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ORIGINAL ARTICLE

Continuum modeling of nonlinear buckling behavior of CNT using variational
asymptotic method and nonlinear FEA

Renuka Sahua , Dineshkumar Harursampatha , and Sathiskumar A. Ponnusamib

aDepartment of Aerospace Engineering, Indian Institute of Science, Bengaluru, Karnataka, India; bDepartment of Engineering, City, University
of London, London, UK

ABSTRACT
Carbon nanotubes (CNTs) exhibit a unique buckling behavior due to their slender tubular geometry and
thin-walled circular cross section. This study aims to analyze effect of nonlinear cross-sectional deform-
ation on buckling of CNTs. To accomplish this, CNTs are modeled as beam structures, and the analysis
is conducted using the Variational Asymptotic Method (VAM) and a geometrically exact beam theory, as
well as nonlinear finite element analysis (FEA). The study considers various loading cases, including pure
axial compression and combined loading scenarios, such as bending-axial compression and torsion-axial
compression. The results of the study indicate that inclusion of cross-sectional deformation-induced non-
linearity reduces the critical buckling load of CNTs. The reduction is 2–5% for pure axial compression
and 10–40% for combined loading cases. The results are validated against existing literature and com-
mercial finite element software, ABAQUSVR . Additionally, parametric studies with different slenderness
and radius-to-thickness ratios were carried out to further understand the impact of these parameters on
buckling of CNTs. Finally, the study presents 3D deformed shapes of CNTs during buckling by combin-
ing the results of the 1D analysis and the 2D cross section analysis. The findings show that nonlinearity
associated with radius-to-thickness ratio has a significant impact on the cross-sectional ovalisation of
CNTs and is critical in evaluating their buckling behavior. This aspect of nonlinearity is often overlooked
in continuum modeling methods of CNTs, making this study an important contribution to the field.
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1. Introduction

CNTs, discovered by Ijima [1], are a growing class of nano-
materials characterized by their exceptionally high mechanical
properties and varied geometrical nature as they can be sin-
gle-walled (SWCNT), double-walled (DWCNT) or multi-
walled (MWCNT). CNTs with a tubular geometry consist
entirely of carbon atoms and can be functionalized with vari-
ous polymeric functional groups to tailor to physical, chem-
ical, and mechanical needs [2]. Studies show that CNTs have
Young’s modulus in the range of 1TPa or even higher [3, 4],
with ultimate tensile strength (UTS) in the range of 100–
200GPa (theoretically). However, experimental results exhibit
smaller magnitudes lying in the range of around 25–30GPa
(UTS) and 300–500GPa for Young’s Modulus, the difference
being primarily due to the dependence of nanotube properties
on various geometrical factors such as the chiral angle and
diameter of CNT [5]. CNTs also exhibit a higher range of
other mechanical properties like shear modulus [4, 6],
Poisson’s ratio [4, 7] and shear strength [8], which yet again
depend highly on the type of CNT (SWCNT or MWCNT),
its geometric parameters (radius, thickness, chirality, i.e., arm-
chair or zigzag) and the material nonlinearities such as

defects and impurities. The waviness of CNTs also greatly
impacts the mechanical performance [9], and its effect could
be further intensified considering the highly nonlinear geo-
metric range of CNTs cross section. CNTs, being multifunc-
tional, find numerous applications, including electronics,
biosensors, biomedical, and composites. Their high strength-
to-weight ratio allows for ease of use in the composite and
other aerospace applications, such as sensors, as structural
component in composites, lightning protection systems, elec-
tromagnetic shielding and even battery applications [10–12].
Hence it becomes critical to examine their buckling behavior
not only for compressive load but also combined loading
cases which are more likely to occur in practice.

Various modeling approaches have been used to charac-
terize and analyze the mechanical behavior of carbon nano-
tubes (CNTs), including finite element method (FEM) [13,
14] and molecular dynamics (MD) [15–19]. Giannopoulus
et al. [20] developed a structural mechanics approach based
on bar elements to predict elastic mechanical properties. Lee
et al. [21] utilized the periodicity of the lattice structure of
SWCNTs by defining repeating cell units with continuum
beam elements to determine the structural properties of
CNTs. A new continuum modeling method called dynamic
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continuum modeling method (DCMM) was adopted and
was found to determine structural properties without assum-
ing any thickness value for the CNT. Santos et al. [22] used
1D and 3D FE models based on Euler and Timoshenko
beam elements to determine the elastic moduli of SWCNTs.
It was found that the Timoshenko beam element-based
approach successfully determined the elastic properties,
while the Euler beam element underestimated the results.
Baretta et al. [23] estimated the reduced Euler–Young elastic
modulus for CNTs incorporating the size dependency using
the nonlocal strain gradient elasticity approach. They used a
variationally consistent approach and verified the results
with MD, showing that the reduced Euler-Young modulus
can demonstrate both stiffness-softening and stiffness-hard-
ening effects.

Continuum studies of CNT behavior typically use either
beam models or shell models to examine the effects of various
loading conditions. Bending behavior of CNTs has been studied
using beam theories, such as Euler-Bernoulli, Timoshenko, and
higher-order theories [24–26]. However, these studies do not
account for cross-sectional deformations, even for higher-order
theories. The Donnell and Sanders shell model was used to
study the buckling of CNTs with a very small aspect ratio [27],
and the Sanders shell theory was found to be more successful
in capturing the length-dependent strains of CNTs. Li et al.
[28] used traditional continuum shell theory and eigenvalue
buckling methodology with elasticity parameters obtained by
atomistic methods incorporated. The study shows that the con-
tinuum shell theory is efficient in predicting the post-buckling
behavior of nanotubes subjected to axial compression, torsion,
and bend loads, provided that the elasticity parameters of the
tube are obtained from atomistic theory. Wang et al. [29] used
a beam model to analyze the stability of CNTs under initial
bend, and the critical axial load for kink instability, a local
buckling phenomenon, was also theoretically analyzed. Wang
et al. [30] used continuum elastic beam models to analyze the
application of CNTs as probes in atomic force microscopes.
They used a cantilever beam model to analyze SWCNT and
DWCNT under a tilted compressive load to capture the phe-
nomena of global and local buckling. The obtained results were
verified with those of models considering van der Waals inter-
action in CNTs and were found to have good agreement, show-
ing the applicability of the local model. Bocko et al. [31] used
FEM to capture the buckling behavior of SWCNTs with beam
and shell models in ANSYSVR under supported boundary condi-
tions. Wang et al. [32] used a continuum mechanics-based
approach with non-convex energy theory to capture the buck-
ling behavior of CNTs subjected to bending loads and identified
the buckling modes, verifying the results with objective molecu-
lar dynamics. Yao and Han [33], taking the continuum
mechanics approach, developed elastic shell models to study
torsional buckling of CNTs and obtained the post-buckling
equilibrium paths and buckling loads theoretically, capturing
the influence of thickness on the nonlinear post-buckling
behavior. Finally, Fang et al. [34] studied deformations of
SWCNTs under axial and transverse forces, bending moments,
and torque using FEM. Avey et al. [35] provided a theoretical
investigation of the nonlinear vibration of multilayer shell-type

structural elements with double curvature consisting of CNT
patterned layers. They showed that the obtained frequency–
amplitude relationship for multilayer spherical and hyperbolic-
paraboloid shells, rectangular plate, and cylindrical panels pat-
terned by CNTs within shear deformation and classical shell
theories can be used to design and optimize the performance of
nanocomposite structures.

