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associated p-Kazhdan–Lusztig polynomials, provided that the 
characteristic is greater than the Coxeter number. We hence 
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gebras, thus solving Libedinsky–Plaza’s categorical blob con-
jecture.
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1. Introduction

The symmetric group lies at the intersection of two great categorical theories. The 
first is Khovanov–Lauda and Rouquier’s categorification of quantum groups and their 
knot invariants [15,27]; this setting has provided powerful new graded presentations of 
the symmetric group and its affine Hecke algebra [8]. The second is Elias–Williamson’s 
diagrammatic categorification in terms of endomorphisms of Bott–Samelson bimodules; 
it was in this setting that the counterexamples to Lusztig’s conjecture were first found 
[28] and that the first general character formulas for decomposition numbers of symmetric 
groups were discovered [26] (in characteristic p > h, the Coxeter number).

The purpose of this paper is to construct an explicit isomorphism between these two 
diagrammatic worlds. This allows us to provide an elementary algebraic proof of [26, 
Theorem 1.9] and to vastly generalise this theorem to the quiver Hecke (or KLR) algebras 
Hn; we hence settle Libedinsky–Plaza’s categorical blob conjecture [17]. Understanding 
its simple modules is equivalent to understanding those of its cyclotomic quotients Hσ

n

for σ = (σ0, σ1, . . . , σ�−1) ∈ Z�. We prove that Hσ
n has graded decomposition numbers 

dλ,μ(t) equal to the p-Kazhdan–Lusztig polynomials of type

Ah0 × ... ×Ah�−1\Âh0+···+h�−1

provided that λ and μ have at most hm columns in the mth component (where hm �
σm+1 − σm for 0 � m < � − 1 and h�−1 < e + σ0 − σ�−1). We denote the set of such 
�-multipartitions by Ph(n) for h = (h0, . . . , h�−1) ∈ Z�

�0 and refer to such an h ∈ Z� as 
being (σ, e)-admissible. This is the broadest possible generalisation, in the context of the 
quiver Hecke algebra, of studying the category of tilting modules of the principal block 
of the general linear group, GLh(k), in characteristic p > h.

Theorem A. Let σ ∈ Z� and e ∈ Z>1 and suppose that h ∈ Z�
�0 is (σ, e)-admissible. 

We have a canonical isomorphism of graded Z-algebras between certain subquotients of 
the quiver Hecke algebra Hσ

n and Elias–Williamson’s diagrammatic category under which 
the simple and standard modules labelled by Ph(n) are preserved. The isomorphism is 
defined in equation (5.4).

Perhaps most importantly, our isomorphism allows one to pass information back and 
forth between these two diagrammatic categorifications for the first time. Combining 
our result with [8] allows one to import Soergel calculus to calculate decomposition 
numbers directly within the setting of the symmetric group (and more generally, within 
the cyclotomic quiver Hecke algebras). For instance, the key to the counterexamples of 
[28] are the mysterious “intersection forms” controlling decompositions of Bott–Samelson 
bimodules; in light of our isomorphism, these intersection forms can be seen simply as 
an efficient version of James’ classical bilinear form on the Specht modules of kSn, and 
the efficiency arises by way of idempotent truncation (in particular, the Gram matrices 
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of these forms are equal). In other words, by virtue of our isomorphism, one can view 
the current state-of-the-art regarding p-Kazhdan–Lusztig theory (in type A) entirely 
within the context of the group algebra of the symmetric group, without the need for 
calculating intersection cohomology groups, or working with parity sheaves, or appealing 
to the deepest results of 2-categorical Lie theory. In Subsection 7.3 we will explain that 
the regular decomposition numbers of cyclotomic quiver Hecke algebras are tautologically 
equal to p-Kazhdan–Lusztig polynomials, simply by the categorical definition of these 
polynomials.

Theorem B. The isomorphism of Theorem A maps each choice of light leaves cellular 
basis to a cellular basis element of Hσ

n. Thus the Gram matrix of the intersection form 
associated to the fibre of a Bott–Samelson resolution of a Schubert variety coincides with 
the Gram matrix of James’ bilinear form on the idempotent truncated Specht module for 
λ ∈ Ph(n).

In the other direction: Soergel diagrammatics is, at present, confined to regular blocks 
— whereas quiver Hecke diagrammatics is not so restricted — we expect our isomor-
phism to offer insight toward constructing Soergel diagrammatics for singular blocks. 
In particular, our isomorphism interpolates between the (well-understood) LLT-style 
combinatorics of KLR algebras and the (more mysterious) Kazhdan–Lusztig-style com-
binatorics of diagrammatic Bott–Samelson endomorphism algebras.

Symmetric groups. For � = 1 our Theorem A has the immediate corollary of reproving 
the famous result of Riche–Williamson (and later Elias–Losev) which states that regular 
decomposition numbers of symmetric groups are equal to p-Kazhdan–Lusztig polyno-
mials [26,11]. Our proof is conceptually simpler than both existing proofs, as it does 
not require any higher categorical Lie theory. Once one has developed the appropriate 
combinatorial framework, our proof simply verifies that the two diagrammatically de-
fined algebras are isomorphic by checking the relations. In this regard, our proof is akin 
to the work of Brundan–Kleshchev [8] and extends their ideas to the world of Soergel 
diagrammatics. We state the simplified version of Theorem A now, for ease of reference.

Corollary A. For k a field of characteristic p > h, we have an isomorphism of graded 
k-algebras between certain subquotients of kSn and Elias–Williamson’s diagrammatic 
category of type Ah−1\Âh−1. The decomposition numbers of symmetric groups labelled by 
partitions with at most h < p columns are tautologically equal to the p-Kazhdan–Lusztig 
polynomials of type Ah−1\Âh−1.

Blob algebras and statistical mechanics. The (generalised) blob algebras first arose as 
the transfer matrix algebras for the one-boundary Potts models in statistical mechanics. 
In a series of beautiful and prophetic papers [21–23], Paul Martin and his collaborators 
conjectured that these algebras would be controlled by non-parabolic affine Kazhdan–
Lusztig polynomials and verified this conjecture for level � = 2. It was the advent of quiver 
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Hecke and Cherednik algebras that provided the necessary perspective for solving this 
conjecture [7]. This perspective allowed Libedinsky–Plaza to push these ideas still further 
(into the modular setting) in the form of a beautiful conjecture which brings together 
ideas from statistical mechanics, diagrammatic algebra, and p-Kazhdan–Lusztig theory 
for the first time [17]. For h = (1�) our Theorem A verifies their conjecture, as follows:

Corollary B (Libedinsky–Plaza’s categorical blob conjecture). For k a field, we have an 
isomorphism of graded k-algebras, between certain subquotients of the generalised blob 
algebra of level � and Elias–Williamson’s diagrammatic category of type Â�−1. In par-
ticular the decomposition numbers of generalised blob algebras are tautologically equal to 
the p-Kazhdan–Lusztig polynomials of type Â�−1.

Weightings and gradings on cyclotomic quiver Hecke algebras. Recently, Elias–Losev 
generalised [26, Theorem 1.9] to calculate decomposition numbers of cyclotomic quiver 
Hecke algebras. However, we emphasise that our Theorem A and Elias–Losev’s work 
intersect only in the case of the symmetric group (providing two independent proofs of 
[26, Theorem 1.9]). In particular, Elias–Losev’s work does not imply Libedinsky–Plaza’s 
conjecture (as explained in detail in Libedinsky–Plaza’s paper [17]). This lack of overlap 
arises from different choices of weightings on the cyclotomic quiver Hecke algebra, we 
refer the reader to [17,7,19] for more details.

The structure and ideas of the paper. The isomorphism of this paper was a surprise to 
many of the experts in this field. This is because of the fundamental differences in the 
ways we think of Bott–Samelson endomorphism algebras versus quiver Hecke algebras. 
The elements of the former algebras are thought of as morphisms between words (in 
the Coxeter generators of Ŝh), their complex representation theory is controlled by 
Soergel’s algorithm, which can be thought of in terms of paths in the Bruhat graph of 
Sh � Ŝh. The elements of the latter algebras are thought of as “graded versions” of 
permutations, the complex representation theory of these algebras is controlled by the 
LLT algorithm, which can be thought of in terms of graded standard tableaux [16]. Of 
course the LLT algorithm and Soergel’s algorithm produce the same results, even though 
the steps involved appear quite different. One can think of this as being because the LLT 
algorithm has many more “degree zero steps” which simply “pad out” the tableaux. This 
is a good heuristic for this paper, which we now expound section by section.

Sections 2 and 3 introduce the combinatorics and basic definitions of quiver Hecke 
and diagrammatic Bott–Samelson endomorphism algebras in tandem. We provide a dic-
tionary for passing between standard tableaux (of the former world) and expressions 
in cosets of affine Weyl group (of the latter world) by means of coloured paths in our 
alcove geometries. We subtly tweak the classical perspective for quiver Hecke algebras 
by recasting each element of the algebra as a morphism between a pair of paths in the 
alcove geometry. Heuristically, we “equate the combinatorics” of the LLT and Soergel 
algorithms by writing tableaux/paths as the concatenation of component paths (each of 
which corresponds to a single reflection hyperplane).
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One of the core principles of this paper is that diagrammatic Bott–Samelson endomor-
phisms are simply a “condensed shorthand” for KLR path-morphisms. Section 4 details 
the reverse process by which we “dilate” simple elements of the KLR algebra and hence 
construct these path-morphisms. Section 4 also provides a translation principle by which 
we can see that a path-morphism depends only on the series of hyperplanes in the path’s 
trajectory, not the individual steps taken within the path. Heuristically, this translation 
principle says that “the degree zero steps in the LLT algorithm are unimportant”.

In Section 5, we recast the generators of the diagrammatic Bott–Samelson endomor-
phism algebra within the setting of the quiver Hecke algebra; this allows us to explicitly 
state the isomorphism, Ψ, of Theorem A. In Section 6 we verify that Ψ is a graded Z-
algebra homomorphism by recasting the relations of the diagrammatic Bott–Samelson 
endomorphism within the setting of the quiver Hecke algebra. This involves rewriting 
products of the path-morphisms in the KLR algebra one step at a time — for the prod-
ucts involving forks and spots there is a single “important step” in this procedure with 
the others corresponding to “LLT padding”.

Finally, in Section 7 we match-up the light leaves bases of these algebras under the 
map Ψ and hence prove that Ψ is bijective and thus complete the proofs of Theorems A
and B.

In Appendix A we provide a coherence theorem for weakly graded monoidal categories 
which allows us to relate the classical Bott-Samelson endomorphism algebras to certain 
breadth-enhanced versions which are more convenient for the purposes of this paper. 
The reader can think of this as inserting “extra monoidal identity padding” into the 
diagrammatic Bott–Samelson endomorphisms algebras which corresponds (on the KLR 
side of the isomorphism) to the steps of degree zero in paths/tableaux.

Finally we emphasise that the LLT/Soergel analogy above is motivated by the situ-
ation over C. This is merely a heuristic and our results work over a field of arbitrary 
characteristic (indeed, the isomorphism is actually proven to hold over the integers).

For the convenience of the reader we provide three tables summarising the notation 
used throughout the paper in Appendix B.

2. Parabolic and non-parabolic alcove geometries and path combinatorics

Without loss of generality, we assume that σ ∈ Z� is weakly increasing and e > h ∈
Z�1. We say that h = (h0, . . . , h�−1) ∈ Z�

�0 with h0 + h1 + · · · + h�−1 = h is (σ, e)-
admissible if hm � σm+1 − σm for 0 � m < � − 1 and h�−1 < e + σ0 − σ�−1. (This 
condition on h = (h0, . . . , h�−1) ∈ Z�

�0 is equivalent to the empty partition not lying on 
any hyperplane of our alcove geometry, so that the resulting Kazhdan–Lusztig theory is 
“non-singular”.)

2.1. Multipartitions, residues and tableaux

We define a composition, λ, of n to be a finite sequence of non-negative integers 
(λ1, λ2, . . .) whose sum, |λ| = λ1 + λ2 + ..., equals n. We say that λ is a partition 
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if, in addition, this sequence is weakly decreasing. An �-multicomposition (respectively
�-multipartition) λ = (λ(0), ..., λ(�−1)) of n is an �-tuple of compositions (respectively 
of partitions) such that |λ(0)| + ... + |λ(�−1)| = n. We will denote the set of �-
multicompositions (respectively �-multipartitions) of n by C�(n) (respectively by P�(n)). 
Given λ = (λ(0), λ(1), . . . , λ(�−1)) ∈ P�(n), the (dual) Young diagram of λ is defined to 
be the set of nodes,

[λ] = {(r, c,m) | 1 � r � (λ(m))c, 0 � m < �}.

Notice that we have taken the transpose-dual of the usual conventions so that the mul-
tipartitions are the sequences whose columns are weakly decreasing (this is a trivial, 
if unfortunate, relabelling inherited from our earlier work [3,4]). We do not distinguish 
between the multipartition and its (dual) Young diagram. We refer to a node (r, c, m) as 
being in the rth row and cth column of the mth component of λ. Given a node, (r, c, m), 
we define the content of this node to be ct(r, c, m) = σm + c − r and we define its residue
to be res(i, j, m) = ct(i, j, m) (mod e). We refer to a node of residue i ∈ Z/eZ as an 
i-node. Given λ ∈ C�(n) or P�(n), we let Rem(λ) (respectively Add(λ)) denote the set 
of all removable (respectively addable) nodes of the Young diagram of λ so that the 
resulting diagram is the Young diagram of an �-composition or an �-partition.

Given λ ∈ C�(n), we define a tableau of shape λ to be a filling of the nodes of λ with 
the numbers {1, ..., n}. We define a standard tableau of shape λ to be a tableau of shape 
λ such that entries increase along the rows and down the columns of each component. 
We let Std(λ) denote the set of all standard tableaux of shape λ ∈ P�(n). We let ∅
denote the empty multipartition.

Definition 2.1. Given a pair of i-nodes (r, c, m), (r′, c′, m′), we write (r, c, m) � (r′, c′, m′)
if either ct(r, c, m) < ct(r′, c′, m′) or ct(r, c, m) = ct(r′, c′, m′) and m > m′. For 
λ, μ ∈ P�(n), we write μ � λ if there is a bijective map A : [λ] → [μ] such that 
either A(r, c, m) � (r, c, m) or A(r, c, m) = (r, c, m) for all (r, c, m) ∈ λ.

Given S ∈ Std(λ) a, we write S↓�k or S↓{1,...,k} (respectively S↓�k) for the subtableau 
of S consisting solely of the entries 1 through k (respectively of the entries k through n). 
Given λ ∈ P�(n), we let Tλ denote the λ-tableau in which we place the entry n in the 
minimal (under the �-ordering) removable node of λ, then continue in this fashion induc-
tively. Given 1 � k � n, we let (rk, ck, mk) ∈ λ be the node such that T(rk, ck, mk) = k. 
We let AT(k) (respectively RT(k)) denote the set of all addable (respectively remov-
able) res(rk, ck, mk)-nodes of the multipartition Shape(T↓{1,...,k}) which are less than 
(rk, ck, mk) in the �-order. We define the (�)-degree of T ∈ Std(λ) for λ ∈ P�(n) as 
follows,

deg(T) =
n∑

(|AT(k)| − |RT(k)|) .

k=1
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Definition 2.2. Given h ∈ Z�
�0, we let Ph(n) ⊆ Ch(n) denote the subsets of �-

multipartitions and �-multicompositions with at most hm columns in the mth component 
for 0 � m < �.

If h ∈ Z�
�0 is (σ, e)-admissible, then deg(Tλ) = 0 for λ ∈ Ph(n).

Example 2.3. Let σ = (0, 3, 8) ∈ Z3 and e = 13. We note that h = (3, 5, 4) is (σ, e)-
admissible. We depict λ = ((5, 4, 2), (5, 4, 3, 22), (5, 32, 2)) ∈ Ph(n) along with the 
residues of this multipartition as follows:⎛⎜⎜⎜⎜⎜⎜⎝

9

0 1 2
12 0 1
11 12
10 11

,

3 4 5 6 7
2 3 4 5 6
1 2 3
0 1
12

,

4

8 9 10 11
7 8 9 10
6 7 8
5

⎞⎟⎟⎟⎟⎟⎟⎠ .

Notice that any given residue i ∈ Z/eZ appears at most once in a fixed row of the 
multipartition.

2.2. Alcove geometry

For ease of notation, we set Hm = h0+· · ·+hm for 0 � m < �, and h = h0+· · ·+h�−1. 
For each 1 � i � hm and 0 � m < � we let εi,m := ε(h0+···+hm−1)+i denote a formal 
symbol, and define an h-dimensional real vector space

Eh =
⊕

0�m<�
1�i�hm

Rεi,m

and Eh to be the quotient of this space by the one-dimensional subspace spanned by∑
0�m<�
1�i�hm

εi,m.

We have an inner product 〈 , 〉 on Eh given by extending linearly the relations

〈εi,p, εj,q〉 = δi,jδp,q

for all 1 � i, j � n and 0 � p, q < �, where δi,j is the Kronecker delta. We identify 
λ ∈ Ph(n) with an element of the integer lattice inside Eh via the map

λ �−→
∑

0�m<�

λ
(m)
i εi,m. (2.1)
1�i�hm



8 C. Bowman et al. / Advances in Mathematics 429 (2023) 109185
We let Φ denote the root system of type Ah−1 consisting of the roots

{εi,p − εj,q : 0 � p, q < �, 1 � i � hp, 1 � j � hq,with (i, p) 	= (j, q)}

and Φ0 denote the root system of type Ah0−1 × · · · × Ah�−1−1 consisting of the roots 
{εi,m − εj,m : 0 � m < �, 1 � i 	= j � hm}. We choose Δ (respectively Δ0) to be the 
set of simple roots inside Φ (respectively Φ0) of the form εt − εt+1 for some 1 � t � h, 
and write Φ+ (respectively Φ+

0 ) for the set of positive roots with respect to this choice 
of simple roots. Given r ∈ Z and α ∈ Φ we define sα,re to be the reflection which acts 
on Eh by

sα,rex = x− (〈x, α〉 − re)α.

The group generated by the sα,0 with α ∈ Φ (respectively α ∈ Φ0) is isomorphic to the 
symmetric group Sh (respectively to Sf := Sh0×· · ·×Sh�−1), while the group generated 
by the sα,re with α ∈ Φ and r ∈ Z is isomorphic to Ŝh, the affine Weyl group of type 
Ah−1. We set α0 = εh−ε1 and Π = Δ ∪{α0}. The elements S = {sα,0 : α ∈ Δ} ∪{sα0,−e}
generate Ŝh. We have chosen α0 = εh−ε1 (rather than α0 = ε1−εh) as this is compatible 
with our path combinatorics.

Notation 2.4. We shall frequently find it convenient to refer to the generators in S in 
terms of the elements of Π, and will abuse notation in two different ways. First, we will 
write sα for sα,0 when α ∈ Δ and sα0 for sα0,−e. This is unambiguous except in the 
case of the affine reflection sα0,−e, where this notation has previously been used for the 
element sα,0. As the element sα0,0 will not be referred to hereafter this should not cause 
confusion. Second, we will write α = εi − εi+1 in all cases; if i = h then all occurrences 
of i + 1 should be interpreted modulo h to refer to the index 1.

We shall consider a shifted action of the affine Weyl group Ŝh on Eh by the element 
ρ := (ρ0, ρ2, . . . , ρ�−1) ∈ Zh where ρm := (σm + hm − 1, σm + hm − 2, . . . , σm) ∈ Zhm , 
that is, given an element w ∈ Ŝh, we set w ·x = w(x +ρ) −ρ. This shifted action induces 
a well-defined action on Eh; we will define various geometric objects in Eh in terms of 
this action, and denote the corresponding objects in the quotient with a bar without 
further comment. We let E(α, re) denote the affine hyperplane consisting of the points

E(α, re) = {x ∈ Eh | sα,re · x = x}.

Note that our assumption that h ∈ Z�
�0 is (σ, e)-admissible implies that the origin 

does not lie on any hyperplane. Given a hyperplane E(α, re) we remove the hyperplane 
from Eh to obtain two distinct subsets E>(α, re) and E<(α, re) where the origin lies in 
E<(α, re). The connected components of

Eh \ (∪α∈Φ0E(α, 0))
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are called chambers. The dominant chamber, denoted E
+
h , is defined to be

E
+
h =

⋂
α∈Φ0

E
<(α, 0).

The connected components of

Eh \ (∪α∈Φ,r∈ZE(α, re))

are called alcoves, and any such alcove is a fundamental domain for the action of the 
group Ŝh on the set Alc of all such alcoves. We define the fundamental alcove A0 to be 
the alcove containing the origin (which is inside the dominant chamber). We note that 
the map Ph(n) → Eh ∩ Z�0{ε1, . . . , εh} restricts to be surjective when we restrict the 
codomain to the dominant Weyl chamber.

We have a bijection from Ŝh to Alc given by w �−→ wA0. Under this identification 
Alc inherits a right action from the right action of Ŝh on itself. Consider the subgroup

Sf := Sh0 × · · · ×Sh�−1 � Ŝh.

The dominant chamber is a fundamental domain for the action of Sf on the set of 
chambers in Eh. We let Sf denote the set of minimal length representatives for right 
cosets Sf\Ŝh. So multiplication gives a bijection Sf×Sf → Ŝh. This induces a bijection 
between right cosets and the alcoves in our dominant chamber. Under this identification, 
the alcoves are partially ordered by the Bruhat-ordering on Sf . (This is the opposite of 
the ordering, �, on multipartitions belonging to these alcoves.)

If the intersection of a hyperplane E(α, re) with the closure of an alcove A is generically 
of codimension one in Eh then we call this intersection a wall of A. The fundamental 
alcove A0 has walls corresponding to E(α, 0) with α ∈ Δ together with an affine wall 
E(α0, e). We will usually just write E(α) for the walls E(α, 0) (when α ∈ Δ) and E(α, e)
(when α = α0). We regard each of these walls as being labelled by a distinct colour (and 
assign the same colour to the corresponding element of S). Under the action of Ŝh each 
wall of a given alcove A is in the orbit of a unique wall of A0, and thus inherits a colour 
from that wall. We will sometimes use the right action of Ŝh on Alc. Given an alcove A
and an element s ∈ S we have that A = wA0 for some w under the identification above 
(that is, Ŝh to Alc given by w �−→ wA0). Thus the right action of s on A gives the 
element wsA0 in Alc, and this can easily be seen to be obtained by reflecting A in the 
wall of A with colour corresponding to the colour of s. With this observation it is now 
easy to see that if w = s1 . . . st where the si are in S then wA0 is the alcove obtained 
from A0 by successively reflecting through the walls corresponding to s1 up to st.

If a wall of an alcove A corresponds to E(α, re) and A ⊂ E
>(α, re) then we call 

this a lower alcove wall of A; otherwise we call it an upper alcove wall of A. We will call 
a multipartition σ-regular (or just regular) if its image in Eh lies in some alcove; the 
multipartitions whose images lies on one or more walls will be called σ-singular.
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Let λ ∈ Eh. There are only finitely many hyperplanes E(α, re) for α ∈ Π and r ∈ Z

lying between the points λ ∈ Eh and the point ∅ ∈ Eh. We let �α(λ) denote the total 
number of these hyperplanes for a given α ∈ Π (including any hyperplane upon which λ
lies).

2.3. Paths in the geometry

We now develop the combinatorics of paths inside our geometry. Given a map p :
{1, ..., n} → {1, ..., h} we define points P(k) ∈ Eh by

P(k) =
∑

1�i�k

εp(i)

for 1 � i � n. We define the associated path of length n by

P = (∅ = P(0),P(1),P(2), . . . ,P(n))

and we say that the path has shape π = P(n) ∈ Eh. We also denote this path by P =
(εp(1), . . . , εp(n)) and call εp(i) the ith step in this path. Given λ ∈ Eh ∩Z�0{ε1, . . . , εh}
we let Path(λ) denote the set of paths of length n with shape λ. We define Pathh(λ)
to be the subset of Path(λ) consisting of those paths lying entirely inside the dominant 
chamber, E+

h ; in other words, those P such that P(i) is dominant for all 0 � i � n.
Given a path P defined by such a map p of length n and shape λ we can write each 

p(j) uniquely in the form εp(j) = εcj ,mj
where 0 � mj < � and 1 � cj � hj . We record 

these elements in a tableau of shape λT by induction on j, where we place the positive 
integer j in the first empty node in the cjth column of component mj . By definition, 
such a tableau will have entries increasing down columns; if λ is a multipartition then the 
entries also increase along rows if and only if the given path is in Pathh(λ), and hence 
there is a bijection between Pathh(λ) and Std(λ). For this reason we will sometimes refer 
to paths as tableaux, to emphasise that what we are doing is generalising the classical 
tableaux combinatorics for the symmetric group.

Notation 2.5. Given a path P we will let P−1(r, εc,m) with 0 � m < � and 1 � c � hm

denote the (r, c)-entry of the mth component of the tableau corresponding to P. In terms 
of our path this is the point at which the rth step of the form +εc,m occurs in P. Given 
a path P we define

res(P) = (resP(1), . . . , resP(n))

where resP(i) denotes the residue of the node labelled by i in the tableau corresponding 
to P.
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Fig. 1. An alcove path in Path(3)(20, 52) and the corresponding tableau in Std(20, 52). The black vertices 
denote vertices on the path in the orbit of the origin. (For interpretation of the colours in the figure(s), the 
reader is referred to the web version of this article.)

Example 2.6. We will illustrate our various definitions with an example in E
+
3,1 with 

e = 5. This space is the projection of R3 in two dimensions, which we shall represent as 
shown in Fig. 1. Notice in particular that ε1 + ε2 + ε3 = 0 in this projection, as required. 
Only the dominant chamber is illustrated, with the origin marked in the fundamental 
alcove A0.

The affine Weyl group Ŝ3 has generating set S corresponding to the green and blue 
(non-affine) reflections sε2−ε3,0 and sε1−ε2,0 about the lower walls of the fundamental 
alcove, together with the (affine) reflection sε3−ε1,−5 about the red wall of that alcove. 
Recall that we will abuse notation, and refer to these simply as sε2−ε3 , sε1−ε2 , and sε3−ε1 . 
The associated colours for the remaining alcove walls are as shown.

Given λ = (35, 115) we have illustrated a path P from the origin to λ with a black 
line. Recall that we embed partitions via the transpose map (as in equation (2.1)) and so 
the final point in the path corresponds to the point (20, 5, 5) ∈ E3,1. The corresponding 
steps in the path are recorded in the standard tableau at the bottom of the figure, where 
an entry i in column j of the tableau (again, note the transpose) corresponds to the ith 
step of the path being in the direction εj. This is an element of Pathh(λ) as it never 
leaves the dominant region.
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The path passes through the sequence of alcoves obtained from the fundamental alcove 
by reflecting through the walls labelled R then G then B then R then G then B, and 
so the final alcove corresponds to the element sε3−ε1sε2−ε1sε3−ε2sε3−ε1sε2−ε1sε3−ε1A0. 
If σ = (0) then we have

res(P) = (0, 1, 4, 0, 3, 4, 2, 1, 0, 2, 4, . . . , 1).

Example 2.7. Further examples of paths and tableaux are given in Figs. 2 to 4.

