit expectations variable.

167



Least Squares Dummy Variable (LSDV), models estimated in the previous chapter, 

diagnostic tests revealed the presence of cross-sectional heteroskedasticity. In both the 

classic OLS and classic LSDV models reported in Table 5.1, the previously discussed 

Bartlett, Levene, and Brown-Forsythe tests rejected the null hypothesis of no cross- 

sectional heteroskedasticity at the 1% level. These test statistics are summarized below 

in Table 5.2. 5

Table 5.2

Diagnostic Tests for Cross-sectional Heteroskedasticity

Equation Bartlett Test Levene Test Brown-Forsythe
Test

5.1.1 156.12’ 6.65’ 4.47*

5.1.2 154.01* 6.75* 4.33*

* significant at the .0001 level

The presence of cross-sectional heteroskedasticity, while not biasing the OLS parameter 

estimates, does result in parameter estimates that are no longer asymptotically efficient 

(Greene 1993, Maddala 1992, and Kennedy 1994). That is, the OLS estimators will no 

longer have the minimum variance among all linear unbiased estimators. Therefore, 

models using the FGLS specification were also estimated.

In addition to testing for cross-sectional heteroskedasticity, the aforementioned 

models were also tested for cross-sectional correlation and within-group serial 

correlation. However, like the earlier Grabowski and Vernon studies (Grabowski 1968, 

Grabowski and Vernon 1981, Vernon 1995, and Grabowski and Vernon 1997) and the 

models estimated in Chapter Four, there was no evidence to suggest the presence of 

either. This was not surprising given that the two data samples had 11 firms in 

common—i.e., the 11 firms studied in Chapter Four.

5 Because the N ew R xs  variable was statistically insignificant in all models estimated using the larger—and 
international— sample o f firms, only two OLS specifications were tested for cross-sectional 
heteroskedasticity for the 1984-1997-time period.
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Finally, a random-effects specification was estimated. For a full discussion of the 

theoretical considerations associated with this model (versus the fixed-effects model), the 

reader is referred to Chapter Four. Clearly, though, given the increase in sample size 

from 11 to 24 firms, the cost of estimating a fixed-effects model increased substantially. 

This was because of the additional degrees of freedom required to estimate the fixed- 

effects model. However, by expanding the sample size to include both European and 

smaller U.S. firms, the sample became less homogenous. Consequently, this increased 

the likelihood that a fixed-effects model would be required to control for systematic 

differences across firms (beyond that captured by the model’s key regressors). Indeed, in 

the expanded international sample, many countries—with very different regulatory 

environments—were represented. Moreover, as a result of this expanded sample, there 

became considerable differences across firms based on their size, their involvement in 

biotechnology, and the extent to which they were involved in generic pharmaceutical 

manufacturing. 6

Hence, the robust random-effects model specifications estimated in Chapter Four 

may not be appropriate for use with the more heterogeneous sample of firms in the 

present chapter. Recall that the random-effects model specification presumes the absence 

of systematic differences across firms. Therefore, to test the null hypothesis of no 

correlation between the random-effects and the model regressors, the Hausman test was 

conducted. (Refer to Equation 4.24 in the last chapter). Using the equations estimated 

from the current sample, the Hausman Wald statistic, which is distributed asymptotically 

as chi-squared with K degrees of freedom—where K is the number of regressors in the 

model, was calculated to be 9.77. This was significant at the 5% level. Therefore, it was 

believed that the fixed-effects model was the appropriate specification for the current

6 Several approaches were employed to detect the specific impact o f these differences. For example, firm 
size was tried as an explanatory variable, as were country- and continent-specific dummy variables. When 
these attempts yielded no significant control variables, various other variables were tested. Specifically, 
firm involvement in biotechnology and generic drug manufacturing were tested, but did not yield any 
significant variables. Lastly, several interactive variables were entered into the model. Again, the 
empirical analyses yielded no significant variables.

Section 2.4.3: Random- and Fixed-Effects Model Specifications Revisited
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sample. Consequently, it is this specification that should be used for drawing inferences 

around the role played by cash flows in R&D investment behavior.

Section 2.5.1: Discussion o f the Results Reported in Table 5.1

Overwhelmingly, the results in Table 5.1 provide further evidence in support of 

the hypothesis that internal cash flows, because of their hypothesized lower cost of 

capital relative to external debt and equity, are an important determinant of R&D 

investment. This was the case regardless of the model specification employed. A notable 

artifact of the results in Table 5.1, as they pertain directly to the CF variable, is that—in 

addition to being highly significant—the estimated coefficients were very similar to those 

estimated in the last chapter using exclusively U.S.-firm data over a similar time period 

(1983-1996 versus 1984-1997). These comparisons are presented below in Table 5.3.

Table 5.3

A Comparison of the Estimated Coefficients for C F 7

Equations Cash Flow Variable Coefficient Cash Flow Variable Coefficient
Model Specification 11 Largest U.S. Firms 24 U.S. and European Firms

Equations: 4.4.4 and 5.1.1 0.22 0.20
Classic OLS (6.38) (6.03)

Equations: 4.5.4 and 5.1.2 0.10 0.09
Classic LSDV (Fixed Effects) (2.90) (5.40)

A comparison o f coefficients was deemed reasonable because o f the similar time periods used in 
estimating the models— 1984-1996 for the 11 U.S.-based firms and 1984-1997 for the present sample of 
international firms.

170



Equations: 4.7.4 and 5.1.3 0.21 0.18
FGLS (Common Intercept) (8.61) (11.66)
Equations: 4.8.4 and 5.1.4 0.09 0.08

FGLS (Fixed Effects) (3.39) (4.86)
Equations: 4.9.4 and 5.1.5 0.11 0.09

Random Effects (3.53) (5.57)

Consequently, Table 5.3 demonstrates what appears to be a fairly consistent role 

for cash flows in R&D investment spending. Alternatively expressed, for every 

additional cash flow dollar that becomes available to the firm, the marginal propensity to 

invest in pharmaceutical R&D appears to range between $0.08-$0.22, depending on the 

model specification and sample of firms considered. Conversely, as will be addressed 

later, for every $1 reduction in cash flows, a firm’s reduction in R&D investment will be 

between $0.08-$0.22.8

In addition to affirming the importance of firm cash flows on R&D investment, 

the results in Table 5.1 also suggest that expected returns to R&D are an important 

determinant of pharmaceutical R&D expenditures. Interestingly, however, in contrast to 

the models estimated in Chapter Four, every model specification (and variable 

formulation) tested in the present analyses found the NewRxs variable to be statistically 

insignificant. In fact, in many of the specifications it carried the wrong algebraic sign.

The reasons why NewRxs lost significance when the sample was expanded to 

include more firms is not entirely clear. However, one plausible explanation may be the 

following. Several of the firms added to the sample had larger generic drug operations 

than did the eleven U.S. firms studied in Chapter Four. For firms developing a larger 

than average proportion of generic drugs, a more reasonable profit expectations variable 

may be PharMarg. This is because NewRxs strictly measures the returns to R&D based 

on new product introductions. Therefore, theoretically, PharMarg captures the expected

Recall that the variables in the model are intensity measures. That is, both R&D investment and cash 
flows are divided by total firm sales. Therefore, multiplying the estimated regression equation through by 
total firms sales yields an equation that may be interpreted in the manner just presented. However, because 
cash flows are lagged one year, the interpretation must be viewed only as an approximation. In fact, the 
estimated coefficient on firm cash flows would need to be adjusted (multiplied) by the ratio o f total firm 
sales in period (t) divided by total firms sales in period (t-1). Interestingly, therefore, for firms with 
growing real firm sales, the reported coefficient on cash flows would underestimate the impact on R&D 
investment o f changes in firm cash flows. Similarly, for firms with decreasing real firm sales, this 
coefficient would overestimate the impact on R&D spending.
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returns to both generic drugs and newly launched brand-name drugs. This hypothesis 

may be further supported by the fact that the time period over which these models were 

estimated, from 1984 to 1997, was after the 1984 Drug Price Competition and Patent 

Restoration Act—an Act that greatly facilitated the entry of generic drugs into the 

marketplace. (Refer to Chapter Two for more details). As a result, the volume of generic 

drugs developed and sold increased dramatically—making generic drug sales a larger 

component of the pharmaceutical industry’s total revenues (PhRMA 1998).

Furthermore, while the estimated coefficient range for the cash flow variable (CF) 

was similar in the two samples, the coefficient range for the profit expectations variable 

(.PharMarg) fell substantially—to approximately one-third that of the range estimated 

using the smaller, and exclusively U.S.-firm data sample. Specifically, when the sample 

was expanded to include smaller U.S. firms and European firms, the PharMarg variable’s 

coefficient fell from a range of 0.34 to 0.65 to a range of 0.07 to 0.23. (Refer to Chapter 

Four and the model specifications that employed PharMarg as the sole profit 

expectations proxy variable).

Interactive dummy variables were also employed to allow for the possibility that 

the European firms had different profit expectations than did the U.S. firms. However, 

the European version of this variable was found to be statistically insignificant. This was 

somewhat expected given the relatively small number of European firms in the sample. 

The next section, which estimates models using a greater number of European firms, over 

a shorter time horizon, addresses this issue more closely.

Also, and of considerable empirical importance, was the fact that that the control 

variable, Pet, retained its high level of statistical significance (with t-statistics ranging 

from 6.65 to 15.29). Indeed, the estimated coefficients for Pet were also consistent with 

those reported in Chapter Four (ranging from 0.07 to 0.10). Therefore, in sum, these new 

results suggest that the general model specification, first tested in Chapter Four and 

extended to the current sample, is indeed quite robust—both cash flows and profit 

expectations are important determinants of pharmaceutical R&D.

Before turning our attention to models estimated using a larger sample of firms 

and data from the 1990’s exclusively, an important question must first be addressed. 

Specifically, did structural change occur, insofar as investment in R&D is concerned, in
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the global pharmaceutical industry in the 1990s? If so, then it may be inappropriate to 

compare results based on data from different time periods. Certainly there are a number 

of reasons to believe that structural change may have occurred. 9 For example, a number 

of regulatory changes were observed in the early 1990’s, the political pressure 

surrounding the perceived high cost of prescription medication mounted, and many firms 

underwent major mergers, due, in part, to thinning R&D pipelines.

Section 2.5.2: The Evidence o f Structural Change in the Determinants o f 

Pharmaceutical R&D Investment in the 1990’s

In order to test the appropriateness of making comparisons between the 

previously developed—and quite robust models—of R&D investment over the time 

period 1984 to 1997 to models estimated using firm data from the 1990’s exclusively, the 

Chow-breakpoint test was employed.

Chow (1960) devised a test statistic to determine if a significant difference exists 

between a restricted model (one equation estimated over the entire sample) and an 

unrestricted model (the same equation estimated over two partitioned sub-samples of the 

data as specified by a breakpoint—i.e., a year). This Chow statistic is shown below:

(u'u - u\ux-u '2u2) /k
r  = --------------------------------------------  ( 1 )

(u\ux + u'2u2)/(T -2 k )

The variables and terms in (1) are defined as follows:

u'u = the restricted sum of squared residuals ( SSRr );

u[ux = the unrestricted sum of squared residuals for the first sub-sample ( SSRl(J ); 

u'2u2 = the unrestricted sum of squared residuals for the second sub-sample( SSR^);

9 Structural change in the 1990’s was also examined in the previous chapter. However, because the 
current sample is larger, and contains as a subset, the same firms studied in the last chapter, formal analyses 
were deferred to this chapter for presentation.
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T = the total number of observations; 

k  = the number of parameters in the model. 10

Sub-sample one of the unrestricted model consists of firm data for the years 1984 to 1990, 

and sub-sample two consists of data for the years 1991 to 1997.

This Chow statistic, designed to detect the presence of structural change across 

the two sub-samples, has an exact finite sample F-distribution if and only if the error 

terms are identically distributed random variables (Chow 1960 and Greene 1993). That 

is, the Chow Breakpoint test is appropriate only when the regression error terms satisfy 

the following classical OLS assumption:

u, ~ IN (0,<x2) (2)

However, as was shown by Table 5.2, this is clearly not the case with the classic OLS 

models estimated here. Indeed, the Bartlett, Levene, and Brown-Forsythe tests all 

rejected the null hypothesis of error term homoskedasticity at the <0.0001 level. Under 

these circumstances, classic least squares estimates should not be used to calculate the 

Chow-statistic. Indeed, any attempt to do so will result in an overestimate of the 

significance level of the test statistic (Schmidt and Sickles 1977, Ohtani and Toyoda 

1985, and Ohtani 1986). Stated slightly differently, it is probable that an F-statistic will 

be regarded as large, when it actually is less than the appropriate table value (Greene 

1993). As a result, the appropriate technique for calculating the Chow-statistic is to use 

the residuals from the restricted and unrestricted models that have corrected the error 

term heteroskedasticity—models estimated using generalized least squares. In particular,

10 Given the determination that the appropriate model for this test was the Feasible-Generalized-LSDV 
specification, which consequently contained several “intercepts,” or fixed effects, the approach followed 
was that suggested by Greene (1993). Specifically, Greene recommends not restricting the different 
intercepts, or fixed effects, and creating the restricted model by stacking only variable regressors. In 
essence, then, we are defining the restricted model to be one in which, under the null hypothesis, only the 
regressors are assumed to be equivalent across samples. For the present analyses this approach was 
deemed sufficient because our primary focus in these models is on the cash flow and profit expectations 
variables. In sum, then, the way that the restricted model, and hence the null hypothesis o f no structural 
change, is defined in the present analysis is by assuming that U.S. and European firms have identical 
coefficient vectors with respect to the CF, P harM arg, and P e t variables. For a fuller explanation o f this 
approach, and several examples, the reader is referred to Chapter 7 in Greene (1993).
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for this specific Chow-test, it is necessary to use models that have homoskedastic error 

terms over time (not simply across cross-sectional units). Therefore, the residuals from a 

FGLS model—with homoskedastic error terms across years—was used to calculate the 

Chow F-statistic. These regression residuals, along with the Chow F-statistic calculation, 

are presented next.

The regression residuals generated by the Feasible Generalized LSDV specifications 

were estimated to be the following:

SSRr (1984-1997 Model) = 0.0418 

SSRjr (1984-1990 Model) = 0.0122 

SSRfj (1991-1997 Model) = 0.0201

Consequently, the Chow F-statistic was calculated to be the following:

r  [(0-0517) -  (0.0094) -  (0.0198)] /[3] 2f <|
[(0.0094) + (0.0198)]/[259]

The critical 1% F-value for this test statistic was 3.78. This result clearly indicates that 

the null hypothesis of no structural change should be strongly rejected (i.e., F=25.4 > 

Fo.oi -  3.78)11 12. Therefore, as we move into analyses based upon data for the shorter time 

period from 1991 to 1997, observed differences in the estimated parameter vector are 

likely to be the result of a different industrial climate for R&D investment. We now 

turn our attention to estimates of our general model specification in a broader sample of 

firms over the shorter time horizon from 1991 to 1997.

11 In addition to this Chow-test, a Wald-test was also performed (as suggested by Greene 1993). Not 
surprisingly, as was found using the Chow-test, the null hypothesis of no structural change was easily
rejected (pO.OOOOl).
12 It should not be overlooked that the addition o f  eight new— and mostly European— firms is also likely 
to affect the coefficient estimates o f  the determinants o f R&D intensity.
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Section 2.6.1: The Determinants o f Pharmaceutical R&D: A Study o f 32 U.S. and 

European Drug Makers over the Time Period 1991-1997

Models were also estimated over a much shorter time horizon—one from 1991 to 

1997. This allowed for the inclusion of additional firms and allowed for estimates to be 

based exclusively on data from the 1990’s. As was demonstrated in the last section, 

because of the dynamic nature of the global pharmaceutical industry over time, it is likely 

that models based on longer time series will obscure, and potentially bias, the coefficients 

of the explanatory variables for firm R&D investment. Therefore, the estimates provided 

in the forthcoming analyses may be a better reflection of the current economic climate 

and the influence of cash flows on pharmaceutical R&D investment behavior. 

Additionally, as was the case with the models estimated in the previous section, these 

analyses will be a reflection of the current global pharmaceutical environment and the 

influence of cash flows on global R&D investment.

Regression results obtained using the 32-firm sample are presented below in 

Table 5.4.

Table 5.4

Regression Results for 32 U.S. and European Firms over the Period from 1991-1997
(Values in parentheses are t-statistics)

Model Specification Intercept PharmMarg CF Pet RTF

5.4.1 -0.06 0.27 0.16 0.08 0.57/82.7

Classic OLS (-1.70) (2.27) (4.53) (7.06)

5.4.2 0.21 0.10 0.07 0.95/1408.8

Classic LSDV(Fixed Effects) (4.44) (5.12) (3.16)
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5.4.3 -0.03 0.16 0.15 0.08 0.95/1169.8

FGLS (Common Intercept.) (-2.09) (3.87) (10.04) (22.16)

5.4.4 0.17 0.10 0.09 0.99/14159

FGLS LSDV (Fixed Effects) (6.95) (6.92) (7.12)

5.4.5 -0.03 0.22 0.10 0.08 0.94

Random Effects (-1.73) (4.52) (5.49) (5.48)

The results reported in Table 5.4 largely replicate the findings presented in Table 5.1. 

Furthermore, regardless of the model specification estimated, lagged cash flows and 

profit expectations continued to be highly significant determinants of pharmaceutical 

R&D. As was the case with the models estimated in the last section, NewRxs was not 

found to be statistically significant—the hypothesized reasons for this finding have been 

discussed and apply equally to this firm sample.

As was the case with all previously estimated models, cross-sectional 

heteroskedasticity was detected in both of the OLS models (the classic OLS model and 

the LSDV model). These diagnostic results are summarized in Table 5.5

Table 5.5
Diagnostic Tests for Cross-sectional Heteroskedasticity

Equation Bartlett Test Levene Test Brown-Forsythe
Test

5.4.1 76.37’" 2.70"’ 1.38’

5.4.2 102.72"’ 3.94’’’
. " ....

2.26
*** significant at the .0001 level
** significant at the .01 level
* significant at the . 1 level

To correct for the cross-sectional heteroskedasticity, the method of generalized 

least squares was used to estimate asymptotically efficient parameter vectors. These 

results were reported in Table 5.4 as equations 5.4.3 and 5.4.4.
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It is important to note that the FGLS-fixed-effects model (equation 5.4.4) did 

differ slightly from the same model estimated over the time period 1984 to 1997— 

equation 5.1.4. This may provide additional evidence to suggest that structural change 

did indeed occur in the pharmaceutical industry in the 1990’s—at least as far as R&D 

investment behavior is concerned.lj Interestingly, however, the only major structural 

difference between the two equations was the magnitude of the PharMarg coefficient 

(0 . 1 2  versus 0.17)—both the coefficient on the cash flow variable and the coefficient on 

the Pet variable were remarkably similar (0.08 versus 0.10 and 0.07 versus 0.08, 

respectively). This was true despite the shorter time series examined and the increased 

number of firms in the sample.

As Table 5.4.2 shows, a random-effects-model specification was also estimated. 

Here, too, the results largely replicated the findings reported in the last section. Indeed, 

the Hausman Test for random effects yielded a Wald-statistic of 12.04, easily rejecting 

the null hypothesis of orthogonality between the random effects and the model 

regressors. Consequently, the generalized-least-squares-fixed-effects-model specification 

was determined to be the appropriate model for the current sample.

An interesting question that arises from the present sample (in which the number 

of European firms now approximately equals the number of U.S. firms) is whether or not 

there exist structural differences in investment behaviors between U.S.- and European- 

based firms.

Section 2.6.2: Structural Differences in the R&D Investment Model by Firm Type: U.S. 

and European Firms Compared

Certainly there exist substantial industrial and economic differences between U.S. 

and European pharmaceutical firms. But do these differences substantially alter the 

firms’ R&D investment behavior? It seems likely that they may. First of all, there are 

widely divergent tax systems in Europe, and these tax systems differ substantially from 

the U.S. tax system. As Chapter Three illustrated, for example, the tax system—and 

specifically the tax rate differential between capital gains and dividends—can play a very 

important role in a firm’s intemal-investment-decision-making process. Additionally, the

Of course, this observation could be the result o f  the additional firms added to the sample.13
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regulatory and political environments, which also vary widely between U.S.- and 

European-based firms, may have an important and influential impact on the role that cash 

flows and profit expectations play in the firm R&D investment decision. It is also 

possible that cultural differences exist in management strategies and philosophies, 

depending on whether or not the firm is U.S.-based or European-based. These 

differences, or possible differences, it is plausible to think, may significantly impact the 

structure of our previously specified investment model. Therefore, a Chow-breakpoint 

test, similar to the one calculated in the last section, is used to test the null hypothesis of 

no structural differences between U.S.-based and European-based firms.

To do this, two new models were estimated using the previously specified, and 

econometrically sound, generalized-LSDV model: a U.S.-based model and a European- 

based model. These regression results are summarized below in Table 5.6.

Table 5.6
Feasible Generalized LSDV Model for U.S.-based and European-based Firms

Sample
(Equation)

CF PharMarg Pet r 2/f

U.S. Firms 0.09 0.18 0.09 0.98/2900
5.6.1 (4.18) (4.09) (5.12)

European Firms 0.06 0.10 0.09 0.99/6684
5.6.2 (2.52) (3.91) (5.58)

Next, to construct the Chow-test, regression results from these two new models 

were examined and compared to Equation 5.4.4. Equations 5.6.1 and 5.6.2 made up the 

unrestricted model, within which U.S.- and European-based firms were allowed to have 

separate coefficient vectors. Equation 5.4.4 was the restricted model, in which it was 

assumed that the two sub-samples (in this case U.S. firms and European firms) had the 

same model coefficient structure. In contrast to the Chow-statistic that was calculated in 

the last section, where the sample breakpoint was a year, in this application the 

“breakpoint” was by firm type—i.e., a U.S.-based firm or a European-based firm. From 

these three models, the sum of squared residuals were estimated to be the following:

SSRr (Pooled Model) = 0.0282
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SSRl, (U.S.-firm Model) = 0.0217

SSRy (European-firm Model) = 0.0046

And the following Chow F-statistic was calculated:

p  _ [(0.0282)-(0.0217)-(0.0046)]/[3] _ 2 ?1 
[(0.0217) +(0.0046)]/[121]

This Chow F-statistic was significant at the 5% level, but insignificant at the 1% 

level. The critical F-statistics for these two significance levels were 2.6 and 3.78, 

respectively. Interestingly, and unlike the Chow-statistic estimated in the last section, 

where the F-ratio was extremely large (F = 66.65), the above F-ratio is relatively low. 

This raises some very important econometric issues that should be mentioned prior to 

making a decision as to whether or not to reject the null hypothesis of “no structural 

differences in R&D investment behavior between U.S.-based and European-based firms.” 

Maddala (1992) makes the point that there exist a number of alternate critical F-ratios 

that may be used when deciding between a restricted and an unrestricted model 

specification.14 Many of these require a much higher level of statistical significance than 

the conventional 5% level to reject the null hypothesis.

Furthermore, and on more general hypothesis-testing grounds, Maddala criticizes 

the conventional approach of using a constant significance level because, with 

sufficiently large samples, every null hypothesis can be rejected. Consequently, Maddala 

adds, conventional hypothesis testing increasingly distorts the interpretation of data 

against the null hypothesis as the sample size increases. Therefore, it is often argued, the 

significance level should be a decreasing function of the sample size (Maddala 1992 and 

Lindley 1957).

In any event, regarding our null hypothesis of no structural differences in R&D 

investment behavior between U.S.-based and European-based firms in the 1990’s, it is

±4 The interested reader should refer directly to Sections 12.7-12.9 in Maddala (1990) for descriptions of  
these different F-statistic criteria.
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clear that considerable caution should be taken when interpreting our marginally 

significant results against the null hypothesis. The evidence is not as compelling as that 

for the industry’s structural change in the 1990’s.

In sum, whatever the appropriate conclusion regarding structural differences, 

there is no ambiguity surrounding the hypothesis that cash flows, because of capital 

market imperfections, are an important determinant of R&D investment behavior. This 

result was found to be the case regardless of the model specification employed, the firms 

included in the sample, or the time period over which models were estimated.

We will now turn our attention to R&D investment models using data from the Japanese 

pharmaceutical industry over the period from 1994 to 1997.

Section 3.1: The Determinants of Pharmaceutical R&D:
A Study of the Leading 28 Japanese Pharmaceutical Firms1?

In an effort to further examine the relationship between internally generated funds 

and R&D expenditures, models were also estimated using Japanese firm data for the time 

period 1994-to-1997—the only years for which complete data could be obtained. While 

the Japanese pharmaceutical industry is different in many respects from the 

pharmaceutical industries previously studied, the arguments for a cost of capital 

differential between internal and external funds are still applicable. For this reason, data 

were gathered on the largest Japanese pharmaceutical firms to test this hypothesis. This 

section begins by presenting the firms in the sample and discussing the data 

characteristics and limitations. Following this, the model specifications are outlined and 

the empirical results reported.

In addition to estimating models based exclusively of Japanese firm data, this 

section will also estimate a model using a pooled sample of all 60 firms presented in this 

chapter—i.e., U.S., European, and Japanese firms—over the 1994-to-1997 time period. 15

15 This section will also estimate a model that pools the sample of Japanese firms with the previously 
studied sample o f U.S. and European firms.
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Indeed, this last model will be global in nature and include a very diverse sample of 

firms.

Section 3.2: Data Sample

As was the case with the data in previous section, most of the data for these 

analyses were obtained from Scrip Company League Tables. The exception again was 

data on annual firm depreciation—a necessary variable required for the calculation of 

firm cash flows. This data had to be obtained from other sources. Unfortunately, 

however, data on this variable was severely limited for Japanese firms. In particular, 

values prior to 1993 were not obtainable. As a consequence, models were limited to the 

time period from 1994 to 1997.

The firms in this sample are listed below:

1) Asahi Chemical
2) Banyu Pharmaceuticals
3) Chugai Pharmaceuticals
4) Daiichi Seiyaku
5) Dainippon Pharmaceuticals
6 ) Eisai
7) Fujisawa
8 ) Fuso Pharmaceuticals
9) Green Cross
10) Hokuriku Seiyaku
11) Kaken Pharmaceuticals
12) Kyowa Hakko
13) Meiji Seika
14) Mochida Pharmaceuticals
15) Nikken Chemicals

16) Nippon Shinyaku
17) Ono
18) Sankyo
19) Shionogi
20) SS Pharmaceuticals
21) Taisho Pharmaceuticals
22) Takeda Chemical Industries
23) Tanabe Seiyaku
24) Tokyo Tanabe
25) Torii Pharmaceuticals
26) Toyama Chemical
27) Tsumura & Company
28) Yamanouchi

Section 3.3: Model Specifications and Empirical Findings

The models estimated in this section were the same as those estimated in the last 

two sections with the exception of the fixed-effects specification. The present panel data
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contained too few time series relative to the number of cross-sectional units (i.e., firms). 

Thus, from a practical standpoint, the cost in terms of the number of degrees of freedom 

needed to estimate a LSDV model was considered to be too high (Greene 1993).16 

However, unlike the models in the last two sections—which contained a much more 

heterogenous sample of firms (with presumably systematic differences across firms not 

explained by the models three key regressors), diagnostic tests supported the use of a 

random-effects model specification. 17 More will be said on this latter in the section.

Furthermore, the short time series in the present sample also led to another 

complication; the firm-invariant profit expectation variable was no longer significant. 18 

Consequently, time trend variables and year dummy variables were tested in the model to 

account for changing profit expectations over the 4-year period, but were not found to be 

statistically significant. (Refer to Appendix 2 for more details and regression results) . 19 

As a result, it was assumed that firm profit expectations remained constant over the 

period from 1994 to 1997. The following regression results were estimated using the 

Japanese-firm data:

Table 5.7

16 In fact, attempts w ere  made to estimate LSDV models; unfortunately, however, the loss in degrees o f  
freedom was found to be too great to generate a robust model.

17 Like the 1 l-U.S.-firm models, Hausman’s Wald Statistic failed to reject the null-hypothesis o f no 
correlation between the random effects and the model regressors. This is not surprising, because, unlike the 
pooled U.S.-based and European-based firm sample, which contained firms o f all sizes, the 28-firm 
Japanese sample was fairly homogeneous— both in size, industrial climate, and type o f R&D operations 
(large in generic manufacturing). This was much like the case with the 11-large-U.S. firm sample that also
supported a random-effects specification.
18 Due to the very limited number o f time series observations in the Japanese-firm sample, P harM arg  was 
not found to be statistically significant in these models. That is, because profit expectations were 
hypothesized to be uniform across all firms in any given year, such a short time series is not likely to 
provide a sufficient number o f observations to detect the influence of changing profit expectations on R&D 
intensity. This is particularly true in this case, because there was very little variation in P harM arg  over this 
time period. Moreover, because the formulation o f P h arM arg  was based primarily on leading U.S. and 
European firms, this variable may not have been applicable as a proxy for the profit expectations of  
Japanese firms. Having said that, when a different P h arM arg  variable was tried— one that was constructed 
from the Japanese firms in this sample—the results were unaltered. The profit expectations variable was 
negative and insignificant. Consequently, this variable was dropped from the model.

19 For the model that employed year dummy variables, all o f  the dummy variables were considered 
simultaneously for statistical significance.
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Regression Results for 28 Japanese Pharmaceutical Firms over the Period from 1994-1997
(Values in parentheses are t-statistics)

Model Specification Intercept CF Pet r 7 f

Equation 5.7.1 0.01 0.33 0.05 0.47/36.3

Classic OLS (0.92) (5.90) (3.18)

Equation 5.7.2 0.01 0.27 0.06 0.96/1317.4

FGLS (Common Intercept) (4.94) (7.46) (10.95)

Equation 5.7.3 0.05 0.17 0.04 0.95

Random Effects (2.10) (2.83) (1.51)

As may be noted from Table 5.7, a FGLS model specification (Equation 5.7.2) was again 

estimated, thus indicating the detection of cross-sectional heteroskedasticty in the classic 

OLS model. Interestingly, while virtually none of the models estimated in this chapter 

tested positive for the presence of with-in group serial correlation or contemporaneous 

correlation, every OLS model suffered from cross-sectional heteroskedasticity. (See 

Appendix 2 for the diagnostic test results). This finding was particularly interesting 

given the fact that the model variables were specified as ratios (or size ‘deflated’ intensity 

measures)—a common remedy for heteroskedasticity.

Despite the fact that, for practical reasons, a fixed-effects model specification was 

deemed inappropriate for the current sample, diagnostic tests supported the use of a 

random-effects specification. Specifically, Hausman’s Wald statistic—which tests the 

null hypothesis of no correlation between the random effects and the model regressors— 

was not found to be statistically significant (W= 3.71).20 This finding, which was also 

the finding in the 1 l-U.S.-firm sample, may be due—in part—to the fact that the current 

sample of Japanese firms was relatively homogeneous. Consequently, systematic 

differences across firms may not have existed (aside from, of course, those differences 

explained by the key model regressors). Indeed, in the pooled U.S.-and European-based 

models, many countries—with very different regulatory environments —were 

represented. This, consequently, likely resulted in systematic differences across firms

20 The critical values for this statistic (which are distributed asymptotically as Chi-squared) were: 4.61 
and 5.99 for 10% and 5 %  levels o f  significance, respectively.
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that could not be explained solely by the key model regressors. 21 The following 

exemplifies the counterpoint. In addition to operating in the same economic environment 

(i.e., country), the present sample of Japanese firms demonstrated considerably less 

variance in firm size, involvement in biotechnology, and the extent of their involvement 

in generic pharmaceutical production than did the firms in the U.S.- and European-based 

firms in this chapter.

The coefficient on the lagged cash flow variable was found to be highly 

significant in all of the above equations. Specifically, this coefficient ranged from 0.17 to 

0.33. Interestingly, these coefficients were considerably larger than those estimated with 

the other, non-Japanese, firm data in this chapter. A summary of these estimated 

coefficients is presented below in Table 5.8. Coefficients are only reported for the 

models that were determined to be the econometrically appropriate specification for each 

particular sample.

Table 5.8

Estimated Lagged Cash Flow Variable Coefficients in Selected Model Specifications

(Values in parentheses are t-statistics)
Firm Sample and Selected Model Specification Coefficient of Lagged Cash Flow Variable (CF)

Equation 5.8.1 0.08
24 U.S.-and European-based Firms (1984-1997) (4.86)
Feasible Generalized LSDV (i.e., Fixed Effects)

Equation 5.8.2 0.10
32 U.S.-and European-based Firms (1991-1997) (6.92)
Feasible Generalized LSDV (i.e., Fixed Effects)

Equation 5.8.3 0.17
28 Japanese Firms (1994-1997) (2.83)

Random Effects

^1 As was mentioned earlier, several variables were developed in an attempt to control for these 
differences. Unfortunately, however, these variables were found to either be insignificant or impossible to 
construct (due to limitations in the data).
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The results from the models estimated in this section, which used exclusively Japanese- 

firm data, contribute to the growing body of empirical evidence supporting the hypothesis 

that cash flows are an important determinant of pharmaceutical R&D investment. Lastly, 

the final model estimated in this chapter is an expansion of the previous model and 

includes the 32 U.S. and European pharmaceutical firms studied above. This model will 

be estimated using a total of 60 firms with data covering the time period 1994 to 1997.

Section 3.4: The Determinants o f Pharmaceutical R&D: A Study o f 60 o f the World’s 

Leading Pharmaceutical Firms over the 1994-1997 Time Period

As a final analysis for this chapter, data from all of the aforementioned U.S., 

European, and Japanese firms were pooled. However, given the limited time series 

available for the 28 Japanese firms, these models were constrained to data for the time 

period 1994 to 1997. As was the case with the models based on exclusively Japanese- 

firm data, the relatively short time series made the estimation of a fixed-effects model 

specification impractical. 22 Unfortunately, and unlike the Japanese-based-firm models, 

diagnostic tests revealed a statistically significant correlation between the model 

regressors and the random effects when a random-effects specification was estimated. 

Consequently, the results obtained from this model—whose specification was required 

for practical econometric reasons—likely suffers from inconsistency due to omitted 

variables. 23 This finding was expected given the heterogeneity of the 60 firms in the 

sample. The linear regressions results based on this 60-firm sample are presented below 

in Table 5.9.

22 As was the case with the Japanese-based models, because o f the short time series and the time-invariant 
formulation o f the profit expectations variable, all proxies that were employed to control for changing 
profit expectations were found to be statistically insignificant. These proxies included the P harM arg  
variable, year dummy variables, and several formulations o f a time-trend variable. Consequently, as was 
believed to be the case with the exclusively Japanese-based models, profit expectations were assumed to be 
constant over this time period, and this variable was dropped from the equation. Regression details for the 
different specifications are reported in Appendix 2.

Refer to Chapter Four for a fuller discussion on this point23
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Table 5.9

Linear Regression Results for 60 U.S., European, and Japanese Firms (1994 to 1997)
(Values in parentheses are t-statistics)

Model Specification Intercept CF Pharm R /̂F

Equation 5.9.1 0.01 0.25 0.07 0.53/85.5

Classic OLS (0.68) (8.64) (6.89)

Equation 5.9.2 0.01 0.23 0.07 0.98/3061.8

FGLS (Common Intercept) (5.73) (27.66) (28.1)

Equation 5.9.3 0.04 0.08 0.06 0.94

Random Effects (3.37) (2.67) (3.84)

The results in Table 5.9 provide still further compelling evidence to suggest that 

firm cash flows are an important determinant of pharmaceutical R&D investment. 