Continuum models generally account for the interatomic
forces involved in CNTs by using non-classical elasticity theo-
ries such as Eringen’s nonlocal elasticity [36, 37] and Mindlin’s
Strain Gradient Theory [38, 39] and nonlocal strain gradient
elasticity theory [40]. Micropolar elasticity theory has also been
used to study the torsional [41] and bending characteristics [42]
of CNTs, revealing the effect of nanotube size on its moduli.
Beni et al. [43] used modified couple stress theory along with
first order shear deformation shell theory to study free vibration
of simply supported functionally graded nanoshell. The impac-
tof size effect was found to be prominent in nanotubes with
bigger thickness and shorter length. Eltaher et al. [44] analyzed
the stability of perfect and imperfect CNTs by considering the
length scale effects, micro strain and micro stress. A bottom-up
nanomechanics theory called Doublet Mechanics was used and
buckling loads, static response, and natural frequencies of CNTs
were found out analytically. Robinson et al. [45] determined the
buckling of CNTs under self-weight resting on an elastic foun-
dation using a nonlocal Euler–Bernoulli beam model. The
numerical solution was carried out using power series and dif-
ferential quadrature method, demonstrating the accuracy of
both methods in capturing the buckling load. Arefi et al. [46]
used Eringen’s nonlocal elasticity to determine the stability of
initially curved CNTs under lateral load. They found that
increasing the initial curvature of CNTs increases the critical
buckling loads for the initial heights that cause buckling. Han
et al. [47] presented a multilayer elastic shell model based on
continuum mechanics to study the torsional buckling of a mul-
tiwall carbon nanotube embedded in an elastic medium. The
effects of the surrounding elastic medium and van der Waals
forces were taken into account. The value of the elastic constant
of Winkler-type was derived, and numerical computation was
carried out to estimate the critical buckling torque. Cinefra
et al. [48] used a continuum approach and refined shell models
obtained through Carrera’s Unified Formulation to study the
free vibration response of DWCNTs by modeling it as an
equivalent continuum cylindrical shell. The van der Waals
interaction between adjacent tubes was estimated using the
Lennard-Jones model. The proposed results emphasize the dif-
ferences among available continuum models and the present
shell approaches used. Farajpour et al. [49] used nonlocal elasti-
city theory to develop a size-dependent continuum model for
the nonlinear buckling of magneto-electro-elastic hybrid nano-
shells in thermal environment. Effect of external electric voltage
and applied magnetic potential along with the size effects on
the non-dimensional buckling loads was examined. Artan et al.
[50] studied curved nanotubes and determined the effect of
nonlocal elasticity when the nanotube is loaded perpendicularly
to its plane using the method of initial values. Azrar et al. [51]
modeled the vibration characteristics of SWCMT from small to
higher very higher Eigen modes by using Timoshenko and
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Euler–Bernoulli beams within a nonlocal elasticity approach.
These results support the idea of successfully modeling CNTs
in a continuum framework but do not consider the deform-
ation of the CNT cross-section. There has also been certain
ambiguity on the application of nonlocal models to nanobeams.
Romano et al. [52] analyzed the ill-posedness of the nonlocal
constitutive law given by Eringen when adapted to a simple
beam load case such as cantilever end-point load case. Zaera
et al. [53] also analyzed this inconsistency in the nonlocal strain
gradient elasticity, showing that the corresponding set of gov-
erning differential equations and boundary conditions give an
over constrained problem, thus inhibiting the application of
nonlocal continuum models. It is also to be noted that most of
these non-classical continuum models only capture 1D defor-
mations and not cross-sectional warping or geometrically non-
linear behaviors, which can result in reduced stiffness in CNTs.

The high slenderness ratio of CNTs results in extremely
large deformation under bending loads and this nonlinear
deformation seen in many shell structures [54], is intensified
by cross-sectional geometrical nonlinearity due to the thin-
walled nature of CNT geometry and its high radius-to-thick-
ness ratio, causing ovalisation of the initially circular cross
section [55]. This nonlinear behavior decreases stiffness and
increases bending deformation even under reduced loadings,
potentially leading to local buckling of the CNT and poor
mechanical response of the overall structure. Harursampath
et al. [56] demonstrated the impact of nonlinear cross-sec-
tional deformations in thin beams, where the thickness-to-
radius ratio �1. They showed that nonlinear phenomena,
such as the Brazier effect, first described by Brazier [57], is
the nonlinear growth in the curvature of thin-walled iso-
tropic cylindrical tubes under pure bending caused by ovali-
sation in the cross section, leading to collapse at a specific
maximum moment. This nonlinear cross-sectional behavior
becomes significant for CNTs, as they also have a small
thickness-to-radius ratio, which is the main contributor to
this effect. Although continuum theories successfully capture
the buckling phenomena of nanoscale CNTs, they do not
delve deep into the deformation shapes, geometric nonli-
nearity, and nonlinear effects in thin small structures, such
as the Brazier effect. Atomistic models although capable of
capturing exact geometry of CNTs however, are limited by
the high computational time and effort requirements, which
may not always be necessary to analyze continuum struc-
tures. Duan et al. [58] used a hybrid model using the clas-
sical inelastic beam and shell theory and molecular
mechanics and incorporated the nature of atomic structures
by fitting parameters with the MD principle. They identified
the geometrical parameters for which the CNT will behave
as a beam while buckling or shell upon buckling. Both these
buckling modes are found to occur in CNTs and can be dif-
ferentiated as: beam like buckling has that the central axis of
beam deflects sideways during buckling whereas for shell
like buckling the tube buckles sideways but maintains its
central axis. Harik [59] established a set of geometrical con-
ditions which define the aspect ratio and ratio of radius and
thickness for CNTs to determine the applicability of the
beam model based on continuum theories. It can be seen

from there criteria that the model used in current work is
justified.

This article aims to present a continuum beam model uti-
lizing VAM to capture the non-classical nonlinearity associ-
ated with the cross-sectional deformation of SWCNT and to
assess its influence on buckling behavior. Previous works
that modeled CNTs as continuum beams often fail to con-
sider the cross-sectional nonlinearity though the classical
nonlinearity associated with large deformation/rotations of
the 1D beam is considered. In other words, the phenomena
such as ovalisation and other complex deformation modes
of the CNT cross sections are ignored, and ad hoc assump-
tions on how the cross sections deform are made a priori.
In this work, combining the results of nonlinear cross-sec-
tional analysis using VAM with 1D nonlinear FEA, we
showcase the influence of such nonlinearities on the mech-
anical behavior of CNTs, particularly buckling behavior.