Given paths P = (εp(1), . . . , εp(n)) and Q = (εq(1), . . . , εq(n)) we say that P ∼ Q if 
there exists an α ∈ Φ and r ∈ Z and s � n such that

P(s) ∈ E(α, re) and εq(t) =
{

εp(t) for 1 � t � s

sαεp(t) for s + 1 � t � n.

In other words the paths P and Q agree up to some point P(s) = Q(s) which lies on 
E(α, re), after which each Q(t) is obtained from P(t) by reflection in E(α, re). We extend 
∼ by transitivity to give an equivalence relation on paths, and say that two paths in the 
same equivalence class are related by a series of wall reflections of paths. We say that 
P = (εp(1), . . . , εp(n)) is a reduced path if �α(P(s + 1)) � �αP(s)) for all 1 � s < n and 
α ∈ Π. There exists a unique reduced path in each ∼-equivalence class.

Lemma 2.8. We have P ∼ Q if and only if res(P) = res(Q).

Proof. Let α = εi,a − εj,b. We first note that a path of shape λ lies on E(α, re) if and 
only if the addable nodes in λ in the ith column of the ath component and in the jth 
column of the bth component have the same residue. (This is straightforward from the 
definition of the inner product, see for example [3, Lemma 6.19].) Also sαεt = εt for 
all t /∈ {Ha−1 + i, Hb−1 + j} and sα permutes the elements of this set. So if two paths 
coincide up to some point and then diverge, but have the same sequence of residues, then 
the point where they diverge must lie on some E(α, re) and the divergence must initially 
be by a reflection in this hyperplane. From this the result easily follows by induction on 
the number of hyperplanes which the two paths cross. �

We recast the degree of a tableau in the path-theoretic setting as follows.

Definition 2.9. Given a path S = (S(0), S(1), S(2), . . . , S(n)) we set deg(S(0)) = 0 and 
define

deg(S) =
∑

1�k�n

d(S(k),S(k − 1)),

for d(S(k), S(k − 1)) defined as follows. For α ∈ Φ+ we set dα(S(k), S(k − 1)) to be
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Fig. 2. Two paths S and T in an alcove geometry. These paths are used in Example 2.30.
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Fig. 3. The two tableaux S and T corresponding to the paths in Fig. 2. These paths are used in Example 2.30.

◦ +1 if S(k − 1) ∈ E(α, re) and S(k) ∈ E<(α, re) for some r ∈ Z;
◦ −1 if S(k − 1) ∈ E>(α, re) and S(k) ∈ E(α, re) for some r ∈ Z;
◦ 0 otherwise.

We let

deg(S) =
∑ ∑

+

dα(S(k − 1),S(k)).

1�k�n α∈Φ
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2.4. Alcove paths

When passing from multicompositions to our geometry Eh, many non-trivial ele-
ments map to the origin. One such element is δ = ((h0), ..., (h�−1)) ∈ Ph(h). (Recall 
our transpose convention for embedding multipartitions into our geometry, as in equa-
tion (2.1).) We will sometimes refer to this as the determinant as (for � = 1) it cor-
responds to the determinant representation of the associated general linear group. We 
will also need to consider elements corresponding to powers of the determinant, namely 
δn = ((hn

0 ), ..., (hn
�−1)) ∈ P�(nh).

We now restrict our attention to paths between points in the principal linkage class, 
in other words to paths between points in Ŝh · 0. Such points can be represented by the 
μ in the orbit Ŝh · δn for some choice of n.

Definition 2.10. We will associate alcove paths to certain words in the alphabet

S ∪ {1} = {sα | α ∈ Π ∪ {∅}}

where s∅ = 1. That is, we will consider words in the generators of the affine Weyl group, 
but enriched with explicit occurrences of the identity in these expressions. When we wish 
to consider a particular expression for an element w ∈ Ŝh in terms of our alphabet we 
will denote this by w.

Our aim is to define certain distinguished paths from the origin to multipartitions in 
the principal linkage class; for this we will need to proceed in stages. In order to construct 
our path we want to proceed inductively. There are two ways in which we shall do this.

Definition 2.11. Given two paths

P = (εi1 , εi2 , . . . , εip) ∈ Path(μ) and Q = (εj1 , εj2 , . . . , εjq ) ∈ Path(ν)

we define the naive concatenated path

P � Q = (εi1 , εi2 , . . . , εip , εj1 , εj2 , . . . , εjq ) ∈ Path(μ + ν).

There are several problems with naive concatenation. Most seriously, the naive con-
catenation of two paths between points in the principal linkage class will not in general 
itself connect points in that class. Also, if we want to associate to our path the coloured 
sequence of walls through which it passes, then this is not compatible with naive 
concatentation. To remedy these failings, we will also need to define a contextualised 
concatenation.

Given a path P between points in the principal linkage class, the end point lies in the 
interior of an alcove of the form wA0 for some w ∈ Ŝh. If we write w as a word in our 
alphabet, and then replace each element sα by the corresponding non-affine reflection 
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sα in Sh to form the element w ∈ Sh then the basis vectors εi are permuted by the 
corresponding action of w to give εw(i), and there is an isomorphism from Eh to itself 
which maps A0 to wA0 such that 0 maps to w · 0, coloured walls map to walls of the 
same colour, and each basis element εi map to εw(i). Under this map we can transform 
a path Q starting at the origin to a path starting at w · 0 which passes through the same 
sequence of coloured walls as Q does.

More generally, the end point of a path P may lie on one or more walls. In this case, 
we can choose a distinct transformation as above for each alcove wA0 whose closure 
contains the endpoint. We can now use this to define our contextualised concatenation.

Definition 2.12. Given two paths P = (εi1 , εi2 , . . . , εip) ∈ Path(μ) and Q = (εj1 , εj2 , . . . ,
εjq ) ∈ Path(ν) with the endpoint of P lying in the closure of some alcove wA0 we define 
the contextualised concatenated path

P ⊗w Q = (εi1 , εi2 , . . . , εip) � (εw(j1), εw(j2), . . . , εw(jq)) ∈ Path(μ + (w · ν)).

If there is a unique such w then we may simply write P ⊗ Q. If w = sα we will simply 
write P ⊗α Q.

It is not difficult to understand contextualised concatenation in terms of tableaux. 
Each symbol εi for 1 � i � h labels a column of a partition. Contextualised concatenation 
is then given by permuting the columns (according to the rule in Definition 2.12) and 
then vertically stacking the tableaux (and shifting the entries), see Fig. 5.

Our next aim is to define the building blocks from which all of our distinguished paths 
will be constructed. We begin by defining certain integers that describe the position of 
the origin in our fundamental alcove.

Definition 2.13. Given α ∈ Π we define bα to be the distance from the origin to the wall 
corresponding to α, and let b∅ = 1. Given our earlier conventions this corresponds to 
setting

bεi,p−εj,q = σq − σp + j − i bεh−ε1 = e− σ0 + σ�−1 + h�−1 − 1

for 0 � p � q < � and 1 � i � hp, 1 � j � hq. We sometimes write δα for the element 
δbα . Given α, β ∈ Π we set bαβ = bα + bβ.

Example 2.14. Let e = 5, h = 3 and � = 1 as in Fig. 1. Then bε2−ε3 and bε1−ε2 both 
equal 1, while bε3−ε1 = 3 and b∅ = 1.

Example 2.15. Let e = 7, h = 2 and � = 2 and σ = (0, 3) ∈ Z2. Then bε1−ε2 and bε3−ε4

both equal 1, while bε4−ε1 = 3, bε2−ε3 = 2, and b∅ = 1.

We can now define our basic building blocks for paths.
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Fig. 4. Three paths and their corresponding tableaux. The leftmost two paths are the path Pα which walks 
through an α-hyperplane in E+

1,3, and the path P�
α which reflects the former path through the same α-

hyperplane. The rightmost path is P∅ (which we repeat thrice).

Definition 2.16. Given α = εi − εi+1 ∈ Π, we consider the multicomposition sα · δα with 
all columns of length bα, with the exception of the ith and (i + 1)st columns, which are 
of length 0 and 2bα, respectively. We set

Mi = (ε1, ..., εi−1, ε̂i, εi+1, ..., εh) and Pi = (+εi)

where ̂. denotes omission of a coordinate. Then our distinguished path corresponding to 
sα is given by

Pα = Mbα
i � Pbα

i+1 ∈ Path(sα · δα).

The distinguished path corresponding to ∅ is given by

P∅ = (ε1, ..., εi−1, εi, εi+1, ..., εh) ∈ Path(δ) = Path(s∅ · δ)

and set Pø = (P∅)bα . We will also find it useful to have the following variant of Mi. We 
set

Mi,j = (ε1, . . . , εi−1, ε̂i, εi+1, . . . , εj−1, ε̂j , εj+1, . . . , εh).

Example 2.17. The paths/tableaux S and T from Figs. 2 and 3 are equal to Pα⊗αPβ⊗β

Pγ⊗γPβ and Pα⊗αPγ⊗γPβ⊗βPγ respectively for α = ε1−ε3, β = ε1−ε2, γ = ε2−ε3.

Given all of the above, we can finally define our distinguished paths for general words 
in our alphabet. There will be one such path for each word in our alphabet, and they 
will be defined by induction on the length of the word, as follows.

Definition 2.18. We now define a distinguished path Pw for each word w in our alphabet 
S ∪ {1} by induction on the length of w. If w is s∅ or a simple reflection sα we have 
already defined the distinguished path in Definition 2.16. Otherwise if w = sαw

′ then 
we define
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Fig. 5. The tableau Pα ⊗α Pα obtained by contextualised concatenation from the path/tableau Pα in Fig. 4. 
The reflection sα for α = ε1 − ε3 permutes the first and third columns of Pα. The entries of tableaux are 
coloured to facilitate comparison. The reader is invited to draw the corresponding path.

Pw := Pα ⊗α Pw′ .

If w is a reduced word in Ŝh, then the path Pw is a reduced path.

Remark 2.19. Contextualised concatenation is not associative (if we wish to decorate 
the tensor products with the corresponding elements w). As we will typically be con-
structing paths as in Definition 2.18 we will adopt the convention that an unbracketed 
concatenation of n terms corresponds to bracketing from the right:

Q1 ⊗ Q2 ⊗ Q3 ⊗ · · ·Qn = Q1 ⊗ (Q2 ⊗ (Q3 ⊗ (· · · ⊗ Qn) · · · )).

We will also need certain reflections of our distinguished paths corresponding to elements 
of Π.

Definition 2.20. Given α ∈ Π we set

P�
α = Mbα

i � Pbα
i = Mbα

i ⊗α Pbα
i+1 = (+ε1, ...,+εi−1, +̂εi,+εi+1, ...,+εh)bα � (εi)bα

the path obtained by reflecting the second part of Pα in the wall through which it passes.

Example 2.21. We illustrate these various constructions in a series of examples. In 
the first two diagrams of Fig. 4, we illustrate the basic path Pα and the path P�

α

and in the rightmost diagram of Fig. 4, we illustrate the path P∅. A more compli-
cated example is illustrated in Fig. 1, where we show the distinguished path Pw for 
w = sε3−ε1sε1−ε2sε2−ε3sε3−ε1sε1−ε2sε2−ε3 as in Example 2.6. The components of the 
path between consecutive black nodes correspond to individual Pαs.
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Remark 2.22. There are plenty of other paths we could have chosen. For example, we 
could replace the leftmost path in Fig. 4 with the path

(ε1, ε1, ε1, ε2, ε2, ε2, ε1, ε1, ε1) ∈ Path(6, 3).

In Proposition 4.4 we will see that it does not matter which path we pick, providing it 
“does not hit any extra hyperplanes”. Our “zig zagging” paths are merely the easiest to 
define such general paths.

Remark 2.23. By Lemma 2.8 we have res(Pα) = res(P�
α). This fact is key to our con-

struction of the KLR versions of the diagrammatic Bott–Samelson generators using 
step-preserving permutations.

Definition 2.24. We say that a word w = sα(1) ...sα(p) in either of the alphabets S or 
S ∪ {1} has breadth

breadthσ(w) =
∑

1�i�p

bα(i)

which we denote simply by bw when the context is clear. We let Λ(n, σ) (respectively 
Λ+(n, σ)) denote the set of words w in the alphabet S ∪ {1} (respectively the alphabet 
S) such that breadthσ(w) = n. We define

Ph(n, σ) = {λ ∈ Ph(n) | there exists Pw ∈ Std(λ), w ∈ Λ(n, σ)}.

Example 2.25. We can insert the path P∅ = (+ε1, +ε2, +ε3) into the path in Fig. 1
at seven distinct points to obtain a new alcove path. For example, we can insert 
two copies of this path (in two distinct ways) to obtain Pw and Pw′ for w =
s∅s∅sε3−ε1sε2−ε3sε1−ε2sε3−ε1sε2−ε3sε1−ε2 and w′ = sε3−ε1s∅sε2−ε3sε1−ε2s∅sε3−ε1sε2−ε3

sε1−ε2 respectively. Then res(Pw) and res(Pw′) are equal to

(0, 1, 2, 4, 0, 1, 3, 4, 2, 3, 1, 2, 0, 4, 3, 0, 2, 1, 0, 1, 4, 3, 4, 2, 3, 1, 2, 0, 4, 3, 0, 2, 1, 0, 1, 4),

(0, 1, 4, 0, 3, 4, 2, 1, 0, 2, 3, 4, 4, 1, 0, 4, 0, 3, 2, 3, 4, 3, 4, 2, 3, 1, 2, 0, 4, 3, 0, 2, 1, 0, 1, 4).

For any λ ∈ Ph(n), we define the set of alcove-tableaux, Stdn,σ(λ), to consist of all 
standard tableaux which can be obtained by contextualised concatenation of paths from 
the set

{Pα | α ∈ Π} ∪ {P�
α | α ∈ Π} ∪ {P∅}.

We let Std+
n,σ(λ) ⊆ Stdn,σ(λ) denote the subset of strict alcove-tableaux of the form 

(P∅)⊗p ⊗ Q for Q obtained by contextualised concatenation of paths from the set {Pα |
α ∈ Π} ∪ {P�

α | α ∈ Π} and some p � 0.
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Example 2.26. The tableau of shape (20, 52) in Fig. 1 is the strict alcove tableau given 
by Pα ⊗α Pγ ⊗γ Pβ ⊗β Pα ⊗α Pγ ⊗γ Pβ.

Clearly any such (strict) alcove tableau terminates at a regular partition in the prin-
cipal linkage class of the algebra. By definition, we have that there is precisely one 
alcove-tableau Pw for each expression w in the simple reflections (and the emptyset). 
Similarly, we have that there is precisely one strict alcove-tableau Pw for each expression 
w in the simple reflections.

Example 2.27. Let h = 3 and � = 1 and e = 5 and α = ε3 − ε1. We have that bα = 3. 
We have that

Pαø = (ε1, ε2, ε1, ε2, ε1, ε2, ε1, ε1, ε1) ⊗ (ε1, ε2, ε3, ε1, ε2, ε3, ε1, ε2, ε3)

= (ε1, ε2, ε1, ε2, ε1, ε2, ε1, ε1, ε1, ε3, ε2, ε1, ε3, ε2, ε1, ε3, ε2, ε1)

Pøα = (ε1, ε2, ε3, ε1, ε2, ε3, ε1, ε2, ε3, ε1, ε2, ε1, ε2, ε1, ε2, ε1, ε1, ε1)

are both dominant paths of shape (33, 23, 13).

2.4.1. Permutations as morphisms between paths
We now discuss how one can think of a permutation as a morphism between pairs of 

paths in the alcove geometries of Section 3. This shift in perspective, from permutations 
acting on tableaux (the usual combinatorics of Sn) to “morphisms between paths” is a 
central idea of this paper.

Definition 2.28. Let λ ∈ Z�0{ε1, . . . , εh}. Given a pair of paths S, T ∈ Path(λ) we 
write the steps εi in S and T in sequence along the top and bottom edges of a frame, 
respectively. We define wS

T ∈ Sn to be the unique step-preserving permutation with the 
minimal number of crossings.

Recall that a step εi in a path corresponds to adding a node in the ith column (indexed 
from left to right) of the multi-partition tableau. Thus one can rewrite the above for pairs 
of column standard tableaux as follows: wS

T is the unique element such that wS
T(S) = T

(under the usual action of the symmetric group on tableaux). An example is given in 
Example 2.30.

Example 2.29. We consider kS9 in the case of p = 5. We set α = ε3 − ε1 ∈ Π. Here we 
have

Pø = (ε1, ε2, ε3, ε1, ε2, ε3, ε1, ε2, ε3) and P�
α = (ε1, ε2, ε1, ε2, ε1, ε2, ε3, ε3, ε3)

(the corresponding tableaux are given in Fig. 4). The unique step-preserving permutation 
of minimal length is given by
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w
Pø

P�
α

=

ε1 ε2 ε1 ε2 ε1 ε2 ε3 ε3 ε3

ε1 ε2 ε3 ε1 ε2 ε3 ε1 ε2 ε3

P�
α

Pø

(2.2)

Notice that if two strands have the same step-label, then they do not cross. This is, of 
course, exactly what it means for a step-preserving permutation to be of minimal length.

Example 2.30. We depict two paths S, T ∈ Path(11, 6, 1) in Fig. 2 and the corresponding 
tableaux in Fig. 3. The path-morphism wS

T is as follows

wS
T =

ε1 ε2 ε1 ε2 ε1 ε2 ε1 ε1 ε1 ε3 ε1 ε1 ε1 ε2 ε1 ε1 ε2 ε2

ε1 ε2 ε1 ε2 ε1 ε2 ε1 ε1 ε1 ε2 ε1 ε2 ε2 ε1 ε1 ε1 ε3 ε1

.

Notice that the sequence of εi along the top (bottom) of the word simply record the 
columns of the entries of the tableaux S, T read in order according to the entries 1 � i �
18. We always use εi as our labels of strand (dropping the epsilons would cause confusion 
later on, when we further attach KLR residues to these strands).

When we wish to explicitly write down a specific reduced expression for wS
T for con-

creteness, we will find the following notation incredibly useful.

Definition 2.31. Given t an integer, we let rh(t) denote the remainder of t modulo h. 
Given p, q � 1 such that rh(p) 	= i and α = εi − εi+1 ∈ Π, we set

α(p) = P−1
α (1, rh(p)) and ∅(q) = P−1

∅ (1, rh(q))

This notation allows us to implicitly use the cyclic ordering on the labels of roots without 
further ado.

Convention 2.32. Throughout the paper, we let α = εi − εi+1, β = εj − εj+1, γ =
εk−εk+1, δ = εm−εm+1. We will assume that β, γ, δ label distinct commuting reflections. 
We will assume throughout that β and α label non-commuting reflections. Here we read 
these subscripts in the obvious cyclotomic ordering, without further ado (in other words, 
we read occurrences of h + 1 simply as 1).

3. The diagrammatic algebras

We now introduce the two protagonists of this paper: the diagrammatic Bott–
Samelson endomorphism algebras and the quiver Hecke algebras — these can be defined 
either as monoidal (tensor) categories or as finite-dimensional diagrammatic algebras. 
We favour the latter perspective for aesthetic reasons, but we borrow the notation from 
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the former world by letting ⊗ denote horizontal concatenation of diagrams — in the 
quiver Hecke case, we must first “contextualise” before concatenating as we shall explain 
in Subsection 3.3.2. (We refer to [9] for a more detailed discussion of the interchange-
ability of these two languages.) The relations for both algebras are entirely local (here 
a local relation means one that can be specified by its effect on a sufficiently small re-
gion of the wider diagram). We then consider the cyclotomic quotients of these algebras: 
these can be viewed as quotients by right-tensor-ideals, or equivalently (as we do in this 
paper) as quotients by a non-local diagrammatic relation concerning the leftmost strand 
in the ambient concatenated diagram. (We remark that the cyclotomic relations break 
the monoidal structure of both categories.) We continue with the notation of Conven-
tion 2.32.

Remark 3.1. The cyclotomic quotients of (anti-spherical) Hecke categories are small cat-
egories with finite-dimensional morphism spaces given by the light leaves basis of [13,18]. 
Working with such a category is equivalent working to with a locally unital algebra, as 
defined in [9, Section 2.2], see [9, Remark 2.3]. Throughout this paper we will work in 
the latter setting. The reader who prefers to think of categories can equivalently phrase 
everything in this paper in terms of categories and representations of categories.

3.1. The diagrammatic Bott–Samelson endomorphism algebras

These algebras were defined by Elias–Williamson in [13]. In this section, all our words 
will be in the alphabet S.

Definition 3.2. Given α = εi − εi+1 we define the corresponding Soergel idempotent, 1α
to be a frame of width 1 unit, containing a single vertical strand coloured with α ∈ Π. 
For w = sα(1) ...sα(p) an expression with α(i) ∈ Π simple roots, we set

1w = 1α(1) ⊗ 1α(2) ⊗ · · · ⊗ 1α(p)

to be the diagram obtained by horizontal concatenation.

Example 3.3. Consider the colour-word from the path in Fig. 1. Namely,

w = sε3−ε1sε2−ε3sε1−ε2sε3−ε1sε2−ε3sε1−ε2 ∈ Ŝ3.

The corresponding Soergel idempotent is as follows

1w =
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Definition 3.4. Given w = sα(1) ...sα(p) , w′ = sβ(1) ...sβ(q) ∈ Sh, a (w, w′)-Soergel diagram 
D is defined to be any diagram obtained by horizontal and vertical concatenation of the 
following diagrams

their flips through the horizontal axis and their isotypic deformations such that the top 
and bottom edges of the graph are given by the idempotents 1w and 1w′ respectively. 
Here the vertical concatenation of a (w, w′)-Soergel diagram on top of a (v, v′)-Soergel 
diagram is zero if v 	= w′. We define the degree of these generators (and their flips) to 
be 0, 1, −1, 0, and 0 respectively.

Example 3.5. Examples of (w, w′)-Soergel diagrams, for

w = sε3−ε1sε2−ε3sε1−ε2sε3−ε1sε2−ε3sε1−ε2sε1−ε2 ,

w′ = sε3−ε1sε2−ε3sε1−ε2sε3−ε1sε2−ε3sε1−ε2

are as follows

We let ∗ denote the map which flips a diagram through its horizontal axis.

Definition 3.6. Let k be an arbitrary commutative ring. We define the diagrammatic 
Bott–Samelson endomorphism algebra, S (n, σ) to be the span of all (w, w′)-Soergel 
diagrams for w, w′ ∈ Λ(n, σ), with k-associative multiplication given by vertical concate-
nation and subject to isotypic deformation and the following local relations: For each 
colour (i.e. each generator sα for α ∈ Π) we have

= = = 0 (S1)

along with their horizontal and vertical flips and the Demazure relation

+ = 2 (S2)

We now picture the two-colour relations for non-commuting reflections sα, sβ ∈ Ŝh. We 
have
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= = + (S3)

along with their flips through the horizontal and vertical axes. We also have the cyclicity 
relation

= (S4)

and the two-colour barbell relations

− = − (S5)

for Φ of rank greater than 1 (or double the righthand-side if Φ has rank 1). For commuting 
reflections sβ, sγ ∈ Ŝh we have the following relations

= = = (S6)

along with their flips through the horizontal and vertical axes. In order to picture the 
three-colour commuting relations we require a fourth root sδ ∈ Ŝh which commutes with 
all other roots (such that sδsα = sαsδ, sδsβ = sβsδ, sδsγ = sγsδ) and we have the 
following,

= = (S7)

Finally, we require the tetrahedron relation for which we make the additional assumption 
on γ that it does not commute with α. This relation is as follows,

= (S8)
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Remark 3.7. The diagrammatic Bott–Samelson category of Ŝh is normally defined using 
an underlying reflection representation h = (V, {α∨

α : α ∈ S}, {αα : α ∈ S}) of Ŝh

called a realisation. Our construction of the diagrammatic Bott–Samelson endomorphism 
algebra implicitly assumes that the roots {αα : α ∈ S} ⊂ V ∗ form a basis, and that the 
pairing between roots and coroots is given by the usual Cartan matrix of type Âh−1. 
These two conditions uniquely determine the realisation, which we call the universal 
realisation of Ŝh with respect to this Cartan matrix [5]. It coincides with the modular 
reduction of the “dual geometric” realisation of Ŝh (which can be defined over Z as Ŝh

is simply laced) [18].

Remark 3.8. We do not include “isotopy” as an explicit relation here (unlike in [13]) 
as it follows from the one-colour relations and cyclicity of the braid generator (see [12, 
Proposition 8.6]). This is the more modern definition, see for example [25, Section 2.3]

Definition 3.9. We define the cyclotomic diagrammatic Bott–Samelson endomorphism 
algebra,

Sh(n, σ) := EndDasph,⊕
BS (Ah−1×...×Ah−1\Âh−1)

(
⊕w∈Λ(n,σ)Bw

)
to be the quotient of S (n, σ) by the relations

1α ⊗ 1w = 0 and ⊗ 1w = 0 (S9)

for γ ∈ Π arbitrary, α ∈ Π corresponding to a wall of the dominant chamber, and w any 
word in the alphabet S.

3.2. The breadth-enhanced diagrammatic Bott–Samelson endomorphism algebra

We now use the notion of a weakly graded monoidal category (see Appendix A) to 
introduce the breadth-enhanced diagrammatic Bott–Samelson endomorphism algebra. 
On one level this definition and construction is utterly superficial. It merely allows us to 
keep track of occurrences of the identity of Ŝh in a given expression. The occurrences of 
s∅ = 1 are usually ignored in the world of Soergel diagrammatics and so this will seem 
very foreign to some. We ask these readers to be patient as this extra “blank space” will 
be very important in this paper: each occurrence of s∅ corresponds to adding h additional 
strands in the quiver Hecke algebra or, if you prefer, corresponds to “tensoring with the 
determinant”. For this reason, in this section all our words will be in the alphabet S∪{1}.

Definition 3.10. Given α = εi−εi+1 we define the breadth-enhanced Soergel idempotent, 
1α, to be a frame of width 2bα with a single vertical strand coloured with α ∈ Π placed 
in the centre. We define the breadth-enhanced Soergel idempotent 1∅ to be an empty 
frame of width 2. For w = sα(1) ...sα(p) an expression with α(i) ∈ Π ∪ {∅}, we set
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1w = 1α(1) ⊗ 1α(2) ⊗ · · · ⊗ 1α(p)

to be the diagram obtained by horizontal concatenation. In order that we better illustrate 
this idea, we colour the top and bottom edges of a frame with the corresponding element 
of Π ∪ {∅}.

Example 3.11. Continuing with Fig. 1 and Example 2.14, we let

w = s∅s∅sε3−ε1sε2−ε3sε1−ε2sε3−ε1sε2−ε3sε1−ε2

w′ = sε3−ε1s∅sε2−ε3sε1−ε2s∅sε3−ε1sε2−ε3sε1−ε2 .

The breadth-enhanced Soergel idempotents are as follows

1w = 1w′ = (3.1)

Definition 3.12. Let w ∈ Sh and suppose w = sα(1) ...sα(p) and w′ = sβ(1) ...sβ(p) for 
α(i), β(j) ∈ Π ∪{∅} are two expressions which differ only by occurrences of s∅ within the 
word. We define the corresponding Soergel adjustment 1ww′ , to be the diagram with 1w
along the top and 1w′ along the bottom and no crossing strands.

