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Abstract

The wide spread use of power electronic equipment has been causing serious current 

harmonics in electrical power distribution system. Harmonic currents that flow in the 

electrical power distribution system would cause extra copper loss and immature operation 

of overcurrent protection devices. Voltage distortion due to harmonic voltage drop in the 

electrical power distribution system impairs the operation of voltage sensitive equipment. 

The harmonic distortion of the current and voltage waveforms can be caused by 

sub-harmonics, integer harmonics and inter-harmonics. Traditionally harmonic distortions 

are predominately caused by integer harmonics. With the advance of power electronic 

technology, the amount of sub-harmonics and inter-harmonics are rising and cause 

problems not experienced before.

In order to improve the electrical power quality and reduce energy wastage in the electrical 

power distribution system, especially under the deregulated environment, the nature of the 

harmonics must be identified so that the causes and effects of the harmonics would be 

studied. Moreover corrective measures cannot be easily implemented without knowing the 

characteristics of the harmonics existing in the electrical power distribution system.

Power harmonic analysis in electrical power distribution system is essentially related to the 

topic of waveform distortion analysis commonly encountered in signal processing. 

Waveform distortion analysis relates to the identification of all harmonics components, 

including sub-harmonics, integer harmonics and inter-harmonics. Harmonics identification 

consists of identifying harmonic frequencies, amplitudes and instantaneous phases. In 

classical signal processing, waveforms are classified into stationary (time-invariant) 

waveforms and non-stationary (time-variant) waveforms. For non-stationary waveforms, 

time information is also required.
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Traditionally Discrete Fourier Transform (DFT) implemented with Fast Fourier Transform 

(FFT) is used to analyze stationary waveform distortions with integer harmonics. DFT is 

not suitable for analyzing waveform distortions caused by sub-harmonics and 

inter-harmonics. Short-time Fourier Transform (STFT) and Gabor Transform (GT) which 

are windowed version of DFT were developed for the analysis of time-variant waveforms. 

These methods have their own usages and limitations. With STFT, one must compromise 

frequency resolution with time resolution, or vice versa. With GT, the accuracy lies in 

selecting the right time and frequency parameters, which cannot be done wisely without a 

prior knowledge of the waveform characteristics.

This thesis reports on the development of a new approach for harmonic analysis which is 

able to analyze distorted waveforms containing sub-harmonics, integer harmonics and 

inter-harmonics by identifying their respective harmonics frequencies, amplitudes and 

instantaneous phases. Wavelet Transform (WT) is used for the new approach. WT is a 

comparatively new mathematical tool originally developed for signal analysis, which have 

found applications in many areas of science and engineering. WT makes use of a wavelet 

which is an oscillating waveform of short duration with magnitudes decaying quickly to 

zero at both ends. WT is performed by shifting and dilating a mother wavelet. Dilating a 

mother wavelet varies the frequency of oscillation and time duration simultaneously, while 

the time duration of DFT is fixed. Shifting the dilated wavelet captures time information of 

the waveform. With these properties, the WT is most suitable for harmonic analysis. In 

particular, Continuous Wavelet Transform (CWT) is used for harmonic analysis because of 

its ability to identify harmonic frequencies accurately.

The simplified Complex Morlet Wavelet (CMW) is selected for the new approach 

introduced in this thesis. CMW is basically a sinusoid-modulated Gaussian function with 

harmonic-like shape and smooth decaying magnitudes. CMW achieves the best 

compromise between time and frequency localization, and therefore can identify frequency 

information and time information reasonably accurate. A modified CMW is introduced in 

this thesis which is better suited for harmonics analysis.

A WT-based harmonic analysis algorithm is developed based on the modified CMW, with 

detailed study on settings of the modified CMW parameters for discriminating adjacent 

frequencies, determining minimum sampling frequency and minimum harmonic signal
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duration. The proposed WT-based harmonic analysis algorithm is tested with synthesized 

waveforms and field harmonic waveforms vigorously. Harmonic analysis results obtained 

from DFT implemented with FFT are used to compare with the results obtained from the 

proposed WT-based algorithm.

Overall, the proposed algorithm is able to identify all harmonic components including 

integer, non-integer and sub-harmonics. Comparing with DFT, the proposed algorithm 

achieves exact estimation of the harmonic frequency, amplitude and phase of the harmonic 

components in power harmonic signals. The power harmonic signal length required by the 

proposed algorithm is much shorter than the DFT-based algorithm.

The thesis also reports on the development of a WT-based dynamic waveform 

reconstruction algorithm which is able to identify amplitude variations of harmonic 

components of the distorted waveform in the examined period. The performance of the 

WT-based waveform reconstruction algorithm is compared with the performance of the 

Discrete Waveform Transform based techniques which is used to reconstruct the 

fundamental frequency component only. It is found that the proposed algorithm is more 

accurate in reconstructing the waveform of the fundamental frequency component and can 

be used to reconstruct waveforms of any harmonic components.



Summary of Original Contributions

The following summarizes the original contributions made in this thesis.

1. Development of a Wavelet Transform-based harmonic analysis algorithm by using 
filter banks generated from modified Complex Morlet Wavelet implemented by 
Complex Continuous Wavelet Transform. The WT-based approach is capable of 
identifying sub-harmonics, inter-harmonics and integer harmonics (Chapter 5).

2. Modification of the Complex Morlet Wavelet for the detection of harmonics with very 
small amplitudes. The filter banks generated by the dilation of the modified Complex 
Morlet Wavelet have equal lobe height in the frequency domain (Chapter 5).

3. The adoption of the wavelet ridges for estimating harmonic frequencies and 
amplitudes based on the modified Complex Morlet Wavelet (Chapter 5).

4. Determination of the centre frequency and bandwidth parameter of the modified 
Complex Morlet Wavelet with respect to the minimum frequency separation between 
adjacent harmonic frequencies (Chapter 6).

5. Determination of the minimum sampling frequency for the proposed WT-based 
harmonics analysis algorithm to avoid aliasing (Chapter 6).

6. Determination of the minimum harmonic signal length for the proposed WT-based 
harmonics analysis algorithm for accurate harmonics detection (Chapter 6).

7. Development of computational formulae for the estimation of the initial phases of 
harmonics and the phase difference between signals of the same frequency from 
wavelet coefficients (Chapter 6).

8. Development of a computational algorithm for the WT-based harmonic analysis 
implemented with FFT. The minimum scale of the decomposition is determined from
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the minimum sampling frequency. The maximum scale of decomposition is 
determined by the length of the signal sufficiently long enough to get rid of edge 
effects at data ends. The dilation step is determined by the accuracy required in 
harmonic frequency estimation (Chapter 7).

9. Testing of the proposed WT-based harmonic algorithm with synthesized harmonic 
signals and field harmonic signals. The field harmonic signals include input current 
waveform to VSD and input phase current waveform to a single phase circuit 
containing nonlinear loads (Chapter 8).

10. Development of a WT-based dynamic waveform reconstruction algorithm for 
reconstruction of time-variant harmonics waveforms. The algorithm is capable of 
showing the variation of amplitudes of harmonics over time. The waveform 
reconstruction algorithm was tested with synthesized harmonic signals and field 
harmonic signals (Chapter 9).
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Definition of Common Terms

Harmonics of a signal are the frequency components of the signal.

Sub-harmonics of a signal are frequency components of the signal with frequencies below 
the fundamental frequency.

Inter-harmonics of a signal are frequency components of the signal with frequencies not 
integer multiples of the fundamental frequency.

Integer harmonics of a signal are frequency components of the signal with frequencies 
equal to integer multiples of the fundamental frequency

Stationary or time-invariant signal is a signal for which the signal properties such as 
amplitude and frequency do not vary with time.

Non-stationary or time-variant signal is a signal for which the signal properties such as 
amplitude and frequency vary with time.

Beat frequency is equal to the absolute value of the difference in frequency of two 
waveforms.

High-pass filter is a filter that allows all signals above a given frequency to pass.

Low-pass filter is a filter that allows only frequencies below a given frequency to pass.

Bandpass filter is a filter that allows a given band of frequencies to pass while attenuating 
all others.

Q-factor of filter is defined as the ratio of the peak frequency to bandwidth of the filter.

Mainlobe height is the peak magnitude of a window function in frequency domain.

Voltage sag is an RMS reduction in the ac voltage at the power frequency, for durations 
from a half cycle to a few seconds.
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Chapter 1 

Introduction

1.1 Motivation for the Research

Power quality [1] has become a major concern for utility, facility and consulting 

engineers in recent years. International as well as local standards have been formulated to 

address the power quality issues [2-5], To the facility managers and end users, frequent 

complaints by tenants/customers on occasional power failures of computer and 

communication equipment, and the energy inefficiency of the LV electrical distribution 

system are on the management’s agenda. Harmonic currents produced by nonlinear loads 

would cause extra copper loss in the distribution network, which on one hand will 

increase the energy cost and on the other hand would increase the electricity tariff charge. 

The benefits of using power electronic devices in the LV distribution system in buildings, 

such as switch mode power supplies, variable speed drive units, etc. to save energy are 

sometimes offset by the increased energy loss in the distribution cables by current 

harmonics and the cost of remedial measures required. Voltage harmonics caused by 

harmonic voltage drops in the distribution cables are affecting the normal operation of 

voltage sensitive equipment as well.

Although the distorting frequency components are predominantly integer harmonics [6], 

the amount of sub-harmonics and inter-harmonics are increasing and turning into a major 

issue. Other power quality issues such as transients, voltage sag and swell, waveform 

distortion, power frequency variations, etc. are experienced by electricity users 

frequently.
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In order to improve electric power quality and energy efficiency, the nature of harmonics 

must be identified and studied before appropriate corrective or mitigating actions [7,8] 

can be taken.

1.2 Power Harmonics Analysis

Power harmonics analysis in electrical power systems is essentially related to the topic of 

waveform distortion analysis commonly encountered in signal processing. Waveform 

distortion analysis relates to the identification of all harmonics components, including 

sub-harmonics, integer harmonics, and inter-harmonics. Any harmonic waveforms can be 

characterised by their frequencies, amplitudes and instantaneous phases. Time 

information is required for non-stationary (time-variant) waveforms.

A traditional approach is to use Discrete Fourier Transform (DFT) to analyse harmonics 

contents of a power signal. The DFT which is implemented by FFT has many attractive 

features. That theory of FFT has been fully developed and well known; scientists and 

engineers are familiar with the computation procedures and find it convenient to use as 

many standard computation tools are readily available. Short-time Fourier Transform 

(STFT) and Gabor Transform (GF) were developed for estimating time-variant harmonic 

information. These methods have certain limitations, which will be discussed in detail in 

Chapter 3.

1.3 Objectives of the Study

The first objective is to develop a robust, reliable and accurate method for waveform 

distortion analysis which should be able to overcome the limitations of the traditional 

Discrete Fourier Transform implemented with Fast Fourier Transform. The new method 

should be able to identify the frequencies, amplitudes and phase information of all 

distortion harmonic components, including integer harmonics, sub-harmonics and 

inter-harmonics. It should also be suitable for analysing non-stationary and time-variant 

waveforms.

The new waveform distortion analysis method is developed from Wavelet Transform. 

Wavelet transform is a newly developed signal analysis mathematical tool. It has many
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practical applications in science, engineering and mathematical fields in recent years. 

Unlike the Fourier Transform with sinusoidal waveforms as the basis, wavelets are 

oscillating waveforms of short duration with fast decaying magnitudes. In Wavelet 

Transform, a so-called mother wavelet is dilated to vary its centre frequency and time 

duration. A dilated wavelet is shifted along and superimposed onto the signal waveform 

under analysis to generate the transform coefficients. The dilation and translation 

processes are important features for analyzing non-stationary waveforms and waveforms 

containing harmonic frequencies not related by integer multiplication.

Although wavelets are fast-decaying and oscillating waveforms, their lengths are still 

finite, and a finite length of distortion waveform is required for conducting the analysis. 

The length of the distortion waveform to be used is dependent on the separation between 

adjacent frequencies and the frequency resolution required. This will be discussed in 

detail in Chapter 6.

The second objective of the study is to develop a Wavelet Transform-based method to 

reconstruct all the harmonic components of the distorted waveform. The new method for 

harmonic component waveform reconstruction is useful in revealing the variation of 

waveform amplitudes within the period of analysis of the distortion waveform, which can 

be adopted for the analysis of time-variant waveforms.

1.4 Organisation of the Thesis

This thesis summarizes the research study findings undertaken to achieve the above two 

objectives. The thesis consists of the following chapters.

Chapter 2 describes backgrounds on power system waveform problems. It presents the 

common definitions of power harmonics issues. The causes and origins of power system 

waveform distortions are discussed and the effects of the distortions are also presented.

Chapter 3 describes the history of Wavelet Transform development. Since Wavelet 

Transform is a comparatively new tool for power signal analysis, this chapter briefly 

describes the origin of invention and the definitions of Wavelet Transform. The recent 

applications of WT in power engineering are also discussed.
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Chapter 4 introduces the Fourier Transform. Fourier Transform is a frequency domain 

analytical tool specifically useful for stationary harmonic analysis. In particular the 

Discrete Fourier Transform implemented with Fast Fourier Transform is described 

thoroughly because of its fast and efficient computation capability for harmonic analysis. 

The underlying principles, assumptions, and the limitations of Discrete Fourier 

Transform are also presented.

Chapter 5 describes a new approach for harmonic analysis. This approach is based on 

Continuous Wavelet Transform which does not have the limitations of Fourier 

Transform-based harmonic analysis. The Continuous Wavelet Transform is used to 

transform a time signal into a time-frequency representation. Both time information and 

frequency information are contained in the wavelet coefficients.

The simplified Complex Morlet Wavelet is chosen for the Continuous Wavelet 

Transform for harmonic analysis. The simplified Complex Morlet Wavelet is a 

sinusoid-modulated Gaussian function with a smooth declining waveform, which is best 

suited for harmonic analysis.

Wavelet ridges are used to extract frequency information from the complex wavelet 

coefficients. The amplitudes of harmonics are readily available in the process of 

generating the scalogram.

Chapter 6 further introduces a modified Complex Morlet Wavelet to better suit for 

harmonic analysis and discusses the application of the modified Complex Morlet Wavelet 

from the perspective of filter banks for harmonics detection. Based on the filter banks 

generated by the modified Complex Morlet Wavelet, the minimum sampling frequency 

for representing the harmonic signal is estimated so that aliasing would be avoided.

The shortest time width of the modified Complex Morlet Wavelet, and hence the 

harmonic signal length required for harmonic analysis, is found to be dependent on the 

centre frequency and bandwidth of the modified Complex Morlet Wavelet, and the period 

of the lowest harmonic frequency in the signal. The time width of the CMW should be 

chosen such that the mean value of the CMW should be close to zero.
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This chapter also defines initial phase, instantaneous phase and phase difference from the 

perspective of wavelet-based harmonic analysis. The complex wavelet coefficients 

obtained from Continuous Wavelet Transform based on the modified Complex Morlet 

Wavelet contains the instantaneous phase information. From the instantaneous phase 

information, the initial phases of the harmonics in the harmonic signal can be estimated. 

The phase difference between any two harmonics of the same frequency can be 

calculated from the wavelet coefficients as well.

The proposed wavelet-based harmonic analysis method can be used to detect any 

frequency components in a signal, including sub-harmonics, integer harmonics, 

inter-harmonics.

Chapter 7 discusses practical issues related to the implementation of the proposed 

wavelet-based harmonic analysis algorithm. A computation formula for the estimation of 

the minimum sampling frequency without aliasing is proposed. The signal time signal is 

determined mathematically by considering the lowest harmonic frequencies and the 

separation between adjacent harmonic frequencies in the harmonic signal.

The accuracy in harmonics amplitudes estimation is found to be dependent on the time 

width of the modified Complex Morlet Wavelet and hence the harmonic signal length 

used in the harmonic analysis. The setting of the centre frequency and bandwidth of the 

CMW is dependent on the harmonic frequencies in the signal and the required separation 

between adjacent harmonic frequencies.

The detection of the initial phases of harmonics requires that the number of data points 

used in the WT-based estimation algorithm should be an odd number.

The minimum and maximum dilation scales to be used in the Wavelet Transform are 

discussed and estimated. It is suggested that instead of dilating the CMW by 

incrementing scales, it would be more convenient and accurate to determine the dilation 

scales by the frequency range and frequency resolution specified.

Chapter 8 presents the application studies by using the proposed WT-based algorithm for 

waveform distortion analysis. The robustness of the algorithm is verified using highly
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distorted synthesized waveforms containing sub-harmonics, integer harmonics and 

inter-harmonics. The sensitivity of the WT-based algorithm to harmonics with very small 

amplitudes is also estimated. The algorithm is then applied to two real field harmonic 

signals. The first field harmonic signal is obtained from line current input to three-phase 

variable speed drive and the second field harmonic signal is obtained from the line 

current input to a group of single-phase loads.

Chapter 9 discusses the development of a WT-based waveform reconstruction algorithm 

for reconstructing the harmonic waveforms from the complex CWT coefficients. This is 

useful for identifying the amplitude variations of the harmonic frequency over the 

estimation time period.

The WT-based reconstruction algorithm is tested with synthesized waveforms and field 

harmonic waveforms. The tests revealed that the WT-based harmonic waveform 

reconstruction algorithm is able to reconstruct any harmonic waveforms accurately. The 

reconstruction accuracy is higher than that produced by Discrete Wavelet Transform 

(DWT). The reconstruction algorithm is able to display waveform variations of a cycle 

short. The WT-based reconstruction algorithm is time-invariant and therefore is able to 

preserve the phase information of the harmonic waveform.

Chapter 10 summarises the work done in the research study. Further improvements and 

developments areas are suggested.



Chapter 2

Power System Harmonics Problem

2.1 Introduction

Defining the nature and characteristics of a problem is the first step in any problem solving 

process. This Chapter gives a review of the power system harmonics problems [9]. The 

evaluation of harmonic distortion is becoming increasingly important for a number of 

reasons. An increasing percentage of building load consisted of electronic equipment 

supplied by switched-mode power supplies. These power supplies can have input currents 

with very high harmonic content. New high-efficiency fluorescent luminaries use 

electronic ballasts and can have higher harmonic contents than conventional fluorescent 

luminaries using magnetic ballasts. Much of the HVAC load in buildings is being 

controlled by variable speed drives in order to improve overall efficiency. These drives 

together with the drives for electric traction lift systems produce significant harmonic 

currents.

The overall harmonic levels depend on how the individual harmonics from these loads 

combine together [10]. In fact, there is usually significant harmonic cancellation in 

commercial facilities due to the variety of load types. Most harmonic problems are 

localized to low voltage systems that supply a significant percentage of single phase 

electronic load. The harmonic current limits specified in IEEE 519-1992 [5] for the overall 

facility are usually not exceeded.

The voltage distortion levels depend on the circuit impedances as well as the harmonic 

generation characteristics. The circuit impedance is usually dominated by the step down



transformers and conductor impedances. The current harmonics may also cause resonance 

with power factor correction capacitors resulting in capacitor breakdown.

2.2 Definitions of Harmonics

Electricity supply is represented in the form of voltage and current. Both the voltage and 

current are sinusoidal waveforms if the power supply system consists of linear components, 

collectively represented as resistors, inductors and capacitors. For a steady state power 

supply analysis, electrical quantities are described by phasor representation, and 

root-mean-square (RMS) value is conveniently used for power calculation. The phasor 

representation and the RMS value are valid as long as the voltage and the current are 

strictly sinusoidal with a constant supply frequency, normally 50Hz or 60Hz, depending on 

the country of use. However if the loads are nonlinear, the supply current will become 

non-sinusoidal even though the supply voltage is still sinusoidal [3],

By traditional Fourier Transform analysis, any periodic waveform can be represented by 

the sum of sinusoids of higher frequencies, which are related to the fundamental frequency 

by integer multiples. The individual frequency components of the distorted waveform can 

be described in terms of the harmonic order, magnitude and phase of each component.

Distorted voltage or current waveforms containing periodic distortions of a sinusoidal 

nature that are not integer multiples of the fundamental supply frequency are termed 

inter-harmonics.

Flicker is a term used to describe the visual effect of small voltage variations on electrical 

lighting equipment. The frequency range of disturbances affecting lighting appliances, 

which are detectable by the human eye, is l-30Hz, which is also one type of 

sub-harmonics.

In steady state condition, the periodic non-sinusoidal waveform is time-invariant, 

harmonics would have a constant magnitude. The magnitude of the harmonics would 

change due to changes in system configuration or load conditions.

Chapter 2 Power System Harmonics Problem 8
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2.3 Sources of Harmonics

Harmonic current is produced by nonlinear circuit components. Harmonic voltage is 

produced by the harmonic current flow through impedances of the power supply 

distribution system. Power supply components are connected either in series or in parallel. 

Current harmonics are produced by parallel elements, and therefore are normally end-user 

loads. Voltage harmonics are produced by harmonic current flow in the series elements, 

and are attributed to cables and power distribution equipment such as step up/down 

transformers [11].

Switched mode electronic power supplies commonly used for electronic equipment are 

rectifier-inverter bridges for controlling DC or AC motor drives. In both cases, the high 

peak charging current for the large smoothing capacitor contains a correspondingly higher 

harmonic content.

With the increasing use of office equipment such as personal computer, printers, copiers 

and other electronic devices, current harmonics generated is inevitably increasing. 

Electronic ballasts newly developed to replace the magnetic ballasts for fluorescent 

luminaries are main sources of harmonics in commercial buildings.

Variable speed drives are used extensively in buildings’ water supply systems, 

air-conditioning systems and electric traction lift system. Variable speed drives use 

three-phase power converters consisting of six-pulse or twelve-pulse rectifier, which 

produces harmonics that cause serious problems. As air-conditioning loads and lighting 

loads together account for 70% of total electrical load of a typical commercial building, 

power harmonics are no wonder common concerns of building operators and system 

designers [12].

Saturation effects in transformer and shunt reactors (i.e. parallel inductor) can produce 

steady-state harmonics, as well as transient harmonics and temporary over-voltage. 

Magnetization current of a transformer contains even harmonics, although in an amount far 

below the fifth and the seventh harmonics.

Discharge lamps produce third-harmonic current that may be as high as 30% of the
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fundamental and add up to 90% in the neutral wire. Lamp ignition occurs during each half 

cycle when the applied AC voltage reaches the required firing angle. During conduction, 

the lamp exhibits a negative resistive characteristic, and a nonlinear ballast circuit is placed 

in series with the lamp to limit the current.

Arcs in furnaces are significant sources of a wide range of frequency harmonics. A 

particular feature of the operation of electric arc-furnaces is the frequent recurrence of 

short circuits between the electrodes and the scrap-metal charge. Often when the molten 

scrap metal drops away from an electrode the arc will extinguish and no current will flow. 

During the melt-down period there will thus be random current changes with two or three 

phases short-circuited, or one phase on open circuit. The swing from short circuit to open 

circuit produces violent current fluctuations. These result in large voltage variations being 

impressed on the supply voltage.