However, as was mentioned, these pooled results should be viewed with considerable 

caution. Because of the short time series, a fixed-effects-model specification was 

statistically impractical due to the high cost of estimating it—in terms of the required 

number of degrees of freedom. This turned out to be problematic because the random- 

effects-model specification, which used up only a few degrees of freedom and hence was 

econometrically practical for this data set, was determined not to be the “best” model for 

the data. 24 This was, however, of no surprise given the widely divergent firm 

characteristics present in this 60-firm sample.

Section 4: Conclusions and Discussion

The analyses undertaken in this chapter mark the first empirical study ever of the 

determinants of pharmaceutical R&D on a global scale—all previous studies have been 

limited to small samples of exclusively large U.S. firms. Hence, these empirical findings 

should be more representative of the role played by internal funds in the firm R&D

Hausman’s Wald statistic for the random-effects-model specification was calculated to be 12.27. This 
was statistically significant at the 1% level.
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investment decision. Moreover, these analyses are based on a more contemporary data 

sample. Thus, these results are likely to be a better reflection of the current industrial 

climate for pharmaceutical R&D investment.

The results from the different models estimated in this chapter and the last are 

summarized below in Table 5.10. In addition to reporting the estimated coefficients for 

the cash flow variable, the elasticity of R&D intensity with respect to cash flows is also 

reported for each sample. In order to estimate this elasticity, sample means were 

calculated for both R&D intensity and the cash flow margin. Specifically, the elasticity 

of R&D intensity with respect to cash flows is defined to be the following:

%ARD
RD'CF ~ %ACF

fdRD Ï
v f C F 1

U CFj
(3)

Table 5.10

Summary of Empirical Findings on the Role of Cash Flows in R&D Investment

Model
(Time Period)

Cash Flow 
Coefficient

Mean RD/Sales 
for the Sample

Mean CF/Sales 
for the Sample

Cash Flow 
Elasticity

11 U.S. Firms 
(1976-1996)

0.11-0.25 0.085 0.213 0.275-0.625

11 U.S. Firms 
(1983-1996)

0.09-0.27 0.099 0.259 0.235-0.706

24 U.S. and European Firms 
(1984-1997)

0.08-0.20 0.097 0.215 0.177-0.443

32 U.S. and European Firms 
(1991-1997)

0.10-0.16 0.108 0.232 0.215-0.344

28 Japanese Firms 
(1994-1996)

0.17-0.33 0.100 0.139 0.236-0.459

60 U.S., European and 
Japanese Firms (1994-1997)

0.08-0.25 0.102 0.198 0.155-0.485
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In sum, the regression results in this chapter provide substantial evidence to 

support the hypothesis that internally generated funds are an important determinant of 

pharmaceutical R&D. In fact, in every model estimated, a statistically significant and 

relatively stable positive relationship was found to exist between firm research and 

development intensity and lagged cash flow margins. This was the case both for models 

estimated over different time periods and for models estimated using different samples of 

firms. These findings are consistent with the theoretical model developed in Chapter 

Three.

Finally, as was shown earlier in the chapter, the lagged cash flow coefficient has a 

very interesting and useful policy interpretation. For every dollar reduction in a firm’s 

cash flow, R&D investment will fall by approximately the value of the estimated cash 

flow coefficient. (Refer to footnote 7 for more details). For example, if the cash flow 

coefficient were estimated to be between 0.10 and 0.25 for a particular industry and 

industry cash flows fell by $10 billion, then R&D investment could be expected to fall by 

approximately $1 to $2.5 billion. This reduction in R&D investment would certainly 

exert a negative impact on long-term medical innovation—which depends so heavily on 

R&D investment.

Clearly, then, these types of R&D investment models may be used to gauge the 

relative impact of, for example, a new government policy that affects firm cash flows on 

R&D investment levels (Grabowski and Vernon 1997). This is indeed a useful, but 

somewhat limited application. The main shortcoming with this application is the lack of 

an explicit relationship between a given policy and firm cash flows. Consequently, all 

one can do is run “what i f ’ scenarios. For example, if policy “X” impacts firm cash 

flows by “Y,” the result will be a reduction in R&D investment by “Z.” Of course, it 

goes without saying, seldom does a researcher have the ability to estimate an explicit 

statistical relationship between a particular government policy and a well-defined, 

quantifiable economic outcome. However, this is exactly what the next chapter will 

endeavor to do.
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Chapter Six will build on the robust models estimated in this and the last chapter 

and estimate explicitly how a prescription-drug-price-control policy in the U.S. will 

affect global R&D investment. While the forthcoming empirical analyses in Chapter 6  

will be severely hampered by data limitations, these analyses should nevertheless set 

forth an interesting and unique methodology to address, quantitatively, the question: 

“How, and to what degree, will pharmaceutical price controls in the United States affect 

global R&D investment?” This particular policy question was selected because it is, 

without a doubt, one of the most hotly debated political issues in United States at the 

present time. Therefore, having already established what has proven to be a highly robust 

investment model for pharmaceutical R&D, one that is based on capital market 

imperfections, it is both appropriate and very relevant to explore this application of our 

model. We turn to this now in Chapter Six.
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Chapter Six

Price Controls and the Pharmaceutical Industry: Estimating the Effect 
of Pharmaceutical Price Controls on Pharmaceutical R&D Investment

Section 1: Introduction

There exists a great deal of debate in the United States over the potential 

economic implications of pharmaceutical price controls. Proponents for the regulation of 

prescription drug prices in the U.S. argue that pharmaceutical price controls—like those 

that are imposed in most foreign markets—are a necessary measure to ensure affordable 

health care for all Americans. However, on the other side of the debate, and equally 

compelling, are arguments against pharmaceutical price controls because of their likely 

impact on investment in pharmaceutical R&D. Supporters of this latter position contend 

that pharmaceutical price controls will have a negative effect on future drug innovation— 

i.e., the development of new life-saving medical advances in pharmaceuticals. This 

would result, the argument goes, because the incentives to invest in new R&D—which 

drive new drug innovation—would diminish considerably due to the expectations of 

lower returns (sales revenues) from drugs developed and marketed under regulated 

pricing.

Indeed, the last decade has seen this controversial debate grow all the more 

heated. This has been due in part to the rise in prescription drug prices relative to the 

prices of other goods and services in the United States (Grabowski 1994). However, at 

the same time, one must consider that there have been many innovative new drugs 

developed and brought to market in the past decade. These new medicines have greatly 

improved health care in a variety of disease areas. Examples include AIDS, 

cardiovascular disease, and mental illness, to mention only a few (PhRMA 1999). 

Furthermore, virtually half of all new drug introductions in the past two decades have 

been developed by U.S.-based firms—firms whose sales are predominantly U.S. sales 

(Grabowski 1994, Redwood 1993, PhRMA 1999). For this reason, several publicly 

funded studies by the Office of Technology Assessment and the Congressional Budget
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Office have been undertaken to help us better understand the costs, risks, and rewards 

that are particular to pharmaceutical R&D. Importantly, however, there have been no 

studies that have empirically estimated the impact price controls will have on current and 

future levels of R&D investment. In fact, only a few studies have examined the empirical 

aspects of the incentives to invest in pharmaceutical R&D (Grabowski and Vernon 1981, 

Vernon 1995, and Grabowski and Vernon 1997). Consequently, this will be the first 

study ever to explicitly address the question of how price controls affect investment 

spending on pharmaceutical R&D.

Using data from twelve of the world’s leading pharmaceutical firms over the 

period from 1994-1997, models of the determinants of pharmaceutical R&D investment 

will be estimated. These models will be similar to those estimated in Chapters Four and 

Five. However, the models estimated in this chapter will have one major distinction— 

they will be sufficiently modified to empirically estimate the influence of pharmaceutical 

price controls on R&D investment levels. Moreover, and of particular relevance from a 

public policy perspective, based on the models estimated in this chapter, it will be 

possible to estimate the impact U.S. price controls will have on current and future levels 

of R&D investment.

Section 2 of this chapter will begin by providing a brief background of the major 

differences between the U.S. pharmaceutical marketplace and non-U.S. pharmaceutical 

markets—with a particular focus on market launch pricing and the European 

pharmaceutical markets. Section 3 will describe and discuss the data used in this paper. 

Section 4 will describe the theoretical model and discuss its limitations and advantages, 

and Section 5 will present the statistical findings. Finally, Section 6  will discuss the 

empirical findings and the policy implications that result.

Section 2.1: Brief Background on Pharmaceutical Price Regulation

The United States is the only major industrialized country in the world that does 

not currently regulate prescription drug prices. 1 In the United States, prescription drug

1 As will become apparent later in this chapter, a sharp distinction is drawn between the regulatory
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prices are determined in a free market system. In direct contrast with this, practically 

every other country, either directly or indirectly, imposes one form of price controls or 

another on pharmaceuticals. To set the stage for the forthcoming analyses, it will be 

instructive to briefly describe the pricing and cost containment methods utilized by some 

of the major non-U.S. pharmaceutical markets. The 16 major ex-U.S. markets examined

are the following:

1 ) Austria
2 ) Belgium
3) Denmark
4) Finland
5) France
6 ) Germany
7) Greece
8 ) Ireland
9) Italy
1 0 ) Netherlands
1 1 ) Norway
1 2 ) Portugal
13) Spain
14) Sweden
15) Switzerland
16) United Kingdom

Because the returns from pharmaceutical R&D come largely in the form of the 

revenues generated by recently launched, patented new drugs, the focus of this section 

will be on the pricing regulation of these newly-launch drugs. The regulations detailed in 

this section will be presented in a very succinct fashion—for more complete regulatory 

pricing details on each of the countries surveyed, the reader is referred to the 1998 

PhRMA Pricing and Reimbursement Report.

environment in U.S. market for prescription drugs and all other, ex-U.S. regulatory environments for 
prescription drugs. Specifically, the assertion that price regulation exists in one market (the “ex-U.S. 
market”) but not the other (the U.S. market) is made. This is clearly an oversimplification. For one, the 
regulatory environments outside the U.S. are quite heterogeneous, and the degrees to which prescription 
drug prices are controlled vary greatly. Also, to say that in the U.S. there are no mechanisms by which 
prescription drug prices are regulated would be inaccurate. Nonetheless, it is a fact that there is far less 
regulation of prescription drug prices in the U.S. as compared to other countries. Therefore, this 
oversimplification— which imposes a binary-type classification for prescription drug price controls— still 
makes a good deal o f  sense from a modeling perspective. And as will be seen shortly, for interpretive 
purposes, this approach is quite valid— one only needs to modify the definition of regulated pricing.
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To control public spending on newly introduced/launched pharmaceutical 

products in Europe, some governments opt to focus on the supply side of the market (the 

manufacturer and distributor) while others focus on the demand side of the market (the 

patient and the physician). In regulating pharmaceutical pricing on the supply side, the 

most common methods include controls over individual products, reference pricing 

(which is establishing a price based upon the price of the same or similar drugs in other 

countries), average pricing, constraints on wholesalers and pharmacists, and positive and 

negative product listings for reimbursement (which are lists of drugs that the government 

decides it will and will not pay for, respectively).

Alternatively, for countries that emphasize the regulation of pharmaceutical 

pricing on the demand side, frequently used methods include patient co-payments, 

advice, guidelines and/or budgets for physicians, parallel imports, and even the transfer

of products from prescription-only to over-the-counter (OTC) status. However, no single
2

country relies on a single method, but rather a combination of different methods.

Table 6.1 summarizes the different methods used by each of the aforementioned 

countries to regulate the prices of newly launched prescription pharmaceuticals.

2
Again it should be emphasized that it is not implied that the U.S. does not employ any of these measures 

in regulating the prescription drug market. This clearly does occur. The main point being made is that 
there is, on average, a great deal more regulation in ex-U.S. pharmaceutical markets.
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Table 6.1

Various Means of Regulating Prescription Drug Prices in Europe

C ountry

Control 
Prices at 
Launch

Control
Reimbursement

Prices

Reference
Pricing

Profit
Controls

Positive/
Negative
Listings

Drug
Budgets for 

Doctors

Patient
Co-

payments
Austria V V - - V - V

Belgium V V - - V - V
Denmark - - V - V - V
Finland - V - - V - V
France - V - - V V V

Germany - - V - V V V
Greece V V - - V - V
Ireland V V - - V V

Italy - V - - V - V
Netherlands V V V - V - V

Norway - V V - V - V
Portugal V V - - V - V

Spain V V - V V - V
Sweden - V V - V - V

Switzerland - V - - V - V
United Kingdom - - - V V V V
Source: “Pricing and Reimbursement in Western Europe: A Concise Guide, ” A PhRMA Pricing Review 
Report (PPR Communications Ltd, 1998).

The above table demonstrates the vastly different types of health care systems that 

exist across Europe. However, all of the countries listed in Table 6.1 (indeed, practically 

all ex-U.S. markets, including Asia, Australia, Canada, South America, etc.) do have one 

thing in common: one form of pharmaceutical price controls or another. This, as was 

stated earlier, is not the case with the U.S. health care system. In the U.S., the 

government does not regulate prescription drug prices. This fact is germane to the 

following sections and the development of a variable that is capable of empirically 

estimating the impact pharmaceutical price controls have on R&D investment.
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Section  2.2: Implications o f Price Controls for Pharmaceutical Innovation: Qualitative 

Considerations and Past Research

In his 1994 American Enterprise Institute (AEI) Study: Health Reform and 

Pharmaceutical Innovation, Grabowski outlined the key provisions and likely 

consequences of the Clinton Administration’s previously introduced (November 1993) 

Health Security Act. While this Act was not passed by congress, the issues and essence 

of this Act are still being widely debated. Furthermore, the likelihood of a similar Act 

being introduced in the near future appears to be quite high. For this reason a brief 

overview of Grabowski’s earlier research is provided before moving into the analyses 

undertaken in this chapter.

In his distillation of the Clinton Administration’s Health Security Act and its 

likely impact on the pharmaceutical industry, Grabowski emphasized that the most 

important provisions of the act were the cost-control measures that would have impinged 

directly upon future drug returns. These provisions, which would have established 

negotiated rebates for newly launched drugs (and the related authority to exclude such 

drugs under Medicare), Grabowski argued, would have dramatically reduced the 

expected returns to pharmaceutical R&D—i.e., the sales revenues of new drugs. This in 

turn, he argued, would have dramatically diminished the incentive to invest in R&D and, 

hence, to innovate.

Along the same lines, the Health Security Act also contained provisions for 

imposing premium caps on the growth of health care expenditures and for the creation of 

the Advisory Council for Breakthrough Drugs. Indeed, provisions like these—as well as 

many others outlined in the act—would have established an incipient system of price 

controls over new drugs. The negotiated rebates on new drugs, for example, were to have 

been established by means of referencing drug prices in other countries. (See footnote 10 

for more details.) As Grabowski notes, such a set of provisions would open up a 

Pandora’s box of unintended and undesirable consequences, the greatest undesirable 

consequence being the impact such provisions would have on the incentives to invest in 

current and future research and development.
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Drawing on some of his earlier work, Grabowski undertook a simple net present 

value (NPV) analysis to model the impact of various government price control scenarios 

on the returns to pharmaceutical R&D. While Grabowski’s analysis did not address how 

such price controls would directly affect R&D investment, he did demonstrate the 

sensitivity of the NPV of R&D investments to price controls under various scenarios. 

Specifically, Grabowski considered four scenarios based on some of his earlier research 

—research in which he estimated the after-tax returns of new drugs by decile (based on a 

ranking of the drugs by their present value sales revenue) and the average R&D cost per 

new drug. (Refer to Chapter Two for a fuller discussion of these studies.) Figure 6.1 

graphically summarizes these results (previously Figure 2.15).

Figure 6.1 (Previously 2.15)

Present Values by Decile for 1980-1984 New Chemical
Entities

Source: Grabowski and Vernon, “The Returns to R&D on New Drug Introductions in the 1980s, ” Journal o f  Health 
Economics, 1994.
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As Figure 6.1 demonstrates, the returns to pharmaceutical R&D are highly skewed, with 

only the top three deciles of drugs generating present value sales revenues in excess of 

average R&D costs. Grabowski used these findings to create four hypothetical price 

control scenarios. The four scenarios were:

1) Base line (i.e., no price controls);
2) Top decile of new drugs constrained to break even;
3) Top two deciles of new drugs constrained to break even;
4) Top three deciles of new drugs constrained to break even.

These scenarios assumed that the government would impose variable rebates on the first, 

second, and third deciles of newly launched drugs such that those drugs would earn a 

return equivalent to the average cost required to bring a drug to market— $ 2 0 1  million in 

1990 (Grabowski and Vernon 1994). Table 6.2 summarizes his findings.

Table 6.2

Government Price Constraints on Top Decile Drugs and Implications 
for the Mean New Chemical Entity Introduction

(millions of 1990 dollars)

Case Present 
Value Cash 

Flow

R&D Costs Net Present 
Value

A Net Present 
Value

Base line: no government price controls 224.1 201.9 2 2 . 2 -

Top decile constrained to break even 141.7 201.9 -60.2 -82.4

Top 2 deciles constrained to break even 110.8 201.9 -91.0 -113.2

Top 3 deciles constrained to break even 107.8 201.9 -94.0 -116.2
Source: Grabowski and Vernon, “The Returns to Pharmaceutical R&D: Prospects under Health Care 
Reform, ” in Robert B. Helms, Competitive Strategies in the Pharmaceutical Industry (AEI Press, 1994).

The NPV estimates illustrated in Table 6.2 clearly demonstrate how price controls 

could have a negative—and quite substantial—impact on the incentives to invest in 

R&D. Indeed, R&D is a very risky investment, especially in the early discovery phases 

of research. Such dramatic changes in the returns to R&D—and hence the expected
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future returns to R&D—would likely reduce current and future R&D investment 

substantially. The exact quantitative impact on R&D investment is unclear, and has 

never been estimated empirically. This is due, of course, to the difficulty inherent in 

quantifying the effect U.S. price controls have on firm profit expectations.

Models of the determinants of pharmaceutical R&D investment have been 

estimated (Grabowski and Vernon 1981, Grabowski and Vernon 1997, Chapter Four, and 

Chapter Five) and found to be quite robust. However, these models did not explicitly 

account for the role price controls play in influencing the expected future returns to R&D 

investment. As will be seen in the forthcoming sections, using a newly developed 

variable—one that is defined to be the ratio of a firm’s U.S. pharmaceutical sales to the 

firm’s total pharmaceutical sales—it is possible to empirically estimate the role regulated 

prescription drug prices have on R&D investment. This new variable—which may be 

thought of as the proportion of a firm’s pharmaceutical sales that are not subjected to 

price controls—and how it implicitly enters into the general model specifications 

developed in Chapters Four and Five, will be discussed in detail in the following sections.

Having outlined and discussed the major differences between the U.S. and ex- 

U.S. pharmaceutical markets and the economic consequences of these differences in 

terms of the incentives to invest R&D, it is now appropriate to present the data used in 

the forthcoming empirical analyses.

Section 3: Data

The data obtained for use in this chapter, as was the case for the previous two 

chapters, came predominantly from Scrip Pharmaceutical Company League Tables and 

Scrip Pharmaceutical Company Annual Reports. The exception to this was firm annual 

depreciation. This variable, which was necessary for the construction of one of the key 

variables in the model, was obtained from several different sources. These sources 

included annual reports, SEC fillings (i.e., 10K and 10Q fillings), and various online 

financial databases (i.e., Hoovers, Edgar Online, PRARS, and CAROL). Furthermore, as 

will be discussed more thoroughly in the next section, because the data were obtained
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from different sources—or different tables in the Scrip Reports, they were rigorously 

validated by confirming that all available sources (or Scrip tables) reported the same 

estimate for each of the variables. The firms used in this study were selected based on 

the following criteria:

1) Data were available to estimate the percent of the firm's pharmaceutical sales that 
were ex-U.S. pharmaceutical sales.

2) Detailed financial data were available on the firm’s pharmaceutical operations. 
Specifically, the following financial variables were available:

i) Total firm sales
ii) Total firm pharmaceutical sales
iii) Net income for the firm’s pharmaceutical operations
iv) Total firm R&D expenditures
v) Total firm depreciation expense

3) The firm had to be of sufficient size and market capitalization.

The first criterion was by far the most restrictive for this study. Data on the 

percentage of a firm’s pharmaceutical sales that were ex-U.S. pharmaceutical sales were 

difficult to procure. In fact, these data were available for only one year—1996. Indeed, 

this restriction further limited the sample size by restricting the number of years included 

in the study—1994-1997. Moreover, these data were reported for only twenty firms.

The second criterion—having a complete set of financial data—eliminated eight of the 

remaining twenty firms in the sample. The variable that was not available for these firms 

was pharmaceutical net income. Finally, the remaining twelve firms were all deemed to 

be sufficient in size and market capitalization to be included in the study.

Data were available to estimate investment models based upon the following 

sample of twelve firms over the period from 1994-1997:

1) Abbot Laboratories
2) American Home Products
3) Amgen
4) Bayer
5) Bristol Myers Squibb
6 ) Glaxo-Wellcome
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7) Hoechst
8 ) Johnson & Johnson
9) Pfizer
10) Schering-Plough
11) SmithKline Beecham
12) Warner Lambert

Section 4.1: Methods and the Theoretical Model

The theoretical framework guiding the empirical analyses in Section 4 will be 

based upon the investment model rigorously developed in Chapter Three. The empirical 

analyses, however, will differ slightly from earlier studies of the determinants of 

pharmaceutical R&D (and the models estimated in Chapters Four and Five). As will be 

discussed shortly, this is because of a new formulation of the profit expectations variable 

—one that is capable of incorporating the influence of pharmaceutical price controls. 

Before delving into this new model specification, a brief overview of the theoretical 

model will be presented next.

Section  4.2: The Theoretical Investment Model: A Brief Overview

Classical economic theory states that the optimal level of investment by any firm 

is that level of investment whereby the marginal rate of return on the next dollar invested 

is equal to the marginal cost of capital of that dollar. Equivalently stated, the optimal 

level of firm investment is determined by solving simultaneously an expected marginal 

rate-of-retum equation, mrr, and an expected marginal cost-of-capital equation, mcc. In 

the case of pharmaceutical R&D, this marginal rate of return may be thought of as the 

expected rate of return on the next R&D project. Specifically, the expected rate of return 

on the next project is assessed by the firm to be the expected present value revenues from 

the next project less the expected present value operating costs from the next project all 

divided by the present value R&D expenditures for that project. This is expressed 

algebraically by equation ( 1 ).
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mrrl
E (R ,)-E (C ,)

RD, 0 )

The subscript i denotes the /th R&D project in the firm’s R&D project portfolio. Refer 

to Chapter Three for a more rigorous development of this expected marginal-rate-of- 

retum concept. Projects are then arranged in the R&D project portfolio in decreasing 

order with respect to their risk-adjusted expected rate of return.

The mcc equation, on the other hand, reflects the opportunity cost of capital 

incurred through investing in R&D on the margin. This opportunity cost may be thought 

of as the expected rate of return on the next best alternative investment of similar risk.

As discussed in Chapter Three, and confirmed empirically in Chapters Four and Five, 

there is both theoretical and empirical evidence to support the hypothesis that capital 

market imperfections exist and result in a lower cost of capital for internal funds relative 

to external funds (i.e., new debt and equity finance). The theoretical rationale for the 

hypothesis that internal finance is less costly than the issuance of new shares or debt has 

already been rigorously developed in this thesis. 3 The general form of this model may be 

expressed algebraically as follows:

mrr(RD*, X, Y) = mcc(RD' , Z) (2)

The arguments of the mrr and mcc equations are defined as follows:

RD*= the optimal level of pharmaceutical R&D investment 
X =a vector of variables influencing expected returns to pharmaceutical R&D 
Y -a  vector of variables influencing the expected costs of pharmaceutical R&D 
Z -a  vector of variables influencing the firm’s cost of capital

Flence, the optimal level of R&D is implicit within the above equation. The general 

solution to this model is thus a function of the vectors X, Y, and Z.

J The five principle arguments put forth in Chapter Three were based upon transaction costs, tax 
advantages, asymmetric information, agency problems, and the costs o f financial distress. For a full 
theoretical development o f  this hypothesis refer to the aforementioned chapter.
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RD* = /(X , Y,Z) (3)

Equation (3) clearly implies that any change in one or more of the variables contained in 

the X, Y, or Z vectors is likely to alter the optimal level of R&D. This equilibrium 

condition is depicted graphically in Figure 6.2.

Figure 6.2

The Optimal Level of R&D Expenditures 
with Financing Constraints

In the context of the above graph, it is easy to see how changes in the demand for R&D 

(shifts in the mrr curve) and changes in the level of internal funds affect the optimal level 

of R&D investment (refer to Figures 3.4 and 3.5 in Chapter Three).

Section 4.3: Model Specifications & the Influence o f Price Controls on Expected 

Returns from R&D
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Before presenting the model specifications used in this chapter to estimate the 

effect of pharmaceutical price controls on firm R&D investment, it will first be necessary 

to discuss how, theoretically, price controls are expected to influence the optimal level of 

R&D. As was presented first in Chapter Four, the general model specification for the 

determinants of pharmaceutical R&D intensity is the following:

RDS„ = f(E x l ,CFII_],Pctll) (4)

The dependent and independent variables are defined as follows:

RDSir -  research and development expenditures divided by total firm sales 
for the zth firm in year t.

Ent -  an index of the expected profitability of R&D investments.

CFit_x = cash flow for firm i in period t-1 divided by sales in period t- \ .

Pct„ = the percentage of the /'th firm’s sales accounted for by pharmaceutical 
sales in year t.

This specification was demonstrated to be quite robust when estimating models using 

both U.S. firm data (Chapter Four) and international firm data (Chapter Five). The key 

issue to be addressed in this chapter, however, deals with the way in which 

pharmaceutical price controls will enter into the above specification. A reasonable 

assumption is that price controls will impact the aforementioned model—and hence the 

equilibrium level of R&D investment— via their influence on the expected rate of return 

from R&D on the margin. In the context of equation (1), the mrr for project /, this will be 

captured by the first term of the numerator—the expected discounted stream of future 

drug revenues. Formally, this assumption may be expressed as the following condition: 4

4 It should be noted that for condition (5) to hold, the expected elasticity o f  total revenues with respect to 
project /’s future prescription sales volume must be— in absolute terms— less than unity, i.e. inelastic.
Thus, if for example, a Medicare prescription drug benefit is passed into law, and is accompanied by 
mandated prescription drug price controls, the net impact would be a reduction in total sales revenues. In 
fact, in two recent and independent studies by Muse and Lewin VH1 Inc. have concluded that this would 
indeed be the case. Specifically, they found that the revenue gains from universal prescription drug 
coverage would be outweighed by revenue losses resulting from Medicare rebates, increased use o f  generic 
substitutes, and increased price competition from managed-care options (Grabowski 1994). Thus, it is 
reasonable to expect condition (5) to hold in the event o f U.S. price controls on pharmaceuticals.
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(5)E(Ri)pc < E(Ri)~pc

The variables in this inequality are defined as the following:

m ) p C= the expected discounted stream of revenues generated by R&D project i when
price controls are imposed on the pharmaceutical product(s) developed under 
project i.

E(R; X. pc = the expected discounted stream of revenues generated by R&D project i 
when price controls are not imposed on the pharmaceutical product(s) 
developed under project i.

Clearly, if inequality (5) holds, the expected marginal rate of return on all R&D projects 

(the mrr schedule) will decrease. This may be graphically represented by an inward shift 

in the mrr schedule—the demand for R&D investment. This is shown below in Figure 

6.3.

Figure 6.3

An Decrease in the Demand for R&D Resulting from a 
New U.S. Policy Imposing Price Controls on Pharmaceuticals
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Thus, theoretically, it is expected that price controls will have a negative impact 

on firm R&D investment. To test this hypothesis empirically, it is first necessary to 

determine the extent to which pharmaceutical price controls affect the profitability of a 

firm’s pharmaceutical operations. To measure this effect, the relationship between firm 

pharmaceutical profit margins and the percentage of total firm pharmaceutical sales 

accounted for by U.S. pharmaceutical sales was examined. As discussed previously, 

because the U.S. pharmaceutical market is the only major drug market with no form of 

regulated prices, the ratio of U.S. pharmaceutical sales to total firm pharmaceuticals sales 

is one measure of the extent to which price controls affect the firm’s pharmaceutical 

business. In one extreme circumstance, firms whose pharmaceutical sales are entirely 

U.S. sales will not be affected by price controls. Conversely, in the other extreme 

circumstance, firms whose drug sales are entirely ex-U.S. sales will operate in an 

environment where all prescription drug prices are regulated. Clearly, it is to be expected 

that the larger the proportion of a firm’s pharmaceutical sales that are U.S. sales, the 

higher the profit margin on the firm’s pharmaceutical operations.

Using 1996 data, the only year data on the percent of pharmaceutical sales 

accounted for by U.S. pharmaceutical sales were available, a simple graph was 

developed. As Figure 6.4 shows, there exists a very strong linear relationship between 

pharmaceutical profit margins and the proportion of firm pharmaceutical sales that are 

U.S. sales. At this point it should be emphasized that, due to the small sample sizes used 

in this chapter, caution should be taken when considering the conclusions drawn from the 

forthcoming analyses. Indeed, the linear profit margin “function” depicted below (in 

Figures 6.4 and 6.5), and the regression analyses that appear later in the chapter, are 

based on sample sizes of n = 12 and n = 48, respectively.
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Figure 6.4

The Relationship Between Firm Pharmaceutical Profit Margins 
and the Percent of Pharmaceutical Sales that are U.S. Sales

1996 Pharmaceutical Profit Margins and U.S. Pharmaceutical Sales

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

U .S . P h a rm a  S a le s  : T o ta l (W o r ld )  P h a rm a  S a le s

The observed positive relationship between pharmaceutical profit margins and the 

percent of pharmaceutical sales that are U.S. pharmaceutical sales—as seen in Figure 

6.4—is central to the forthcoming empirical analyses that will estimate the impact price 

controls have on firm investment in R&D. First, however, a closer examination of these 

data will prove instructive.

Section 4.4: The Profitability o f Firm Pharmaceutical Operations
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To estimate the linear relationship observed in Figure 6.4, a classical ordinary 

least squares (OLS) univariate regression was run. The simple model had the following 

functional form:

PM ,,=fi0 + fii(%USi) + ei (6 )

The variables in equation (5) are defined as follows:

PM, = Firm i ’s pharmaceutical profit margin, and 

%USi -  The percent of firm i ’s pharmaceutical sales that were U.S. sales

Regression results, which were estimated using Microsoft TSP E-Views, are summarized 

below in equation (7), and illustrated in Figure 6.5. The t-statistics appear underneath the 

estimated coefficients, and full regression results are reported in Appendix 1.

PMj = 0.116 + 0.352(%USj) R2/F = 0.68/21.2 (7)
(2.47) (4.60)

This equation is graphically displayed below with the data from the twelve firms in the 

sample.

Figure 6.5

The Relationship Between Firm Pharmaceutical Profit Margins and the Percent of 
Pharmaceutical Sales That Are U.S. Sales5

1996 Pharmaceutical Profit Margins and U.S. Pharmaceutical
Sales



The regression model demonstrates that a fairly strong linear relationship exists 

between firm pharmaceutical profitability and the proportion of firm pharmaceutical sales 

that are U.S. pharmaceutical sales. 6 Both the intercept and the slope coefficient are 

statistically significant at the 5% level with t-statistics of 2.5 and 4.6, respectively. This 

estimated relationship between PM, and %US, (which is named PCT US in the

regression) may be used to make some interesting distinctions between the profitability of 

the prescription drug market in the U.S. and in other countries.

In particular, one may interpret the slope coefficient of %US (0.35) as an estimate 

of the difference between the profitability of the average firm’s U.S. and ex-U.S. 

pharmaceutical operations. This may demonstrated in the following way. While not 

reported separately, firms may be thought of as having essentially two pharmaceutical 

profit margins: the profit margin on their U.S. pharmaceutical sales and the profit 

margins on their ex-U.S. pharmaceutical sales. The reported profit margin for all of a 

firm’s pharmaceutical sales is consequently a weighted-average of these two components. 

This is expressed mathematically as follows:

PM, = (%US, ){PMU, ) + (1 -  %US,)(P MX,) (8)

Specifically, the variables are defined as follows:

PMU, = The profit margin on firm f s  U.S. pharmaceutical sales, and 

PMX, = The profit margin on firm Vs ex-U.S. pharmaceutical sales

6 Another variable that was hypothesized to affect firm pharmaceutical profit margins was firm size—  
specifically the size o f a firm’s pharmaceutical operations. It was believed that economies o f scale would 
influence pharmaceutical margins such that larger firms— with lower average pharmaceutical 
manufacturing costs— would, all else being constant, have higher profit margins than smaller scale firms 
with higher average manufacturing costs. The variable used to proxy the size o f a firm’s pharmaceutical 
operations was total firm pharmaceutical sales. This variable was not found to be a statistically significant 
predictor o f pharmaceutical profit margins (various formulations o f this variable were tested). This is most 
likely due to the fact that the firms in the sample were some of the largest pharmaceutical firms in the 
industry. Hence, variations in firm size at such large scales may not substantially alter average

manufacturing costs. That is, d \ T C  ! Q )  

d Q 2 O -L  a r g  e _ Scale

*  0
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D ifferentiating equation (8) w ith respect to %US yields:

d(PMt) 
0(%US, )

= PMUt -  PMX, (9)

While intuitively obvious, the above result allows for a direct empirical estimation of the 

average difference between U.S. and ex-U.S. pharmaceutical profit margins. Therefore, 

based on data reported by the twelve aforementioned pharmaceutical firms, over the 

period from 1994-1997, the following pharmaceutical profit margins were estimated:

Table 6.3: Estimated Pharmaceutical Profit Margins

Mean Pharmaceutical Profit Margin Regression Estimate
U.S. Sales 46.8%
Ex-U.S. Sales 11.6%
Difference 35.2%

These results are easily seen in the context of Figure 6.4. The intercept of 11.6%, 

which is the predicted pharmaceutical profit margin for a firm with no U.S. 

pharmaceutical sales, may reasonably be interpreted as the pharmaceutical profit margin 

in an environment where all prescription drug prices are regulated. Similarly, 

extrapolating along the regression equation to a %US value of 100%, indicates a 

predicted pharmaceutical profit margin of 46.8%. This estimate may be interpreted as the
n

profit margin in an environment without pharmaceutical price regulation. While these 

estimates are based on a relatively small sample of firms—because of the limited 

availability of data—they do represent the first estimate to date of the relationship 

between firm pharmaceutical profitability and the extent to which a firm’s 

pharmaceutical sales are subjected to price controls. The results from this simple analysis 

will now be used to empirically estimate the impact price controls have on 

pharmaceutical R&D investment—and, more interestingly, the impact a new U.S. policy, 

one imposing pharmaceutical price controls, will have on future R&D investment.
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Section 4.5: The Empirical Influence o f Pharmaceutical Price Controls on R&D 

Investment

We have estimated the statistical relationship between pharmaceutical price 

controls and pharmaceutical profitability as well as the role of pharmaceutical 

profitability—through profit expectations—in determining a firm’s level of R&D 

investment. It is now appropriate to bring the two together to directly estimate the 

influence of price controls on R&D investment.