Example 3.13. Continuing with Example 3.11, we have that

1ww′ =

Definition 3.14. Given w = sα(1) ...sα(p) , w′ = sβ(1) ...sα(q) for α(i), β(j) ∈ Π ∪ {∅}, a 
breadth-enhanced (w, w′)-Soergel diagram D is defined to be any diagram obtained by 
horizontal and vertical concatenation of the following generators

(3.2)

and their flips through the horizontal axes such that the top edge of the graph is given 
by the breadth-enhanced idempotent 1w and the bottom edge given by the breadth-
enhanced idempotent 1w′ . Here the vertical concatenation of a (w, w′)-diagram on top 
of a (v, v′)-diagram is zero if v 	= w′. The degree of these generators (and their flips) 
are 0, 0, 0, 1, −1, 0, and 0 respectively. When we wish to avoid drawing diagrams, we will 
denote the above diagrams by
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= = =

Fig. 6. The adjustment-inversion relations and the naturality relation for the spot diagram (we also require 
their flips through horizontal axis).

= = =

Fig. 7. The remaining naturality relations (we also require their flips through horizontal axis).

1α 1∅ 1α∅
∅α SPOTø

α FORKøα
αα HEXβαβ

αβα and COMMγβ
βγ .

These diagrams are known as “single strand”, “blank space”, “single adjustment”, “spot”, 
“fork”, “hexagon” (in order to distinguish from the symmetric group braid) and “com-
mutator”.

Definition 3.15. We define the breadth-enhanced diagrammatic Bott–Samelson endomor-
phism algebra, S br(n, σ) (respectively, its cyclotomic quotient S br

h (n, σ)) to be the span 
of all (w, w′)-breadth enhanced Soergel diagrams for w, w′ ∈ Λ(n, σ), with multiplica-
tion given by vertical concatenation, subject to the breadth-enhanced analogues of the 
relations (S1) to (S8) (plus the additional cyclotomic relation (S9), respectively) which 
are explicitly pictured in Section 6, the adjustment inversion and naturality relations 
pictured in Figs. 6 and 7 and their flips through the horizontal axis.

We are free to use the breadth-enhanced form of the diagrammatic Bott–Samelson 
endomorphism algebra instead of the usual one because of the following result. We let φ :
∪0�m�nΛ+(m, σ) ↪→ Λ(n, σ) denote the map which takes w ∈ Λ+(m,σ) to (s∅)n−mw ∈
Λ(n, σ). We refer to the image, im(φ) = Λ+(� n, σ), as the subset of left-adjusted words 
in Λ(n, σ) and we define an associated idempotent

1+
n,σ =

∑
+

1w.

w∈Λ (�n,σ)
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Proposition 3.16. We have the following isomorphisms of graded k-algebras,

S (n, σ) ∼= 1+
n,σS br(n, σ)1+

n,σ Sh(n, σ) ∼= 1+
n,σS br

h (n, σ)1+
n,σ.

Proof. This is the one point in the paper in which we require the notions from Ap-
pendix A and all references within this proof are to the appendix. Thus for this proof 
only, we briefly switch perspectives and think of the algebras above as categories S and 
S br and use the notation in Appendix A. The category S (resp. S br) has objects given 
by expression in the alphabet S (resp. S ∪ {1}) and Hom-spaces given by 1wS (n, σ)1w′

(resp. 1wS (n, σ)1w′) for some sufficiently large n (resp. for some n).
We will establish the first isomorphism; the second isomorphism is similar. Let b :

Ob(S ) → Z�0 be a monoidal homomorphism given by b(sα) = bα for all α ∈ Π. We 
now apply Theorem A.3 to show that S br(n, σ) is isomorphic to the weak grading of 
S (n, σ) concentrated in breadth b. Most of the hypotheses of this result follow by design. 
For example, since S is already defined by generators and relations, it’s enough to add 
breadth-enhanced versions of the relations to ensure the composition and tensor product 
axioms in the theorem. Also, adjustments on objects are defined monoidally, so the weak 
grading axioms (WG2) and (WG3) automatically hold. Finally (WG1) follows from the 
adjustment inversion and naturality relations above. �
3.3. The quiver Hecke algebra

We now introduce the second star of the paper, the quiver Hecke or KLR alge-
bras. Given i = (i1, . . . , in) ∈ (Z/eZ)n and sr = (r, r + 1) ∈ Sn we set sr(i) =
(i1, . . . , ir−1, ir+1, ir, ir+2, . . . , in).

Definition 3.17 ([8,15,27]). Fix e > 2. The quiver Hecke algebra (or KLR algebra), Hn, 
is defined to be the unital, associative Z-algebra with generators

{ei | i = (i1, ..., in) ∈ (Z/eZ)n} ∪ {y1, ..., yn} ∪ {ψ1, ..., ψn−1},

subject to the following relations, for all r, s, i, j we have that

∑
ei = 1Hn

; eiej = δi,jei yrei = eiyr ψrei = esriψr yrys = ysyr (R1)

where the sum is over all i ∈ (Z/eZ)n and

ψrys = ysψr for s 	= r, r + 1 ψrψs = ψsψr for |r − s| > 1 (R2)

yrψrei = (ψryr+1 − δir,ir+1)ei yr+1ψrei = (ψryr + δir,ir+1)ei (R3)
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ψrψrei =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if ir = ir+1,

ei if ir+1 	= ir, ir ± 1,
(yr+1 − yr)ei if ir+1 = ir + 1,
(yr − yr+1)ei if ir+1 = ir − 1

(R4)

ψrψr+1ψr =

⎧⎪⎪⎨⎪⎪⎩
(ψr+1ψrψr+1 − 1)ei if ir = ir+2 = ir+1 + 1,
(ψr+1ψrψr+1 + 1)ei if ir = ir+2 = ir+1 − 1
ψr+1ψrψr+1ei otherwise

(R5)

for all permitted r, s, i, j. We identify such elements with decorated permutations and the 
multiplication with vertical concatenation, ◦, of these diagrams in the standard fashion 
of [8, Section 1]. We let ∗ denote the anti-involution which fixes the generators (this can 
be visualised as a flip through the horizontal axis of the diagram).

We identify an undecorated single strand with the sum over all possible residues on 
that strand, as in 

∑
i∈(Z/eZ)n ei = 1H1 . We freely identify an element d ∈ Hn with an 

element of Hn+1 by adding such an undecorated vertical strand to the right; we extend 
this to all Hm with m > n. The yk elements are visualised as dots on strands; we hence 
refer to them as KLR dots. Given T ∈ Std(λ), we set eT := eres(T) ∈ Hn. Using the 
notation of Subsection 2.1, we define

yT =
n∏

k=1

y
|AT(k)|
k eT, (3.3)

such elements should be familiar to those working in KLR algebras, see for example [14, 
Section 4.3]. Given p < q we set

wp
q = spsp+1 . . . sq−1 wq

p = sq−1 . . . sp+1sp

ψp
q = ψpψp+1 ...ψq−1 ψq

p = ψq−1 ...ψp+1ψp,

and given an expression w = si1 . . . sip ∈ Sn we set ψw = ψi1 . . . ψip ∈ Hn.

Definition 3.18. Fix e > 2 and σ ∈ Z�. The cyclotomic quiver Hecke algebra, Hσ
n, is defined 

to be the quotient of Hn by the relation

y

{σm|σm=i1,1�m��}
1 ei = 0 for i ∈ (Z/eZ)n. (3.4)

Definition 3.19. We define the degree on the generators as follows,

deg(ei) = 0 deg(yr) = 2 deg(ψrei) =

⎧⎪⎪⎨⎪⎪⎩
−2 if ir = ir+1

1 if ir = ir+1 ± 1
0 otherwise

.
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P�
α

Pø

0 1 4 0 3 4 2 1 0

0 1 2 4 0 1 3 4 0

Fig. 8. The element ψ
Pø

P�
α

for kS9 in the case p = 5 and α = ε3 − ε1 ∈ Π (see also Example 2.29).

Definition 3.20. Given a pair of paths S, T ∈ Path(λ), and a fixed choice of reduced 
expression for wS

T = si1si2 . . . sik we define ψS
T = eSψi1ψi2 . . . ψikeT.

Remark 3.21. The quiver Hecke algebra and its cyclotomic quotients are isomorphic (over 
a field) to the classical affine Hecke algebra and its cyclotomic quotients (at a root of 
unity) by [8, Main Theorem]. Setting e = p and σ = (0) ∈ Z1 we have that kSn is 
isomorphic to Hσ

n and we freely identify these algebras without further mention. (See 
Fig. 8.)

3.3.1. Our quotient algebra and regular blocks
A long-standing belief in modular Lie theory is that we should (first) restrict our 

attention to fields whose characteristic, p, is greater than the Coxeter number, h, of the 
algebraic group we are studying. This allows one to consider a “regular” or “principal 
block” of the algebraic group in question. For example, the diagrammatic Bott–Samelson 
endomorphism algebras categorify the endomorphisms between tilting modules for the 
principal block of the algebraic group, GLh(k), and this is the crux of the proof of [26, 
Theorem 1.9]. Extending this “Soergel diagram calculus” to singular blocks is a difficult 
problem. As such, all results in [26,1] and this paper are restricted to regular blocks. In 
the language of [26,1] this restricts the study of the algebraic group in question to primes 
p > h.

What does this mean on the other side of the Schur–Weyl duality relating GLh(k)
and kSn? By the second fundamental theorem of invariant theory, the kernel of the 
group algebra of the symmetric group acting on n-fold h-dimensional tensor space is 
the element 

∑
g∈Sh+1�Sn

sgn(g)g ∈ kSn. Modulo “more dominant terms” this element 
is equal to yT(h+1) (the element introduced in equation (3.3)). The module category of 
kSn/kSnyT(h+1)kSn is the Serre subcategory of kSn-mod whose simple modules are in-
dexed by partitions with at most h columns. For p > h, the algebra kSn/kSnyT(h+1)kSn

is the largest quotient of kSn controlled by the diagrammatic Bott–Samelson endo-
morphism algebra with h distinct colours. Combinatorially, the condition that p > h

ensures that ∅ does not lie on any hyperplane in the alcove geometry (and so the 
p-Kazhdan–Lusztig theory is “regular” not “singular”). The importance of this Serre 
subcategory and the condition p > h can also be explained in the context of cali-
brated/unitary modules [6, Introduction]. The main theorem of [26] calculates decom-
position numbers of kSn/kSnyT(h+1)kSn.
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There is a canonical manner in which the above situation generalises to cyclotomic 
Hecke algebras. For a given e > h, one can ask “what is the largest quotient of Hσ

n

controlled by the diagrammatic Bott–Samelson endomorphism algebra with h distinct 
colours?” Assuming that h ∈ Z�

>0 is (σ, e)-admissible, we define

yh =
∑

α=(∅,...,∅,(ha+1),∅,...,∅)
0�a<�

yTα

and we claim that the answer to the question is provided by the quotient algebras 
Hσ

n/Hσ
nyhHσ

n for (σ, e)-admissible h ∈ Z�
�0. Our claim is justified as follows: for e > h

the condition that h ∈ Z�
>0 is (σ, e)-admissible is equivalent to requiring that ∅ does 

not lie on any hyperplane in the alcove geometry (so that our p-Kazhdan–Lusztig theory 
is “regular” not “singular” as required). We further remark that the importance of the 
Serre subquotient with regards to calibrated/unitary modules goes through verbatim to 
our setting, see [6, Introduction].

Example 3.22. Let e = 3 and h = 3 ∈ Z (and let σ = (0) ∈ Z). We have that yh =
yT(3) = y4e(0, 1, 2, 3).

Example 3.23. Continuing with Example 2.3, we let σ = (0, 3, 8) ∈ Z3 and e = 13. We 
have that yh = y4e(0, 1, 2, 3) + y6e(3, 4, 5, 6, 7, 8) + e(8, 9, 10, 11, 12). The reader should 
compare these residue sequences with the residues appearing in the first row of the 
tableau in Example 2.3.

Remark 3.24. The tableaux Tα for 0 � a < � all have different residue sequences, in 
particular the corresponding eTα are pairwise orthogonal idempotents. For ha < σa+1−σa

and 0 � a � � − 2, we have that yTα = eTα . Similarly, for a = � − 1 and ha <

e + σ0 − σa−1 − 1, we have that yTα = eTα . If we replace either of the strict inequalities 
above with an equality, then we obtain yTα = yha+1eTα . Thus the element yh need not 
be homogenous, however each element yTα is homogeneous in the grading (of degree 0 
or 1). We have that the ideal generated by yh is the same as the ideal generated by the 
set of homogeneous elements {yTα | 0 � a < �} and therefore the quotient is a graded 
algebra.

Remark 3.25. In [14, 4.1 Lemma] it is proven that relation (3.4) is equivalent to ei = 0
for any i 	= res(S) for some S ∈ Std(λ) with λ ∈ P�(n). In Hσ

n/Hσ
nyhHσ

n we have that 
ei = 0 for any i 	= res(S) for some S ∈ Std(λ) with λ ∈ Ph(n). For more details, see [4, 
Theorem 1.19(a)].

3.3.2. The Bott–Samelson truncation
In the previous section, we defined the Bott–Samelson endomorphism algebra and 

its breadth-enhanced counterpart. The idempotents in the former (respectively latter) 
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0 1 4 0 3 4 2 1 0 0 1 4 0 3 4 2 1 0

0 1 4 0 3 4 2 1 0 2 3 1 2 0 1 4 3 2

Fig. 9. Continuing Example 2.29, we depict ψ
Pø

P�
α

� ψ
Pø

P�
α

and ψ
Pø

P�
α

⊗ ψ
Pø

P�
α

respectively.

algebra were indexed by expressions w in the simple reflections (respectively, in the 
simple reflections and the empty set). We define

f+n,σ =
∑

S∈Std+
n,σ(λ)

λ∈Ph(n)

eS fn,σ =
∑

S∈Stdn,σ(λ)
λ∈Ph(n)

eS

and the bulk of this paper will be dedicated to proving that

f+n,σ(Hσ
n/Hσ

nyhHσ
n)f+n,σ and fn,σ(Hσ

n/Hσ
nyhHσ

n)fn,σ

are isomorphic to the cyclotomic Bott–Samelson endomorphism algebra and its breadth-
enhanced counterpart, respectively. For the most part, we work in the breadth-enhanced 
Bott–Samelson endomorphism algebra where the isomorphism is more natural (and we 
then finally truncate at the end of the paper to deduce our Theorem A).

3.3.3. Concatenation
We now discuss horizontal concatenation of diagrams in (our truncation of) the quiver 

Hecke algebra. First we let � denote the “naive concatenation” of KLR diagrams side-
by-side as illustrated in Fig. 9. Now, given two quiver Hecke diagrams ψP

Q and ψP′

Q′ we 
define

ψP
Q ⊗ ψP′

Q′ = eP′⊗Q′ ◦ ψP⊗Q
P′⊗Q′ ◦ eP′⊗Q′ .

We refer to this as the contextualised concatenation of diagrams (as the residue sequences 
appearing along the bottom of the diagram are not obtained by simple concatenation, 
but rather from considering the residue sequence of the concatenated path).

4. Translation and dilation

In this section we prove some technical results for KLR elements which will appear 
repeatedly in what follows. The reader should feel free to skip this section on first reading. 
We continue with the notation of Convention 2.32.
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Fig. 10. A series of paths P, Q, R, S, T and U. The paths P,Q,U are α-crossing paths.

4.1. The translation principle for paths

Our first result of this section says that our choice of distinguished path Pw in Defini-
tion 2.18 for w = α1α2 . . . αp was entirely arbitrary (the only thing that matters is that 
the path crosses the hyperplanes α1, α2, . . . αp in sequence).

Lemma 4.1. Let P denote any path which terminates at a regular point and let r ∈ Z/eZ. 
Then

eP � er,r = 0.

Proof. The result follows from Remark 3.25 in light of the proof of Lemma 2.8. �
For α ∈ Π, we say that a path P of length n is an α-crossing path if (i) there 

exists 1 < p1 � p2 < n such that P(k) ∈ E(α) if and only if k ∈ [p1, p2] and (ii)
P(k) /∈ E(β, se) 	= E(α) for any 1 � k � n. We say that P is an ∅-crossing path if P(k)
is a regular point for all 1 � k � n. We say a path is α-bouncing if it is obtained from 
an α-crossing path by reflection through the α-hyperplane.

Example 4.2. Let e = 5, � = 1, h = 3, and α = ε3 − ε1. For the paths in Fig. 10, 
we have that res(P) = (0, 1, 4, 0, 3, 4, 2, 1, 0, 2), res(Q) = (0, 1, 4, 0, 3, 4, 2, 1, 2, 0), res(R) =
(0, 1, 4, 0, 3, 4, 2, 2, 1, 0), res(S) = (0, 1, 4, 0, 3, 4, 2, 2, 1, 0), res(T) = (0, 1, 4, 0, 3, 2, 4, 2, 1, 0), 
and res(U) = (0, 1, 4, 0, 2, 3, 4, 2, 1, 0) and we have that

resP(P−1(1, ε3)) = 2 resP(P−1(3, ε1)) = 3 resP(P−1(4, ε1)) = 2 resP(P−1(5, ε1)) = 1.

It is not difficult to see that the elements ψP
Q, ψP

R, ψP
S , ψP

T, and ψP
U have 0, 1, 2, 3, 3, 

crossings of non-zero degree respectively. We will see that eP = ψP
Qψ

Q
P = ψP

Tψ
T
P = ψP

Uψ
U
P .

Remark 4.3. Given P and U two (α-crossing) paths, we can pass between them induc-
tively, this lifts to a factorisation of wP

U as a product of Coxeter generators. An example 
is given by the sequence of paths P, Q, R, S, T and U in Fig. 10 (for example wS

T = (6, 7)). 
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The degree of each of these crossings is determined by whether we are stepping onto or 
off-of a wall. For example, the elements ψR

Q = eRψ8eQ, ψS
R = eSψ7eR, and ψT

S = eTψ6eS
have degrees 1, −2, and 1 respectively.

Proposition 4.4. Fix α ∈ Π ∪ {∅}. Let P, Q be a pair of α-crossing/bouncing paths of 
length n from ∅ ∈ A0 to λ ∈ sαA0. We have that

ψP
Qψ

Q
P = eP and ψQ

Pψ
P
Q = eQ. (4.1)

Proof. The α = ∅ case is trivial, and so we set α = εi − εi+1. We fix P = (εj1 , . . . , εjn)
and Q = (εk1 , . . . , εkn

). Recall that wP
Q is minimal and step-preserving and that the 

paths P and Q only cross the hyperplane α ∈ Π. This implies, for any pair of strands 
from 1 � x < y � n to 1 � wP

Q(y) < wP
Q(x) � n whose crossing has non-zero degree, 

that εjx = εi+1 and εjy = εi and P(y) ∈ sαA0 and Q(wP
Q(y)) ∈ A0 (one can swap P and 

Q and hence reorder so that 1 � y < x � n). We let 1 � y � n be minimal such that 
P(y) ∈ sαA0 and we suppose that resP(y) = r ∈ Z/eZ. We let Y denote this r-strand 
from y to wP

Q(y).
We recall our assumption that P and Q cross the α-hyperplane precisely once. This 

implies that there exists a unique 1 � z � n such that P−1(z, εi+1) ∈ [p1, p2]. We have 
that resP(P−1(z, εi+1)) = r + 1, resP(P−1(z + 1, εi+1)) = r, and resP(P−1(z + 2, εi+1)) =
r − 1. The Y strand crosses each of the strands connecting the points P−1(z, εi+1), 
P−1(z + 1, εi+1), and P−1(z + 2, εi+1) to the points Q−1(z, εi+1), Q−1(z + 1, εi+1), and 
Q−1(z + 2, εi+1) and these are all the crossings involving the Y -strand which are of 
non-zero degree. We refer to these strands as Z+1, Z0, Z−1.

We are ready to consider the product ψP
Qψ

Q
P . We use case 4 of relation (R4) to resolve 

the double-crossing of the Y and Z+1 strands, which yields two terms with KLR-dots 
on these strands. The term with a KLR-dot on the Z+1 strand vanishes after applying 
case 1 of (R4) to the like-labelled double-crossing r-strands Y and Z0. The remaining 
term has a KLR-dot on the Y strand. We next use (R3) to pull this KLR-dot through 
one of the like-labelled crossings of Y and Z0. Again we obtain the difference of two 
terms, one of which vanishes by applying case 1 of (R4). This remaining term has the r-
strands Y and Z0 crossing only once. We then pull the Z−1-strand through this crossing 
using the second case of relation (R5), to obtain another sum of two terms. The term 
with more crossings is zero by Lemma 4.1, while the remaining term has no non-trivial 
double-crossings involving the Y strand. As the Y strand was chosen to be minimal, we 
now repeat the above argument with the next such strand; we proceed until all double-
crossings of non-zero degree have been undone. �
Remark 4.5. More generally, given P and Q two α- and β-crossing/bouncing paths, we 
can apply Proposition 4.4 to any local regions S ⊗ P ⊗ T and S ⊗ Q ⊗ T of a wider 
pair of paths. The proof again follows simply by applying the same sequence of relations 
as in the proof of Proposition 4.4. Indeed, P and Q can be said to be “translation-
equivalent” if the non-zero double-crossings in ψP

Qψ
Q
P are precisely those detailed in the 
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proof of Proposition 4.4 (and so are in bijection with the crossings of non-zero degree in 
Example 4.6).

Example 4.6. We now go through the steps of the above proof for the product ψP
Uψ

U
P =

e(0,1,4,0,3,4,2,1,0,2) from Example 4.2.

0 1 4 0 3 4 2 1 0 2

2

=

0 1 4 0 3 4 2 1 0 2

2

−

0 1 4 0 3 4 2 1 0 2

2

=

0 1 4 0 3 4 2 1 0 2

2

−

0 1 4 0 3 4 2 1 0 2

2

=

0 1 4 0 3 4 2 1 0 2

2

−

0 1 4 0 3 4 2 1 0 2

2

=

0 1 4 0 3 4 2 1 0 2

2

+

0 1 4 0 3 4 2 1 0 2

2

=

0 1 4 0 3 4 2 1 0 2

2

The first and second equalities hold by case 4 and case 3 of relation (R4). The first term 
in the second line and the second term in the third line are both zero by case 1 of relation 
(R4). Thus the third equality follows by relation (R3) and the fourth equality follows 
from case 1 or relation (R5). The first term in the fourth line is zero by Lemma 4.1
(the partition (23) does not have an addable node of residue 1). The second term in the 
fourth line is equal the term in the fifth line by case 2 of relation (R4).

4.2. Good and bad braids

Given w ∈ Sn, we define a w-braid to be any triple 1 � p < q < r � n such that 
w(p) > w(q) > w(r). We recall that an element w ∈ Sn is said to be fully-commutative
if there do not exist any w-braid triples. We define a bad w-braid to be a triple 1 � p <
q < r � n with ip = ir = iq ± 1 such that w(p) > w(q) > w(r). We say that a w-braid 
which is not bad is good. We say that w is residue-commutative if there do not exist any 
bad-braid triples.
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−1 −2 −1 −2 −1 −2 −3 −1 −2 −3 −1 −2 −3 −4 −1 −2 −3 −4

Fig. 11. The 2- 3- and 4- dilated elements eBψ(1,2)beB for b = 2, 3, 4.

Lemma 4.7. Suppose that w is residue-commutative and let w be a reduced expression 
for w. Then ψw is independent of the choice of reduced expression and we denote this 
element simply by ψw.

Proof. If w is fully-commutative then any two reduced expressions differ only by the 
commuting Coxeter relations see [2, Theorem 2.1] (in particular, one need not use the 
braid relation). Thus the claim follows by the second equality of (R2). An identical 
argument shows that if w is residue-commutative, then any two reduced expressions 
differ only by the commuting Coxeter relations and good braid relations. The condition 
for a braid to be good is precisely the commuting case of relation (R5). Thus the claim 
follows by relation (R2) and (R5). �
4.3. Breadth dilation of permutations

We will see later on in the paper that the commutator and hexagonal generators of 
equation (3.2) roughly correspond to “dilated” copies of transpositions and braids in 
the KLR algebra. Similarly, the tetrahedron relation roughly corresponds to the equality 
between two expressions for a “dilated” copy of (1, 4)(2, 3). In this section, we provide 
the necessary background results which will allow us to make these ideas more precise in 
Sections 5 and 6. Given b > 1, we define the b-dilated transpositions to be the elements

(i, i + 1)b = sbi(sbi−1sbi+1) . . . (sbi−b+1sbi−b+3 . . . sbi−b−3sbi+b−1) . . . (sbi−1sbi+1)sbi

for 1 � i < n. (The examples in Fig. 11 should make this definition clear.) Now, we note 
that Sn

∼= 〈(i, i +1)b | 1 � i < n〉 � Sbn. We remark that (i, i +1)b is fully commutative. 
Given any permutation w ∈ Sn and w an expression for w ∈ Sn, we let wb denote the 
corresponding expression in the generators (i, i +1)b of this b-dilated copy of Sn � Sbn. 
We set B = (−1, −2, . . . , −b)n ∈ (Z/eZ)bn and we let ψwb

eB denote the corresponding 
element in 〈eBψ(i,i+1)beB | 1 � i < n〉 ⊆ Hσ

n.
We fix w a reduced word for w ∈ Sn. We say that D ∈ Hσ

bn is a quasi-b-dilated 
expression for w if for each 1 � r < b, the subexpression consisting solely of the −r-
strands and −(r + 1)-strands from D forms the 2-dilated element ψw2e(−r,−r−1)n . It is 
easy to see that a quasi-b-dilated element for w differs from ψwb

simply by undoing some 
crossings of degree zero. In particular, all quasi-b-dilated expressions for w (including 
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−1 −2 −3 −4 −5 −1 −2 −3 −4 −5 −1 −2 −3 −4 −5

Fig. 12. The 5-dilated element eBψ(2,3)5(1,2)5(2,3)5eB for B = 5.

−1 −2 −3 −4 −1 −2 −3 −4

Fig. 13. A quasi-4-dilated expression for (1, 2). This diagram is obtained from the final diagram of Fig. 11
by undoing a degree zero crossing.

−1 −2 −3 −4 −5 −1 −2 −3 −1 −2 −4 −3 −5 −4 −5

Fig. 14. A quasi-5-expression element for w = (23)(12)(23). Conjugating this diagram by the invertible 
element (ψ10ψ12ψ9ψ11ψ10)e(−1,−2,−3,−4,−5)3 we obtain the diagram in Fig. 12.

ψwb
itself) have the same bad braids (in the same order, modulo the commutativity 

relations). (See Fig. 13.)
Finally, we define the nibs of a permutation w to be the nodes 1 and n and w−1(1)

and w−1(n) from the top edge and the nodes 1 and n and w(1) and w(n) from the 
bottom edge. We define the nib-truncation of w to be the expression, nib(w), obtained 
by deleting the 4 pairs of nibs of w and then deleting the (four) strands connecting 
these vertices. Similarly, we define nib(ψwei) = ψnib(w)enib(i) where the residue sequence 
nib(i) ∈ (Z/eZ)bn−4 is inherited by deleting the 1st, nth, w(1)th and w(n)th entries of 
i ∈ (Z/eZ)n. See Figs. 14 and 15 for examples.