2.4 Effects of Harmonic Distortion

In most cases, the presence of harmonics may lead to aging of electrical appliances and 

damages to electrical apparatus [13-15],

Conductor overheating can be caused by harmonic current larger than the expected 

fundamental magnitude; a common case is overloading the neutral of a three-phase system. 

Harmonics orders that are odd multiples of three are called the ‘triplen’ harmonics and they 

are additive in the neutral. The neutral currents are dominated by third harmonic 

components from single phase electronic loads.

Electrical equipment can be overheated by distorted load current that cause higher eddy 

current losses inside the equipment. At the frequency of the third harmonics, skin effect 

and proximity effect cause harmonic current to flow non-uniformly across the entire 

cross-sectional area of the winding conductor of transformers. In the total copper loss, both 

the true RMS value current as well as the a.c. resistance increase. In addition, losses will be 

increased because of the circulating current in the delta connection of transformers.

Transformer losses include DC and AC resistance in the winding, eddy currents in the 

windings and core, and hysteresis losses in the core. All other losses are called stray losses.
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An eddy current is produced by the voltage induced by the magnetic field that surrounds 

each winding conductor and all other metallic materials permeated by the field. These eddy 

currents must be dissipated as heat by the windings and associated insulating materials. It 

is known that eddy current losses are proportional to the square of the frequency.

Vibrations and periodic rasping sounds from induction motors are due to harmonic currents. 

Harmonic torque is produced having both positive and negative rotational directions; when 

summed these almost cancel each other leaving the net rotational torque virtually unaltered. 

Interaction of harmonic currents with the fundamental flux results in possibly troublesome 

pulsating harmonic torque components.

The interaction between capacitive and inductive devices at some harmonic frequency 

causes unexpected large circulating current in some parts of the circuit [16]. Over-voltage 

and excessive current lead to failure of capacitor banks. Power factor correction capacitors 

with cable or apparatus inductance may set up current-amplifying resonance. These 

resonant loop current paths may raise local conductor heat loss and destroy the capacitors.

Harmonic currents and voltages in power system lines due to the power electronic 

equipment can impair the performance of telecommunication systems by virtue of their 

proximity, exposure, and susceptibly to the disturbance. For harmonic voltages, the 

interference is due to the electrostatic induction which acts through the capacitive coupling 

between the supply and communication circuits. For the harmonics current, the 

electromagnetic induction applies.

Many electrical measuring meters are designed to respond to average value or peak value 

rather than true RMS value. For sinusoidal waveform, a constant ratio exists between 

average (or peak) and RMS values. The meter can then be calibrated to indicate RMS 

value. With the presence of harmonics, the ratio changes which will throw off the 

calibration to an unknown extent. In the case of energy or kWhr meters, the meters may 

not be able to respond to high frequency components. Thus, readings may be lower in most 

cases.

Solid-state electronic relays used to protect motor circuits can be fooled by waveform 

distortion. In the case of overcurrent relay, the RMS value of the pick-up current may be 

increased. The static under-frequency relay is very sensitive to voltage sub-harmonics and
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therefore such harmonics should be limited. For the moulded-case circuit breaker or 

miniature circuit breaker containing a thermal trip element, the element may heat up more 

rapidly at high harmonic frequency than at the fundamental frequency. The breaker may be 

cheated by opening at an overall current well under its normal trip setting. In magnetic-trip 

breakers, operation depends upon electromagnetic force which is proportional to the square 

of peak current [17]. Hence, a high third harmonic current with abnormally high overall 

peak could open the breaker at an over-ampere value lower than its preset tripping point. 

Large harmonic components in the current waveform can affect the interruption capability 

of the switchgear. The presence of harmonics affects the rate of rise of the transient 

recovery voltage across the break, and the voltage may be higher than normal and cause 

dielectric failure.

The definition for active, reactive, and apparent powers that are currently used are based on 

sinusoidal quantities with constant frequency. Such definitions are to be reviewed and 

redefined for distorted voltage and current waveforms [18]. IEEE 1459-2000 ‘Definitions 

for the Measurement of Electric Power Quantities under Sinusoidal, Non-sinusoidal, 

Balanced or Unbalanced Conditions’ [30] has a detailed description on the new power 

definitions taking into account distorted voltage and current waveforms [19-21],

2.5 Power Harmonics Mitigation Measures

There are a number of ways to overcome the problems caused by harmonics. The simplest 

way is to design and build equipment that would tolerate more harmonics. The common 

measures are over-sizing the power supply cable and in some cases use double-neutral. 

Transformer overheating would be reduced by employing appropriate k-rated transformers.

The mutual coupling between power circuits and communication circuits can be reduced 

by earthed shielding. Harmonics can also be reduced or eliminated through transformer 

connections. A separate delta-connected tertiary winding is usually wound on large power 

transformers to provide a path for circulating triplen harmonics to flow. However, losses 

increase because of circulating current in the delta connection.

Power harmonics filters are developed to mitigate the amount of harmonics in the power 

distribution system. Harmonic filters can be passive and active, and can be connected in
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series or shunt. The purpose of installing shunt power harmonic filters at the connection of 

power electronic equipment to the power system is to bypass the harmonic current 

generated by the equipment from entering the power system. Power factor correction 

capacitors would be used to improve the power factor of the power supply system. Line 

reactors limit hannonic current flow and do so at the expense of voltage distortion. The 

output voltage of the line reactor will show distinct waveform distortion and the peak 

voltage will often be limited. Active filters sense voltage and current harmonics, and 

generate offsetting harmonics to cancel out the unwanted harmonics [22],

2.6 Current Power Harmonics Analysis Methods

Before any power harmonics mitigation measures can be implemented, the nature and 

characteristics of the distorted waveforms should be analyzed. Traditionally power 

harmonic analysis makes use of Fourier series and Discrete Fourier Transform. The method 

assumes that the harmonics are integer multiples of the supply frequency. Non-integer 

harmonics are dealt with by using multiple periods of sampling for estimating harmonic 

magnitudes.

There are practical cases in which the DFT cannot be used with confidence to identify the 

harmonic components. There are sub-harmonics and inter-harmonics. Incorrect selection of 

the distorted waveform length would also result in spectral leakage. As a result, the 

detected fundamental frequency deviates from the actual value.

In practical applications, the distorted waveform changes over time due to changes in 

system configuration or load demand. Windowed discrete Fourier transform, Short time 

Fourier Transform and Gabor transform are commonly used to analyze time-varying 

harmonics. The effectiveness of these methods he with the appropriate selection of the 

window length.

The DFT is liable to errors caused by aliasing, spectra leakages and picket-fence effect. 

There are measures proposed by engineers and academics to improve the accuracy of the 

DFT. Some of the measures are using a non-rectangular window to reduce spectra leakages 

and to increase the fft no. in the FFT to achieve a better frequency resolution for a 

particular window width. Chapter 3 will discuss the properties of DFT and the various
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methods to improve its accuracy. The improvement measures have advantages and 

disadvantages. The search for better methods continues to be a research area worth 

exploring.

2.7 Conclusion

This Chapter gives an overview of the many issues related to power system harmonics 

problems. Definitions of integer harmonics, sub-harmonics and inter-harmonics are given. 

The common sources of power harmonics, the effects of power harmonics and mitigation 

measures are investigated. Limitations of existing analysis techniques and the needs for 

new techniques of harmonic analysis are presented.



Chapter 3

The Developments of Wavelet Transform

3.1 Introduction

Wavelet transform (WT) is a new mathematical tool in the field of signal processing, 

especially in dealing with image processing, data compression and transmission. This 

Chapter presents a brief theoretical background of WT to serve as an introduction to the 

development of a WT-based algorithm for harmonic analysis. The development of wavelet 

transform follows a path of coincidences, and some coincidences constituted the 

emergence of wavelet transform in many fields of science and engineering. Reviewing the 

history of wavelet transform development does provide some insights and aspirations.

3.2 The Developments of Wavelet Transform [23-25]

The written record of wavelets linked to a man named Alfred Haar in 1909. It was 

mentioned in the appendix of a thesis he had written for his doctoral degree. Alfred Haar 

was bom on October 11, 1885 in Budapest, Hungary. In 1904, Haar took his study at 

Gottingen, Germany under Hilbert. Haar’s study at that time was on the orthogonal 

systems of functions. Haar’s contribution to wavelets is very evident and an entire wavelet 

family named after him. The Haar wavelets are known to be the simplest of the wavelet 

families. The concept of a wavelet family is easy to understand. They all start with the 

scaling function called the father wavelet. Through scaling and shifting the father wavelet, 

one obtains the mother wavelet, daughters, sons, granddaughters, grandsons, etc.

A long gap of time elapsed after Haar’s contribution to wavelets during which no advances 

have been made on wavelet mathematics, until a man named Paul Levy. Paul Levy was
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bom on September, 15, 1886 in Paris, France. He has a strong family background on 

mathematics. His grandfather was a mathematics professor; his father wrote geometry 

papers for Ecole Polytechnique, which is a school of higher education (indeed a university) 

in Paris, France. However, Levy did not only win awards in the field of mathematics, but 

also in the fields of chemistry and physics. He attended the prestigious school of Ecole 

Polytechnique, there he also taught later in life till retirement. Levy used wavelet 

mathematics to carry out his research in Brownian motion. He found that the scale-varying 

basis functions created by Haar (i.e. Haar wavelets) were a better basis than the Fourier 

basis functions. Unlike the Haar basis function, which can be chopped up into different 

intervals such as the interval from 0 to 1 or the interval from 0 to Vi and Vi to 1, the Fourier 

basis functions have only one interval. Therefore, the Haar wavelets can be used to 

precisely model a function. Levy therefore used the Haar basis to deal with the small 

details in Brownian motion.

After Levy, there were slight advances in the field of wavelets from the 1930s to the 1970s. 

The next major advancements were started by Jean Morlet around 1975. In fact, Morlet 

was the first researcher to use the term “wavelet” to describe his functions. Before 1975, 

many researchers had considered the idea of Windowed Fourier Analysis (mainly a man 

named Dennis Gabor). This concept allowed researchers to consider phenomena in terms 

of both time and frequency. Windowed Fourier Analysis was used to study the frequencies 

of a signal piece by piece (or window by window). These windows helped to make the 

time variable discrete or fixed. Different oscillating functions of varying frequencies could 

therefore be looked at in these windows. Morlet, also a graduate of Ecole Polytechnique, 

explored with the Windowed Fourier Analysis while working for an oil company. 

Customarily underground oil farm was explored by sending impulses into the ground and 

analyzing their echoes. With suitable analytical tools, these echoes could tell how thick a 

layer of underground oil would be. Fourier Analysis and Windowed Fourier Analysis were 

used to analyze these echoes. It was later found that Fourier Analysis was too time- 

consuming for this purpose. Morlet began to look for an alternative solution. When he 

worked with Windowed Fourier Analysis he discovered that keeping the window fixed was 

not the right approach and so he turned to the opposite. He kept the frequency of the 

function (number of oscillations) constant and changed the window width. He discovered 

that stretching the window stretched the function and squeezing the window compressed 

the function. In fact, a close resemblance could be seen between the sine functions used in
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Fourier Analysis and the Morlet wavelets. In 1981, Morlet met another man named Alex 

Grossman. Morlet and Grossman worked on an idea that Morlet discovered while 

experimenting on a basic calculator. The idea was that a signal could be transformed into 

wavelet form and then transformed back into the original signal without any information 

being lost. This process is thus lossless. Morlet and Grossman’s efforts with this concept 

were a complete success. Since wavelets deal with both time and frequency, they thought a 

double integral would be needed to transform wavelet coefficients back into the original 

signal. However, in 1984, Grossman found that a single integral was all that was needed. 

They also discovered another interesting thing:- making a small change in the wavelets 

only causes a small change in the original signal. This is an important feature of modem 

wavelets. In data compression, small wavelet coefficients are changed to zero to allow for 

a higher compression and when the signal is recomposed the new signal is only slightly 

different from the original. Without this property, data compression today would be a 

much more difficult task.

The next two important contributors to the field of wavelets were Yves Meyer and 

Stephane Mallat. Although Meyer is a mathematics professor working in France and 

Mallat was a graduate of Ecole Polytechnique where Meyer used to teach, they first met in 

the United States in 1986. Mallat was very intrigued by a paper Meyer had written about 

his orthogonal wavelets. They spent three days researching on works done on wavelets in 

many applied fields and eventually created the multi-resolution analysis for wavelets. 

Multi-resolution analysis was a big step in the research of wavelets. It was in this 

perspective that the scaling function of wavelets was first mentioned, and which allowed 

researchers and mathematicians to constmct their own family of wavelets.

More importantly, multi-resolution analysis led to a simple and recursive filtering 

algorithm to compute the wavelet decomposition of a function from its finest scale 

approximation. The use of filters in wavelet decompositions led to the merging of sub-band 

filtering of electrical engineering and wavelet mathematics.

Electrical engineers have been accustomed to the idea of grouping frequencies together in 

bands with a width proportional to the average frequency in that band. This is called 

constant relative-bandwidth or constant-Q filtering. One way to obtain such a splitting is to 

work iteratively. Firstly the full range of frequencies is halved by applying two filters: one
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high-pass (HF) one low-pass (LF). The lower frequency half can then be halved again, and 

so forth. Different sections that result from this procedure have different bandwidths; they 

correspond to different Nyquist sampling rate. An easy way to obtain the correctly sampled 

versions of all the components is to retain only half the output samples at every filtering 

step. Such steps would also produce aliasing due to imperfect filter characteristics. In 

1970s, A. Groisier and his colleagues discovered a design procedure, which uses a 

quadrature mirror filter (QMF) in the decomposition structure to cancel out the aliasing. 

Ten years later in 1983, M. Smith and T. Barnwell and independently F. Mintzner, 

discovered QMF-like pairs that were capable of exact reconstruction. The quadrature filter 

pairs were exactly the types of filter pairs that researchers in search of orthonormal wavelet 

bases would discover later from a completely different approach.

The latest wavelet researcher worth mentioning is Ingrid Daubechies, who is currently a 

professor at Princeton University. She was bom in Houthalen, Belgium and earned her 

PhD in Physics in 1980. Around 1988, Daubechies made use of the idea of multi-resolution 

analysis to create her own family of wavelets. These wavelets were later named the 

Daubechies Wavelets. Daubechies wavelet family satisfies a number of wavelet properties. 

They have compact support, orthogonality, regularity, and continuity. The property of 

orthogonality is satisfied because the inner products of all of the various translations of the 

Daubechies wavelets are zero. The regularity property is satisfied because the Daubechies 

wavelets can reproduce linear functions. Finally, the continuity property is satisfied 

because the Daubechies wavelet functions are continuous even though they are not very 

smooth and not differentiable everywhere.

3.3 Wavelet Basics

The background theory of WT can be found in [25-29]. WT is a mathematical tool similar 

to Windowed Fourier Transform. The Short Time Fourier Transform uses a window to 

section the signal into portions that can be assumed as stationary, FFT is then performed on 

each section. A choice of window function has to be made and the window size remains 

constant for the duration of the analysis; this gives poor frequency resolution for non- 

stationary signals.



Chapter 3 The Developments o f Wavelet Transform 19

The Gabor transform is a windowed Fourier Transform with a Gaussian window, the 

window width being constant. As before the transform is meaningful only if there is at 

least one complete cycle of the frequency of interest in the window of observation.

The Gaussian window determines the localization properties of the Gabor transform and as 

the width of the window remains constant for all frequencies, the variance of the time 

localization will be the same for all frequencies and by Heisenberg uncertainty principle 

the frequency localization will also be the same for all frequencies. The Gabor transform 

therefore has constant size localization cells in the time-frequency plane; the absolute 

accuracy of frequency localization (Aco) is limited by characteristics of the Gaussian 

window.

The Wigner-Ville distribution gives excellent frequency resolution but for multi- 

component signals its quadratic nature produces interference (cross terms), these cross-

terms are oscillatory and may have magnitudes in excess of the auto-terms for each 

component, also the transform output is not necessarily non-negative as investigated in

3.4 Definitions of Wavelet Transform

The Wavelet Transform is a method of converting a function into another form. For time 

signal, the WT is able to convert the function into a time-frequency plane. A wavelet is 

needed to perform the WT. The wavelet should be localized in time.

In order to be called a wavelet, a function must satisfy certain mathematical criteria. These 

are:

1) A wavelet must have finite energy:

[25],

2

(3.1)
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2) Given the FT of the function \cp(t)\,

+oo

® ( f )  = \cp(t)e-i(2mf)‘dt. (3.2)

Then the following condition must hold:

c,cmLdf
o Jo

(3.3)

This implies that the wavelet has non-zero frequency component,

0 (0 )  = 0, (3.4)

or the wavelet must have a zero mean. (3.3) is known as the admissibility condition 

and Cg is called the admissibility constant. The value of Cg depends on the chosen 

wavelet.

3) An additional criterion that must hold for complex wavelets is that the FT of the 

wavelet must be real and be vanished for negative frequencies.

Wavelets satisfying the admissibility condition are in fact bandpass filters.

3.5 The Continuous Wavelet Transform (CWT)

The Continuous Wavelet Transform of a continuous signal, f(t), is defined as [28]

(3.5)

length, then its scaled version also has a unit length.
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At a=l and u=l, the wavelet is called the analyzing wavelet or mother wavelet. Wavelets 

produced by other values of a and u are called baby wavelets as they come from the same 

mother wavelet.

As can be seen in (3.5), wavelets are families of functions generated from one single 

function, called an analyzing wavelet or mother wavelet, by means of scaling and 

translating operations. The scaling operation is nothing more than performing ‘stretching’ 

and ‘compressing’ operations on the mother wavelet, which in turn can be used to obtain 

the different frequency information of the function to be analyzed. The compressed version 

is used to satisfy the high frequency needs, and the dilated version is used to meet low 

frequency requirements. Then, the translated version is used to obtain the time information 

of the function to be analyzed. In this way, a family of scaled and translated wavelets is 

created and serves as the bases, the building blocks, for representing the function to be 

analyzed.

The wavelet coefficients thus generated by the dilation and translation measures the 

correlation between the signal and each wavelet function.

As with its Fourier counterpart, there is an inverse wavelet transform, defined as

This allows the original signal to be recovered from its wavelet transform by integrating 

over all scales and locations. The existence of the inverse wavelet transform is essential; 

this means that the function can be uniquely reconstructed from the transform coefficients. 

Otherwise one function can have more than one set of transform coefficients. The proof of 

the invertability of the CWT can be found in [27].

The main advantage of WT as compared with STFT is that the size of the analysis window 

is not constant; it varies in inverse proportion to the frequency. Since the traditional FT 

cannot simultaneously achieve good localization in both time and frequency for a signal, 

the name of the game in time-frequency analysis is to trade one type of localization for the

(3.6)
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other. Other conventional time-frequency methods are much less suited to the analysis of 

short duration signals. WT can offer a better compromise in terms of localization.

3.6 The Discrete Wavelet Transform (DWT)

Instead of continuous dilation and translation, the mother wavelet may be dilated and 

translated discretely by selecting a = a™ and u = uoa™ in (3.5), where a0 and u0 are fixed 

values with a0> 1 and u0 > 0, m, n, k £ Z, and Z is the set of positive integers [30, 31]. 

Then the discretized mother wavelet becomes

DWT provides a decomposition of a signal into sub-bands with a bandwidth that increases 

linearly with frequency. In the case of dyadic transform (a0=2 and u0=l), each spectral 

band is approximately one octave side. In this form, DWT can be viewed as a special kind 

of spectral analyzer.

It is possible to obtain a signal f through wavelet series reconstruction by setting

(3.7)

the corresponding discrete wavelet transform is given by

D W T Jim .n ) = ( / > m„) = \f(kT)<pm„ (t)d t. (3.8)
-0 0

(3.9)
m n

and

(3.10)

The same as DFT implemented with the FFT for fast and efficient implementation, DWT 

can be implemented efficiently and fast by the discrete wavelet transform filter bank.
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However the wavelets used for DWT must be real wavelets. That means DWT is not 

suitable for phase estimation.

3.7 Types of Wavelets

Wavelets come in many shapes and sizes. They must satisfy the admissibility condition 

and have zero dc component [32-34], As long as these criteria are met, any functions can 

be used as wavelets. Broadly speaking, wavelets can be classified according to their 

mathematical properties as follows:

1) compactly support or not;

2) symmetrical or asymmetrical;

3) real valued or complex valued;

4) can be used for Continuous Wavelet Transform and/or Discrete Wavelet Transform.

Nearly all wavelets can offer the exact reconstruction property, except discrete 

approximation of Meyer wavelet and Morlet wavelet. The complex version of the Morlet 

wavelet has the exact reconstruction property. Complex valued wavelet transform should 

be implemented with complex valued wavelets.

Haar wavelet is compactly supported in time domain, of symmetrical shape and can be 

used for CWT and DWT. Real valued Morlet wavelet is not compactly supported, of 

symmetrical shape and can only be used for CWT. Complex valued Morlet wavelet has the 

same properties as the real valued version, and can be used for complex continuous 

wavelet transform. Shannon wavelets are not compactly supported, of symmetrical shape 

and are complex valued, which can be used for complex continuous wavelet transform 

only. Daubechies wavelets are compactly supported, of asymmetrical shape and can be 

used for CWT and DWT. However the wavelets used for DWT must be real wavelets.

3.8 Applications of Wavelet Transform in Power Engineering

The applications of the WT in power engineering are mostly related to power disturbances 

and cover the following major areas [35-37]:
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3.8.1 Power Disturbance Detection and Localization

Power disturbances include fast voltage fluctuations, short and long voltage duration 

variations, and harmonic distortion [38-42], They are caused by transmission line 

switching, capacitor switching, lightning strikes, faulty conductors and equipment failures. 

Harmonic distortion is mostly caused by nonlinear loads. WT is used to detect and localize 

these disturbances.

3.8.2 Power Disturbance Data Compression and Storage

Power disturbance phenomena cover a broad frequency spectrum, power quality 

monitoring devices usually are set at very high sampling frequency in order to capture as 

many information as possible, resulting in huge amount of data to be stored [42-45], WT is 

being used to compress power disturbance signals based on the properties of 

decomposition and reconstruction. The magnitudes of the wavelet transform coefficients 

are inspected; those below a certain threshold are discarded. It has been tested that a 

compression ratio of 3 to 6 times can be achieved.

3.8.3 Power Disturbance Identification and Classification

Using the properties of WT and the features of the decomposed waveform along with a 

special type of Artificial Neural Network (ANN), called the Learning Vector Quantization 

(LVQ) network, it is possible to extract important information from a disturbance signal 

and determine what type of disturbance has caused a power quality problem to occur [46-

51]-

3.8.4 Power Devices Protection

WT has been using in the detection of transformer inrush current and motor terminal 

voltage waveform during switching surges in real-time [52-54]. WT may be useful for the 

design of a fast relay algorithm.
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3.8.5 Power Disturbance Network/System Analysis

A method called Wavelet-Based Transient Analysis (WBTA) has been developed for 

power disturbance analysis based on wavelet domain equivalents of power system 

components such as resistors, inductors, and capacitors [55-57], This method offers a 

systematic way to analyze power system disturbance problems.