As was discussed earlier, it is the impact of pharmaceutical price controls on firm 

pharmaceutical profitability—and hence the expectation of future profitability—that will 

deterministically affect firm investment in pharmaceutical R&D. Mathematically, this 

implicit relationship between pharmaceutical price controls and pharmaceutical R&D 

investment is seen as follows:

RDS„ = f[E7r(%US),CFM!t,Pctlt] (10)

where,

d(RDS) d(RDS) 8(E t t) 
8(%US)~ 8(E tc) ' 8(%US)

and,

d(RDS)
d(Eti)

8(Et t )
8(%US)

>0

( 12)

(13)

implying that.

The reader is referred to footnote 1 for a discussion o f the appropriate interpretation o f this statement.
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d(RDS)
d(%US)

(14)

The implication of (14) is straightforward. The greater the proportion of a firm’s 

pharmaceutical sales that are not regulated (i.e., not subject to price controls), the greater 

the level of firm investment in R&D. To test this hypothesis formally, a slightly 

modified model was estimated. However, before moving into the analyses, the 

differences between the forthcoming model(s) and the models from Chapters Four and 

Five are briefly reviewed.

Unlike the models that were estimated in Chapters Four and Five, the models 

estimated in this chapter were based on a much smaller sample size (n = 48). The reason 

for this was the limited availability of data on the percent of a firm’s pharmaceutical sales 

accounted for by U.S. sales. In fact, these data were available for only one year—1996. 

Therefore, it was deemed inappropriate to include years that were more than 2 years 

removed from 1996 (complete data for 1998 were not available). This decision was 

made because the composition of firm pharmaceutical sales (i.e., U.S. and ex-U.S.) was 

believed to fluctuate over time. This fluctuation, it was assumed, would be minimal over 

short time horizons—i.e., two years. However, over many years it is likely that such 

fluctuations would grow more substantial.

The other major difference between the models estimated in this chapter and those 

estimated in the previous two chapters is the formulation of the profit expectations 

variable. Because of the short time series, the highly significant industry-wide measure 

of firm profit expectations—used in the earlier models—was not found to be statistically 

significant. Therefore, individual firm pharmaceutical profit margins were used. This 

slightly different approach allowed for cross-sectional variations in firm pharmaceutical 

profit expectations.8 9

8 In fact, there were two firms (Johnson & Johnson and Abbott Laboratories) that did report this data over 
several years prior to 1996. Fluctuations were observed to be minor and within a few percentage points of 
one another over short periods o f time (i.e., one to two years).

9 This profit expectations variable was also tested in the earlier models. However, the statistical 
performance o f  this variable was marginal and not as robust as the industry-wide variables included in the 
final models. As was discussed in detail in the earlier chapters, different variable formulations for profit 
expectations performed very differently over the various time periods studied. Possibly, in the mid-to-late
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Therefore, the model specification to be estimated is modified only slightly from 

equation (4):

RDS,, = f ( E n il,CFil_l,Pct„) (15)

Section 5.1: Statistical Findings

Using classical ordinary least squares, a linear model was estimated using data 

from the twelve firms in the sample over the period from 1994-1997. Full regression 

results and diagnostics are reported in Appendix 1.

Table 6.4: A Model of the Determinants of Pharmaceutical R&D (Specification 1)

Dependent Variable: RDS 
Method: Least Squares

Sample: 1 48  
Included observations: 48

Variable Coefficient Std. Error t-Statistic Prob.
C 0.004789 0.012190 0.392899 0.6963

CFM 0.119770 0.046799 2.559266 0 .0140
PCT 0.075855 0.022323 3.398023 0.0015

PMARG 0.102963 0.042730 2.409640 0.0202
R-squared 0.758082 F-statistic 45.95995
Adjusted R-squared 0.741588 Prob(F- statistic) 0 .000000

As is seen in Table 6.4, all three independent variables are significant at the .05 level. 

Interestingly, the control variable Pet is significant at the .01 level, and has virtually the 

same coefficient as the estimates reported in Chapters Four and Five. Furthermore, the

1990’s, firms were more reliant on their own success in the pharmaceutical business when formulating their 
expected returns to R&D. This might be deemed reasonable in light o f the fact that firms by this time were 
well acquainted with their R&D success with rational drug design and no longer focused as much 
externally to the industry-wide returns from this new R&D process. In any event, in order to estimate a 
model over the 1994-1997 time period—when fixed-effect specifications were impractical— it was clearly 
necessary to establish a profit expectation formulation that varied cross-sectionally by firm.
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0.76 R-squared for this model is also in the range of the explained sum of squares from 

the earlier U.S. and international models (0.69-0.76). A notable difference, however, 

between the previously estimated models and the current model, is the noticeably smaller 

coefficient on the cash flow variable and the profit expectations variable, 0 . 1 2  and 0 .1 0 , 

respectively. In light of the vastly different time period and firms studied, this should not 

be too surprising. In fact, the results from this model provide considerable evidence in 

support of the general model specification employed. In both of the earlier Grabowski 

and Vernon studies and in the models estimated in this and previous chapters, the general 

model has demonstrated considerable stability under both different specifications and 

samples.

In addition to estimating a model that implicitly accounted for the impact of 

pharmaceutical price controls on R&D investment, two other specifications were 

estimated that allowed the price control proxy variable to enter explicitly into the 

regression equation. These models are presented and discussed next.

From theoretical standpoint, pharmaceutical price controls will influence R&D 

investment through the impact they have on the expected future returns from 

pharmaceutical R&D. As was demonstrated previously, the proxy price control variable 

%US and Pmarg are highly correlated ( p  = 0.68 ). However, in spite of this, it was 

considered a reasonable possibility that both variables captured different aspects of the 

expected returns to pharmaceutical R&D. To test this statistically, both variables were 

entered into the linear regression model as explanatory variables. Not surprisingly, 

because of their high degree of co-linearity, neither variable—when entered into the 

model simultaneously—was found to be statistically significant. The remaining 

variable’s coefficient estimates and their respective t-statistics remained virtually 

unchanged from the model with Pmarg alone. The statistical results from this model are 

presented below in Table 6.5.
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Table 6.5: A Model of the Determinants of Pharmaceutical R&D (Specification 2)

Sample: 1 48 
Included observations: 48

Dependent Variable: RDS 
Method: Least Squares

-----------------------------------------------------------------------------------------------------------------------------------------------------------L .

Variable Coefficient Std. Error t-Statistic Prob.
C -0 .004086 0.013456 -0.303646 0.7629

CFM 0.119466 0.046190 2.586427 0.0132
PCT 0.075432 0.022034 3.423360 0.0014

PMARG 0.054006 0.053699 1.005708 0.3202
PCT_US 0.042046 0.028549 1.472768 0.1481

R-squared 0.769699 F-statistic 35.92807
Adjusted R-squared 0 .748276 Prob(F- statistic) 0 .000000

The second model specification that allowed %US to enter explicitly into the 

regression model used %US as the sole proxy variable for expected returns. From a 

theoretical perspective, however, this specification was viewed as marginally inferior to 

the model that used Pmarg alone. This was believed to be the case because of the 

theoretical formulation of En . That is, E tc  was theorized to be a composite function, 

one where En  = Pm a.vg(%US) . Nevertheless, this model was estimated to test the 

robustness of the general model specification. The results from this regression are 

reported below in Table 6 .6 .

Table 6.6: A Model of the Determinants of Pharmaceutical R&D (Specification 3)

Sample: 1 48
Included observations: 48

Dependent Variable: RDS 
Method: Least Squares

Variable Coefficient Std. Error t-Statistic Prob.
C -0.001109 0.013128 -0.084481 0.9331

CFM 0.133384 0.044074 3 .026389 0.0041
PCT 0.074951 0.022032 3.401901 0.0014

PCTJJS 0.059820 0 .022424 2 .667655 0.0107
R-squared 0.764282 F-statistic 47.55457
Adjusted R-squared 0 .748210 Prob(F-statistic) 0 .000000
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The statistical results from Specification 3 indicate that %US is a significant 

predictor of RDS when entered into the regression equation as the only proxy for 

expected returns. This model specification, however, likely overestimates the impact of 

pharmaceutical price controls. This is because %US, as a profit expectation variable, 

forces profit expectations to zero in an environment where all pharmaceutical sales are 

ex-US sales (or an environment where all prescription drug prices are regulated). This is 

clearly an erroneous assumption. In the composite variable formulation, a %US value of 

0 corresponds to a pharmaceutical profit margin of 11.6 % (the intercept in the OLS 

regression of Pmarg on %US). This bias would be analogous to using the composite 

variable formulation and forcing the intercept of the regression of Pmarg on US% to 

zero. In fact, this restriction was imposed in order to compare the two results. The 

findings confirmed that, if the theoretically correct formulation is a composite 

formulation, the use of %US as a proxy for expected returns does indeed bias the 

coefficient upward. These findings are summarized in Table 6.7 below.

Table 6.7

A Demonstration of Coefficient Bias under Mis-specification

Variable Formulation Coefficient Regression Estimate

Err = Pm arg(a + J3(%US))
d(RDS) d(Pm arg) 

d( Pmarg) d(%US)
0.103x0.352 = 0.0363

Err = %US
d(RDS)
d(%US)

0.0598

Err = Pmarg(/3%US)
d(RDS) d(Pm arg) 

d( Pm arg) d(%US)
0.103x0.533 = 0.0549

Section 5.2: Other Specifications: Non-Linear Profit Expectations

In addition to the three main specifications just presented, other specifications 

were also tested. Specifically, models that allowed for interaction effects and non-linear 

profit expectations were also estimated. The findings from these regressions are 

summarized below in Table 6 .8 . Complete statistical results from these regressions are
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reported in Appendix 1. An interesting observation common to all of these regressions 

was a higher level of statistical significance associated with the En  variable when profit 

expectations were assumed to be non-linear. A theoretical explanation for these findings 

is not clear. 10 The policy implications associated with such profit expectations, however, 

are quite substantial as will be seen in the following section.

Table 6.8

Regression Equations Using Different Formulations 
For Expected Pharmaceutical Profitability

Type of Profit 
Expectations

Intercept Pmarg CFM Pet Rz/¥ d(RD S)/d ty jJS )  "

Linear 0 . 0 0

(0.39)
0 . 1 0

(2.41)
0 . 1 2

(2.56)
(0.08)
(3.40)

0.76/46.0 0.036

Quadratic 0 . 0 2

(2.38)
0.19

(3.58)
0.09

(2.05)
0.08

(3.99)
0.79/54.5 (0.13 )(Pmarg)

Cubic 0.03
(3-53)

0.29
(4.08)

0.09
(1.98)

0.09
(4.33)

0.80/59.2 (0.31 )(Pmarg)z

Interactive 
(with %US)

0 . 0 1

(1.58)
0.14

(4.10)
0.09

(2 .1 2 )
0.08

(4.08)
0.80/59.4 (.05 )(%US) + 

(. 14 ){Pmarg)

10 One possibility may be that there exists a strong association between a firm’s pharmaceutical profit 
margin and the number of blockbuster drugs the firm currently has on the market (this seems intuitively 
quite obvious). Therefore, firms that have had phenomenal recent success developing blockbusters may 
have dramatically different (and disproportionate) expectations surrounding their ability to develop and 
bring to market such blockbusters.

11 These derivatives have been simplified using regression estimates. The algebraic versions are shown 
below. First, however, for notation convenience the following conventions will be adopted: R= RDS,

P= P m arg , U=%US, [ i P = coefficient estimate for Pmarg, and f i u =  coefficient estimate for %US (in 

regression of Pmarg on %US). Therefore we have the following:

Linear:

Quadratic:

Cubic:

Interaction:

dU dP dU u

dR ÔR ÔP
SU dP ÔU

8R _ dR ÔP 
d U ~  dP' dU

= 2 p p -pv -P{U)

= 3 PP -fiu \P {U if

ÔR
d u ^P i

dP
—  u  + p q j)  
du
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Before proceeding to the next section, it should be mentioned that the classic OLS 

models estimated in this section were found to be econometrically sound. That is, tests 

for heteroskedasticity and within group serial correlation were not able to reject the null 

hypothesis of no heteroskedasticity and no serial correlation. For this reason, the OLS 

models were deemed a sufficient method of estimation. Moreover, given the relatively 

small sample size (n=48), fixed- and random-effects models specifications were not 

estimated. Indeed, a fixed-effects model specification would have been impractical given 

the short time series of data available on each firm (4 years) . 12

Section 6: Conclusions and Policy Implications

The past decade has witnessed a dramatic escalation in the political pressures to 

contain the growing cost of health care in the United States—with a particular focus 

being paid to the cost of prescription medications. This is not surprising, since 

prescription pharmaceuticals are the least insured element of basic health care in the 

United States and their prices have been increasing faster than inflation. Consequently, 

as was discussed earlier in the chapter, many efforts have been made to pass into law 

universal insurance coverage—with price-regulated pharmaceuticals as part of the basic 

benefit package. This was the case under the Health Security Act proposed earlier this 

decade by the Clinton Administration. Despite the fact that congress failed to pass this 

Act into law, the mounting pressures and growing health care costs are likely to result in 

new proposals in the near future. From a public policy perspective, it is not only 

necessary to consider the immediate cost savings associated with prescription drug price 

controls, but how those price controls will impact current and future levels of investment 

in pharmaceutical R&D—and hence innovation.

12 Random-effects models were estimated. However, the statistical results were not as good as those 
associated with the classical OLS model. For this reason the analysis focuses on the OLS specification.
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In this chapter several models were estimated to empirically address the role 

prescription drug price controls play in a firm’s decision to allocate funds to R&D. The 

analysis in this chapter represents the first effort to date that has sought to directly 

quantify this impact. Using robust and well-established models for the determinants of 

pharmaceutical R&D investment, slight modifications were made to the formulation of 

the firm profit expectations variable (which is a proxy for the expected returns to 

pharmaceutical R&D investment). These modifications—or more precisely the expanded 

data set and re-formulation of the profit expectations variable—were used to estimate 

several specifications. The results confirmed the hypothesis that regulated prescription 

drug prices stifle investment in pharmaceutical R&D. The magnitude of this effect varied 

depending on the model specification employed. Using the various specifications 

estimated in this chapter, elasticities of R&D investment with respect to price controls 

(i.e., the proportion of a firm’s pharmaceutical sales that were not subjected to price 

controls) were calculated using industry mean values (see Table 6.9) . 13 These elasticities 

are reported in Table 6.10 below.

Table 6.9

Industry Average Values (1994-1997)

Variable Industry Average

RDS 11.51%

Pmarg 31.86%

%US 58.98%

13 Recall that the elasticity is defined as follows:
d(RDS) %USAve 
8(%US) ' RDSAve '
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Table 6.10

Estimated Elasticities of R&D Investment with Respect to Price Controls

Model Specification Estimated Elasticity

Specification 1 (Linear Profit Expectations) (0.036X5.13) = 0.19
Specification 3 (%US used as En  proxy) (0.059X5.13) = 0.31

Quadratic Profit Expectations (Pmarg) (0.13)(0.32)(5.13) = 0.22
Cubic Profit Expectations (Pmarg) (0.31X0.32)^(5.13) = 0.17

Interaction Formulation (%US* Pmarg) r(0.05)(0.59)+(0.14)(0.32)lf5.13] = 0.38

The interpretation of these estimated elasticities deserves a brief explanation. 

Recall that the proxy variable for price controls was defined as the percentage of firm 

pharmaceutical sales that were U.S. pharmaceutical sales (i.e., non-price regulated 

pharmaceutical sales). Therefore, the appropriate interpretation for these elasticities is 

the following: the percentage increase (decrease) in R&D investment intensity that is 

associated with a one percentage point increase (decrease) in the proportion of firm 

pharmaceutical sales that are U.S. sales. However, in the context of a public policy 

perspective, point elasticities do not provide the best estimate of the consequences of a 

new U.S. policy mandating price controls on pharmaceuticals (in terms of the reduction 

in current and future R&D investment). Therefore, a more interesting application of the 

models estimated in this chapter would be to predict the actual impact on firm R&D 

investment resulting from such a policy —i.e., the passing of an Act similar to the 

previously proposed Health Security Act. These estimates could then be expressed in 

terms of the resulting percentage reduction in R&D investment intensity.

In order to simulate the impact of a new policy in the U.S. that imposes 

prescription drug price controls, it is first necessary to observe how such a policy would 

affect the variable %US. In the event of such a policy, the proportion of a firm’s global 

pharmaceutical sales not price regulated would be zero. That is, the U.S. pharmaceutical 

market—the only non-regulated drug market in the world—would become regulated, and 

all prescription drug prices would be subject to price controls. In the context of the way 

the price control proxy variable was designed (to capture the proportion of non-price 

regulated drug sales to total worldwide drug sales), this would imply that %US would be
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driven to zero. This is analogous to saying that the prices of prescription drugs in the 

U.S. would be subject to the same type of price controls found in most ex-U.S. markets. 14 15 

Therefore, to estimate the impact that pharmaceutical price controls in the U.S. would 

have on R&D investment intensity, the models were evaluated at the independent 

variables’ mean values. The models were first evaluated using the mean value for %US 

(58.98%) and then at % U S -0 .]} The difference between the two forecasted R&D 

intensities is thus a measure of the impact that U.S. pharmaceutical price controls would 

have on R&D investment. These results are summarized in Table 6.11 below. Appendix 

A contains a complete set of calculations.

14 In fact, a major provision in the Health Security Act stipulated that negotiated Medicare rebates on new 
drugs in the U.S. would be referenced to the outcomes o f regulatory processes in other countries. 
Specifically, for products introduced at a lower price in any one o f 21 referenced countries, the Secretary of 
Health and Human Services could negotiate a rebate as high as the difference between the manufacturer’s 
average retail price in the U.S. and any price at which the drugs were available to wholesalers in these 
countries. The 21 specified countries are: Australia, Austria, Belgium, Canada, Denmark, Germany, 
Finland, France, Iceland, Ireland, Italy, Japan, Luxembourg, the Netherlands, New Zealand, Norway, 
Portugal, Spain, Sweden, Switzerland, and the United Kingdom.

15 It should be noted that using the partial derivatives calculated earlier in the chapter is not appropriate 
for these estimations (with the exception o f the linear model— i.e., specification 1). This is because of the 
functional form o f these derivatives (i.e., they are non-constants). Consequently, the estimated RD S  
equations were simply evaluated at the mean %US value and zero. That is, the change in R D S  was 
estimated in the following way: ARDS =  RDS(%US =  .59) -  RDS(%US =  0). All other variables were 
left at their 1994-1997 mean values. The mean C F M  and P C T  were calculated to be 0.289 and 0.566,

1 n2 f  2
respectively. Finally, it should be pointed out that because XAve ^  — > xj the following mean values

n M
were used when calculating the change in RDS for the non-linear profit expectations models:

1) ¿ ¿ ¿ ( P m a r g , ) 1 = 0 . 1 1 2 2  
4o /=i /=1

2) - ' - ¿ ¿ ( T m a r g J 3 =0.0433
/=i ,=i

3) - ^ ¿ ¿ ( P r n r g , )(%[/&) = 0.2005
4 o  ,=i ,=i
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Table 6.11

Estimating the Impact of U.S. Prescription Drug Price Controls on Pharmaceutical 
R&D Intensity (Based on 1994-1997 Mean Values)

Model
Specification

RDS w/o U.S. 
Price Controls

RDS w/U.S. 
Price Controls

ARDS Percentage 
Decrease in RDS

Specification 1 
(Linear Etr)

0.1151 0.0942 0.0209 18.12%

Specification 3 0.1151 0.0798 0.0353 30.64%

Quadratic En 0.1151 0.0964 0.0187 16.28%

Cubic En 0.1151 0.1030 0 . 0 1 2 0 10.47%

Interaction En 0.1151 0.0864 0.0287 24.98%

As the results in Table 6 .11 indicate, the impact of a new U.S. policy that regulates 

prescription drug prices will have a very substantial impact on R&D investment. 

Specifically, the results obtained in this chapter show that such a policy could reduce 

R&D investment intensity anywhere from approximately 10% to 30%. This would 

indeed have a substantial negative impact on future drug innovation. 16

The expected returns from R&D investment have been demonstrated—both in 

this chapter and in earlier chapters—to have a significant role in the level of R&D 

investment undertaken by the firm. Furthermore, it has been shown that pharmaceutical 

price controls have a direct effect on the expected returns from pharmaceutical R&D. In 

this chapter this implicit relationship—between expected profitability and price controls

16 These estimates o f  the reduction in R&D intensity that would result from U.S. pharmaceutical price 
controls may well be an underestimate. This is because price controls would also be expected to have a 
significant— and negative— effect on firm cash flows— another major determinant o f  firm R&D intensity 
(the primary thesis o f  this dissertation— refer to Chapters Two-Five). Hence, the estimated range o f a 
10%-30% reduction in R&D intensity resulting from U.S. price controls should probably be viewed as a 
conservative estimate. In fact, using a similar approach to that employed in the formulation o f the profit 
expectations variable, the relationship between VoUS and lagged cash flow margins was examined. 
However, the presence o f a statistical relationship was not observed. This may be due to the fact that 
pharmaceutical revenues are only one component o f  a firm's total revenues— recall the definition o f the P et 
variable. Hence, the impact o f U.S. pharmaceutical price controls would not have as direct an impact on 
lagged firm cash flows as they would on pharmaceutical profitability.
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—has been exploited to empirically estimate the impact a new U.S. policy (like the 

previously proposed Health Security Act) would have on R&D investment—and, 

consequently, on new drug innovation. The findings in this chapter suggest that, from a 

public policy perspective, these regulations would have a precipitous effect on the 

incentives for research and development in innovative new medicines. Over the long 

term, such a policy would be expected to have a negative net effect on patient and 

societal welfare.
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Chapter Seven

Conclusions

General Discussion

In this thesis we investigated several hypotheses relating to the economics of 

pharmaceutical R&D investment. In particular, we endeavored to demonstrate that, 

contrary to the classical theory of investment, where external finance is considered a 

perfect substitute for internal finance, in the pharmaceutical industry, the source of 

investment finance does matter. Specifically, we hypothesized that internal finance, or a 

firm’s cash flow, is an important determinant of pharmaceutical R&D investment.

We based our hypothesis on several theoretical underpinnings. These included, 

for example, transaction costs, tax advantages, and asymmetric information. Our 

research subsequently uncovered an abundance of empirical evidence suggesting that the 

classical theory is not appropriate for pharmaceutical R&D finance. Indeed, our findings 

suggest that internal finance is an extremely important determinant of pharmaceutical 

R&D investment.

In addition to testing this hypothesis in our research, we also considered, within 

the framework of our empirical models, the economic implications of pharmaceutical 

price controls in the United States—an extremely controversial political issue at the 

present. According to our research, such a policy would have a negative, and quite 

substantial, impact on future levels of R&D investment through decreased profit 

incentives to innovate.

Principle Research Findings and Conclusions

Chapter Two set the stage for our research by mapping out the landscape of the 

scientific, and economic, particulars of the pharmaceutical R&D process. The unique 

nature of pharmaceutical R&D, unlike other forms of industrial R&D, we argued, was 

one reason to expect capital market imperfections in the markets for external 

pharmaceutical R&D finance. Consequently, this chapter described the scientific process
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by which new drugs are discovered, developed, and brought to market. In addition to 

formally presenting the clinical aspects of pharmaceutical R&D, the key economic 

characteristics were also introduced and discussed extensively. Specifically, issues 

relating to the costs, risks, and rewards of pharmaceutical R&D were reviewed in great 

detail. In essence, Chapter Two introduced many of the concepts and ideas that formed 

the basis from which our thesis was built.

In Chapter Three we integrated existing theoretical work on capital market 

imperfections into a specialized case for pharmaceutical R&D finance. The rationale for 

R&D financing constraints were developed around transaction costs, tax advantages, 

asymmetric information, financial distress, and agency problems. Indeed, much literature 

has been published on these topics over the years—some more so than others. However, 

in Chapter Three, we adapted, and slightly modified this research to the specific case for 

pharmaceutical R&D investment. For example, Tobin’s well-known ^-theory of 

investment was modified to specifically consider the pharmaceutical R&D investment 

decision in the presence of capital market imperfections. This modified ^-theoretic 

framework was then employed to elucidate how, under certain circumstances—such as 

those argued to be present in the markets for pharmaceutical R&D finance, market 

imperfections can result in different acceptance criteria being used for potential 

investment projects, depending on how the project is financed—i.e., with internal or 

external finance.

A particular case was made for the existence of asymmetric information in the 

pharmaceutical industry. This was argued to be an especially relevant rationale for 

financing constraints because new information, which is obtained via R&D, is the 

primary means by which firms in the pharmaceutical industry compete. That is, the 

competitive intelligence obtained from pharmaceutical R&D plays a central role in the 

race to patent and develop new compounds. As such, much of this information is not 

publicly available. Consequently, we argued, there are likely to be significant 

information gaps between firm managers and potential investors. This information gap 

may be particularly large in light of the uncertainty and long development times 

associated with pharmaceutical R&D.
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In sum, Chapter Three adapted existing, and quite general, theoretical work on 

capital market imperfections to the specific case of the pharmaceutical R&D investment 

decision. This theory—which was demonstrated to be well grounded in microeconomic 

principles—set the stage for the forthcoming empirical analyses in Chapters Four, Five, 

and Six.

In Chapter Four, we estimated several models of the determinants of 

pharmaceutical R&D investment using data from 11 large U.S. firms from 1976 to 1996. 

We began this chapter by first reviewing and critiquing the earlier empirical work 

conducted by ourselves and other authors. Several potential problems, both econometric 

and data-driven, were identified with these earlier studies, and various remedies were 

recommended. To address the data-driven problems, we employed the use of a more 

complete data set—one that is not generally available to the public. This new data set 

provided us with the necessary, and previously unavailable, financial data on firm 

pharmaceutical operations. Consequently, we were able to eliminate the data deficiencies 

that hampered the earlier studies. After constructing this more complete, and 

contemporary data set, we estimated several different models of the determinants of R&D 

investment. Indeed, extensive analyses were undertaken and multiple specifications and 

variable formulations were tested. Using the most theoretically grounded and statistically 

sound models, a series of regression results were reported. Specifically, we reported 

results over two different time periods: The 1976-to-1996-time period and the 1983-to- 

1996-time period. Our results strongly affirmed the hypothesis that cash flows positively 

influence R&D investment. In fact, in every model estimated, over both time periods, the 

cash flow variable was found to be highly statistically significant. Subsequent statistical 

diagnostics revealed that the ‘best’ model was the random-effects specification. 

Consequently, the results from this model were deemed the most appropriate for testing 

our hypothesis, and, in general, drawing inferences. In our models employing this 

specification, the estimated coefficient on the cash flow variable ranged between 0.14 and 

0.24 and 0.11 to 0.23 for the 1976-to-1996 and 1983-to-1996-time periods, respectively.

These coefficient estimates, we showed, could be interpreted as an approximate 

dollar change in R&D investment corresponding to a $ 1 change in firm cash flows.

Thus, a $1 dollar decrease in firm cash flows could, for example, result in a $0.11-$0.24
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decrease in firm R&D investment. Therefore, for model based on large U.S. 

pharmaceutical firms, we concluded that firm cash flows were, indeed, an important 

determinant of firm R&D investment. This result, we argued, demonstrated that the 

classical model of firm investment was inappropriate for analyzing pharmaceutical R&D 

investment.

Finally, in closing, we emphasized that, despite the strong evidence in favor of the 

capital market imperfections hypothesis, it was important not to generalize these findings 

to the global pharmaceutical marketplace. Indeed, the analyses undertaken in Chapter 

Four were based on a relatively small sample of exclusively U.S.-based firms. 

Consequently, we stressed, it remained unclear what role, if any, cash flows played in the 

larger global pharmaceutical marketplace.

In Chapter Five we estimated R&D investment models based on a larger, and 

international, sample of firms. Specifically, we obtained financial data on 60 of the 

world’s leading pharmaceutical firms. This we emphasized was, to our knowledge, the 

first empirical study to-date of pharmaceutical R&D investment that utilized international 

firm data. Consequently, we argued, models based on this larger—and more globally 

representative—sample of firms would provide a better test of our capital market 

imperfections hypothesis. Moreover, we hoped, this research would enable us to uncover 

some new, and previously unexamined, characteristics of the global pharmaceutical 

industry.

Our findings in Chapter Five contributed substantially to the body of evidence 

supporting the hypothesis that internally generated cash flows, because of their lower cost 

of capital relative to external debt and equity, are an important determinant of 

pharmaceutical R&D investment. Specifically, we found that cash flows exerted a 

statistically significant, and positive, influence on a firm’s level of R&D investment.

In this chapter we estimated models using 3 subsets of the aforementioned 60- 

firm sample—2 U.S.- and European-firm models and a Japanese-firm model.

Specifically, because of the limited availability of financial data for many of the 

international firms, we estimated a 24-firm model over the 1984-to- 1997-time period, a 

32-firm model over the 1991-to-1997-time period, and a 28-firm, exclusively Japanese 

model, over the 1994-to-1997-time period. Econometric analyses indicated that for both
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the 24-firm and 32-firm samples, the Feasible-Generalized LSDV model was the ‘best’ 

model from which inferences should be drawn. This finding, we argued, resulted from 

the systematic differences across firms that could not be captured by other variables. The 

fact that systematic differences across firms remained, we contended, was not surprising 

given the heterogeneous nature of the firms in these samples. In contrast to this finding, 

however, for the Japanese-firm model, diagnostic tests revealed that a random-effects 

model was the most appropriate specification. This finding, as was the case with the U.S. 

models in Chapter Four, was presumably due to the relative homogeneity of the firms in 

then sample. A summary of these findings, as they relate to the cash flow variable, is 

provided below in Table 7.1.

Table 7.1

Estimated Lagged Cash Flow Variable Coefficients in Selected Model Specifications

(Values in parentheses are t-statistics)

Firm Sample and Selected Model 

Specification

Coefficient of Lagged Cash Flow 

Variable (CF)
24 U.S.-and European-based Firms (1984-1997) 0.08

Best Model: Feasible Generalized LSDV (4.86)
32 U.S.-and European-based Firms (1991-1997) 0 . 1 0

Best Model: Feasible Generalized LSDV (6.92)
28 Japanese Firms (1994-1997) 0.17
Best Model: Random Effects (2.83)

In addition to further substantiating the important role of cash flows in the 

pharmaceutical R&D investment decision, several new facts were also uncovered. 

Specifically, we uncovered evidence suggesting that significant structural changes 

occurred in the pharmaceutical industry during the 1990’s. This finding, we pointed out, 

would make models based on more recent data—i.e., data from the decade of the
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1990's—the most appropriate models for answering questions relating to contemporary 

policy issues. Furthermore, we also investigated whether or not there were significant 

differences in R&D investment behaviors between U.S.- and European-based firms. The 

evidence suggested that there were differences, but these findings were only marginally 

statistically significant.

In Chapter Six we deviated slightly from our central line of inquiry to address a 

particularly relevant policy issue in the United States: Pharmaceutical price controls. 

Using the robust models developed in Chapters Four and Five, we attempted to estimate 

the impact pharmaceutical price controls in the U.S. would have on future investment in 

R&D.

We started our analysis by drawing a sharp distinction between pharmaceutical 

price regulation in the U.S. and other non-U.S. countries. Specifically, we argued that 

pharmaceutical prices are more regulated in markets outside the U.S. We then developed 

an empirical measure intended to proxy the extent to which a firm’s pharmaceutical sales 

were subjected to price controls—the ratio of U.S.-to-total pharmaceutical sales. Hence, 

the lower this ratio, the more a firm’s pharmaceutical business is affected by price 

regulation. We acknowledged that this type of binary classification for pharmaceutical 

price controls was indeed a simplification; however, we argued, it was a reasonable proxy 

due to the much greater degree of pharmaceutical price regulation in markets outside the 

U.S.

Using data from the mid 1990’s—the only period for which data were available to 

construct our price control proxy variable—we were able to estimate the impact, in terms 

of reduced R&D investment, of a new U.S. price control policy on pharmaceuticals. We 

found that such a policy would result in a 10.47% to 30.64% decline in R&D investment 

spending. Consequently, from a public policy perspective, whilst reducing the burden on 

consumers in the short run, the long run impact of such a policy would be to reduce 

innovative activity in pharmaceutical research. This would, most likely, have a negative 

effect on future patient and societal welfare.

In this thesis, we have attempted to demonstrate that pharmaceutical R&D is 

unlike any other major form of industrial R&D, and, because of these unique 

characteristics (both scientific and economic), we argued, internal finance becomes an
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important determinant of firm R&D investment. Our empirical findings supported this 

hypothesis overwhelmingly. In addition to this, we demonstrated how our investment 

models could be used to predict the economic implications of new public policies. 

Throughout the course of this research many new facts pertaining to the global 

pharmaceutical R&D industry were uncovered. As such, this represents advancement in 

the current knowledge in this field.
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Appendix 1

Regression Equation 4.4.1: OLS Regression Results for 11 U .S. Firm s (1976-1996)

Dependent Variable: RDS?
Method: Pooled Least Squares

Sample: 1976 1996 
Included observations: 21 
Number of cross-sections used: 11 
Total panel (unbalanced) observations: 228

Variable Coefficient Std. Error t-Statistic Prob.
C -0.136024 0.020914 -6.504133 0.0000

CFM? 0.223888 0.027778 8.059888 0.0000
PCT? 0.079668 0.009436 8.443163 0.0000

PMARG? 0.481827 0.085499 5.635442 0.0000

R-squared 0.734601 Mean dependent var 0.085100
Adjusted R-squared 0.731046 S.D. dependent var 0.036873
S.E. of regression 0.019123 Sum squared resid 0.081912
Log likelihood 580.6677 F-statistic 206.6705
Durbin-Watson stat 1.670063 Prob(F-statistic) 0.000000

Regression Equation 4.4.2: OLS Regression Results for 11 U.S. Firms (1976-1996)

Dependent Variable: RDS?
Method: Pooled Least Squares

Sample: 1976 1996 
Included observations: 21 
Number of cross-sections used: 11 
Total panel (unbalanced) observations: 228

Variable Coefficient Std. Error t-Statistic Prob.

C -0.056607 0.006804 -8.320025 0.0000
CFM? 0.245837 0.024443 10.05757 0.0000
PCT? 0.076458 0.009033 8.464254 0.0000

(NEWRX?)/1000 0.161765 0.023274 6.950412 0.0000

R-squared 0.750731 Mean dependent var 0.085100
Adjusted R-squared 0.747392 S.D. dependent var 0.036873
S.E. of regression 0.018533 Sum squared resid 0.076934
Log likelihood 587.8158 F-statistic 224.8757
Durbin-Watson stat 1.526896 Prob(F-statistic) 0.000000
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Regression Equation 4.4.3: OLS R egression R esults for 11 U .S. Firm s (1976-1996)

Dependent Variable: RDS?
Method: Pooled Least Squares

Sample: 1976 1996 
Included observations: 21 
Number of cross-sections used: 11 
Total panel (unbalanced) observations: 228

Variable Coefficient Std. Error t-Statistic Prob.