4.4. Freedom of expression

We now prove that the quasi-dilated elements and their nib-truncations are indepen-
dent of the choice of reduced expressions. For 0 � q � b, we define the element ψ[b,q]
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−2 −3 −4 −1 −2 −3 −2 −4 −3 −5 −4

Fig. 15. A diagram obtained by nib-truncation from that in Fig. 14. This diagram is a subdiagram of the 
hexagonal generator in Fig. 23.

which breaks the strands into two groups (left and right) according to their residues as 
follows

ψ[b,q] =
∏

0�p<n

( ∏
1�i�q

ψpb+i
pq+i

)
where eBψ[b,q] ∈ e(−1,...,−b)nHσ

ne(−1,...,−q)n�(−q−1,...,−b)n .

We remark that ψ[b,0] = ψ[b,b] = 1 ∈ Sbn.

Lemma 4.8. We have that eBψ(1,2)bψ(1,2)beB = 0 for b � 1.

Proof. For b = 1 the result is immediate by case 1 of relation (R4). Now let b > 1. We 
pull the strand connecting the strand connecting the 1st top and bottom vertices to the 
right through the strand connecting the (b + 2)th top and bottom vertices using case 4 
of relation (R4) and hence obtain

eBψ[b,b−1]

((
ψ(1,2)b−1y2b−2ψ(1,2)b−1 � ψ(1,2)ψ(1,2)

)
−
(
ψ(1,2)b−1ψ(1,2)b−1 � ψ(1,2)y1ψ(1,2)

))
ψ∗

[b,b−1]eB

and the first (respectively second) term is zero by the (b −1)th (respectively 1st) inductive 
step. �
Proposition 4.9. Let 1 � b < e. The elements eBψ(i,i+2)beB and nib(eBψ(i,i+2)beB) are 
independent of the choice of reduced expression of (i, i + 2)b ∈ Sbn.

Proof. For ease of notation we consider the i = 1 case, the general case is identical up 
to relabelling of strands. We first consider eBψ(1,3)beB , as the enumeration of strands is 
easier. We will refer to two reduced expressions in the KLR algebra as distinct if they are 
not trivially equal by the commuting relations (namely, the latter case of (R2), case 2 of 
relation (R4) and case 3 of relation (R5)). There are precisely b +1 distinct expressions, 
Ωq, of eBψ(1,3)beB as follows
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−1 −2 −1 −2 −1 −2 −1 −2 −1 −2 −1 −2 −2−1−2−1−2−1

Fig. 16. The 3 distinct expressions, Ω0, Ω1, and Ω2 for ψ(1,3)2 . The b + 1 distinct expressions for ψ(1,3)b are 
determined by where the central “fat strand” is broken into “left” and “right” parts.

−1 −2 −1 −2 −1 −2 −1 −2 −1 −2 −1 −2

−2−1−2−1−2−1 −1 −2 −1 −2 −1 −2

Fig. 17. The 4 equivalent expressions for Ω1 of Fig. 16. These differ only by applications of case 3 of relation 
(R5) (and so the bad braids are all the same).

Ωq = eBψ[b,q]
(
ψ(12)qψ(23)qψ(12)q � ψ(23)b−q

ψ(12)b−q
ψ(23)b−q

)
ψ∗

[b,q]eB (4.2)

for 0 � q � b. See Figs. 16 and 17 for examples. We remark that Ω0 = eBψ(23)bψ(12)bψ(23)b
eB and Ωb = eBψ(12)bψ(23)bψ(12)beB . We will show that Ωq = Ωq+1 for 1 � q < b and 
hence deduce the result.

Step 1. If q = 0 proceed to Step 2, otherwise we pull the (−q)-strand connecting the 
(b + q)th northern and southern nodes of Ωq to the right. We first use relation (R5) to 
pull (−q)-strand through the crossing of (1 − q)-strands connecting the (q − 1)th and 
(2b + q − 1)th top and bottom vertices. We obtain two terms: the first is equal to

eBψ[b,q]
(
ψ[q,q−1]

(
ψ(12)q−1ψ(23)q−1ψ(12)q−1 � ψ(12)(23)(12)

)
ψ∗

[q,q−1]

�ψ(23)b−q
ψ(12)b−q

ψ(23)b−q

)
ψ∗

[b,q]eB (4.3)

and an error term of strictly smaller length (in which we undo the crossing pair of (1 −q)-
strands). If q = 1, the error term contains a double-crossing of (r − q)-strands and so is 
zero by case 1 of relation (R4). If q > 1, then we apply relation (R5) to the error term 
to obtain two distinct terms; one of which is zero by Lemma 4.8 and the other is zero 
by case 2 or relation (R4) and the commutativity relations.
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Step 2. The output from Step 1 has a subexpression ψ(12)(23)(12) which we rewrite as 
ψ(23)(12)(23) using case 3 of relation (R5) (as the three strands are all of the same residue, 
−q ∈ Z/eZ). We also have that ψ[b,q]ψ[q,q−1] = ψ[b,q−1](1Hσ

3b−3
� ψ[b−q+1,1]). Thus (4.3)

is equal to

ψ[b,q]
(
ψ(12)q−1ψ(23)q−1ψ(12)q−1

�ψ[b−q+1,1]
(
ψ(23)(12)(23) � ψ(23)b−q

ψ(12)b−q
ψ(23)b−q

)
ψ∗

[b−q+1,1]
)
ψ∗

[b,q]

Now, by the mirror argument to that used in Step 1, we have that this equals

ψ[b,q−1]
(
ψ(12)q−1ψ(23)q−1ψ(12)q−1 � ψ(23)b−q+1ψ(12)b−q+1ψ(23)b−q+1

)
ψ∗

[b,q−1]

as required. The argument for nib(eBψ(1,3)beB) is identical (up to relabelling of strands) 
except that the q = 0 and q = b cases do not appear. �
Corollary 4.10. Let x be any expression in the Coxeter generators of Sn. Any quasi-b-
dilated expression of x is independent of the choice of expression x. Similarly, the nib 
truncations of these elements are independent of the choice of expression x.

Proof. By Lemma 4.7 it is enough to consider the bad braids in ψx. If x = wb for some 
w ∈ Sn, then we can resolve each bad braid in ψx and nib(ψx) using Proposition 4.9. 
Now, if ψx is quasi-b-dilated then ψx and nib(ψx) are obtained from ψwb

and nib(ψwb
)

by undoing some degree zero crossings (thus introducing no new bad braids) and the 
result follows. �
5. Recasting the diagrammatic Bott–Samelson generators in the quiver Hecke algebra

We continue with the notation of Convention 2.32. The elements of the (breadth-
enhanced) diagrammatic Bott–Samelson endomorphism algebras can be thought of as 
morphisms relating pairs of expressions from Ŝh. We have also seen that one can think 
of an element of the quiver Hecke algebra as a morphism between pairs of paths in the 
alcove geometries of Section 3. This will allow us, through the relationship between paths 
and their colourings described in Section 3, to define the isomorphism behind Theorem A. 
In what follows we will define generators

adjøααø spotøα forkøα
αα comβγ

γβ hexβαβ
αβα

for α, β, γ ∈ Π and their duals. The hyperplane labelled by α (respectively β) is a wall of 
the dominant chamber if and only if Pα (respectively Pβ) leaves the dominant chamber. 
By the cyclotomic KLR relation, one of the above generators is zero if (and only if) one 
of its indexing roots labels a path which leaves the dominant chamber. However, one 
should think of these as generators in the sense of a right tensor quotient of a monoidal 
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category. In other words, we still require every generator for every simple root (even if 
they are zero) as the left concatenates of these generators will not be zero, in general.

In order to construct our isomorphism, we must first “sign-twist” the elements of 
the KLR algebra. This twist counts the number of degree −2 crossings (heuristically, 
these are the crossings which “intersect an alcove wall”). For w an arbitrary reduced 
expression, we set

Υw = (−1)
{1�p<q�n|w(p)>w(q),ip=iq}eiψwew(i).

While KLR diagrams are usually only defined up to a choice of expression, we empha-
sise that each of the generators we define is independent of this choice. Thus there is 
no ambiguity in defining the elements ΥP

Q for wP
Q without reference to the underlying 

expression. In other words: these generators are canonical elements of Hσ
n. Examples of 

concrete choices of expression can be found in [4, Section 2.3]. In various proofs it will be 
convenient to denote by T and B the top and bottom paths of certain diagrams (which 
we define case-by-case).

5.1. Idempotents in diagrammatic algebras

We consider an element of the quiver Hecke or diagrammatic Bott–Samelson endo-
morphism algebra to be a morphism between paths, lifting the ideas of Subsection 2.4.1. 
The easiest elements to construct are the idempotents corresponding to the trivial mor-
phism from a path to itself. Given α a simple reflection, we have an associated path 
Pα, a trivial bijection wPα

Pα
= 1 ∈ Sbα , and an idempotent element of the quiver Hecke 

algebra

ePα := eres(Pα) ∈ Hσ
bα

where we reemphasise that eres(Pα) = eres(P�
α) (see Remark 2.23). Given α a simple 

reflection, we also have a Soergel diagram 1α given by a single vertical strand coloured 
by α. We define

Ψ(1α) = ePα . (5.1)

More generally, given any w = sα(1)sα(2) . . . sα(k) any expression of breadth b(w) = n, we 
have an associated path Pw, and an element of the quiver Hecke algebra

ePw
:= eres(Pw) = eP

α(1) ⊗ eP
α(2) ⊗ · · · ⊗ eP

α(k) ∈ Hσ
nh

and a (w, w)-Soergel diagram

1w = 1α(1) ⊗ 1α(2) ⊗ · · · ⊗ 1α(k)
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given by k vertical strands, coloured with α(1), α(2), ..., α(k) from left to right. We define

Ψ(1w) = ePw
. (5.2)

Example 5.1. Continuing with Fig. 1 and Examples 2.14 and 2.25, we let

w = s∅s∅sε3−ε1sε2−ε3sε1−ε2sε3−ε1sε2−ε3sε1−ε2

w′ = sε3−ε1s∅sε2−ε3sε1−ε2s∅sε3−ε1sε2−ε3sε1−ε2 .

Recall these paths came from “inserting determinants” into the path in Fig. 1. We have 
that

Ψ(1w) = e0,1,2,4,0,1,3,4,2,3,1,2,0,4,3,0,2,1,0,1,4,3,4,2,3,1,2,0,4,3,0,2,1,0,1,4

Ψ(1w′) = e0,1,4,0,3,4,2,1,0,2,3,4,4,1,0,4,0,3,2,3,4,3,4,2,3,1,2,0,4,3,0,2,1,0,1,4.

Remark 5.2. For two paths S and T, we have that S ∼ T if and only if res(S) = res(T). 
Therefore if S ∼ T then eT = eSeT = eS. In particular ePα = ePαeP�

α
= eP�

α
.

Remark 5.3. We have defined two distinct paths Pα and P�
α which label the same idem-

potent, thus ePø
Hσ

bα
ePα = ePø

Hσ
bα
eP�

α
. This apparent redundancy is required because 

we cannot directly compare Pø and Pα as they do not have the same shape — however, 
we can compare Pø and P�

α as they do have the same shape. Thus P�
α is required in 

order to define the spot-morphism. For the remainder of this section, we will restrict our 
attention to a subset of morphisms between paths of the same shape which form a set 
of monoidal generators of our truncated KLR algebra.

5.2. Local adjustments and isotopy

We will refer to the passage between alcove paths which differ only by occurrences of 
s∅ = 1 (and their associated idempotents) as “adjustment”. We wish to understand the 
morphism relating the paths Pα ⊗ P∅ and P∅ ⊗ Pα.

Proposition 5.4. The element ψPα∅
P∅α

is independent of the choice of reduced expression.

Proof. There are precisely three crossings in ψPα∅
P∅α

of non-zero degree. Namely, the r-
strand (for some r ∈ Z/eZ) connecting the P−1

∅α(1, εi)th top vertex to the P−1
α∅(1, εi)th 

bottom vertex crosses each of the strands connecting P−1
∅α(q, εi+1)th top vertices to the 

P−1
α∅(q, εi+1)th bottom vertices for q = bα − 1, bα, bα + 1 (of residues r + 1, r, and r − 1

respectively) precisely once with degrees +1, −2, and +1 respectively. Thus ψPα∅
P∅α

is 
residue-commutative and the result follows from Lemma 4.7. �



42 C. Bowman et al. / Advances in Mathematics 429 (2023) 109185
−

0 2 6 8 10 11 1 5 7 9 4 3 10 0 2 4 6 8

ε1 ε2 ε4 ε5 ε6 ε1 ε2 ε4 ε5 ε6 ε4 ε4 ε1 ε2 ε4 ε3 ε5 ε6

ε1 ε2 ε3 ε4 ε5 ε6 ε1 ε2 ε4 ε5 ε6 ε1 ε2 ε4 ε5 ε6 ε4 ε4

0 2 4 6 8 10 11 1 5 7 9 10 0 4 6 8 3 2

Fig. 18. We let h = 1, � = 6, e = 12, σ = (0, 2, 4, 6, 8, 10) and α = ε3 − ε4. The adjustment term adj∅αα∅
is illustrated. The steps of the path Pα and P∅ are coloured pink and black respectively within both Pα∅
(along the top of the diagram) and P∅α (along the bottom of the diagram).

Thus we are free to define the KLR-adjustment to be

adjα∅
∅α := ΥPα∅

P∅α

which is independent of the choice of reduced expression of the permutation. (See Fig. 18.)

Proposition 5.5. We have that

adj∅αα∅ ◦ ePα∅ ◦ adjα∅
∅α = eP∅α and adjα∅

∅α ◦ eP∅α ◦ adj∅αα∅ = ePα∅

and so adjustment is an invertible process.

Proof. The paths Pα∅ and P∅α satisfy the conditions of Proposition 4.4 and so the result 
follows. �

Finally, we remark that the above adjustment can be generalised from the b∅ = 1
case to the bø � 1 case as follows. For w = sαsø with α, γ ∈ Π two (equal, adjacent, or 
non-adjacent) simple roots, we set

Aøα
αø(q) = Pq∅ ⊗ Pα ⊗ P(bγ−q)∅

for 0 � q � bγ and we set

adjøααø(q) = eAøα
αø(q+1)

(
ePq∅ ⊗ adj∅αα∅ ⊗ eP(bγ−q−1)∅

)
eAøα

αø(q)

and we define

adjøααø = adjøααø(bγ − 1)...adjøααø(1)adjøααø(0).
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Fig. 19. An example timeline for the KLR spot. Fix � = 1 and h = 3 and e = 5 and α = ε3 − ε1 (so 
that bα = 3). From left to right we picture S2,α = Sα(3) = Pø, S1,α, S0,α = P�

α. We do not picture the 
k = 2, 1, 0 copies of the path (+ε1, +ε2, +ε3) at the start of each path, for ease of readability.

5.3. The KLR-spot diagram

We now define the spot path morphism. Recall that

Pø = (ε1, ..., εi−1, εi, εi+1, ..., εh)bα P�
α = (ε1, ..., εi−1, ε̂i, εi+1, ..., εh)bα � (εi)bα

are both paths of the same shape. The permutation wPø

P�
α

is fully-commutative and so we 
are free to define the KLR-spot to be the elements

spotøα := ΥPø

P�
α

spotαø := ΥP�
α

Pø

which are both independent of choice of reduced expressions and both belong to 
ePαHσ

bα
ePα = eP�

α
Hσ

bα
eP�

α
.

We wish to inductively pass between the paths P�
α and Pø by means of a visual 

timeline (pictured in Fig. 19). This allows us to factorise the KLR-spots and to simplify 
our proofs later on. To this end we define

Sq,α = Pq∅�Mbα−q
i �Pbα−q

i = (ε1, ε2, ..., εh)q�(ε1, ..., εi−1, ε̂i, εi+1, ..., εh)bα−q�(εi)bα−q

for 0 � q � bα and we notice that S0,α = P�
α and Sbα,α = Pø. We define spotøα(q) to be 

the element spotøα(q) = ψ
Sq+1,α
Sq,α

for 0 � q < bα and we factorise spotøα as follows

spotøα := ePø
◦ spotøα(bα − 1) ◦ · · · ◦ spotøα(1) ◦ spotøα(0) ◦ eP�

α
.

Example 5.6. Let h = 3 and � = 1 and e = 5 and α = ε3 − ε1. We have that bα = 3 and

P�
α = S0,α = (ε1, ε2, ε1, ε2, ε1, ε2, ε3, ε3, ε3)

S1,α = (ε1, ε2, ε3) � (ε1, ε2, ε1, ε2, ε3, ε3)

S2,α = (ε1, ε2, ε3) � (ε1, ε2, ε3) � (ε1, ε2, ε3)

Pø = S3,α = (ε1, ε2, ε3) � (ε1, ε2, ε3) � (ε1, ε2, ε3)
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spotøα =

0 1 4 0 3 4 2 1 0
res(S0,α) = res(P�

α)

res(S1,α)

res(S2,α)

res(S3,α) = res(Pø)0 1 2 4 0 1 3 4 0

ε1 ε2 ε1 ε2 ε1 ε2 ε3 ε3 ε3

ε1 ε2 ε3 ε1 ε2 ε3 ε1 ε2 ε3

Fig. 20. The element spotøα of Example 5.6. We have added the step labels on top and bottom so that one 
can appreciate that this element is a morphism between paths. However, we remark that while a necessary 
condition for a product of two KLR diagrams to be non-zero is that their residue sequences must coincide, 
the same is not true for their step labels (see Remark 5.2).

which are depicted in Fig. 19. Of course, S3,α = S2,α in this case, but this is only because 
α is the affine root ε3 − ε1 with 3 = h.

Remark 5.7. We have that wSα,q+1
Sα,q

= wqh+i
bαh−bα+q+1 for 0 � q < bα, where the sub and 

superscripts correspond to

S−1
q,α(q + 1, εi) = qh + i S−1

q+1,α(q + 1, εi) = bαh− bα + q + 1

and so one can think of the spot morphism as successively removing each +εi step from 
the latter path and adding it to the former. (See Fig. 20.)

Remark 5.8. The element eSq+1,αspotøα(q)eSq,α is of degree 1 for q = 0 and degree 0 for 
0 < q < bα. The terms with 0 < q < bα are invertible by Proposition 4.4. Thus one 
can think of the q = 0 term as the real substance of spotøα. One should intuitively think 
of this degree contribution as coming from the fact that the path S0,α steps onto and 
off of a hyperplane but S1,α does not touch the hyperplane at any point. The diagram 
spotα(0) has a crossing involving the strand from the S−1

0,α(1, εi)th node on the bottom 
edge to the S−1

1,α(1, εi)th node on the top edge and the strand from the S−1
1,α(bα, εi+1)th 

node on the bottom edge to the S−1
0,α(bα, εi+1)th node on the top edge. See Fig. 19 for a 

visualisation.

5.4. The KLR-fork diagram

We wish to understand the morphism from Pø ⊗ Pα to Pα ⊗ P�
α (which are both 

paths of the same shape, so this makes sense). The permutation wPø⊗Pα

Pα⊗P�
α

is not fully 
commutative and so we must do a little work prior to our definition.
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Fig. 21. An example of a timeline for the KLR fork. Fix � = 1 and h = 3 and e = 5 and α = ε3 − ε1 (so that 
bα = 3). From left to right we picture the paths F0,øα = Pα ⊗ P�

α, F1,øα, F2,øα, F3,øα = Pøα. Notice that 
we do not picture the q = 0, 1, 2, 3 copies of the path (+ε1, +ε2, +ε3) at the start of each path, for ease of 
readability.

Proposition 5.9. The elements ψPø⊗Pα

Pα⊗P�
α

and ψPα⊗Pø

P�
α⊗Pα

are independent of the reduced ex-
pressions.

Proof. We focus on the former case, as the latter is similar. The element wPø⊗Pα

Pα⊗P�
α

contains 
precisely bα crossings of strands with the same residue label: Namely for each 1 � q � bα
the strand connecting the top and bottom vertices labelled by the integers

P−1
øα(q, εi) = qh + i (Pα ⊗ P�

α)−1(q, εi) = bαh + (q − 1)(h− 1) + α(i + 1)

crosses the strand connecting the top and bottom vertices labelled by the integers

P−1
øα(bα + q, εi+1) = bαh + (q − 1)(h− 1) + α(i + 1)

(Pα ⊗ P�
α)−1(bα + q, εi+1) = bαh− bα + q.

The qth of these like-labelled crossings forms a braid with a third strand if and only if 
this third strand connects a top and bottom node labelled by the integers

P−1
øα(bα + p, εj) = bαh + (p− 1)(h− 1) + α(j)

(Pα ⊗ P�
α)−1(bα + p, εj) = bαh + (p− 1)(h− 1) + α(j)

for α(j) 	= α(i + 1) and 1 � p < q or p = q and α(j) < α(i + 1). None of the resulting 
braids is bad; thus ψPø⊗Pα

Pα⊗P�
α

is residue-commutative and the result follows. �
Thus we are free to define the KLR-forks to be the elements

forkøα
αα := ΥPø⊗Pα

Pα⊗P�
α

forkαø
αα := ΥPα⊗Pø

P�
α⊗Pα

which are independent of the choice of reduced expressions. We reemphasise that 
res(Pα) = res(P�

α), thus former element belongs to (ePø
⊗ ePα)Hσ

bα
(ePα ⊗ ePα) =

(ePø
⊗ ePα)Hσ

b (ePα ⊗ eP� ) (a similar statement holds for the latter element).

α α
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We wish to inductively pass between the paths Pα⊗P�
α and Pøα (respectively P�

α⊗Pα

and Pαø) by means of a visual timeline (as in Fig. 21). This allows us to factorise KLR-
forks and to simplify our proofs later on. To this end we define

Fq,øα = Pq∅ � Mbα
i � Pbα–q

i+1 ⊗αMbα−q
i � Pbα

i

Fq,αø = Mbα
i � Pbα–q

i � Mbα−q
i � Pbα

i+1⊗αPq∅

and we remark that

F0,øα = Pα ⊗ P�
α Fbα,øα = Pø ⊗ Pα F0,αø = P�

α ⊗ Pα Fbα,αø = Pα ⊗ Pø.

We define forkøα
αα(q) = ΥFq,øα

Fq+1,øα
and forkαø

αα(q) = ΥFq,αø

Fq+1,αø
for 0 � k < bα and we 

factorise the KLR-forks as follows

forkøα
αα = ePøα ◦ forkøα

αα(bα − 1) ◦ · · · ◦ forkøα
αα(1) ◦ forkøα

αα(0) ◦ ePα⊗P�
α

forkαø
αα = ePαø

◦ forkαø
αα(bα − 1) ◦ · · · ◦ forkαø

αα(1) ◦ forkαø
αα(0) ◦ eP�

α⊗Pα
.

Example 5.10. Let h = 1, � = 3, e = 6, σ = (0, 2, 4) ∈ Z3 and α = ε2 − ε3 (thus bα = 2). 
We have

Pα ⊗ P�
α = (ε1, ε3, ε1, ε3, ε3, ε3) ⊗ (ε1, ε3, ε1, ε3, ε2, ε2)

= (ε1, ε3, ε1, ε3, ε3, ε3, ε1, ε2, ε1, ε2, ε3, ε3)

Pøα = (ε1, ε2, ε3, ε1, ε2, ε3, ε1, ε3, ε1, ε3, ε3, ε3)

are both dominant paths terminating at (14 | 12 | 16) ∈ P1,3(12). The KLR-fork diagram 
is as follows

forkøα
αα =

0 4 5 3 2 1 4 2 3 1 0 5

0 2 4 5 1 3 4 2 3 1 0 5 res(Pøα)

res(F1,øα)

res(Pα ⊗ P�
α)

ε1 ε2 ε3 ε1 ε2 ε3 ε1 ε3 ε1 ε3 ε3 ε3

ε1 ε3 ε1 ε3 ε3 ε3 ε1 ε2 ε1 ε2 ε3 ε3

The following proposition allows us to see that these two elements are essentially the 
same. We will see in the proof that the “timelines” for the fork generators allow us to 
proceed step-by-step (the steps are indexed by bα � q � 1).

Proposition 5.11. Let α ∈ Π. We have that forkαø
αα = adjαø

øαforkøα
αα.
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Proof. We note that Aøα
αø(bα) = Pø ⊗ Pα = Fbα,øα and Aøα

αø(0) = Pα ⊗ Pø = F0,αø. We 
claim that

adjαø
øα(q − 1) ◦ ΥAøα

αø
(q)

Fq,αø
◦ forkøα

αα(q − 1) = ΥAøα
αø

(q−1)
Fq−1,αø

(5.3)

for bα � q � 1. The result follows immediately from Proposition 5.9 once we have proven 
the claim. We label the top and bottom vertices of the lefthand-side of equation (5.3) by 
the paths Tq = Aøα

αø(q) and Bq = Fq,øα respectively. We remark res(Fq,øα) = res(Fq,αø)
(as these paths are obtained from each other by reflection) and so this labelling makes 
sense.

We now prove the claim. There are two strands in the concatenated diagram which 
do not respect step-labels. Namely, the rq-strands (for some rq ∈ Z/eZ) connecting the 
T−1
q (q, εi) and B−1

q (bα + q, εi+1) top and bottom vertices and the strand connecting the 
T−1
q (bα+q, εi+1) and B−1

q (q, εi) top and bottom vertices. There are four crossings of non-
zero degree in the product, all of which involve the former, “distinguished”, rq-strand. 
Namely, the distinguished rq-strand passes from T−1

q (q, εi) to the left through the latter 
rq-strand and then through the vertical (rq +1)-strand connecting the T−1(bα + q, εi+1)
and B−1(bα+q, εi+1) vertices before then passing back again through both these strands 
and terminating at B−1

q (bα + q, εi+1). (The distinguished strand crosses several other 
strands in the process, but the crossings are of degree zero and so can be undone trivially, 
by case 2 of relation (R4).) Using case 4 of relation (R4), we pull the distinguished rq-
strand rightwards through the (rq − 1)-strand and hence change the sign and obtain a 
dot on the rq-strand (the term with a dot on the (rq + 1)-strand is zero by case 1 of 
relation (R4) and the commutativity relations). Using relation (R3), we pull the dot on 
the distinguished strand rightwards through the crossing of rq-strands and hence undo 
this crossing, kill the dot, and change the sign again (the other term is again zero by 
case 1 of relation (R4) and the commutativity relations). The resulting diagram has 
no double-crossings and respects step labels and thus is equal to the righthand-side of 
Proposition 5.9, as required. �
5.5. The KLR hexagon diagram

We now define the hexagon in the KLR algebra. We let α, β ∈ Π label non-commuting 
reflections. We assume, without loss of generality, that j = i + 1. We have two cases to 
consider: if bα � bβ then we must deform the path Pαβα into the path Pø−ø ⊗ Pβαβ

and if bα � bβ then we must deform the path Pø−ø ⊗ Pαβα into the path Pβαβ, where 
here ø− ø := ∅bα−bβ .

Proposition 5.12. The elements ψPαβα

Pø−ø⊗Pβαβ
and ψPø−ø⊗Pαβα

Pβαβ
are independent of the 

choice of reduced expressions for bα � bβ and bβ � bα, respectively.