3.9 Applications of Wavelet Transform for Harmonics Analysis

On the research area of power disturbance detection and localization, many researches 

have been done on transient analysis. As mentioned before, conventionally power analysis 

is based on the FT which is able to provide frequency information only. WT offers the 

possibility of time-frequency analysis, opening a new avenue in power transient detection 

and localization. Moreover, DWT implemented with the discrete wavelet transform filter 

bank is a fast and efficient algorithm similar to FFT, thus attracting a lot of researches in 

this area. As discussed in Section 3.5, the compressed mother wavelet has a higher 

frequency in a shorter window, while the stretched version has a lower frequency in a 

larger window. This best suits power disturbance analysis in which power transient is of 

short duration at high frequency, and harmonics and voltage fluctuations are of low 

frequency at a longer duration. The time-frequency representation by WT is particularly 

useful for slow voltage fluctuation analysis. However, few researches have been published 

on harmonic analysis [58-60, 81]. It may be that harmonic analysis has been considered as 

a frequency domain analysis, and FFT has offered a fast and efficient algorithm to deal 

with the problem.

With the advances in the application of power electronics in power engineering, harmonic 

analysis is no longer confining to identification of integer harmonics. There are inter-

harmonics and sub-harmonics as well as non-stationary harmonics found in the power 

systems. WT is more suitable for harmonic analysis in modem power system than the 

traditional FT-based methods.

The wavelet transform is an inner product between an analyzing wavelet at a given scale 

and the signal under analysis; the wavelet coefficients combine both the information of the 

signal and the wavelet. The choice of the transform, orthogonal or not, and of the
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appropriate wavelet is thus an important issue which depends on the kind of information 

one want to extract from the signal. For analyzing purposes the continuous wavelet 

transform is better suited because its redundancy allows good legibility of the signal’s 

information content. For compression or modeling purposes, the orthogonal wavelet 

transform or the newly developed wavelet packet technique is preferable because they 

decompose the signal into a minimal number of independent coefficients.

With the discrete wavelet transform, one has lost the covariance by dilation and translation 

of the continuous wavelet transform and the redundancy of the wavelet coefficients, both 

properties can be very useful for signal analysis and signal processing.

3.10 Conclusion

The development of wavelet transform has been briefly introduced. The emergence of 

wavelet transform and the related wavelet analysis has a strong link to applications and 

was developed originally for solving engineering problems. The development of wavelet 

theories can be seen as concerted contributions from many fields of sciences and 

engineering. The idea of a fast and efficient algorithm for the implementation of DWT was 

inspired by the filter theories. Based on the previous work, a complete set of wavelet 

mathematics was developed and the mathematical properties of wavelet theory were 

established and theorized. Researchers are even able to construct their own wavelets with 

desirable properties.

The recent applications of WT in power engineering have been briefly discussed. 

Moreover, wavelet transform has been used in many other areas of science and 

engineering, for example, structural vibration studies, electrical power disturbance 

analysis, machine vibration analysis, acoustical analysis, data and image compression, etc 

[61]. With the popularity of wavelet analysis and readily available software for easy 

implementation, it is very tempting to use standard wavelet analysis algorithm and tries to 

fit it to a problem. On the contrary, one should start with a problem in mind, defining the 

characteristics of the problem and the expected outcomes, and then devise a custom-made 

wavelet analysis tool for the application. In other words, wavelet analysis tool development 

should be problem-driven. Furthermore, the choice of a suitable wavelet(s) has a 

deterministic effect on the outcomes.
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It can be seen that CWT is most suitable for harmonic analysis. Chapter 5 will discuss in 

detail the underlying theories of the wavelet transform, the choice of an appropriate 

wavelet and the other considerations.



Chapter 4

Discrete Fourier Transform and Limitations

4.1 Introduction

Fourier Transform has been the major analytical tool for harmonic analysis. Discrete 

Fourier Transform implemented with Fast Fourier Transform offers a fast and efficient 

algorithm for harmonic analysis. Basically Fourier Transform is a frequency domain 

analysis tool. The following sections give an introduction to Fourier Transform, the 

underlying principles, assumptions, and the limitations.

4.2 Fourier Transforms (FT)

A signal can be either continuous or discrete, and it can be either periodic or aperiodic. 

The combination of these two features generates the four categories of Fourier Transform 

[62],

4.2.1 Aperiodic-Continuous Signals (Fourier Transform, FT)

This includes, for example, decaying exponentials and the Gaussian curve. These signals 

extend to both positive and negative infinity without repeating in a periodic pattern, i.e., 

the signal is continuous and aperiodic. The Fourier Transform for this type of signal is 

simply called the Fourier Transform.

4.2.2 Periodic-Continuous Signals (Fourier Series, FS)

Here the examples include: sine waves, square waves, and any waveform that repeats
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itself in a regular pattern from negative to positive infinity, i.e. the signal is continuous 

and periodic. This version of the Fourier Transform is called the Fourier Series.

4.2.3 Aperiodic-Discrete Signals (Discrete Time Fourier Transform, DTFT)

These signals are only defined at discrete points between positive and negative infinity, 

and do not repeat themselves in a periodic fashion, i.e., the signal is discrete and 

aperiodic. This type of Fourier Transform is called the Discrete Time Fourier 

Transform.

4.2.4 Periodic-Discrete Signals (Discrete Fourier Transform, DFT)

These are discrete signals that repeat themselves in a periodic fashion from negative to 

positive infinity, i.e., the signal is discrete and periodic. This class of Fourier Transform 

is sometimes called the Discrete Fourier Series, but is most often called the Discrete 

Fourier Transform.

These four classes of signals all extend to positive and negative infinity. Examples are 

sine and cosine waves which are extending from negative infinity to positive infinity. One 

cannot use a group of infinitely long signals to synthesize something finite in length. The 

way around this dilemma is to make the finite data look like an infinite length signal. This 

is done by imagining that the signal has an infinite number of samples on the left and 

right of the actual points. If all these “imagined” samples have a value of zero, the signal 

looks discrete and aperiodic, and the Discrete Time Fourier Transform applies. The 

method is like applying a rectangular window to the signal before conducting DFT. The 

rectangular window has unity amplitude.

As an alternative, the imagined samples can be a duplication of the actual points. In this 

case, the signal looks discrete and periodic, with a period equal to the number of the 

actual points. This calls for the Discrete Fourier Transform to be used. As it turns out, an 

infinite number of sinusoids are required to synthesize a signal that is aperiodic. This 

makes it impossible to calculate the Discrete Time Fourier Transform in a computer 

algorithm. By elimination, the only type of Fourier transform that can be used in DSP is 

the DFT. In other words, digital computers can only work with information that is
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discrete and finite in length. The key point to understand is that this periodicity is invoked 

in order to use a mathematical tool, i.e., the DFT. It is usually meaningless in terms of 

where the signal originated or how it was acquired.

The sine and cosine waves used in the DFT are commonly called the DFT basis functions. 

In other words, the output of the DFT is a set of numbers that represent amplitudes. The 

basis functions are a set of sine and cosine waves with unity amplitude.

Let X[k] is the frequency domain representation of the time domain function x[n]. With a 

complex DFT notation, X[k] has real part and imaginary part denoted as ReX[k] and 

ImX[k] respectively. The DFT basis functions are generated from the equations:

where i=0 to N -l; and k=0 to N/2 which determines the frequency of the wave.

The ck[ ] is the cosine wave for the amplitude held in the real part of X[k], and sk[ ] is the 

sine wave for the amplitude held in the imaginary part of X[k].

4.3 Inverse Discrete Fourier Transform

The synthesis equations for conducting the IDFT are [63]

ck[ i ]  = cos(2m— f s) 

k
sk[ i ]  = sin(2m —  f s)

(4.1)

(4.2)

N N

x f i ]  =  " V R e X  [k  /  cos( 2m —  f, ) +  S^.Im X  [ k ]  sin( 2m —  f s) (4.3)

where
R e X  [ k ]  =

R e X  [ k ]  
N_
2

R e X  [0]  = R e X [ ° ]  
N

R e X [ 0 ]  =

I m X  [ k ]  =  —
Ini X  [ k ]

N_
2
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This is called a rectangular notation. Alternatively the frequency domain can be 

expressed in polar form. The magnitude and phase are a pair-for-pair replacement for the 

real and imaginary parts. In other words, DFT can be used to estimate signal frequencies, 

amplitudes and phase angles.

However the phase calculated by DFT can be erroneous for various reasons, such as

• divide by zeros;

• incorrect arctan;

• phase of very small magnitudes; and

• spikes between n and

The DFT can be calculated in three completely different ways. The first method is by 

using a set of simultaneous equations. This method is too inefficient to be of practical use. 

The second method is correlation. This is based on detecting a known waveform in 

another signal. The third method, called the Fast Fourier Transform (FFT) is an ingenious 

algorithm that decomposes a DFT with N points, into N DFTs each with a single point. In 

actual practice, correlation is the preferred technique if the DFT has less than about 32 

points, otherwise the FFT is used.

The FFT assumes periodicity in all cases. The FFT assumes that the windowed data 

repeats with a period equal to the window time. Thus, there are many assumed windows 

extending to either side of the physical window, and each is an exact duplicate of the 

physical one.

4.4 The Sampling Frequency

A classical sampling theorem is that a continuous signal can be correctly represented in 

discrete form provided the number of samples per cycle should be at least two [63], In 

other words the sampling frequency should be at least twice the highest frequency 

contained in the signal. In practice, an absolutely stable sampling may not be easily 

achieved. A sampling frequency three or more times higher than the highest frequency is 

desirable.
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4.5 Time Resolution and Frequency Resolution

Given that a signal is sampled at fs, and with a N-point FFT, the frequency resolution is 

given by [62]

The number of data points is equal to the number of points of the FFT. 

The time window (T) is

(4.4)

T (4.5)

As seen from the above expressions, frequency resolution is improved at the expense of 

time resolution. This is an inherent property of DFT. By referring to the underlying 

principles of DFT, the basis functions are extending from negative infinity to positive 

infinity. Therefore periodicity is assumed in DFT implemented with FFT. The DFT is 

therefore only suitable for analyzing stationary signals. Furthermore a very large window 

must be used to achieve a high frequency resolution.

Consider a simulated signal represented as

f(t) = cos(27r50t)+cos(27rl00t)+cos(27rl50t)+cos(27r200t)+cos(2Tc250t). (4.6)

The simulated signal is sampled at fs= lOOOFIz with a signal length (T) of 0.2s. The ffit no. 

is set as 200 to achieve a frequency resolution of 5Hz. Fig. 4.1 shows the frequency 

spectrum produced by FFT.
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Fig. 4.1 Frequency spectrum by FFT

The FFT is able to estimate the frequencies and amplitudes of the harmonics in the signal 

accurately.

Consider the signal

f(t) = cos(2Tr51t)+cos(2Ttl02t)+cos(27xl53t)+cos(27r204t)+cos(27r255t). (4.7)

The harmonics are still an integer multiples of the fundamental. The simulated signal is 

sampled at fs = 1000Hz with a signal length (T) of 0.2s. The fft no. is set as 200 with a 

frequency resolution of 5Hz. Fig. 4.2 shows the frequency spectrum produced by FFT.
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Frequency Spectrum  of the S im ulated Signal
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Fig. 4.2 Frequency spectrum by FFT with coarse Af

It can be seen that the frequency resolution is not high enough to detect the harmonic 

frequencies. Also there are leakages seen around the detected frequencies due to the 

reason to be discussed in Section 4.6 [64],

To achieve accurate frequency detection, the frequency resolution should be increased to 

1Hz. With fs= 1000Hz, the signal length (T) should be at least Is to give 1000 data points. 

The fft no. is therefore set as 1000 which is equal to the number of data points. Fig. 4.3 

shows the frequency spectrum produced by FFT.
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Fig. 4.3 Frequency spectrum by FFT with fine Af

With the fft no. and no. of data points increased, the FFT is able to estimate accurately the 

frequencies and amplitudes of the harmonics in the signal.

4.6 Frequency Leakages

The term ‘leakage’ refers to the apparent spreading of energy from one frequency into 

adjacent ones [63,65]. It arises due to the truncation of the time sequence such that a 

fraction of a cycle exists in the waveform that is subjected to the FFT. This comes about 

because the FFT assumes that the truncated window repeats itself from negative infinity 

to positive infinity. If an incomplete cycle of the signal is contained in the window, jump 

discontinuities are produced at the data window and the imaginary repeating windows, 

violating the assumption that the signal is periodic.

Leakage is not a universal problem. It does not affect transient data as long as the 

transient is fully contained in the window. Leakage only occurs when the FFT is used to 

estimate the discrete line spectra associated with periodic and almost periodic signals.



Chapter 4 Discrete Fourier Transform and Limitations 36

Almost periodic signals have line spectra, but the components are not harmonically 

related. The actual source of leakage is the window used in acquiring the waveform. The 

amount of leakage depends upon the window shape and how the waveform fits into the 

window.

If the rectangular acquisition window exactly collects an integer number of cycles, 

leakage will not occur. However there are too many variables involved in the process to 

obtain exactly an integer number of cycles in a window so that leakages are unavoidable 

in practice.

It can be seen that with a time window of T, the frequency resolution is 1/T. The 

Heisenberg Uncertainty Principle states that [28]

AtxAco > —. 
2

(4.8)

The Heisenberg box for DFT is

AtxAco = T x — x 2 k  =  2 k  . (4.9)
T

One can see that the DFT has a Heisenberg box of a rather large area. DFT would be set 

to provide a high accuracy in frequency resolution, but time resolution would be very 

poor. It can be said that DFT is only useful for analyzing stationary and periodic signals.

4.7 Windowing

To reduce the effect of leakage which happens in practice, a way to reduce discontinuities 

at the window edges, and thus reduce leakage to a tolerable level, is to taper the 

rectangular window [62,63,66]. In short, this is to get rid of the abrupt edges by making 

them fall off smoothly to zero. One can do this by multiplying the acquired data with a 

window function.
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Window functions exhibit various mainlobe widths and sidelobe magnitudes, hi general, 

the lower the sidelobes, the less leakage or skirts will be in the frequency domain of the 

windowed data. However lowering the sidelobes also results in more energy being 

concentrated in widening the mainlobe. Lowering sidelobes therefore widens the 

bandwidth. The exception to this is the hamming window, which has a comparatively 

narrow mainlobe for its sidelobe level.

In terms of line spectra, the greater the window’s bandwidth, the less resolution it 

provides. In other words equal-amplitude and adjacent frequencies become more difficult 

to distinguish. On the other hand, as the sidelobes decrease, selectivity increases. This 

means one has increased ability to distinguish adjacent frequency components of unequal 

amplitudes. The use of windowing and the choice of windows require some prior 

knowledge of the signal to be windowed.

Consider the signal represented in (4.7), a hamming window is applied to the signal 

before conducting FFT. The hamming window is represented as

2 jrt
WH( t )  = 0 .5 4 -0 .46cos(— ) .  (4.10)

Since the hamming window has a mainlobe height of 0.54, the amplitudes estimated by 

FFT should be scaled by 1/0.54. Fig. 4.4 shows the frequency spectrum produced by FFT. 

It can be seen that leakages are greatly reduced.
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Frequency Spectrum of the Simulated Signal

Fig. 4.4 Frequency spectrum by FFT (using Hamming window)

4.8 Picket-Fence Effect

If the analyzed waveform has frequencies which are integral numbers of the original 

window length T, the FFT will yield the appropriate amplitudes at the appropriate 

frequencies and zero at others. The picket-fence effect occurs if the analyzed waveform 

includes a frequency which is not one of the integer multiples of the fundamental 

[62-63,65-66]. A frequency lying between the adjacent harmonics would affect primarily 

the magnitudes of the two adjacent frequencies and secondarily the magnitude of all other 

harmonics. This frequency can cause leakage which in turn may cause pseudoaliasing.

4.9 Adjustment of FFT Number for Better Frequency Resolution

From the underlying principles of the FFT based DFT, the number of fft points should be 

equal to the number of data points for a correct estimation of the harmonic frequencies 

and amplitudes. That requirement implies that a longer signal length is required for a 

higher frequency resolution. However it has been found that the fft no. would be set to be
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larger than the number of data in the signal to be analyzed. The amplitudes estimated by 

the FFT would need to be scaled by the ratio of fft no. to the no. of data points of the 

signal [67],

Using the simulated signal in (4.7), the frequency resolution is increased to 1Hz by 

setting the fft no. to 1000. The number of sampled data used is kept as 200. The scaling 

factor for the amplitude is 1000/200. Fig. 4.5 shows the frequency spectrum produced by 

FFT.

Frequency Spectrum of the Simulated Signai

Fig. 4.5 Frequency spectrum by FFT (fft no. > N)

The hamming window in (4.10) is further applied to the sampled data representing the 

simulated signal. Fig. 4.6 shows the frequency spectrum produced by FFT.
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Frequency Spectrum of the Simulated Signal

Fig. 4.6 Frequency spectrum by FFT (fft no. > N & using Flamming window)

It can be seen that the combination of using a hamming window to condition the 

harmonic signal and conducting the FFT by using a higher fft no. would effect a quite 

satisfactory harmonic analysis results.

4.10 Instantaneous Phase Estimation

DFT is able to preserve the phase information of a signal [62,68]. Consider the simulated 

signal in (4.7) with phase angle introduced as follows.

f(t) = c os(2t i5 1 t)+cos(27i 102t+20°)+cos(27r 153t-10°)+cos(27t204t+15°)

+cos(27r255t-25°). (4.11)

The fs is set as lOOOFlz, the signal length is 0.2s, and the number of sampled data is 200. 

In order to have a frequency resolution of 1Hz, the fft no. should be set to 1000. The 

scaling factor for the amplitude is 1000/200. Fig. 4.7 shows the phase spectrum by FFT.
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Phase Spectrum of the Simulated Signal

Fig. 4.7 Phase spectrum by FFT (fft no. > N )

It can be seen that the phase estimation is not accurate due to frequency leakages. With 

the hamming window in (4.10) applied, Fig. 4.8 shows the phase spectrum by FFT.

Fig. 4.8 Phase spectrum by FFT (fft no. > N & using Hamming window)
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It can be seen that the phases estimated are better with the hamming window applied. To 

achieve a better phase estimation, the fft no. used is set to 1000. The number of data 

points used is therefore equal to 1000 and the minimum signal length required is Is. Fig.

4.9 shows the phase spectrum by FFT.

P hase Spectrum  of the Simulated Signal

Fig. 4.9 Phase spectrum by FFT (fft no. = N & using Hamming window)

Table 4.1 shows the comparison of the phase estimation results with different fft no., 

different signal data no. and with or without hamming window, as in Fig. (4.9), (4.10) and 

(4.11).

Table 4.1 Comparison of phases estimated by FFT

Set
F requency

(H z)

Set
P hase A ngle 

(deg.)

E stim ated  Phase(deg .) 
T  =  0.2s

D ata  L ength  =  200 
F FT  no. =  1000

E stim ated  P hase (deg.) 
T  =  0.2s

D ata  L eng th=200  
F FT  no. =  1000 

H am m ing  w indow

E stim ated  P hase (deg.) 
T  =  Is

D ata  L ength  =  1000 
F FT  no. =  1000

51 0 0.7941 0.1138 0
102 20 19.39 19.91 20
153 -10 -9.421 -9 .916 -10
204 15 12.32 14.6 15
255 -25 -25.88 -25.13 -25
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It can be seen from Table 4.1 that with a sufficiently long signal length such that the 

number of data points is equal to the required fft no. to achieve the frequency resolution, 

the phases estimated by FFT is very accurate. On the other hand, applying the hamming 

window and using a larger fft no. would improve the accuracy in phase estimations, but 

the phases estimated are still erroneous.

4.11 Conclusion

Periodicity of the signal is assumed when implementing DFT. DFT is therefore only 

suitable for analyzing stationary signals. Furthermore a very long signal must be used to 

achieve a high frequency resolution. The frequency resolution is determined by the 

number of points in the DFT which in turn is to be equal to the number of signal data. 

The DFT number can be set to a desirable value to achieve a higher frequency resolution 

in regardless of the number of signal data. The amplitudes of the harmonics estimated 

would need to be scaled by the ratio of the DFT number to signal data number. However 

the amplitudes of the harmonics estimated are not exact. The instantaneous phases of the 

harmonics estimated by this method would exhibit large errors.

Furthermore, the DFT assumes that the period of the signal is equal to the length of the 

window. If the time window contains a fraction of cycles of the harmonics in the signal, 

discontinuities at window edges would result in leakages. Various window shapes would 

be used to get rid of the abrupt edges by making them to fall off smoothly to zero. The 

use of windowing and the choice of windows require some prior knowledge of the signal 

to be windowed. If the chosen frequency resolution is not high enough to correctly detect 

the harmonics in the signal, picket fence effect would result. All the magnitudes of the 

harmonic frequencies estimated would be affected.



Chapter 5

Continuous Wavelet Transform and Harmonics 
Analysis

5.1 Introduction

This Chapter describes a new approach for harmonic analysis. This approach is based on 

Continuous Wavelet Transform (CWT) which does not have the limitations of FT-based 

harmonic analysis. The CWT is used to transform a time-based signal into a 

time-frequency representation. Both time information and frequency information are 

contained in the wavelet coefficients.

5.2 Limitations of DFT for Harmonics Analysis

DFT assumes that the signal is infinitely long and is strictly periodic. There is no such 

signal exists in real life. For a real time signal, a portion of it is sampled and taken for 

harmonic analysis. Therefore windowing is normally applied resulting in so called Short 

Time Fourier Transform. With the windowing approach, DFT regards each windowed time 

period of the signal would repeat itself outside the window, extending to negative infinity 

and positive infinity.

To distinguish two sinusoids of frequencies f  and f2 respectively, the window length T 

must not be less than one cycle of the beat frequency [26], i.e.,

T>
_ J__

I / 1 - /2
(5.1)

The frequency resolution of the DFT in detecting the exact frequency of a sinusoid is



Chapter 5 Continuous Wavelet Transform and Harmonics Analysis 45

related to DFT number which is be determined by the number o f data in the windowed 

signal, as given in (4.5), i.e.,

N  = T x  f s .

Therefore the frequency resolution is given by

f s

T x f s T
(5.2)

For example, with T=0.2s, the frequency resolution is 5Hz. The frequency spectrum has a 

step size of 5Hz only.

One of the techniques to increase the frequency resolution is to set the DFT number to be a 

multiple of the DFT number calculated from T and fs, the amplitudes thus estimated should 

be scaled accordingly. That would increase the frequency resolution but the detection of 

the amplitude would not be improved much. A large time window would still be required 

to achieve high frequency resolution.

The power supply authority declares that the nominal frequency of the supply voltage has a 

variation ±2%, i.e., from 49Hz to 51Hz for some countries. To detect a supply source of 

49.5Hz, the frequency resolution requires a minimum time window size of 2 seconds.