2. Methodology

SWCNT is assumed to be a continuum and geometry is
taken to be that of a thin-walled hollow circular cross sec-
tion beam. VAM is used to carry out the 2D cross-sectional
analysis yielding the warping solutions, and the 1D beam
analysis is done using nonlinear FEM. Critical buckling
loads for pure axial compression and combined load cases
of compression and bending & torsion and compression are
obtained. Parametric studies have been conducted to analyze
the effect of the length-to-radius (L=R) ratio and the radius-
to-thickness (R=t) ratio. 3D deformed beam shapes (under
axial compression and combined loading) are highlighted.
Finally, comparison of the results obtained with the current
work in the literature has been made to showcase the effect-
iveness and efficiency of the mathematical model adopted.

Overall, the modeling approach adopted here can be sub-
divided into VAM and FEM. Using VAM, the CNT has
been characterized as a thin-walled hollow cross section
beam in a continuum state. The kinematics to describe the
deformation behavior of the CNT beam and geometrical
non-linearity arising in the CNT behavior are accounted for
using VAM. The 2D cross section analysis and expressions
are derived using VAM. FEM is used for the 1D analysis of
the beam. The expressions obtained from VAM analysis are
then implemented in a finite element framework to derive
the beam behavior for various loading conditions.

2.1. 2D cross section analysis using VAM

VAM is an extensive mathematical tool based on variational
principles. It uses the inherent small parameters present in a
particular problem description and hence using that tries to
develop problem-specific solutions. Not that it is extremely
customized to a problem, but it can also be generalized for
different kinds of problems. For example, the kinematics
and variational derivatives will be similar for all sorts of
shell problems. Similarly, for any kind of beam, there are
similar kinematic derivations. The beauty of VAM is its
applicability. It offers a solution for problems ranging from
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the atomic scale to cases pertaining to huge warships and
aircraft. This makes VAM extremely versatile, and its accur-
acy and mathematical dexterity ensure highly efficient and
accurate results. A summary of VAM beam analysis can be
as seen in Figure 1.

Following and extending from the work of Ponnusami
et al. [55], VAM analysis is carried out in broadly three
parts: deriving kinematic relations for the beam, obtaining
zeroth and first-order approximations for the beam warping.
These are further described below.

2.1.1. Kinematic relations
Representing the CNT as a slender beam structure, Figure 2
represents the coordinate system used in this work. There
are two coordinate systems, Cartesian measures represented
by xi’s and polar coordinate measures represented by yi’s.
The unit vectors for these coordinate systems are given by
ai and bi, respectively, (see Figure 3). The CNT is taken to
have hollow circular cross-section with inner radius Ri and
outer radius Ro: The thickness of the beam is given by t ¼
ðRo � RiÞ: The domain of the beam is given as: 0< x1 < L,
�pR< y2 < pR and – t=2ð Þ< y3 < ðt=2Þ: Here, R ¼ ðRiþ
RoÞ=2 is the mean radius of the CNT.

Relation between deformed and undeformed beam configur-
ation, is represented using the position vectors, r̂ in the

undeformed configuration R̂ and in the deformed configuration
(given by Eqs. 1 and 2, respectively). The same coordinate sys-
tem has been defined for the deformed configuration with Xi,
Yi being the Cartesian and polar coordinate measures with unit
vectors Ai and Bi respectively.

r̂ x1, x2, x3ð Þ ¼ r x1ð Þ þ x2b2ðx1Þ þ x3b3ðx1Þ
¼ y1a1 þ Rþ y3ð Þa3ðy2Þ (1)

R̂ ¼ y1b1 þ uibi þ Rþ y3ð ÞA3 þ wiðy1, y2, y3ÞAi (2)

Further, using the relationship D ¼ Gig i and Dij ¼
Ai:D:aj, where Dij is the deformation gradient tensor, Gi is

the covariant base vectors in the deformed configuration, g i
is the contravariant base vectors in the undeformed config-
uration, the tensor representing deformation gradient is
obtained and is given as:

D ¼

1þ u01

�
R

Rþ y3

�
u1, 2 u1, 3

u02 1þ
�

R
Rþ y3

�
u2, 2 þ u3

R

� �
u2, 3

u03

�
R

Rþ y3

�
u3, 2 þ u2

R

� �
1þ u3, 3

26666664

37777775
(3)

The terminology used here with superscript ()0 represent
the differentiation of a quantity with x1 or y1 and subscript
‘2’ or ‘3’ refer to partial differentiation of a term with
respect to y2 and y3, respectively. Using the deformation
gradient tensor, the expression for 3D strain tensor (U) are
obtained using the expression Eq. (4).

U ¼ 1
2

DTD� I3
� �

(4)

Here, I3 is a 3 by 3 identity matrix.

Figure 1. Flowchart representing the VAM method of beam analysis.

Figure 2. Beam coordinate system used to model CNT.
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2.1.2. Order approximation and strain energy
Order approximation can be said to be the most crucial step
in the VAM analysis. With this step, the asymptotic analysis
of the problem is initiated. Defining the beam strain energy
as given by Eq. (5).

U ¼ 1
2

EijklUijUkl
� �� �

(5)

Here, :h ih i denotes the integration over the cross-section

given by Eq. (6). Eijkl is the 3D material stiffness matrix.

:h ih i ¼
þ
ð:Þg0dy2dy3 (6)

For the order analysis, the small parameters for the problem
are identified. Here, there are two geometric small parameters,
the radius to length ratio, dR ¼ R=L and the thickness to radius
ratio dt ¼ t=R of the CNT. These geometric small parameters
along with the order of strain are included in the strain energy
expression and help to segregate the strain energy terms in the
order of their magnitude. Taking strain to have a maximum
order of o �ð Þ such that � � 1, the order analysis is carried
out. The constraints applied on the warping variables in the
VAM procedure are as follows:

w1h i ¼ 0 (7)

w2cos
y2
R
þ w3sin

y2
R

� 	
¼ 0 (8)

w3cos
y2
R
� w2sin

y2
R

� 	
¼ 0 (9)

w2ðRþ y3Þ
� � ¼ 0 (10)

Here, :h i represents integration over cross-section, that is,Ð Ð
dy2dy3: The above constraints imply that there is no con-

tribution of warping to the rigid body like deformation due
to extension (Eq. 7), no contribution of warping to rigid
body like deformation occurring as a result of bending

around x2 direction (Eq. 8). Further warping does not con-
tribute to rigid body like deformation due to bending about
x2 direction (Eq. 9) and due to torsion (Eq. 10).

2.1.3. Warping solutions and beam stiffness matrix
As per the above-described procedure, zeroth order approxi-
mation is carried out. Further to obtain highly accurate
solution of warping/displacements first-order approximation
is carried out. The displacement field obtained by first order
approximation is as follows:

uI1 ¼ q1 � q3
0



Rþ y3ð Þsin h� 3ðRqÞ2
10ðRqÞ2 þ 144l

3ðR� y3Þsin h� ðRþ 3y3Þsin 3h
� � (11)

uI2 ¼ q2 þ q3cos h� 3 Rqð Þ2
5 Rqð Þ2 þ 72l

R� 3y3ð Þsin 2h (12)

uI3 ¼ q3sin hþ 6 Rqð Þ2
5 Rqð Þ2 þ 72l

Rcos 2h (13)

Here, h ¼ y2
R : Now, using the warping solutions from

the first order approximation, the first order beam strain
energy is obtained using which the 1D constitutive law for
the beam can be obtained. This is given by Eq. (14).