Proof. We consider the first case as the second is similar. The bad triples of ψPαβα

Pø−ø⊗Pβαβ

are precisely the triples labelled by the integers
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P−1
αβα(q, εi) < P−1

αβα(bαβ + q ± 1, εi+2) < P−1
αβα(bα + q, εi+1)

for 1 � q � bα, where the first and third steps have residue rq ∈ Z/eZ and the second 
has residue rq±1 = rq ∓ 1 ∈ Z/eZ. Thus it is enough to consider the subexpression, ψw, 
formed from the union of the (rq, rq+1)-strands for 0 � q � bα enumerated above. We 
set T = Pαβα and B = Pø−ø ⊗ Pαβα and we let

ti(q) = T−1(q, εi) ti+1(q) = T−1(bα + q, εi+1) ti+2(q) = T−1(bαβ + q, εi+2)

bi(q) = B−1(q, εi) bi+1(q) = B−1(bα + q, εi+1) bi+2(q) = B−1(bαβ + q, εi+2)

for 0 � q � bα + 1. We have that

ti(q) < ti(q + 1) < ti+2(q) < ti+2(q + 1) < ti+1(q) < ti+1(q + 1)

bi(q) > bi(q + 1) > bi+2(q) > bi+2(q + 1) > bi+1(q) > bi+1(q + 1)

for 1 � q � bα and

ti(1) < ti+2(0) < ti+1(1) ti(bα) < ti+2(bα + 1) < ti+1(bα)

bi(1) > bi+2(0) > bi+1(1) bi(bα) > bi+2(bα + 1) > bi+1(bα).

Thus the subexpression ψw is the nib truncation of a quasi-(bα + 2)-expression for w =
(13) ∈ S3, which is independent of the choice of expression by Corollary 4.10. Thus the 
result follows. �

We are now free to define the KLR-hexagon to be the element

hexαβα
βαβ := ΥPαβα

Pø−ø⊗Pβαβ
or hexαβα

βαβ := ΥPø−ø⊗Pαβα

Pβαβ

for bα � bβ or bα � bβ respectively, which are independent of the choice of reduced 
expressions. See Fig. 23 for an example. We wish to inductively pass between the paths 
Pαβα and Pø−ø ⊗ Pβαβ by means of a visual timeline (as in Fig. 22). This allows us 
to factorise the KLR-hexagon and to simplify our proofs later on. First assume that 
bα � bβ. We define Hq,αβα to be the path⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Pq∅ � Mbα
i � Pbα

i+1 ⊗α Mbβ−q
i+1 � Pbβ

i+2 ⊗β Mq
i,i+2 � Mbα−q

i � Pbα
i+1 0 � q � bβ

Pq∅ � Mbα
i � Pbαβ−q

i+1 ⊗α Pbβ
i+2 ⊗β Mbβ

i,i+2 � Mbα−q
i � Pbα

i+1 bβ � q � bα

Pø � Mbα
i � Pbαβ−q

i+1 ⊗α Pbβ
i+2 ⊗β Mbβ

i,i+2 � Pbα
i+1 � Pq−bα

i bα � q � bαβ

This is demonstrated in the first 5 paths in Fig. 22. We now come from the opposite side 
to meet in the middle. We define Hq,βαβ to be the path
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⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Fig. 22. An example of a timeline for the KLR hexagon. Mutating from Pαβα to Pø−ø ⊗ Pβαβ for bα � bβ
(again we do not picture the determinant paths). Steps in the procedure should be read from left-to-right 
along successive rows (the paths are H0,αβα, H1,αβα, H2,αβα, H3,αβα, H4,αβα, H4,αβα = P∅ � H4,βαβ, 
H3,βαβ, H2,βαβ, H1,βαβ, H0,βαβ).⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Pq∅ � Mbβ−q
i+1 � Mq

i,i+1 � Pbβ
i+2 ⊗β Mbα−q

i � Pbα
i+1 ⊗α Mbβ

i+1 � Pbβ
i+2 0 � q � bβ

Pø � Mq−bβ
i � Mbβ

i,i+1 � Pbβ
i+2 ⊗β Mbα−q

i � Pbα
i+1 ⊗α Mbβ

i+1 � Pbβ
i+2 bβ � q � bα

Pø � Mq−bβ
i � Pbβ

i+2 ⊗β Mq−bα
i,i+2 � Pbα

i+1 ⊗α Mbαβ−q
i+1 � Pbβ

i+2 bα � q � bαβ

This is demonstrated in the final 5 paths in Fig. 22. While the definitions seem technical, 
one can intuitively think of this process as “flattening” the path layer-by-layer by means 
of the timeline depicted in Fig. 22. We see that Hbαβ,αβα = Pø−ø � Hbαβ,βαβ.

We now assume that bα � bβ. We define Hq,αβα to be the path

Pq∅ � Mbα
i � Pbα

i+1 ⊗α Mbβ−q
i+1 � Pbβ

i+2 ⊗β Mq
i,i+2 � Mbα−q

i � Pbα
i+1 0 � q � bα

Pø � Mbα
i � Pbα

i+1 ⊗α Mbβ−q
i+1 � Mq−bα

i,i+1 � Pbβ
i+2 ⊗β Mbα

i,i+2 � Pq
i+1 � Pq−bα

i bα � q � bβ

Pø � Mbα
i � Pbαβ−q

i+1 ⊗α Mbβ−bα
i,i+1 � Pbβ

i+2 ⊗β Mbα
i,i+2 � Pbα

i+1 � Pq−bα
i bβ � q � bαβ
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0 1 4 0 3 4 2 1 0 3 4 2 1 2 0 1 4 0 3 2 1

ε1 ε2 ε1 ε2 ε1 ε2 ε1 ε1 ε1 ε2 ε1 ε2 ε2 ε3 ε2 ε3 ε2 ε3 ε2 ε2 ε2

ε1 ε2 ε3 ε1 ε2 ε3 ε2 ε3 ε2 ε2 ε1 ε2 ε1 ε2 ε1 ε2 ε2 ε2 ε1 ε2 ε1

0 1 2 4 0 1 4 0 3 2 3 1 2 0 1 4 3 2 0 1 4

Fig. 23. Let h = 3, � = 1, e = 5 and α = ε3 − ε1, β = ε1 − ε2. We depict the element hexβαβ
αβα and highlight 

the dilated word nib(1, 3)5 in bold. The reader should compare the 11 highlighted strands with the diagram 
from S11 depicted in Fig. 15. (We have drawn all bad-crossing so that they bi-pass on the right.)

We now come from the opposite side to meet in the middle. We define Hq,βαβ to be the 
path⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Pq∅ � Mbβ−q
i+1 � Mq

i,i+1 � Pbβ
i+2 ⊗β Mbα−q

i � Pbα
i+1 ⊗α Mbβ

i+1 � Pbβ
i+2 0 � q � bα

Pq∅ � Mbβ−q
i+1 � Mq

i,i+1 � Pbβ
i+2 ⊗β Pbα

i+1 ⊗α Mbαβ−q
i+1 � Pbβ

i+2 bα � q � bβ

Pø � Mq−bβ
i � Mbββ−q

i,i+1 � Pbβ
i+2 ⊗β Pbα

i+1 ⊗α Mbαβ−q
i+1 � Pbβ

i+2 bβ � q � bαβ

With our paths in place, this allows us to define

hexαβα(q) = ΥHq,αβα

Hq+1,αβα
hexβαβ(q) = ΥHq+1,βαβ

Hq,βαβ

and we set

hexαβα =
∏

bαβ>q�0

hexαβα(q) hexβαβ =
∏

0�q�bαβ

hexβαβ(q)

which allows us to factorise the hexagon generators as follows

hexαβα
βαβ =

{
hexαβα(ePø−ø ⊗ hexβαβ) for bα � bβ

(ePø−ø ⊗ hexαβα)hexβαβ for bα � bβ

and, finally, we define

hexøαβα
øβαβ =

{
ePø

⊗ hexαβα
βαβ if bα ≤ bβ

e ⊗ hexαβα if b � b
Pø βαβ α β
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the latter notation will be useful when we wish to consider products of such hexagons 
without assuming bα � bβ or vice versa. Finally, the following shorthand will come in 
useful when addressing some of the relations in Section 6. Recall that adjustment is 
invertible. With this in mind, we set

hexvβαβwø
vαβαwø = adjvβαβwø

vøβαβw

(
ePv

⊗ hexøβαβ
øαβα ⊗ ePw

)
adjvøαβαw

vαβαwø = Υvβαβwø
vαβαwø

where the second equality follows by removing the resulting double-crossings using 
Proposition 4.4 in each case. Independence of the reduced expression follows from 
residue-commutativity of adjustment. Alternatively, the reader is invited to make mi-
nor modifications to the proof of Proposition 5.12.

5.6. The commuting strands diagram

Let γ, β ∈ Π be roots labelling commuting reflections (in terms of convention 2.32, 
this is equivalent to |k−j| > 1). We wish to understand the morphism relating the paths 
Pγ ⊗ Pβ to Pβ ⊗ Pγ . We suppose without loss of generality that bγ � bβ.

Proposition 5.13. The element ψPγ⊗Pβ

Pβ⊗Pγ
is independent of the choice of reduced expression

Proof. There are precisely bγβ like-labelled crossings. The first bγ of these connect the 
P−1
γβ(q, εj)th and P−1

γβ(bγ + q, εj+1)th northern vertices to the P−1
βγ(q, εj)th and P−1

βγ(bβ +
q, εj+1)th southern vertices for 1 � q � bγ . The latter bβ of these connect the P−1

γβ(bβ +
q, εk+1)th and P−1

γβ(q, εk)th northern vertices to the P−1
βγ(bβ+q, εk+1)th and P−1

βγ(q, εk)th 
southern vertices for 1 � q � bγ .

For k 	= h (respectively k = h) each of the first 1 � q � bγ (respectively 1 < q �
bγ) like-labelled crossings forms a braid with precisely one other strand, namely that 
connecting the P−1

γβ(bβ + q, εk+1)th top vertex to the P−1
βγ(bβ + q, εk+1)th bottom vertex 

for 1 � q � bγ (respectively 1 � q < bγ). This strand is of non-adjacent residue (by 
our assumption that γ and β label commuting reflections). The latter bβ cases can be 
treated similarly.

Thus each of the braids involving a like-labelled crossing (either totalling bβγ if k, j 	= h

or bβγ −1 otherwise) is residue-commutative. Thus ψPγβ

Pβγ
is residue commutative and the 

result follows. �
Thus we are free to define the KLR-commutator to be the element

comγβ
βγ := ΥPγ⊗Pβ

Pβ⊗Pγ

which is independent of the choice of reduced expression. We wish to inductively pass 
between the paths Pγ ⊗ Pβ and Pβ ⊗ Pγ by means of a visual timeline (as in Fig. 24).
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+εk +εk+1

+εj

+εj+1

Fig. 24. An example timeline for the KLR commutator. We mutate from Pγβ to Pβγ for bγ = 4, bβ = 3. 
Reading from left-to-right along successive rows the paths are P−1,γβ, P0,γβ, P1,γβ, P2,γβ, P3,γβ = P2,βγ , 
P1,βγ , P0,βγ , P−1,βγ . We draw paths in the projection onto R{εj + εj+1, εk + εk+1}.

We define

Cq,γβ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Mbγ

k � Pbγ
k+1⊗γMbβ

j � Pbβ
j+1 for q = −1

Mbγ
k ⊗γMbβ

j � Pbβ
j+1 � Pbγ

k for q = 0

Pq∅ � Mbγ−q
k ⊗γMq

k+1,j � Mbβ−q
j � Pbβ

j+1 � Pbγ
k for 0 < q � bβ

Cq,βγ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Pø⊗βMq−bβ
k � Mbβ

k,j+1 � Mbγ−q
k � Pbβ

j � Pbγ
k+1 for bγ � q > bβ

Pq∅ � Mbβ−q
j ⊗β Mq

k,j+1 � Mbγ−q
k � Pbβ

j � Pbγ
k+1 for bβ � q > 0

Mbβ
j ⊗βMbγ

k � Pbβ
j � Pbγ

k+1 for q = 0

Mbβ
j � Pbβ

k+1⊗βMbγ
k � Pbγ

k+1 for q = −1
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and we note that Cbγ ,βγ = Cbβ,γβ (to see this, note that the definition of the former 
contains a tensor product ⊗γ and the latter contains a tensor product ⊗β and this 
explains the differences in the subscripts). We now define

comq,γβ = ΥCq,γβ

Cq+1,γβ comq,βγ = ΥCq+1,βγ

Cq,βγ
.

This allows us to factorise

comγβ
βγ = comγβcomβγ comγβ =

∏
−1�q<bβ

comq,γβ comβγ =
∏

bγ>q�−1

comq,βγ .

The following notation will come in useful in Section 6

comvγβw
vβγw = ePv

⊗ comvγβw
vβγw ⊗ ePw

.

5.7. The isomorphism

Finally, we now explicitly state the isomorphism. Our notation has been chosen so as 
to make this almost tautological at this point. We suppose that α and β (respectively 
β and γ) label non-commuting (respectively commuting) reflections. We define

Ψ : S br
h (n, σ) −−→ fn,σ (Hσ

n/Hσ
nyhHσ

n) fn,σ (5.4)

to be the map defined on generators (and extended using vertical concatenation and 
contextualised horizontal concatenation) as follows

Ψ(1α) = ePα Ψ(1∅) = eP∅ Ψ(1∅αα∅) = adj∅αα∅ Ψ(SPOTø
α) = spotøα

Ψ(FORKøα
αα) = forkøα

αα Ψ(HEXβαβ
αβα) = hexβαβ

αβα Ψ(COMγβ
βγ) = comγβ

βγ

and we extend this to the flips of these diagrams through their horizontal axes.

Remark 5.14. We note that our use of contextualised horizontal concatenation implies 
that equation (5.2) holds (see also Example 5.1).

6. Recasting the diagrammatic Bott–Samelson relations in the quiver Hecke algebra

The purpose of this section is to recast Elias–Williamson’s diagrammatic relations of 
Subsection 3.1 in the setting of the quiver Hecke algebra, thus verifying that the map Ψn

is indeed a (graded) Z-algebra homomorphism. We have already provided timelines which 
discretise each Soergel generator (which we think of as a continuous morphism between 
paths with a unique singularity, where the strands cross). We will verify most of the 
Soergel relations via a similar discretisation process which factorises the Soergel relation 
into simpler steps; we again record this is a visual timeline. We check each relation 
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in turn, but leave it as an exercise for the reader to verify the flips of these relations 
through their vertical axes (the flips through horizontal axes follow immediately from 
the duality, ∗). We continue with the notations of Convention 2.32. Our relations fall 
into three categories:

• Products involving only hexagons, commutators, and adjustment generators. Sim-
plifying such products is an inductive process. At each step, one simplifies a non-
minimal expression (in the concatenated diagram) to a minimal one without changing 
the underlying permutation. This typically involves a single “distinguished” strand 
which double-crosses some other strands; these double-crossings can be undone using 
Proposition 4.4. (This preserves the parity of like-labelled crossings.)

• Products involving a fork or spot generator. Such generators reflect one of the in-
dexing paths in an irreversible manner. Simplifying such products is an inductive 
process. At each step, one rewrites a single pair of crossing strands (in the concate-
nated permutation) which do not respect step-labels of the reflected paths. By undoing 
this crossing using relation (R3), we obtain the scalar −1 times a new diagram which 
does respect the new step-labelling for the reflected paths. (Thus changing the parity 
of like-labelled crossings and also changing the scalar ±1.)

• Doubly spotted Soergel diagrams (such as the Demazure relations) for which we 
argue separately.

In each of the former two cases, we will decorate the top and bottom of the concatenated 
diagram with paths T and B (which we define case-by-case) and use the step-labelling 
from these paths to keep track of crossings of strands in the diagram.

6.1. The double fork

This leftmost relation in (S1) is incredibly simple to verify, and so there is no need to 
record this in a timeline. For α ∈ Π, we must verify that

Ψ

⎛⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎠ = Ψ

⎛⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎠ (6.1)

Thus we need to check that(
ePα ⊗ forkαø

αα

)
◦
(
forkαα

øα ⊗ ePα

)
=

(
forkαα

øα ⊗ ePø

)
◦
(
ePø

⊗ forkαø
αα

)
. (6.2)

The permutation underlying ePα ⊗ forkαø
αα is the element wT

B indexed by the pair of paths

T = Pα ⊗ Pα ⊗ Pø and B = Pα ⊗ P�
α ⊗ Pα
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which differ only by permuting the final (bαh + bα) steps. The permutation underlying 
forkαα

øα ⊗ ePα is the element wT′

B′ indexed by the pair of paths

T′ = Pα ⊗ P�
α ⊗ Pα and B′ = Pø ⊗ Pα ⊗ Pα,

which differ only by permuting the first (bααh − bα) steps. These elements of S3bαh

commute as they permute disjoint subsets of 1, . . . , 3bαh. Thus the elements forkαα
øα ⊗ePα

and ePα ⊗ forkαα
αø commute by relation (R2) (and the result follows immediately).

Remark 6.1. The reader might wonder why the element wT
B appears to permute a greater 

number of strands than wT′

B′ . This is because our distinguished choice of Pα has a total 
of (bαh − bα) steps below (or on) the α-hyperplane and bα steps above the hyperplane.

6.2. The one-colour zero relation

We now consider the rightmost relation in (S1). For α ∈ Π, we must verify that

Ψ

⎛⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎠ = forkøα

αα ◦ forkαα
øα = 0 (6.3)

For bα > q � 1 the paths Fq,øα and Fq−1,øα are concatenates of a single α-crossing path 
and a single α-bouncing path. By Proposition 4.4 we have that

forkøα
αα(q)eFq−1,øα forkαα

øα (q) = eFq,øα

for 1 � q < bα. We apply this from the centre of the product forkøα
αα ◦ forkαα

øα which is 
equal to

ePøα forkøα
αα(bα − 1) · · · forkøα

αα(0)ePαα ◦ ePαα forkαα
øα (0) · · · forkαα

øα (bα − 1)ePøα

until we obtain

forkøα
αα ◦ forkαα

øα = ePøα forkøα
αα(bα − 1)eFbα−1,øα

forkαα
øα (bα − 1)ePøα . (6.4)

This is illustrated in Fig. 25.
We cannot apply Proposition 4.4 to the pair of paths Fbα−1,øα and Fbα−2,øα be-

cause the former path passes through the α-hyperplane once, whereas the latter passes 
through/bounces the α-hyperplane twice. There is a pair of double-crossing r-strand 
(for some r ∈ Z/eZ) between the P−1

øα(bα, εi)th and P−1
øα(bαα, εi+1)th top and bottom 

vertices in the diagram
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ε1 ε2 ε3 ε1 ε2 ε3 ε1 ε3 ε1 ε3 ε3 ε3

ε1 ε2 ε3 ε1 ε2 ε3 ε1 ε3 ε1 ε3 ε3 ε3

0 2 4 5 1 3 4 2 3 1 0 5

0 2 4 5 1 3 4 2 3 1 0 5

=

ε1 ε2 ε3 ε1 ε2 ε3 ε1 ε3 ε1 ε3 ε3 ε3

ε1 ε2 ε3 ε1 ε2 ε3 ε1 ε3 ε1 ε3 ε3 ε3

0 2 4 5 1 3 4 2 3 1 0 5

0 2 4 5 1 3 4 2 3 1 0 5 Si
m

pl
ifi

es
by

P
ro

p
os

it
io

n
4.

4

Fig. 25. Let h = 1, � = 3, σ = (0, 2, 4) and e = 6. The lefthand-side is forkøα
ααforkαα

øα ; we apply Proposition 4.4
to undo the highlighted strands (compare the highlighted strands with the highlighted strands of the first 
diagram of Example 4.6). The thick double-crossing of strands in the rightmost diagram is zero by the first 
case of relation (R4) (after applying commutativity relations).

ePøα forkøα
αα(bα − 1)eFbα−1,øα

forkαα
øα (bα − 1)ePøα

This double-crossing of r-strands is not intersected by any strand of adjacent residue. 
Therefore the product is zero by the commutativity relations and the first case of relation 
(R4), as required.

6.3. Fork-spot contraction

We now consider the second relation depicted in (S1), namely

(spotøα ⊗ ePα) ◦ forkαα
øα = ePø

⊗ ePα (6.5)

for α ∈ Π. For 0 � q � bα, we define the spot-fork path to be

FSq,α = Pq∅ � Mbα
i ⊗α Pbα−q

i+1 ⊗α Mbα−q
i � Pbα

i+1 = Pq∅ � Mbα
i � Pbα−q

i � Mbα−q
i � Pbα

i+1

which is obtained from Fq,øα by reflection by sα (see Fig. 26). We note that FSbα,α =
Pø ⊗ Pα and FS0,α = P�

α ⊗ Pα. Thus these spot-fork paths allow us to iteratively prove 
equation (6.5), as we will see below.

The following example illustrates all of the important ideas in the proof of this relation 
(in particular, it illustrates our iterative approach using the fork-spot paths, examples 
of which are depicted in Fig. 26). These ideas will be used repeatedly when we consider 
(more complicated) relations in the remainder of this section.
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Fig. 26. An example of a timeline for the KLR spot-fork relation, with � = 1, h = 3, e = 5 and α = ε3 − ε1. 
From left to right we picture the paths FS0,α = P�

α ⊗ Pα, FS1,α, FS2,α, FS3,α = Pø ⊗ Pα.

Example 6.2. We set σ = (0, 2, 4) and e = 6. We will consider the following product

�→◦
ε1 ε3 ε1 ε3 ε2 ε2 ε1 ε3 ε1 ε3 ε3 ε3

ε1 ε3 ε1 ε3 ε3 ε3 ε1 ε2 ε1 ε2 ε3 ε3

0 2 4 5 03 4 2 3 11 5
ε1 ε2 ε3 ε1 ε2 ε3 ε1 ε3 ε1 ε3 ε3 ε3

0 2 4 5 1 3 4 2 3 1 0 5
ε1 ε2 ε3 ε1 ε2 ε3 ε1 ε3 ε1 ε3 ε3 ε3

ΥPø⊗Pα

S1,α⊗Pα

ΥS1,α⊗Pα

P�
α⊗Pα

ΥPα⊗P�
α

F1,øα

ΥF1,øα

Pø⊗Pα

where we have emphasised the factorisation of spot and fork by recording the steps 
within these paths at top and bottom and the corresponding labelled ΥP

Q elements for 
each layer of the righthand-side. We have also recorded the residues of paths (at the very 
top and bottom: 0, 2, 4, . . . ).

Notice that the path at the bottom of the spot-strand KLR-diagram is not the same 
as the path at the top of the fork KLR-diagram – however, the residue sequences are 
identical (simply trace through the residues on strands). We start at the middle of the 
product — that is we first compute

ΥS1,α⊗Pα

P�
α⊗Pα

◦ ΥPα⊗Pα

F1,øα

as follows: we first place the diagrams on top of each other recording the paths S1,α⊗Pα

and F1,øα ⊗ Pα at the top and bottom of the diagram (notice that the permutation is 
not step-preserving) and we highlight the strands in the product which have crossings 
of non-zero degree
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ΥS1,α⊗Pα

P�
α⊗Pα

◦ ΥPα⊗Pα

F1,øα
=

ε1 ε2 ε3 ε1 ε3 ε2 ε1 ε3 ε1 ε3 ε3 ε3

0 2 4 5 3 1 4 2 3 1 0 5

ε1 ε2 ε3 ε1 ε3 ε1 ε3 ε3 ε1 ε2 ε3 ε3

0 2 4 5 3 4 2 1 3 1 0 5

S1,α ⊗ Pα

F1,øα

ε1 ε2 ε3 ε1 ε3 ε1 ε3 ε3 ε1 ε2 ε3 ε3

0 2 4 5 3 4 2 1 3 1 0 5

ε1 ε2 ε3 ε1 ε3 ε2 ε1 ε3 ε1 ε3 ε3 ε3

0 2 4 5 3 1 4 2 3 1 0 5

We apply relation (R5) to obtain two terms: the term in which we undo this highlighted 
braid and the other term which is equal to zero by Lemma 4.1. We relabel the bottom 
of the (non-zero) diagram by the folded fork path, FS1,øα, and hence obtain

ΥS1,α⊗Pα

P�
α⊗Pα

◦ ΥPα⊗Pα

F1,øα
=

S1,α ⊗ Pα

FS1,øα

ε1 ε2 ε3 ε1 ε3 ε1 ε3 ε3 ε1 ε2 ε3 ε3

0 2 4 5 3 4 2 1 3 1 0 5

ε1 ε2 ε3 ε1 ε3 ε2 ε1 ε3 ε1 ε3 ε3 ε3

0 2 4 5 3 1 4 2 3 1 0 5

which we now observe is a step-preserving KLR diagram. We trivially undo the double-
crossings in the above diagram (using Proposition 4.4) and hence obtain

ΥS1,α⊗Pα

P�
α⊗Pα

◦ ΥPα⊗Pα

F1,øα
= ΥS1,α⊗Pα

SF1,øα
.

We now insert this back into the larger product (see also equation (6.6)) and hence 
obtain the following (not-step-preserving) KLR diagram of

(spotøα(1) ⊗ ePα) ◦ ΥS1,α⊗Pα

SF1,øα
◦ forkαα

øα (1)

which is equal to

S1,α ⊗ Pα

SF1,øα

Pø ⊗ Pα

Pø ⊗ Pα

ε1 ε2 ε3 ε1 ε2 ε3 ε1 ε3 ε1 ε3 ε3 ε3

ε ε ε ε ε ε ε ε ε ε ε ε
1 2 3 1 2 3 1 3 1 3 3 3
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where we have highlighted the wiggly strands from the previous step (to facilitate com-
parison) and we have emboldened the unique pair of crossing strands of the same residue. 
The rightmost wiggly strand and the pair of bold strands are the only strands have cross-
ings of non-zero degree. We apply the same argument as above to undo this braid (we 
do not need to relabel the bottom of the diagram in this case, as the final fork-spot path 
is equal to Pø ⊗ Pα) and we hence obtain

S1,α ⊗ Pα

SF1,øα

Pø ⊗ Pα

Pø ⊗ Pα

ε1 ε2 ε3 ε1 ε2 ε3 ε1 ε3 ε1 ε3 ε3 ε3

ε1 ε2 ε3 ε1 ε2 ε3 ε1 ε3 ε1 ε3 ε3 ε3

which we now observe is a step-preserving KLR diagram. We trivially undo the double-
crossings (using Proposition 4.4) and hence obtain

(spotøα(1) ⊗ ePα) ◦ ΥS1,α⊗Pα

SF1,øα
◦ forkαα

øα (1) = ePø⊗Pα

as required.