Because of periodicity requirement of the DFT, frequency leakage around the harmonic 

frequencies is unavoidable. The use of a time window other than a rectangular window 

would reduce the edging effect. Yet the choice of time window is also related to the 

properties of the time signal to be analyzed.

It can be seen that the selection of DFT number (or the data length), time window width 

and a proper window shapes would have profound effects on the DFT results and this 

cannot be done appropriately without a prior knowledge of the signal characteristics.
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5.3 Harmonic Identification using Continuous Wavelet Transform

The wavelet transform of a continuous signal, f(t), is defined in (3.5) as

+ 00 7 ,

Wf(u,a)=(f.<p„) = \f( t)-=<p(---- )dt.
I  i a  a

The —j= in (3.5) is the normalization factor of the wavelet so that if  cp(t) has a unit
f a

length, then its scaled version also has a unit length.

There are four ways to view the integral operation of the CWT formula [26]:

1. it computes the inner product, or the cross-correlation of the signal f(t) with

cp(—)/f~ a  at shift u /a .  It therefore computes the ‘similarity’ between f(t) and 
a

cp(—) / f a  ,or the component of f(t) that is ‘common’ to <p(—) / f f  ; 
a a

2. it is the output of a bandpass filter of impulse response cp(—- ) /  f a  , of input f(t), at
a

the instant u / a ;

3. it also computes the inner product or the cross-correlation of a scaled signal f(at) with 

facp(t)  , at shift u / a ; and

4. it follows that the CWT is also the output of a bandpass filter of impulse response 

fa c p ( - t )  of input f(at), at the instant u / a .

The main distinction is that in one case, the cross-correlation is between f(t) and the baby 

wavelets and is equivalent to finding the output of a bank of bandpass filters, of impulse

responses cp(—- ) / f a  and input f(t). In the other, successively scaled versions of f(t) are 
a
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passed through identical bandpass filters to give the transform. The latter seems easier to 

implement if there is a simple way to scale f(t).

Based on this, the dilation operation and the translation operation of the CWT measure the 

similarities between the wavelets for various frequencies controlled by the dilated centre 

frequency of the wavelet and at various instants. In this way, both frequency information 

and time dependent occurrences can be measured by the CWT. Fig. 5.1 illustrates the 

dilations of the real part of the Complex Morlet wavelet.

Time (seconds) T im e  (se co n d s)

Fig. 5.1 Real part of CMW for various scales

It can be seen that unlike STFT where changing the window size would change number of 

oscillations in the window, dilation of the wavelet would change the time window size but 

the no. of oscillations in the time window remain the same. The frequency of oscillations is 

however changed accordingly.
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Moreover at higher scale a which represents lower frequency, the wavelet length is longer. 

Therefore the higher the frequency, the better would be the time localization.

5.4 The Selection of Wavelets for Harmonics Analysis

For harmonic analysis on power signals, the main parameters to be estimated are harmonic 

frequencies, their amplitudes and phase angles. Complex continuous wavelet transform 

must be used for phase detection. This is one of the reasons why CWT is preferred to DWT 

for harmonic analysis. The simplified Complex Morlet Wavelet (CMW) is chosen for 

harmonic analysis [60,69-71], CMW is smooth with harmonic-like waveform. It is 

represented as

The CMW in (5.3) is essentially a sinusoid-modulated Gaussian function. Because of the 

analytic nature, CMW is able to separate amplitude and phase information.

5.5 Properties of the Complex Morlet Wavelet

Strictly speaking, the mean of the simplified CMW [25,72] is not equal to zero as 

illustrated in

However, the mean of the CMW can be made arbitrarily small by setting the fb and fc 

parameters large enough [61]. For example, the mean of the CMW with f,=2 and fc=l at 

a=l is 2.753xl0'9, which is practically equal to zero. Many literatures recommend that the 

minimum setting should not be smaller than fb=2 fc=0.8.

The FT of the CMW is given as

1 1 - C f ' h  j 2nfA-)_______o a o a (5.3)

(5.4)

® (a/) = yfae 71 fb(af fc) . (5.5)
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Substitute f=0 into (5.5) gives,

0(0) = = - fa e ^ f^  ■ (5.6)

Again the FT of the wavelet at negative frequencies is not strictly equal to zero. For 

example, with f  = -1, a = 1, fb=2 and fc=l, (5.5) gives

O (-l) = Vle""22("1_1)2 = 5.1225xl0-35. (5.7)

However practically speaking, the CMW is qualified to be a wavelet.

5.6 Filter Banks

Fig. 5.2 shows the filter banks produced for the CMW, with fb=2 fc=l and for a=l to 501.

Fig. 5.2 Filter banks by CMW

It can be seen from Fig. 5.2 that the filter has very good frequency localization at low 

frequencies. The frequency localization is poorer as the wavelet centre frequency increases.
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In (5.3), the wavelet centre frequency at scale a can be interpreted as

(5.8)
a

5.7 The Heisenberg Uncertainty Principle

The Heisenberg uncertainty principle addresses the problem of the simultaneous 

localization in time and frequency that can be attained when measuring a signal [28,61], 

More precisely, the Heisenberg uncertainty principle says that for any normalized wave 

function f(t) such that

the product of the spread in time and the spread in frequency is at least 1/2 as given in (4.8), 

i.e.,

If At is the side of a rectangle and Aco is the other side, then the product of At and Aco gives 

the area of the rectangle. The rectangular box formed by At and A© is called the 

Heisenberg Box. The Heisenberg uncertainty principle actually says that a signal itself 

cannot be concentrated simultaneously in time and frequency. The best localization that 

can be achieved should be at least equal to 1/2. This requirement applies to any 

time-frequency transforms in signal processing. The DFT has a Heisenberg box area of 2rc.

The first moment in time provides a measure of where the wavelet is centred along the 

time axis and is defined as [28]

2

(5.9)

AtxAco> —. 
2

(5.10)o

—00
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The first moment in frequency provides a measure of where O(co) is centered along the 

frequency axis and is defined as [28]

^ c o \< & ( c o ) \ 2 d  co

jj 0 ( < x > ) \2 d c o

(5.11)

A measure o f the duration of the wavelet or the spread in time is defined as [28]

j' ( t - t 0)2]fp(tjfdt
At2 = ——  ----------------- • (5.12)

\ ( p ( t ) \ 2 d t

-c o

This is called root mean square (rms) duration or the second moment in time. 

The rms bandwidth is similarly defined as [28]

\ ( c o - c o o ) 2 \ 0 ( c o ) \ 2 d t

Aco2 = = ^ - ^ --------------------. (5.13)
j] 0 ( c o ) \ 2 d t

—co

5.8 Heisenberg Box of the Complex Morlet Wavelet

From (5.10), the first moment in time of the CMW is calculated as

and

(5.14)

-oo
d t - O . (5.15)
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Therefore t0 = 0. The CMW is centred at zero on the time axis. 

The second moment in time domain of the CMW is calculated as

f - ' j - <p(->a
dt a 2f b

4 ^ h f b

Therefore from (5.12),

a 2f b
A { 2 =  = a 2f b

1 4
^ 2 t f b

The spread in time is equal to

2

Now consider the first moment in frequency of the Complex Morlet Wavelet,

00

j ’\@( aco)\2 dco =
—co

and

"\co\0(aa))\2 d a  =  —  .
-co V ^ b

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)



Chapter 5 Continuous Wavelet Transform and Harmonics Analysis 53

Therefore from (5.11),

(5.21)

The CMW has a centre frequency of ©c/a on the frequency axis.

For the second moment in frequency of the Complex Morlet Wavelet,

r . (Or ,2 (aco-a>J
\a ( a > ------ - )  e  2

a
. 1 2 t vdco -  — —  —  .

a2f b Ì  f b

From (5.13), then

A co
\ ( ® - a o) 2 \0 (co j\d t

-co___________________________
co

\\&(co)\2dt

1 2 TV

a 2f b V  f b 1
\2n  a 2 f b

f b

Therefore the spread in frequency is given as

xltu =
1

a47b

From (5.18) and (5.23),

AtxAco a4 fb  1 _ 1
2 X a J 7 b 2

(5.22)

(5.23)

(5.24)

(5.24)

(5.24) reveals that the CMW has the smallest Heisenberg box area [71]. Compared with 

DFT, CWT with CMW would give the best time-frequency localization.
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From (5.23),

œo a ^Y b mc mc^ J b
(5.25)

A property of the wavelet transform described by (5.25) is that while the spread in 

frequency Aco is dependent on the scale, the relative spread Aco/co0 about the centre 

frequency remains constant for a given coc and f'b, and the transform is often called a 

constant Q fdter. Increasing either fb or cac improves the frequency localization of the 

wavelet transform.

Q-factor is defined as the ratio of the centre frequency to the bandwidth. From (5.25),

The Q-factor of CMW is therefore determined by the bandwidth parameter f, and the 

centre frequency fc. The Q-factor has a significant contribution to the frequency and time 

localization. The higher the Q factor, the better would be the frequency localization and the 

poorer the time localization, and vice versa. From Section 5.5, fb > 2 and fc > 0.8 are

adjusting the Q-factor and therefore the f, and fc of the CMW, one can control the 

frequency localization and time localization accordingly.

5.9 Heisenberg Boxes of the Complex Morlet Wavelet on the Time-Frequency Plane

From (5.8), the frequency © of a sinusoidal signal is related to the scale and the centre 

frequency of the mother CMW by a = —  . Substitute (5.8) into (5.18) and (5.23),

(5.26)

necessary for a zero mean of the CMW, which requires that fcVfb > 1 .14  and Q > 7.2. By

1 a  1
r

1
Am (5.27)
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At =
2

. <°c x J T b
co 2

co. T K ' f_
co

(5.28)

For a given CMW with a bandwidth parameter fb and centre frequency fc, dilating the 

CMW (large a) would increase the spread in time and decrease the spread in frequency, 

while compressing the CMW (small a) would decrease the spread in time and increase the 

spread in frequency. Fig 5.3 shows the Fleisenberg boxes of the CMW at various scales 

[61]-

Fig. 5.3 Heisenberg boxes of the CMW

CMW has high frequency localization at low frequency corresponding to large scale, while 

the time localization is comparatively poorer. At small scale representing high frequency, 

CMW has poorer frequency localization and a better time localization. This property of the 

wavelet is very suitable for power disturbance analysis, because transients are of high 

frequency and a very short duration, while power harmonics are of low frequency and last 

longer.

From (5.27), with a fixed bandwidth Aco for all frequencies, it is demanded that

A co =
C \

1

: *\Tfb\ a>cV J b J

(o = constant,
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which requires that

—  = constant = a .
co

From (5.24), a fixed bandwidth Aco would give a constant time spread At.

At = ------= constant.
2Aco

The centre frequency coc of the CMW can be adjusted in accordance with harmonic 

frequency co for harmonic frequency detection so that the corresponding Heisenberg box 

has a constant spread in time and frequency. Fig 5.4 shows the Heisenberg boxes of the 

CMW at various centre frequencies [61].

Fig. 5.4 Heisenberg boxes of the CMW for different centre frequencies

5.10 Modified Complex Morlet Wavelet with Constant Lobe Height

As shown in (5.5) and Fig. (5.2), the bandpass filters produced by increasing dilations of 

the Complex Morlet Wavelet would have increasing lobe heights in frequency domain , in 

accordance with the factor Va. This is not a desirable feature for harmonic analysis. The
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power harmonics found in electrical power system normally have lower magnitudes at 

higher frequencies. If the bandpass filters used have lobe heights inversely proportional 

frequencies, the small magnitudes of high frequency harmonics would further be scaled by 

the magnitudes of the bandpass filters, making the identification o f higher harmonics very 

difficult and erroneous. It would be desirable to have equal lobe heights for all dilations of 

the wavelet. This can be achieved by modifying the definition of the CMW shown in (5.3) 

slightly, with the scaling factor 1/va changed to 1/a, as in (5.29) below.

<P(~) = a
1 1

a 4rfb

J2<cf )  
e a e a

The Fourier transform of (5.29) is therefore equal to

<Afaf)=e ~7l2fh(af~fc) .

(5.29)

(5.30)

The importance of the modification to the CMW is that the bandpass filters generated by 

dilations of the modified mother CMW would have the same lobe height for all harmonic 

frequencies. Fig. 5.5 shows the filter banks generated from the modified CMW.

Fig. 5.5 Filter banks of the modified CMW



Chapter 5 Continuous Wavelet Transform and Harmonics Analysis 58

The time spread and frequency spread of the modified CMW (MCMW) are the same as the 

original CMW. (5.29) is adopted for the subsequent harmonic analysis applications.

5.11 Frequency and Amplitude Estimation by Wavelet Ridges

Given a signal f(t) represented as

(5.31)

The wavelet function in (5.3) can be represented as [25,28]

<P (t) =  g ( t ) e ,j ĉ‘ (5.32)

The dilated and translated wavelet families are represented as [25,28]

< P u J t )  =  -7 = < P  da
1 C t - u '

V a J
e Jauga,uJ t ) ,

, 0) . ( t — u \where co = g BMJ t )  = f a g -----
a  V a  )

Jcot

(5.33)

The wavelet transform of the signal function f(t) in (5.31) is given as

W Au,a) =  ̂ A { u ) ^ {u\g ( a [m - f { u ) } ) + e {u ,c o ) } ,  (5.34)

where §(©) represents the Fourier Transform of the function g(t).

The error term s(u,&>) in (5.34) is negligible if A(t) and in (5.31) have small

Aco
variations over the support of y\i,a in (5.33) and if ^'(u)>— . If a power signal contains

only a single frequency, the corrective term can be neglected safely. However for a power 

signal containing harmonics from low frequency to high frequency, the error term will
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contribute to the wavelet coefficients, making the frequency detection not as 

straightforward.

The instantaneous frequency is measured from wavelet ridges defined over the wavelet 

transform. The normalised scalogram defined by

1 \wf(u,a)\2
- P wf(u,o))='~---------- L , (5.35)
a a

is calculated with

l

a
Pwf(u,co) = -A 2(uig(CD [1- 

4 c
<t>( u ) 7. , .-— - ] )+s(u,co) . 

CO
(5.36)

Since |g(co)) in (5.36) is maximum at co -  0, if one neglect e(u,cu) , (5.36) shows that 

the scalogram is maximum at

CQr
—^  = co(u)=(/>'(u)' (5 .37)
a(u)

The corresponding points (u,©(u)) calculated by (5.37) are called wavelet ridges. For the 

CMW, g(t) in (5.32) is a Gaussian function. Since the FT of a Gaussian function is also a 

Gaussian function, the wavelet ridge plot exhibits a Gaussian shape.

Once the harmonic frequencies contained in the harmonic signal are determined by the 

wavelet ridges, the corresponding harmonics amplitudes would be determined readily by

A ( u )

2j~ P wf ( u,CD)

\g(0)\

| W f ( u , a ) \

2 \W f(u ,a)\

i
(5.38)
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The values of 1 in (5.38) are produced in the process of generating the scalogram.
4a

With the MCMW suggested in (5.29), where the dilated wavelet is defined as

/ 1 1 -(Lf i f b jiKfd1)
< K -) = -----7 = = e  fl e a ;

a  a ^ 7 t fb

the amplitude can be calculated directly as

A(u) = 2\wf(u,a)\. (5.39)

This is another reason for adopting the MCMW.

The wavelet ridges plot is customarily produced in accordance with scales. For harmonics 

estimation, it would be more convenient to generate the wavelet ridges plot in terms of 

frequency. This will be discussed in Chapter 7.

5.12 Conclusion

The simplified Complex Morlet Wavelet is chosen for the Continuous Wavelet Transform 

for harmonic analysis. It is able to extract frequency, amplitude and phase angle 

information from the signal. The simplified Complex Morlet Wavelet is a 

sinusoid-modulated Gaussian function with a smooth harmonic waveform, which is best 

suited for harmonic analysis. As long as the Q factor of the wavelet is large enough (fb=2, 

fc>0.8, Q>7.11), the Simplified Complex Morlet Wavelet is qualified to be a wavelet in 

practical sense.

The simplified Complex Morlet Wavelet has the smallest Heisenberg box area, which is 

able to achieve the best time-frequency localization. The time-frequency localization of the 

wavelet can be controlled by the Q-factor which in turn is determined by the bandwidth 

parameter and the centre frequency of the simplified Complex Morlet Wavelet. As 

harmonic signals are normally o f equal frequency distribution and a fixed time length is
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normally used for harmonic analysis, a constant time-frequency localization wavelet can 

also be constructed by appropriately varying the centre frequency of the wavelet in 

accordance with the harmonic frequency to be detected.

The simplified Complex Morlet Wavelet is further modified to have constant lobe height 

for all dilations, so that the errors in detecting the amplitudes of higher harmonics would be 

reduced.

Wavelet ridges are used to extract frequency information from the complex wavelet 

coefficients [73-76]. The amplitudes of harmonics are readily available in the process of 

generating the scalogram.



Chapter 6

The Use of Modified Complex Morlet Wavelet 
for Harmonics Analysis

6.1 Introduction

As discussed in Section 5.6, a set of frequency filter banks would be produced by the 

dilations of the MCMW. The filter banks are Gaussian function in both time and frequency 

domain. Dependent on the filter parameters, adjacent filter banks overlap with each other 

in frequency domain. Errors would be produced in signal frequency estimation when the 

signals contain frequencies in close proximity. This Chapter will investigate the application 

of the MCMW from the perspective of filter banks for harmonics detection.

6.2 Q-Factor and the Shape of the Modified Complex Morlet Wavelet

The time width of the MCMW is dependent on the Q-factor of the MCMW. MCMW with 

different settings of centre frequency fc and bandwidth fb but with the same Q-factor would 

have the same shape, same oscillation and time width. Fig. 6.1 shows two MCMWs with 

different f, and fc values. Fig. 6.1(a) is a MCMW with fb-fc = 2-1 and Fig. 6.1(b) is a 

MCMW with fb-fc= 1-V2. The fcVfb which is equivalent to Q/(2t i) is equal to V2 in both 

MCMWs. As seen from Fig. 6.1, they have the same time width, oscillation and shape.
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CMW (fb-fc=2-1) CMW{fb-fc»1-1.4142)i

(a) fb-fc=2-1 (b) fb-fc=l-V2

Fig. 6.1 Modified CMW with fb-fc=2-l & 1-V2

Fig. 6.2 shows another two MCMWs with fb-fc = 16-1 and fb-fc = 4-2 respectively. The 

fcVfb values in both MCMWs are the same and are equal to 4. It can be seen that the two 

MCMWs are exactly the same.

(a) fb-fc= 16-1 (b) fb-fc = 4-2

Fig. 6.2 Modified CMW with fb-fc = 16-1 & 4-2

Comparing Fig. 6.1 and 6.2, it can be seen that a larger fcVfb would result in a wavelet of a 

longer duration. As estimated in Section 5.9, the time width is proportional to fcVfb.
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6.3 Discrimination of Adjacent Frequencies

The MCMW is defined as (5.29),

-(-)2//„ J2nfe(-) 
, a r, a

The FT of the MCMW function is (5.30)

The wavelet filters produced by dilations all have the same lobe height of 1. The

mainlobe height. Fig. 6.3 shows the plot of Fourier Transform of two modified CMWs 

with centre frequencies o f fc/ai and fc/a2 respectively in the frequency domain.

Assume that f  and f2 represent the frequencies of two harmonics which are adjacent to 

each other. The f  and f2 are represented in Fig. 6.3 as fc/ai and fc/a2 respectively. In order 

to discriminate the two harmonic frequencies, the two peaks in Fig. 6.3 must be separated 

apart sufficiently [71,77].

coefficients produced for high frequency signal will not be attenuated by the filter

tu.

160 180
Frequency (Hz)

Fig. 6.3 Modified CMW filters with fc= f  & f2
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Let x be the intersection of the two filters for the two frequencies fi and f2 where f2 > fi,

Consider the frequency fi first by (5.30),

<&(a \ f ) =x= e fc)

so that from (5.8),

a,
1

i d '
(6.1)

Similarly, for frequency f2 by (5.30),

a2 a2 n
1

VA '

Also from (5.8),

ax

(6 .2)

(6.3)

(6.4)

From (6.1), (6.2), (6.3) and (6.4),

c f - L _ L -  1J 2 J 1
1 1

+ —
J\ln(x)

CL2 Cly Cl\ 71 T K 71 a
VNhi

TC
1 . 1 1 ,

n r  ( + )v fb a\ a2

(6.5)
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Substituting for ai and a2,

f  _ f  > j H 4 f L± A (6 .6)

From (5.26), Q = 2rfcJ7b-

Substituting (6.6) into (5.26) gives

Q = 2rfcJ f t > 2 p n ( x ) { f f f
J1 J2

(6.7)

Therefore for the filter banks to be able to discriminate adjacent frequencies, the Q-factor 

of the modified CMW should satisfy the condition in (6.7). The x in (6.7) should be as 

small as possible for accurate harmonic frequency and amplitude estimation and would 

depend on

1) the relative amplitudes of the harmonics;

2) the accuracy required in the amplitude estimation.

A high Q-factor requires a long time signal for accurate amplitude estimation. The 

selection of the x value would therefore need to be compromised with the signal length to 

be used for analysis. It is found that x = 0.1 is sufficient for accurate frequency and 

amplitude detection if the amplitudes of adjacent frequencies are not differed very much

from each other, which gives
j l n ( O . l )

= 0 .4 8 3 * 0 .5 .
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Consider a signal with frequency components of 40Hz and 60Hz respectively both of unit 

amplitude. From (6.6),

f , T n  2 0.483
60 + 40 
6 0 - 4 0

=2.415.

which requires that fb = 100 and fc = 0.25.

By using the wavelet ridges plot discussed in Section 5.11, Fig. 6.4 shows the wavelet 

ridges plot. The detected frequencies are exactly equal to 40Hz and 60Hz respectively. The 

amplitude estimated for 40Hz is exact; the amplitude estimated for 60Hz has an error of 

0.1% which is negligibly small.

Fig. 6.4 Wavelet ridges plot for 40Hz and 60Hz (fcVfb = 2.415)

With x = 0.2, the fcVfb = 2 (fb = 100, fc = 0.2) which is smaller than 2.415, the wavelet 

ridges plot is shown in Fig. 6.5. The frequency estimation is correct but the error in the 

amplitude estimated for 60Hz increases to 1.2%.
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Ridges Plot Showing Detected Frequencies

Fig. 6.5 Wavelet ridges plot for 40Hz and 60Hz (fcVfb = 2)

Fig. 6.6 and Fig. 6.7 show the wavelet ridges plot for f, = 100, fc = 0.15, (fcVfb = 1.5) and f, 

= 100, fc = 0.05, (fcVfb = 0.5) respectively. Both the frequency and amplitude estimated 

exhibit large errors. In Fig. 6.7, a single frequency is detected which is nearly equal to the 

average of the two harmonic frequencies in the signal.

Rkiges Plot for Detecting Frequencies

Fig. 6.6 Wavelet ridges plot for 40Hz and 60Hz (fcVfb = 1.5)
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Fig. 6.7 Wavelet ridges plot for 40Hz and 60Hz (fcVfb = 0.5)

It can be seen that the value of x selected has significant effects on the accuracy in 

amplitude and frequency estimations.