U1D ¼ 1
2

c11
k1
k2
k3

8>>>><>>>>:

9>>>>=>>>>;

T
2pRA11 �2pR2A16 0 0

�2pR2A16 2pR3A66 0 0

0 0 S33ðk2Þ 0

0 0 0 S33ðk3Þ

266664
377775

c11
k1
k2
k3

8>>>><>>>>:

9>>>>=>>>>;
(14)

Here, the coefficients A11, A16, and A66 are the functions
of material and cross-sectional geometric parameters as
defined by Harursampath [60]. Also, S33 is the nonlinear
bending stiffness and is given by Eq. (15).

S33 qð Þ ¼ pR3A11 1� 9 Rqð Þ2
10ðRqÞ2 þ 144l

" #
(15)

The term ‘q’ is used to represent the bending curvatures
k2, k3: Due to the axisymmetric geometry of the CNT beam,
the bending stiffness in both the Cartesian coordinate direc-
tions is same, hence, the single term ‘q’ is used to represent
them both. The term ‘l’ is given by Eq. (16).

l ¼ D22

R2A11
(16)

l is non-dimensional in nature and is a measure of the
resistance of the cross-section to deform in its own plane.
Here, D22 is obtained from the 2D coupling stiffness matrix
derived in classical laminate theory.

Figure 3. Cross-sectional coordinate system of CNT.
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2.2. 1D nonlinear analysis using FEM

The global 1D nonlinear analysis of the beam is derived
based on the work of Hodges [61], Cesnik and Shin [62]
and Cheng [63]. For the mixed variational finite element
formulation, the variational form of beam statics is repre-
sented by Eq. (17).ðL

0
ðdU1D þ dWÞdx1 ¼ dA (17)

where W is the external work done by mechanical load per
unit beam length, U1D is strain energy per unit length of the
beam and A is the action at the boundaries of the beam.
Also, the partial derivatives of U1D are defined as force and
momenta resultants given by Eq. (18).

FB ¼ @U1D

@c

� �T

,MB ¼ @U1D

@k

� �T

(18)

Here, c and k are the generalized strain column vectors rep-
resenting linear strain and bending curvatures respectively.
FB and MB are the internal force and moment column vec-
tors respectively. The first element of FB is the axial force
and the second and third elements are shear forces in the
deformed frame B. Similarly, the first element of MB is the
twisting moment and the second and third elements are
bending moments.

Now using the following geometrical kinematic relations
given by Eq. (19), one can obtain the weak form of the gov-
erning equations which facilitates the use of simplest pos-
sible shape functions.

c ¼ C e1 þ u0b þ ~ku
� �

� e1

k ¼ D� ~h
2

1þ hTh
4

0@ 1Ah0 þ Ck� k (19)

C ¼
1� hTh

4

� �
D� ~h þ hhT

2

1þ hTh
4

where C is the rotation matrix containing unknown rotation
variables, hi and c, k are the generalized 1D strain and curva-
ture vectors, ub and h are the 1D displacement and rotation
vectors. Now, the final weak form is obtained as follows:

dGb ¼ 0

dGb ¼
ðL
0

du0bCTFB þ dub
0
CTMB

�dub
0
CT ~e1 þ ~cð ÞFB

�dFb
T
CT e1 þ cð Þ � e1
� �� dFb

0T
ub � dMb

T
Dþ

~h
2
þ hhT

4

� �
k

�dMb
0
h� duTb fb � dub

T
mb

8>>>>>>><>>>>>>>:

9>>>>>>>=>>>>>>>;
dx1

� duTb bFb þ dub
T cMb � dFb

T bub � dMb
T
ĥ

� �����L
0

(20)

Here, the generalized forces and strains are related
through the constitutive relations in the following form,
from which the strain measures are found and are

substituted in the above equation.

FB
MB


 
¼ K½ � c

k


 
(21)

The stiffness K½ � is in general a 6� 6 matrix, depending
on material distribution and cross-sectional geometry and
are as derived in [62]. Now, the solutions for c, k in terms
of other measures and constants are obtained following the
Eq. (22).

c
k


 
¼ K½ ��1 FB

MB


 
þ FBðaÞ

MB
ðaÞ


 � �
(22)

Here, FB and MB are internal force and moment column
vectors which are unknown variables and the actuation
forces and moments FBðaÞ and MB

ðaÞ are given functions of
time. For the present study, the actuation forces and
moments are not accounted. These equations are substituted
into Eq. (20).

Now, the beam is discretized into N number of elements
and the 1D beam analysis is carried out. The discretising
equation can be represented as:XN

i¼1

dGi ¼ 0 (23)

Here, i represents the i th element with length dl, dGi is
the spatial integration of the function over the i th element.
Developing the weak formulation for spatial integration,
using the shape functions given as follows, the integration
was carried out. The used shape functions are:

x ¼ xi þ nDli, dx ¼ Dlidn, ðÞ0¼
1
Dli

d
dn ðÞ

dub ¼ dui 1� nð Þ þ duiþ1n ub ¼ ui (24)

dub ¼ dui 1� nð Þ þ duiþ1n h ¼ hi

dFb ¼ dFi 1� nð Þ þ dFiþ1n FB ¼ Fi

dMb ¼ dMi 1� nð Þ þ dMiþ1n MB ¼ Mi

Here, constant shape functions are used for the displace-
ment, rotation, force, and moment variables. Applying the
above shape functions over the element and integrating will
lead to following finite element form,

XN
i¼1

duiTfui þ dui
T
fui

þ dFi
T
fFi þ dMi

T
fMi þ duTiþ1fuiþ1

þduiþ1
T
fuiþ1

þ dFiþ1
T
fFiþ1 þ dMiþ1

T
fMiþ1

8<:
9=;

¼ duTNþ1F̂Nþ1 þ du
T
Nþ1M̂Nþ1 � dF

T
Nþ1ûNþ1 � dM

T
Nþ1ĥNþ1

� duT1 F̂1 � du
T
1 M̂1 þ dF

T
1 û1 þ dM

T
1 ĥ1 (25)

where, fui , fui
:::, fMiþ1 are the element functions resulting

from the spatial integration. The expressions for the func-
tions are given below,

fui ¼ CTFi � f ifuiþ1 ¼ CTFi � fiþ1
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fui
¼ �CTMi � Dli

2
CT ~e1 þ ~cð ÞFi �mifuiþ1

¼ CTMi � Dli
2
CT ~e1 þ ~cð ÞFi �miþ1

fFi ¼ ui � Dli
2

CT e1 þ cið Þ � e1
h i

fFiþ1 ¼ �ui � Dli
2

CT e1 þ cið Þ � e1
h i

fMi ¼ hi � Dli
2

Dþ hi
2
þ hih

T
i

4

� �
kifMiþ1¼�hi � Dli

2
Dþ hi

2
þ hih

T
i

4

� �
ki

(26)

where f i, f iþ1,mi, and miþ1 are the effective nodal load vec-
tors resulting from external loading. A set of nonlinear alge-
braic equations are obtained in the following form,