C -0.112077 0.020565 -5.449766 0.0000
CFM? 0.213568 0.026589 8.032306 0.0000
PCT? 0.080486 0.009004 8.939095 0.0000

PMARG? 0.265719 0.093145 2.852749 0.0047
(NEWRX?)/1000 0.125732 0.026163 4.805730 0.0000

R-squared 0.759507 Mean dependent var 0.085100
Adjusted R-squared 0.755194 S.D. dependent var 0.036873
S.E. of regression 0.018244 Sum squared resid 0.074225
Log likelihood 591.9020 F-statistic 176.0659
Durbin-Watson stat 1.692615_ Prob(F-statistic) _ 0.000000

Regression Equation 4.4.4: OLS Regression Results for 11 U.S. Firms (1983-1996)

Dependent Variable: RDS?
Method: Pooled Least Squares

Sample: 1983 1996 
Included observations: 14 
Number of cross-sections used: 11 
Total panel (balanced) observations: 151

Variable Coefficient Std. Error t-Statistic Prob.

C -0.104598 0.030141 -3.468248 0.0005
CFM? 0.215164 0.033723 6.380260 0.0000
PCT? 0.084160 0.011276 7.463412 0.0000

PMARG? 0.341065 0.110631 3.082889 0.0027

R-squared 0.701754 Mean dependent var 0.098640
Adjusted R-squared 0.675259 S.D. dependent var 0.035357
S.E. of regression 0.020149 Sum squared resid 0.059678
Log likelihood 377.3640 F-statistic 117.4687
Durbin-Watson stat 1.861995 Prob(F-statistic) 0.000000
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Regression Equation 4.4.5: OLS Regression Results for 11 U.S. Firm s (1983-1996)

Dependent Variable: RDS?
Method: Pooled Least Squares

Sample: 1983 1996 
Included observations: 14 
Number of cross-sections used: 11 
Total panel (balanced) observations: 151

Variable Coefficient Std. Error t-Statistic Prob.

C -0.051626 0.017247 -2.992441 0.0038
CFM? 0.245193 0.030446 8.053436 0.0000
PCT? 0.084318 0.011847 7.116973 0.0000

NEWRX 7/1000 0.132926 0.055789 2.382211 0.0117

R-squared 0.703620 Mean dependent var 0.098640
Adjusted R-squared 0.667980 S.D. dependent var 0.035357
S.E. of regression 0.020373 Sum squared resid 0.061015
Log likelihood 375.6904 F-statistic 112.5932
Durbin-Watson stat 1.910575 Prob(F-statistic) 0.000000

Regression Equation 4.4.6: OLS Regression Results for 11 U.S. Firms (1983-1996)

Dependent Variable: RDS?
Method: Pooled Least Squares

Sample: 1983 1996 
Included observations: 14 
Number of cross-sections used: 11 
Total panel (balanced) observations: 151

Variable Coefficient Std. Error t-Statistic Prob.

C -0.103542 0.029239 -3.541230 0.0005
CFM? 0.215838 0.033650 6.414122 0.0000
PCT? 0.084857 0.011431 7.422979 0.0000

PMARG? 0.275776 0.125270 2.201443 0.0278
NEWRX 7/1000 0.061453 0.057770 1.063751 0.2892

R-squared 0.682163 Mean dependent var 0.098640
Adjusted R-squared 0.673455 S.D.dependent var 0.035357
S.E. of regression 0.020205 Sum squared resid 0.059601
Log likelihood 377.4612 F-statistic 78.33879
Durbin-Watson stat 1.758344 Prob(F-statistic) 0.000000
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Regression Equation 4.5.1: Least Squares D um m y V ariable (Fixed Effects) Regression
R esults for 11 U.S. F irm s (1976-1996)

Dependent Variable: RDS?
Method: Pooled Least Squares

Sample: 1976 1996 
Included observations: 21 
Number of cross-sections used: 11 
Total panel (unbalanced) observations: 228

Variable Coefficient Std. Error t-Statistic Prob.

CFM? 0.169900 0.029450 5.769189 0.0000
PMARG? 0.620116 0.083625 7.415451 0.0000

PCT? 0.078786 0.011827 6.661467 0.0000

Fixed Effects
_ABB—C -0.167656
_AHP—C -0.191033
_BMS~C -0.165964

_JJ~C -0.147094
_LIL—C -0.147231

_MRK~C -0.173248
_PFE—C -0.159694
_SP-C -0.165451

_SYN—C -0.142154
_UPJ-C -0.137839
_WL—C -0.163880

R-squared 0.887302 Mean dependent var 0.085100
Adjusted R-squared 0.880456 S.D.dependent var 0.036873
S.E. of regression 0.012749 Sum squared resid 0.034783
Log likelihood 678.3112 F-statistic 842.4380

Durbin-Watson stat 1.650269 Prob(F-statistic) 0.000000
-
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Regression Equation 4.5.2: Least Squares D um m y V ariable (Fixed Effects) Regression
R esults for 11 U .S. Firm s (1976-1996)

Dependent Variable: RDS?
Method: Pooled Least Squares

Sample: 1976 1996 
Included observations: 21 
Number of cross-sections used: 11 
Total panel (unbalanced) observations: 228

Variable Coefficient Std. Error t-Statistic Prob.

CFM? 0.241953 0.020779 11.64405 0.0000
NEWRX9/1000 0.158992 0.016994 9.355893 0.0000

PCT? 0.089529 0.010761 8.319872 0.0000

Fixed Effects
_ABB—C -0.069262
_AHP—C -0.090922
_BMS—C -0.063552

_JJ-C -0.042527
_LIL—C -0.054023

_MRK—C -0.082221
_PFE—C -0.059914

O11CLCO1 -0.069661
_SYN—C -0.053611
_UPJ-C -0.042711
_WL—C -0.058164

R-squared 0.899465 Mean dependent var 0.085100
Adjusted R-squared 0.893358 S.D. dependent var 0.036873
S.E. of regression 0.012041 Sum squared resid 0.031029
Log likelihood 691.3309 F-statistic 957.3065
Durbin-Watson stat 1.819286 Prob(F-statistic) 0.000000
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Regression Equation 4.5.3: Least Squares D um m y V ariable (Fixed Effects) R egression
Results for 11 U .S. F irm s (1976-1996)

Dependent Variable: RDS?
Method: Pooled Least Squares

Sample: 1976 1996 
Included observations: 21 
Number of cross-sections used: 11 
Total panel (unbalanced) observations: 228

Variable Coefficient Std. Error t-Statistic Prob.

CFM? 0.132402 0.026049 5.082851 0.0000
PMARG? 0.466688 0.075154 6.209777 0.0000

NEWRX 7/1000 0.134313 0.016170 8.306423 0.0000
PCT? 0.071520 0.010340 6.916837 0.0000

Fixed Effects
_ABB—C -0.152407
_AHP—C -0.176691
_BMS—C -0.152971
_JJ~C -0.135515
_LIL—C -0.129090

_MRK—C -0.153733
_PFE—C -0.145144
_SP-C -0.148640

_SYN—C -0.121804
_UPJ-C -0.120828
_WL—C -0.152578

R-squared 0.914876 Mean dependent var 0.085100
Adjusted R-squared 0.909281 S.D.dependent var 0.036873
S.E. of regression 0.011106 Sum squared resid 0.026273
Log likelihood 710.2999 F-statistic 763.0759
Durbin-Watson stat 1.673057 Prob(F-statistic) 0.000000
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Regression Equation 4.5.4: Least Squares D um m y V ariable (F ixed Effects) Regression
R esults for 11 U.S. Firm s (1983-1996)

Dependent Variable: RDS?
Method: Pooled Least Squares

Sample: 1983 1996 
Included observations: 14 
Number of cross-sections used: 11 
Total panel (balanced) observations: 151

Variable Coefficient Std. Error t-Statistic Prob.

CFM? 0.090977 0.031397 2.897629 0.0044
PMARG? 0.581785 0.088755 6.554958 0.0000

PCT? 0.063268 0.011575 5.466043 0.0000
Fixed Effects

_ABB—C -0.127059
_AHP—C -0.154733
_BMS—C -0.132511
_JJ~C -0.116148
_LIL~C -0.098251

_MRK—C -0.127398
_PFE—C -0.117317
_SP-C -0.119696

_SYN—C -0.082937
_UPJ-C -0.087095
_WL-C -0.132578

R-squared 0.914435 Mean dependent var 0.098640
Adjusted R-squared 0.906316 S.D. dependent var 0.035357
S.E. of regression 0.010822 Sum squared resid 0.016045
Log likelihood 476.5369 F-statistic 732.0602
Durbin-Watson stat 1.539503 Prob(F-statistic) 0.000000
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Regression Equation 4.5.5: Least Squares D um m y V ariable (Fixed Effects) R egression
R esults for 11 U .S. Firm s (1983-1996)

Dependent Variable: RDS?
Method: Pooled Least Squares

Sample: 1983 1996 
Included observations: 14 
Number of cross-sections used: 11 
Total panel (balanced) observations: 151

Variable Coefficient Std. Error t-Statistic Prob.

CFM? 0.233079 0.024789 9.402386 0.0000
NEWRX7/1000 0.082151 0.044594 1.842222 0.0676

PCT? 0.077745 0.012863 6.043888 0.0000
Fixed Effects

_ABB—C -0.037039
_AHP—C -0.060776
_BMS—C -0.035274

_JJ~C -0.013481
_LIL—C -0.016816

_MRK—C -0.048284
_PFE—C -0.023371
_SP-C -0.030755

_SYN—C -0.011631
_UPJ-C -0.000752
_WL—C -0.026307

R-squared 0.890316 Mean dependent var 0.098640
Adjusted R-squared 0.879908 S.D.dependent var 0.035357
S.E. of regression 0.012253 Sum squared resid 0.020568
Log likelihood 457.7884 F-statistic 556.0221
Durbin-Watson stat 1.839098 Prob(F-statistic) 0.000000
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Regression Equation 4.5.6: Least Squares D um m y V ariable (Fixed Effects) R egression
R esults for 11 U.S. F irm s (1983-1996)

Dependent Variable: RDS?
Method: Pooled Least Squares

Sample: 1983 1996 
Included observations: 14 
Number of cross-sections used: 11 
Total panel (balanced) observations: 151

Variable Coefficient Std. Error t-Statistic Prob.

CFM? 0.091886 0.031458 2.920947 0.0041
PMARG? 0.567352 0.090653 6.258486 0.0000

NEWRX7/1000 0.032438 0.040229 0.806336 0.4215
PCT? 0.062428 0.011636 5.364953 0.0000

Fixed Effects
_ABB—C -0.133046
_AHP—C -0.160668
_BMS—C -0.138492
_JJ-C -0.122281
_LIL—C -0.104139

_MRK—C -0.133186
_PFE—C -0.123247
_SP-C -0.125499

_SYN—C -0.088761
_UPJ-C -0.092871
_WL-C -0.138474

R-squared 0.914842 Mean dependent var 0.098640
Adjusted R-squared 0.906076 S.D. dependent var 0.035357
S.E. of regression 0.010836 Sum squared resid 0.015969
Log likelihood 476.8970 F-statistic 487.0107
Durbin-Watson stat 1.725061 Prob(F-statistic) 0.000000
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Regression Equation 4.7.1: Feasible G eneralized Least Squares R egression Results
(C om m on Intercept) for 11 U .S. Firm s (1976-1996)

Dependent Variable: RDS?
Method: GLS (Cross Section Weights)

Sample: 1976 1996 
Included observations: 21 
Number of cross-sections used: 11 
Total panel (unbalanced) observations: 228

Variable Coefficient Std. Error t-Statistic Prob.

C -0.139363 0.015914 -8.757088 0.0000
CFM? 0.215850 0.020899 10.32801 0.0000

PMARG? 0.505096 0.065544 7.706161 0.0000
PCT? 0.075692 0.007801 9.702510 0.0000

Weighted Statistics

R-squared 0.841187 Mean dependent var 0.101327
Adjusted R-squared 0.839060 S.D. dependent var 0.047472
S.E. of regression 0.019044 Sum squared resid 0.081242
Log likelihood 615.1322 F-statistic 395.4891
Durbin-Watson stat 1.788595 Prob(F-statistic) 0.000000

Unweighted Statistics

R-squared 0.732661 Mean dependent var 0.085100
Adjusted R-squared 0.729080 S.D. dependent var 0.036873
S.E. of regression 0.019193 Sum squared resid 0.082511
Durbin-Watson stat

-
1.639231

- -

Regression Equation 4.7.2: Feasible Generalized Least Squares Regression Results 
(Common Intercept) for 11 U.S. Firms (1976-1996)

Dependent Variable: RDS?
Method: GLS (Cross Section Weights)

Sample: 1976 1996 
Included observations: 21 
Number of cross-sections used: 11 
Total panel (unbalanced) observations: 228

Variable Coefficient Std. Error t-Statistic Prob.

C -0.052141 0.005126 -10.17116 0.0000
CFM? 0.249410 0.019297 12.92501 0.0000

NEWRX?/1000 0.146702 0.017865 8.211746 0.0000
PCT? 0.074396 0.007819 9.514320 0.0000

Weighted Statistics

R-squared 0.862342 Mean dependent var 0.101234
Adjusted R-squared 0.860498 S.D. dependent var 0.049522
S.E. of regression 0.018496 Sum squared resid 0.076634
Log likelihood 618.8084 F-statistic 467.7398
Durbin-Watson stat 1.644914 Prob(F-statistic) 0.000000

Unweighted Statistics

R-squared 0.750155 Mean dependent var 0.085100
Adjusted R-squared 0.746809 S.D. dependent var 0.036873
S.E. of regression 0.018554 Sum squared resid 0.077111
Durbin-Watson stat 1.476860. —  . — — ---------------- =---
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Regression Equation 4.7.3: Feasible G eneralized Least Squares R egression Results
(Com m on Intercept) for 11 U.S. F irm s (1976-1996)

Dependent Variable: RDS?
Method: GLS (Cross Section Weights)

Sample: 1976 1996 
Included observations: 21 
Number of cross-sections used: 11 
Total panel (unbalanced) observations: 228

Variable Coefficient Std. Error t-Statistic Prob.

C -0.119831 0.015367 -7.797744 0.0000
CFM? 0.203352 0.020024 10.15521 0.0000

PMARG? 0.323587 0.070037 4.620233 0.0000
NEWRX7/1000 0.109124 0.019531 5.587181 0.0000

PCT? 0.077800 0.007418 10.48736 0.0000

Weighted Statistics

R-squared 0.863734 Mean dependent var 0.102764
Adjusted R-squared 0.861290 S.D. dependent var 0.048743
S.E. of regression 0.018154 Sum squared resid 0.073491
Log likelihood 628.3223 F-statistic 353.3755
Durbin-Watson stat 1.761365 Prob(F-statistic) 0.000000

Unweighted Statistics

R-squared 0.757782 Mean dependent var 0.085100
Adjusted R-squared 0.753437 S.D. dependent var 0.036873
S.E. of regression 
Durbin-Watson stat

0.018309
1.622439

Sum squared resid 0.074758

Regression Equation 4.7.4: Feasible Generalized Least Squares Regression Results 
(Common Intercept) for 11 U.S. Firms (1983-1996)

Dependent Variable: RDS?
Method: GLS (Cross Section Weights)

Sample: 1983 1996 
Included observations: 14 
Number of cross-sections used: 11 
Total panel (balanced) observations: 151

Variable Coefficient Std. Error t-Statistic Prob.

C -0.102168 0.019462 -5.249483 0.0000
CFM? 0.204239 0.024961 8.610861 0.0000

PMARG? 0.362144 0.077859 4.651403 0.0000
PCT? 0.077228 0.008505 9.082313 0.0000

Weighted Statistics

R-squared 0.911402 Mean dependent var 0.127727
Adjusted R-squared 0.909594 S.D. dependent var 0.066237
S.E. of regression 0.019916 Sum squared resid 0.058306
Log likelihood 408.5948 F-statistic 495.0617
Durbin-Watson stat 1.940501 Prob(F-statistic) 0.000000

Unweighted Statistics

R-squared 0.677718 Mean dependent var 0.098640
Adjusted R-squared 0.671141 S.D. dependent var 0.035357
S.E. of regression 
Durbin-Watson stat

0.020276
1.772519

Sum squared resid 0.060434
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Regression Equation 4.7.5: Feasible G eneralized Least Squares R egression Results
(C om m on Intercept) for 11 U .S. Firm s (1983-1996)

Dependent Variable: RDS?
Method: GLS (Cross Section Weights)

Sample: 1983 1996 
Included observations: 14 
Number of cross-sections used: 11 
Total panel (balanced) observations: 151

Variable Coefficient Std. Error t-Statistic Prob.

C -0.051691 0.011264 -4.589816 0.0000
CFM? 0.268282 0.022653 11.84192 0.0000
PCT? 0.075318 0.008294 9.083764 0.0000

NEWRX7/1000 0.123560 0.036373 3.396938 0.0006

Weighted Statistics

R-squared 0.934561 Mean dependent var 0.131147
Adjusted R-squared 0.933225 S.D. dependent var 0.078137
S.E. of regression 0.020191 Sum squared resid 0.059930
Log likelihood 405.8385 F-statistic 675.7833
Durbin-Watson stat 2.095036 Prob(F-statistic) 0.000000

Unweighted Statistics

R-squared 0.672173 Mean dependent var 0.098640
Adjusted R-squared 0.665483 S.D. dependent var 0.035357
S.E. of regression 0.020450 Sum squared resid 0.061474
Durbin-Watson stat _ 1.840279 — -

Regression Equation 4.7.6: Feasible Generalized Least Squares Regression Results 
(Common Intercept) for 11 U.S. Firms (1983-1996)

Dependent Variable: RDS?
Method: GLS (Cross Section Weights)

Sample: 1983 1996 
Included observations: 14 
Number of cross-sections used: 11 
Total panel (balanced) observations: 151

Variable Coefficient Std. Error t-Statistic Prob.

C -0.100675 0.019207 -5.241351 0.0000
CFM? 0.219921 0.025072 8.771544 0.0000
PCT? 0.076997 0.008113 9.490287 0.0000

PMARG? 0.293826 0.090954 3.230422 0.0017
NEWRX?/1000 0.063221 0.040751 1.551409 0.1276

Weighted Statistics

R-squared 
Adjusted R-squared 
S.E. of regression 
Log likelihood 
Durbin-Watson stat

Unweighted Statistics

R-squared 0.678320 Mean dependent var 0.098640
Adjusted R-squared 0.669507 S.D. dependent var 0.035357
S.E. of regression 0.020326 Sum squared resid 0.060322
Durbin-Watson stat _ 1.701175 _ _

0.916328 Mean dependent var 0.127915
0.909926 S.D. dependent var 0.066563
0.019977 Sum squared resid 0.058266
408.6412 F-statistic 413.8247
1.842075 Prob(F-statistic) 0.000000
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Regression Equation 4.8.1: Feasible G eneralized Least Squares R egression Results
(Fixed Effects Specification) for 11 U.S. Firm s (1976-1996)

Dependent Variable: RDS?
Method: GLS (Cross Section Weights)
Date: 06/22/00 Time: 14:52
Sample: 1976 1996
Included observations: 21
Number of cross-sections used: 11
Total panel (unbalanced) observations: 228

Variable Coefficient Std. Error t-Statistic Prob.
CFM? 0.167495 0.025288 6.623439 0.0000
PCT? 0.057411 0.009883 5.808869 0.0000

PMARG? 0.654494 0.072788 8.991733 0.0000
Fixed Effects

_ABB—C -0.164775
_AHP—C -0.188379
_BMS—C -0.165276

_JJ~C -0.150156
_LIL—C -0.141740

_MRK—C -0.164692
_PFE—C -0.156586

l Crt ti l i o -0.159879
SYN--C -0.134321

_UPJ~C -0.129697
_WL—C -0.162941

Weighted Statistics

R-squared 0.873616 Mean dependent var 0.089756
Adjusted R-squared 0.865939 S.D. dependent var 0.034436
S.E. of regression 0.012608 Sum squared resid 0.034020
Log likelihood 699.5550 F-statistic 739.6279
Durbin-Watson stat 1.761006 Prob(F-statistic) 0.000000

Unweighted Statistics
R-squared 0.885458 Mean dependent var 0.085100
Adjusted R-squared 0.878500 S.D.dependent var 0.036873
S.E. of regression 0.012853 Sum squared resid 0.035352
Durbin-Watson stat 1.618195
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Regression Equation 4.8.2: Feasible G eneralized L east Squares R egression Results
(Fixed Effects Specification) for 11 U .S. Firm s (1976-1996)

Dependent Variable: RDS?
Method: GLS (Cross Section Weights)

Sample: 1976 1996 
Included observations: 21 
Number of cross-sections used: 11 
Total panel (unbalanced) observations: 228

Variable Coefficient Std. Error t-Statistic Prob.
CFM? 0.231869 0.019580 11.84242 0.0000
PCT? 0.089420 0.010477 8.535257 0.0000

NEWRX 7/1000 0.150942 0.014826 10.18069 0.0000

Fixed Effects
_ABB—C -0.064810
_AHP—C -0.086699
_BMS—C -0.059526

_JJ~C -0.038559
JJL —C -0.049006

_MRK—C -0.077099
_PFE—C -0.055674

SP-C -0.065018
SYN-C -0.048270
UPJ-C -0.038248
WL-C -0.054624

Weighted Statistics
R-squared 0.912055 Mean dependent var 0.090632
Adjusted R-squared 0.906713 S.D. dependent var 0.039294
S.E. of regression 0.012002 Sum squared resid 0.030824
Log likelihood 705.7573 F-statistic 1109.671
Durbin-Watson stat 2.021322 Prob(F-statistic) 0.000000

Unweighted Statistics
R-squared 0.898942 Mean dependent var 0.085100
Adjusted R-squared 0.892803 S.D. dependent var 0.036873
S.E. of regression 0.012073 Sum squared resid 0.031190
Durbin-Watson stat 1.799019
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Regression Equation 4.8.3: Feasible G eneralized Least Squares R egression Results
(Fixed E ffects Specification) for 11 U.S. F irm s (1976-1996)

Dependent Variable: RDS?
Method: GLS (Cross Section Weights)

Sample: 1976 1996 
Included observations: 21 
Number of cross-sections used: 11 
Total panel (unbalanced) observations: 228

Variable Coefficient Std. Error t-Statistic Prob.
CFM? 0.107352 0.021845 4.914339 0.0000
PCT? 0.058271 0.008744 6.664457 0.0000

PMARG? 0.552791 0.065155 8.484255 0.0000
NEWRX7/1000 0.126126 0.013827 9.121759 0.0000
Fixed Effects

_ABB~C -0.160392
_AHP-C -0.185350
_BMS—C -0.163284

_JJ~C -0.148243
_LIL—C -0.134169

_MRK—C -0.156698
_PFE—C -0.153487
_SP-C -0.154540

_SYN-C -0.124460
JJPJ--C -0.125473
_WL—C -0.163877

Weighted Statistics
R-squared 0.928725 Mean dependent var 0.091898
Adjusted R-squared 0.924040 S.D. dependent var 0.039863
S.E. of regression 0.010986 Sum squared resid 0.025710
Log likelihood 731.6619 F-statistic 925.1359
Durbin-Watson stat 1.785358 Prob(F-statistic) 0.000000

Unweighted Statistics
R-squared 0.913519 Mean dependent var 0.085100
Adjusted R-squared 0.907835 S.D. dependent var 0.036873
S.E. of regression 0.011194 Sum squared resid 0.026691
Durbin-Watson stat 1.637524

— — — _ —

244



Regression Equation 4.8.4: Feasible G eneralized Least Squares R egression Results
(Fixed Effects Specification) for 11 U.S. F irm s (1983-1996)

Dependent Variable: RDS?
Method: GLS (Cross Section Weights)

Sample: 1983 1996 
Included observations: 14 
Number of cross-sections used: 11
Total panel (balanced) observations: 151

Variable Coefficient Std. Error t-Statistic Prob.

CFM? 0.080322 0.023703 3.388732 0.0009
PCT? 0.050348 0.008879 5.670235 0.0000

PMARG? 0.646760 0.070850 9.128638 0.0000
Fixed Effects

ABB--C -0.135461
AHP--C -0.163103
BMS--C -0.141963
JJ--C -0.128385
LIL--C -0.104062

MRK--C -0.131579
PFE--C -0.125600
SP--C -0.125589

SYN--C -0.086405
UPJ--C -0.091957
WL--C -0.142365

Weighted Statistics
R-squared 0.969539 Mean dependent var 0.120189
Adjusted R-squared 0.966649 S.D.dependent var 0.058681
S.E. of regression 0.010716 Sum squared resid 0.015733
Log likelihood 500.3468 F-statistic 2180.295
Durbin-Watson stat 1.734576 Prob(F-statistic) 0.000000

Unweighted Statistics
R-squared 0.913494 Mean dependent var 0.098640
Adjusted R-squared 0.905285 S.D. dependent var 0.035357
S.E. of regression 0.010881 Sum squared resid 0.016222
Durbin-Watson stat 1.498395---=-------------------- =---------------------- =-------- -------------- =—
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Regression Equation 4.8.5: Feasible G eneralized Least Squares R egression Results
(F ixed Effects Specification) for 11 U.S. Firm s (1983-1996)

Dependent Variable: RDS?
Method: GLS (Cross Section Weights)

Sample: 1983 1996 
Included observations: 14 
Number of cross-sections used: 11 
Total panel (balanced) observations: 151

Variable Coefficient Std. Error t-Statistic Prob.
CFM? 0.236495 0.022931 10.31349 0.0000
PCT? 0.069727 0.011925 5.847154 0.0000

NEWRX7/1000 0.080762 0.033145 2.436635 0.0161
Fixed Effects

_ABB—C -0.033334
AHP--C -0.056746
BMS--C -0.031756
JJ--C -0.011513
LIL--C -0.011941

MRK--C -0.042435
PFE--C -0.019280
SP--C -0.025360

SYN--C -0.005894
UPJ--C 0.005170
WL--C -0.022330

Weighted Statistics
R-squared 0.961201 Mean dependent var 0.119881
Adjusted R-squared 0.957520 S.D. dependent var 0.059303
S.E. of regression 0.012223 Sum squared resid 0.020467
Log likelihood 478.1268 F-statistic 1697.029
Durbin-Watson stat 2.094878 Prob(F-statistic) 0.000000

Unweighted Statistics
R-squared 0.889974 Mean dependent var 0.098640
Adjusted R-squared 0.879534 S.D.dependent var 0.035357
S.E. of regression 0.012272 Sum squared resid 0.020632
Durbin-Watson stat 1.810365—=---------------------=c----------------------- =---- ------------------=----
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Regression Equation 4.8.6: Feasible G eneralized Least Squares R egression Results
(F ixed Effects Specification) for 11 U.S. Firm s (1983-1996)

Dependent Variable: RDS?
Method: GLS (Cross Section Weights)

Sample: 1983 1996 
Included observations: 14 
Number of cross-sections used: 11
Total panel (balanced) observations: 151

Variable Coefficient Std. Error t-Statistic Prob.
CFM? 0.084696 0.023797 3.475048 0.0007
PCT? 0.049461 0.008967 5.516035 0.0000

PMARG? 0.629294 0.072977 8.623206 0.0000
NEWRX7/1000 0.039672 0.030552 1.298532 0.1963
Fixed Effects

ABB--C -0.143217
AHP--C -0.170763
BMS--C -0.149647
JJ--C -0.136206
LIL--C -0.111776

MRK--C -0.139193
PFE--C -0.133252
SP--C -0.133133

SYN--C -0.094116
UPJ-C -0.099483
WL--C -0.149866

Weighted Statistics
R-squared 0.970450 Mean dependent var 0.120990
Adjusted R-squared 0.967408 S.D. dependent var 0.059453

S.E. of regression 0.010733 Sum squared resid 0.015667
Log likelihood 501.1860 F-statistic 1488.786
Durbin-Watson stat 1.849175 Prob(F-statistic) 0.000000

Unweighted Statistics
R-squared 0.913906 Mean dependent var 0.098640
Adjusted R-squared 0.905043 S.D. dependent var 0.035357
S.E. of regression 0.010895 Sum squared resid 0.016144
Durbin-Watson stat 1.685502_=-------------------- =_--------------------- =---- ------------------=---
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Regression Equation 4.9.1: R andom  Effects M odel Specification for 11 U.S. Firms
(1976-1996)

Dependent Variable: RDS?
Method: GLS (Variance Components)

Sample: 1976 1996 
Included observations: 21 
Number of cross-sections used: 11 
Total panel (unbalanced) observations: 228

Variable Coefficient Std. Error t-Statistic Prob.
C -0.157633 0.016591 -9.501372 0.0000

CFM? 0.176710 0.028169 6.273180 0.0000
PCT? 0.080650 0.011025 7.314868 0.0000

PMARG? 0.600093 0.079093 7.587223 0.0000
Random Effects

ABB--C -0.006944
AHP--C -0.029332
BMS--C -0.004866
JJ--C 0.013676
LIL--C 0.012190

MRK-C -0.013222
PFE--C 0.000852O11CLCO1 -0.005157
SYN--C 0.016621
UPJ--C 0.021352
WL-C -0.002569

GLS Transformed
Regression

R-squared 0.881672 Mean dependent var 0.085100
Adjusted R-squared 0.880087 S.D. dependent var 0.036873
S.E. of regression 0.012769 Sum squared resid 0.036521
Durbin-Watson stat 1.604458

Unweighted Statistics
including Random Effects

R-squared 0.887061 Mean dependent var 0.085100
Adjusted R-squared 0.885549 S.D. dependent var 0.036873
S.E. of regression 0.012474 Sum squared resid 0.034857
Durbin-Watson stat 1.639964-----------------------------------------=-- ----------------- =̂_--------------------- =-------- --------------=—
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Regression Equation 4.9.3: R andom  Effects M odel Specification for 11 U .S. Firm s
(1976-1996)

Dependent Variable: RDS?
Method: GLS (Variance Components)

Sample: 1976 1996 
Included observations: 21 
Number of cross-sections used: 11
Total panel (unbalanced) observations: 228

Variable Coefficient Std. Error t-Statistic Prob.

C -0.061866 0.007379 -8.384283 0.0000
CFM? 0.241650 0.020505 11.78468 0.0000

PCT? 0.087980 0.010271 8.565829 0.0000
NEWRX7/1000 
Random Effects

0.159893 0.016775 9.531687 0.0000

ABB--C -0.006556
AHP--C -0.027607
BMS-C -0.001171
JJ--C 0.018980
LIL-C 0.008432

MRK--C -0.018733
PFE--C 0.002534
SP--C -0.006752

SYN--C 0.008998
UPJ--C 0.019593
WL-C 0.004073

GLS Transformed
Regression

R-squared 0.895069 Mean dependent var 0.085100
Adjusted R-squared 0.893664 S.D. dependent var 0.036873
S.E. of regression 0.012024 Sum squared resid 0.032386
Durbin-Watson stat 1.812615

Unweighted Statistics 
including Random Effects

R-squared 0.899327 Mean dependent var 0.085100
Adjusted R-squared 0.897978 S.D.dependent var 0.036873
S.E. of regression 0.011778 Sum squared resid 0.031072
Durbin-Watson stat 1.845713-----------------------------------------=-- ----------------- =_--------------------- =--------
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Regression Equation 4.9.3: R andom  Effects M odel Specification for 11 U.S. Firms
(1976-1996)

Dependent Variable: RDS?
Method: GLS (Variance Components)

Sample: 1976 1996

Included observations: 21

Number of cross-sections used: 11 
Total panel (unbalanced) observations: 228

Variable Coefficient Std. Error t-Statistic Prob.
C -0.140517 0.014767 -9.515629 0.0000

CFM? 0.144230 0.025124 5.740791 0.0000
PCT? 0.075574 0.009734 7.763644 0.0000

PMARG? 0.433779 0.072623 5.973058 0.0000
NEWRX7/1000 0.132534 0.016305 8.128391 0.0000
Random Effects

ABB--C -0.007167
AHP--C -0.030323
BMS--C -0.006858
JJ--C 0.010723
LIL--C 0.014266

MRK--C -0.010186
PFE--C 3.55E-05
SP--C -0.004217

SYN--C 0.020408
UPJ--C 0.022319

. WL--C -0.005993
GLS Transformed

Regression
R-squared 0.908819 Mean dependent var 0.085100
Adjusted R-squared 0.907184 S.D. dependent var 0.036873
S.E. of regression 0.011234 Sum squared resid 0.028142
Durbin-Watson stat 1.725628

Unweighted Statistics
including Random Effects

R-squared 0.914525 Mean dependent var 0.085100
Adjusted R-squared 0.912992 S.D. dependent var 0.036873
S.E. of regression 0.010877 Sum squared resid 0.026381
Durbin-Watson stat 1.798726-----------------------------------------=-- -------------------------------------------------------=L_--------------------- =-------- --------------=—
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Regression Equation 4.9.4: R andom  Effects M odel Specification for 11 U.S. Firms
(1983-1996)

Dependent Variable: RDS?
Method: GLS (Variance Components)

Sample: 1983 1996 
Included observations: 14 
Number of cross-sections used: 11 
Total panel (balanced) observations: 151

Variable Coefficient Std. Error t-Statistic Prob.
C -0.111548 0.018993 -5.873181 0.0000

CFM? 0.108087 0.030581 3.534420 0.0005
PCT? 0.069178 0.011156 6.200868 0.0000

PMARG? 0.528543 0.086248 6.128201 0.0000
Random Effects

_ABB—C -0.008046
_AHP—C -0.034540
_BMS—C -0.012317

_JJ~C 0.005001
_LIL—C 0.018230

_MRK~C -0.010811
_PFE—C 0.001721
_SP-C -0.001859

_SYN-C 0.031427
_UPJ-C 0.029215
_WL~C -0.011444

GLS Transformed
Regression

R-squared 0.905320 Mean dependent var 0.098640
Adjusted R-squared 0.903388 S.D.dependent var 0.035357
S.E. of regression 0.010990 Sum squared resid 0.017754
Durbin-Watson stat 1.649943

Unweighted Statistics
including Random Effects

R-squared 0.913776 Mean dependent var 0.098640
Adjusted R-squared 0.912017 S.D. dependent var 0.035357
S.E. of regression 0.010488 Sum squared resid 0.016169
Durbin-Watson stat 1.701917— - — — -------------- =--
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Regression Equation 4.9.5: R andom  Effects M odel Specification for 11 U.S. Firms
(1983-1996)

Dependent Variable: RDS?
Method: GLS (Variance Components)

Sample: 1983 1996 
Included observations: 14 
Number of cross-sections used: 11
Total panel (balanced) observations: 151

Variable Coefficient Std. Error t-Statistic Prob.
C -0.028329 0.015045 -1.882887 0.0617

CFM? 0.233271 0.024303 9.598623 0.0000
PCT? 0.078525 0.012266 6.401963 0.0000

NEWRX 7/1000 0.081333 0.044095 1.844506 0.0671
Random Effects

ABB--C -0.008656
AHP--C -0.031750
BMS--C -0.006899
JJ--C 0.014445
LIL--C 0.010873

MRK--C -0.019816
PFE--C 0.004612
SP--C -0.002700

SYN--C 0.015808
UPJ--C 0.026419
WL--C 0.001810

GLS Transformed 
Regression

R-squared 
Adjusted R-squared 
S.E. of regression 
Durbin-Watson stat

0.884297
0.881936
0.012149
1.907758

Mean dependent var 
S.D. dependent var 
Sum squared resid

0.098640
0.035357
0.021697

Unweighted Statistics 
including Random Effects

R-squared 
Adjusted R-squared 
S.E. of regression 
Durbin-Watson stat

0.890145
0.887903
0.011838
1.940225

Mean dependent var 
S.D.dependent var 
Sum squared resid

0.098640
0.035357
0.020600
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Regression Equation 4.9.6: R andom  Effects M odel Specification for 11 U .S. Firms
(1983-1996)

Dependent Variable: RDS?
Method: GLS (Variance Components)

Sample: 1983 1996 
Included observations: 14 
Number of cross-sections used: 11 
Total panel (balanced) observations: 151

Variable Coefficient Std. Error t-Statistic Prob.
C -0.116837 0.020413 -5.723608 0.0000

CFM? 0.109956 0.030665 3.585739 0.0005
PCT? 0.068746 0.011213 6.130799 0.0000

PMARG? 0.511439 0.088393 5.785937 0.0000
NEWRX7/1000 
Random Effects

0.031280 0.040968 0.763540 0.4464

_ABB—C -0.008085
_AHP—C -0.034460
_BMS-C -0.012282

_JJ~C 0.004950
_LIL—C 0.018128

_MRK—C -0.010810
PFE--C 0.001733

_SP~C -0.001801
_SYN—C 0.031258
_UPJ-C 0.029202
_WL—C -0.011278

GLS Transformed
Regression

R-squared 0.905139 Mean dependent var 0.098640
Adjusted R-squared 0.902540 S.D. dependent var 0.035357
S.E. of regression 0.011038 Sum squared resid 0.017788
Durbin-Watson stat 1.686845

Unweighted Statistics 
including Random Effects

R-squared 0.914099 Mean dependent var 0.098640
Adjusted R-squared 0.911745 S.D. dependent var 0.035357
S.E. of regression 0.010504 Sum squared resid 0.016108
Durbin-Watson stat 1.710756-----------------------------------------=-- ----------------- =_ --------------=--

Grunfeld and Griliches (G&G) Profit Expectations Variable: Models Based on 
Lagged Firm Market Capitalization as Proxy for Profit Expectations (1987-1996)
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G&G Equation 1: Classic O rdinary Least Squares

Dependent Variable: RD?
Method: Pooled Least Squares

Sample(adjusted): 1987 1996
Included observations: 10 after adjusting endpoints
Number of cross-sections used: 12
Total panel (balanced) observations: 120________

Variable Coefficient Std. Error t-Statistic Prob

C 40.60827 46.16422 0.879648 0.3809
CF? 0.373087 0.025159 14.82943 0.0000
V1? -0.000535 0.001737 -0.308150 0.7585
PC? 82.14475 67.45980 1.217685 0.2258

R-squared 0.893327 Mean dependent var 742.9404
Adjusted R-squared 0.890568 S.D. dependent var 533.9026
S.E. of regression 176.6176 Sum squared resid 3618478.
F-statistic 323.8115 Durbin-Watson stat 1.636227
Prob(F-statistic) 0.000000 _

G&G Equation 2: Classic Ordinary Least Squares with Interactive Profit Expectations 
Variable

Dependent Variable: RD?
Method: Pooled Least Squares

Sample(adjusted): 1987 1996
Included observations: 10 after adjusting endpoints
Number of cross-sections used: 12
Total panel (balanced) observations: 120________

Variable Coefficient Std. Error t-Statistic Prob.
C 86.73179 26.62794 3.257173 0.0015

CF? 0.369488 0.018270 20.22327 0.0000
V1?*PC? -0.000352 0.001897 -0.185429 0.8532

R-squared 0.891966 Mean dependent var 742.9404
Adjusted R-squared 0.890119 S.D. dependent var 533.9026
S.E. of regression 176.9798 Sum squared resid 3664656
F-statistic 482.9941 Durbin-Watson stat 1.632644
Prob(F-statistic) _ 0.000000 _ _

G&G Equation 3: Classic Ordinary Least Squares with Interactive Profit Expectations 
Variable

Dependent Variable: RD?
Method: Pooled Least Squares

Sample(adjusted): 1988 1997
Included observations: 10 after adjusting endpoints
Number of cross-sections used: 12
Total panel (balanced) observations: 120_________

Variable Coefficient Std. Error t-Statistic Prob.
C 25.91917 49.50522 0.523564 0.6016

CF? 0.379361 0.019410 19.54471 0.0000
V1?*PC? -0.001819 0.002140 -0.849865 0.3972

PC? 110.3126 75.84965 1.454359 0.1485
R-squared 
Adjusted R-squared 
S.E. of regression 
F-statistic 
Prob(F-statistic)

0.893900
0.891156
176.1424
325.7702
0.000000

Mean dependent var 
S.D. dependent var 
Sum squared resid 
Durbin-Watson stat

742.9404
533.9026
3599031.
1.553167
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G&G Equation 4: Fixed-Effects M odel (Least Squares D um m y V ariable M odel)

Dependent Variable: RD?
Method: Pooled Least Squares

Sample(adjusted): 1987 1996
Included observations: 10 after adjusting endpoints
Number of cross-sections used: 12
Total panel (balanced) observations: 120________

Variable Coefficient Std. Error t-Statistic Prob.