6.4 The Sampling Frequency

In accordance with the classical signal processing theory, the sampling frequency must be 

twice the highest frequency component in the signal to avoid aliasing. Nyquist frequency is 

defined as equal to half of the sampling frequency.

As can be seen from Fig. 6.3, the filters produced by the MCMW have finite bandwidths, 

which may cause aliasing if the sampling frequency is close to the centre frequency of the 

dilated MCMW. From (6.2),

f  _ f c ± i  V N * )
a a it

1

AT
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Let the highest frequency, fn, that the filter produced by a given MCMW would cover is 

given as

_/, / VN*!
J H a a 7i H i

(6.8)

l f
With — = —  in (5.8), by setting fH as the Nyquist frequency, i.e., fs/2, then 

a  f c

L >  1
2  f c  K  i f b

f s  -  2 f

f s -  2 f

1 + -
x)\ 1

7t f c i f b

(6.9)

1 +  -
2 ^ ln (  x  )\

Q

(6.9) provides an estimation of the minimum sampling frequency which is seen to be 

dependent on the Q-factor of the MCMW. The higher the Q-factor, the lower would be the 

minimum sampling frequency. As discussed in Section 5.8, to qualify as a wavelet, the

term fcVfb should not be smaller than 1.14. From Section 6.3, 

fcVfb > 1.14 as discussed in Section 5.8, from (6.9),

In:
-0.483 and with

n

f s -  2 / 1 + 0.483
1.14

2 .8 5 / * 2 .9 / .

Therefore, with complex CWT, the sampling frequency should be 2 to 2.9 times of the 

highest harmonic frequency in the harmonic signal. The higher the Q-factor or the factor 

fcVfb, the lower would be the minimum sampling frequency.

Consider f  = 1000Hz, x = 0.1, fb-fc = 2-1, the minimum sampling frequency from (6.9) is

/ >  2(1000) 1 +  -
# < ( 0.1)

n l f 2
= 2683Hz .
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When fb-fc = 100-1, the filter bandwidth is much narrower due to the high Q-factor, the 

minimum sampling frequency from (6.9) is

f s > 2(1000) 1 +
^¡\ln(0.l)

n i4 Jo o
= 2097Hz .

Therefore the filter has a much narrower frequency bandwidth.

Consider a signal containing 50Hz with amplitude equal to 1 and 800Hz with amplitude 

equal to 2, the minimum sampling frequency is determined as (6.9),

f s > 2(800) 1 +
f M o j }

n
1

l4 2
2146Hz , where fb-fc = 2-1.

The actual sampling frequency used is 2000Hz. The frequency spectrum is from 0 to 

1000Hz. The wavelet ridges plot is shown in Fig. 6.8. The detection of 50Hz signal 

component is accurate. The detection of the 800Hz signal component has an error of 5Hz.

Fig. 6.8 Wavelet ridges plot for 50Hz and 800Hz (fs = 2000Hz)
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With the sampling frequency increased to 2200Hz, the frequency spectrum is from 0 to 

1100Hz. The wavelet ridge plot is shown in Fig. 6.9. It can be seen that the frequencies and 

amplitudes of 50Hz and 800Hz estimated are very accurate.

Fig. 6.9 Wavelet ridges plot for 50Hz and 800Hz (fs = 2200Hz)

6.5 Time Window

It is a common understanding that the larger the time window encompassing the signal 

under analysis, the better would be the estimation of the frequency and amplitude of the 

harmonics. On the other hand, for time event localization, the shorter the time window the 

better would be the localization of the time event.

The minimum time window length is controlled by the time width of the wavelet required 

to achieve a mean zero value. As estimated in Section 5.5, the factor fcVfb should not be 

less than 1.14 in order that the MCMW should have practically zero mean value.

From (5.18), the spread in time of the MCMW is given as At =
2
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Since from (5.8), a = L
f

At = = ( I h U u )L _  (6.10)
f  2 2 f

Consider fb-fc = 2-1, f  = 50Hz, which gives At = 0.0142 s. Fig. 6.10 shows the real part and 

imaginary part of the MCMW. It can be seen that within the time spread At, the sinusoids 

contained in the Gaussian function would not decline to zero.

(a) real part (b) imaginary part

Fig. 6.10 Modified CMW with At = 0.0142s

From (5.4), the mean value of the modified CMW in (5.29) is given by

1 1

a  V rfb

+  f  ~(l ) 2/ f b j 2 J c(~ )  2 f f 2
\e a e a d t —e h c (6 . 11)

In (6.11), the integral is extending to negative and positive infinity. If the integral is taken 

for a period of At only, (6.11) shows that
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~(-)2/ fb j2nfc(—)
e a e a dt

At +—

- - 7=  f e <a> ,fb[cos(2vfc( - )  + jsin(2nfc( - )] d t  
a J , a a

2

= 7.108x1 O'4 -  j 4.39x10~6

(6 . 12)

The mean value of the MCMW for the duration of At is approximately 7.108xlCT4. It can 

be seen that the requirement of zero mean value is not fulfilled. A time width equal to the 

time spread of the MCMW is hence not sufficient, a longer time window is necessary so 

that the mean value of the MCMW is close to zero.

From (6.10), let

T = b( f ' 4 K
2

(6.13)

where b is a factor used to adjust the time spread of the MCMW.

Table 6.1 shows the time window width and the mean value of the MCMW for various b 

values.

Table 6.1 Time window length and mean value of modified CMW

b Tim e W indow  L ength  (seconds) M ean  V alue o f  M C M W
1 0.0142 7 .1 0 8 x l0 ‘4
2 0 .0284 3 .3 0 2 x l0 "4
3 0.0426 3 .6 8 x l0 "5
4 0.0568 5 .7 1 2 x l0 ‘5
5 0.071 3 .6 3 1 x l0 '5
6 0 .0852 6 .30 9 x l0 "6
7 0 .0994 2 .9 5 7 x l0 '6
8 0.1136 1 .8 8 7 x l0 '6
9 0.1278 3.49 l x l  0 'v
10 0.142 4 .3 9 1 x l0 '8
11 0.1562 3 .4 4 9 x 1 0 '8
12 0 .1704 6 .1 x l0 ‘y
13 0 .1846 5 .2 5 9 x l0 "u
14 0.1988 1 .3 3 7 x l0 '12
15 0.213 3 .4 3 2 x l0 ’n
16 0 .2272 8 .4 5 x l0 -14
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It can be seen from Table 6.1 that at b = 10 the MCMW have a mean value close to zero. 

Therefore the time width, T, of the MCMW is determined as

T> 5 f cJ f b
f

(6.14)

It should be noted that when very accurate estimation in both frequency and amplitude is 

required, a larger value of b is to be used. A longer time width o f the modified CMW is to 

be used which in turn requires a long time signal for estimation. The computation time is 

therefore longer.

With a shorter time length of the modified CMW, harmonic frequencies would still be 

estimated accurately. However the amplitudes estimated are erroneous.

Consider the harmonic signal shown in Fig. 6.11 having frequency components at 40Hz 

and 120Hz respectively, both are of unit amplitude.

Fig. 6.11 Simulated signal (harmonics at 40Hz & 120Hz)
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In order to discriminate the two harmonic frequencies, from (6.6),

f ' T f i *
120 + 40 
1 2 0 -4 0

0.996.

The parameters o f the MCMW are chosen as fb-fc = 2-1 so that the mean value of the 

MCMW is practically zero. The factor fcVfb is equal to V2.

The sampling frequency is determined as from (6.9),

f s  *  2 ( 1 2 0 ) 1 +
n

1

VI
= 322H z.

A sampling frequency o f 350Hz is chosen. The minimum time window length is estimated 

from (6.14),

T > ^ H .  = 0.18.
40

Fig. 6.12 shows the wavelet ridges plot of the signal. The harmonic frequencies and 

amplitudes estimated are exactly equal to the simulated harmonic signal.

Fig. 6.12 Wavelet ridges plot for 40Hz and 120Hz (fs = 350Hz, T = 0.18s)
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Fig. 6.14 Wavelet ridges plot for 40Hz and 120Hz (fs = 350Hz, T = 0.036s)

6.6 Phase Estimation

The MCMW, given its analytic nature, can preserve signal phase information. Complex 

continuous wavelet transform would produce complex wavelet coefficients. When the 

complex wavelet coefficients are presented in polar form, each complex wavelet 

coefficient has a phase angle. The phase information contained in the wavelet coefficients 

is termed ‘instantaneous phase’. Each sampled data point in the time signal has a wavelet 

coefficient related to it.

For a harmonic signal which contains harmonic frequencies, the relative phase difference 

between any two harmonics changes over time. Consider the two sinusoids defined as

v; = AI cos( cof + 0,)  

v2 = A2 c o s(  cof + 02)
(6.15)

Their phase difference at any time t is

Z v 2 -  Z v , = <o2t + 02 -  (cof + 6j ) = (co2-  to,)t + 02 - 0 , . (6.16)
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In (6.16), the phase difference has two terms. The first term depends on the frequency 

difference between the two sinusoids and is a function of time. The second term is the 

phase difference at time t = 0 and is a constant phase difference, which is termed as ‘initial 

phase difference’.

The main purpose is to estimate the ‘initial phase difference’ by using the complex CWT 

based on MCMW. This is actually the phases of the harmonics at time zero, i.e. contained 

at the wavelet coefficient for the first data of the signal samples. Consider a harmonic 

signal of frequency co and an initial phase angle 0. Let 9W be the instantaneous phase 

obtained from the wavelet coefficient at time t. The instantaneous phase at time t is related 

to 0 by

0w=cot + 0 
0 = 0w- m t  

0 = 0w- 2 7 f t

Also the time t is related to the data sample n by

n - 1
t = -------

Therefore from (6.17) and (6.18),

0 = 0w~ 2 7 f
V

n - 1

f s

\

J

(6.17)

(6.18)

(6.19)

The initial phase angle 0, i.e., the phase angle of the harmonic signal at time t = 0 (n = 1), 

is

0 = 0w- 2 r f ( O )

o = ew
(6.20)

The initial phase angle of the harmonic signal is hence equal to the phase angle of the
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wavelet coefficient at n = 1 (t = 0). It is therefore seemed straightforward to use the first 

wavelet coefficient generated from the CWT to estimate the initial phase angles of all the 

harmonics in the signal.

However as will be discussed in Section 7.9, the edge effect would distort the wavelet 

coefficients at the boundaries of the sampled signal data, making those wavelet coefficients 

not representative of the harmonics contained in the harmonic signal. Wavelet coefficients 

which are sufficiently away from the edges of the sampled signal data should be used for 

phase estimation.

From (6.19), the initial phase difference between any two harmonics is given by

Therefore the initial phase difference can be estimated from (6.21) by using wavelet 

coefficients at any position n as long as n is sufficiently away for signal edges. It is 

suggested that the wavelet coefficient generated for the data at the centre position of the 

signal should be used for the phase estimation.

It should be noted that the initial phase difference estimated by (6.21) would depend on 

whether the harmonic signal is represented as a cosine or a sin function. They differ by 90°.

Consider the harmonic signals

(6.22a) represents a harmonic signal as a cosine function and (6.22b) represents a harmonic 

signal as a sine function.

(6.21)

f t = cos( 2n249t +10° ) ,  

f 2 = sin(2k 249t +10° ) .

(6.22a)

(6.22b)

For (6.22a), by using CWT based on the modified CMW, the initial phase estimated by 

using (6.19) is 10°. Similarly for (6.22b), the initial phase estimated by using (6.19) is -80°.



Chapter 6 The Use o f  Modified Complex Morlet Wavelet fo r  Harmonics Analysis 81

It can easily be seen that

sin((tf + 6) = cos[90D -(cot + 0)\ 

+ ($-90°)]
(6.23)

Therefore for 9=10°,

sin(<W + 10°) = cos{&>t + (10° -90°)}  = cos(£y t-80°). (6.24)

The CWT has a presumption that the harmonic signal is represented as a cosine function. 

This explains why the initial phase estimated by (6.19) for (6.22b) is -80°.

Now consider a signal that is represented as

f ( t )  = cos(2;r50i + 10°) + 0.5cos(2;rl50i -2 5 ° ) . (6.25)

The signal is sampled at fs = 450Hz, with a sampled signal length of 0.2s. The parameters 

of the MCMW is fb-fc = 2-1. Fig. 6.15 shows the wavelet ridges plot generated by the CWT 

based on MCMW.
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Fig. 6.15 Wavelet ridges plot for 50Hz and 150Hz (fs = 450Hz, T = 0.2s)

The instantaneous phases estimated at 50Hz and 150Hz are shown in Fig. 6.16(a) and Fig. 

6.16(b) respectively. The estimated phases obtained from the wavelet coefficients lie 

between ±7t. It can be seen in Fig. 6.16 that there are abrupt phase variations near the start 

and the end of the phase plots. This is due to the edge effect mentioned earlier and to be 

discussed in Section 7.9.

(a)50Hz (b) 150Hz

Fig. 6.16 Phase plots for 50Hz and 150Hz

Table 6.2 compares the estimated initial phases by (6.19) to the actual phases of the 

simulated signal. It can be seen that the initial phases estimated by the CWT based on 

MCMW are exactly equal to the initial phases of the simulated signal.

Table 6.2 Comparison of estimated phases and simulated phases

Frequency 
(Hz) '

Set Initial 
Phase

Instantaneous Phase 
from Wavelet 

Coefficient at n=46

Estimated 
Initial Phase

50 0.1745 rad 
(10°)

31.5905 rad 
(1809.974°)

0.1746 rad 
(10°)

150 -0.4363 rad 
(-25°)

93.8116 rad 
(5375.03°)

-0.4362 rad 
(-24.99°)
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Now consider a voltage waveform and a current waveform represented as v(t) and i(t) 

respectively.

v(/) = cos(2^50t + 10°), (6.26a)

i{t) = 0.2cos(2/r50i -2 2 ° ) .  (6.26b)

Both waveforms have the same frequency. The signals are sampled at fs = 450Hz, with a 

sampled signal length of 0.2s. The parameters of the MCMW is fb-fc = 2-1.

Fig. 6.17 shows the wavelet ridges plot for the two waveforms.

Wavelet Ridges Plot Wavelet Ridges Plot

(a) voltage (b) current

Fig. 6.17 Wavelet ridges plot of voltage and current waveforms

Table 6.3 compares the estimated phase difference to the set phase difference o f the voltage 

and current signals. It can be seen that the phase difference estimated by the proposed 

algorithm is very accurate.

Table 6.3 Estimated phase difference between voltage and current waveform

Voltage (50Hz) Current (50Hz) Phase Difference
Set Initial Phase (deg.) 10° -22° 32°
Estimated Instantaneous 
Phase (deg.)

9.9992° -21.9984° 31.9976°

For harmonic analysis, it is not particularly useful to know the ‘initial phases’ of harmonics
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sufficiently far away from the signal edges should be used to estimate the initial phases of 

harmonics. The phase difference between any two harmonics of the same frequency can be 

calculated easily from any wavelet coefficients as far as they are not distorted by the edge 

effect.

From the underlying principles of the complex CWT and the characteristics of the MCMW, 

it can be seen that the suggested harmonic analysis method can be used to detect any 

frequency components in a signal, including sub-harmonics, harmonics, inter-harmonics.



Chapter 7

Wavelet-Based Algorithm for Harmonics Analysis

7.1 Introduction

As with mathematical tools used to investigate physical phenomena, a number of practical 

issues must be taken into consideration when implementing the harmonic analysis 

algorithm. There is no exception with the case of using the complex continuous wavelet 

transform. The results obtained must be viewed in terms of the limitations in the data 

analysis method used. These limitations stem from a number o f sources, including the 

discrete nature of the data, the finite resolution of the data, the finite extent o f the data, the 

wavelet used, the discretization and numerical computation of the transform, and so on.

7.2 Complex CWT Implementation by FFT

The computation of the CWT can simply be performed by a naive discretization of the 

transform integral. Because o f the shifting property of the transform, the WT of a function 

at a given scale is a convolution integral between the function of interest and the wavelet 

function at the given scale. Therefore the basic algorithm for computing the WT is a set of 

convolution integrals parametrised by the scale a. The standard convolution algorithm is 

slow because of large number of multiplications and additions that must be calculated. 

When the convolution algorithm is conducted by a computer, the computation speed is 

very slow. As convolution in time domain becomes multiplication in frequency domain, it 

is computationally economical to replace one convolution with two DFTs, a multiplication, 

and an IDFT, by using the FFT. The proposed WT-based harmonic analysis algorithm is 

therefore implemented by FFT with in the Matlab software.
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Fig. 7.1 shows the flow chart o f the computational algorithm for computing wavelet 

coefficients by FFT [78],

Fig. 7.1 Flow chart for the computation of wavelet coefficients by FFT

7.3 Adaptive Settings of Modified CMW

As discussed in Section 5.3, the detection of harmonic frequencies in a harmonic signal can 

be effected by dilating a MCMW of a given centre frequency fc and bandwidth parameter 

f’b. The disadvantages with this approach are firstly that a very large scale a should be used 

for low harmonic frequency, which requires a very long signal length, and the computation 

time is also very long. Secondly, the wavelet coefficients obtained at a large scale a are also 

subject to computation errors. Thirdly, the frequency resolution at small scale a (i.e. at high 

harmonic frequency) is poor. For harmonic analysis, it would be more desirable to 

maintain approximately constant frequency resolution and time spread at all harmonic 

frequencies. This is achieved by adapting the centre frequency fc of the MCMW to the 

harmonic frequency to be analyzed, with the bandwidth parameter f, kept constant. The 

value of the centre frequency fc is governed by the required separation frequency between 

adjacent frequencies and the harmonic frequency in the harmonic signal, as discussed 

below.
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7.4 Computational Settings

As discussed in Section 6.3, the settings of the modified CMW is determined by the 

separation frequency between adjacent frequencies, determined by (6.6) as

fc 4 T b ^
In( x  )

( f ' + f i )

K

where fi and f2 are the frequencies of two adjacent harmonics components, with fi > f2.

The parameters f, and fc of the MCMW would depend on the likely separation of adjacent 

frequencies in the harmonic signal. Let the separation frequency between adjacent 

frequencies is represented as fsep, and the highest harmonic frequency in the harmonic 

signal is represented as fn. Let fi = fH, then f2 = fH -  fsep in (6.6),

yf J K  ^

fcJTb -  

fcvifb ^  2y

' f H + f H - f s t  '' H  J  H  J  sep

~ 7 T

y
2  f H  f s e p

sep

\

f sV J  seP  /
f  f n  ^

where y

f  2sep y

_ ^\ln (x)
n

(7.1)

(7.2)

By putting x = 0.1 in (7.2), then y = 0.483 » 0.5 and (7.1) becomes

f c i f b  >
\ f  sep 2 J

(7.3)

(7.3) is valid only when fH > fsep. This requirement is easily fulfilled in integer harmonic 

frequency detection where the harmonic frequencies are multiples of the fundamental 

frequency. The fundamental frequency is either 50Hz or 60Hz. The estimation of
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inter-harmonic requires a smaller fsep so that the requirement in (7.3) is fulfilled. For 

sub-harmonics detection, the expected separation of adjacent frequencies is smaller, and so 

the requirement in (7.3) is also fulfilled.

Using fb = 10000, then (7.3) becomes

f e * 100
JjL_
f\  J  sep

(7.4)

From (6.9), the minimum sampling frequency to avoid aliasing is estimated as

f s  2S 2 f a 1 + y
f c y [ f b

Substituting (7.4) into (6.9),

f s  *  2 f „
f  2 f } A' H

2 / h  ~  f s e

f s  *

V J  H  J  sep J  

~2
4 f !

2 f a - f e P

(7.5)

At high harmonic frequencies, 2fn>> fsep, (7.5) becomes

f s  *  2 f H , (7.6)

which agrees with the classical sampling theorem.

From (6.14), the minimum time window length of the MCMW for accurate frequency and 

amplitude detection is estimated by

T  5_j U a ;

where fL is the lowest harmonic frequency in the harmonic signal.
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From (6.6), / « V 7 >
In( x ) (  f i + f i ' )

71 v A ~ f 2 )
where f\ > iz.

Let fj = fL and f2=fL + fsep, and y = 0.5 in (7.2) , then (6.6) becomes

Substituting (7.7) into (6.14),

f M * - 2
f l  +  f t  +  f ssep

f M >

f c j f b  *

f s

2  f l  +  f s e p

sep

\

f s eV J  seP 7

^ + f
\ f s e p  2  J

(7.7)

T > S f c J K
f L

T >  —  
f i

f i  , 1H---
f  2sep

T > 5
f  1 1 A 

+
K f s e P 2 f

(7.8)

It is logical that the minimum signal time length is dependent on the lowest harmonic 

frequency in the harmonic signal. From (7.8), the minimum time length of the signal is also 

dependent on the separation frequency between adjacent frequencies. This also confirms 

with the common understanding [26] that the closer the frequency of two harmonic 

frequencies, the longer the signal length is required to distinguish them.

Furthermore consider if fsep «  fLor fL -*oo in (7.8),

5f  1 "

V f seP J
, or T  —> lOy

y f s e p  J
, with y = 0.5. (7.9)

(7.9) tells that when the separation frequency between two harmonics is very small or
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when the harmonic frequencies are very high, the time window length is dependent on fsep 

only.

Consider two adjacent harmonic frequencies of 40 and 40.5 Hz respectively, which are 

separated apart by 0.5Hz, (7.8) gives

T > 5
y0.5

1 \
2x40 ,

= 10.025s

There time window length is practically dependent on the separation frequency only.

Consider a harmonic signal containing harmonics from 2nd to 51st, with the fundamental 

frequency set as 50Hz. Fig. 7.2 shows the minimum time signal length for harmonic 

frequencies at a separation frequencies fsep of 10Hz, 20Hz, 30Hz, 40Hz and 50Hz 

respectively. In (7.2), y is set as 0.5. It is evident that at high harmonic frequencies, the 

minimum time signal length is mainly determined by the separation frequency only.

Frequency (Hz)

Fig. 7.2 Relationship between signal length and frequency separation
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For harmonic signals containing only integer harmonics, the separation between adjacent 

frequencies would be set as 50Hz. A time signal length of 0.15 seconds would be used. For 

detecting harmonic frequencies higher than 1000Hz, a time signal length of 0.1 seconds is 

sufficient. From (7.9) with y = 0.5 in (7.2),

T
'  5 '

fv J sep y
fo rfL> 1000Hz.

If a harmonic signal contains inter-harmonics, it would be desirable to set the separation 

frequency to 25Hz. For sub-harmonics detection, it would be necessary to use a smaller

f-»-sep-

A further consideration for the setting of the minimum sampling frequency and time signal 

length is that for accurate initial phase estimation of the harmonics and to maintain the 

symmetry of the MCMW, the number of data used in the estimation should be an odd 

number. In other words, the product of the time period and the sampling frequency should 

be an even number, and including the data at t = 0, the number of data used would become 

an odd number.