FS Xð Þ � FL ¼ 0 (27)

where, FS is the structural component, FL is the load oper-
ator, and X is the unknown vector consisting of structural
variables and is given as

X ¼
h
F̂
T
1 M̂

T
1 uT1 hT1 MT

1 :::::::::: uTN hTN MT
N ûT

Nþ1 ĥ
T
Nþ1

iT
(28)

Also, the explicit expression for the structural and load
operator are given as,

FS ¼

f ð1Þu1 þ bF1
f ð1Þu1

þ cM1

f ð1ÞF1 � bu1
f ð1ÞM1

� ĥ1

f ð1Þu2 þ f ð2Þu2

f ð1Þu2
þ f ð2Þu2

f ð1ÞF2 þ f ð2ÞF2

f ð1ÞM2
þ f ð2ÞM2

:

:

:

f ðNÞ
uNþ1 � F̂Nþ1

f ðNÞ
uNþ1

� M̂Nþ1

f ðNÞ
FNþ1

þ ûNþ1

f ðNÞ
MNþ1

þ ĥNþ1

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

, FL ¼

f
ð1Þ
1

mð1Þ
1

0

0

f ð1Þ2 þ f ð2Þ2

mð1Þ
2 þmð2Þ

2

0

0

:

:

:

:

:

:

f ðNÞ
Nþ1

mðNÞ
Nþ1

0

0

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

(29)

Here, the boundary variables are represented by the hat-
ted quantities while the others are the element variables.
Also, element number is given by the superscripts and the
node number is given by the subscripts.

3. Results and discussions

3.1. Validation using ABAQUS

To study the nonlinear behavior of CNTs under buckling, two
different models were created in ABAQUSVR : a beam model
and a shell model. The beam model was designed to simulate
structures with small depth and thickness compared to their

length, while the shell model was intended to model thin-
walled structures with exact geometric description. These
models were compared to the results obtained from the cur-
rent VAM-based formulation. A combined loading case was
applied to the CNT, consisting of an axially compressive load
and a very small bending load in the form of a uniformly dis-
tributed load along the transverse direction (x2), to simulate
the transverse displacement of the beam under combined
bending and compressive loads. The variation in transverse
displacement with changing axially compressive load was ana-
lyzed while keeping the bending load constant, using a mesh
size of 500 elements. The CNT was modeled as an isotropic
and linearly elastic material, with Young’s modulus (E) ¼ 4.88
TPa and Poisson’s Ratio (v) ¼ 0.19, and geometrical parame-
ters of L ¼ 200nm, R ¼ 1 nm, and t ¼ 0.01nm. The results
of the analysis are shown in Figure 4, which depict the force
vs. transverse displacement plots.

The comparison between the ABAQUSVR shell model and
the ABAQUSVR beam model highlights the significant differ-
ence in the critical buckling loads. The higher critical buck-
ling load in the beam model is attributed to its lack of
consideration for the cross-sectional geometry and deform-
ation. On the other hand, the shell model accounts for both
the geometry and deformation of the cross section, provid-
ing a more accurate representation of the buckling behavior
of thin-walled structures.

Figure 4 supports this difference, showing that the cur-
rent work, which utilizes a VAM-based model, provides a
lower critical buckling load than the ABAQUSVR beam
model. This is because the beam model assumes that the
cross section remains perfect and does not undergo any
deformation, which leads to an overestimation of its stiff-
ness. However, the cross section of the beam does deform
over time, which reduces its stiffness and results in geomet-
rical nonlinearity. The VAM-based model takes into account
this nonlinear behavior, making it a more accurate represen-
tation of the buckling behavior of CNTs. The model cap-
tures the interplay between the cross-sectional deformation
and curvature, making the stiffness of the beam a function
of the curvature, as expressed in Eq. (15). This enhances the
accuracy of the model by considering the full extent of the
nonlinear behavior, leading to a lower critical buckling load
compared to the beam model.

Moreover, to ensure the validity of the nonlinear FE
model developed and the convergence of the ABAQUSVR
simulation, mesh convergence analysis was also carried out
and has been given in the appendix along with a load sensi-
tivity study.

3.2. Validation with references

This section presents a comparison of the current work to
the existing studies in the literature on the buckling of
CNTs. Various methodologies have been used to study
buckling in CNTs, such as MD, molecular mechanics, non-
local theories, and FEM. The present work highlights the
comparison of these works with the approach used in this
article.
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As shown in Figure 5, the buckling load variation with
different slenderness ratios of CNT is presented. The current
work is validated against the study by Ansari and Rouhi
[14]. They used atomistic FEM to study the axial buckling
of CNT and considered a clamped-free boundary condition.
The CNT parameters taken for study were a zigzag config-
uration with R ¼ 3.01412 nm and E ¼ 5.488 TPa.

In another study by Li et al. [64], the molecular structural
mechanics (MSM) model was used to examine the elastic
buckling behavior of CNTs. The model considered two types
of CNTs: armchair and zigzag, with t ¼ 0.34 nm, diameter
1 nm, and E ¼ 1 TPa. Figure 6 illustrates the comparison of
the buckling load variation with the slenderness ratio for the
current model and the MSM models. The results show that
the current model is in good agreement with the armchair
configuration of CNT. However, for lower slenderness ratios
(i.e., shorter CNTs), differences may occur due to the range
of geometrical parameters considered in the current model’s
derivation. These deviations become smaller as the length of
the CNT increases.

Ansari et al. [17] modeled CNTs using Eringen’s nonlocal
model in shell theory and determined the critical buckling
load using the Rayleigh-Ritz method. It is to be noted here
that the model used by Ansari is a geometrically linear one,
that is, the local shell model does not consider any geomet-
rical nonlinearity. Similarly, also for the nonlocal shell
model adopted further in their work, the model is nonlocal
but a geometrically linear model. The authors derived the
buckling results for CNTs using MD simulations and nonlo-
cal theory based on two nonlocal parameters, 0.35 and 0.722
[17]. The nonlocal parameters are small-scale coefficients or
characteristic lengths that are used to incorporate small-size
effects into the continuum framework. However, there is no
consensus yet on the value of the nonlocal parameter for
CNTs, so the parameters were selected after comparing the
nonlocal results with MD simulations and conducting an
appropriate fitting procedure to find the parameter value
that produces accurate results. The parameters for single-

walled CNTs were taken as E ¼ 3.4 TPa, t ¼ 0.1 nm, v ¼
0.3, and R ¼ 0.5 nm, as stated in [17]. The value of the
Young’s modulus was obtained using the equivalent con-
tinuum structure model of the SWCNT using 3D finite
element analysis and was validated with MD results. The
MD results of this work and the present nonlinear model
were validated for clamped-free boundary conditions. Also,
to account for a comparable model, we did geometrically
nonlinear shell analysis in ABAQUSVR taking same parame-
ters in [17] for two L=R ratios. It was found that the nonlin-
ear shell model predicted lower buckling load compared to
the current work for L=R ratio 20 and this difference
became significantly small as the L=R ratio increases. These
results have good agreement with MD results. There is a
slight discrepancy in the results of the MD model and the
current model for lower values of the slenderness ratio, but
this difference is negligible for higher slenderness ratio val-
ues. Additionally, there is a slight difference between the

Figure 4. Axial load vs tip transverse displacement comparison with ABAQUSVR
shell and beam models. Figure 5. Comparison plot with existing literature [14] showing buckling load

variation with slenderness (L=R) ratio (method used in [14] is FEM).