CF? 0.320758 0.022867 14.02682 0.0000
V1? 0.002024 0.001610 1.257179 0.2115
PC? 628.7858 155.2805 4.049356 0.0001

Fixed Effects
ABB-C -191.4178
ALZ--C -585.9912
AHP--C -312.6695
BLK--C -96.07187
BMS--C -218.8296
CW -C -260.3619
JJ--C 70.76483
LIL--C -252.0097

MRK--C -533.9928
PFE-C 2.537738
SP--C -362.8895

_WL—C -142.0675

R-squared 0.948894 Mean dependent var 742.9404
Adjusted R-squared 0.942080 S.D. dependent var 533.9026
S.E. of regression 128.4923 Sum squared resid 1733579.
F-statistic 974.7749 Durbin-Watson stat 1.991545
Prob(F-statistic) 0.000000 _ _

G&G Equation 5: Fixed-Effects Model using “Interactive” Profit Expectations Variable

Dependent Variable: RD? 
Method: Pooled Least Squares

Sample(adjusted): 1987 1996
Included observations: 10 after adjusting endpoints
Number of cross-sections used: 12
Total panel (balanced) observations: 120

Variable Coefficient Std. Error t-Statistic Prob.

CF? 0.308871 0.021536 14.34210 0.0000
V1?*PC? 

Fixed Effects
0.007091 0.002467 2.874924 0.0049

ABB-C 98.93838
ALZ--C 30.40426
AHP--C 13.32253
BLK-C -4.828566
BMS--C 76.56717
CW -C 19.08927
JJ--C
LIL-C

294.9348
181.4832

MRK-C -205.4605
PFE-C 341.2054
S P -C 115.3982

_WL—C 141.3716

R-squared 0.944647 Mean dependent var 742.9404
Adjusted R-squared 0.937859 S.D. dependent var 533.9026
S.E. of regression 133.0919 Sum squared resid 1877627.
F-statistic 1808.995 Durbin-Watson stat 1.940379
Prob(F-statistic) 0.000000 _ —
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G & G  Equation 6: F ixed-E ffects M odel using “Interactive” P rofit Expectations Variable

Dependent Variable: RD?
Method: Pooled Least Squares

Sample(adjusted): 1987 1996
Included observations: 10 after adjusting endpoints
Number of cross-sections used: 12
Total panel (balanced) observations: 120________

Variable Coefficient Std. Error t-Statistic Prob.
CF? 0.322942 0.021285 15.17198 0.0000

V1?*PC? 0.003613 0.002645 1.365896 0.1749
PC? 517.8131 172.3268 3.004833 0.0033

Fixed Effects
ABB--C -135.3024
ALZ--C -479.4555
AHP—C -256.2496
BLK--C -79.21030
BMS-C -161.1723
CW--C -210.7664
JJ--C 130.8769
LIL-C -189.8997

MRK--C -497.4826
PFE-C 57.91743
SP--C -288.2351

_WL—C -88.98184

R-squared 0.949030 Mean dependent var 742.9404
Adjusted R-squared 0.942234 S.D. dependent var 533.9026
S.E. of regression 128.3208 Sum squared resid 1728953.
F-statistic 977.5236 Durbin-Watson stat 2.001754
Prob(F-statistic) 0.000000

G&G Equation 7: Generalized Least Squares Model

Dependent Variable: RD?
Method: GLS (Cross Section Weights)

Sample: 1987 1996 
Included observations: 10 
Number of cross-sections used: 12 
Total panel (balanced) observations: 120

Variable Coefficient Std. Error t-Statistic Prob.

C -24.39008 16.90509 -1.442765 0.1518
CF? 0.361921 0.017323 20.89197 0.0000
V1? 0.002091 0.001438 1.454477 0.1485
PC? 128.3068 24.15652 5.311476 0.0000

Weighted Statistics

R-squared 0.976323 Mean dependent var 1085.286
Adjusted R-squared 0.975710 S.D. dependent var 1035.805
S.E. of regression 161.4321 Sum squared resid 3022997.
F-statistic 1594.394 Durbin-Watson stat 1.812011
Prob(F-statistic) 0.000000

Unweighted Statistics

R-squared 0.887049 Mean dependent var 742.9404
Adjusted R-squared 0.884128 S.D. dependent var 533.9026
S.E. of regression 181.7404 Sum squared resid 3831429.
Durbin-Watson stat 1.59235-----------------------------------------=----- -------------- =_--------------------- =------ ----------------=---
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G&G Equation 8: G eneralized Least Squares M odel w ith “Interactive’" Profit
Expectations V ariable

Dependent Variable: RD?
Method: GLS (Cross Section Weights)

Sample: 1987 1996 
Included observations: 10 
Number of cross-sections used: 12 
Total panel (balanced) observations: 120

Variable Coefficient Std. Error t-Statistic Prob.

C 44.68074 10.56444 4.229351 0.0000
CF? 0.366397 0.010591 34.59424 0.0000

V1?*PC? 0.003404 0.001570 2.167949 0.0322

Weighted Statistics

R-squared 0.964369 Mean dependent var 1017.746
Adjusted R-squared 0.963760 S.D. dependent var 866.3578
S.E. of regression 164.9278 Sum squared resid 3182539.
F-statistic 1583.313 Durbin-Watson stat 1.777037
Prob(F-statistic) 0.000000

Unweighted Statistics

R-squared 0.884287 Mean dependent var 742.9404
Adjusted R-squared 0.882309 S.D. dependent var 533.9026
S.E. of regression 183.1616 Sum squared resid 3925137.
Durbin-Watson stat 1.589364

----------------------------------------------------------------------------------------------------------—------------ ---------------------------------------- = _

G&G Equation 9: Generalized Least Squares Model with “Interactive” Profit 
Expectations Variable

Dependent Variable: RD?
Method: GLS (Cross Section Weights)

Sample: 1987 1996 
Included observations: 10 
Number of cross-sections used: 12 
Total panel (balanced) observations: 120

Variable Coefficient Std. Error t-Statistic Prob.

C -20.16001 16.25430 -1.240288 0.2174
CF? 0.377139 0.011208 33.64933 0.0000

V1?*PC? 0.001648 0.001703 0.967671 0.3352
PC? 116.4564 28.56931 4.076276 0.0001

________ Weighted Statistics

R-squared 
Adjusted R-squared 
S.E. of regression 
F-statistic 
Prob(F-statistic)

Unweighted Statistics

R-squared 0.887049 Mean dependent var 742.9404
Adjusted R-squared 0.884128 S.D. dependent var 533.9026
S.E. of regression 181.7405 Sum squared resid 3831433.
Durbin-Watson stat _ 1.553455 — -

0.974153 Mean dependent var 1064.651
0.973485 S.D. dependent var 985.0240
160.3970 Sum squared resid 2984355.
1457.317 Durbin-Watson stat 1.814803
0.000000
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G&G Equation 10: G eneralized Least Squares M odel w ith Fixed-Effects Specification

Dependent Variable: RD?
Method: GLS (Cross Section Weights)

Sample: 1987 1996 
Included observations: 10 
Number of cross-sections used: 12 
Total panel (balanced) observations: 120

Variable Coefficient Std. Error t-Statistic Prob.
CF? 0.297438 0.018605 15.98691 0.0000
V1? 0.004263 0.001243 3.430071 0.0009
PC? 454.1826 92.46106 4.912150 0.0000

Fixed Effects
_ABB—C -111.0769
_ALZ—C -415.1775
_AHP—C -220.8489
_BLK—C -71.14009
_BMS—C -156.5461
_CW~C -183.0859
_JJ-C 115.8084
_LIL—C -116.1316

_MRK—C -449.3730
_PFE—C 91.67895
_SP-C -220.6010
_WL—C -66.89610

Weighted Statistics
R-squared 0.984966 Mean dependent var 1081.547
Adjusted R-squared 0.982962 S.D.dependent var 954.2904
S.E. of regression 124.5642 Sum squared resid 1629206.
F-statistic 3439.637 Durbin-Watson stat 2.113366
Prob(F-statistic) 0.000000

Unweighted Statistics
R-squared 0.947246 Mean dependent var 742.9404
Adjusted R-squared 0.940212 S.D. dependent var 533.9026
S.E. of regression 130.5473 Sum squared resid 1789472.
Durbin-Watson stat 1.999850

— — —
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G&G Equation 11: G eneralized Least Squares M odel w ith  Fixed-Effects Specification
and “Interactive” P rofit Expectations V ariable

Dependent Variable: RD?
Method: GLS (Cross Section Weights)

Sample: 1987 1996 
Included observations: 10 
Number of cross-sections used: 12 
Total panel (balanced) observations: 120

Variable Coefficient Std. Error t-Statistic Prob.

CF? 0.321695 0.016213 19.84153 0.0000
V1?*PC? 

Fixed Effects
0.007448 0.001643 4.532563 0.0000

_ABB—C 63.83971
_ALZ~C 28.25585
_AHP—C -22.14661
_BLK—C -5.981739
_BMS—C 30.98665
_CW~C 17.90011
_JJ-C 249.3164
_LIL—C 146.2703

_MRK—C -268.8525
_PFE~C 307.1794
_SP-C 94.74217
_WL—C 126.0966

Weighted Statistics
R-squared 0.981133 Mean dependent var 1170.189
Adjusted R-squared 0.978819 S.D.dependent var 908.5257
S.E. of regression 132.2249 Sum squared resid 1853244.
F-statistic 5512.168 Durbin-Watson stat 2.172234
Prob(F-statistic) 0.000000

Unweighted Statistics
R-squared 0.944327 Mean dependent var 742.9404
Adjusted R-squared 0.937500 S.D.dependent var 533.9026
S.E. of regression 
Durbin-Watson stat

133.4760
1.951629

Sum squared resid 1888480.
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G&G Equation 12: G eneralized Least Squares M odel w ith F ixed-Effects Specification
and “Interactive” Profit Expectations V ariable

Dependent Variable: RD?
Method: GLS (Cross Section Weights)

Sample: 1987 1996 
Included observations: 10 
Number of cross-sections used: 12 
Total panel (balanced) observations: 120

Variable Coefficient Std. Error t-Statistic Prob.
CF? 0.304146 0.015592 19.50667 0.0000

V1?*PC? 0.006511 0.001577 4.127827 0.0001
PC? 279.5509 96.11861 2.908395 0.0044

Fixed Effects
_ABB—C -12.72373

ALZ--C -247.1603
_AHP—C -123.2172

BLK--C -44.07396
BMS--C -46.99167

_CW~C -104.5895
JJ--C 230.5174

_LIL—C -15.74288
_MRK—C -376.0569

PFE-C 188.7269
_SP-C -101.8622
_WL—C 22.17925

Weighted Statistics
R-squared 0.986465 Mean dependent var 1102.162
Adjusted R-squared 0.984660 S.D. dependent var 1002.255
S.E. of regression 124.1337 Sum squared resid 1617965.
F-statistic 3826.268 Durbin-Watson stat 2.157650
Prob(F-statistic) 0.000000

Unweighted Statistics
R-squared 1.947891 Mean dependent var 742.9404
Adjusted R-squared 0.940943 S.D.dependent var 533.9026
S.E. of regression 129.7472 Sum squared resid 1767604.
Durbin-Watson stat 1.970072— — — .....
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G&G Equation 13: R andom -Effects M odel Specification

Dependent Variable: RD?
Method: GLS (Variance Components)

Sample: 1987 1996 
Included observations: 10 
Number of cross-sections used: 12 
Total panel (balanced) observations: 120

Variable Coefficient Std. Error t-Statistic Prob.
C -85.52219 82.93266 -1.031225 0.3046

CF? 0.330720 0.022546 14.66836 0.0000
V1? 0.001609 0.001576 1.021194 0.3093
PC? 345.9213 117.0245 2.955974 0.0038

Random Effects
ABB--C 10.79893
ALZ--C -197.1236
AHP--C -73.37895
BLK--C 26.41364
BMS--C 8.260585
CW--C -44.81798
JJ--C 206.1705
LIL--C 38.26385

MRK--C -220.7736
PFE--C 231.7837
SP--C -46.69502

__WL—C 61.09790
GLS Transformed

Regression
R-squared 0.940531 Mean dependent var 742.9404
Adjusted R-squared 0.938993 S.D. dependent var 533.9026
S.E. of regression 131.8722 Sum squared resid 2017273.
Durbin-Watson stat 1.842028

Unweighted Statistics
including Random Effects

R-squared 0.946588 Mean dependent var 742.9404
Adjusted R-squared 0.945207 S.D. dependent var 533.9026
S.E. of regression 124.9754 Sum squared resid 1811787.
Durbin-Watson stat 1.937527

-----------------------------------------------———-----------------------------------------------=---------------------------------------------------s_ —
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G&G Equation 14: R andom  Effects M odel Specification w ith “Interactive” Profit
Expectations V ariable

Dependent Variable: RD?
Method: GLS (Variance Components)

Sample: 1987 1996 
Included observations: 10 
Number of cross-sections used: 12 
Total panel (balanced) observations: 120

Variable Coefficient Std. Error t-Statistic Prob.
C 95.95198 47.60135 2.015741 0.0461

CF? 0.321122 0.020039 16.02465 0.0000
V1?*PC? 0.005218 0.002211 2.360092 0.0199

Random Effects
ABB--C -4.446474
ALZ--C -54.82443

_AHP—C -73.45010
_BLK—C -90.29124
BMS--C -9.147085

_CW-C -68.43115
JJ--C 161.6790
LIL--C 82.75215

_MRK—C -233.0823
PFE-C 227.6853
SP-C 22.76403

_WL—C 38.79227
GLS Transformed

Regression
R-squared 0.937558 Mean dependent var 742.9404
Adjusted R-squared 0.936490 S.D. dependent var 533.9026
S.E. of regression 134.5494 Sum squared resid 2118116.
Durbin-Watson stat 1.834676

Unweighted Statistics
including Random Effects

R-squared 1.943567 Mean dependent var 742.9404
Adjusted R-squared 0.942602 S.D. dependent var 533.9026
S.E. of regression 127.9113 Sum squared resid 1914272.
Durbin-Watson stat 0.912492—- — ------  — —
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G&G Equation 15: R andom  Effects M odel Specification w ith  “ Interactive” Profit
Expectations V ariable

Dependent Variable: RD?
Method: GLS (Variance Components)

Sample: 1987 1996 
Included observations: 10 
Number of cross-sections used: 12 
Total panel (balanced) observations: 120

Variable Coefficient Std. Error t-Statistic Prob.

C -45.83372 83.81641 -0.546835 0.5855
CF? 0.330185 0.020426 16.16528 0.0000

V1?*PC? 0.003247 0.002424 1.339126 0.1831
PC? 265.6198 127.7999 2.078403 0.0399

Random Effects
_ABB—C 12.91399
_ALZ—C -163.2859
_AHP—C -72.67398
_BLK—C 1.692074
_BMS—C 7.797991
_CW-C -47.96060
_JJ-C 212.6476
_LIL—C 39.47280

_MRK~C -242.2454
_PFE-C 227.6273
_SP-C -35.90312
_WL—C 59.91720

GLS Transformed
Regression

R-squared 0.940560 Mean dependent var 742.9404
Adjusted R-squared 0.939023 S.D. dependent var 533.9026
S.E. of regression 131.8394 Sum squared resid 2016269.
Durbin-Watson stat 1.848480

Unweighted Statistics
including Random Effects

R-squared 1.946894 Mean dependent var 742.9404
Adjusted R-squared 0.945521 S.D. dependent var 533.9026
S.E. of regression 124.6168 Sum squared resid 1801405.
Durbin-Watson stat 0.949683— — -------------- =--
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G&G Equation 16: O rdinary Least Squares (Expanded Firm  Sam ple)

Dependent Variable: RD 
Method: Least Squares

Sample(adjusted): 2 162
Included observations: 148
Excluded observations: 13 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.
C 65.78074 53.53314 1.228785 0.2212

CASHFL 0.302866 0.024924 12.15150 0.0000
MKTCAP1 0.004049 0.001539 2.631617 0.0094

PCT 54.36582 71.34918 0.761968 0.4473
R-squared 0.867128 Mean dependent var 737.4347
Adjusted R-squared 0.864360 S.D. dependent var 573.3732
S.E. of regression 211.1699 Akaike info criterion 13.56986
Sum squared resid 6421352. Schwarz criterion 13.65086
Log likelihood -1000.169 F-statistic 313.2492
Durbin-Watson stat 1.456610 Prob(F-statistic) 0.000000

G&G Equation 17: Ordinary Least Squares Using MKTCAP1*PCT

Dependent Variable: RD 
Method: Least Squares

Sample(adjusted): 2 162 
Included observations: 148
Excluded observations: 13 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.
C 95.11533 26.80240 3.548762 0.0005

CASHFL 0.314190 0.017448 18.00699 0.0000
M KTCAPrPCT 0.005675 0.001659 3.421421 0.0008

R-squared 0.870010 Mean dependent var 737.4347
Adjusted R-squared 0.868217 S.D. dependent var 573.3732
S.E. of regression 208.1455 Akaike info criterion 13.53441
Sum squared resid 6282057. Schwarz criterion 13.59517
Log likelihood -998.5466 F-statistic 485.2354
Durbin-Watson stat 1.418916 Prob(F-statistic) 0.000000

G&G Equation 18: Ordinary Least Squares Using MKTCAP1*PCT

Dependent Variable: RD 
Method: Least Squares

Sample(adjusted): 2 162 
Included observations: 148
Excluded observations: 13 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.
C 107.7351 55.70593 1.933997 0.0551

CASHFL 0.312242 0.019057 16.38504 0.0000
MKTCAP1*PCT 0.005868 0.001825 3.216153 0.0016

PCT -19.80716 76.57212 -0.258673 0.7963
R-squared 0.870070 Mean dependent var 737.4347
Adjusted R-squared 0.867364 S.D. dependent var 573.3732
S.E. of regression 208.8184 Akaike info criterion 13.54746
Sum squared resid 6279139. Schwarz criterion 13.62847
Log likelihood -998.5122 F-statistic 321.4309
Durbin-Watson stat 1.416557 Prob(F-statistic) _ 0.000000
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Test for Equality of Variances Between Series

Diagnostic Test 1: B ased U pon R esiduals from  E quation 4.4.1

Sample: 1976 1996 
Included observations: 21

Method df Value Probability

Bartlett 10 33.83590 0.0002
Levene (10, 217) 3.633829 0.0002
Brown-Forsythe (10, 217) 3.019148 0.0014

Category Statistics

Mean Abs. Mean Abs.
Variable Count Std. Dev. Mean Diff. Median Diff.

RESID_ABB 21 0.007087 0.004694 0.004607
RESID AHP 21 0.008429 0.006300 0.006168
RESID BMS 21 0.007683 0.005794 0.005788

RESID JJ 21 0.010250 0.008409 0.008267
RESID LIL 21 0.013647 0.012052 0.011957

RESID MRK 21 0.018466 0.013933 0.013850
RESID PFE 21 0.013795 0.011320 0.011115
RESID SP 21 0.013179 0.010662 0.010632

RESID SYN 19 0.015297 0.011576 0.011000
RESID UPJ 20 0.015202 0.012724 0.012565
RESID_WL 21 0.012698 0.010342 0.010143

All 228 0.018996 0.009772 0.009620

Bartlett weighted standard deviation: 0.012765

Diagnostic Test 2: Based Upon Residuals from Equation 4.4.2

Test for Equality of Variances Between Series

Sample: 1976 1996 
Included observations: 21

Method df Value Probability

Bartlett 10 26.04743 0.0037
Levene (10, 217) 1.996279 0.0350
Brown-Forsythe (10, 217) 1.471235 0.1516

Category Statistics

Variable Count Std. Dev.
Mean Abs. 
Mean Diff.

Mean Abs. 
Median Diff.

RESID ABB 21 0.010526 0.008865 0.008779
RESID AHP 21 0.010964 0.008189 0.008037
RESID BMS 21 0.007459 0.005939 0.005903

RESID JJ 21 0.006541 0.005294 0.005268
RESID LIL 21 0.011661 0.008528 0.008506

RESID MRK 21 0.015254 0.011626 0.011620
RESID PFE 21 0.015832 0.012927 0.011685
RESID SP 21 0.010617 0.007934 0.007867

RESID SYN 19 0.012131 0.009933 0.009864
RESID UPJ 20 0.013617 0.009573 0.009515
RESID WL 21 0.013874 0.010541 0.010536

All 228 0.018410 0.009022 0.008859

Bartlett weighted standard deviation: 0.012001
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Diagnostic Test 3: Based U pon Residuals from  E quation 4.4.3

Test for Equality of Variances Between Series

Sample: 1976 1996
Included observations: 21

Method df Value Probability

Bartlett 10 25.32593 0.0048
Levene (10, 217) 1.973977 0.0374
Brown-Forsythe (10, 217) 1.723630 0.0769

Category Statistics

Mean Abs. Mean Abs.
Variable Count Std. Dev. Mean Diff. Median Diff.

RESID ABB 21 0.008502 0.006601 0.006520
RESID AHP 21 0.009653 0.007590 0.007478
RESID BMS 21 0.007379 0.006070 0.005935

RESID JJ 21 0.007682 0.006144 0.006061
RESID LIL 21 0.010592 0.008038 0.007941

RESID MRK 21 0.017044 0.012915 0.012883
RESID PFE 21 0.013200 0.010785 0.010090
RESID SP 21 0.009796 0.007237 0.007130

RESID_SYN 19 0.011715 0.009039 0.008979
RESID UPJ 20 0.012543 0.009437 0.009381
RESID_WL 21 0.012464 0.009508 0.009385

All 228 0.018083 0.008479 0.008334

Bartlett weighted standard deviation: 0.011279

Diagnostic Test 4: Based Upon Residuals from Equation 4.4.4
Test for Equality of Variances Between Series

Sample: 1976 1996 
Included observations: 21

Method df Value Probability

Bartlett 10 27.18764 0.0024
Levene (10, 140) 3.033125 0.0017
Brown-Forsythe (10, 140) 2.765135 0.0038

Category Statistics

Variable Count Std. Dev.
Mean Abs. 
Mean Diff.

Mean Abs 
Median Diff.

RESID ABB 14 0.010335 0.007011 0.007011
RESID AHP 14 0.011225 0.007887 0.006965
RESID BMS 14 0.006360 0.004338 0.004056

RESID JJ 14 0.007673 0.006599 0.006599
RESID LIL 14 0.011963 0.009072 0.009043

RESID MRK 14 0.018314 0.014224 0.014224
RESID PFE 14 0.014618 0.012669 0.012526
RESID SP 14 0.006707 0.005149 0.005149

RESID SYN 12 0.009183 0.007832 0.007832
RESID UPJ 13 0.009469 0.007172 0.006887
RESIDW L 14 0.013950 0.011391 0.011292

All 151 0.019946 0.008503 0.008342

Bartlett weighted standard deviation: 0.011475
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Diagnostic Test 5: B ased U pon R esiduals from  Equation 4.4.5

Test for Equality of Variances Between Series

Sample: 1976 1996
Included observations: 21

Method df Value Probability

Bartlett 10 34.41564 0.0002
Levene (10, 140) 3.878144 0.0001
Brown-Forsythe (10, 140) 3.191875 0.0010

Category Statistics

Variable Count Std. Dev.
Mean Abs. 
Mean Diff.

Mean Abs. 
Median Diff.

RESID ABB 14 0.011524 0.008705 0.008625
RESID AHP 14 0.012598 0.008950 0.007707
RESID BMS 14 0.006228 0.004133 0.004032

RESID_JJ 14 0.006213 0.005031 0.005031
RESID LIL 14 0.012598 0.009823 0.009823

RESID MRK 14 0.016489 0.012345 0.012345
RESID PFE 14 0.017576 0.015552 0.015087
RESID SP 14 0.005902 0.004669 0.004669

RESID SYN 12 0.010268 0.008985 0.008985
RESID UPJ 13 0.010567 0.008225 0 007881
RESID_WL 14 0.015839 0.012876 0.012876

All 151 0.020169 0.009033 0.008828

Bartlett weighted standard deviation: 0.012137

Diagnostic Test 6 : Based Upon Residuals from Equation 4.4.6

Test for Equality of Variances Between Series

Sample: 1976 1996 
Included observations: 21

Method df Value Probability

Bartlett 10 28.56556 0.0015
Levene (10, 140) 3.162493 0.0011
Brown-Forsythe (10, 140) 2.819377 0.0032

Category Statistics

Variable Count Std. Dev.
Mean Abs. 
Mean Diff.

Mean Abs. 
Median Diff.

RESID ABB 14 0.010208 0.007067 0.007067
RESID AHP 14 0.011225 0.007904 0.006951
RESID BMS 14 0.006195 0.004281 0.003949

RESID JJ 14 0.007596 0.006495 0.006495
RESID LIL 14 0.011686 0.008835 0.008835

RESID MRK 14 0.018375 0.014196 0.014196
RESID PFE 14 0.014692 0.012862 0.012580
RESID SP 14 0.006717 0.005164 0.005164

RESID SYN 12 0.008979 0.007857 0.007857
RESID UPJ 13 0.009353 0.007218 0.006942
RESID WL 14 0.014262 0.011535 0.011392

All 151 0.019933 0.008509 0.008327

Bartlett weighted standard deviation: 0.011458
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Test for Equality of Variances Between Series

Diagnostic Test 7: B ased Upon R esiduals from  Equation 4.5.1

Sample: 1976 1996 
Included observations: 21

Method df Value Probability

Bartlett 10 33.33063 0.0002
Levene (10, 217) 3.448766 0.0003
Brown-Forsythe (10, 217) 2.851681 0.0024

Category Statistics

Variable Count Std. Dev.
Mean Abs. 
Mean Diff.

Mean Abs. 
Median Diff.

RESID ABB 21 0.007640 0.005196 0.005097
RESID AHP 21 0.008683 0.006637 0.006399
RESID BMS 21 0.007669 0.005804 0.005735

RESID JJ 21 0.010841 0.008765 0.008549
RESID LIL 21 0.012509 0.011056 0.010964

RESID MRK 21 0.018914 0.014171 0.014098
RESID PFE 21 0.013535 0.011085 0.010989
RESID SP 21 0.011903 0.009504 0.009424

RESID SYN 19 0.016283 0.012706 0.012253
RESID UPJ 20 0.015340 0.012800 0.012512
RESIDW L 21 0.011304 0.009470 0.009325

All 228 0.012379 0.009705 0.009541

Bartlett weighted standard deviation: 0.012661

Diagnostic Test 8 : Based Upon Residuals from Equation 4.5.2

Test for Equality of Variances Between Series 
Date: 06/22/00 Time: 11:58 
Sample: 1976 1996 
Included observations: 21

Method df Value Probability

Bartlett 10 24.96153 0.0054
Levene (10, 217) 1.945881 0.0406
Brown-Forsythe (10, 217) 1.469074 0.1524

Category Statistics

Variable Count Std. Dev.
Mean Abs. 
Mean Diff.

Mean Abs. 
Median Diff.

RESID ABB 21 0.011062 0.009058 0.008945
RESID AHP 21 0.010926 0.008136 0.007951
RESID BMS 21 0.007580 0.006038 0.006030

RESID_JJ 21 0.006668 0.005410 0.005394
RESIDJJL 21 0.011512 0.008353 0.008349

RESID_MRK 21 0.015330 0.011630 0.011615
RESID PFE 21 0.015233 0.012489 0.011370
RESID SP 21 0.010272 0.007416 0.007344

RESID SYN 19 0.011425 0.009239 0.009205
RESID UPJ 20 0.013569 0.009722 0.009684
RESID WL 21 0.014502 0.011194 0.011143

All 228 0.011691 0.008966 0.008814

Bartlett weighted standard deviation: 0.011958
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Diagnostic Test 9: Based U pon R esiduals from E quation 4.5.3

Test for Equality of Variances Between Series 
Date: 06/22/00 Time: 12:06 
Sample: 1976 1996 
Included observations: 21

Method df Value Probability

Bartlett 10 33.73045 0.0002
Levene (10, 217) 2.663403 0.0044
Brown-Forsythe (10, 217) 2.378149 0.0108

Category Statistics

Mean Abs. Mean Abs.
Variable Count Std. Dev. Mean Diff. Median Diff.

RESID ABB 21 0.007955 0.005938 0.005777
RESID AHP 21 0.009671 0.007781 0.007516
RESID BMS 21 0.006798 0.005774 0.005520

RESID JJ 21 0.008552 0.007066 0.007006
RESID LIL 21 0.008422 0.006493 0.006330

RESID MRK 21 0.017709 0.013335 0.013212
RESID PFE 21 0.012680 0.010211 0.009963
RESID SP 21 0.008364 0.006622 0.006313

RESID SYN 19 0.013669 0.010784 0.010691
RESID UPJ 20 0.012380 0.009163 0.009114
RESID_WL 21 0.010412 0.008340 0.008087

All 228 0.010758 0.008293 0.008112

Bartlett weighted standard deviation: 0.011003

Diagnostic Test 10: Based Upon Residuals from Equation 4.5.4

Test for Equality of Variances Between Series

Sample: 1976 1996 
Included observations: 21

Method df Value Probability

Bartlett 10 39.38338 0.0000
Levene (10, 140) 3.992293 0.0001
Brown-Forsythe (10, 140) 3.327757 0.0007

Category Statistics

Variable Count Std. Dev.
Mean Abs. 
Mean Diff.

Mean Abs. 
Median Diff.

RESID ABB 14 0.008494 0.006090 0.006090
RESID AHP 14 0.010720 0.008111 0.007002
RESID BMS 14 0.005768 0.004531 0.004531

RESID_JJ 14 0.008778 0.007343 0.007343
RESID LIL 14 0.007331 0.005923 0.005579

RESID_MRK 14 0.019674 0.014982 0.014880
RESID PFE 14 0.013728 0.011493 0.011286
RESID SP 14 0.005002 0.004283 0.004228

RESID SYN 12 0.012374 0.010713 0.010713
RESID UPJ 13 0.009061 0.006428 0.005940
RESIDJ/VL 14 0.008789 0.007593 0.007402

All 151 0.010343 0.007927 0.007699

Bartlett weighted standard deviation: 0.010706
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Diagnostic Test 11: B ased U pon R esiduals from  Equation 4.5.5

Test for Equality of Variances Between Series

Sample: 1976 1996
Included observations: 21

Method df Value Probability

Bartlett 10 35.75083 0.0001
Levene (10, 140) 4.020024 0.0001
Brown-Forsythe (10, 140) 3.187865 0.0010

Category Statistics

Mean Abs. Mean Abs.
Variable Count Std. Dev. Mean Diff. Median Diff.