7.5 Scale Population

Mathematically, the CWT includes all scales over the range [0+,co ]. From a signal analysis 

point of view, the computed scales should include those of physical interest in the signal. 

However there is also a practical upper and lower limit of scale which depends on the 

highest frequency that can be analyzed and the number of points in the signal time series to 

be analyzed [78],

7.5.1 Minimum Scale

Following the proof in (6.2),

a a k

1

4 7 7
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From (7.2),

and take the sampling frequency into account, (6.2) becomes,

/  = + T
a 4 Z

(7.10)

The minimum scale appears when the signal frequency is equal to Nyquist frequency,

L
2

f  f  fj  S J  C _ |_  y  A S

a min a minin "\J fb

Therefore

amin * 2fc

a min ~  2 f a  +  

a min *  2 f a  +

1 + y

/ M .

2f cy
f c i f b

2y

(7.11)

(7.12)

This is the smallest scale that can be used without aliasing.

Using fb= 10000, and y = 0.5, (7.12) becomes

“ min ^  2 f c  + 

a min ^  2 f c  +

2x0.5 
yj10000 

1
100

(7.13)
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Since from (5.8) with sampling frequency taken into account,

Substituting (7.14) into (7.10),

a = — f s -
f  '

f f  1JsJc > 2 f c +-
f  JC 100

f s - o + . '  Y
V 2 0 0 fc

C J

(7.14)

(7.15)

Therefore, as long as the requirement for minimum sampling frequency is fulfilled, the 

minimum scale for avoiding aliasing could be satisfied.

7.5.2 Maximum Scale

Consider the process of discrete convolution when the signal time series has a finite 

number of points. When a convolution at a sample point is calculated, the shift function is 

centered at that sample and the value of the convolution depends upon contributions from 

points before and after the sample point. It is clear that points near the end cannot represent 

the true discrete convolution between the signal time series and function. In fact when 

using the FFT to perform convolution, the convolved points near the end include 

contributions that are located at the opposite end of the signal time series, so called 

‘wrap-around’ points. Furthermore, as the scale increases, the number of wavelet samples 

to each side of the wavelet centre also increases so that the number of wrap-around points 

increases with the scale. These points do not represent the true wavelet coefficients and 

should not be used in subsequent analysis. With large enough scale, all of the computed 

wavelet coefficients are wrap-around points.

A sufficient long time window length of the wavelet should be used so that a sufficient 

central portion of wavelet coefficients not contaminated by the edge effect would contain 

useful information. The minimum time window length for the MCMW is calculated in 

(6.14) as
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T > 5 f cJ f b
h

From (5.8), a - —  and from (6.14),
f i

Ta < — t=
(7.16)

(7.16) determines the maximum scale that can be used without being affected by the edge 

effects.

7.6 Dilation Steps

As discussed in Section 5.3, the CWT is the process of conducting convolution integrals of 

the harmonic signal with wavelets produced by translation and dilation of the mother 

wavelet. As the computation process is conducted by computers, both the dilated wavelets 

and the harmonic signals are digitized, and the convolution is in fact a discretised integral. 

The CWT should be termed ‘Discretised CWT’, abbreviated as D-CWT. In decomposition 

by scale dilation, once the minimum scale and maximum scale are determined by the 

Nyquist frequency and the time window length respectively, the decomposition would be 

conducted in accordance with the dilation step size.

The dilation step size of the scales for the D-CWT affects the accuracy in harmonic 

frequency detection. The smaller the dilation step size, the better the accuracy in harmonic 

frequency detection. However with a very fine dilation step size, the computation time 

would be very long and the wavelet coefficients generated would be highly redundant. 

Since the relationship between the scale and the frequency is given as in (7.14),

a = L L
f

given fs = 1000Hz, f  = 49.5Hz and fc = 1, then a = 20.2.
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In other words, the scale dilation should have a maximum step o f 0.2 for the estimation of 

49.5Hz. If the actual dilation size is 1, the harmonic frequency will be misinterpreted as at 

a=20, and the harmonic frequency is estimated as 50Hz.

To overcome this problem for harmonic frequency analysis, it is suggested to firstly 

determine the required frequency resolution; the corresponding scales are determined 

accordingly by (7.14) for the required fc.

By this dilation approach, the frequency resolution can be altered easily for different 

frequency ranges. It is desirable to have a fine frequency resolution at low frequencies and 

a comparatively more coarse frequency resolution for high frequencies.

7.7 Assignment of Frequency Bands

As it is desirable to have a fine frequency resolution at low frequencies and a 

comparatively more coarse frequency resolution for high frequencies, the decomposition 

can be divided into frequency bands. For each frequency band, fc is calculated by (7.4) for 

the frequencies contained in the frequency band, in steps o f the required frequency 

resolution. The fb is fixed and set as 10000. The corresponding scales can be calculated 

readily for each fc generated from each frequency in the frequency band by (7.4) and (7.14) 

respectively.

fc 1
f  lOOf fJ sep

f
=  0.01

f\  J sep

1

2 f

This approach also allows a particular frequency separation between adjacent frequencies 

be used for each frequency band. However the frequency bands should be carefully chosen 

to avoid having harmonic frequencies fall between two frequency bands. If the same 

frequency resolution and frequency separation between adjacent frequencies are to be 

applied to all harmonic frequencies, assignment of frequency bands are not necessary. Fig.

7.3 shows the flowchart of the decomposition according to frequency bands. Table 7.1 

shows the suggested assignment of frequency bands.
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Fig. 7.3 Flow chart showing WT decomposition settings

Table 7.1 Assignment of frequency bands

B and  1 12H z -  45H z

B and  2 46H z -  75H z

B and  3 76H z -  275H z

B and  4 276H z -  525H z

B and  5 526 -  775H z

B and  6 7 7 6 H z - 2 5 5 0 H z

7.8 Extraction of Frequency Information by Wavelet Ridges

As discussed in Section 5.11, the frequency information of the signal would be estimated 

by wavelet ridges plot calculated from the complex wavelet coefficients generated from 

complex WT. Once the harmonic frequencies of the signal are identified, the corresponding 

amplitudes and initial phase angles would be computed easily. Fig. 7.4 shows the flowchart 

of the estimation of harmonic frequencies, amplitudes and initial phase angles.
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Fig. 7.4 Flow chart for estimating frequency, amplitude and initial phase

7.9 Edge (Boundary) Effect

Theoretically, the WT integral extends from negative infinity to positive infinity as shown 

in (3.5). In practice, experimental data sets are finite in extent. An obvious consequence of 

wavelet analysis of a finite data set is that, as the wavelet gets closer to the edge of the data, 

parts of it begin ‘spill over’ the edge. This creates an edge effect, where transform values 

close to the boundary of the signal are tainted by the discontinuous nature of the signal 

edge. The affected region increases in extent as the dilation of the analyzing wavelet 

increases. Large wavelet coefficients are realized close to the edge of the transform plot, 

which increases in extent as the scale a increases. This region affected by a discontinuity is 

known as the ‘Cone of Influence’ [61,78], The extent of the cone increases linearly with 

the scale a, i.e. it is proportional to the temporal support (or width) o f the wavelet. The 

cone boundaries at either ends of the signal define the region which is significantly 

influenced by the signal edges. If the signal length is long enough such that the cone of 

influence would not affect all the wavelet coefficients, then useful information can still be 

found at the centre portion of the wavelet coefficients.

Consider a harmonic signal containing a fundamental frequency at 50Hz of amplitude 

equal to 1 and a harmonic frequency at 150Hz and of amplitude equal to 2. The wavelet 

parameter is chosen as fb-fc = 2-1. The sampling frequency of 2000Hz is used. Fig. 7.5 

shows the wavelet ridges plot and Fig. 7.6 shows the amplitudes plot of the two harmonic 

frequencies.
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Wavelet Ridges Plot

Fig. 7.5 Wavelet ridges plot for 50Hz and 150Hz

Fig. 7.6 Amplitudes plot for 50Hz and 150Hz

It can be seen that at 50Hz where the scale a used is comparatively larger, the boundary 

effects are more evident. This is understandable as at large scales, the wavelet spans a 

longer time width outside the signal window. It is therefore recommended that when 

computing the scalogram, only wavelet coefficients at the centre portion be used so that
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large wavelet coefficients at the edges would not distort the wavelet ridges plot.

Even with the boundary effect, the amplitude estimation error as seen in Fig. 7.6 is not very 

significant. If the time signal used is not sufficiently long, it is always preferable to use the 

estimated amplitude at the centre portion of the amplitudes plot.

7.10 Conclusion

In this Chapter, a practical computation algorithm is developed for harmonic analysis 

based on complex CWT. The proposed range of harmonic frequencies is suggested to be 

divided into frequency bands. The advantages are that for different separation frequency 

between adjacent frequencies, different dilation steps would be assigned for each 

frequency band so that computation time would be saved.

It is proved that both the harmonic frequencies and the required separation frequency 

between adjacent harmonic frequencies would affect the signal time signal and the 

sampling frequency. A computation formula for the estimation of the minimum sampling 

frequency without aliasing is proposed. The signal time signal is determined 

mathematically by considering the lowest harmonic frequencies and the separation 

frequency between adjacent harmonic frequencies in the harmonic signal. For harmonic 

frequencies higher than 1000Hz, the minimum signal time signal is practically determined 

by the separation frequency between adjacent frequencies only.

Furthermore, the accuracy in harmonics amplitudes estimation is dependent on the time 

signal length used in the harmonic analysis. A longer time signal length would require 

longer computer time; a compromise should be reached between the accuracy required in 

the harmonics amplitudes estimation and the computation time. The setting of the fb-fc 

parameters of the MCMW should also be based on the harmonic frequencies in the signal 

and the required frequency separation between adjacent harmonic frequencies.

The detection of the initial phases of harmonics requires that the number of data points 

used in the WT-based estimation algorithm should be an odd number. In other words, the 

product of the time period and the sampling frequency should be an even number.
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On the setting of dilation scales, the minimum scale to be used is related to the minimum 

sampling frequency. The maximum scale to be set is related to the signal time length. It is 

suggested that instead of dilating the MCMW by incrementing the scale, it would be more 

convenient and accurate for harmonics analysis to determine the corresponding scales of 

dilation from the required frequency resolution.

To avoid the edge effect from blurring the useful information in the wavelet coefficients, it 

is suggested, in both frequency information extraction and amplitude estimation, to use the 

data at the centre portion of the wavelet coefficients.



Chapter 8

Application Studies

8.1 Introduction

The developments in Chapter 5 and 6 are integrated into a WT-based algorithm for 

harmonic analysis in Chapter 7. In this Chapter, the proposed algorithm is first applied for 

analysis of synthesized harmonic signals for validation purpose. It is then applied for 

analysis of field harmonic signals. The first two field harmonic signal are the phase input 

currents to a three-phase variable speed drive (VSD), with the output frequency set to 

20Hz and 30Hz respectively. The third field harmonic signal is the single-phase current of 

a single-phase circuit, which is supplying power to an electronic dimmer-controlled lamp 

bulb, fluorescent luminaries complete with electronic ballast, a hairdryer and an air 

compressor motor. DFT-based algorithm implemented with FFT is being used in all the 

tests for synthesized harmonic signals and field harmonic signals for comparison purpose.

In all the tests to be presented below, the decompositions are not divided into frequency 

bands, and the same frequency resolution is being used for all frequencies.

8.2 Synthesized Harmonic Signal Analysis

Three tests for synthesized harmonic signal analysis are conducted. In the first test, the 

WT-based algorithm is being tested with a synthesized harmonic signal containing 

sub-harmonics. In the second test, the WT-based algorithm is being tested with a 

synthesized harmonic signal containing inter-harmonics. The third test is for testing the 

WT-based algorithm with a synthesized harmonic signal containing even harmonics of 

very small amplitude. The results obtained from WT-based algorithm are compared with



Chapter 8 Application Studies 103

the results from DFT-based algorithm.

8.2.1 Stationary Harmonic signal with Sub-harmonics

The harmonic signal contains the sub-harmonic components as shown in Table 8.1.

Table 8.1 Sub-harmonics in synthesized signal

H arm onic 
F requency  (H z)

A m plitude
P hase  A ngle 

(deg .)
13 0.01 8

20.5 0.32 12
25.6 0.87 -15
36.6 0.75 -20
46.2 0.33 -10
49.8 1 0

The waveform of the synthesized harmonic signal is shown in Fig. 8.1.

Fig. 8.1 Waveform of synthesized sub-harmonics signal
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From Table 8.1, the highest harmonic frequency is 50Hz, the minimum separation 

frequency fsep is set as 3.8Hz. The minimum sampling frequency and the minimum signal 

length are determined as follows. From (7.4), the minimum sampling frequency is 

estimated as

/ . *
4 f„

2 f „ - f ssep

4x49.82 
2 x49 .8 -3 .6

= 103.34Hz.

The sampling frequency is selected as 105Hz. From (7.8), the minimum signal time length 

is estimated as:

/
T > 5

v

1

2 f t )
= 5

f_ l_
k 3.6

1 \  
2x13 ,

1.581s.

The minimum signal time length is selected as 1.6 seconds. The number of data N used to 

represent the harmonic signal, including the data at t=0, is calculated by (4.5),

N=fs x T +1 = 1.6s x 105Hz + 1 = 169.

Fig. 8.2 shows the wavelet ridges plot of the harmonic analysis. Fig. 8.3 shows the 

amplitudes plot, and Fig. 8.4 shows the phase plots.

Fig. 8.2 Wavelet ridges plot of synthesized sub-harmonics signal
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Amplitude Plot (harmonic frequency » 13Hz) Amplitude Plot (harmonic frequency®20.5Hz)

(a) 13Hz
Amplitude Plot (harmonic frequency®25 6Hz)

(b) 20.5Hz
Amplituce Plot (harmonic frequency®36 6Hz)

(c) 25.6Hz (d) 36.6Hz

Amplitude Plot (harmonic frequency«46.2Hz) Amplitude Plot (harmonic frequency®49.8Hz)

Data Pom: Data Point

(e) 46.2Hz (f) 49.8Hz

Fig. 8.3 Amplitudes plot of sub-harmonic components
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(a) 13Hz (b) 20.5Hz

Phase Pio: (harmonic trequency«25.6Hz) Phase Plot (harmonic frequency«36 6Hz)

Phase Plot (harmonic frequoncy=46.2Hz) Phase Plot (harmonic Jtequency-49 6Hz) :

(f) 49.8Hz

Fig. 8.4 Phase plots of sub-harmonic components
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As seen in Fig. 8.3, the edge effects are very obvious in the amplitudes plots. The data 

points at location 85 which is the middle point of the signal data are used to estimate the 

initial phases of the harmonic frequencies by (6.19).

DFT-based algorithm implemented with FFT is also used to estimate the harmonics of the 

same harmonic signal. The fft no. used is 1050, which is necessary for achieving a 

frequency resolution of 0.1 Hz.

In order to reduce the effect of discontinuities at the window edges and leakages, a 

hamming window is applied. The Hamming window is calculated as in (4.10),

27Vt
WH( t)  = 0 .5 4 -0 .4 6 cos( - ) .

Since the fft no. being used is different from the number of data of the harmonic signal and 

because hamming window is applied, the amplitudes estimated by FFT should be scaled by 

0.54 for the hamming window, and by the ratio of fft no. to data number. Fig. 8.5 shows the

frequency spectrum produced by FFT and Fig. 8.6 shows the phases plot.

Frequency Spectrum of the Harmonic Signal by FFT

Fig. 8.5 Frequency spectrum by FFT of synthesized sub-harmonics signal
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Fig. 8.6 Phase plots by FFT of synthesized sub-harmonics signal

The sub-harmonics in the synthesized signal estimated by both the WT-based algorithm 

and the DFT-based algorithm are tabulated in Table 8.2. On frequency estimation, both 

DFT-based algorithm and WT-based algorithm are very accurate. DFT-based algorithm 

would have small frequency detection error when the amplitude of the harmonic is 

comparatively small. On amplitudes and initial phase detection, WT-based algorithm is 

accurate than DFT-based algorithm.

Table 8.2 Sub-harmonics estimated by WT-based algorithm & DFT-based algorithm

Synthesized Waveform Information WT-based algorithm DFT-based algorithm

Frequency
(H z) Amplitude Initial Phase 

(deg)
Frequency

(H z) Amplitude Initial Phase 
(deg.)

Frequency
(H z) Amplitude Initial Phase 

(deg.)

13 0.01 8 13 0.01 8 12.9 0.014 30.86

20.5 0.32 12 20.5 0.32 12 20.5 0.323 12.17

25.6 0.87 -15 25.6 0.87 -15 25.6 0.867 -14.75

36.6 0.75 -20 36.6 0.75 -20 36.6 0.747 -19.94

46.2 0.33 -10 46.2 0.3301 -10.01 46.2 0.328 -9.1

49.8 1 0 49.8 1 0 49.8 0.993 0.253
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8.2.2 Stationary Harmonic Signal with Inter-harmonics

The harmonic signal contains integer harmonics and inter-harmonic components as shown 

in Table 8.3. The waveform of the synthesized harmonic signal is shown in Fig. 8.7.

Table 8.3 Inter-harmonics in synthesized signal

F requency
(H z)

A m plitude
Initia l P hase 

(deg.)
F requency

(H z)
A m plitude

In itia l P hase 
(deg.)

49.5 311 0 1336.5 20 8
102 288 10 1435.5 18 -8

148.5 280 -15 1534.5 15 20
247.5 225 -12 1633.5 13 -30
346.5 180 -20 1732.5 11 12
445.5 155 -14 1831.5 9 -8
544.5 130 30 1930.5 7 9
643.5 102 36 2029.5 5.5 9
742.5 80 42 2128.5 3 35

811 76 11 2160 2.2 -4
841.5 62 -28 2227.5 3 -32

940.5 53 5 2326.5 2 7
1039.5 32 7 2425.5 1 2
1138.5 30 15 2524.5 0.5 1
1237.5 26 -15

Harmonic signal
Tim e Period=0.22s, Sampling Frequency=5300Hz

Fig. 8.7 Waveform of synthesized inter-harmonics signal
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Generally the power supply authority specifies that the supply frequency of 50Hz has a 

variation of ±2%, i.e. ±lH z. The lowest harmonic frequency that would be found in the 

harmonic signal is therefore 49Hz. The WT-based algorithm is set to detect up to the 51st 

harmonics. The 51st harmonic may have the highest frequency of 2601Hz when the 

fundamental frequency is 51Hz. The minimum frequency range being specified for the 

WT-based algorithm is therefore from 49Hz to 2601Hz.

The minimum separation frequency fsep is set as 30Hz. The minimum sampling frequency 

and the minimum signal length are determined by (7.4) and (7.8) as follows.

4 f H

2 f „ - f s e

4x26012
2 x2 6 01-30

5232.2H z* 5233Hz.

The sampling frequency used should not be less than 5233Hz.

f
T > 5

v

1
= 5

n
y30

+
1 \  

2x49 ,
= 0.218s * 0.22s .

The minimum signal time length is chosen as 0.22s.

In order that the number of data representing the harmonic signal is an odd number, the 

sampling frequency is chosen as 5300Hz. The number of data used to represent the 

harmonic signal, including the data at t=0, is equal to 1167.

For harmonic frequencies higher than 1275Hz, the signal length is reduced to 0.18s to save 

computation time. The number of data used is 955.

Fig. 8.8 shows the wavelet ridges plot of the signal containing inter-harmonics. The 

detection results of harmonic frequencies and their respective amplitudes and initial phase 

angles are presented in Table 8.4.
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Fig. 8.8 Wavelet ridges plot of synthesized inter-harmonics signal

DFT-based algorithm implemented with FFT is also used to estimate the harmonics of the 

synthesized signal represented in Table 8.3 and Fig. 8.7. The fft no. used is 10600, which is 

necessary for achieving a frequency resolution of 0.5 Hz. The Hamming window is being 

used to reduce edge effects and leakages. The amplitudes estimated by FFT are scaled by 

0.54 for the hamming window, and by the ratio of fft no. to data number.

Fig. 8.9 shows the frequency spectrum of the harmonic signal produced by FFT. The 

harmonic frequencies, their respective amplitudes and initial phase angles are presented in 

Table 8.4.
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Frequency Spectrum of the Harmonic Signal by FFT

Fig. 8.9 Frequency spectrum by FFT of synthesized inter-harmonics signal

Table 8.4 Inter-harmonics estimated by WT-based algorithm & DFT-based algorithm
Synthesized Waveform Information WT-based algorithm DFT-based algorithm

Frequency
(H z) Amplitude Initial Phase

(deg-)
Frequency

(H z) Amplitude Initial Phase 
(deg.)

Frequency
(H z) Amplitude Initial Phase 

(deg.)
49.5 311 0 49.5 311 0 49.5 310.3 0.12
102 288 10 102 288 10 102 288.5 9.75

148.5 280 -15 148.5 280 -15 148.5 280.6 -15.12
247.5 225 -12 247.5 225 -12 247.5 224.7 -12.1
346.5 180 -20 346.5 180 -20 346.5 179.6 -20.2
445.5 155 -14 445.5 155 -14 445.5 154.8 -14.3
544.5 130 30 544.5 130 30 544.5 129.5 29.76
643.5 102 36 643.5 102 36 643.5 101.6 35.69
742.5 80 42 742.5 80 42 742.5 79.8 41.64
811 76 11 811 76 11 811 76.16 10.93

841.5 62 -28 841.5 62 -28 841.5 62.38 -28.66
940.5 53 5 940.5 53 5 940.5 53.15 4.4
1039.5 32 7 1039.5 32 7 1039.5 32.18 6.22
1138.5 30 15 1138.5 30 15 1138.5 30.12 14.33
1237.5 26 -15 1237.5 26 -15 1237.5 26.25 -15.55
1336.5 20 8 1336.5 20 8 1336.5 20.15 7.05
1435.5 18 -8 1435.5 18 -8 1435.5 18.28 -8.78
1534.5 15 20 1534.5 15 20 1534.5 15.17 18.89
1633.5 13 -30 1633.5 13 -30 1633.5 13.29 -30.17
1732.5 11 12 1732.5 11 12 1732.5 11.17 10.92
1831.5 9 -8 1831.5 9 -8 1831.5 9.249 -8.93
1930.5 7 9 1930.5 7 9 1930.5 7.233 7.42
2029.5 5.5 9 2029.5 5.5 9 2029.5 5.75 7.46
2128.5 3 35 2128.5 3 35 2129 3.207 12.71
2160 2.2 -4 2160 2.2 -4 2160 2.447 -5.46

2227.5 3 -32 2227.5 3 -32 2227.5 3.243 -31.1
2326.5 2 7 2326.5 2 6.95 2326.5 2.243 4.07
2425.5 1 2 2425.5 1 1.95 2425.5 1.278 -0.95
2524.5 0.5 1 2524.5 0.5 0.96 2524.5 0.7768 -0.17
*Errors are shown bold and italic
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The harmonic frequencies estimated by WT-based algorithm are practically 100% correct. 

The highest amplitude detection error found is only 0.2% and the highest initial phase 

detection error is 2.5%.