Figure 6. Comparison plot with existing literature [64] showing buckling load
variation with slenderness ratio.
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nonlocal result reported in [17] and the current work, as the
nonlocal model taken by Ansari et al. is a geometrically lin-
ear nonlocal model. It is evident that a more accurate com-
parison would be a geometrically nonlinear nonlocal model
which is not considered in the work of [17]. Accordingly,
one would expect a different value of the non-local param-
eter to be used in order to get an agreement with the MD
results (Figure 7).

Table 1 presents the critical buckling load (Pcr) values
obtained from the current study for different parameters
taken from literature. The analysis includes both a simple
compressive load and a combined loading case of twist and
axial compression. The results from the current study are
consistent with those obtained using FEM. However, there is
a discrepancy between the results from MD simulations and
nonlocal models, as the current study does not consider
non-classical nonlinearities. This difference can be reduced
once these effects are taken into account. From the literature
study, it is evident that the current model works best for
higher slenderness ratio values. This may be due to the dif-
ferent range of initial geometric and small parameters con-
sidered when developing the VAM based beam model.

3.3. Effect of geometrical parameters/influence of CNT
geometry on buckling

This section focuses on the impact of various geometric
parameters on the buckling behavior of standalone CNTs. A
thorough investigation of the effect of CNT radius and
thickness on the buckling load has been conducted. It was
found that the buckling load is strongly influenced by these
two parameters. The CNT was subjected to axial compres-
sion to simulate buckling under pure compressive loading
conditions. A small perturbation load in the form of a uni-
formly distributed load along the transverse direction (i.e.,
along x2) was applied to simulate transverse beam
deflection.

The variation of buckling behavior for different R=t ratios
was studied, as shown in Figure 8, keeping the length con-
stant (L ¼ 200 nm). It was observed that the buckling load
decreased with an increasing R=t ratio. This result indicates
that a thinner CNT is more susceptible to buckling at a
smaller load compared to thicker CNTs of the same length.
Figure 8 also compares the buckling loads for the cases
where cross-sectional geometric nonlinearity was considered
and not considered. While the results showed that account-
ing for cross-sectional nonlinearity gave lower buckling
loads, the difference between the two cases was not substan-
tial. For an R=t ratio of 20, the linear model predicted a
higher buckling load by 2.5%, while for an R=t ratio of 80,
the difference increased slightly to 5%. This highlights the
presence of nonlinear geometric effects and the critical role
of the small parameter R=t in the buckling behavior of
CNTs.

Finally, the effect of different slenderness ratios on the
critical buckling load for a CNT thickness of 0.01 nm was
plotted in Figure 9. It was observed that the critical buckling
load reduced with an increase in slenderness ratio and was

almost constant for higher slenderness ratios. This behavior
is similar to the results reported in the works of Hu et al.
[13], Ansari et al. [14], and Li et al. [64].

For an L=R ratio of 100, the buckling load decreases by
45% when cross section nonlinearity (the ovalisation of the
circular cross section) is taken into account. However, for a
L=R ratio of 20, that is, a shorter CNT, even after consider-
ing the nonlinear deformation of the CNT cross section, the
buckling load decreases by only 2.748%. This shows that for
a shorter length of CNT, the nonlinear deformation is not
significant. This could be due to the dependence of the
deflection of CNTs on their length. For longer CNTs, with
higher transverse deflection or, in other words, higher
curvature, the nonlinear stiffness term (as given by Eq. 15)
increases, leading to greater deformation of the cross section
and therefore quicker failure by buckling. This emphasizes
the importance of incorporating geometrical nonlinearity
when modeling the instability of long, slender, and thin-
walled structures like CNTs.

3.4. Combined loading study with 3D representation of
cross-sectional ovalisation

As seen in Section 3.3, the nonlinear geometric behavior
results in changes in the buckling load. It was discovered
that considering nonlinearity caused the CNT buckled at a
lower axial load. However, the effect of geometric nonlinear-
ity on simple axially compressive buckling load is significant
only for higher values of R=t ratios, indicating that thinner
CNTs are more susceptible to premature buckling at lower
compressive loads. This is caused mainly due to deformation
of the cross section leading to its ovalisation. The visualiza-
tion of the cross section ovalisation phenomena is done to
elaborate the extent of the 3D deformation the CNT
undergoes.

The cross-sectional deformation of CNT under axial
compression has been captured. Original circular cross-sec-
tion is represented by the Eq. 30(a–b).

x2 ¼ Rsin h (30a)

Figure 7. Comparison of current work with nonlocal and MD model.
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x3 ¼ Rcos h (30b)

Using the parametric equations given by Eqs. 31(a) and
31(b), the plot for the deformed cross-section at various
loads, that is, before and after buckling has been obtained,

X2 ¼ R 1� Us2

2

� �
sin hþ R

Us2

6
sin 3h (31a)

X3 ¼ R 1þ Us2

2

� �
cos hþ R

Us2

6
cos 3h (31b)

where, Us2 ¼ 9 Rqð Þ2
5ðRqÞ2þ72l

and the terms q, h and l are as

defined in Section 2.1.3.
The deformed and undeformed cross sections have been

obtained using the 1D FE code. Figure 10a, shows the load

displacement curve for CNT with geometrical specifications:
L ¼ 200 nm, R ¼ 5 nm, and t ¼ 0.01 nm, when subjected to
pure axial compression. Point A, B, and C (in the figure)
show the various time steps, indicating the onset of buck-
ling, and two post buckling cases respectively.

It can be clearly seen in Figure 10b that CNT’s circular
cross section begins to change upon onset of buckling.
Moving further to post buckling loads, the cross section
becomes ovalized and even takes a dumbbell shape. This
depicts a highly nonlinear geometric deformation phenom-
enon. Attributing to the loading and CNT parameters of
Figure 10, the 3D deformed shape of the same CNT beam
has been obtained using the equations for each element of
the beam. Combining each of such cross sections along the
length the 3D deformed shape was plotted. The 3D shapes
have been generated using the 3D visualization software
ParaView, an open-source software for visualization of sci-
entific data.

For the post buckling case given by Point C (in Figure 10),
three different views of the fully deformed CNT under buck-
ling load have been shown in Figure 11a–c. There can be seen
small but significant transverse deformation. It is because of
the high stiffness value of CNT that the transverse deform-
ation is small. Figure 11a gives the longitudinal view (y–z
plane) of the, whereas Figure 11b gives an isometric view
(showing the extent of cross-sectional deformation at the fixed
end) for both deformed CNT (multicolor) and undeformed
CNT (grey color). Figure 11c clearly indicate the extent of
cross sectional ovalisation of CNT by giving an isometric view
of the deformed CNT alone. It can be clearly seen that some
cross sections of CNT have deformed more and ovalisation to
a large extent has occurred (Figure 11c). This effect is more
predominant at cross-sections further away from the tip prob-
ably because the bending load increases as we move further
from the tip. And that is the reason why the tip cross section
has minimum deformation.