RESID ABB 14 0.011124 0.008583 0.008474
RESID AHP 14 0.012678 0.009070 0.007820
RESID BMS 14 0.006288 0.004241 0.004204

RESID JJ 14 0.006061 0.004908 0.004908
RESID LIL 14 0.012490 0.009687 0.009687

RESID MRK 14 0.016385 0.012273 0.012273
RESID PFE 14 0.018087 0.016027 0.015460
RESID SP 14 0.005592 0.004628 0.004628

RESID SYN 12 0.010701 0.009366 0.009366
RESID UPJ 13 0.010732 0.008333 0.007826
RESID WL 14 0.015341 0.012351 0.012351

All 151 0.011710 0.009043 0.008817

Bartlett weighted standard deviation: 0.012121

Diagnostic Test 12: Based Upon Residuals from Equation 4.5.6

Test for Equality of Variances Between Series 
Date: 06/22/00 Time: 12:20 
Sample: 1976 1996 
Included observations: 21

Method df Value Probability

Bartlett 10 40.31072 0.0000
Levene (10, 140) 4.090025 0.0001
Brown-Forsythe (10, 140) 3.448991 0.0005

Category Statistics

Variable Count Std Dev.
Mean Abs. 
Mean Diff.

Mean Abs. 
Median Diff.

RESID ABB 14 0.008275 0.005969 0.005969
RESID AHP 14 0.010730 0.008151 0.006902
RESID BMS 14 0.005660 0.004627 0.004627

RESID JJ 14 0.008731 0.007289 0.007289
RESID LIL 14 0.007008 0.005565 0.005410

RESID MRK 14 0.019736 0.014865 0.014865
RESID PFE 14 0.013812 0.011710 0.011467
RESID SP 14 0.005091 0.004385 0.004232

RESID SYN 12 0.012146 0.010742 0.010742
RESID UPJ 13 0.008915 0.006389 0.005852
RESID WL 14 0.009109 0.007763 0.007512

All 151 0.010318 0.007924 0.007687

Bartlett weighted standard deviation: 0.010680
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Diagnostic Test 13: B ased U pon R esiduals from  G & G  Equation 1

Test for Equality of Variances Between Series

Sample: 1986 1996
Included observations: 11

Method df Value Probability

Bartlett 11 158.5885 0.0000
Levene (11, 108) 9.583201 0.0000
Brown-Forsythe (11, 108) 4.662194 0.0000

Category Statistics

Mean Abs. Mean Abs.
Variable Count Std. Dev. Mean Dlff. Median Diff.

RESID ABB 10 36.86549 27.82828 26.12824
RESID ALZ 10 27.40828 23.71184 23.71184
RESID AHP 10 247.9823 204.0072 185.3211
RESID BLK 10 6.743461 4.246858 4.087620
RESID BMS 10 196.8206 147.6931 135.6631
RESID CW 10 8.658646 6.013074 5.657811
RESID JJ 10 98.08688 77.74425 77.74425
RESID LIL 10 155.0314 115.3767 111.7329

RESID MRK 10 194.7929 162.0217 138.8444
RESID PFE 10 207.1293 171.5681 171.5681
RESID SP 10 32.62367 28.97624 28.97624
RESID WL 10 76.70938 56.86417 51.91203

All 120 174.3771 85.50429 80.11231

Bartlett weighted standard deviation: 136.6002

Diagnostic Test 14: Based Upon Residuals from G&G Equation 2
Test for Equality of Variances Between Series

Sample: 1986 1996 
Included observations: 11

Method df Value Probability

Bartlett 11 162.5959 0.0000
Levene (11, 108) 10.34623 0.0000
Brown-Forsythe (11, 108) 4.789224 0.0000

Category Statistics

Variable Count Std. Dev.
Mean Abs. 
Mean Diff.

Mean Abs. 
Median Diff.

RESID ABB 10 33.46385 25.66778 25.66778
RESID ALZ 10 27.48447 23.77158 23.77158
RESID AHP 10 250.1775 206.0484 187.7160
RESID BLK 10 6.602541 4.011878 3.912846
RESID BMS 10 192.0646 146.5110 131.9039
RESID CW 10 8.321833 5.483643 5.430347
RESID JJ 10 97.12740 77.10793 77.10793
RESID LIL 10 153.8050 115.3341 114.5905

RESID MRK 10 205.8682 172.6345 145.2446
RESID PFE 10 217.7118 180.8148 180.8148
RESID SP 10 35.15000 31.41990 31.41990
RESID_WL 10 74.10757 53.37760 50.71357

All 120 175.4863 86.84860 81.52448

Bartlett weighted standard deviation: 138.7633
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Diagnostic Test 15: B ased U pon R esiduals from  G&G Equation 3

Test for Equality of Variances Between Series

Sample: 1986 1996
Included observations: 11

Method df Value Probability

Bartlett 11 158.2806 0.0000
Levene (11, 108) 9.589192 0.0000
Brown-Forsythe (11, 108) 4.620506 0.0000

Category Statistics

Variable Count Std. Dev.
Mean Abs. 
Mean Diff.

Mean Abs. 
Median Diff.

RESID ABB 10 35.72417 27.10404 25.24165
RESID ALZ 10 27.40894 23.73601 23.73601
RESID AHP 10 245.9423 202.0171 183.2099
RESID BLK 10 6.871114 4.359502 4.222836
RESID BMS 10 199.6448 148.9950 138.1578
RESID CW 10 8.972234 6.419863 6.006936
RESID JJ 10 96.28461 75.07708 75.07708
RESID LIL 10 155.8963 117.1717 112.5623

RESID MRK 10 205.7004 170.7455 146.0167
RESID PFE 10 209.8799 174.5494 174.5494
RESID SP 10 35.15870 30.85929 30.85929
RESID WL 10 77.68356 57.66597 52.27546

All 120 173.9079 86.55837 80.99295
Bartlett weighted standard deviation: 138.3559

Diagnostic Test 16: Based Upon Residuals from G&G Equation 4
Test for Equality of Variances Between Series

Sample: 1986 1996 
Included observations: 11

Method df Value Probability

Bartlett 11 134.3801 0.0000
Levene (11, 108) 8.199954 0.0000
Brown-Forsythe (11, 108) 4.289463 0.0000

Category Statistics

Variable Count Std. Dev.
Mean Abs. 
Mean Diff.

Mean Abs. 
Median Diff.

RESID ABB 10 90.77303 73.25809 68.80053
RESID ALZ 10 28.98805 24.59479 24.59479
RESID AHP 10 265.5209 219.9070 199.9095
RESID BLK 10 7.491098 5.438841 5.382986
RESID BMS 10 176.1182 135.5502 126.5022
RESID CW 10 14.14663 11.07114 11.07114
RESID JJ 10 88.10255 73.93003 73.53043
RESID LIL 10 145.9285 98.97440 98.24962

RESID MRK 10 99.31217 83.79169 77.47596
RESID PFE 10 166.6948 132.5412 130.0662
RESID SP 10 21.64905 17.34035 16.61794
RESID_WL 10 120.7839 92.07363 86.64517

All 120 120.6975 80.70596 76.57054

Bartlett weighted standard deviation: 126.6951

272



Test for Equality of Variances Between Series

Sample: 1986 1996 
Included observations: 11

Diagnostic Test 17: B ased U pon Residuals from  G & G  Equation  5

Method df Value Probability

Bartlett 11 162.2911 0.0000
Levene (11, 108) 10.26493 0.0000
Brown-Forsythe (11, 108) 5.642338 0.0000

Category Statistics

Variable Count Std. Dev.
Mean Abs. 
Mean Diff.

Mean Abs. 
Median Diff.

RESID ABB 10 53.86714 46.24482 46.24482
RESID ALZ 10 30.61208 24.19827 24.19827
RESID AHP 10 272.4960 226.2871 208.5247
RESID BLK 10 5.578025 3.683657 3.446540
RESID BMS 10 169.7434 132.6820 126.8531
RESID CW 10 7.105301 4.971535 4.922257
RESID JJ 10 100.7411 86.07345 84.47181
RESID LIL 10 142.1916 102.7251 102.7251

RESID MRK 10 150.8119 129.9580 120.5024
RESID PFE 10 206.7809 162.9427 162.9427
RESID SP 10 23.99906 20.12859 19.93968
RESID WL 10 72.05681 50.59740 47.95394

All 120 125.6120 82.54106 79.39379

Bartlett weighted standard deviation: 131.8538

Diagnostic Test 18: Based Upon Residuals from G&G Equation 6

Test for Equality of Variances Between Series

Sample: 1986 1996 
Included observations: 11

Method df Value Probability

Bartlett 11 138.3580 0.0000
Levene (11,108) 8.065629 0.0000
Brown-Forsythe (11, 108) 4.318867 0.0000

Category Statistics

Variable Count Std. Dev.
Mean Abs. 
Mean Diff.

Mean Abs. 
Median Diff.

RESID ABB 10 90.00815 72.95825 68.46004
RESID ALZ 10 29.14314 24.33223 24.33223
RESID AHP 10 264.4866 218.9499 199.1656
RESID BLK 10 7.143467 5.140724 5.026569
RESID BMS 10 178.8425 136.4363 127.1389
RESID CW 10 12.41216 9.926949 9.588326
RESID JJ 10 96.35640 82.21098 80.84047
RESID LIL 10 148.7977 99.29260 99.29260

RESID MRK 10 96.36101 83.39876 76.85160
RESID PFE 10 164.5406 128.9312 127.3756
RESID SP 10 20.03716 15.36303 15.36303
RESID WL 10 113.2535 85.70945 82.09974

All 120 120.5364 80.22087 76.29456

Bartlett weighted standard deviation: 126.5260
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Diagnostic Test Summary: Significance Levels of Breusch and Pagan Lagrange 
Multiplier Test Statistic for Cross-sectional Heteroskedasticity

Equation #
(for generating residuals)

Significance of

7.1 0.127
7.2 0.301
7.3 0.154
7.4 0.322
7.5 0.099
7.6 0.195
8.1 0.341
8.2 0.411
8.3 0.246
8.4 0.444
8.5 0.132
8.6 0.267

Regression Equation 5.1.1: OLS Regression Results for 23 U.S. and European Firms

Dependent Variable: RDS?
Method: Pooled Least Squares

Sample: 1984 1997 
Included observations: 14 
Number of cross-sections used: 23 
Total panel (unbalanced) observations: 286

Variable Coefficient Std. Error t-Statistic Prob.

C -0.047363 0.028457 -1.664395 0.0971
CFM? 0.197946 0.032811 6.032910 0.0000

PHARMARG? 0.205278 0.099672 2.059544 0.0404
PCT? 0.068871 0.010356 6.650290 0.0000

R-squared 0.495507 Mean dependent var 0.097076
Adjusted R-squared 0.490140 S.D. dependent var 0.052337
S.E. of regression 0.037371 Sum squared resid 0.393832
F-statistic 92.32564 Durbin-Watson stat 1.677734
Prob(F-statistic) 0.000000 _ _

Regression Equation 5.1.2: LSDV Regression Results for 23 U.S. and European Firms

Dependent Variable: RDS?
Method: Pooled Least Squares

Sample: 1984 1997 
Included observations: 14 
Number of cross-sections used: 23 
Total panel (unbalanced) observations: 286

Variable Coefficient Std. Error t-Statistic Prob.

CFM? 0.086289 0.016009 5.390031 0.0000
PHARMARG? 0.218650 0.041290 5.295498 0.0000

PCT? 0.090894 0.013121 6.927235 0.0000
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Fixed Effects
ABB-C -0.036174
AKZ--C -0.038230
ALZ--C 0.095723
AMC-C -0.028263
AHP--C -0.064010
AST--C -0.007845
BLK--C -0.055662
BMS--C -0.047475
CW--C -0.048417

DOW-C -0.038006
FL--C -0.093176

HST--C -0.029730
JJ--C -0.025930
LIL-C -0.017075

MRK-C -0.055627
MON-C -0.019323
MYL-C -0.112713
PFE--C -0.027349
SP-C -0.041369

SKB--C -0.043350
SYN--C -0.001810
UPJ--C -0.007899
W L-C -0.046608

R-squared 0.927856 Mean dependent var 0.097076
Adjusted R-squared 0.920919 S.D. dependent var 0.052337
S.E. of regression 0.014718 Sum squared resid 0.056319
F-statistic 1671.951 Durbin-Watson stat 1.764673
Prob(F-statistic) 0.000000 _ -

Regression Equation 5.1.3: Feasible Generalized Least Squares Regression Results 
(Common Intercept) 23 U.S. and European Firms

Dependent Variable: RDS?
Method: GLS (Cross Section Weights)

Sample: 1984 1997 
Included observations: 14 
Number of cross-sections used: 23
Total panel (unbalanced) observations: 286

Variable Coefficient Std. Error t-Statistic Prob.

C -0.003200 0.009827 -0.325618 0.7450
CFM? 0.177493 0.015220 11.66204 0.0000

PHARMARG? 0.068099 0.034609 1.967668 0.0501
PCT? 0.067546 0.004416 15.29473 0.0000

Weighted Statistics

R-squared 0.908798 Mean dependent var 0.197379
Adjusted R-squared 0.907828 S.D. dependent var 0.118118
S.E. of regression 0.035860 Sum squared resid 0.362645
F-statistic 936.6833 Durbin-Watson stat 1.692686
Prob(F-statistic) 0.000000

Unweighted Statistics

R-squared 0.489462 Mean dependent var 0.097076
Adjusted R-squared 0.484031 S.D. dependent var 0.052337
S.E. of regression 0.037594 Sum squared resid 0.398550
Durbin-Watson stat _ 1.556710 — -
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Regression Equation 5.1.4: Feasible Generalized Least Squares Regression Results 
(Fixed Effects) 23 U.S. and European Firms

Dependent Variable: RDS?
Method: GLS (Cross Section Weights)

Sample: 1984 1997 
Included observations: 14 
Number of cross-sections used: 23 
Total panel (unbalanced) observations: 286

Variable Coefficient Std. Error t-Statistic Prob.

CFM? 0.075029 0.014496 4.865330 0.0000
PHARMARG? 0.122411 0.021994 5.565656 0.0000

PCT? 0.102692 0.008496 12.08744 0.0000
Fixed Effects

ABB--C -0.010268
AKZ--C -0.010101
ALZ--C 0.118502
AMC-C -0.004385
AHP--C -0.039823
AST--C 0.013047
BLK-C -0.027785
BMS--C -0.022479
CW--C -0.024488

DOW-C -0.008786
FL--C -0.072949

HST--C -0.001620
JJ--C 0.001200
LIL-C 0.006971

MRK-C -0.032571
MON--C 0.009866
MYL--C -0.091848
PFE-C -0.003041
SP--C -0.018930

SKB--C -0.017084
SYN--C 0.020343
UPJ--C 0.013074
W L-C -0.022606

Weighted Statistics

R-squared 0.971203 Mean dependent var 0.136945
Adjusted R-squared 0.968434 S.D. dependent var 0.079373
S.E. of regression 0.014102 Sum squared resid 0.051704
F-statistic 4384.413 Durbin-Watson stat 1.865640
Prob(F-statistic) 0.000000

Unweighted Statistics

R-squared 0.925645 Mean dependent var 0.097076
Adjusted R-squared 0.918495 S.D. dependent var 0.052337
S.E. of regression 0.014942 Sum squared resid 0.058045
Durbin-Watson stat 1.715759 — _
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Regression Equation 5.1.5: R andom  Effects M odel Specification for 23 U.S. and
European Firm s

Dependent Variable: RDS?
Method: GLS (Variance Components)

Sample: 1984 1997 
Included observations: 14 
Number of cross-sections used: 23
Total panel (unbalanced) observations: 286_______________________________________

Variable Coefficient Std. Error t-Statistic Prob.
c -0.037914 0.014826 -2.557295 0.0111

CFM? 0.088228 0.015837 5.571055 0.0000
PHARMARG? 0.217921 0.040858 5.333593 0.0000

PCT? 0.091029 0.011940 7.624037 0.0000
Random Effects

ABB--C 0.001353
AKZ--C -0.000374
ALZ--C 0.131496
AMC--C 0.009374
AHP—C -0.026118
AST--C 0.029182
BLK--C -0.017626
BMS--C -0.009732
CW--C -0.010462

DOW—C -0.000217
FL--C -0.055133

HST--C 0.008019
JJ--C 0.011647
LIL-C 0.020095

MRK--C -0.017993
_MON—C 0.018229

MYL--C -0.074531
PFE--C 0.010124

_SP~C -0.003800
SKB--C -0.005743
SYN--C 0.035115
UPJ-C 0.029295
WL--C -0.008745

GLS Transformed
Regression

R-squared 0.922837 Mean dependent var 0.097076
Adjusted R-squared 0.922016 S.D.dependent var 0.052337
S.E. of regression 0.014615 Sum squared resid 0.060237
Durbin-Watson stat 1.872381

Unweighted Statistics 
including Random Effects

R-squared 0.927796 Mean dependent var 0.097076
Adjusted R-squared 0.927028 S.D.dependent var 0.052337
S.E. of regression 0.014138 Sum squared resid 0.056366
Durbin-Watson stat 1.718560
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Regression 5.4.1: Classic OLS M odel w ith 32 U .S. and European Firm s over the Period
from  1991-1997

Dependent Variable: RDS?
Method: Pooled Least Squares

Sample: 1991 1997 
Included observations: 7 
Number of cross-sections used: 32 
Total panel (unbalanced) observations: 191

Variable Coefficient Std. Error t-Statistic Prob.
C -0.061184 0.036097 -1.694998 0.0917

CFM? 0.157199 0.034711 4.528748 0.0000
PC? 0.084120 0.011909 7.063306 0.0000

PMARG? 0.269909 0.119025 2.267661 0.0245
R-squared 0.570319 Mean dependent var 0.107578
Adjusted R-squared 0.563426 S.D. dependent var 0.054125
S.E. of regression 0.035762 Sum squared resid 0.239163
F-statistic 82.73553 Durbin-Watson stat 1.982527
Prob(F-statistic) 0.000000 _ _
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Dependent Variable: RDS?
Method: Pooled Least Squares

Sample: 1991 1997 
Included observations: 7 
Number of cross-sections used: 32
Total panel (unbalanced) observations: 191____________________________________

Regression 5.4.2: Classic LSDV M odel (Fixed Effects) w ith 32 U.S. and European
Firm s over the Period from  1991-1997

Variable Coefficient Std. Error t-Statistic Prob.
CFM? 0.096959 0.018941 5.118917 0.0000
PC? 0.069472 0.021962 3.163227 0.0019

PMARG? 
Fixed Effects

0.214267 0.048292 4.436895 0.0000

ABB--C -0.017688
AKZ--C -0.036474
ALZ--C 0.105741
AMC--C -0.014849
AHP--C -0.041300
AMG--C 0.040448
AST--C -0.008425
BAY--C -0.017230
BLK--C -0.054023
BMS--C -0.038786
CW--C -0.043997

DOW--C -0.042333
EMK--C -0.021937
FOR--C -0.074355
HOE--C -0.023980
JJ--C -0.022691
LIL--C -0.004389

GLX--C -0.023741
MRK--C -0.053606
MON--C -0.014265
MYL--C -0.088709
PFE--C -0.001569
PHR--C 0.027081
RHO--C -0.018827
ROC--C 0.012891
SAN--C -0.010441
SHP--C -0.024934
SKB--C -0.032667
SOL--C -0.043308
SYT-C 0.022415
UPJ--C 0.018027
WLA--C -0.028591

. ZEN--C -0.005984
R-squared 0.947856 Mean dependent var 0.107578
Adjusted R-squared 0.936081 S.D.dependent var 0.054125
S.E. of regression 0.013684 Sum squared resid 0.029024
F-statistic 1408.767 Durbin-Watson stat 1.897265
Prob(F-statistic) 0.000000
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Regression 5.4.3: FGLS M odel Specification (Com m on Intercept) w ith 32 U.S. and
European Firm s over the Period from 1991-1997

Dependent Variable: RDS?
Method: GLS (Cross Section Weights)

Sample: 1991 1997 
Included observations: 7 
Number of cross-sections used: 32 
Total panel (unbalanced) observations: 191

Variable Coefficient Std. Error t-Statistic Prob.
C -0.026395 0.012638 -2.088515 0.0381

CFM? 0.150636 0.014998 10.04357 0.0000
PC? 0.082458 0.003721 22.16177 0.0000

PMARG? 0.162559 0.042012 3.869305 0.0002
Weighted Statistics

R-squared 0.949409 Mean dependent var 0.225942
Adjusted R-squared 0.948598 S.D. dependent var 0.154427
S.E. of regression 0.035012 Sum squared resid 0.229230
F-statistic 1169.775 Durbin-Watson stat 1.620832
Prob(F-statistic) 0.000000

Unweighted Statistics
R-squared 0.567901 Mean dependent var 0.107578
Adjusted R-squared 0.560969 S.D.dependent var 0.054125
S.E. of regression 0.035863 Sum squared resid 0.240508
Durbin-Watson stat 1.575319
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Regression 5.4.4: FGLS Model Specification (LSDV) with 32 U.S.& European Firms

Dependent Variable: RDS?
Method: GLS (Cross Section Weights)

Sample: 1991 1997 
Included observations: 7 
Number of cross-sections used: 32 
Total panel (unbalanced) observations: 191

Variable Coefficient Std. Error t-Statistic Prob.

CFM? 0.098512 0.014236 6.920109 0.0000
PC? 0.090667 0.012739 7.117520 0.0000

PMARG? 0.173960 0.025024 6.951632 0.0000
Fixed Effects

ABB-C -0.014933
AKZ--C -0.028168
ALZ-C 0.096321
AMC--C -0.015063
AHP--C -0.041690
AMG--C 0.030881
AST--C -0.017833
BAY--C -0.008781
BLK-C -0.044871
BMS-C -0.039099
CW--C -0.041177

DOW-C -0.032302
EMK--C -0.020561
FOR--C -0.084180
HOE-C -0.016909
JJ-C -0.017738
LIL-C -0.010185

GLX--C -0.034058
MRK--C -0.057576
MON-C -0.006423
MYL-C -0.098322
PFE--C -0.004235
PHR--C 0.023468
RHO--C -0.028115
ROC--C 0.012024
SAN--C -0.009022
SHP-C -0.031224
SKB--C -0.032929
SOL--C -0.034566
SYT--C 0.015005
UPJ--C 0.011438
WLA—C -0.024619
ZEN-C -0.002844

Weighted Statistics
R-squared 0.999453 Mean dependent var 0.220922
Adjusted R-squared 0.999329 S.D. dependent var 0.520871
S.E. of regression 0.013490 Sum squared resid 0.028206
F-statistic 141559.3 Durbin-Watson stat 1.991852
Prob(F-statistic) 0.000000

Unweighted Statistics

R-squared 0.947290 Mean dependent var 0.107578
Adjusted R-squared 0.935387 S.D. dependent var 0.054125
S.E. of regression 0.013758 Sum squared resid 0.029339
Durbin-Watson stat 1.846823--—-------------------=̂_ ------------- =--
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Regression 5.4.5: Random Effects Model Specification with 32 U.S.& European Firms

Dependent Variable: RDS?
Method: GLS (Variance Components)

Sample: 1991 1997 
Included observations: 7 
Number of cross-sections used: 32 
Total panel (unbalanced) observations: 191

Variable Coefficient Std. Error t-Statistic Prob.
C -0.030851 0.017873 -1.726146 0.0860

CFM? 0.101171 0.018420 5.492426 0.0000
PC? 0.084310 0.015360 5.488793 0.0000

PMARG? 0.215062 0.047606 4.517565 0.0000
Random Effects

ABB--C 0.005207
AKZ-C -0.008764
ALZ--C 0.117319
AMC-C 0.006778
AHP-C -0.019801
AMG-C 0.053142
AST--C 0.005738
BAY-C 0.010066
BLK--C -0.025425
BMS—C -0.017300
CW--C -0.019757

DOW--C -0.013158
EMK-C 0.000490
FOR--C -0.058516
HOE-C 0.002810

JJ-C 0.002163
LIL-C 0.012227

GLX-C -0.009494
MRK-C -0.034459
MON-C 0.012485
MYL-C -0.072789
PFE-C 0.017466
PHR-C 0.043779
RHO-C -0.003836
ROC-C 0.032393
SAN-C 0.011986
SHP-C -0.007989
SKB-C -0.011311
SOL--C -0.015159
SYT--C 0.037655
UPJ-C 0.034228
W LA-C -0.004146
ZEN--C 0.016308

GLS Transformed Regression

R-squared 0.938672 Mean dependent var 0.107578
Adjusted R-squared 0.937688 S.D. dependent var 0.054125
S.E. of regression 0.013511 Sum squared resid 0.034136
Durbin-Watson stat 1.977140
Unweighted Statistics including

Random Effects

R-squared 0.947466 Mean dependent var 0.107578
Adjusted R-squared 0.946623 S.D. dependent var 0.054125
S.E. of regression 0.012505 Sum squared resid 0.029241
Durbin-Watson stat 1.840716--------------------------------------- =-------------------=_-------------------- s=------- --------------=_
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Diagnostic Test 1: B ased U pon R esiduals from  Equation 5.1.1

Test for Equality of Variances Between Series

Sample: 1983 1997 
Included observations: 15

Method df Value Probability

Bartlett 22 156.1287 0.0000
Levene (22, 263) 6.646134 0.0000
Brown-Forsythe (22, 263) 4.472236 0.0000

Category Statistics

Variable Count Std. Dev.
Mean Abs. 
Mean Diff.

Mean Abs. 
Median Diff.

RESID ABB 14 0.009299 0.006570 0.006570
RESID AKZ 11 0.005208 0.004035 0.003432
RESID ALZ 9 0.039291 0.029482 0.029296
RESID AMC 9 0.004699 0.003418 0.002994
RESID AHP 14 0.014752 0.012618 0.010989
RESID AST 14 0.031182 0.026131 0.025683
RESID BLK 14 0.004914 0.002875 0.002855
RESID BMS 14 0.010477 0.006464 0.006424
RESID_CW 14 0.011996 0.008410 0.007318

RESID DOW 14 0.012283 0.008726 0.008716
RESID FL 14 0.027556 0.021232 0.017249

RESID HST 9 0.003912 0.002412 0.002291
RESID JJ 14 0.007203 0.005815 0.005815
RESIDJJL 14 0.015603 0.011745 0.011698

RESID MRK 14 0.018390 0.014300 0.014244
RESID MON 9 0.018404 0.013691 0.011927
RESID MYL 14 0.014864 0.011859 0.011764
RESID PFE 14 0.015857 0.013555 0.013227
RESID SP 14 0.008177 0.006115 0.006096

RESID SKB 8 0.007258 0.005516 0.005516
RESID SYN 10 0.009263 0.007795 0.007795
RESIDJJPJ 11 0.010734 0.008239 0.007214
RESID_WL 14 0.012514 0.009906 0.009794

All 286 0.037173 0.010583 0.010056

Bartlett weighted standard deviation: 0.015990
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Diagnostic Test 2: B ased Upon R esiduals from  Equation 5.1.2

Test for Equality of Variances Between Series

Sample: 1983 1997 
Included observations: 15

Method df Value Probability

Bartlett 22 154.0098 0.0000
Levene (22, 263) 6.754248 0.0000
Brown-Forsythe (22, 263) 4.326423 0.0000

Category Statistics

Mean Abs. Mean Abs.
Variable Count Std. Dev. Mean Diff. Median Diff.

RESID ABB 14 0.013729 0.009666 0.009666
RESID AKZ 11 0.004579 0.003527 0.003044
RESID_ALZ 9 0.038479 0.030564 0.029930
RESID AMC 9 0.004301 0.003180 0.002993
RESID AHP 14 0.016374 0.014027 0.012695
RESID AST 14 0.023406 0.019517 0.019483
RESID BLK 14 0.004537 0.002923 0.002923
RESID BMS 14 0.009418 0.006707 0.006707
RESID CW 14 0.014299 0.010931 0.009642

RESID DOW 14 0.010743 0.008667 0.008291
RESID FL 14 0.023867 0.018077 0.014938

RESID HST 9 0.003375 0.002013 0.001979
RESID JJ 14 0.004996 0.004179 0.004079
RESID LIL 14 0.008816 0.007072 0.007007

RESID MRK 14 0.016367 0.012427 0.011956
RESID MON 9 0.016243 0.011382 0.010082
RESID MYL 14 0.012733 0.010211 0.010137
RESID PFE 14 0.015297 0.012855 0.012544
RESID SP 14 0.007112 0.005848 0.005848

RESID SKB 8 0.004584 0.003314 0.003241
RESID SYN 10 0.013227 0.011335 0.010852
RESID UPJ 11 0.011377 0.008915 0.007571
RESID WL 14 0.013103 0.011047 0.010882

All 286 0.014057 0.009997 0.009480

Bartlett weighted standard deviation: 0.014634
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Diagnostic Test 3: B ased  U pon R esiduals from  Equation 5.4.1

Test for Equality of Variances Between Series

Sample: 1990 1997 
Included observations: 8

Method df Value Probability

Bartlett 32 76.36585 0.0000
Levene (32, 158) 2.696310 0.0000
Brown-Forsythe (32, 158) 1.381476 0.1008

Category Statistics

Variable Count Std. Dev.
Mean Abs. 
Mean Dlff.

Mean Abs. 
Median Diff.

RESID ABB 6 0.010409 0.007679 0.007064
RESID AKZ 7 0.006717 0.005370 0.004953
RESID ALZ 6 0.032398 0.022348 0.019619
RESID AMC 2 0.004369 0.003089 0.003089
RESID AHP 7 0.013796 0.011687 0.010612
RESID AMG 6 0.026660 0.022991 0.022991
RESID AST 7 0.013434 0.010733 0.009427
RESID BAY 7 0.006783 0.005126 0.003918
RESID BLK 6 0.007790 0.005692 0.005518
RESID BMS 7 0.012644 0.009171 0.008366
RESID CW 7 0.018352 0.015046 0.013368

RESID DOW 6 0.010895 0.006106 0.006086
RESID EMK 6 0.006540 0.005295 0.004408
RESID FOR 6 0.023634 0.015813 0.012232
RESID HOE 6 0.002469 0.001797 0.001634

RESID_JJ 7 0.006376 0.004832 0.004763
RESID LIL 7 0.017694 0.013990 0.013820

RESID G LX 2 0.003389 0.002396 0.002396
RESID MRK 7 0.014314 0.012191 0.011683
RESID MON 7 0.018945 0.014343 0.013499
RESID MYL 7 0.016350 0.013430 0.012697
RESID PFE 7 0.006701 0.005076 0.004879
RESID PHR 2 0.007955 0.005625 0.005625
RESID RHO 7 0.006900 0.005809 0.005337
RESID ROC 6 0.018104 0.014650 0.014561
RESID SAN 3 0.008496 0.006498 0.005195
RESID SHP 7 0.011014 0.008565 0.008348
RESID SKB 7 0.006549 0.004976 0.004816
RESID SOL 7 0.010357 0.007468 0.006970
RESID SYT 3 0.006335 0.004625 0.004138
RESID UPJ 4 0.014539 0.011196 0.011196
RESID WLA 7 0.010749 0.008243 0.007985
RESID ZEN 2 0.003165 0.002238 0.002238

All 191 0.035479 0.009484 0.008808

Bartlett weighted standard deviation: 0.014146
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Diagnostic Test 4: B ased U pon Residuals from  Equation 5.4.2

Test for Equality of Variances Between Series 
Date: 07/21/00 Time: 13:01 
Sample: 1990 1997 
Included observations: 8

Method df Value Probability

Bartlett 32 102.7217 0.0000
Levene (32. 158) 3.938794 0.0000
Brown-Forsythe (32, 158) 2.263612 0.0005

Category Statistics

Variable Count Std. Dev.
Mean Abs. 
Mean Diff.

Mean Abs. 
Median Diff.

RESID ABB 6 0.008839 0.006620 0.005867
RESID AKZ 7 0.005314 0.004190 0.003990
RESID_ALZ 6 0.032351 0.023483 0.023483
RESID AMC 2 0.004489 0.003174 0.003174
RESID AHP 7 0.014510 0.012355 0.011301
RESID AMG 6 0.029270 0.025518 0.025518
RESID AST 7 0.014139 0.010717 0.009981
RESID BAY 7 0.005442 0.004043 0.003273
RESIDBLK 6 0.006489 0.005049 0.004841
RESID BMS 7 0.011046 0.008168 0.007709
RESID_CW 7 0.018368 0.015979 0.014553

RESID DOW 6 0.007996 0.004746 0.004746
RESID EMK 6 0.005511 0.004489 0.004282
RESID FOR 6 0.024503 0.016504 0.012432
RESID HOE 6 0.001886 0.001392 0.001253

RESID_JJ 7 0.003738 0.002868 0.002807
RESID LIL 7 0.011048 0.009301 0.008615

RESID G LX 2 0.003008 0.002127 0.002127
RESID MRK 7 0.015312 0.012902 0.012883
RESID MON 7 0.018677 0.013617 0.012797
RESID MYL 7 0.015233 0.012508 0.011660
RESID PFE 7 0.006258 0.004986 0.004907
RESID PHR 2 0.006962 0.004923 0.004923
RESID RHO 7 0.009204 0.007600 0.007339
RESID ROC 6 0.013255 0.010761 0.010587
RESID SAN 3 0.008086 0.006160 0.005007
RESID SHP 7 0.008954 0.006918 0.006769
RESID SKB 7 0.005241 0.004004 0.003965
RESID SOL 7 0.008891 0.006485 0.005992
RESID SYT 3 0.006890 0.004948 0.004538
RESID UPJ 4 0.015113 0.011684 0.011684
RESID WLA 7 0.008263 0.006496 0.006264
RESID ZEN 2 0.000406 0.000287 0.000287

All 191 0.012359 0.008871 0.008367

Bartlett weighted standard deviation: 0.013553
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Regression Equation 5.5.1: Generalized LSDV European Firms 1991-1997

Dependent Variable: RDS?
Method: GLS (Cross Section Weights)

Sample: 1991 1997 
Included observations: 7 
Number of cross-sections used: 13 
Total panel (unbalanced) observations: 76

Variable Coefficient Std. Error t-Statistic Prob.