The harmonic frequencies estimated by DFT-based algorithm are practically 100% correct. 

However, the amplitudes and initial phase angles estimated by DFT-based algorithm are 

erroneous. For amplitudes detection, the highest error is 27.8%, while the highest initial 

phase detection error is as high as 148%. The errors in amplitudes and initial phases at 

harmonics with small amplitudes are very significant. It can be observed from the results in 

Table 8.4 that DFT-based algorithm is quite good at frequency estimation. This is expected 

as DFT is a frequency domain analysis tool. As WT is regarded as a time-frequency 

domain analysis tool, it can be used to estimate frequency, amplitude and phase with high 

accuracy.

8.2.3 Stationary Harmonic Signal with Even Harmonics of Small Amplitudes

The purpose of the test is to investigate whether the WT-based algorithm is able to estimate 

the harmonics of very small amplitude compared to adjacent harmonics. The harmonic 

signal contains a sum of harmonic components as shown in Table 8.5.

Table 8.5 Harmonics in synthesized signal

F requency  (H z) A m plitude In itia l P hase  (deg.)

49.95 1.524 0
99.9 0.059 -10

149.85 0.288 4
199.8 0 .054 -12

249.75 1.254 -5
349.65 0.925 11
399.6 0.03 7

449.55 0.133 -16
549.45 0.54 15
649.35 0.301 -6
749.25 0.044 -9
849.15 0.126 13
949.05 0.045 -20

The waveform of the synthesized harmonic signal is shown in Fig. 8.10.
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Harmonic Signal
Time Period=0.28s, Sampling Frequency=2500Hz

Fig. 8.10 Waveform of synthesized harmonics signal

The minimum separation frequency fsep is set as 30Hz. The minimum sampling frequency 

is determined by (7.4) as follows.

f s
> 4 fn

2 f n - f s sep

4xl0 0 0 2
2 x1 0 00-40

= 2040.82Hz 2041H z .

The minimum sampling frequency is chosen as 2500Hz.

From (7.2), > (0 - 1 1
n

= 0.483 » 0.5 .

For detection of adjacent frequencies with large difference in amplitude, x = 0.002 is 

required. The value of y would then be calculated by (7.2) as 0.8. The value of y would 

affect the time length required of the harmonic signal for analysis.
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The minimum signal time length for x=0.1 by (7.2) and (7.8) is

T > 5
K f s e p +  ^  f L j

1
40 2x50

= 0.175s » 0.18s .

The minimum signal time length for x=0.002 by (7.2) and (7.8) is

T > 8
1 1

K f s e P 2 f L j

(
=  8 1 1

40 2x50
= 0.28 s

The proposed WT-based algorithm is used to analyze the harmonic signal with signal 

lengths of T = 0.18s and 0.28s respectively.

The detection results of harmonic frequencies, their respective amplitudes and initial phase 

angles by the WT-based algorithm are presented in Table 8.6 .

DFT-based algorithm implemented with FFT is also used to estimate the harmonics. In 

order to achieve a frequency resolution of 0.05Hz, the fft no. used is 2500/0.05=50000. A 

hamming window represented by (4.10) is applied to reduce the effect of discontinuities at 

the window edges and the leakages.

The amplitudes estimated by FFT are scaled by 0.54 for the hamming window, and by the 

ratio of fft no. to data number for correction to the amplitudes.

The harmonic frequencies, their respective amplitudes and initial phase angles estimated 

by the FFT are presented in Table 8.6 .



Chapter 8 Application Studies 116

Table 8.6 Even-harmonics estimated by WT-based algorithm & DFT-based algorithm

Tim e Period =  0.28s
DFT-based algorithm WT-based algorithm

Freq
(H z) Amp Phase

(deg.) % freq Er % Am p Er %Phase Er Freq
(Hz) Amp Phase

(deg-)
% freq Er % Am p Er %Phase Er

49.95 1.523 0 0 0 0 49.95 1.524 0 0 0 0
100.35 0.06 -31.7 -0.45 -1.69 -217 99.9 0.059 -10 0 0 0
149.9 0.288 1.5 0 0 62.5 149.85 0.288 4 0 0 0

199.65 0.055 -4.4 0 -1.85 63.3 199.8 0.054 -12 0 0 0
249.75 1.253 -5 0 0 0 249.75 1.254 -5 0 0 0
349.7 0.925 8.5 0 0 22.7 349.65 0.925 11 0 0 0

400.45 0.033 -34 -0.213 -10 585.7 399.6 0.03 7 0 0 0
449.7 0.134 -23.2 0 -0.75 -45 449.55 0.133 -16 0 0 0
549.5 0.54 12.5 0 0 16.7 549.45 0.54 15 0 0 0
649.4 0.301 -8.4 0 0 -40 649.35 0.301 -6 0 0 0
749.6 0.045 -25.1 0 -2.27 -178.9 749.25 0.044 -9 0 0 0
849.3 0.127 5.7 0 -0.79 56.2 849.15 0.126 13 0 0 0

949.25 0.045 -28.5 0 0 -42.5 949.05 0.045 -20 0 0 0

Tim e Period =  0.18s
DFT-based algorithm WT-based algorithm

Freq
(H z) Amp Phase

(deg.) %freq Er % Am p Er %Phase Er Freq
(Hz) Amp Phase

(deg.) %freq Er % Am p Er %Phase Er

49.95 1.523 0 0 0 0 49.95 1.524 0 0 0 0
100.8 0.063 -37.7 -0.901 -6.78 -277 99.95 0.059 -11.64 0 0 -16.4

149.95 0.289 0.78 0 -0.35 80.5 149.85 0.288 4 0 0 0
199.6 0.056 -5 0.1 -3.7 58.3 199.8 0.054 -12 0 0 0

249.75 1.253 -5 0 0 0 249.75 1.254 -5 0 0 0
349.7 0.925 9.38 0 0 14.7 349.65 0.925 11 0 0 0
401.1 0.036 -40 -0.375 -20 671.4 399.6 0.03 7 0 0 0
449.9 0.135 -26.7 0 -1.5 -66.9 449.55 0.133 -16 0 0 0

549.55 0.541 11.8 0 -0.19 21.3 549.45 0.54 15 0 0 0
649.5 0.302 -10.6 0 -0.33 -76.7 649.35 0.301 -6 0 0 0
750 0.047 -30.8 -0.1 -6.82 -242.2 749.25 0.044 -9 0 0 0

849.45 0.128 3.6 0 -1.59 72.3 849.15 0.126 13 0 0 0
949.55 0.047 -33.1 0 -4.44 -65.5 949.05 0.045 -20 0 0 0

It can be seen that the estimation results by DFT-based algorithm are largely affected by 

the signal length. The DFT-based algorithm requires a longer signal length for more 

accurate estimations. In both cases of T=0.18s and T=0.28s, the percentage errors in 

frequency detection by DFT-based algorithm are smaller than 1 %, the percentage errors in 

amplitude detection are quite significant at signal length of 0.18s. In both signal time 

lengths, the phase angles estimated by DFT-based algorithm are not reliable. It is 

understandable as phase angle detection is dependent on the accuracy in frequency 

detection and amplitude detection.

On the other hand, the estimation results in frequencies, amplitudes and initial phase angles 

produced by the proposed WT-based harmonic detection algorithm are exactly equal to the 

synthesized signal for both T=0.18s and T=0.28s. A frequency detection error of 0.05% is 

found at a harmonic frequency of 99.9Hz with signal length of 0.18s. The corresponding 

initial phase detection error is 16.4%.
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As the amplitude of the 99.9Hz harmonic is 0.059 which is very small compared to the 

amplitude of the adjacent 49.95Hz harmonic (amplitude=1.524, the ratio is 0.04:1) and 

149.85Hz harmonic (amplitude=0.288, the ratio is 0.2), the wavelet filter constructed for 

the 99.9Hz harmonic would be distorted slightly by the amplitudes of adjacent harmonics.

Based on the above analysis, it can be seen that the proposed WT-based algorithm requires 

a shorter signal for harmonic analysis with more accurate results, as compared to 

DFT-based algorithm. The WT-based algorithm is also able to estimate harmonic 

frequencies of very small amplitudes.

8.3 Field Harmonic Signal Analysis

Three tests are conducted. The first two tests dealt with the analysis of field waveforms 

obtained from the red-phase input current to a three-phase variable speed drive supplying a 

submersible water pump. The waveform of the input current to the VSD with its output 

frequency at 20Hz and 30Hz respectively are being analyzed. The third test is conducted to 

the current of a single-phase final circuit supplying power to a number of single loads 

including an electronic dimmer-controlled lamp bulb, fluorescent luminaries complete with 

electronic ballasts, a hairdryer and an air compressor motor.

8.3.1 Input Current to a Three-Phase Six-Pulse Variable Speed Drive

The field harmonic signal used is obtained from the red-phase input current to a 

three-phase variable speed drive supplying a submersible water pump. The frequency of 

the output voltage of the variable speed drive is set at 20Hz. Given the nature of a six-pulse 

three-phase VSD, the input current would contain 5th, 7th, 11th, 13th, 17th and 19th ... 

harmonics. The input current waveform is sampled at 10kHz. A low pass filter with a 

cutoff frequency of 4kHz is applied. By checking zero crossing, the average fundamental 

frequency of the harmonic signal for a time period of 0.6s, i.e. 30 cycles of the 

fundamental frequency, is 49.958Hz. The whole time period of the field harmonic signal is 

shown in Fig. 8.11. Fig. 8.12 shows two cycles of the field harmonic signal.
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Harmonic Signal

Fig. 8.11 Waveform ofVSD input current (T = 0.6s)

Harmonic Signal
Time Period = 0.04s, Sampling Frequency = 10000Hz

Fig. 8.12 Waveform of two cycles ofVSD input current
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Due to waveform variations, even harmonics of small magnitudes may exist in the 

harmonic signal, therefore the separation between adjacent frequencies, fsep, should be set 

to 25Hz. The minimum signal time length is calculated as in (7.8),

T>12 1 1

fJ  sep 2 / ,
=  12

1 1 \

¿7 V25 2x50
= O.6 5 .

J

A field signal with the time length T = 0.6s is used for analysis by both the WT-based 

algorithm and DFT-based algorithm. The frequency resolution is selected as 0.02Hz.

The harmonics estimation results of the input current to VSD by the WT-based algorithm 

and the DFT-based algorithm are tabulated in Table 8.7.

Table 8.7 Harmonics estimated by WT-based algorithm & DFT-based algorithm for VSD 
_______________ ______input current (output frequency = 20Hz)_____________________

H arm onic
No.

Expected
Frequency

(H z )*

W T-based a lgorithm DFT-based a lgorithm
Frequency

(H z) %  E rro r A m p litude In it ia l Phase 
(deg.)

Frequency
(H z) %  E rro r A m p litude In itia l Phase 

(deg.)
1 49.958 49.96 - 0.004 1.526 -56.31 49.96 - 0.004 1.522 -56.37
2 99.916 100.16 - 0.244 0.066 -40.77 100.08 - 0.164 0.062 -34.85
3 149.874 149.86 0.009 0.276 92.67 149.86 0.009 0.278 92.65
4 199.832 199.54 0.146 0.057 -117.52 199.62 0.106 0.055 -124.68
5 249.79 249.78 0.004 1.257 -95.58 249.78 0.004 1.255 -95.53
7 349.706 349.7 0.002 0.928 141.91 349.7 0.002 0.927 141.85
8 399.664 399.82 - 0.039 0.032 157.51 399.76 - 0.024 0.032 160.84
9 449.622 449.62 0 0.128 -93.31 449.6 0.005 0.129 -91.24
10 499.58 499.38 0.04 0.02 70.28 499.32 0.052 0.02 77.11
11 549.538 549.52 0.003 0.542 110.99 549.52 0.003 0.542 110.96
13 649.454 649.46 - 0.001 0.303 -3.87 649.44 0.002 0.3031 -1.74
15 749.37 749.34 0.004 0.0432 68.57 749.36 0.001 0.0435 66.72
17 849.235 849.28 0.001 0.1266 -37.87 849.28 0.001 0.1271 -37.98
19 949.145 949.2 0 0.0455 -128.44 949.18 0.002 0.0455 -126.26

*note: based on a fundamental frequency o f4 9 .9 58 H z.

Besides the characteristic harmonics of a six-pulse three-phase VSD, the harmonic signal 

contains triplen harmonics and even harmonics. The triplen harmonics may be produced by 

the single-phase control circuit. The even harmonics are of very small amplitudes which 

may be due to waveform asymmetry produced by load changes and the thyristor switching, 

or errors introduced during measurements.

Comparing the odd harmonics, both the DFT-based algorithm and the WT-based algorithm 

give nearly identical estimated harmonic frequencies. The estimated amplitudes and initial
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phase angles by both DFT-based algorithm and WT-based algorithm are also comparable.

The above test is repeated with the VSD output frequency changed to 30Hz. By checking 

zero crossing, the average fundamental frequency of the harmonic signal for a time period 

of 0.6s, i.e. 30 cycles of the fundamental frequency is 49.983Hz.

The results are shown in Table 8.8. It can be seen that the accuracy in the estimations by 

both WT-based algorithm and DFT-based algorithm are comparable to that shown in Table 

8.7.

Table 8.8 Harmonics estimated by WT-based algorithm & DFT-based algorithm for VSD 
_______________ _____ input current (output frequency = 30Hz)_____________________

Harm onic
No.

Expected
Frequency

(H z)*

W T-based a lgorithm DFT-based a lgorithm
Frequency

(H z) %  E rror A m p litude In it ia l Phase 
(deg.)

Frequency
(H z) %  E rro r A m p litude In it ia l Phase 

(deg.)
1 49.983 49.98 0.006 3.7372 -77.61 49.98 0.006 3.7348 -77.64
2 99.966 100.02 - 0.054 0.1094 -68.73 100.14 - 0.174 0.1111 -81.82
3 149.949 149.96 - 0.007 0.5336 26.11 149.96 - 0 .007 0.536 26.26
4 199.932 199.9 0.016 0.0901 130.08 199.76 0.086 0.09 147.33
5 249.915 249.92 - 0.002 2.7426 153.95 249.92 - 0.002 2.742 154.01
7 349.881 349.88 0 1.8322 -8.39 349.88 0 1.8323 -8.33
9 449.847 449.9 - 0.012 0.1506 56.01 449.9 - 0.012 0.1508 56.07
11 549.813 549.82 - 0.001 0.6762 -133.37 549.82 - 0.001 0.6761 -133.27
13 649.779 649.78 0 0.2324 74.99 649.78 0 0.2322 75.1
15 749.745 749.8 - 0.007 0.0507 50.02 749.78 - 0.005 0.0514 52.29
17 849.711 849.76 - 0.006 0.046 163.05 849.74 - 0.003 0.0459 165.34
19 949.677 949.68 0 0.065 -23.73 949.68 0 0.0648 -23.91

*note: based on a fundamental frequency o f4 9 .9 83 H z.

8.3.2 Single-Phase Non-linear Loads

Fig. 8.13 and Fig. 8.14 show respectively the complete waveform and the waveform of 

four cycles of the current taken from a single-phase final circuit rated at 220volt ± 6%, 

50Hz ± 2% and is supplying power to an electronic dimmer controlled lamp bulb, 

fluorescent luminaries complete with electronic ballasts, a hairdryer and an air compressor

motor.
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H arm onic S ignal
T im e  P erio d=0.6s , Sam pling F req u en cy= 1 000 0H z

Fig. 8.13 Waveform of single-phase input current (T = 0.6s)

Harmonic Signal
T im e Period=0.08s, Sam pling F requen cy=10000H z

Fig. 8.14 Waveform of four cycles of single-phase input current
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The fsep used and the signal time length are set to 25Hz and 0.6s respectively, which are the 

same as in Section 8.3.1. By checking zero crossing, the average fundamental frequency of 

the harmonic signal for a time period of 0.6s, i.e. 30 cycles of the fundamental frequency is 

50.026Hz. The estimation results by both WT-based algorithm and DFT-based algorithm 

are tabulated in Table 8.9.

Table 8.9 Harmonics estimated by WT-based algorithm & DFT-based algorithm
for single-phase input current

H arm onic
No.

Expected
Frequency

(H z )*

W T-based a lgorithm DFT-based a lgorithm
Frequency

(Hz) %  E rror A m plitude In it ia l Phase 
(deg.)

Frequency
(H z) %  E rror A m p litude In it ia l Phase 

(deg.)
1 50.026 50.02 0.012 10.3274 34.52 50.02 0.012 10.3269 34.49
3 150.078 150.08 - 0.001 1.4587 56.71 150.1 - 0.015 1.4595 54.54
4 200.104 200.08 0.012 0.7041 173.66 200.08 0.012 0.702 173.45
5 250.13 250.14 - 0.004 0.9474 6.68 250.16 - 0.012 0.9497 4.49
6 300.156 300.14 0.005 0.5211 72.4 300.18 - 0.008 0.5207 67.62
7 350.182 350.18 0.001 0.6644 -105.87 350.18 0.001 0.6658 -105.69
8 400.208 400.16 0.012 0.2018 -6.56 400.3 - 0.023 0.2026 -21.96
9 450.234 450.24 - 0.001 0.8836 161.28 450.24 - 0.001 0.8824 161.2
11 550.286 550.28 0.001 0.6169 85.6 550.3 - 0.003 0.6154 83.16
13 650.338 650.3 0.006 0.1681 -25.5 650.4 - 0.01 0.1687 -36.81
14 700.364 700.36 0.001 0.373 -168.56 700.38 - 0.002 0.3718 -170.73
15 750.39 750.28 0.015 0.0408 -85.81 750.48 - 0.012 0.0408 -105.58
16 800.416 800.4 0.002 0.3209 105.95 800.44 - 0.003 0.3184 101.25
17 850.442 850.44 0 0.2543 -69.93 850.48 - 0.004 0.2562 -74.19
18 900.468 900.44 0.003 0.1654 21.48 900.52 - 0.006 0.1645 12.24

*note: based on a fundamental frequency o f  50.026Hz.

It can be seen that the harmonic signal contains odd harmonics and even harmonics. The 

even harmonics are of small amplitudes which may be due to waveform asymmetry 

produced by load changes and switched mode power supply switching, or errors 

introduced during measurements.

Both WT-based algorithm and DFT-based algorithm are able to estimate the harmonic 

frequencies accurately as compared to the expected harmonic frequencies of the field 

harmonic signal with an average fundamental frequency of 50.026Hz. In a strict sense, the 

WT-based algorithm is slightly better but the difference is very small. The amplitudes of 

the harmonics estimated by both WT-based algorithm and DFT-based algorithm are 

comparable. However there are large deviations in initial phase estimations.
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8.4 Conclusion

The proposed WT-based algorithm is tested vigorously by both synthesized harmonic 

signals and field harmonic signals. It is observed from the test results that the proposed 

WT-based algorithm is better than DFT-based algorithm in frequency estimation when the 

harmonic signal contains harmonic frequencies which are not integer multiples of the 

fundamental frequency. On amplitude and initial phase estimations, the WT-based 

algorithm is obviously better than DFT-based algorithm. In addition, the proposed 

WT-based algorithm requires a shorter signal length as compared to DFT-based algorithm 

for harmonic analysis with reasonable accuracy.



Chapter 9

The Wavelet-Based Dynamic Waveform 
Reconstruction Algorithm

9.1 Introduction

In Chapter 8, the proposed WT-based algorithm is tested with synthesized harmonic signals 

and field harmonic signals. The results showed that the proposed WT-based algorithm is 

able to estimate the amplitudes, frequencies and initial phase angles of the harmonics 

accurately. The proposed WT-based algorithm requires a finite length of the harmonic 

signal for the estimation, and this is inevitable as in any harmonic estimation tools such as 

DFT. The variation in amplitudes of any harmonic frequency components within the 

analysis period will be averaged in the estimation process. If the time length of the 

harmonic signal required for the analysis is very short and if the signal amplitude is only 

varying very slightly, the amplitudes estimated can be regarded as truly reflecting the 

amplitudes of the harmonics. Otherwise, the amplitudes estimated are only approximates 

[79], This Chapter will go on developing a WT-based dynamic waveform reconstruction 

algorithm to reconstruct the harmonic waveforms from the complex CWT coefficients. 

This is useful for identifying the amplitude variations of the harmonics over the estimation 

period [80,81].

9.2 Basic Theory

The WT of a continuous signal, f(t), is defined in (3.5) as
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From (5.29), the modified CMW is represented as

A  , 1 1 ~(-)2/fb ]2*fc(-)
<P(~) = ---- J = re a ea a ^ n fb

The complex continuous wavelet transform by using the modified CWM is given as

Wfu,a)=(f,<pua)= j f ( t ) ~ j= e
1 1 -f—T'/t -m[—)i  ) 0 i d ,dt. (9.1)

The real part and imaginary part of the complex wavelet coefficients generated by (9.1) are 

represented as

+0° 1 1 f / f
Re[Wflu,d)}= \f{t)— “ ‘cos[% -« ) )* ;

I  a 47If b a
(9.2)

, _ . (/-uY ̂
Im[hy(M,a)]=- [ f i t)— v a * sin[^(f-w)}# 

-i a ^ f b a

-  //* (9.3)

Given a harmonic signal represented as

f ( t )  = Acos(cot) , (9.4)

the real part of the complex CWT coefficient for (9.4) is given as

+ r 1 1  'i 'T  co
Re[W f(u ,a)]=  \[Acos(cot)]----- ¡ ^ e ^ a) cos[— (t -u )]d t

1  a

A +r -i— 'i 'T  _  ,j e   ̂ '  cos(cot)cos[— ( t - u ) ] d t°f_
a

(9.5)
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Let x = t-u, then t = x+u and dt = dx. Substituting this into (9.5)

A +0° -f — I / f
R e [ W f( u ,a ) ] ~ — - ¡ =  fe cos[ co( x  + u )] cos( —  x )dx  . (9.6)/ srrf J H

b — °o

Replace x by t again in (9.6) becomes

j  +w _f  O  / f  ft)
R e [W f(u ,a )]= — 7 =  \ e ^ a' cosf co(t + u)] cos( —  t)d t

- t  a
(9.7)

The wavelet coefficient will be the largest when the frequency of a harmonic signal is

co„
equal to the wavelet centre frequency at a given dilation. Therefore substitute co = —

from (5.8) into (9.7),

a +c° j / fb
R e [ W f ( u , a ) ] ~ — ¡ =  c o s [  a>(t + u ) ]  c o s (  c o t )d t

- t

A +7 -f-Y /A .
j e  w  [ c o s (  co u ) c o s  (  cot) -  s in (  cou ) s i n (  cot ) c o s (  cot ) ]  d t

(9.8)

-l

From (9.3), the imaginary part of the complex CWT coefficient for (9.4) is given as

+ C° 1 1  -f t~U'\ / fb
Im[Wf ( u,a)] = -  f Acos(cot)----7= e  “ sin[— (t -u )]d t

-t a dTfb a
A +Q0 - ( /  fb

= --------------- j =  [  e  ^  a '  co s ( c o t ) s i n [ — ( t  -  u ) ] d t
adrfb -t a

(9.9)

By change of variable in (9.9), as in (9.6) and (9.7) for the real part of the complex CWT

coefficient, and substituting c o - —  gives
a

Im [W f(u,a)J
A  +r - 1 / tb-----7= je  KaJ cos[ co(t + u)] sin( cot )dt ■

ad r fb - i
(9.10)
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Shifting the imaginary part of the complex CWT coefficient by 90° backward in time, 

(9.10) becomes

nIm[Wf (u + — ,a)]  -----j—
2co ay 7Ub

A +0° ~1 /fb jc
cos[co(t + u + —— )]sin(cot)dt

2(o

^  +o° _fi.) / fb
—t=  [cos( (ou)sin2 (a>t) + sin( a>u)sin( a>t)cos( (Ot)] dt
Hrfb - t

(9.11)

Adding (9.8) and (9.11) produces,

Re[W f ( u,a )] + Im [W f(u  + — ,a )]
2 (0

+  oo

cos((ou) |
-OO

dt

=  - T  — C0S( (0U)( a^nfb)  

-  Acos( cou)

(9.12)

(9.12) verifies mathematically that for any sinusoidal waveform of sufficient length and by 

using the modified CMW for the complex CWT, the waveform can be fully reconstructed 

by adding the real part of the corresponding complex CWT coefficients to the imaginary 

part of the corresponding complex CWT coefficients being shifted backward in time by 90°.