This section also examines the impact of combined loading
conditions on the buckling behavior of the CNTs. The SWCNT
will be subjected to three loading types: axial compression, tor-
sion, and bending. The bending load is taken as a uniformly
distributed load. The boundary conditions remain the same, i.e.
fixed at one end and free at the other end. A twisting moment
is applied at the free end to induce torsion in the beam. In
addition to studying the CNT buckling in relation to different
loading and geometrical parameters, the 3D deformed shapes of
the CNT at the post-buckled state have also been obtained to
demonstrate the extent of CNT deformation and visualize the
CNT’s deformation in both the longitudinal and cross-sectional
directions.

Table 1. Critical buckling load results of current work compared with literature.

Paper Method Load type L (nm) D (nm) Pcr (nN) Pcr (nN) (current work) % Diff

Yengejeh et al. [65] FEM Compressive 15 0.949 1.468 1.28 12.8
Yengejeh et al. [65] FEM Compressive 15 1.898 10.743 10.5 2.262
Mehralian et al. [66] MD Compressive 4.068 1.356 55 50 9.09
Mehralian et al. [66] Nonlocal model Compressive 5.7 1.356 29 27 6.897
Yengejeh et al. [65] FEM Twistþ Compression 15 0.407 0.085 0.08 5.88
Yengejeh et al. [65] FEM Twistþ Compression 15 2.171 13.8 12 13.04

Figure 8. Variation of critical buckling load with radius to thickness (R=t) ratio.

Figure 9. Variation of critical buckling load with slenderness ratio (L=R).
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3.4.1. Bending and axial compression
Subjecting the CNT to a uniformly distributed load along
with constant axial load, a case of combined transverse load-
ing and axial compression was created. Keeping the bending
load as constant and varying the axial load, deformation of
CNT was observed. Figure 12 shows the variation of CNT
buckling load with different bending loads. It can be
inferred from the graph that bending load plays an impor-
tant role in inducing early buckling of same CNT. Upon
increasing the bending load from 5�10�6 to 35�10�6

nN/nm, the buckling load decreases from 0.007 to 0.0043
nN, that is, by about 38.57%. It is evident that upon increas-
ing the bending load, the case considering nonlinear cross
section behavior diverges from the linear case where cross
section nonlinearity is not considered. This indicates that
the nonlinear behavior of CNT is more significant when it
is subjected to bending than pure axial compression.

The extent of nonlinear behavior can be analyzed from
the axial load versus the transverse displacement curves
obtained for different bending loads, as shown in Figure 13,
for three different bending load cases of 3�10�6 nN/nm

(Figure 13a), 15�10�6 nN/nm (Figure 13b) and 25�10�6

nN/nm (Figure 13c). The effect of increasing nonlinear
behavior of CNT is clearly shown by the differences in the
load–displacement behaviors for the case when cross section
nonlinearity is considered and when the cross section is
assumed to have no deformation. This shows that for a
combined load case, a higher bending load induces higher
nonlinear behavior in CNT, which comes from the brazier
effect. This further intensifies the buckling and eventual fail-
ure of CNT.

Figure 10. (a) Axial load vs tip transverse displacement curve for CNT showing
different loading states. (b) CNT cross sections at different axial loads corre-
sponding to loading states in (a).

Figure 11. (a) 3D longitudinal view (y–z plane) of deformed CNT (multicolor)
on buckling under axially compressive load (corresponding to Point C in Figure
10) compared with the undeformed CNT (grey color) (showing transverse
deflection). (b) Isometric view of deformed (multicolor) and undeformed CNT
(grey). (c) Isometric view of standalone deformed CNT showing ovalized cross-
section.
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The influence of thickness on geometrical nonlinearity is
highlighted in Figure 14, which shows the variation of buck-
ling load with the small parameter R=t ratio. It is evident
that there is a significant difference between the buckling

loads for linear and nonlinear cases. For this study, the CNT
geometry with L ¼ 200 nm and R ¼ 1 nm was kept same
and thickness was varied. It was observed that for lower R=t
values, the difference in buckling loads between linear and
nonlinear cases was 2.56%. However, for a higher R=t ratio
of 100, this difference increased to 15.52%. The deformed
cross sections for both cases were plotted along with the
varying R=t ratio, demonstrating the extent of nonlinear
deformation in thinner CNTs. Additionally, this combined
loading scenario highlights the significant dependence of
nonlinear behavior on bending loads. As the transverse load
increases, nonlinear behavior becomes increasingly pro-
nounced compared to buckling under only axial
compression.

3D deformed figures for the case of R=t ratio 100 (corre-
sponding to Figure 14) have been shown in Figure 15 for
CNT subjected to combined axial compression and bending
load. The bending load has been kept constant and axially
compressive load was varied to identify the buckling phe-
nomena. CNT parameters taken here are L ¼ 200 nm, t ¼
0.01 nm, and R ¼ 1 nm. Since here, bending is also a dom-
inant load the extent of transverse deformation is huge com-
pared to the previous case of pure axial loading. Three
different views for the same load cases have been shown inFigure 12. Buckling load variation with bending load.

Figure 13. Axial load vs tip transverse displacement for different bending loads.
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Figure 15a–c, where Figure 15a shows the extent of deform-
ation of CNT when compared to the original undeformed
shape, giving a longitudinal view (y–z plane) showing the

transverse displacement. Figure 15b gives the view on the x–
y plane and Figure 15c gives the isometric view of the
deformed CNT. Here also the same behavior of cross-

Figure 14. Variation of critical buckling load with radius to thickness (R=t) ratio
for combined bending and axial compression case. Ovalisation of CNT cross sec-
tion with changing thickness is also shown.

Figure 15. 3D representation of deformed CNT after buckling under combined bending and compression. (a) Longitudinal (y–z plane) view of the deformed (multi-
color) and undeformed (grey) CNT. (b) x–y plane view of deformed CNT. (c) Isometric view of deformed CNT.

Figure 16. Variation of critical buckling load with L=R ratio for combined tor-
sion and compression case. Ovalisation of CNT cross section with changing
length is also shown.

MECHANICS OF ADVANCED MATERIALS AND STRUCTURES 13



sectional deformation is observed, being maximum at the
fixed end and minimum at the tip of the beam.

3.4.2. Torsion and axial compression
Taking the loading case of twisting and compression, a con-
stant torque and varying axial load is applied to simulate
buckling of CNT. This is done for different slenderness
ratios and the different buckling onset load for nonlinear
and linear geometric behavior was obtained. The torque
applied for each CNT was such as to induce an axial twist
of 0.5 radians. This is as shown in Figure 16.