CFM? 0.061674 0.024520 2.515233 0.0146
PC? 0.095803 0.017171 5.579393 0.0000

PMARG? 0.101920 0.026034 3.914840 0.0002
Fixed Effects

_AST—C 0.013131
BAY--C 0.017759

_BLK—C -0.018814
EMK--C 0.004995
HOE--C 0.008013

_RHO—C -0.003774
ROC--C 0.044207
SKB--C -0.004374

_GLX—C -0.003177
AKZ--C -0.002488
BLK--C -0.018814

_SOL—C -0.028029
_ZEN—C 0.026569

Weighted Statistics
R-squared 0.995532 Mean dependent var 0.149212
Adjusted R-squared 0.994415 S.D.dependent var 0.116771
S.E. of regression 0.008726 Sum squared resid 0.004569
F-statistic 6684.733 Durbin-Watson stat 1.881306
Prob(F-statistic) 0.000000

Unweighted Statistics
R-squared 0.965966 Mean dependent var 0.093874
Adjusted R-squared 0.957457 S.D.dependent var 0.043825
S.E. of regression 0.009039 Sum squared resid 0.004902
Durbin-Watson stat 1.747015
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Regression Equation 5.5.2: G eneralized LSDV U.S. Firm s 1991-1997

Dependent Variable: RDS?
Method: GLS (Cross Section Weights)

Sample: 1991 1997 
Included observations: 7 
Number of cross-sections used: 19 
Total panel (unbalanced) observations: 116

Variable Coefficient Std. Error t-Statistic Prob.
CFM? 0.056384 0.025910 2.176103 0.0321
PC? 0.085433 0.018374 4.649627 0.0000

PMARG? 0.142329 0.046324 3.072494 0.0028
Fixed Effects

_ABB—C 0.009220
_ALZ—C 0.125453
AMC--C 0.005120

_AHP—C -0.018463
_AMG—C 0.063989
_BMS—C -0.015772
_CW-C -0.025344
DOW-C -0.016205
FOR-C -0.056431
_JJ~C 0.002405
_LIL—C 0.018965

_MRK—C -0.030901
_MON—C 0.011456

MYL-C -0.067835
PFE-C 0.019449

_SHP—C -0.004600
_SYT—C 0.045145
_UPJ-C 0.037059
_WLA—C -0.005949

Weighted Statistics
R-squared 0.984053 Mean dependent var 0.159596
Adjusted R-squared 0.980490 S.D.dependent var 0.108712
S.E. of regression 0.015185 Sum squared resid 0.021674
F-statistic 2900.211 Durbin-Watson stat 1.998854
Prob(F-statistic) 0.000000

Unweighted Statistics
R-squared 0.931962 Mean dependent var 0.114382
Adjusted R-squared 0.916762 S.D. dependent var 0.058339
S.E. of regression 0.016831 Sum squared resid 0.026630
Durbin-Watson stat 1.903626— — - .....  — —
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Regression Equation 5.7.1: Classic OLS for 28 Japanese Firm s from 1994-1997

Dependent Variable: RDS?
Method: Pooled Least Squares

Sample: 1994 1997 
Included observations: 4 
Number of cross-sections used: 28 
Total panel (unbalanced) observations: 86

Variable Coefficient Std. Error t-Statistic Prob.

C 0.011271 0.012268 0.918721 0.3609
CFM? 0.334797 0.056776 5.896814 0.0000
PCT? 0.049580 0.015614 3.175272 0.0021

R-squared 0.466307 Mean dependent var 0.100343
Adjusted R-squared 0.453447 S.D.dependent var 0.038544
S.E. of regression 0.028495 Sum squared resid 0.067394
F-statistic 36.26012 Durbin-Watson stat 1.712817
Prob(F-statistic) 0.000000 _

Regression Equation 5.7.1a: Classic OLS Model for 28 Japanese Firms from 1994-1997 
(with PharMarg employed as Profit Expectations Proxy)

Dependent Variable: RDS?
Method: Pooled Least Squares

Sample: 1994 1997 
Included observations: 4 
Number of cross-sections used: 28 
Total panel (unbalanced) observations: 86

Variable Coefficient Std. Error t-Statistic Prob.

C 0.045203 0.026324 1.717166 0.0897
CFM? 0.335808 0.056403 5.953747 0.0000
PCT? 0.049255 0.015512 3.175221 0.0021

PHARMARG? -0.111250 0.076501 -1.454223 0.1497

R-squared 0.479725 Mean dependent var 0.100343
Adjusted R-squared 0.460691 S.D.dependent var 0.038544
S.E. of regression 0.028306 Sum squared resid 0.065699
F-statistic 25.20301 Durbin-Watson stat 1.547274
Prob(F-statistic) 0.000000
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Regression Equation 5.7.1b: Classic OLS M odel for 28 Japanese Firm s from  1994-1997
(w ith Y ear D um m y V ariables to Control for P rofit Expectations)

Dependent Variable: RDS?
Method: Pooled Least Squares

Sample: 1994 1997 
Included observations: 4 
Number of cross-sections used: 28 
Total panel (unbalanced) observations: 86

Variable Coefficient Std. Error t-Statistic Prob.
C 0.010792 0.013876 0.777806 0.4390

CFM? 0.338212 0.058257 5.805524 0.0000
PCT? 0.049006 0.015907 3.080698 0.0028
D94? 0.000704 0.009179 0.076714 0.9390
D95? 0.003082 0.008821 0.349368 0.7277
D96? -0.002025 0.008758 -0.231263 0.8177

R-squared 0.468704 Mean dependent var 0.100343
Adjusted R-squared 0.435498 S.D. dependent var 0.038544
S.E. of regression 0.028959 Sum squared resid 0.067091
F-statistic 14.11504 Durbin-Watson stat 1.604265
Prob(F-statistic) 0.000000

Regression Equation 5.7.1c: Classic OLS Model for 28 Japanese Firms from 1994-1997 
(with Time Trend Variable to Control for Changing Profit Expectations)

Dependent Variable: RDS?
Method: Pooled Least Squares

Sample: 1994 1997 
Included observations: 4 
Number of cross-sections used: 28 
Total panel (unbalanced) observations: 86

Variable Coefficient Std. Error t-Statistic Prob.
C 1.570926 5.695349 0.275826 0.7834

CFM? 0.335907 0.057239 5.868533 0.0000
PCT? 0.049346 0.015725 3.137961 0.0024

YEAR? -0.000782 0.002854 -0.273848 0.7849
R-squared 0.466795 Mean dependent var 0.100343
Adjusted R-squared 0.447288 S.D. dependent var 0.038544
S.E. of regression 0.028655 Sum squared resid 0.067332
F-statistic 23.92901 Durbin-Watson stat 1.613199
Prob(F-statistic) 0.000000
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Dependent Variable: RDS?
Method: Pooled Least Squares

Sample: 1994 1997 
Included observations: 4 
Number of cross-sections used: 28 
Total panel (unbalanced) observations: 86

Regression Equation 5.7.1d: C lassic OLS M odel for 28 Japanese Firm s from  1994-1997
(w ith Tim e Trend V ariable to Control for C hanging Profit Expectations)

Variable Coefficient Std. Error t-Statistic Prob.
C 0.791131 2.847771 0.277807 0.7819

CFM? 0.335908 0.057239 5.868530 0.0000
PCT? 0.049346 0.015725 3.137963 0.0024

YEAR?A2 -1.96E-07 7.15E-07 ■0.273852 0.7849
R-squared 0.466795 Mean dependent var 0.100343
Adjusted R-squared 0.447288 S.D.dependent var 0.038544
S.E. of regression 0.028655 Sum squared resid 0.067332
F-statistic 23.92901 Durbin-Watson stat 1.699199
Prob(F-statistic) 0.000000

Regression Equation 5.7.1e: Classic OLS Model for 28 Japanese Firms from 1994-1997 
(with Time Trend Variable to Control for Changing Profit Expectations)

Dependent Variable: RDS?
Method: Pooled Least Squares
Date: 07/23/00 Time: 17:23
Sample: 1994 1997
Included observations: 4
Number of cross-sections used: 28
Total panel (unbalanced) observations: 86

Variable Coefficient Std. Error t-Statistic Prob.
C 3.130514 11.39052 0.274835 0.7841

CFM? 0.335907 0.057239 5.868534 0.0000
PCT? 0.049346 0.015725 3.137961 0.0024

YEAR?A.5 -0.069826 0.254982 -0.273846 0.7849
R-squared 0.466795 Mean dependent var 0.100343
Adjusted R-squared 0.447288 S.D.dependent var 0.038544
S.E. of regression 0.028655 Sum squared resid 0.067332
F-statistic 23.92901 Durbin-Watson stat 1.623199
Prob( F-statistic) 0.000000
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from 1994-1997
Dependent Variable: RDS?
Method: GLS (Cross Section Weights)

Sample: 1994 1997 
Included observations: 4 
Number of cross-sections used: 28
Total panel (unbalanced) observations: 86_______________________________________________

Regression Equation 5.7.2: FGLS M odel (C om m on Intercept) for 28 Japanese Firm s

Variable Coefficient Std. Error t-Statistic Prob.
C 0.008977 0.001818 4.937445 0.0000

CFM? 0.274116 0.036761 7.456794 0.0000
PCT? 0.062770 0.005733 10.94952 0.0000

Weighted Statistics
R-squared 0.969461 Mean dependent var 0.179732
Adjusted R-squared 0.968725 S.D. dependent var 0.155828
S.E. of regression 0.027558 Sum squared resid 0.063033
F-statistic 1317.401 Durbin-Watson stat 1.790049
Prob(F-statistic) 0.000000

Unweighted Statistics
R-squared 0.457439 Mean dependent var 0.100343
Adjusted R-squared 0.444365 S.D. dependent var 0.038544
S.E. of regression 
Durbin-Watson stat

0.028731 
1.700837

Sum squared resid 0.068514

Regression Equation 5.7.2a: FGLS Model (Common Intercept) for 28 Japanese Firms 
from 1994-1997 (with PharMarg employed as Profit Expectations Proxy)

Dependent Variable: RDS?
Method: GLS (Cross Section Weights)
Date: 07/23/00 Time: 17:35 
Sample: 1994 1997
Included observations. 4 
Number of cross-sections used: 28 
Total panel (unbalanced) observations: 86

Variable Coefficient Std. Error t-Statistic Prob.

C 0.024778 0.013225 1.873559 0.0646
CFM? 0.279500 0.036917 7.571136 0.0000
PCT? 0.060676 0.005947 10.20272 0.0000

PHARMARG? -0.050231 0.042619 -1.178600 0.2420

Weighted Statistics

R-squared 0.937511 Mean dependent var 0.164303
Adjusted R-squared 0.935225 S.D. dependent var 0.107252
S.E. of regression 0.027297 Sum squared resid 0.061099
F-statistic 410.0784 Durbin-Watson stat 1.746670
Prob(F-statistic) 0.000000

Unweighted Statistics

R-squared 0.468072 Mean dependent var 0.100343
Adjusted R-squared 0.448612 S.D. dependent var 0.038544
S.E. of regression 0.028621 Sum squared resid 0.067171
Durbin-Watson stat _ 1.600498 _
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Regression Equation 5.7.2b: FGLS M odel (C om m on Intercept) for 28 Japanese Firm s
from  1994-1997 (w ith Y ear D um m y V ariables to Control for Profit Expectations)

Dependent Variable: RDS?
Method: GLS (Cross Section Weights)

Sample: 1994 1997 
Included observations: 4 
Number of cross-sections used: 28 
Total panel (unbalanced) observations: 86

Variable Coefficient Std. Error t-Statistic Prob.

C 0.008664 0.003008 2.880297 0.0051
CFM? 0.278554 0.039898 6.981628 0.0000
PCT? 0.061488 0.006334 9.708326 0.0000
D94? -9.46E-05 0.003026 -0.031267 0.9751
D95? 0.001944 0.002842 0.683949 0.4960
D96? 0.001686 0.002813 0.599373 0.5506

Weighted Statistics

R-squared 0.955290 Mean dependent var 0.170198
Adjusted R-squared 0.952496 S.D. dependent var 0.128128
S.E. of regression 0.027926 Sum squared resid 0.062390
F-statistic 341.8639 Durbin-Watson stat 1.838728
Prob(F-statistic) 0.000000

Unweighted Statistics

R-squared 0.458357 Mean dependent var 0.100343
Adjusted R-squared 0.424504 S.D. dependent var 0.038544
S.E. of regression 0.029240 Sum squared resid 0.068398
Durbin-Watson stat _ 1.641315 - -

Regression Equation 5.7.2c: Classic OLS Model for 28 Japanese Firms from 1994-1997 
(with Time Trend Variable to Control for Changing Profit Expectations)

Dependent Variable: RDS?
Method: GLS (Cross Section Weights)

Sample: 1994 1997 
Included observations: 4 
Number of cross-sections used: 28
Total panel (unbalanced) observations: 86

Variable Coefficient Std. Error t-Statistic Prob.

C 0.531222 1.597065 0.332624 0.7403
CFM? 0.280235 0.039197 7.149409 0.0000
PCT? 0.061818 0.006033 10.24658 0.0000

YEAR? -0.000262 0.000800 -0.326977 0.7445

Weighted Statistics

R-squared 0.959109 Mean dependent var 0.176278
Adjusted R-squared 0.957613 S.D. dependent var 0.134942
S.E. of regression 0.027782 Sum squared resid 0.063292
F-statistic 641.1063 Durbin-Watson stat 1.895476
Prob(F-statistic) 0.000000

Unweighted Statistics

R-squared 0.459197 Mean dependent var 0.100343
Adjusted R-squared 0.439412 S.D. dependent var 0.038544
S.E. of regression 0.028859 Sum squared resid 0.068292
Durbin-Watson stat — 1.742399 - -
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Regression 5.7.3: Random Effects Model with 28 Japanese Firms from 1994-1997

Dependent Variable: RDS?
Method: GLS (Variance Components)

Sample: 1994 1997 
Included observations: 4 
Number of cross-sections used: 28 
Total panel (unbalanced) observations: 86

Variable Coefficient Std. Error t-Statistic Prob.

C 0.046477 0.022137 2.099579 0.0388
CFM? 0.168891 0.059679 2.829995 0.0058
PCT? 0.036122 0.024011 1.504401 0.1363

Random Effects
ASA--C -0.013000
BAN-C -0.022410
CHU--C 0.059071
DS--C 0.020145
DU-C -0.006793
EIS--C 0.026814
FUJ--C 0.033439
FUS--C -0.049966
GC--C 0.011060

HOK--C 0.084163
KAK--C -0.001980
KYO-C -0.023360
MS--C -0.024910

MOC-C 0.035037
NIK--C -0.039403
NIP-C 0.040336

ONO--C -0.017906
SAN--C -0.011428
SHI—C -0.006462
SS-C -0.036184
TAI-C -0.032319
TAK--C -0.012449
TS--C -0.000532
TT--C 0.003388

TOR--C -0.008672
TOY--C 0.030896
TSU-C -0.010438
YAM--C -0.017199

GLS Transformed Regression

R-squared 0.949403 Mean dependent var 0.100343
Adjusted R-squared 0.948184 S.D. dependent var 0.038544
S.E. of regression 0.008774 Sum squared resid 0.006389
Durbin-Watson stat 1.886964

Unweighted Statistics including
Random Effects

R-squared 0.961336 Mean dependent var 0.100343
Adjusted R-squared 0.960404 S.D. dependent var 0.038544
S.E. of regression 0.007670 Sum squared resid 0.004882
Durbin-Watson stat 2.469354-------------------------------------------------- =---- ---------------=_ -------------------=---
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Diagnostic Test: Based Upon Residuals from Equation 5.4.2

Test for Equality of Variances Between Series

Sample: 1994 1997 
Included observations: 4

Method df Value Probability

Bartlett 27 42.54149 0.0291
Levene (27, 58) 4.640829 0.0000
Brown-Forsythe (27, 58) 2.875058 0.0004

Category Statistics

Variable Count Std. Dev.
Mean Abs. 
Mean Diff.

Mean Abs. 
Median Diff.

RES ID ASA 3 0.004547 0.003224 0.003008
RESID BAN 1 NA 0.000000 0.000000
RESID CHU 2 0.013532 0.009569 0.009569
RESID DS 4 0.015480 0.012315 0.012315
RESID DU 1 NA 0.000000 0.000000
RESID EIS 4 0.008345 0.005593 0.005593
RESID FUJ 4 0.008236 0.006271 0.006271
RESID FUS 3 0.004006 0.003083 0.002349
RESID GC 3 0.009623 0.007204 0.006151

RESID HOK 2 0.018292 0.012935 0.012935
RESID KAK 4 0.006599 0.004685 0.004685
RESID KYO 3 0.006124 0.004600 0.003896
RESID MS 4 0.001589 0.001181 0.001181

RESID MOC 4 0.003001 0.002296 0.002296
RESID NIK 2 0.001925 0.001361 0.001361
RESID NIP 3 0.008745 0.006624 0.005489

RESID ONO 1 NA 0.000000 0.000000
RESID SAN 4 0.006488 0.004441 0.004147
RESID SHI 4 0.025830 0.021310 0.021310
RESID SS 3 0.003070 0.002298 0.001963
RESID TAI 4 0.008500 0.007076 0.007076
RESID TAK 4 0.003156 0.002543 0.002543
RESID TS 3 0.004523 0.003195 0.002995
RESID TT 1 NA 0.000000 0.000000

RESID TOR 4 0.012225 0.008970 0.008970
RESID TOY 3 0.013051 0.009856 0.008237
RESID TSU 4 0.006873 0.005099 0.003865
RESID YAM 4 0.004147 0.003035 0.003035

All 86 0.028158 0.005898 0.005618

Bartlett weighted standard deviation: 0.009932

295



Regression 6.1: OLS Regression of Pharmaceutical Profitability on % of Total 
Pharmaceutical Sales Accounted for by U.S. Pharmaceutical Sales (12 Firms 1996)1

Dependent Variable: MARG 
Method: Least Squares

Sample: 1 12 
Included observations: 12

Variable Coefficient Std. Error t-Statistic Prob.
C 0.116281 0.046998 2.474194 0.0329

U S T O T 0.351549 0.076361 4.603756 0.0010
R-squared 0.679431 Mean dependent var 0.323639
Adjusted R-squared 0.647374 S.D.dependent var 0.078283
S.E. of regression 0.046486 Akaike info criterion -3.148304
Sum squared resid 0.021610 Schwarz criterion -3.067486
Log likelihood 20.88983 F-statistic 21.19457
Durbin-Watson stat 1.424229 Prob(F-statistic) 0 000975

Regression 6.2: An OLS Model of the Determinants of Pharmaceutical R&D 
(Specification 1)

Dependent Variable: RDS 
Method: Least Squares

Sample: 1 48 
Included observations: 48

Variable Coefficient Std. Error t-Statistic Prob.
C 0.004789 0.012190 0.392899 0.6963

CFM 0.119770 0.046799 2.559266 0.0140
PCT 0.075855 0.022323 3.398023 0.0015

PMARG 0.102963 0.042730 2.409640 0.0202
R-squared 0.758082 Mean dependent var 0.115107
Adjusted R-squared 0.741588 S.D.dependent var 0.049739
S.E. of regression 0.025285 Akaike info criterion -4.437592
Sum squared resid 0.028130 Schwarz criterion -4.281658
Log likelihood 110.5022 F-statistic 45.95995
Durbin-Watson stat 0.642719 Prob(F-statistic) 0.000000

1 It is important to note that the DW-statistic in this, and the following few models, cannot be interpreted in 
the usual way. This is because the data are pooled and the method o f estimation used was OLS.
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Regression 6.3: An OLS Model of the Determinants of Pharmaceutical R&D
(Specification 2)

Dependent Variable: RDS 
Method: Least Squares

Sample: 1 48 
Included observations: 48

Variable Coefficient Std. Error t-Statistic Prob.
C -0.004086 0.013456 -0.303646 0.7629

CFM 0.119466 0.046190 2.586427 0.0132
PCT 0.075432 0.022034 3.423360 0.0014

PMARG 0.054006 0.053699 1.005708 0.3202
PCT US 0.042046 0.028549 1.472768 0.1481

R-squared 0.769699 Mean dependent var 0.115107
Adjusted R-squared 0.748276 S.D. dependent var 0.049739
S.E. of regression 0.024955 Akaike info criterion -4.445137
Sum squared resid 0.026779 Schwarz criterion -4.250220
Log likelihood 111.6833 F-statistic 35.92807
Durbin-Watson stat 0.686372 Prob(F-statistic) 0.000000

Regression 6.4: An OLS Model of the Determinants of Pharmaceutical R&D 
(Specification 3)

Dependent Variable: RDS 
Method: Least Squares 
Date: 08/03/00 Time: 16:29 
Sample: 1 48 
Included observations: 48

Variable Coefficient Std. Error t-Statistic Prob.
C -0.001109 0.013128 -0.084481 0.9331

CFM 0.133384 0.044074 3.026389 0.0041
PCT 0.074951 0.022032 3.401901 0.0014

PCT_US 0.059820 0.022424 2.667655 0.0107
R-squared 0.764282 Mean dependent var 0.115107
Adjusted R-squared 0.748210 S.D.dependent var 0.049739
S.E. of regression 0.024958 Akaike info criterion -4.463554
Sum squared resid 0.027409 Schwarz criterion -4.307621
Log likelihood 111.1253 F-statistic 47.55457
Durbin-Watson stat 0.691635 Prob(F-statistic) 0.000000
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Regression Model 6.5: A Model of the Determinants of Pharmaceutical R&D
(Quadratic Profit Expectations)

Dependent Variable: RDS 
Method: Least Squares

Sample: 1 48 
Included observations: 48

Variable Coefficient Std. Error t-Statistic Prob.
C 0.019629 0.008232 2.384381 0.0215

CFM 0.092333 0.045044 2.049844 0.0464
PCT 0.083950 0.021056 3.987058 0.0002

(PMARG)A2 0.189834 0.053094 3.575442 0.0009
R-squared 0.787808 Mean dependent var 0.115107
Adjusted R-squared 0.773341 S.D. dependent var 0.049739
S.E. of regression 0.023680 Akaike info criterion -4.568700
Sum squared resid 0.024673 Schwarz criterion -4.412766
Log likelihood 113.6488 F-statistic 54.45319
Durbin-Watson stat 0.711232 Prob(F-statistic) 0.000000

Regression Model 6.6: A Model of the Determinants of Pharmaceutical R&D 

(Cubic Profit Expectations)

Dependent Variable: RDS 
Method: Least Squares

Sample: 1 48 
Included observations: 48

Variable Coefficient Std. Error t-Statistic Prob.
C 0.027558 0.007816 3.526120 0.0010

CFM 0.085783 0.043496 1.972207 0.0549
PCT 0.088827 0.020512 4.330524 0.0001

(PMARG)A3 0.288263 0.070649 4.080217 0.0002
R-squared 0.801329 Mean dependent var 0.115107
Adjusted R-squared 0.787783 S.D. dependent var 0.049739
S.E. of regression 0.022913 Akaike info criterion -4.634538
Sum squared resid 0.023101 Schwarz criterion -4.478605
Log likelihood 115.2289 F-statistic 59.15710
Durbin-Watson stat 0.744322 Prob(F-statistic) 0.000000
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Regression Model 6.7: A Model of the Determinants of Pharmaceutical R&D
(Interactive Variable Formulation)

Dependent Variable: RDS 
Method: Least Squares

Sample: 1 48 
Included observations: 48

Variable Coefficient Std. Error t-Statistic Prob.
C 0.013187 0.008357 1.577990 0.1217

CFM 0.091076 0.042863 2.124798 0.0393
PCT 0.082804 0.020291 4.080762 0.0002

(PMARG)*(PCT US) 0.143363 0.034967 4.099935 0.0002
R-squared 0.801856 Mean dependent var 0.115107
Adjusted R-squared 0.788346 S.D.dependent var 0.049739
S.E. of regression 0.022883 Akaike info criterion -4.637194
Sum squared resid 0.023040 Schwarz criterion -4.481261
Log likelihood 115.2927 F-statistic 59.35344
Durbin-Watson stat 0.724653 Prob(F-statistic) _ 0.000000

Table 6.1: Regression Coefficient Summary Table

E stim ated  M odels fo r the Determ inants o f  R &D  In tensity  
(In ternational Data 1994-1997)

/ r  j j -
In te rc e p t  C F M  P C T  I --J

M odel 1
(L in e a r P ro fit  E xp e c ta tio n s )

0.004789 0.11977 0.075855 0.10296

M odel 3
(% U S  p ro x y  fo r  e x p e c te d  p ro fits )

-0.0011 0.1334 0.07495 0.0598

Q uadratic  Form ulation
(E x p e c te d  p ro f its  = P m a rc f)

0.019629 0.092333 0.08395 0.189834

C ubic Form ulation
(E x p e c te d  p ro f its  = P m a rq J)

0.02755 0.08578 0.0888 0.28826

In teractive  Form ulation
(E x p e c te d  p ro f its  = (P m a rg )(% U S )

0.013187 0.091076 0.0828 0.14336
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Table 6.2: Modeling the Impact of Pharmaceutical Price Controls in the U.S.

Estimating the Impact of a Pharmaceutical Price Control Policy in the U.S.

Model
Pre-P rice C ontro l R&D  

Investm ent In tensity

Post-Price C ontrol R&D  

Investm ent In tensity

A verage R eduction in R&D  

Investm ent In tensity

Percentage

R eduction

M odel 1
(Linear Profit Expectations)

0.1151 0.0942 0.0209 18.12%

M odel 3
'%US proxy for expected profits)

0.1151 0.0798 0.0353 30.64%

Q uadratic  Form ulation
(Expected profits = Pm arcf)

0.1151 0.0964 0.0187 16.28%

C ubic Form ulation
(Expected profits = PmargJ)

0.1151 0.1030 0.0120 10.47%

In teractive Form ulation
'Expected profits = (Pmarg)(%US)

0.1151 0.0864 0.0287 24.98%
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Appendix 2

Examining the Issue of Causality: Industrial Research and Development 

and Firm Profit Margins in the Ethical Pharmaceutical Industry

Section A2.1: Introduction

The theoretical issue of causality between firm profitability and firm research and 

development spending has been addressed in virtually every major study of industrial 

research and development. Consequently, a possibility that was considered at the onset 

of this research was that of a simultaneous determination of R&D. Whilst the literature 

on pharmaceutical R&D has presumed a causal relationship whereby R&D is determined 

by lagged firm profits, it was deemed important to first consider the appropriateness of 

this specification. As will be shown in this appendix, the reduced form, one-way- 

causality specification employed by earlier researchers was found to have some 

econometric merit, however, the evidence was not overwhelming. In light of these 

findings, and because the research in this thesis builds considerably upon the earlier work 

in this field, the previously-established-non-simultaneous model was ultimately adopted.

It has been suggested that profits may drive future research and development for 

three primary reasons:

1) Increases in profits necessarily increase cash flows which, when capital market 

imperfections exist, are likely to increase the optimal level of R&D expenditures. 

This, in fact, was the primary hypothesis of this thesis. Thus, as profits rise, 

ceteris paribus, the increase in the cash flows of the firm will increase
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expenditures on R&D. In short, higher profits increase cash flows, which, as 

developed fully in Chapter 3, are the cheapest source of R&D finance.

2) Secondly, as was originally posited by Schumpeter in 1950, monopoly power 

provides firms with above normal profits and greater security. This security, 

Schumpeter argued, provides firms with a greater opportunity and ability to 

undertake R&D—which is inherently risky relative to other forms of investment. 

Thus, firms in the pharmaceutical industry, which have been characterized as 

having substantial monopoly power, may respond to higher profit margins by 

increasing research and development intensity. While this is similar to the first 

reason, it is distinct in that it focuses on the relationship between profits and 

security for firms undertaking risky R&D, and not the cost of R&D finance.

3) Past or present profits may influence the expectations of returns from current 

R&D spending. Specifically, high firm profitability may elevate the expected 

returns on current R&D investments.

However, other possible relationships may exist. For example, research and 

development may influence future profitability. Alternatively, R&D and profits may be 

influenced simultaneously by a third factor, for example exogenous surges in demand. 

There has been empirical evidence to support both directions of causality as well as 

simultaneous causality (in the broader economic literature). The results found for the 

pharmaceutical industry during 1974-1994 time-period seem to suggest a simultaneous 

determination. However, there are strong theoretical, as well as empirical, reasons to 

support the position that causality may run primarily from profits to R&D. 

Consequently, the focus of this research has focused on the determinants of R&D 

intensity—with a focus on the marginal impact of cash flows on R&D intensity.
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Section A2.2: The Data

To test the various model specifications, data were obtained on eleven major 

pharmaceutical firms over the period from!972 tol994.

Specifically, the firms included in this sample were:

1) Abbott Laboratories
2) American Home Products
3) Bristol Myers
4) Johnson & Johnson
5) Lilly
6) Merck
7) Pfizer
8) Schering Plough
9) Syntex
10) Upjohn
11) Warner Lambert

Section A2.3.1: The Models

To econometrically test for the direction of causality a model similar to Branch’s (1974) 

was utilized. That is, distributed lag analyses were performed. This part of the analysis 

was not the focus of the dissertation, but it did provide a nice first step toward the 

development of the R&D intensity models that were ultimately developed and used to 

test the dissertation’s primary hypothesis.

Section A2.3.2: The Branch Model

Branch examined 7 industries using data from 1950 to 1965—the pharmaceutical 

industry was one of these industries. There are differences between the model Branch
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used to explore the causality issue and the model outlined here; however, these 

differences were minor and were primarily the result of the data used to construct the 

model variables. Following Branch-type model specification and empirical findings, 

other models will be estimated and the results reported—specifically a series of Granger 

Causality model specifications will be tested to further examine the question of causality.

Section A2.3.3: Hypothesis 1: R&D Leads to Firm Profitability

There are several reasons why firms are likely to have differences in their rates of 

profitability. One of these reasons may be that firms have different levels of human and 

non-human resources. Another reason may be unexpected changes in demand for a 

firm’s products. Furthermore, profits may be influenced over time by the business cycle, 

industry monopoly power, and past research and development. The aforementioned 

reasons suggest the following model:

ru=r<Fi+ß>H,+ßii,+ß2 Ä  + ¿ ^ = 1  + f  +...+3T 1 ̂ ■+.
i'r-1 “7r-2 ~7r-3 ( 1)

Where the variables in (1) are defined as follows:

profitsrit = --------  tor firm l in year t;
sales

Ft = 1 if Firm i, 0 if not firm i;

Ht -  A measure of industry monopoly power obtained from U.S. census data for 

for the pharmaceutical industry. Note: this census data was collected at five 

year intervals. Consequently, linear interpolation was utilized to obtain
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estimates for non-census years. Specifically, H, = ^  s] ;

I, = Percent deviation from the trend of the Federal Reserve Board’s

Production Index in year t. An exponential, constant percentage growth rate 

time trend model was estimated to generate the percentage deviation from the 

industry trend in year t. Data were obtained from the Federal Reserve Board’s 

productivity index for the pharmaceutical industry;

RDiT = Research and development expenditures of firm i in year r ,

RD(where r  = t- years before beginning of first lagged----variable);

Sn = Sales for firm i in year t  , where t  = t- years before beginning of the first

lagged variable.

Clearly, this specification assumes that current profits are, among other things, a 

function of a firm’s geometrically lagged R&D intensity. To estimate this model a 

Koyck transformation was employed. Specifically, the equation was lagged one period 

and multiplied through by the weight parameter X to obtain the following equation:

Mt~ i -  ^y,R, +^ßßt +Aßit- 1

n - l J ir - 2 1)

+ . (2)

Equation (2) was then subtracted from equation (1) and the terms were collected. 

The resulting equation is the Koyck transformation and may be estimated statistically:
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(3)
RD RD

r„ = y , ( \ - W + & ( H , ~ A I , J + - s A ) — ^-)+Ara_
S.r T~\

In order to estimate this equation, a weight of s  was assigned to the first R&D 

intensity variable and an initial estimate of A was selected to define the variables

I, -  AI,_X and Ht -  AHt_x. This equation was then estimated and the coefficient on the

A

lagged profit margin variable A was substituted back into the original equation. The 

regression was then run again. This procedure was continued in an iterative fashion until 

the A ’s were approximately equal. Various rs (beginning period of the lagged R&D) 

were tried and various £ s tried. The r  yielding the highest R and the s  yielding the 

highest t-statistic for (32 were selected. The Herfindahl proxy for monopoly power and 

market concentration was found insignificant in every variable and model specification 

tested. This affirmed earlier empirical findings for such variables (Grabowski 1967, 

Grabowski and Vernon 1978). This was not surprising due to the fact that there was little 

change in market concentration in the pharmaceutical industry over the study period 

(1974-1994). This is shown below in Table A.2.

Table A2.1

Pharmaceutical Industry Market Concentration Measures (1977-1992)

Year o f Census Herfindahl Index

H ,  =  1 > ,2 
/

Concentration Ratio 

(8 largest firms %)

Concentration Ratio 

(20 largest firms %)

Concentration Ratio 

(50 largest firms %)

1992 341 26 42 72

1987 273 22 36 65

1982 318 26 42 69

1977 NA 24 43 73

Source: U.S. Census Bureau-data for major industrial groups (major drugs), 1977, 1982, 1987, and 1992.
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The regression results for this model are presented next. The first regression 

(A.2.1) is the model used to estimate the trend in the Federal Reserve Board’s 

phannaceutical industry productivity index from 1974 to 1994. An exponential, constant 

percentage growth rate specification was used (see Branch 1974). These results are 

presented below.

Regression A2.1: Estimating the Trend in Pharmaceutical Productivity

Dependent Variable: LN_Y 
Method: Least Squares

Sample: 1974:01 1994:12 
Included observations: 252

Variable Coefficient Std. Error t-Statistic Prob.

C 3.864477 0.004308 897.0740 0.0000
TIME 0.003139 2.95E-05 106.3152 0.0000

R-squared 0.978360 Mean dependent var 4.261501
Adjusted R-squared 0.978274 S.D. dependent var 0.231285
S.E. of regression 0.034091 Akaike info criterion -3.911666
Sum squared resid 0.290548 Schwarz criterion -3.883655
Log likelihood 494.8699 F-statistic 11302.91
Durbin-Watson stat 0.742737 Prob(F-statistic) _ 0.000000

This estimated productivity trend is also depicted in Figure A.2.1

Figure A2.1: The Trend in Pharmaceutical Productivity (1974 to 1994)

4.8 

4.6 

4.4 

4.2 
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3.8

Residual -----------Actual ------------Fitted
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The preceding results imply the following trend in pharmaceutical productivity.

Yt = exp(c + 3.8 6time) (4)

Therefore, the business cycle variable, which is defined as the percentage deviation from 

the industry trend, was calculated as follows:

Business Cycle Variable^ x 100% (5)

This variable, whilst it performed better than the Herfindahl-type variable, was not found 

to be statistically significant. The regression results using the Koyck transformation, 

where profit margins were defined as the dependent variable, are reported next in A.2.2.

Equation A2.2: R&D Leads to Firm Profitability

Dependent Variable: PROFIT_MARG 
Method: Least Squares

Sample: 4 21 25 42 46 63 67 84 88 105 109 126 130 147 151 168
172 188 192 209 213 230 

Included observations: 197

Variable Coefficient Std. Error t-Statistic Prob.

495*ABB 0.113725 0.023439 4.851865 0.0000
,495*AHP 0.142192 0.023859 5.959711 0.0000
495*BMS 0.000110 2.11E-05 5.207033 0.0000
,495*JNJ 0.078956 0.019337 4.083203 0.0001
495*LIL 0.133290 0.026324 5.063448 0.0000

,495*MRK 0.159392 0.028160 5.660241 0.0000
495*PFE 0.099165 0.020979 4.726892 0.0000
495*SHP 0.119612 0.024075 4.968423 0.0000
,495*SYN 0.141825 0.029594 4.792284 0.0000
495*UPJ 0.081569 0.023390 3.487299 0.0006
495*WLA 0.048578 0.017052 2.848774 0.0049

BUS CYC-.505*LAG1 BUS CYC 0.001548 0.001105 1.401251 0.1628
,88*LAG2 RDS+.556*LAG3 RDS 0.099261 0.049126 2.020529 0.0448

LAG_PROFIT_MARG 0.504938 0.067209 7.512958 0.0000

R-squared 0.652717 Mean dependent var 0.131162
Adjusted R-squared 0.628046 S.D. dependent var 0.048614
S.E. of regression 0.029649 Aka ike info criterion -4.130387
Sum squared resid 0.160865 Schwarz criterion -3.897063
Log likelihood 420.8431 F-statistic 26.45750
Durbin-Watson stat 2.068836 Prob(F-statistic) _

0.000000
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The results reported in A.2.2 are the results of the iterative search process 

described earlier. This process established the following parameter values for regression 

model A.2.2: A = 0.505, e = 0.88, and t  = 2.