What the above example illustrates is that we start at the middle of the product on 
the lefthand-side which is labelled by two distinct paths which have the same residue 
sequence, that is we start at the middle term in the product

(spotøα ⊗ ePα) (eP�
α⊗Pα

◦ ePα⊗P�
α
)
(
forkαα

øα
)

where we note that eP�
α⊗Pα

= ePα⊗P�
α
. Each iterative stage (of which there are two in 

Example 6.2) simply transforms a non-step-preserving KLR-permutation into a step-
preserving one (by undoing all non-zero-degree crossings and relabelling). Thus the 
(seemingly technical) spot-fork paths become incredibly natural, as does their “time-
line” construction (each stage corresponds to one KLR braid which we undo). Most 
beautifully of all: one should emphasise that the spot-fork path is simply the reflection 
of the fork path through the α-hyperplane (what else?!). This brings us to the general 
case:

Proposition 6.3. For α ∈ Π and 0 � q < bα we have that

(spotøα(q) ⊗ ePα) ◦ ΥSq,α⊗Pα

FS ◦ forkαα
øα (q) = ΥSq+1,α⊗Pα

FS . (6.6)

q,α q+1,α
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Proof. We first note that the righthand-side is residue commutative (one can reindex 
the proof of Proposition 5.9). We decorate the top and bottom edges of the concatenated 
product on the lefthand-side of equation (6.6) with the tableaux Tq = Sq,α ⊗ Pα and 
Bq = FSq,α respectively for 0 � q < bα. For each 0 � q < bα, the product on the 
lefthand-side of equation (6.6) has a single pair of strands whose crossing if of degree 
−2: Namely, the strand Q1 from connecting the B−1

q (q + 1, εi)th bottom node to the 
T−1
q (bα+q+1, εi+1)th top node and the strand Q2 connecting the B−1

q (bα+q+1, εi+1)th
bottom node to the T−1

q (q + 1, εi)th top node. The strands Q1 and Q2 are both of the 
same residue, rq ∈ Z/eZ say, and they cross each other exactly once. This crossing of 
rq-strands is bi-passed on the left by the (rq +1)-strand connecting the B−1

q (bα +q, εi)th
bottom node to the T−1

q (bα + q, εi)th top node. We pull the (rq − 1)-strand through this 
crossing, using relation (R5). We hence obtain two terms: the term in which we undo 
this braid is equal to the righthand-side of equation (6.6) and the other term is equal to 
zero by Lemma 4.1. �

Equation (6.5) holds by iteratively applying Proposition 6.3 a total of bα times, as in 
Example 6.2.

6.4. The spot and commutator

Let β, γ ∈ Π label two commuting reflections, we now verify the leftmost relation in 
(S6), namely that

comγβ
βγ(spotβø ⊗ ePγ ) = ΥPγ⊗P�

β

Pø⊗Pγ
= (ePγ ⊗ spotβø )adjγø

øγ (6.7)

where the righthand equality is immediate. We now set about proving the lefthand-
equality. We assume that bβ � bγ (the other case is similar, but has fewer steps). We 
define

SCq,βγ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Pø � Mq−bβ
k � Mbβ

k,j+1 � Mbγ−q
k � Pbβ

j � Pbγ
k+1 for bγ � q > bβ

Pq∅ � Mbβ−q
j � Mq

k,j+1 � Mbγ−q
k � Pbβ

j � Pbγ
k+1 for bβ � q > 0

Mbβ
j � Mbγ

k � Pbβ
j � Pbγ

k+1 for q = 0

Mbβ
j � Pbβ

j+1 � Mbγ
k � Pbγ

k+1 for q = −1

which is obtained from Cq,βγ by reflection through sβ. We invite the reader to draw an 
example of the timeline by reflecting the final four paths of Fig. 24 through sβ.

Proposition 6.4. For 0 � q < bβ, we have that

comβγ(q) ◦ ΥSCq,βγ

S ⊗P ◦ (spotβø (q) ⊗ ePγ ) = ΥSCq+1,βγ

S ⊗P (6.8)

q,β γ q+1,β γ
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(note that ΥSC0,βγ

S0,β⊗Pγ
= comβγ(−1)) and for bβ � q < bγ , we have that

comβγ(q) ◦ ΥSCq,βγ

Pø⊗Pγ
= ΥSCq+1,βγ

Pø⊗Pγ
. (6.9)

Proof. All these elements are residue commutative (by reindexing the proof of Propo-
sition 5.13). We prove equation (6.8) and (6.9) by induction on 0 � q < bγ (the 
q = −1 case is trivial). Label the top and bottom frames of the concatenated dia-
grams on the lefthand-side of equation (6.8) and (6.9) by the paths Tq+1 = SCq+1,βγ

and Bq+1 = Sq+1,ø ⊗ Pγ . The concatenated diagram on the lefthand-side of both equa-
tion (6.8) and equation (6.9) has a single crossing which does not preserve step labels. 
Namely the strands connecting the T−1

q (q + 1, εj)th and T−1
q (bβ + q + 1, εj+1)th top 

vertices to the B−1
q (q + 1, εj)th and B−1

q (bβ + q + 1, εj+1)th bottom vertices form an rq-
crossing, for some rq ∈ Z/eZ say, and these strands permute the labels +εj and +εj+1. 
This crossing is bi-passed on the left by a strand connecting the T−1

q (bβ + q, εj+1)th top 
and B−1

q (bβ + q, εj+1)th bottom vertices. We undo this triple using case 2 of relation 
(R5) and hence obtain the righthand-side of equation (6.8) and (6.9). �

In order to deduce that equation (6.7) holds, we observe that

comγβ ◦ (comβγ(spotβø ⊗ ePγ )) = comγβ ◦ ΥSCbγ ,βγ

Pø⊗Pγ
= ΥPγ⊗P�

β

Pø⊗Pγ

as the lefthand-side of the final equality is minimal and respects step-labels.

6.5. The spot-hexagon

For α, β ∈ Π labelling two non-commuting reflections, we now check the rightmost 
relation in (S3), namely that

Ψ

⎛⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎠ = Ψ

⎛⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎠ + Ψ

⎛⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎠ (6.10)

(and we leave it the reader to check the reflection of this relation through its vertical 
axis). In other words, we need to check that

(ePø
⊗ spotøβ ⊗ ePαβ

)hexøβαβ
øαβα

is equal to

adjøøαβ
øαβø(ePøαβ

⊗ spotøα) + ePø
⊗ (forkøα

αα ⊗ spotβø )adjααø
αøα(ePα ⊗ spotøβ ⊗ ePα)).
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Fig. 27. An example of the tableaux SHq,βαβ for 0 � q � bαβ. The reader should compare these reflected 
paths with the final five paths of Fig. 22.

We set j = i + 1 so that α = εi − εi+1, β = εi+1 − εi+2. We will begin by considering 
the lefthand-side of the equation. In order to do this, we need to use the reflections of 
the braid Hq,βαβ-paths for 0 � q � bαβ through the first β-hyperplane which they come 
across (namely the hyperplane whose strand we are putting a spot on top of) and we 
remark that this path will have the same residue sequence as the original Hq,βαβ-paths, 
but different step labelling. We define SHq,βαβ to be the path⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Pq∅ � Mbβ−q
i+1 � Mq

i,i+1 � Pbβ
i+1 � Mbα−q

i � Pbα
i+1 ⊗α Mbβ

i+1 � Pbβ
i+2 0 � q � bβ

Pø � Mq−bβ
i � Mbβ

i,i+1 � Pbβ
i+1 � Mbα−q

i � Pbα
i+1 ⊗α Mbβ

i+1 � Pbβ
i+2 bβ � q � bα

Pø � Mq−bβ
i � Pbβ

i+2 � Mq−bα
i,i+2 � Pbα

i+1 ⊗α Mbαβ−q
i+1 � Pbβ

i+2 bα � q � bαβ

for bα � bβ (the bα < bβ case is similar). See Fig. 27 for an example.

Proposition 6.5. We have that(
ePø

⊗ spotøβ ⊗ ePαβ

)
hexøβαβ = ΥPøøαβ

Pø⊗SHbαβ,βαβ
(6.11)

Proof. First, we remark that the righthand-side of equation (6.11) is residue-commuting 
and so makes sense. For 0 � q < bαβ, we claim that(

ePø
⊗ spotøβ(q) ⊗ ePαβ

)
ΥPø⊗Sq,β⊗Pαβ

Pø⊗SHq,βαβ
hexøβαβ(q) = ΥPø⊗Sq+1,β⊗Pαβ

Pø⊗SHq+1,βαβ
(6.12)

and we will we label the top and bottom of these diagrams according to the paths 
Tq = Pø ⊗ Sq+1,β ⊗ Pαβ and Bq = Pø ⊗ SHq+1,βαβ respectively (with the convention 
that Sq,β = Pø for q � bβ). Again, this element is residue-commuting and so there is 
no ambiguity here. In the concatenated diagram on the lefthand-side of equation (6.12), 
there is a single pair of strands, Q and Q′ whose crossing if of degree −2 (of residue 
rq ∈ Z/eZ, say); these strands connect the

T−1
q (bα + q + 1, εi+1) T−1

q (bαβ + q + 1, εi+2)

top vertices and the
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0 2 4 6 8 9 1 5 7 8 4 6 3 2
ε1 ε2 ε3 ε4 ε5 ε1 ε2 ε4 ε5 ε1 ε4 ε5 ε3 ε3

0 2 4 6 8 9 1 5 7 3 8 2 4 6

ε1 ε2 ε3 ε4 ε5 ε1 ε2 ε4 ε5 ε3 ε1 ε3 ε4 ε5

=

0 2 4 6 8 9 1 5 7 8 4 6 3 2
ε1 ε2 ε3 ε4 ε5 ε1 ε2 ε4 ε5 ε1 ε4 ε5 ε3 ε3

0 2 4 6 8 9 1 5 7 3 8 2 4 6

ε1 ε2 ε3 ε4 ε5 ε1 ε2 ε4 ε5 ε3 ε1 ε3 ε4 ε5

Fig. 28. The product 
(
spotøβ(0) ⊗ ePαβ

)
hexβαβ(0) in the proof of Proposition 6.5 for h = 1, � = 5, κ =

(0, 2, 4, 6, 8), e = 10 and α = ε2 − ε3, β = ε3 − ε4. The top path is S1,α ⊗ M2 and the bottom path is 
SH1,βαβ ⊗ M2 (the prefix Pø and the remainder of the postfix Pα = Mbα

2 � Pbα
3 would not fit).

B−1
q (bα + q + 1, εi+1) B−1

q (bαβ + q + 1, εi+2)

bottom vertices (thus crossing one another). This crossing of rq-strands, Q and Q′, is 
bi-passed on the left by the (rq+1)-strand from T−1

q (bαβ +q, εi+2) to B−1
q (bαβ +q, εi+2).

Applying case 2 of relation (R5) to the concatenated diagram we obtain two terms: 
the term with the crossing is bi-passed on the right is zero by Lemma 4.1; the term in 
which we undo the crossing is equal to the righthand-side of equation (6.12) (since the 
resulting diagram is minimal). An example is given in Fig. 28. �

We now wish to show that

ΥPøβαβ

Pø⊗SHbαβ,βαβ
hexøαβα

is equal to

adjøøαβ
øαβø(ePøαβ

⊗ spotøα) + ePø
⊗ (forkøα

αα ⊗ spotβø )adjααø
αøα(ePα ⊗ spotøβ ⊗ ePα)).

In what follows, we assume that bα � bβ. In order to consider the first term, we use the 
reflections of the Hq,αβα-paths for 0 � q � bαβ through the final α-hyperplane which 
they come across (namely the hyperplane whose strand we are putting a spot on top 
of) and we remark that this path will have the same residue sequence as the original 
Hq,αβα-paths but with a different step labelling. We define SαHq,αβα to be the path

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Pq∅ � Mbα

i � Pbα
i+1 ⊗α Mbβ−q

i+1 � Pbβ
i+2 ⊗β Mq

i,i+2 � Mbα−q
i ⊗α Pbα

i+1 0 � q � bβ

Pq∅ � Mbα
i � Pbαβ−q

i+1 ⊗α Pbβ
i+2 ⊗β Mbβ

i,i+2 � Mbα−q
i ⊗α Pbα

i+1 bβ � q � bα

Pø � Mbα
i � Pbαβ−q

i+1 ⊗α Pbβ
i+2 ⊗β Mbβ

i,i+2 ⊗α Pbα
i+1 � Pq−bα

i bα � q � bαβ

In order to consider the second term, we need the reflections of the Hq,αβα-paths for 
0 � q � bαβ through the first β-hyperplane which they come across. We define SβHq,αβα

to be the path
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Fig. 29. An example of the paths SαHq,αβα for bαβ � q � 0.⎧⎪⎪⎪⎨⎪⎪⎪⎩
Pq∅ � Mbα

i � Pbα
i+1 ⊗α Mbβ−q

i+1 � Pbβ
i+2 � Mq

i,i+2 � Mbα−q
i � Pbα

i+1 0 � q � bβ

Pq∅ � Mbα
i � Pbαβ−q

i+1 ⊗α Pbβ
i+2 � Mbβ

i,i+2 � Mbα−q
i � Pbα

i+1 bβ � q � bα

Pø � Mbα
i � Pbαβ−q

i+1 ⊗α Pbβ
i+2 � Mbβ

i,i+2 � Pbα
i+1 � Pq−bα

i bα � q � bαβ

See Fig. 29 for an example of the SαHq,αβα paths. We leave it as an exercise for the 
reader to draw the SβHq,αβα paths. Finally, for the purposes of the proof we will also 
need the following “error path”

eSβHαβα = Pø � Mbα
i ⊗α Pbβ−1

i+2 � Mi,i+2 � Pi+2 � Mbβ−1
i,i+2 � Pbα

i+1 � Pbβ
i

which one should compare with the final path (the bαβth case) above. One should repeat 
the above definitions for the bα < bβ case.

Proposition 6.6. We have that

ΥPøøαβ

Pø⊗SHbαβ,βαβ
hexøαβα = ΥPø⊗Pø⊗Pα⊗Pβ

Pø⊗Pα⊗Pβ⊗P�
α

+ ΥPø⊗Pø⊗P�
α⊗P�

β

Pø⊗Pα⊗P�
β⊗Pα

. (6.13)

Proof. First, we remark that both terms on the righthand-side of equation (6.13) are 
residue-commuting. We suppose bα � bβ as the other case is similar. We observe that

ΥPøøαβ

Pø⊗SHbαβ,βαβ
= ΥPø⊗Pø⊗Pα⊗Pβ

Pø⊗SαHbαβ,βαβ
= ΥPø⊗Pø⊗P�

α⊗P�
β

Pø⊗SβH
bαβ,βαβ

as the underlying permutations (and residue sequences) are all identical. We set

Tα = Pøø ⊗ Pα ⊗ Pβ Tβ = Pøø ⊗ P�
α ⊗ P�

β

Bq,α = Pø ⊗ SαHq+1,αβα Bq,β = Pø ⊗ SβHq,αβα

for bαβ > q � 0. We first consider the q = bαβ − 1 case. The concatenated diagram

ΥPøøαβ

Pø⊗SHbαβ,βαβ
(ePø

⊗ hexαβα(bαβ − 1))

contains a single like-labelled crossing of rbαβ−1-strands connecting the pair
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T−1
α (bαβα + 1, εi+1) = T−1

β (bαβ + 1, εi) T−1
α (2bαβ + 1, εi+2) = T−1

β (bαβα + 1, εi+1)

of top vertices to the pair of

B−1
α (2bαβ + 1, εi+2) = B−1

β (bαβα + 1, εi+1) B−1
α (bαβα + 1, εi+1) = B−1

β (bαβ + 1, εi)

These rbαβ−1-crossing strands are bi-passed on the left by the rbαβ
-strand connecting 

the

T−1
α (2bαβ, εi+2) = T−1

β (2bαβ, εi+2) B−1
α (2bαβ, εi+2) = B−1

β (2bαβ, εi+2)

top and bottom vertices. We apply case 2 of relation (R5) to this triple of strands and 
hence obtain

ΥPøøαβ

Pø⊗SHbαβ,βαβ
hexøαβα(bαβ−1) = ΥPø⊗Pø⊗Pα⊗Pβ

Pø⊗SαHbαβ−1,βαβ
+ΥPø⊗Pø⊗P�

α⊗P�
β

Pø⊗eSβH
αβα

Υ
Pø⊗eSβH

αβα

Pø⊗SβH
bαβ−1,βαβ

(6.14)
where in the first term we have undone the triple-crossing and in the second “error” term 
the rbαβ

-strand bi-passes the crossing to the right (and is labelled by the “error path”). 
We are now ready to consider the bαβ − 1 > q � 0 cases — which we do separately for 
α and β, in turn.

Case α. We first consider the first term on the righthand-side of equation (6.14). We 
claim that

ΥPø⊗Pø⊗Pα⊗Pβ

Pø⊗SαHq+1,αβα
hexøαβα(q) = ΥPøø⊗Pα⊗Pβ

Pø⊗SαHq,αβα
(6.15)

for bαβ−1 > q � 0. For each bαβ > q � bα the concatenated diagram in equation (6.15)
contains a single like-labelled crossing of rq-strands (for some rq ∈ Z/eZ say) connecting 
the pair

T−1
α (2bβ + 3bα − q, εi+1) T−1

α (3bβ + 3bα − q, εi+2)

of top vertices to the pair of

B−1
α (3bβ + 3bα − q, εi+2) B−1

α (3bβ + 3bα − q, εi+1)

bottom vertices, respectively. For bαβ − 1 > q � bα the aforementioned (unique) pair of 
crossing rq-strands in

ΥPøø⊗Pα⊗Pβ

Pø⊗SαHq+1,αβα
hexøαβα(q) = ΥPøø⊗Pα⊗Pβ

Pø⊗SαHq,αβα

is bi-passed on the left by the rq+1-strand connecting T−1
α (3bβ + 3bα − q − 1, εi+2) and 

B−1
α (3bβ + 3bα − q − 1, εi+2) top and bottom vertices. Applying case 2 of relation (R5)
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we undo this triple crossing (the other term is zero by Lemma 4.1) as required. Now for 
bα > q � 0 the concatenated product on the lefthand-side of equation (6.15) is both 
minimal and step-preserving and so the claim follows.

Case β. We now consider the second term on the right of equation (6.14). We have that

Υ
Pø⊗eSβH

αβα

Pø⊗SβH
q+1,αβα

hexøαβα(q) = Υ
Pø⊗eSβH

αβα

Pø⊗SβH
q,αβα

for bαβ − 1 > q � bα as the lefthand-side is minimal and step-preserving. Now, we claim 
that

ΥPø⊗Pø⊗P�
α⊗P�

β

Pø⊗eSβH
αβα

Υ
Pø⊗eSβH

αβα

Pø⊗SβH
bα,αβα

hexøαβα(bα − 1) = ΥPø⊗Pø⊗P�
α⊗P�

β

Pø⊗SβH
bα−1,αβα

(6.16)

and that

ΥPø⊗Pø⊗P�
α⊗P�

β

Pø⊗SβH
q+1,βαβ

hexøαβα(q) = ΥPø⊗Pø⊗P�
α⊗P�

β

Pø⊗SβH
q,αβα

(6.17)

for bα − 1 > q � 0. For each bα � q � 0 the concatenated diagram on the lefthand-side 
of equation (6.16) and (6.17) contains a crossing pair of rq-strands connecting the

T−1
β (bβ + q + 1, εi) T−1

β (2bβ + bα + q + 1, εi+2)

and

B−1
β (2bβ + bα + q + 1, εi+2) B−1

β (bβ + q + 1, εi)

top and bottom vertices, respectively (note that this crossing does not respect step 
labels). This rq-crossing is bi-passed on the right by the (rq − 1)-strand connecting the

T−1
β (bβ + q + 2, εi) B−1

β (bβ + q + 2, εi)

top and bottom vertices. We undo this triple-crossing using case 1 of relation (R5) (the 
other term is zero by Lemma 4.1). The concatenated product is minimal and step-
preserving, as required. �

Finally, in order to deduce equation (6.10), we observe that

adjøøαβ
øαβø(ePøαβ

⊗ spotøα) = ΥPøøα⊗Pβ

Pøαβ⊗P�
α

ePø
⊗ ((forkøα

αα ⊗ spotβø )adjααø
αøα(ePα ⊗ spotøβ ⊗ ePα)) = ΥPøø⊗P�

α⊗P�
β

Pøα⊗P�
β⊗Pα

as the concatenated diagrams are minimal, step-preserving, and residue-commutative.
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6.6. The fork-hexagon

For α, β ∈ Π labelling two non-commuting reflections, we now check the leftmost 
relation in (S3), namely that

(ePøø
⊗ hexøβαβ

øαβα)(ePøø
⊗ forkøα

αα ⊗ ePβα
)adjøøααβα

øαøαβα(ePøα ⊗ hexøαβα
øβαβ ) (6.18)

is equal to

adjøøøβαβ
øøβαøβ(ePøøβα

⊗ forkøβ
ββ)(ePø

⊗ hexøβαβ
øαβα ⊗ ePβ

)adjøøαβαβ
øαøβαβ (6.19)

Unlike earlier sections, we find that neither of (6.18) or (6.19) is of minimal length. We 
again set j = i + 1. First assume that bα � bβ. For (6.18), we must simplify the middle 
of the diagram. We define FHq,αβα to be the path

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Pq∅ � Mbα

i � Pbα
i � Mbβ−q

i+1 � Pbβ
i+2 ⊗β Mq

i,i+2 � Mbα−q
i � Pbα

i+1 0 � q � bβ

Pq∅ � Mbα
i � Pbαβ−q

i � Pbβ
i+2 ⊗β Mbβ

i,i+2 � Mbα−q
i � Pbα

i+1 bβ � q � bα

Pø � Mbα
i � Pbαβ−q

i � Pbβ
i+2 ⊗β Mbβ

i,i+2 � Pbα
i+1 � Pq−bα

i bα � q � bαβ

We have that FHq,αβα ∼ Hq,αβα because the former is obtained from the latter by 
reflection through the first α-hyperplane it crosses, this is depicted in Fig. 30. Similarly, 
we define FHq,βαβ to be the path

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Pq∅ � Mbβ−q

i+1 � Mq
i,i+1 � Pbβ

i+2 ⊗β Mbα−q
i � Pbα

i+1 ⊗α Mbβ
i+1 ⊗β Pbβ

i+2 0 � q � bβ

Pø � Mq−bβ
i � Mbβ

i,i+1 � Pbβ
i+2 ⊗β Mbα−q

i � Pbα
i+1 ⊗α Mbβ

i+1 ⊗β Pbβ
i+2 bβ � q � bα

Pø � Mq−bβ
i � Pbβ

i+2 ⊗β Mq−bα
i,i+2 � Pbα

i+1 ⊗α Mbαβ−q
i+1 ⊗β Pbβ

i+2 bα � q � bαβ

We have that FHq,βαβ ∼ Hq,βαβ because the former is obtained from the latter by 
reflection through the final β-hyperplane it crosses. We note that FHbαβ,αβα = Pø−ø �
FHbαβ,βαβ. One can define the paths FHq,αβα and FHq,βαβ for bα < bβ in an entirely 
analogous fashion.

Proposition 6.7. The element ΥPøøøβαβ

Pøαøβα⊗P�
β

is independent of the choice of reduced expres-
sion.

Proof. We proceed as in the proof of Proposition 5.12. We set T = Pøøøβαβ and B =
Pøαøβα ⊗ P�

β. For 0 � q � bα + 1, we set



68 C. Bowman et al. / Advances in Mathematics 429 (2023) 109185
Fig. 30. An example of the tableaux FHq,αβα for bαβ�q�0. We note that FHbαβ,αβα = FHbαβ,βαβ. The 
reader should compare these reflected paths with the first five paths of Fig. 22.

ti(q) = T−1(bαβ + q, εi) ti+1(q) = T−1(bαα + q, εi+1)
ti+2(q) = T−1(bαβα + q, εi+2)
bi(q) = B−1(bαβ + q, εi+1) bi+1(q) = B−1(bααα + q, εi+1)
bi+2(q) = B−1(bαβα + q, εi+2).

We have that

ti(q) < ti(q + 1) < ti+2(q) < ti+2(q + 1) < ti+1(q) < ti+1(q + 1)

bi(q) > bi(q + 1) > bi+2(q) > bi+2(q + 1) > bi+1(q) > bi+1(q + 1)

for 1 � q � bα and

ti(1) < ti+2(0) < ti+1(1) ti(bα) < ti+2(bα + 1) < ti+1(bα)

bi(1) > bi+2(0) > bi+1(1) bi(bα) > bi+2(bα + 1) > bi+1(bα).

Thus the subexpression ψw is the nib truncation of a quasi-(bα + 2)-expression for w =
(13), which is independent of the choice of expression by Corollary 4.10. Thus the result 
follows. �
Proposition 6.8. We have that

(ePøø
⊗ hexøβαβ

øαβα)(ePøø
⊗ forkøα

αα ⊗ ePβα
)adjøøααβα

øαøαβα(ePøα ⊗ hexøαβα
øβαβ ) = ΥPøøøβαβ

Pøαøβα⊗P�
β

Proof. For 0 � q < bβα, we claim that

(ePø
⊗ hexøαβα(q))(ePø

⊗ forkøα
αα ⊗ ePβα

)adjøααβα
αøαβα(ePøα ⊗ hexøαβα(q)) = ΥPøø⊗Hq,αβα

Pαø⊗FHq,βαβ

and the statement of the proposition will immediately follow. We now prove our claim. 
We set Tq = Pøø ⊗ hexαβα(q) and Bq = Pαø ⊗ FHq,αβα. We consider the strand, Q, 
from T−1

q (bαβ + q, εi) on the top edge to B−1
q (bαβα + q, εi+1) on the bottom edge of the 

diagram

(ePø
⊗ hexαβα(q)) ◦ (forkøα

αα ⊗ ePαβ
) ◦ (ePα ⊗ hexαβα(q))
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for 0 � q < bαβ. We wish to consider the non-zero degree crossings of the rq-strand Q
within the diagram. These are with the strands Q1, Q2, Q3, Q4, Q5, Q6, Q7 connecting 
the

T−1
q+1(bαβ + q − 1, εi), T−1

q+1(bαβα + q, εi+1), T−1
q+1(bαβα + q + 1, εi+1),

T−1
q+1(bαβα + q + 2, εi+1)

T−1
q+1(bαβαβ + q + 1, εi+2), T−1

q+1(bαβαβ + q + 2, εi+2), T−1
q+1(bαβαβ + q + 3, εi+2)

top vertices (which are ordered in increasingly from left to right) to the

B−1
q+1(bαβ + q, εi), B−1

q+1(bαβα + q, εi+1), B−1
q+1(bαβ + q + 1, εi), B−1

q+1(bαβα + q + 2, εi+1)

B−1
q+1(bαβαβ + q + 1, εi+2), B−1

q+1(bαβαβ + q + 2, εi+2), B−1
q+1(bαβαβ + q + 3, εi+2)

bottom vertices, respectively. The residues of these strands are rq + 1, rq + 1, rq, rq − 1
for the first row and rq + 1, rq, rq − 1 or the second row. We have that

T−1
q+1(bαβ + q − 1, εi) < T−1

q+1(bαβα + q, εi+1)

B−1
q+1(bαβ + q, εi) > B−1

q+1(bαβα + q, εi+1)

and so the pair of strands Q1 and Q2 form a crossing of (rq + 1)-strands. The strand Q
crosses Q1 and Q2 exactly once each. The remaining 5 strands are all vertical lines (in 
other words their top and bottom vertices coincide). The strand Q crosses each of these 
vertical strands twice. (Thus the total degree contribution of these crossings is zero.)