As evident from the graph, the difference in linear and
nonlinear cases is around 0.6% for L=R ratio of 100 and
increases to 16.66% for L=R ratio of 225. The cross-sectional
deformation for different L=R ratios has been plotted along-
side for the corresponding buckling load and shows the vari-
ation in cross section ovalisation clearly showing its

Figure 17. Variation of critical buckling load with R=t ratio for combined tor-
sion and compression case.

Figure 18. 3D view of deformed CNT on buckling under axial compression and torsion, (a) Longitudinal (y–z plane) view of the deformed (multicolor) and
undeformed (grey) CNT, (b) Isometric view of deformed CNT, (c) x–y plane view of deformed CNT.
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dependence on the length of the CNT as well. This behavior
with varying CNT length is occurring for the same reasons
as explained in Section 3.3. Thus, a CNT with high slender-
ness ratio exhibits more nonlinearity than that of CNT with
lower slenderness ratio. Similarly, the process was repeated
to obtain axial buckling load for different thickness value of
CNTs. This is shown in Figure 17.

For the case of different R=t ratios, the variation in
results for linear and nonlinear cases is more evident. This
showcases the effect of thickness being superior to effect of
length variation. As evident from the graph, the difference
in linear and nonlinear cases is around 1.56% for R=t ratio
of 50 and increases to 11.43% for R=t ratio of 100. Thus, a
thinner CNT with high slenderness ratio is more prone to
buckling failure. The 3D deformed CNT for the case of
combined loading of torsion and axial compression for R=t
ratio 100 is plotted as shown in the Figure 18. The CNT
considered here has L ¼ 200 nm, R ¼ 1 nm, and t ¼
0.01 nm. It is found that torsion induced nonlinearity causes
deformation along the x2 direction as well, which is expected
due to the twisting nature of the loading. This may lead to
bulging of CNT at some location and twisting and dumbbell
type structural shape at other locations. It has been observed
that the dumbbell shape is found closer to the fixed end
whereas bulge is found closer to the free end. Figure 18a
gives the longitudinal view (y–z plane) of deformed (multi-
color) and undeformed (grey) CNT. The isometric view of
the standalone deformed CNT at post buckling state (for the
same load case), showing transverse deflection and the
deformed cross section is shown in Figure 18b. Figure 18c
shows the deformed CNT from the free end where cross
section deformation is minimum.

The combined loading study indicates a predominant
role of bending in inducing geometrically nonlinear behavior
especially at higher slenderness ratios and lower thickness
values of CNT. Moreover, upon decreasing CNT thickness
and radius and increasing the length, the nonlinear mechan-
ical behavior of CNT escalates.

4. Future scope

Current research focuses on the nonlinear geometric
instability in SWCNTs. This research uses a complete con-
tinuum approach, which can be applied to MWCNTs to
study deformation and interactions between layers. In order
to further study the impact of geometrical nonlinearity on
the mechanical behavior of CNT composites, the VAM-
based method can be extended. The proposed methodology
can also be used to investigate the premature failure of CNT
composites caused by fiber-matrix debonding. The existing
modeling approach can be improved by incorporating non-
local theories, which would allow for the integration of geo-
metrical nonlinearity with material nonlinearity and account
for small-size effects in solids due to nonbonded interac-
tions. A comprehensive mathematical study is underway to
capture the nonlinearities associated with CNTs more effect-
ively by incorporating nonlocal theories within a continuum
framework.

However, it must also be pointed out that though the
nonlocal/size effects are significant in problems involving
CNTs, their incorporation may not always be mandatory for
all kinds of loading & support boundary conditions. In fact,
nonlocal/size effects may become an overkill for certain
important problems, such as the one that our work focuses
on. Unnecessarily incorporating such effects renders the
solution process computationally inefficient. Analogous to
how the already well-established nonlinear domain decom-
position method identifies & demarcates abstract problem
subdomains wherein the computationally intensive nonlinear
model is essential (and thus complementarily where it isn’t),
one can propose the new concept of a nonlocal domain
decomposition methodology, which is one of the objectives of
our further research.

5. Conclusions

The nonlinear buckling behavior of CNTs has been thor-
oughly analyzed in this work using VAM and nonlinear
FEA. The findings highlight the crucial role of cross-sec-
tional ovalisation in the premature failure of CNTs. It was
observed that the critical buckling load decreases with
increasing slenderness ratios, emphasizing the need to con-
sider nonlinearities in CNT buckling analysis. Furthermore,
the results demonstrate the significance of the R=t ratio,
which governs the non-classical geometric nonlinearity, in
capturing the nonlinear buckling behavior of SWCNTs.
Some of the key observations are summarized as follows:

� The consideration of cross-sectional nonlinearity is vital
for CNTs as it affects the critical buckling load. The dif-
ference between linear and nonlinear cases ranges from 2
to 5% for pure axial compression but can be as high as
10–40% for combined loading cases.

� The study of CNTs under different loads revealed that
bending loads have the most pronounced impact on
cross-sectional nonlinear geometric behavior.

� The proposed approach effectively captures the nonlinear
geometric nonlinearities associated with the slenderness
ratio (L=R) and the R=t ratio.

� The results of the current work have been validated
against existing works in literature, such as FEM, MD,
MSM, and nonlocal models, demonstrating the accuracy
and reliability of the VAM and FEA in analyzing CNT
buckling.

In conclusion, the proposed nonlinear modeling method
using VAM and FEA provides a more engineer-friendly way
to analyze the nonlinear buckling behavior of CNTs and
other nanostructures. While non-local effects are important
to analyze CNTs or structures of similar length scale, the
present results agree well with MD simulations, implying
that non-local effects may not become a significant factor
for certain load cases. This aspect deserves further research
and our ongoing work on non-local asymptotic modeling
aims to elucidate the importance of the non-local
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parameters in the context of asymptotic-correctness of the
reduced-order non-local structural models.

As CNTs are increasingly explored for their potential
applications in advanced composites and multifunctional
structures, it becomes imperative to consider such nonli-
nearities in the design process. The findings of this study
contribute to the advancement of knowledge in this field
and provide valuable insights for future research in the area.
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Appendix: Mesh convergence and load sensitivity
studies

Mesh convergence and load sensitivity studies were conducted, and the
results are reported in this section. Different mesh sizes starting from
10 elements to 20, 50, 100, 200, 500, 1000 and 2000 elements were
used. For cases of the current model, the convergence was observed for
a normalized mesh size of 0.5. Here, the base mesh size taken was
1000 elements to establish the normalized mesh size. The mesh conver-
gence study is represented in Figure 19.

The CNT beam model is modeled as perfectly elastic, hence, to
simulate the buckling behavior a very small transverse load is applied.
It is a minimum load such that to ensure the buckling phenomena
occurs and bending does not dominate the behavior of CNT. This
loading was provided in the form of uniformly distributed load along
one of the transverse directions. Therein it was found out that beyond
the load of approximately 2�10�8 nN/nm, the changes in perturbation
load leads to similar buckling load. Hence, this load was taken to simu-
late the buckling condition in CNT. However, the value of the perturb-
ation load may vary with change in CNT length and thickness, the
behavior remains same. This is as seen in Figure 20.

Figure 19. Mesh convergence study. Figure 20. Load sensitivity study.
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