As may be seen above, the t-statistic on the geometrically lagged R&D variable is 

significant at the 5% level. This indicates that lagged R&D intensity does indeed exert a 

positive influence on firm profit margins. However, as will be seen shortly, the evidence 

is even more compelling for the argument that lagged firm profit margins positively 

affect R&D intensities. We will turn to this now.

Section A2.3.4: Hypothesis 2: Firm Profitability Leads to R&D Investment

For the model where R&D is a function of geometrically lagged profits, theory 

suggests the following model:

RD.
~  =  Y i F i +  « 2  ( H r  +  Y r - X  +  K - 2 +  ^  Y r - 3  +  -  +  +  ■••) (6)

To estimate this equation, a Koyck transformation was performed to yield:

m ,
s„ y,(l~A)F, + al(M ,-A M l_l) + a 2(srn + (\-eA )rn_l) + A RD,it -1 (7)

’ i t - 1

The iterative process described in the last section, which was used to estimate equation 

(3), was also used to estimate equation (7). These regression results are presented below:
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Equation A2.3: Firm Profitability Leads to R&D

Dependent Variable: RDS 
Method: Least Squares

Sample: 2 21 23 42 44 63 65 84 86 105 107 126 128 147 149 168 
170 188 190 209 211 230 
Included observations: 219

Variable Coefficient Std. Error t-Statistic Prob.

.531 *AB 0.013863 0.012684 1.093005 0.2757

.531 *AH -0.028464 0.013872 -2.051921 0.0414
,531*BM 0.004085 0.011944 0.342062 0.7327
,531*JJ 0.018422 0.010942 1.683519 0.0938
.531 *LI 0.038612 0.015080 2.560480 0.0112
.531MK 0.012963 0.016162 0.802118 0.4234
.531 *PZ 0.024653 0.011933 2.065898 0.0401
.531*SP 0.016814 0.014015 1.199685 0.2316
.531 *SX 0.043506 0.017118 2.541468 0.0118
531*UP 0.072373 0.013768 5.256618 0.0000
531*WL 0.015933 0.010043 1.586460 0.1142

42*LAG1 R+.803*LAG2 R 0.219636 0.039245 5.596591 0.0000
LG_RDS 0.469557 0.055227 8.502284 0.0000

R-squared 0.766783 Mean dependent var 0.084355
Adjusted R-squared 0.753198 S.D. dependent var 0.036983
S.E. of regression 0.018373 Akaike info criterion -5.098356
Sum squared resid 0.069538 Schwarz criterion -4.897179

Log likelihood 571.2700 F-statistic 56.44158
Durbin-Watson stat 1.465984

_
Prob(F-statistic) 0.000000

The results reported in A.2.3 are the results of the iterative search process 

described earlier. This process established the following parameter values for regression 

model A.2.3: A = 0.469, e = 0.42, andr = 1.

The regression results in A.2.3 show a very strong statistical association between 

lagged firm profit margin and R&D intensity. In fact, the t-statistic for this lagged profit 

margin variable was 5.60 (P0.0001). This was much higher than the t-statistic of 2.02 

for the lagged R&D variable in equation (3). Also, and of considerable interest, the 

coefficient for the lagged profit margin variable was more than twice that of the 

coefficient for the lagged R&D variable (0.220 versus 0.099, respectively).

The regression analyses indicate that the ‘strongest’ statistical relationship exists 

between R&D and lagged profits. However, because lagged R&D was also found to a 

marginally significant predictor of profits, there exists the possibility of dual causality, 

and hence a simultaneous determination of profits and R&D. This would imply that the 

two equations taken together constitute a dynamic system.
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Indeed, if a dynamic system is the correct specification, it is important to consider

RD
the stability of such a system. To explore this we consider an initial change in ----- ,

S ---- . The initial effect is to change r by J32S . However, this will then change
S S

----  by a2(J325 ^ - ) . Therefore, it is easy to see how this simultaneous interaction
S S

RDprocess continues until equilibrium is reached where an initial results in an

i • i • RD RD . . .ultimate change i n ---- , A-----, equal to the sum of the following infinite series:
S S

* RD_ RD 2 ^  „RD 3 3̂ - 4  „RD RD.A—  - a 2/i2(S— )+ar(3~(5— )+a f}{S— )+a f?(5— )+...+</fT(8— )+..., (7)

Or, more succinctly:

A
RD
S = Z ( « 2  Pi)* (8

i

RD
S (8)

-  RD o ----o
This sum can then be shown to converge t o ------ ----- when a 2 /?, < 1.

(1 —  ct 2Pi)

Likewise, it can be shown that an initial change in r of Sr results in an ultimate change 

in r of Ar.

Because the evidence obtained from these models are somewhat limited by the 

aforementioned Koyck and/or Branch assumptions, a more traditional causality analysis 

will also be undertaken. We will turn to this now.

Section A2.4.1: Granger Causality: Examining the Causal Relationship Between 
Firm Profits, Cash Flows, and R&D Investment

Another means by which the question of causality may be addressed is through 

the Granger Causality test. This test is theoretically grounded by the premise that the
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future cannot cause the past or the present. Thus, if a particular event, say event x, occurs 

after event y, we know that event x cannot cause event y1. Therefore, Granger (1969) 

proposed estimating the following bivariate models:

k  k

y, = + X # + U, (9)
1=]

k  k

x,=y  P̂,y,-,+u ( 10)

In the above model, and specifically equation (9), if /?, = 0 V/ where i e (1 ...k) , 

then x, fails to Granger-cause y , . Likewise, for equation (10), if /?, = 0 V/ where 

i e (l...£), then y t is said to fail to Granger-cause x , . Therefore, the test developed by 

Granger is one that tests the joint null hypothesis that (5t = 0  Vi where i e (1...U) for 

both equation (9) and (10). Whilst E-Views does not directly calculate the Granger- 

causality test for series in panel data sets, equations (9) and (10) may be directly 

estimated so that the aforementioned joint null hypothesis can be tested using Eviews 

Wald-coefficient test procedures. This was the approach undertaken in the forthcoming 

analyses. Before presenting the empirical results, it should be noted that the length of the 

lag k is, to some extent, arbitrary. However, the lag length should, if possible, correspond 

to reasonable beliefs about the longest time over which one of the variables may exert an 

effect on the other.

Using data on firm R&D intensity and firm profitability, equations (9) and (10) 

were estimated for lags ranging from 2 to 5 years. These bivariate regressions—and the 

Wald-coefficient tests for the previously discussed joint null hypotheses—are presented 

next.

Section  A 2 .4 .2 : Empirical Results on the Direction o f Causality: Profits and R&D

1 However, it is crucial to note that if  event x does occur before event y, this does not necessarily imply 
that x ‘causes’ y. Hence, the Granger Causality test may be more accurately described as a test of 
precedence and not causality.
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Granger Causality Test 1

Null Hypothesis: Firm  R& D investm ent intensity does not G ranger-cause firm
profitability.

L ags em ployed: 5

Table A2.4: Bivariate Regression of Profitability on Lagged R&D Investment and 
Profitability

Dependent Variable: PROFIT?
Method: Pooled Least Squares

Sample(adjusted): 1974 1989
Included observations: 16 after adjusting endpoints
Number of cross-sections used: 10
Total panel (unbalanced) observations: 159_________________________________________________

Variable Coefficient Std. Error t-Statistic Prob.
RD?(1) 0.041339 0.031529 1.311126 0.1920
RD?(2) 0.007953 0.031961 0.248824 0.8039
RD?(3) 0.011779 0.029075 0.405121 0.6860
RD?(4) -0.010199 0.028359 -0.359638 0.7197
RD?(5) 0.016142 0.023683 0.681560 0.4967

PROFIT?(1) 1.105409 0.102108 10.82589 0 .0 0 0 0
PROFIT?(2) -0.381266 0.131584 -2.897518 0.0044
PROFIT?(3) -0.112806 0.129603 -0.870397 0.3856
PROFIT?(4) 0.296742 0.128052 2.317344 0.0219
PROFIT?(5) -0.230398 0.095059 -2.423735 0.0166

R-squared 0.761147 Mean dependent var 0.256063
Adjusted R-squared 0.728499 S.D. dependent var 0.013319
S.E. of regression 0.006940 Sum squared resid 0.006695
Log likelihood 575.3763 F-statistic 49.21655
Durbin-Watson stat 1.910466 Prob(F-statistic) 0 . 0 0 0 0 0 0

W ald-coefficien t test results f o r  the nu ll hypothesis C(1)=C(2) =C(3)=C(4) II § ii

(Note: C(i)= the ith regression coefficient in the above table):

Wald Test: 
Equation: FIRM

Null Hypothesis: C(1)=0
C(2)=0
C(3)=0
C(4)=0
C(5)=0

F-statistic 0.687773 Probability 0.633426
Chi-square 3.438863_ Probability

_
0.632658
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Granger Causality Test 2

Null Hypothesis: F irm  profitability  does not G ranger-cause firm  R& D  investm ent
intensity.

L ags em ployed: 5

Table A2.5: Bivariate Regression of R&D Investment Intensity on Lagged 
Profitability and R&D Investment

Dependent Variable: RD?
Method: Pooled Least Squares

Sample(adjusted): 1974 1989
Included observations: 16 after adjusting endpoints
Number of cross-sections used: 10
Total panel (unbalanced) observations: 159______

Variable Coefficient Std. Error t-Statistic Prob.

RD?(1) 0.345200 0.072873 4.737030 0.0000
RD?(2) 0.171556 0.073871 2.322364 0.0217
RD?(3) -0.069426 0.067200 -1.033118 0.3033
RD?(4) -0.015746 0.065546 -0.240233 0.8105
RD?(5) 0.030937 0.054739 0.565174 0.5729

PROFIT?(1) 0.441346 0.235999 1.870116 0.0636
PROFIT?(2) 0.127519 0.304125 0.419296 0.6756
PROFIT?(3) -0.105772 0.299547 -0.353106 0.7245
PROFIT?(4) 0.027658 0.295964 0.093451 0.9257
PROFIT?(5) 0.357997 0.219708 1.629426 0.1055

R-squared 0.831999 Mean dependent var 0.072241
Adjusted R-squared 0.809035 S.D. dependent var 0.036706
S.E. of regression 0.016040 Sum squared resid 0.035764
Log likelihood 442.1665 F-statistic 76.48641
Durbin-Watson stat 2.229170 Prob(F-statistic) 0.000000

W ald-coefficien t test resu lts f o r  the n u ll hypothesis C(6)= C (7)=C(8)=C (9)=C (1 O f

Wald Test: 
Equation: FIRM

Null Hypothesis: C(6)=0
C(7)=0
C(8)=0
C(9)=0
C(10)=0

F-statistic 2.961262 Probability 0.014060
Chi-square 14.80631 _ Probability

-
0.011223
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Granger Causality Test 3

Null Hypothesis'. Firm  R& D investm ent intensity does not G ranger-cause firm
profitability.

L ags em ployed: 4

Table A2.6: Bivariate Regression of Profitability on Lagged R&D Investment and 
Profitability

Dependent Variable: PROFIT?
Method: Pooled Least Squares

Sample(adjusted): 1974 1990
Included observations: 17 after adjusting endpoints
Number of cross-sections used: 10
Total panel (unbalanced) observations: 169______

Variable Coefficient Std. Error t-Statistic Prob.
RD?(1) 0.028135 0.029316 0.959722 0.3387
RD?(2) 0.005493 0.028086 0.195566 0.8452
RD?(3) 0.005562 0.027649 0.201150 0.8409
RD?(4) -0.016273 0.022784 -0.714236 0.4762

PROFIT?(1) 1.025372 0.092009 11.14423 0.0000
PROFIT?(2) -0.303003 0.125749 -2.409585 0.0172
PROFIT?(3) -0.065695 0.125769 -0.522343 0.6022
PROFIT?(4) 0.077461 0.092633 0.836218 0.4044

R-squared 0.788302 Mean dependent var 0.257509
Adjusted R-squared 0.764469 S.D. dependent var 0.014157
S.E. of regression 0.006871 Sum squared resid 0.007128
Log likelihood 611.4216 F-statistic 80.32590
Durbin-Watson stat 1.686941 Prob(F-statistic) 0.000000

W ald-coefficient test results f o r  the n u ll hypothesis C (l)= C (2 )= C (3 )= C (4 )-0

Wald Test: 
Equation: FIRM

Null Hypothesis: C(1)=0
C(2)=0
C(3)=0
C(4)=0

F-statistic
Chi-square

0.519757
2.079028_

Probability 0.721324 
_Probability _ 0.721226
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Granger Causality Test 4

Null Hypothesis: Firm  profitability  does not G ranger-cause firm  R& D  investm ent
intensity.

L ags em ployed: 4

Table A2.7: Bivariate Regression of R&D Investment Intensity on Lagged 
Profitability and R&D Investment

Dependent Variable: RD?
Method: Pooled Least Squares

Sample(adjusted): 1974 1990
Included observations: 17 after adjusting endpoints
Number of cross-sections used: 10
Total panel (unbalanced) observations: 169______

Variable Coefficient Std. Error t-Statistic Prob.

RD?(1) 0.336055 0.077234 4.351138 0.0000
RD?(2) 0.143131 0.073992 1.934419 0.0549
RD?(3) -0.047146 0.072841 -0.647237 0.5185
RD?(4) 0.115168 0.060024 1.918677 0.0569

PROFIT?(1) 0.632893 0.242400 2.610944 0.0099
PROFIT?(2) -0.041916 0.331289 -0.126525 0.8995
PROFIT?(3) -0.131170 0.331341 -0.395878 0.6928
PROFIT?(4) 0.328574 0.244044 1.346374 0.1802

R-squared 0.822438 Mean dependent var 0.076021
Adjusted R-squared 0.802448 S.D. dependent var 0.040724
S.E. of regression 0.018101 Sum squared resid 0.049473
Log likelihood 447.7112 F-statistic 99.91540
Durbin-Watson stat 1.835668 Prob(F-statistic) 0.000000

W ald-coefficien t test results f o r  the n u ll hypothesis C(5)=C(6) =C(7)=C(8)=0

Wald Test:
Equation: FIRM

Null Hypothesis: C(5)=0
C(6)=0
C(7)=0
C(8)=0

F-statistic 3.919942 Probability 0.004590
Chi-square 15.67977_ Probability - 0.003480
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Granger Causality Test 5

Null Hypothesis: F irm  R& D investm ent intensity does not G ranger-cause firm
profitability.

L ags em ployed: 3

Table A2.8: Bivariate Regression of Profitability on Lagged R&D Investment and 
Profitability

Dependent Variable: PROFIT? 
Method: Pooled Least Squares

Sample(adjusted): 1974 1991
Included observations: 18 after adjusting endpoints
Number of cross-sections used: 10
Total panel (unbalanced) observations: 179

Variable Coefficient Std. Error t-Statistic Prob.
RD?(1) 0.008853 0.026150 0.338546 0.7354
RD?(2) 0.030434 0.027759 1.096387 0.2745
RD?(3) 0.011099 0.022825 0.486254 0.6274

PROFIT?(1) 1.055221 0.091953 11.47567 0.0000
PROFIT?(2) -0.347361 0.126374 -2.748672 0.0067
PROFIT?(3) 0.023763 0.094070 0.252612 0.8009

R-squared 0.813288 Mean dependent var 0.259324
Adjusted R-squared 0.796105 S.D. dependent var 0.015673
S.E. of regression 0.007077 Sum squared resid 0.008164
Log likelihood 640.5944 F-statistic 142.0001
Durbin-Watson stat 1.820099 Prob(F-statistic) 0.000000

W ald-coefficient test results f o r  the n u ll hypothesis C (1)=C(2)=C (3)=0

Wald Test: 
Equation: FIRM

Null Hypothesis: C(1)=0
C(2)=0
C(3)=0

F-statistic 0.916433 Probability 0.434222
Chi-square 2.749298_ Probability

_ 0.431915
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Granger Causality Test 6

Null Hypothesis: F irm  profitability  does not G ranger-cause firm  R& D investm ent
intensity.

Lags employed: 3

Table A2.9: Bivariate Regression of R&D Investment Intensity on Lagged 
Profitability and R&D Investment

Dependent Variable: RD? 
Method: Pooled Least Squares

Sample(adjusted): 1974 1991
Included observations: 18 after adjusting endpoints
Number of cross-sections used: 10
Total panel (unbalanced) observations: 179

Variable Coefficient Std. Error t-Statistic Prob.

RD?(1) 0.392617 0.068700 5.714911 0.0000
RD?(2) 0.124162 0.072926 1.702568 0.0906
RD?(3) -0.020839 0.059965 -0.347523 0.7286

PROFIT?(1) 0.778133 0.241575 3.221084 0.0015
PROFIT?(2) -0.151697 0.332005 -0.456912 0.6483
PROFIT?(3) 0.294864 0.247137 1.193118 0.2346

R-squared 0.822830 Mean dependent var 0.079037
Adjusted R-squared 0.806526 S.D. dependent var 0.042271
S.E. of regression 0.018593 Sum squared resid 0.056350
Log likelihood 467.6978 F-statistic 151.4044
Durbin-Watson stat 2.134538 Prob(F-statistic) 0.000000

Wald-coefficient test results fo r  the null hypothesis C(4)=C(5)=C(6)=0

Wald Test: 
Equation: FIRM

Null Flypothesis:

o
 o

 o
 

"ii
 "i

f i
f

o
 o

 o

F-statistic
Chi-square

9.539651
28.61895_

Probability 0.000007 
Probability _ 0.000003

318



Granger Causality Test 7

Null Hypothesis: F irm  R&D investm ent intensity does not G ranger-cause firm
profitability.

L ags em ployed: 2

Table A2.10: Bivariate Regression of Profitability on Lagged R&D Investment and 
Profitability

Dependent Variable: PROFIT?
Method: Pooled Least Squares

Sample(adjusted): 1974 1992
Included observations: 19 after adjusting endpoints
Number of cross-sections used: 10
Total panel (unbalanced) observations: 189______

Variable Coefficient Std. Error t-Statistic Prob.
RD?(1) 0.011677 0.025145 0.464389 0.6429
RD?(2) 0.034110 0.021687 1.572853 0.1176

PROFIT?(1) 1.068721 0.086679 12.32965 0.0000
PROFIT?(2) -0.305943 0.088776 -3.446228 0.0007

R-squared 0.835244 Mean dependent var 0.260810
Adjusted R-squared 0.823005 S.D. dependent var 0.016504
S.E. of regression 0.006943 Sum squared resid 0.008437
Log likelihood 678.4188 F-statistic 295.7252
Durbin-Watson stat 1.826146 Prob(F-statistic) 0.000000

W ald-coefficient te s t results f o r  the nu ll hypothesis C (l) -C (2 )= 0

Wald Test:
Equation: FIRM
Null Hypothesis: C(1)=0

C(2)=0
F-statistic 1.979238 Probability 0.141090
Chi-square 3.958476_ Probability _ 0.138174

319



Granger Causality Test 8

Null Hypothesis: F irm  profitability  does not G ranger-cause firm  R& D  investm ent
intensity.

Lags employed: 2

Table A2.ll: Bivariate Regression of R&D Investment Intensity on Lagged 
Profitability and R&D Investment

Dependent Variable: RD?
Method: Pooled Least Squares

Sample(adjusted): 1974 1992
Included observations: 19 after adjusting endpoints
Number of cross-sections used: 10
Total panel (unbalanced) observations: 189

Variable Coefficient Std. Error t-Statistic Prob.

RD?(1) 0.395942 0.075358 5.254169 0.0000
RD?(2) -0.023742 0.064994 -0.365297 0.7153

PROFIT?(1) 0.806644 0.259769 3.105232 0.0022
PROFIT?(2) 0.276381 0.266054 1.038814 0.3003

R-squared 0.787591 Mean dependent var 0.081487
Adjusted R-squared 0.771812 S.D. dependent var 0.043561
S.E. of regression 0.020809 Sum squared resid 0.075774
Log likelihood 470.9757 F-statistic 216.2935
Durbin-Watson stat 1.891452 Prob(F-statistic) _ 0.000000

Wald-coefficient test results fo r  the null hypothesis C(3)=C(4)=0

Wald Test:
Equation: FIRM__________________________________________

Null Hypothesis: C(3)=0
C(4)=0

F-statistic 22.57556 Probability
Chi-square _ 45.15111_ Probability

0.000000
0.000000

The results reported in Tables A.2.4 through A.2.11 provide strong evidence to 

suggest that causality, in the U.S. pharmaceutical industry, runs primarily from 

profitability to R&D investment. Using lags from 2-to-5 years in length, the null 

hypothesis of “profitability does not Granger-cause R&D intensity” was easily rejected in
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every model specified. To the contrary, however, the null hypothesis “R&D does not 

Granger-cause profitability” could not be rejected in any of the models. These results are 

summarized below in Table A.2.12.

Table A2.12: Summary of Granger-causality Tests for R&D and Profitability

Null Hypothesis: Profitability Does 
Not Granger-cause R&D Intensity

Null Hypothesis: R&D Intensity Does 
Not Granger-cause Profitability

Lags included in 
regression model

F Z 2 F Z 2

2 22.58'” 45.15" 1.98 3.96

3 9.54 28.61'' 0.92 2.75

4 3.92 15.68" 0.51 2.08

5 2.96* 14.80’ 0.69 3.44

* Significant at the 0.05 level 
** Significant at the 0.01 level 
A Significant at the 0.00001 level 
M Significant at the 0.000001 level

Whilst the results reported in A.2.12 appear to establish empirically a clear 

direction of causality, this finding should be tempered with the fact the investment in 

pharmaceutical R&D, more so than in any other industry, typically takes a very long time 

to generate returns—possibly 10 years or more (refer to Chapter 2 and the average 

development times for new drugs). Therefore, the results in Table A.2.12 make a great 

deal of sense. When lags of longer lengths were examined the results were essentially 

unchanged. Because the lags employed in the formulation of the key variables in this 

thesis were all less than 5 years, the focus of this appendix has been on lags of similar 

lengths.

Section A2.4.3: Empirical Results on the Direction o f Causality: Cash Flows and R&D

Another related, yet sufficiently distinct, relationship that was also examined for 

directional causality was the relationship between firm cash flow margins and firm R&D
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intensity. Using the same econometric procedures already outlined, Granger-causality
2

tests were preformed . These results are presented next.

Granger Causality Test 9

N u ll H ypothesis: Firm R&D intensity does not Granger-cause firm cash flows.

L ags em ployed: 4

Table A2.13: Bivariate Regression of Firm Cash Flow Margins on Lagged R&D 
Investment Intensities and Cash Flow Margins

Dependent Variable: CFM?
Method: Pooled Least Squares

Sample(adjusted): 1974 1990
Included observations: 17 after adjusting endpoints
Number of cross-sections used: 10
Total panel (unbalanced) observations: 169______  2

Variable Coefficient Std. Error t-Statistic Prob.

RD?(1) -0.015607 0.398383 -0.039176 0.9688
RD?(2) -0.080507 0.544576 -0.147833 0.8827
RD?(3) 0.182487 0.373662 0.488376 0.6260
RD?(4) 0.075828 0.074051 1.023998 0.3075

CFM?(1) 0.452240 0.074977 6.031698 0.0000
CFM?(2) 0.254210 0.302984 0.839022 0.4028
CFM?(3) 0.036240 0.415667 0.087186 0.9306
CFM?(4) -0.084968 0.285728 -0.297372 0.7666

R-squared 0.852281 Mean dependent var 0.192982
Adjusted R-squared 0.835651 S.D. dependent var 0.058472
S.E. of regression 0.023705 Sum squared resid 0.084848
Log likelihood 402.1280 F-statistic 124.4589
Durbin-Watson stat 2.174015 Prob(F-statistic) 0.000000

W ald-coefficien t test resu lts f o r  the nu ll hypothesis C (1)=C (2)=C (3)=C (4)=0

Wald Test:
Equation: FIRM

Null Hypothesis: C(1)=0
C(2)=0
C(3)=0
C(4)=0

F-statistic 0.452546 Probability 0.770429
Chi-square 1.810183_ _Probability _ 0.770619

2 The maximum lagged cash flow margin employed by the models in this thesis was, for theoretical 
reasons, two years. However, to be conservative while testing for causality, lags o f  up to four years were 
considered.
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Granger Causality Test 10

Null Hypothesis: Firm  cash flows do not G ranger-cause firm  R&D intensity.

Lags em ployed : 4

Table A2.14: Bivariate Regression of Firm R&D Investment Intensity on Lagged 
Cash Flow Margins and R&D Investment Intensities

Dependent Variable: RD?
Method: Pooled Least Squares

Sample(adjusted): 1974 1990
Included observations: 17 after adjusting endpoints
Number of cross-sections used: 10
Total panel (unbalanced) observations: 169______

Variable Coefficient Std. Error t-Statistic Prob.
RD?(1) 0.975130 0.076952 12.67198 0.0000
RD?(2) -0.007085 0.105190 -0.067349 0.9464
RD?(3) -0.126251 0.072177 -1.749194 0.0823
RD?(4) 0.035862 0.014304 2.507206 0.0132

CFM?(1) 0.707109 0.014483 48.82469 0.0000
CFM?(2) -0.728432 0.058524 -12.44664 0.0000
CFM?(3) 0.001987 0.080290 0.024750 0.9803
CFM?(4) 0.120610 0.055191 2.185303 0.0304

R-squared 0.988638 Mean dependent var 0.076021
Adjusted R-squared 0.987359 S.D. dependent var 0.040724
S.E. of regression 0.004579 Sum squared resid 0.003166
Log likelihood 680.0038 F-statistic 1876.948
Durbin-Watson stat 1.862599 Prob(F-statistic) 0.000000

W ald-coefficient test results fo r  the null hypothesis C(5)=C(6)=C(7)=C(8)=0

Wald Test: 
Equation: FIRM

Null Hypothesis: C(5)=0
C(6)=0
C(7)=0
C(8)=0

F-statistic
Chi-square

613.4415 
2453.766_

Probability 0.000000 
Probability 0.000000
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Granger Causality Test 11

N u ll H ypo th esis: Firm R&D intensity does not Granger-cause firm cash flows.

L ags em ployed: 3

Table A2.15: Bivariate Regression of Firm Cash Flow Margins on Lagged R&D 
Investment Intensities and Cash Flow Margins

Dependent Variable: CFM?
Method: Pooled Least Squares

Sample(adjusted): 1974 1991
Included observations: 18 after adjusting endpoints
Number of cross-sections used: 10
Total panel (unbalanced) observations: 179______

Variable Coefficient Std. Error t-Statistic Prob.
RD?(1) 0.111876 0.367818 0.304161 0.7614
RD?(2) -0.095426 0.378425 -0.252167 0.8012
RD?(3) 0.226018 0.073112 3.091404 0.0023

CFM?(1) 0.439430 0.073491 5.979336 0.0000
CFM?(2) 0.116439 0.289227 0.402587 0.6878
CFM?(3) 0.079332 0.289070 0.274439 0.7841

R-squared 0.848757 Mean dependent var 0.196898
Adjusted R-squared 0.834839 S.D. dependent var 0.061444
S.E. of regression 0.024971 Sum squared resid 0.101638
Log likelihood 414.9080 F-statistic 182.9474
Durbin-Watson stat 1.929332 Prob(F-statistic) 0.000000

W ald-coefficien t test resu lts f o r  the n u ll hypothesis C ( l)= C (2 )-C (3 )-0

Wald Test:
Equation: FIRM

Null Hypothesis: C(1)=0
C(2)=0
C(3)=0

F-statistic 3.557664 Probability 0.015552
Chi-square 10.67299 Probability 0.013632

-----=----------------------- =__ — ...........  —
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Granger Causality Test 12

Null Hypothesis: Firm cash flow s do not G ranger-cause firm  R& D  intensity.

L ags em ployed: 3

Table A2.16: Bivariate Regression of Firm R&D Investment Intensity on Lagged 
Cash Flow Margins and R&D Investment Intensities

Dependent Variable: RD?
Method: Pooled Least Squares

Sample(adjusted): 1974 1991
Included observations: 18 after adjusting endpoints
Number of cross-sections used: 10
Total panel (unbalanced) observations: 179______

Variable Coefficient Std. Error t-Statistic Prob.
RD?(1) 1.038629 0.069624 14.91763 0.0000
RD?(2) -0.174693 0.071632 -2.438759 0.0158
RD?(3) 0.043271 0.013839 3.126689 0.0021

CFM?(1) 0.727452 0.013911 52.29263 0.0000
CFM?(2) -0.777653 0.054748 -14.20427 0.0000
CFM?(3) 0.131431 0.054718 2.401965 0.0174

R-squared 0.988550 Mean dependent var 0.079037
Adjusted R-squared 0.987496 S.D. dependent var 0.042271
S.E. of regression 0.004727 Sum squared resid 0.003642
Log likelihood 712.8490 F-statistic 2814.567
Durbin-Watson stat 2.130126 Prob(F-statistic) 0.000000

W ald-coefßcien t test resu lts f o r  the nu ll hypothesis C (4)=C(5)=C (6)=0

Wald Test: 
Equation: FIRM

Null Hypothesis: C(4)=0
C(5)=0
C(6)=0

F-statistic
Chi-square

933.9966 
2801.990_

Probability 0.000000 
Probability 0.000000
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Granger Causality Test 13

N u ll H ypo th esis: Firm R&D intensity does not Granger-cause firm cash flows.

L ags em ployed: 2

Table A2.17: Bivariate Regression of Firm Cash Flow Margins on Lagged R&D 
Investment Intensities and Cash Flow Margins

Dependent Variable: CFM?
Method: Pooled Least Squares

Sample(adjusted): 1974 1992
Included observations: 19 after adjusting endpoints
Number of cross-sections used: 10
Total panel (unbalanced) observations: 189______

Variable Coefficient Std. Error t-Statistic Prob.
RD?(1) 0.120981 0.186930 0.647201 0.5184
RD?(2) 0.100300 0.074800 1.340903 0.1817

CFM?(1) 0.517886 0.065857 7.863773 0.0000
CFM?(2) 0.132425 0.150487 0.879980 0.3801

R-squared 0.839600 Mean dependent var 0.200055
Adjusted R-squared 0.827684 S.D. dependent var 0.062092
S.E. of regression 0.025775 Sum squared resid 0.116262
Log likelihood 430.5215 F-statistic 305.3403
Durbin-Watson stat 2.186738 Prob(F-statistic) 0.000000

W ald-coefficien t te s t results f o r  the n u ll hypothesis C (1)=C (2)=0

Wald Test: 
Equation: FIRM

Null Hypothesis: C(1)=0
C(2)=0

F-statistic 1.632032 Probability 0.198334
Chi-square 3.264064_ _Probability _ 0.195532

326



Granger Causality Test 14

Null Hypothesis: Firm  cash flow s do not G ranger-cause firm  R& D intensity.

Lags employed: 2

Table A2.18: Bivariate Regression of Firm R&D Investment Intensity on Lagged 
Cash Flow Margins and R&D Investment Intensities

Dependent Variable: RD?
Method: Pooled Least Squares

Sample(adjusted): 1974 1992
Included observations: 19 after adjusting endpoints
Number of cross-sections used: 10
Total panel (unbalanced) observations: 189______

Variable Coefficient Std. Error t-Statistic Prob.
RD?(1) 0.900257 0.037563 23.96627 0.0000
RD?(2) -0.001355 0.015031 -0.090178 0.9282

CFM?(1) 0.756791 0.013234 57.18560 0.0000
CFM?(2) -0.676164 0.030240 -22.35980 0.0000

R-squared 0.986840 Mean dependent var 0.081487
Adjusted R-squared 0.985862 S.D. dependent var 0.043561
S.E. of regression 0.005179 Sum squared resid 0.004695
Log likelihood 733.8104 F-statistic 4374.225
Durbin-Watson stat 1.661280 Prob(F-statistic) 0.000000

W ald-coefficient test results fo r  the null hypothesis C(3)=C(4)=0

Wald Test:
Equation: FIRM

•

Null Hypothesis: C(3)=0
C(4)=0

F-statistic 1689.152 Probability 0.000000
Chi-square 3378.304_ Probability 0.000000

The results shown in Tables A.2.13 through A.2.18 provide compelling evidence 

for the hypothesis that Granger-causality runs one-way: from cash flows to R&D 

intensity. Indeed, the F-statistics and Chi-squared statistics were extremely large for the 

null hypothesis that firm cash flows do not Granger-cause firm R&D intensity. This null
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hypothesis was rejected in every model at the 0.000001 level. A summary of these 

findings is presented below in Table A.2.19.

Table A2.19: Summary of the Granger-causality Tests for R&D Investment
Intensity and Cash Flows

Null Hypothesis: Cash Flows Do Not 
Granger-cause R&D Intensity

Null Hypothesis: R&D Intensity Does 
Not Granger-cause Cash Flows

Lags included in 
regression model

F Z 2 F x 1
2 1689.15 ” 3378.30" 1.63 3.26

3 934.00” 2802.00“ 3.56 10.67’

4 613.44” 2453.77'”' 0.45 1.81

* Significant at the 0.05 level 
** Significant at the 0.01 level 
A Significant at the 0.00001 level 
AA Significant at the 0.000001 level

Section A2.5: Conclusions on Causality

The evidence uncovered in this appendix overwhelming support the model 

specification. used throughout the thesis—namely the specification that cash flows 

determine R&D investment intensity. This finding is also consistent with the model 

specifications employed in earlier research by other authors. Theoretically, these 

empirical results make a great deal of sense for two principle reasons. Firstly, as chapter 

3 illustrated, there are a number of reasons to expect cash flows (and/or profits) to be 

influential in firm R&D investment behavior because of capital market imperfections for 

external finance. Secondly, the pharmaceutical industry, more so than any other industry, 

is characterized by extremely long research and development times for new products. 

Consequently, relatively short lags of R&D are not to be expected to exert a significant 

influence on firm profitability or cash flows (which are largely determined by firm 

profitability). Therefore, from a theoretical standpoint, econometric models that presume
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this one-way causality are the appropriate models for examining pharmaceutical R&D 

investment behavior.

Section A2.6: Graphs of Lagged Cash Flows and R&D-to-Sales for 11 Leading U.S.
Firms

The lagged firm cash flows and R&D-to-sales ratios for the major U.S. drug firms 

are depicted graphically in the following figures.

R & D -to-S ales and  L agged  C ash F low  M argins for the L eading
U.S. F irm s

Figure A2.1: Abbott Laboratories
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Figure A2.2: American Home Products

Figure A2.3: Bristol-Myers Squibb
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Figure A2.4: Johnson & Johnson

Figure A2.5: Eli Lilly &  Company
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Figure A.2.6: Merck & Company
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Figure A2.7: Pfizer Inc.
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Figure A2.8: Schering-Plough

Figure A2.9: Syntex Corporation

333



Figure A2.10: Upjohn & Company

Figure A2.11: Warner-Lambert
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