We undo the crossing of Q with the triple of strands Q5, Q6, Q7 as in the proof of 
Proposition 4.4. Pull the Q strand through Q4 using case 4 of relation (R4) at the 
expense of acquiring a dot on Q (the other term is zero by case 1 of relation (R4)) we 
then pull the dot on Q upwards through the crossing of Q and Q3 using relation (R3)
and obtain two terms: the first term, in which the dot has passed through the crossing, 
is zero by case 1 of relation (R4); in the second term, in which we undo one (of the two) 
crossings between Q and Q3, is equal to ψPø⊗Hq,αβα

Pα⊗FHq,βαβ
as required.

Now suppose bα � q < bαβ. The rq-strand connecting the B−1(4bα + 2bβ − q, εi+1)
and T−1(4bα + 2bβ − q, εi+1) top and bottom nodes double-crosses the (rq + 1)- rq-
and (rq − 1)- strands connecting the T−1(4bα + 3bβ − q − 1, εi+2), T−1(4bα + 3bβ −
q, εi+2), T−1(4bα + 3bβ − q + 1, εi+2) top vertices to the B−1(4bα + 3bβ − q − 1, εi+2), 
B−1(4bα + 3bβ − q, εi+2), B−1(4bα + 3bβ − q + 1, εi+2) bottom vertices. We undo these 
double-crossings as in the proof of Proposition 4.4. �
Proposition 6.9. We have that

adjøøøβαβ
øøβαøβ(ePøøβα

⊗ forkøβ
ββ)hexøøβαββ

øøαβαβadjøøαβαβ
øαøβαβ = ΥPøøøβαβ

� . (6.20)
Pøαøβα⊗Pβ
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Proof. For 0 � q � bαβ, we claim that

ΥPøøøβαβ

Pø⊗Hq,øαβα⊗Pβ
(ePø

⊗ hexøαβα(q + 1) ⊗ ePβ
) = ΥPøøøβαβ

Pø⊗Hq,øαβα⊗Pβ
. (6.21)

We decorate the top and bottom edges of the concatenated diagram in equation (6.21)
by the paths T = Pøøøβαβ and Bq+1 = Pø ⊗ Hq+1,øαβα ⊗ Pβ. For each 0 � q < bβ
the strand (of residue rq ∈ Z/eZ, say) connecting the top T−1(bαβ + q, εi+1))th and 
B−1
q (bαβ + q, εi+1)th bottom vertices (both of which are equal to (bαβ + q)h + ∅(i + 1)) 

of the concatenated diagram has double-crossings of non-zero degree with three strands 
of residues rq + 1, rq and rq − 1 connecting the T−1(bβαβ − 1 + q, εi+2)th, T−1(bβαβ +
q, εi+2)th, and T−1(bβαβ + q + 1, εi+2)th top vertices to the B−1

q (bβαβ − 1 + q, εi+2)th, 
B−1
q (bβαβ+q, εi+2)th, and B−1

q (bβαβ+q+1, εi+2)th bottom vertices respectively; we undo 
these crossings using Proposition 4.4. Now, for bβ � q < bαβ the claim is immediate 
as the concatenated diagram is step-preserving and has minimal length. Finally, we 
substitute equation (6.21) into equation (6.20) and the resulting diagram is again step-
preserving and has minimal length and the result follows. �
6.7. The tetrahedron relation

We now check that the image of relation (S8) holds in the quiver Hecke algebra. Our 
aim is to show that

hexγαγβαγøøø
αγαβαγøøøhexαγαβαγøøø

αγβαβγøøøcomαγβαβγøøø
αβγαγβøøøhexαβγαγβøøø

αβαγαβøøøhexαβαγαβøøø
βαβγαβøøøcomβαβγαβøøø

βαγβαβøøø

is equal to

comγαγβαγøøø
γαβγαγøøøhexαβγαγøøøγ

γαβαγαøøøhexγαβαγαøøø
βαβγαøøøγ comγβαβγαøøø

βγαγβαøøøhexβγαγβαøøø
øβαγαβαøøhexβαγαβαøøø

βαγβαβøøø .

Proposition 6.10. The element ψPγαγβαγøøø

Pβαγβαβøøø
is independent of the choice of reduced ex-

pression.

Proof. For notational ease, we let j = i + 1 and k = i − 1 and we decorate the top 
and bottom edges with T = Pγαγβαγøøø and B = Pβαγβαβøøø respectively. For each 
bβ � q � bαβ + 1, we consider the collection of permutations wq formed from the 
rq-strands connecting each of the

Bi−1(q) = B−1(q, εi−1) Bi(q) = B−1(bγ + q, εi)

Bi+1(q) = B−1(bαγ + q, εi+1) Bi+1(q) = B−1(bαβγ + q, εi+2)

bottom vertices to

Ti−1(q) = T−1(q, εi−1) Ti(q) = T−1(bγ + q, εi)

Ti+1(q) = T−1(bαγ + q, εi+1) Ti+1(q) = T−1(bαβγ + q, εi+2)
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ε1 ε2 ε4 ε4 ε1 ε4 ε3 ε4 ε4 ε2 ε3 ε4 ε4 ε1 ε3 ε3 ε4 ε3 ε2 ε3 ε4 ε3 ε2 ε2

0 1 3 2 4 1 2 0 4 0 1 3 2 3 0 4 1 3 4 2 0 1 3 2

ε2 ε3 ε4 ε2 ε2 ε3 ε4 ε3 ε3 ε1 ε4 ε3 ε3 ε2 ε4 ε4 ε3 ε4 ε1 ε4 ε4 ε2 ε1 ε4

1 2 3 0 4 1 2 0 4 0 1 3 2 3 0 4 1 3 0 2 1 2 3 0

Fig. 31. The element ψPγαγβαγøøø

Pβαγβαβøøø

for p = 5, h = 3, � = 1 and α = ε2 − ε3, β = ε3 − ε4, γ = ε1 − ε2. 
The thick black 4-strands form a w = s3s2s1s3s2s3 braid. Together with the wiggly strands, these form a 
subexpression nibψw3 containing all bad crossings.

top vertices respectively. By definition rq = rq+1+1 for bβ � q < bαβ+1. We let w denote 
the subexpression consisting of all strands from (the union of) the wq-subexpressions for 
bβ � q � bαβ + 1. One can verify, simply by looking at the paths T and B (and their 
residue sequences) that any bad-crossing in w belongs to ψnib(w). We have that

Bi−1(q) < Bi−1(q + 1) < Bi+2(q) < Bi+2(q + 1) < Bi+1(q) < Bi+1(q + 1) < Bi(q)

< Bi(q + 1)

Ti−1(q) > Ti−1(q + 1) > Ti+2(q) > Ti+2(q + 1) > Ti+1(q) > Ti+1(q + 1) > Ti(q)

> Ti(q + 1),

for bβ < q < bαβ. In other words, the rq-strands for bβ < q � bαβ form a ψ(1,4)(2,3)bα
braid (and thus this subexpression is quasi-dilated and of breadth bα). We now restrict 
to the case q = bβ, as the q = bαβ + 1 is similar. We have that

Bi−1(bβ + 1) < Bi+2(bβ) < Bi+2(bβ + 1) < Bi+1(bβ) < Bi+1(bβ + 1) < Bi(bβ + 1)

Ti−1(bβ + 1) > Ti+2(bβ) > Ti+2(bβ + 1) > Ti+1(bβ) > Ti+1(bβ + 1) > Ti(bβ + 1).

(We have not considered the strands connecting Bi−1(bβ) and Ti−1(bβ) or Bi(bβ) and 
Ti(bβ) as these were removed under the nib truncation map.) Thus ψnib(w) is independent 
of the choice of expression by Corollary 4.10 and the result follows. See Fig. 31 for an 
example. �
Proposition 6.11. We have that ΥPγαγβαγøøøø

Pβαγβαβøøøø
is equal to both

hexγαγβαγøøø
αγαβαγøøøhexαγαβαγøøø

αγβαβγøøøcomαγβαβγøøø
αβγαγβøøøhexαβγαγβøøø

αβαγαβøøøhexαβαγαβøøø
βαβγαβøøøcomβαβγαβøøø

βαγβαβøøø
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and

comγαγβαγøøø
γαβγαγøøøhexαβγαγøøøγ

γαβαγαøøøhexγαβαγαøøø
βαβγαøøøγ comγβαβγαøøø

βγαγβαøøøhexβγαγβαøøø
øβαγαβαøøhexβαγαβαøøø

βαγβαβøøø .

Proof. We set k = i − 1, j = i + 1. We will prove the first equality as the second is very 
similar (for more details, see Remark 6.12). We proceed from the centre of the diagram, 
considering the first pair of hexagons (on top and bottom of a pair of commutators), the 
second pairs of hexagons (on top and bottom of the previous product) and then finally 
the last commutator (below the previous product).

Step 1. We add the first pair of hexagonal generators symmetrically as follows

hexαγαβαγøøø
αγβαβγøøø(ePα ⊗ comγβαβγ

βγαγβ ⊗ ePøøø
)hexαβγαγβøøø

αβαγαβøøø = ΥPαγαβαγøøø

Pαβαγαβøøø
. (6.22)

The only points worth bearing in mind are (i) double-crossings strands of non-adjacent 
residue can be undone trivially and (ii) that the implicit adjustments in the definitions of 
hexαγαβαγøøø

αγβαβγøøø and hexαβγαγβøøø
αβαγαβøøø will give rise to (a total of |bα−bβ| +|bα−bγ | +|bβ−bγ |) 

double-crossings which can be undone as in the proof of Proposition 4.4.

Step 2. We now add the next pair of hexagonal generators symmetrically to the diagram, 
ΥPαγαβαγøøø

Pαβαγαβøøø
, output by the previous step in the procedure. We first note that

adjPø⊗H0,αγα⊗Pβαγøø

Pαγαβαγøøø
◦ ΥPαγαβαγøøø

Pαβαγαβøøø
◦ adjPαβαγαβøøø

Pø⊗H0,αβα⊗Pγαβøø
= ΥPø⊗H0,αγα⊗Pβαγøø

Pø⊗H0,αβα⊗Pγαβøø

again by (a total of |bβ − bγ | applications of) Proposition 4.4. We claim that(
hexøαγα(q)⊗ePβαγøø

)
ΥPø⊗Hq,αγα⊗Pβαγøø

Pø⊗Hq,αβα⊗Pγαβøø

(
hexøαβα(q)⊗ePγαβøø

)
= ΥPø⊗Hq+1,αγα⊗Pβαγøø

Pø⊗Hq+1,αβα⊗Pγαβøø

(6.23)
for 0 � q < max{bβ, bγ} + bα. For 0 � q � bα + |bβ − bγ | the concatenated diagram 
on the lefthand-side of equation (6.23) contains a distinguished strand connecting the 
T−1(min{bβ, bγ} + q + 1, εi) top and B−1(min{bβ, bγ} + q + 1, εi) bottom vertices. For 
0 � q � bα + |bβ − bγ | the distinguished strand passes from left to right and back 
again, thus admitting a double-crossing with each of the (rq − 1)-, rq-, (rq + 1)-strands 
connecting the

T−1(min{bβ, bγ} + bα + q, εi+1) T−1(min{bβ, bγ} + bα + q + 1, εi+1)
T−1(min{bβ, bγ} + bα + q + 2, εi+1)

top vertices to the

B−1(min{bβ, bγ} + bα + q, εi+1) B−1(min{bβ, bγ} + bα + q + 1, εi+1)
B−1(min{bβ, bγ} + bα + q + 2, εi+1)

bottom vertices. For |bβ − bγ | � q � bα + |bβ − bγ | the distinguished strand also admits 
a double-crossing with each of the (rq − 1)-, rq-, (rq + 1)-strands connecting the
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T−1(min{bβ, bγ} + bαβ + q, εi+2) T−1(min{bβ, bγ} + bαβ + q + 1, εi+2)
T−1(min{bβ, bγ} + bαβ + q + 2, εi+2)

top vertices to the

B−1(min{bβ, bγ} + bαβ + q, εi+2) B−1(min{bβ, bγ} + bαβ + q + 1, εi+2)
B−1(min{bβ, bγ} + bαβ + q + 2, εi+2)

bottom vertices. Note we have broken these strands into two triples. For 0 � q � bα +
|bβ − bγ | we undo the double-crossing of the distinguished strand with the former triple 
using a single application of Proposition 4.4. For |bβ − bγ | � q � bα + |bβ − bγ | we 
undo the double-crossing of the distinguished strand with the latter triple and then the 
former triple as in the proof of Proposition 4.4. Thus equation (6.23) follows. If bβ > bγ
(respectively bγ > bβ) we must now multiply on the bottom (respectively top) by the 
remaining terms to obtain a minimal, step-preserving diagram. We hence deduce that

(
hexøαγα ⊗ ePβαγøø

)
ΥPαγαβαγøøø

Pαβαγαβøøø

(
hexøαβα ⊗ ePγαβøø

)
= ΥHbαγ ,øαγα⊗Pβαγøø

Hbαβ,øαβα⊗Pγαβøø
.

We now multiply on the top and bottom by the other “halves” of the hexagonal generators 
to get

hexγαγβαγøøø
αγαβαγøøøΥPαγαβαγøøø

Pαβαγαβøøø
hexαβαγαβøøø

βαβγαβøøø = ΥPγαγβαγøøø

Pβαβγαβøøø
(6.24)

where here the hexagonal terms are minimal and step-preserving, but we must again 
undo any double-crossings arising from adjustments as in the proof of Proposition 4.4. 
We emphasise that the righthand-side of equation (6.24) is independent of the choice of 
reduced expression, which can be shown in a similar fashion to Proposition 6.10.

Step 3. For 0 � q < bβγ , we claim that

ΥPγαγβαγøøø

Pβα⊗Cq,βγ⊗ePαβøøø

(ePβα
⊗ comβγ(q) ⊗ ePαβøøø

) = ΥPγαγβαγøøø

Pβα⊗Cq+1,βγ⊗Pαβøøø

and for bβγ � q > 0, we claim that

ΥPγαγβαγøøø

Pβα⊗Cq,γβ⊗ePαβøøø

(ePβα
⊗ comγβ(q) ⊗ ePαβøøø

) = ΥPγαγβαγøøø

Pβα⊗Cγβ(q−1)⊗Pαβøøø

.

We consider the former product, as the latter is similar. If bγ > bβ, then the concatenated 
diagram is minimal and step-preserving. If bγ � bβ then the rq-braid connecting the 
strands

T−1(q + 1, εi−1) T−1(bγ + q + 1, εi) T−1(bαγ + q + 1, εi+1) T−1(bαβγ + q + 1, εi+2)

B−1(q + 1, εi−1) B−1(bγ + q + 1, εi) B−1(bαγ + q + 1, εi+1) B−1(bαβγ + q + 1, εi+2)
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top and bottom vertices form the non-minimal expression (s2s1s3s2s3)s3 (the bracketed 
term belongs to the multiplicand ΥPγαγβαγøøø

Pβαβγαβøøø
and so can be chosen arbitrarily, we have 

chosen the simplest form for what follows). The rq-strand with label εi double-crosses 
the (rq − 1)-strand connecting the T−1(bαγ + q+ 2, εi+1) and B−1(bαγ + q+ 2, εi+1) top 
and bottom vertices. We undo this double-crossing at the expense of placing a KLR dot 
on the rq-strand (the other term is zero, by case 1 of equation (R4)). We then pull this 
dot through the rq-crossing labelled by the εi and εi+2 strands and hence undoing the 
bottommost crossing (the other, dotted, term is zero, again by case 1 of equation (R4)). 
Thus our rq-braid now forms the non-minimal expression s2s1s3s2s3. The rq-crossing of 
strands connecting the

T−1(bαγ + q + 1, εi+1), T−1(bβ + q + 1, εi), B−1(bβ + q + 1, εi), B−1(bαγ + q + 1, εi+1)

top and bottom vertices is bi-passed on the left by the (rq + 1)-strand connecting the 
T−1(bαγ + q, εi+1) and B−1(bαγ + q, εi+1) vertices. We pull this (rq + 1)-strand through 
this crossing using relation (R5) and hence obtain the diagram in which the crossing 
is undone (at the expense of another term, which is zero by Lemma 4.1). Thus our 
rq-braid now forms the minimal expression s2s1s3s2, and the diagram is minimal and 
step-preserving, as required. �
Remark 6.12. The reader should note that in equation (S8), the righthand-side is ob-
tained by first flipping the lefthand-side through the horizontal and vertical axes and 
then swapping the β and γ labels. The “very similar” proof of the second equality 
in Proposition 6.11 amounts to rewriting the above argument but with indices of the 
crossing-strands determined by the horizontal and vertical flips and recolouring (swap 
mentions of bβ and bγ) of the indices in the proof above.

6.8. The tricoloured commutativity relations

We now verify the two relations depicted in (S7). Namely, we will show that

Υøαβαδ
δøβαβ = hexøαβαδ

øβαβδ comøβαβδ
øβαδβcomøβαδβ

øβδαβcomøβδαβ
øδβαβadjøδβαβ

δøβαβ

= comøαβαδ
øαβδαcomøαβδα

øαδβαcomøαδβα
øδαβαadjøδαβα

δøαβαhexδøαβα
δøβαβ

(6.25)

and we have that

Υβγδ
δγβ = comβγδ

βδγcomβδγ
δβγcomδβγ

δγβ = comβγδ
γβδcomγβδ

βδγcomβδγ
δγβ. (6.26)

We suppress mention of crossing which can be undone using the commutativity KLR 
relations in what follows.

Consider the former product in equation (6.25). For 1 � q � bδ the strand connecting 
the P−1

øαβαδ(q, εj) and P−1
δøβαβ(q, εj) northern and southern vertices double-crosses the 
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strands connecting each of the P−1
øαβαδ(bβ + p, εj+1) and P−1

δøβαβ(bβ + p, εj+1) north-
ern and southern vertices for p = q − 1, q, q + 1. Now consider the latter product of 
equation (6.25). For 1 � q � bδ the strand connecting the P−1

øαβαδ(bαβα + q, εj) and 
P−1
δøβαβ(bαβα +q, εj) northern and southern vertices double-crosses the strands connect-

ing each of the P−1
øαβαδ(bαβαβ + p, εj+1) and P−1

δøβαβ(bαβαβ + p, εj+1) northern and 
southern vertices for p = q− 1, q, q + 1. For each 1 � q � bδ we can undo these crossings 
using Proposition 4.4.

Consider the former product in equation (6.26). For 1 � q � min{bβ, bδ} the strand 
connecting the P−1

βγδ(q, εk) and P−1
δγβ(q, εk) northern and southern vertices double-crosses 

the strands connecting each of the P−1
βγδ(bγ+p, εk+1) and P−1

δγβ(bγ+p, εk+1) northern and 
southern vertices for p = q−1, q, q+1. Now consider the latter product in equation (6.26). 
For 0 � q < min{bβ, bδ} the strand connecting the P−1

βγδ(bβγδ − q, εk) and P−1
δγβ(bβγδ −

q, εk) northern and southern vertices double-crosses the strands connecting each of the 
P−1
βγδ(bβγγδ − p, εk+1) and P−1

δγβ(bβγγδ − p, εk+1) northern and southern vertices for 
p = q + 1, q, q − 1. For each 0 � q < min{bβ, bδ} we can undo these crossings using 
Proposition 4.4.

Thus we obtain the desired equalities and the image of relation (S7) holds.

6.9. The fork and commutator

Let γ, β ∈ Π label two commuting reflections, we now verify the middle relation 
depicted in (S6), namely that

ΥPβøγ

Pγ⊗P�
γ⊗Pβ

= (ePβ
⊗ forkøγ

γγ)(comβγ
γβ ⊗ ePγ )(ePγ ⊗ comβγ

γβ)

= (adjβø
øβ ⊗ ePγ )(ePø

⊗ comβγ
γβ)(forkøγ

γγ ⊗ ePβ
)

as both products produce minimal, step-preserving, and residue commutative elements 
(after undoing any double-crossings of non-adjacent residue using the commutativity 
relations).

6.10. Naturality of adjustment

For each generator, we must check the corresponding adjustment naturality rela-
tion pictured in Figs. 6 and 7. For the unique one-sided naturality relation, (spotøα ⊗
ePø

)adjαø
øα = ePø

⊗spotøα, this follows by a generalisation of the proof of Proposition 5.11. 
The remaining relations all follow from Proposition 4.4.

6.11. Cyclicity

Given α, β ∈ Π labelling a pair of non-commuting reflections, we now verify relation 
(S4), namely that
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Ψ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= Ψ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (6.27)

The lefthand-side of equation (6.27) is equal to

(
ePαøβα

⊗(spotøβ⊗ePø
)forkβø

ββ

)
hexαøβαββ

αøαβαβ((adjαøα
øαα(ePø

⊗(forkαα
øα (ePø

⊗spotαø ))))⊗ePβαβ
)

which is minimal and step-preserving and so is equal to Υαøβαβø
øøøβαβ (which is independent 

of the choice of reduced expression by simply re-indexing the proof of Proposition 5.12). 
The righthand-side of equation (6.27) is equal to

adjαøβαøø
øøαβαø

(
ePø

⊗ hexøαβα
øβαβ ⊗ ePø

)
(ePøø

⊗ adjβαβø
øβαβ). (6.28)

It will suffice to show that

(hexβαβ ⊗ eP∅)adjβαβ∅
∅βαβ = Υ

Hbαβ,βαβ⊗P∅

∅øαβα (6.29)

as bβ applications of this will simplify equation (6.28) so that it is minimal and step-
preserving. The lefthand-side of equation (6.29) contains an r-strand from H−1

q,αβα(q +
1, εi+1) to P−1

∅øαβα(q + 1, εi+1) which double-crosses the strands connecting the top and 
bottom vertices

H−1
q,αβα(bα + q, εi) H−1

q,αβα(bα + q + 1, εi) H−1
q,αβα(bα + q + 2, εi)

P−1
∅øαβα(bα + q, εi) P−1

∅øαβα(bα + q + 1, εi) P−1
∅øαβα(bα + q + 2, εi),

respectively. We undo these double-crossings as in the proof of Proposition 4.4 to obtain 
Υαøβαβø

øøøβαβ .

6.12. Some results concerning doubly-spotted Soergel diagrams

The remainder of this section is dedicated to proving results involving the “doubly-
spotted” Soergel diagrams. These proofs are of a different flavour to the “timeline” proofs 
considered above. We shall see that each Soergel spot diagram roughly corresponds to 
“half” of a KLR dotted diagram. This idea is easiest to see through its manifestation in 
the grading (Soergel spots have degree 1, whereas KLR dots have degree 2). We have 
that
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Ψ

⎛⎜⎝
⎞⎟⎠ = ePø

( ∏
bα>q�0

ψqh+i
bαh−bα+q+1

)
ePα

( ∏
0�q<bα

ψbαh−bα+q+1
qh+i

)
ePø

= ePø

(
ybαh−h+∅(i+1) − yi

)
ePø

(6.30)

by relation (R4); this is easily seen from the fact that the only crossings of non-zero 
degree are a double-crossing of strands which begin and end at the P−1

ø (bα, εi+1) =
(bαh − h + ∅(i + 1)) and P−1

ø (1, εi) = i points on the top and bottom edges of the 
diagram (and application of case 3 of relation (R4)). Arguing similarly, one has that

Ψ

⎛⎜⎝
⎞⎟⎠= ePα

( ∏
0�q<bα

ψbαh−bα+q+1
qh+i

)
ePø

( ∏
bα>q�0

ψqh+i
bαh−bα+q+1

)
ePα

= ePα

(
ybαh−bα−h+1+α(i+1) − ybαh−bα+1

)
ePα . (6.31)

Proposition 6.13. Let α = εi − εi+1, γ = εk − εk+1 ∈ Π with bα > 1 and 0 � q < bγ . We 
have that

y∅(i+1)eP∅∅ = yh+∅(i+1)eP∅∅ y∅(i)eP∅∅ = yh+∅(i)eP∅∅ (6.32)

yh+γ(i+1)eP∅γ = y∅(i+1)eP∅γ yh+γ(i)eP∅γ = y∅(i)eP∅γ (6.33)

yq(h−1)+γ(i+1)ePγ = y(q+1)(h−1)+γ(i+1)ePγ yq(h−1)+γ(i)ePγ = y(q+1)(h−1)+γ(i)ePγ

(6.34)

whenever the indices are defined (cross reference Definition 2.31).

Proof. We prove both cases of equation (6.32), the other pairs of cases are similar. Our 
assumption that bα > 1 implies that the residues of the ith and (i +1)th strands are non-
adjacent and similarly that the (h +∅(i))th and (h +∅(i +1))th strands are non-adjacent
(this is not true if bα = 1). Therefore we have that

0 = ψi
h+ieP∅∅ψ

h+i
i = (yi − yh+i)eP∅∅ , 0 = ψ

h+∅(i+1)
∅(i+1) eP∅∅ψ

∅(i+1)
h+∅(i+1) = (yi − yh+i)eP∅∅

where in both cases, the first and second equalities follow from Lemma 4.1 and the final 
case of relation (R4). �
Proposition 6.14. Let α = εi − εi+1, γ = εk − εk+1 ∈ Π with bα = 1 and 0 � q < bγ . We 
have that

(yi − yi+1)eP∅∅ = (yh+i − yh+i+1)eP∅∅

(yh+γ(i+1) − yh+γ(i))eP∅γ = (yi+1 − yi)eP∅γ

(yq(h−1)+γ(i) − yq(h−1)+γ(i+1))ePγ = (y(q+1)(h−1)+γ(i) − y(q+1)(h−1)+γ(i+1))ePγ
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whenever the indices are defined (cross reference Definition 2.31).

Proof. We prove the first equality as the other cases are similar. Since bα = 1, we have 
that ∅(i) = i and ∅(i +1) = i +1 (in other words, i 	= h) and are of adjacent residue. We 
have that

(yh+i+1 − yh+i)eP∅∅ = eP∅∅ψ
h+i+1
h+i ψh+i

h+i+1eP∅∅

= (eP∅∅ψ
h+i+1
h+i )ψh+i

i+2ψ
i+2
h+i(ψ

h+i
h+i+1eP∅∅)

= (eP∅∅ψ
h+i+1
h+i ψh+i

i+2 )(ψi+1ψiψi+1 + ψiψi+1ψi)(ψi+2
h+iψ

h+i
h+i+1eP∅∅)

= (eP∅∅ψ
h+i+1
h+i ψh+i

i+2 )ψiψi+1ψi(ψi+2
h+iψ

h+i
h+i+1eP∅∅)

= (eP∅∅ψiψ
h+i+1
h+i )ψh+i

i+2ψi+1ψ
i+2
h+i(ψ

h+i
h+i+1ψieP∅∅)

= (eP∅∅ψiψ
h+i+1
h+i )ψi+1

h+i−1ψh+i−1ψ
h+i−1
i+1 )ψh+i

h+i+1ψieP∅∅)

= (eP∅∅ψiψ
i+1
h+i−1)ψ

h+i+1
h+i ψh+i−1ψ

h+i
h+i+1(ψ

h+i−1
i+1 ψieP∅∅)

= (eP∅∅ψiψ
i+1
h+i−1)(1 + ψh+i−1ψh+iψh+i−1)(ψh+i−1

i+1 ψieP∅∅)

= (eP∅∅ψiψ
i+1
h+i−1)(ψ

h+i−1
i+1 ψieP∅∅)

= eP∅∅ψiψieP∅∅

= eP∅∅(yi+1 − yi)eP∅∅

where the first equality holds by the third case of relation (R4), the second holds by the 
second case of relation (R4) (the commuting version), the third holds by case 2 of relation 
(R5), the fourth holds by Lemma 4.1, and the fifth to the seventh by the second case 
of relation (R4) (the commuting version), and the eighth by the first case of (R5), and 
the ninth by Lemma 4.1, the tenth by the second case of relation (R4) (the commuting 
version), and the eleventh by the third case of relation (R4). �
6.13. The barbell and commutator

For β, γ ∈ Π labelling two commuting reflections, we check that

Ψ

⎛⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎠ = Ψ

⎛⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎠ (6.35)

In other words,

(spotøβspotβø ) ⊗ ePγ = adjøγγø(ePγ ⊗ (spotøβspotβø ))adjγø
øγ .