(9.12) also verifies that the reconstruction is time-invariant. The instantaneous phase of the 

harmonic component is preserved in the reconstructed waveform.

9.3 Waveform Reconstruction Algorithm

From the proof in Section 9.2, it can be seen that once the harmonic frequency of a 

harmonics component in a harmonic signal can be determined, the waveform variations of 

the harmonics would be reconstructed easily from the complex wavelet coefficients. Fig.

9.1 shows the flowchart of the WT-based dynamic waveform reconstruction algorithm.
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Fig. 9.1 Flow chart of the WT-based dynamic waveform reconstruction algorithm

9.4 Waveform Reconstruction of Synthesized Waveforms

Three tests are conducted to verify the effectiveness of the wavelet-based waveform 

reconstruction algorithm. In the first test, the WT-based waveform reconstruction algorithm 

is being tested with a synthesized waveform of ten cycles at 50Hz, with an amplitude of 1. 

One of the cycles is a sag [82] with an amplitude of 0.5. In the second test, the algorithm is 

being tested with a synthesized waveform containing ten cycles o f waveform at 50Hz with 

slowly-varying amplitudes. The third test is conducted to a harmonic waveform consisting 

of the waveform in the second test together with some harmonics.
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9.4.1 Synthesized Waveform with One Cycle of Sag

Consider a synthesized waveform of unity amplitude and a frequency of 50Hz, represented 

as

f(t)=cos(27r50t-90°). (9.13)

The waveform has 10 cycles (i.e. time period = 0.2s). The 5th cycle of the synthesized 

waveform in (9.13) is replaced by a sag with an amplitude of 0.5, as shown in Fig. 9.2. It is 

sampled at 2000Hz.

Fig. 9.2 Waveform of synthesized signal with one cycle of sag

By using the WT-based reconstruction algorithm developed in Section 9.2 the synthesized 

waveform is reconstructed from the complex wavelet coefficients. Fig. 9.3 shows the 

comparison between the synthesized waveform and the reconstructed waveform.
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Comparison of the Harmonic Signal and the Reconstructed Signal 
Time Period=0.2s, Sampling Freqeuncy=2000Hz

Fig. 9.3 Synthesized waveform vs. reconstructed waveform (sag)

Most part of the reconstructed waveform coincides with the synthesized waveform. Due to 

the finite support of the modified CMW and the abrupt change in the amplitude of the 

waveform in a short duration, the reconstructed waveform unavoidably has a small error at 

the negative peak of the sag. From this test, it can be seen that the proposed waveform 

reconstruction algorithm is able to reproduce a sudden variation in a waveform, with the 

variation as short as one cycle.

9.4.2 Synthesized Waveform with Slowly-Varying Amplitudes

Consider again the waveform simulated by (9.13). The synthesized waveform is modified 

such that the amplitudes of the cycles of the waveform are slowly varying, as shown in Fig. 

9.4.



Chapter 9 The Wavelet-Based Dynamic Waveform Reconstruction Algorithm  131

Harmonic Signal with Slowly Varying Amplitudes 
Time Period=0.2s. Sampling Frequency=2000Hz

Fig. 9.4 Waveform of synthesized signal with slowly-varying amplitudes

By using the WT-based reconstruction algorithm shown in Fig. 9.1, the synthesized

waveform is reconstructed from the complex wavelet coefficients. Fig. 9.5 shows the

comparison between the synthesized waveform and the reconstructed waveform.

Comparison of Harmonic Signal and the Reconstructed Signal 
Time Period=0.2s, Sampling Frequency-2000Hz

Fig. 9.5 Synthesized waveform vs. reconstructed waveform 

(slowly-varying amplitudes)
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It can be seen that with a waveform of slowly-varying amplitudes, the proposed waveform 

reconstruction algorithm is able to reproduce the waveform exactly. The proposed 

algorithm can estimate and reproduce variations as short as one cycle.

9.4.3 Synthesized Harmonic Waveform

The synthesized waveform with slowly-varying amplitudes in Fig. 9.4 is now mixed with 

harmonics synthesized as

0.5cos(27il50t)+0.3cos(27t250t+45°)+0.2cos(27r350t). (9-14)

The synthesized harmonic waveform is sampled at 2000Hz and the signal length is 0.2s. 

Fig. 9.6 shows the synthesized harmonic waveform.

■ -t  ■ ............-■ :Harmonic Signal with Fundamental Frequency of Varying Amplitudes 
Time Period=0.2s, Sampling Frequency=2000Hz

Fig. 9.6 Synthesized harmonics with slowly-varying amplitudes

Fig. 9.7 shows the comparison of the reconstructed waveform at fundamental frequency 

and the synthesized fundamental frequency waveform with slowly-varying amplitudes.
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Comparison of the Harmonic Signal and the Reconstructed Signal

Fig. 9.7 Synthesized waveform vs. reconstructed fundamental waveform 

(slowly-varying amplitudes)

The reconstruction algorithm is not affected by the presence of other harmonic frequencies 

and is nearly exact for most part of the waveform.

Table 9.1 summarizes the waveforms reconstruction results for the three synthesized 

waveforms.

9.5 DWT-Based Waveform Reconstruction

Discrete wavelet transform (DWT) has been using for detection o f waveform variations by 

many researchers and has very prominent applications in power transients detection [83]. 

The three synthesized waveforms in Section 9.4 are also reconstructed by DWT to serve as 

a comparison to the proposed WT-based dynamic waveform reconstruction algorithm. 

Table 9.1 shows the comparison of reconstructions by DWT and the proposed WT-based 

dynamic waveform reconstruction algorithm.
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Table 9.1
Comparison of waveform reconstruction 

by DWT and the proposed algorithm

Synthesized Signal DWT-Based Reconstruction CWT-Based Reconstruction

Set Amplitude Estimated Amplitude %Error Estimated Amplitude %Error

+  peak - peak + peak - peak +  peak - peak +  peak - peak + peak - peak

(A ) Synthesized waveform with a sag at 5th cycle

5th cycle 0.5 -0.5 0.5241 -0.4909 4.82% 1.82% 0.5 -0.5117 0% 2.34%

(B ) Synthesized waveform o f slowly-varying amplitudes

3rd cycle 0.95 -0.95 0.9552 -0.9503 0.55% 0.03% 0.95 -0.9465 0% 0.37%

4th cycle 0.8 -0.8 0.8088 -0.8007 1.1% 0.09% 0.8 -0.7977 0% 0.29%

5 th cycle 0.7 -0.7 0.7064 -0.7006 0.91% 0.09% 0.7 -0.6977 0% 0.33%

6th cycle 0.6 -0.6 0.6069 -0.5961 1.15% 0.65% 0.6 -0.6023 0% 0.38%

7th cycle 0.7 -0.7 0.6993 -0.6936 0.1% 0.91% 0.7 -0.7023 0% 0.33%

8th cyle 0.8 -0.8 0.8 -0.7919 0% 1.01% 0.8 -0.8035 0% 0.44%

9th cycle 0.95 -0.95 0.9482 -0.9433 0.19% 0.71% 0.95 -0.9512 0% 0.13%

(C ) Synthesized waveform o f slowly-varying amplitudes and mixed with harmonics

3rd cycle 0.95 -0.95 1.022 -0.9696 7.58% 2.06% 0.944 -0.9217 0.63% 2.98%

4th cycle 0.8 -0.8 0.8764 -0.8215 9.55% 2.69% 0.794 -0.7791 0.75% 2.61%

5th cycle 0.7 -0.7 0.788 -0.7228 12.57% 3.26% 0.694 -0.6791 0.86% 2.99%

6th cycle 0.6 -0.6 0.7003 -0.6177 16.72% 2.95% 0.594 -0.6087 1% 1.45%

7th cycle 0.7 -0.7 0.7892 -0.714 12.74% 2% 0.6939 -0.7087 0.87% 1.24%

8th cyle 0.8 -0.8 0.8779 -0.8105 9.74% 1.31% 0.7939 -0.8161 0.76% 2.01%

9th cycle 0.95 -0.95 1.02 -0.9607 7.37% 1.13% 0.9438 -0.9513 0.65% 0.14%

The sampling frequency of the synthesized signal, as mentioned in Section 9.4 is 2000Hz, 

with a signal length of 0.2s. The Daubechies Db-8 type wavelet was chosen as the mother 

wavelet. The synthesized signals were decomposed up to the fourth-scale. The frequency 

bands at each scale are shown in Table 9.2. The signal, three detail coefficients, and the 

third approximation coefficients are shown in each case.

Table 9.2
Frequency bands at each scale

Scale F requency  B and
d l 500  - 1000H z
d2 250  - 500H z
d3 125 - 250H z
a3 0 - 125H z
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9.5.1 Synthesized Waveform with One Cycle of Sag

Fig. 9.8 shows the detailed wavelet analysis results of the waveform. The reconstructed 

waveform is shown at the third approximation.

Decomposition at level 3 : s = a3 + d3 + d2 + d1 .

50 100 150 200 250 300 350 400

Fig. 9.8 Reconstructed waveform at the approximation (sag at the 5th cycle)

9.5.2 Synthesized Waveform with Slowly-Varying Amplitudes

Fig. 9.9 shows the detailed wavelet analysis results of the waveform. The reconstructed 

waveform is shown at the third approximation.



Chapter 9 The Wavelet-Based Dynamic Waveform Reconstruction Algorithm 136

Fig. 9.9 Reconstructed waveform at the approximation (slowly-varying amplitudes) 

9.5.3 Synthesized Harmonics Waveform

Fig. 9.10 shows the detailed wavelet analysis results of the waveform. The reconstmcted 

waveform of the fundamental component is shown at the third approximation. The 

reconstructed waveform is seen to be distorted.
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Decomposition at level 3 : s = a3 + d3 + d2 + d1 .

Fig. 9.10 Reconstructed fundamental waveform at the approximation 
(slowly-varying amplitudes)

It can be seen from Table 9.1 that when the waveform contains a single frequency 

component only, DWT is able to reconstruct the variation in waveform amplitudes quite 

accurately. The proposed WT-based waveform reconstruction algorithm performs better 

over the DWT on positive peaks estimation, but is comparable with DWT on negative 

peaks reconstruction.

When the waveform contains fundamental component with slowly-varying-amplitudes and 

some harmonic frequencies, the waveform of the fundamental frequency component 

reconstructed by DWT is erroneous, while the proposed WT-based waveform 

reconstruction algorithm is able to reconstruct the waveform accurately. Another 

disadvantage of the DWT is that it would be difficult to reconstruct the waveforms of 

harmonics by DWT, but the proposed WT-based waveform reconstruction algorithm is able 

to reconstruct any harmonic components easily and efficiently.
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9.6 Waveform Reconstruction of Field Harmonic Waveforms

Two tests are conducted. The first test dealt with the analysis o f the field harmonic 

waveform discussed in Section 8.3.1. The second test is conducted to the field harmonic 

waveform discussed in Section 8.3.2.

9.6.1 Input Current to a Three-Phase Six-Pulse Variable Speed Drive

From Table 8.7 of Section 8.3.1, the field harmonic signal obtained from the red phase 

input current to a three-phase VSD drive with output frequency set at 20Hz has a 

fundamental component with the characteristics reproduced in Table 9.3.

Table 9.3 Estimated fundamental component of field harmonic waveform
(Section 8.3.1)

Sam pling  F requency 10000 H z
Tim e P eriod 0 .6  s
F requency 49 .96  H z
A m plitude 1.526 A
Initia l Phase -56.309°

By using the WT-based reconstruction algorithm in Fig. 9.1, the current at fundamental 

frequency is reconstructed to show the variation of the fundamental current within the time 

period of 0.6s. The reconstruction waveform is shown in Fig. 9.11 together with the field 

harmonic waveform for comparison.
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Fig. 9.11 Field harmonic signal vs. reconstructed waveform

It can be seen from Fig. 9.11 that the reconstructed current waveform at fundamental 

frequency coincides exactly with the field harmonic signal in terms of time location and 

frequency of oscillation. The reconstruction algorithm is also able to represent the 

variations in amplitude of the current waveform at fundamental frequency. The same 

reconstruction algorithm can also be used to represent the amplitude variations of other 

harmonic frequencies.

From Table 8.7 of Section 8.3.1, the major harmonics of the input current to the VSD 

(output frequency = 20Flz) is the 5th harmonics with the characteristics reproduced in Table 

9.4 below.

Table 9.4 Estimated 5th harmonics of field harmonic signal 
(Section 8.3.1)

Sam pling  F requency 10000 H z
T im e P eriod 0 .6  s
5th H arm onics 249 .78  H z
A m plitude 1.257 A
In itia l P hase -95.58°

Fig. 9.12 shows the reconstructed fundamental component and the 5th harmonics waveform
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together with the field harmonic waveform.

Reconstructed 1st and 5th Harmonic Waveforms 
and the Field Harmonic Waveform

Fig. 9.12 Field harmonic signal vs. reconstructed fundamental 
& 5th harmonic waveform

It can be seen from Fig. 9.12 that the reconstructed 5th harmonic waveform coincides with 

the peaks of the field harmonic waveform. The reconstruction algorithm is able to 

represent the variations in amplitude of the 5th harmonic waveform.

9.6.2 Single-Phase Non-linear Loads

From Section 8.3.2, the input current of a single-phase supply to a group of single-phase 

loads contained the fundamental current and 3rd harmonic current as shown in Table 9.5.

Table 9.5 Estimated fundamental & 5th harmonics of field harmonic signal
(Section 8.3.2)

Fundam ental C urren t 3 rd H arm onic C urren t
F requency 50.03 H z 150.08 H z
A m plitude 10.3274 A 1.4587 A
Initia l P hase 34.52° 56.71°
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Fig. 9.13 shows the reconstructed current waveform at fundamental frequency and the 3rd 

harmonics current waveform together with the field harmonic waveform.

Time (seconds)

Fig. 9.13 Field harmonic signal vs. reconstructed fundamental & 3rd harmonic waveform

It can be seen from Fig. 9.13 that the reconstructed current waveform at the fundamental 

frequency coincides exactly with the field harmonic signal in terms of time location and 

frequency of oscillation. The reconstruction algorithm is able to represent the variations in 

amplitude of the fundamental frequency waveform and the 3rd harmonic waveform.

9.7 Conclusion

A WT-based dynamic waveform reconstruction algorithm is proposed to reconstruct the 

harmonic waveforms from the complex CWT coefficients. This is useful for identifying the 

amplitude variations o f the harmonic frequency over the estimation period. The WT-based 

reconstruction algorithm is time-invariant and therefore is able to preserve the time and
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phase information of the harmonic waveform. The proposed WT-based waveform 

reconstruction algorithm is tested vigorously by both synthesized waveforms and field 

harmonic waveforms. DWT is also used to reconstruct the synthesized waveforms and it 

was found that the proposed algorithm is better than DWT in waveform reconstruction. 

The tests revealed that the algorithm is able to reconstruct any harmonic waveforms 

accurately. Due to the properties of the modified CMW, only small errors are found at 

negative peaks. The WT-based reconstruction algorithm is able to represent waveform 

variations of one cycle short.



Chapter 10

Conclusions

10.1 Overall Conclusions

With the advance of power electronics technologies and the increasing number of 

equipment being supplied by power electronic devices, power harmonics are drawing 

ever more attentions from engineers and researchers. Nowadays power harmonics include 

integer harmonics, sub-harmonics and inter-harmonics. The identification of power 

harmonics includes the estimation of frequencies, amplitudes and phases. The harmonics 

are time-invariant if  the electrical power system is supplying a steady electrical load and 

the configuration of the electrical power system is not altered. This is a rare condition; 

therefore power harmonics analysis involves time-invariant as well as time-variant 

harmonics. A new power harmonics analysis needs to be developed which should be able 

to identify harmonic frequencies, amplitudes and phases in regardless of whether the 

harmonics are integer harmonics, sub-harmonics or inter-harmonics. Moreover the 

harmonic signal length required for the analysis should be very short such that the 

analysis results would not be fooled by variations in the harmonics amplitudes due to 

dynamic load changes and other power system configuration alternations.

Having identified the limitations of the existing DFT-based harmonic analysis in modem 

applications, a new method based on wavelet transform was developed for harmonic 

analysis. Given the properties of wavelet transform which is able to represent a time 

signal in the time-frequency plane, it is most suitable for harmonic analysis. In particular, 

the complex continuous wavelet transform (CWT) was used because of its property to 

preserve phase information.
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In wavelet transform, the wavelet should be chosen with regard to the problems to be 

explored. The choice of a right mother wavelet is instrumental in extracting the right 

information from a signal. In Chapter 5, the simplified complex Morlet wavelet (CMW) 

was chosen for harmonic analysis. The shape of the CMW is smooth and harmonic-like. 

The CMW has the smallest Heisenberg box area; which means that it can achieve the best 

time-frequency localization. The CMW therefore is able to extract frequency information 

of a harmonic signal with the shortest signal length. The time-frequency localization of a 

CMW can be altered by the Q-factor of the wavelet which in turn is determined from its 

centre frequency and bandwidth parameter. The normalization factor o f the CMW was 

modified for detecting harmonics of very small amplitudes. Wavelet ridges were 

employed to extract frequency and amplitude information of harmonic components in a 

harmonic signal. For a given setting of the modified CMW, the CWT has high frequency 

localization at low frequency and low frequency localization at high frequency. This is 

not a desirable feature for harmonic analysis. It was suggested in Chapter 5 that the centre 

frequency of the CMW would be adapted to the harmonic frequencies to be estimated so 

that the same frequency localization would be maintained for all harmonic frequencies.

The filter banks generated by dilating the modified CMW have finite bandwidths. To 

avoid aliasing due to overlapping of the filters in frequency domain, Chapter 6 presented 

a necessary condition for the discrimination of adjacent harmonic frequencies, by suitably 

choosing the Q-factor of the modified CMW. With the modified CMW, it was found that 

the minimum sampling frequency required without aliasing is dependent on the Q-factor 

of the modified CMW, which lies in the range of 2 to 2.9 times the highest harmonic 

frequency under investigation. The minimum signal length required for the harmonic 

analysis was then determined based on the support and the Q-factor of the modified 

CMW. The procedures of estimating initial phase information from the wavelet 

coefficients were presented.

A WT-based harmonic analysis algorithm was developed in Chapter 7. The proposed 

algorithm is implemented with FFT for fast and efficient computation. Computational 

formulae for estimating the centre frequency o f the modified CMW for discriminating 

adjacent frequencies, minimum sampling frequency, minimum harmonic signal length, 

maximum scale and minimum scale were presented. It was suggested for accurate 

harmonic frequency estimation to determine scale dilation increments from the required



Chapter 10 Conclusions 145

frequency resolution. Practical issues of computation of the proposed algorithm including 

edge effect and signal data number required for phase estimation were taken into account 

in deriving the computation algorithm.

In Chapter 8, the WT-based harmonic analysis algorithm was tested vigorously by 

synthesized harmonic signals and field harmonic signals respectively. From the results of 

the synthesized harmonic signal tests, the proposed algorithm was found to able to 

identify exactly the frequencies, amplitudes and initial phases of any harmonic signals 

with a very short signal length. The robustness and reliability of the WT-based harmonic 

analysis algorithm was verified by the field harmonic signal tests. DFT-based algorithm 

was also used for the tests in Chapter 8 for comparison.

A WT-based dynamic waveform reconstruction algorithm was then developed in Chapter 

9 which is able to reconstruct the amplitude variations of the harmonic components in the 

harmonic signal with very high accuracy. The proposed algorithm was tested with 

synthesized waveforms and field harmonic waveforms respectively. From the results of 

the synthesized harmonic waveform tests, the proposed algorithm was able to reconstruct 

the harmonic waveform amplitude variations with error not greater than 3% in the worst 

case. The robustness and reliability of the proposed waveform reconstruction algorithm 

was verified by the field harmonic signal tests. Discrete wavelet transform based 

algorithm was also used for the tests in Chapter 9 for comparison of the reconstruction of 

the fundamental waveform.

Overall the WT-based harmonic analysis algorithm and dynamic waveform 

reconstruction algorithm are very effective and accurate in solving harmonic problems 

presented in this thesis. The only drawback of the algorithms is the computation time 

required. The proposed algorithms were implemented in Matlab standard software in 

Windows platform. The computation time would be effectively shortened by developing 

the computation algorithm in C++ language.
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10.2 Areas for Further Research

Many researches can be developed based on the studies presented in this thesis.

Upon solving the problem on computation time, a prototype power harmonics 

measurement device would be developed based on the proposed WT-based algorithms for 

real time power harmonics monitoring.

In [3], the trial IEEE Std. 1459-2000 proposes new definitions for the measurement of 

electric power quantities under sinusoidal, nonsinusoidal, balanced or unbalanced 

conditions. The new standard gives due considerations to the proliferation of nonlinear 

loads, and addresses their effects on the electrical power system and traditional power 

measurement instruments. New definitions of power quantities are suggested in the trial 

standard for appropriate instrumentation design. The WT-based harmonic analysis and 

waveform reconstmction algorithms proposed in this thesis is able to extract frequency 

and time information from the harmonic signal; these provide means for the estimation of 

instantaneous powers under sinusoidal and nonsinusoidal conditions. The new definitions 

suggested in the trial standard would be further developed based on wavelet coefficients.

Although the main objective of the thesis is to develop a new power harmonics analysis 

algorithm based on wavelet transform, the algorithm suggested has the important feature 

that can be further developed for the analysis of oscillatory transients, which are typically 

caused by line switching, capacitor switching and load switching. An integrated approach 

would also be developed based on the WT-based harmonic analysis and waveform 

reconstruction algorithms suggested in this thesis and DWT-based power disturbance 

analysis algorithm for comprehensive power quality analysis.
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