This relation is very simple to check. We have that
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adjøγγø(ePγ ⊗ (spotøβspotβø ))adjγø
øγ = adjøγγø(ybγβh−h+∅(j+1) − ybγh+j)adjγø

øγePøγ

= (ybγβh−h+1−bγ+γ(j+1) − ybγh+γ(j))adjøγγøadjγø
øγePøγ

= (ybγβh−h+1−bγ+γ(j+1) − ybγh+γ(j))ePøγ

= (ybβh−h+∅(j+1) − yj)ePøγ

where the first equality follows from equation (6.31), the second equality follows from 
the commuting cases of relations (R3) and (R2), the third equality follows from Propo-
sition 4.4, the fourth equality follows from applying Propositions 6.13 and 6.14. Again 
by equation (6.31), we have that

(spotøβspotβø ) ⊗ ePγ = (ybβh−h+∅(j+1) − yj)ePøγ

as required.

6.14. The one colour Demazure relation

We now verify (S2), namely that

Ψ

⎛⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎠ + Ψ

⎛⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎠ = 2Ψ

⎛⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎠ . (6.36)

for α ∈ Π. In other words, we must check that

(spotøαspotαø ) ⊗ ePα + adjøααø(ePα ⊗ spotøαspotαø )adjαø
øα = 2(ePø

⊗ spotαø spotøα)

Substituting equation (6.30) and (6.31) into the above, we must show that

ePøα

(
ybαh−h+∅(i+1) − yi + adjøααø(ybααh−h+∅(i+1) − ybαh+i)adjαø

øα
)
ePøα

= 2ePøα(ybααh−bα−h+1+α(i+1) − ybααh−bα+1)ePøα .
(6.37)

This leads us to consider the effect of passing dots through the adjustment terms.

Proposition 6.15. Let α ∈ Π. We have that

adjøααøybαh+iadjαø
øα = ybααh−bα+1ePøα (6.38)

adjøααø(bα − 2)...adjøααø(0)ybααh−h+∅(i+1)adjøααø(0)...adjøααø(bα − 2) = ybααh−h+∅(i+1)ePøα .

(6.39)
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Proof. By the commuting case of relation (R2), we have that the lefthand-sides of equa-
tion (6.38) and (6.39) are equal to ybααh−bα+1adjøααøadjαø

øα and ybααh−h+∅(i+1)adjøααø(bα−
2)...adjøααø(bα − 2) respectively. The result then follows by Proposition 4.4. �

In equation (6.39) we pulled the dot through most of the adjustment term; in equa-
tion (6.40) below, we pull the dot through the final adjustment term. Equation (6.41)
has an almost identical proof and so we record it here, for convenience.

Proposition 6.16. Let α ∈ Π. We have that

adj∅αα∅ybαh+∅(i+1)adjα∅
∅α =

(
yi + ybαh−bα+1+α(i+1) − ybαh+h−bα+1

)
eP∅α (6.40)

adj∅αα∅ybαh−bα+1adjα∅
∅α = ybαh+h−bα+1eP∅α . (6.41)

Proof. We first prove equation (6.40). The dotted strand in the concatenated diagram 
on the left of equation (6.40) connects the i = P−1

∅α(1, εi) top and bottom vertices, by way 
of the bαh +∅(i +1) = P−1

α∅(1, εi+1) vertex in the centre of the diagram. We suppose this 
dotted strand is of residue r ∈ Z/eZ, say. This dotted strand crosses a single strand of 
the same residue: namely, the strand connecting the P−1

∅α(bα + 1, εi+1)th vertices on the 
top and bottom edges. By relation (R3), we can pull the dot upwards along its strand 
and through this crossing at the expense of an error term. We thus obtain

adj∅αα∅ybαh+∅(i+1)adjα∅
∅α = ePα∅

(
yiψ

P∅α
Pα∅

ψ
Pα∅
P∅α

)
ePα∅ + ePα∅

(
ψ

P∅⊗S0,α
S1,α⊗P∅

ψ
S1,α⊗P∅
S0,α⊗P∅

ψ
Pα∅
P∅α

)
ePα∅

(6.42)
(we note that S0,α = P�

α). The first term in equation (6.42) is equal to yieP∅α by Proposi-
tion 4.4 (and this is equal to the leftmost term on the righthand-side of equation (6.40)). 
We now consider the latter term. We label the top and bottom edges by T = P∅⊗P�

α and 
B = P∅ ⊗ Pα. There is a unique crossing of strands of the same residue in the diagram

eP∅α

(
ψ

P∅⊗S0,α
S1,α⊗P∅

◦ ψS1,α⊗P∅
S0,α⊗P∅

◦ ψPα∅
P∅α

)
eP∅α

namely the r-strands connecting the i = T−1(1, εi) and B−1(bα + 1, εi+1) vertices on 
the top and bottom edges of the diagram. This crossing of strands is bi-passed on the 
left by the (r + 1)-strand connecting the T−1(bα, εi+1) = B−1(bα, εi+1) top and bottom 
vertices. We pull this (r + 1)-strand to the right through the crossing r-strands using 
case 2 of relation (R5) (and the commuting relations). We hence undo this crossing and 
obtain

eP∅α

(
ψ

P∅⊗S0,α
S1,α⊗P∅

ψ
S1,α⊗P∅
P∅⊗S0,α

)
eP∅α

(the other term depicted in equation (R5) is zero by Lemma 4.1). Now, this diagram 
contains a double-crossing of the r-strand connecting the (P∅ ⊗ P�

α)−1(bα + 1, εi+1) top 
and bottom vertices and the (r − 1)-strand connecting the (P∅ ⊗ P�

α)−1(2, εi) top and 
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bottom vertices. We undo this double-crossing using case 4 of relation (R4) (and the 
commutativity relations) to obtain

eP∅α(ybαh−bα+1+α(i+1) − ybαh+h−bα+1)eP∅α (6.43)

and so equation (6.40) follows. Regarding the enumeration above, we note that

(P∅ ⊗ P�
α)−1(bα + 1, εi+1) = bαh− bα + 1 + α(i + 1)

(P∅ ⊗ P�
α)−1(2, εi) = bαh + h− bα + 1.

Now we turn to equation (6.41). We push the KLR-dot upwards along its strand using 
(R3) to obtain

eP∅α

(
ybαh−bα+1+α(i+1)ψ

P∅α
Pα∅

ψ
Pα∅
P∅α

)
eP∅α − eP∅α

(
ψ

P∅⊗S0,α
S1,α⊗P∅

ψ
S1,α⊗P∅
S0,α⊗P∅

◦ ψPα∅
P∅α

)
eP∅α . (6.44)

The first term is equal to ybαh−bα+1+α(i+1)eP∅α (again this follows by Proposition 4.4). 
The second term is identical to the second term in equation (6.42) and so is equal to 
equation (6.43) but with negative coefficient. Thus we can rewrite equation (6.44) in the 
form

eP∅α

(
ybαh−bα+1+α(i+1) − (ybαh−bα+1+α(i+1) − ybαh+h−bα+1)

)
eP∅α

and equation (6.41) follows. �
We now gather together our conclusions from Propositions 6.15 and 6.16 (shifting the 

indexing where necessary) in order to prove equation (6.36). We have that (spotøαspotαø ) ⊗
ePα is equal to

ePøα(ybαh−h+∅(i+1) − yi)ePøα

and adjøααø(ePα ⊗ spotøαspotαø )adjαø
øα is equal to

−ePøαybααh−bα+1ePøα + ePøα

(
ybαh−h+i + ybααh−bα−h+1+α(i+1) − ybααh−bα+1

)
ePøα

By Propositions 6.13 and 6.14, we have that

ybαh−h+∅(i+1)ePøα = ybααh−bα−h+1+α(i+1)ePøα

for bα � 1 and by Proposition 6.13 we have that

yiePøα = ybαh−h+iePøα

for bα > 1 (we note that this latter statement is vacuous if bα = 1 as the subscripts are 
equal). The former pair of terms sum up and the latter cancel, so we obtain
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Ψ

(spotøαspotαø ) ⊗ ePα + adjøααø(ePα ⊗ spotøαspotαø )adjαø
øα

= 2ePøα(ybαh−h+∅(i+1) − ybααh−bα+1)ePøα

Hence equation (6.37) holds by a further application of Propositions 6.13 and 6.14.

6.15. Two colour Demazure

For α, β ∈ Π labelling two non-commuting reflections, we now verify relation (S5), 
namely that⎛⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎠−Ψ

⎛⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎠ = Ψ

⎛⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎠−Ψ

⎛⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎠ (6.45)

We assume that the rank of Φ is at least 2. The reader is invited to check the rank 1
case separately (here the scalar 2 appears due to certain coincidences in the arithmetic).

Proposition 6.17. Let α ∈ Π. If bα > 1, we have that

ybαh+h+∅(i+1)eP∅α∅ = (yi+y∅(i+1)−ybαh+h−bα+1)eP∅α∅

ybαh+h+ieP∅α∅ = ybαh+heP∅α∅ = ybαh+h−bα+1eP∅α∅

and if bα = 1 we have that

(ybαh+h+i − ybαh+h+∅(i+1))eP∅α∅ = (2ybαh+h−bα+1 − yi − y∅(i+1))eP∅α∅ .

Proof. We check the bα > 1 case as the other is similar. The second equality follows as in 
the proof of Proposition 6.13. We now consider the first equality. We momentarily drop 
the prefix P∅ to the path P∅α∅ for the sake of more manageable indices. Since bα > 1
we can pull the vertical strand connecting the bαh + ∅(i + 1) top and bottom vertices 
leftwards until we reach a strand of adjacent residue (namely the (bαh −bα+2)th strand) 
as follows

ePα∅ = ePα∅ψ
bαh+∅(i+1)
bαh−bα+3 ψbαh−bα+3

bαh+∅(i+1)ePα∅

we can rewrite the centre of the diagram which using the braid relation as follows,

ePα∅ψ
bαh+∅(i+1)
bαh−bα+3 (ψbαh−bα+2ψbαh−bα+1ψbαh−bα+2−

ψbαh−bα+1ψbαh−bα+2ψbαh−bα+1)ψbαh−bα+3
bαh+∅(i+1)ePα∅

where the latter term is zero by Lemma 4.1 and so this simplifies to
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ePα∅ψ
bαh+∅(i+1)
bαh−bα+2 (ψbαh−bα+1)ψbαh−bα+2

bαh+∅(i+1)ePα∅

now we use the non-commuting version of relation (R2) together with case 1 of relation 
(R4) to rewrite the middlemost crossing as a double-crossing with a KLR-dot,

−ePα∅ψ
bαh+∅(i+1)
bαh−bα+2 (ψbαh−bα+1ybαh−bα+1ψbαh−bα+1)ψbαh−bα+2

bαh+∅(i+1)ePα∅ ,

we pull the dotted strand leftwards through the next strand of adjacent residue (namely 
the ((bα − 1)(h − 1) +α(i + 1))th strand) using the commutativity relations and case 4 
of relation (R4) to obtain

ePα∅ψ
bαh+∅(i+1)
bαh−bα+2 (y(bα−1)(h−1)+α(i+1)+

ψbαh−bα+2
(bα−1)(h−1)+α(i+1)ψ

(bα−1)(h−1)+α(i+1)
bαh−bα+2 )ψbαh−bα+2

bαh+∅(i+1)ePα∅

where the first summand is zero by case 1 of relation (R4) and the latter term is equal 
to

ePα∅ψ
bαh+∅(i+1)
(bα−1)(h−1)+α(i+1)ψ

(bα−1)(h−1)+α(i+1)
bαh+∅(i+1) ePα∅ .

Now we concatenate on the left by P∅ and then multiply by ybαh+h+∅(i+1) to obtain

ybαh+h+∅(i+1)eP∅α∅ = ybαh+h+∅(i+1)eP∅α∅ψ
bαh+h+∅(i+1)
bαh−bα+1+α(i+1)ψ

bαh−bα+1+α(i+1)
bαh+h+∅(i+1) eP∅α∅

(6.46)

which by relation (R4) is equal to

eP∅α∅

(
ψ
bαh+h+∅(i+1)
bαh−bα+1+α(i+1)ybαh−bα+1+α(i+1)+

ψ
bαh+h+∅(i+1)
bαh+h−bα+2 ψbαh+h−bα+1

bαh−bα+1+α(i+1)
)
ψ
bαh−bα+1+α(i+1)
bαh+h+∅(i+1) eP∅α∅ .

We consider the first term in the sum first. By the commuting relations, this term is 
equal to

eP∅α∅

(
ψ
bαh+h+∅(i+1)
h+i yh+iψ

h+i
bαh+h+∅(i+1)

)
eP∅α∅

and by Proposition 6.13 this is equal to

eP∅α∅

(
ψ
bαh+h+∅(i+1)
h+i yiψ

h+∅(i+1)
bαh+h+∅(i+1)

)
eP∅α∅

and now, having moved this KLR-dot a total of h strands leftward, we can apply the 
commutativity relations again to obtain

yieP∅α∅

(
ψ
bαh+h+∅(i+1)
bαh−bα+1+α(i+1)ψ

bαh−bα+1+α(i+1)
bαh+h+∅(i+1) eP∅α∅

)
= yieP∅α∅ (6.47)
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where the final equality follows by equation (6.46). We now turn to the second term in 
the above sum, namely

eP∅α∅ψ
bαh+h+∅(i+1)
bαh+h−bα+2 ψbαh+h−bα+1

bαh−bα+1+α(i+1)ψ
bαh−bα+1+α(i+1)
bαh+h+∅(i+1) eP∅α∅ .

This has a crossing of like-labelled strands (of residue r ∈ Z/eZ) connecting the (bαh +
∅(i + 1))th and (bαh− bα + 1)th top and bottom vertices. This crossing is bi-passed on 
the right by the (r− 1)-strand connecting the (bαh − bα +2)th top and bottom vertices. 
We undo this braid using case 1 of relation (R5) to obtain

eP∅α∅(ψ
bαh+h+∅(i+1)
bαh+h−bα+2 ψbαh+h−bα+1

bαh−bα+1+α(i+1))(ψ
bαh−bα+1+α(i+1)
bαh+h−bα+1 ψbαh+h−bα+2

bαh+h+∅(i+1))eP∅α∅

where the other term in relation (R5) is zero by Lemma 4.1. This diagram contains a 
single double-crossing of adjacent residues, which we undo using case 4 of relation (R4)
(and we undo all the other crossings using the commutativity relation) to obtain

eP∅α∅(ybαh−bα+1+α(i+1) − ybαh−bα+1)ePα∅ = ePα∅(y∅(i+1) − ybαh−bα+1)eP∅α∅ (6.48)

where the final equality follows by Proposition 6.13. The result follows by summing over 
equation (6.47) and (6.48). �
Proposition 6.18. Let α = εi − εi+1, β = εi+1 − εi+2 ∈ Π. We have that

(spotøβspotβø ) ⊗ ePαø
− (adjøααø ⊗ ePø

)(ePα ⊗ spotøβspotβø ⊗ ePø
)(adjαø

øα ⊗ ePø
)

= ePα(yi − ybαβh)ePα

= ePøα ⊗ (spotøαspotαø ) − ePø
⊗ (spotαø spotøα) ⊗ ePø

.

Proof. Substituting equation (6.30) and (6.31) into the third line, we obtain

ePøαø
(ybαβαh−h+∅(i+1) − ybαβh+i − ybαβh−bα−h+1+α(i+1) + ybαβh−bα+1)ePøαø

.

We apply Proposition 6.17 to the first term in the sum and then cancelling terms using 
Propositions 6.13 and 6.14. Substituting equation (6.30) and (6.31) into the first line, 
we obtain

ePøαø

(
ybβh−h+∅(i+2) − y∅(i+1) − adjøαø

αøø(ybαβh−h+∅(i+2) − ybαh+∅(i+1))adjαøø
øαø

)
ePøαø

.

(6.49)
We have that

ePøαø
adjøαø

αøøybαβh−h+∅(i+2)adjαøø
øαøePøαø

= ybαh−bα−h+1+α(i+2) = ybβh−h+∅(i+2) (6.50)

where the first equality follows from the commuting KLR-dot relation (R3) and the latter 
follows from Propositions 6.13 and 6.14. We also have that
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a
djøαø
αøøybαh+∅(i+1)adjαøø

øαø = ePøαø

(
ybβh−h+i + ybαβh−h−bα+1+α(i+1) − ybαβh−bα+1

)
ePøαø

= ePøαø

(
yi + y∅(i+1) − ybαβh

)
ePøαø

(6.51)

where the first equality follows from Proposition 6.16 and the second by Propositions 6.13
and 6.14. Thus substituting equation (6.50) and (6.51) in to equation (6.49), the first 
equality follows. �
6.16. The cyclotomic relation

We now verify relation (S9). We have that Ψ(1α) = ePα for any α ∈ Π. If the α-
hyperplane is a wall of the dominant region, then the tableau Pα is non-standard and 
therefore ePα = 0 by Lemma 4.1. Now, let γ ∈ Π be arbitrary. By equation (6.30), we 
have that

Ψ

⎛⎜⎜⎝
⎞⎟⎟⎠ = ePø

(
ybγh−h+∅(k+1) − yk

)
ePø

= ePø

(
y∅(k+1) − yk

)
ePø

where the latter equality follows from Propositions 6.13 and 6.14. If x ≡ 1 modulo h, 
then

yxePø
= ePø

(ψx
1y1ψ

1
x)ePø

= 0 (6.52)

by relation (3.4). If not, then by relation (R4) we have that

yxePø
= yx−1ePø

− ePø
ψxψxePø

(6.53)

where the latter term is zero by Remark 3.25 (as (ε1, . . . , εx−1, εx+1, εx, εx+2, . . . , εh) is 
non-standard for bγ = 1). Thus the cyclotomic relation holds (as we can apply equa-
tion (6.53) as many times as necessary and then apply equation (6.52)).

7. Decomposition numbers of cyclotomic Hecke algebras

In this section we recall the construction of the graded cellular and “light leaves” bases 
for the algebras S br

h (n, σ), our quotient algebras Hσ
n/Hσ

nyhHσ
n, and their truncations. 

We show that the homomorphism Ψ preserves these Z-bases (trivially, by definition) and 
hence deduce that Ψ is indeed an isomorphism and hence prove Theorems A and B of 
the introduction.
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7.1. Why is it enough to consider the truncated algebras?

Thus far in the paper, we have truncated to consider paths which terminate at a point 
λ ∈ Ph(n, σ) ⊆ Ph(n). This is, in general, a proper co-saturated subset of the principal 
linkage class of multipartitions for a given n ∈ Z�0.

Theorem 7.1 ([4, Corollary 2.14]). For each λ, we fix Pλ ∈ Std(λ) a choice of reduced 
path. The algebra Hσ

n/Hσ
nyhHσ

n is quasi-hereditary with graded cellular basis

{ψT
Pλ
ψPλ

B | T,B ∈ Std(λ), λ ∈ Ph(n)}

with respect to the reverse cylindric order on Ph(n) (see [4, Definition 1.3], but for the 
subset Ph(n, σ) ⊆ Ph(n) is a refinement of the opposite of the Bruhat ordering on their 
alcoves) and the anti-involution, ∗, given by flipping a diagram through the horizontal 
axis.

Remark 7.2. In [4, Corollary 2.14] it is not explicitly stated that the algebra is quasi-
hereditary. However, this is immediate from the fact that each layer in the cell-filtration 
has an idempotent ePλ

for λ ∈ Ph(n) (and standard facts about cellular algebras).

Remark 7.3. In the case of the Hecke algebra of the symmetric group, the basis of [4, 
Corollary 2.14] is equivalent (via uni-triangular change of basis with respect to the dom-
inance ordering) to the cellular basis of Hu–Mathas [14].

Example 7.4. Let λ = (3n, 115) with n � 0. The first n = 0, 1, 2, 3, 4, 5 partitions in this se-
quence are (115), (3, 115), (32, 115), (33, 115), (34, 115) and (35, 115), all of which label sim-
ple modules which belong to the principal blocks of their corresponding group algebras. In 
fact, they all label the same point, in the alcove sε3−ε1sε1−ε2sε2−ε3sε3−ε1sε1−ε2sε2−ε3A0, 
in the projection onto 2-dimensional space in Fig. 1. However, Stdn,σ(λ) = ∅ for the first 
five of these partitions. For λ = (3n, 115) with n � 5 we have that Stdn,σ(λ) 	= ∅. Thus, 
one might be forgiven in thinking that our Theorem A only allows us to see λ for n � 5. 
This is, in fact, not the case as we shall soon see.

Proposition 7.5. Given a partition λ = (λ1, λ2, . . . ), we set deth(λ) = (h, λ1, λ2, . . . ). We 
have an injective map of partially ordered sets deth : Ph(n) ↪→ Ph(n + h) given by

deth(λ(0), λ(1), . . . , λ(�−1)) = (deth0(λ(0)),deth1(λ(1)), . . . ,deth�−1(λ(�−1)))

and deth(Ph(n)) ⊆ Ph(n + h) is a co-saturated subset. We have an isomorphism of 
graded Z-algebras∑

eT(Hσ
n/Hσ

nyhHσ
n)eB ∼=

∑
eP∅⊗T(Hσ

n+h/Hσ
n+hyhHσ

n+h)eP∅⊗B (7.1)

B,T∈Stdn B,T∈Stdn
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where Stdn = ∪λ∈Ph(n)Std(λ).

Proof. On the level of graded Z-modules the isomorphism, φ say, is clear. The local KLR 
relations also go through easily. We have that

φ(y1eP) = yh+1eP∅⊗P = y1eP∅⊗P = 0 = y1eP (7.2)

where the second equality follows using the same argument as Propositions 6.13 and 6.14
and the other equalities all hold by definition. We further note that P is dominant path 
if and only if P∅ ⊗ P is a dominant path. Thus the cyclotomic relation follows from 
equation (7.2) and Remark 3.25. �

We wish to only explicitly consider the principal linkage class, but to make deduc-
tions for all regular linkage classes. This is a standard Lie theoretic trick known as the
translation principle. Given Γ ⊆ Ph(n) any co-saturated subset and r ∈ Z/eZ we let

eΓ =
∑

P∈Std(μ)
μ∈Γ

eP Er =
∑

i1,...,in∈Z/eZ

e(i1, . . . , in, r)

denote the corresponding idempotents. Given λ ∈ Ph(n) we set Λ = (Ŝh · λ) ∩ Ph(n). 
Since every λ belongs to some linkage class, we have that Ph(n) = Λ′ ∪Λ′′ ∪ . . . and we 
have a corresponding decomposition

Hσ
n/Hσ

nyhHσ
n = HΛ′,σ

n ⊕HΛ′′,σ
n ⊕ . . . where HΛ,σ

n = eΛ(Hσ
n/Hσ

nyhHσ
n)eΛ

and similarly for the primed cases. Now, we let � denote an addable node of the Young 
diagram multipartition λ ∈ Ph(n), that is we suppose that λ ∪ � = λ′ for some λ′ ∈
Ph(n + 1).

Proposition 7.6. Suppose that λ ∈ Ph(n) and λ +� = λ′ ∈ Ph(n +1) are σ-regular and 
� is of residue r ∈ Z/eZ say. We have an injective map

ϕ : Λ ↪→ Λ′ ϕ(μ) = μ + �

for � the unique addable node of residue r ∈ Z/eZ. The image, ϕ(Λ), is a co-saturated 
subset of Λ′. We have an isomorphism of graded Z-algebras:

HΛ,σ
n

∼= Er(eϕ(Λ)HΛ′

n+1eϕ(Λ))Er (7.3)

and this preserves the cellular structure.

Proof. Since both λ and λ +� are both e-regular, there is a bijection between the path 
bases of the algebras in equation (7.3). (Note that if λ were on a hyperplane and λ +�



88 C. Bowman et al. / Advances in Mathematics 429 (2023) 109185
in an alcove, then the number of paths would double.) Thus we need only check that this 
Z-module homomorphism lifts to an algebra homomorphism. However this is obvious, 
as all we have done is add a single strand (of residue r ∈ Z/eZ) to the righthand-side of 
the diagram and this preserves the multiplication. �

Thus any regular block of Hσ
N/Hσ

NyhHσ
N is isomorphic to a co-saturated idempotent 

subalgebra of Hσ
n/Hσ

nyhHσ
n for some n � N . Such truncations preserve decomposition 

numbers [10, Appendix] and much cohomological structure and so it suffices to consider 
only these truncated algebras (which is precisely what we have done thus far in the 
paper!).

7.2. Bases of diagrammatic algebras

For λ, μ ∈ Ph(n, σ), we choose reduced paths Pw ∈ Stdn,σ(λ) and Pv ∈ Stdn,σ(μ)
which will remain fixed for the remainder of this section. We remind the reader that this 
implicitly says that λ ∈ wA0 and μ ∈ vA0. We have shown that the map

Ψ : S br
h (n, σ) → fn,σ(Hσ

n/Hσ
nyhHσ

n)fn,σ

is a graded Z-algebra homomorphism. It remains to show that this map is an iso-
morphism. Let λ ∈ Ph(n, σ). Given any reduced path Pw ∈ Stdn,σ(λ) and any (not 
necessarily reduced) Q ∈ Stdn,σ(λ) we will inductively construct elements

CP
Q ∈ 1PS br

h (n, σ)1Q cPQ ∈ eP(Hσ
n/Hσ

nyhHσ
n)eQ

which provide (cellular) Z-bases of both algebras which match up under the homomor-
phism, thus proving that Φ is indeed an isomorphism.

We can extend a path Q′ ∈ Stdn,σ(λ) to obtain a new path Q in one of three possible 
ways

Q = Q′ ⊗ Pα Q = Q′ ⊗ P�
α Q = Q′ ⊗ P∅

for some α ∈ Π. The first two cases each subdivide into a further two cases based 
on whether α is an upper or lower wall of the alcove containing λ. These four cases 
are pictured in Fig. 32 (for P∅ we refer the reader to Fig. 4). Any two reduced paths 
Pw, Pv ∈ Stdn,σ(λ) can be obtained from one another by some iterated application of 
hexagon and commutativity permutations. We let

rexPv

Pw
REXPv

Pw

denote the corresponding path-morphism in the algebras Hσ
n/Hσ

nyhHσ
n and S br

h (n, σ), 
respectively (so-named as they permute reduced expressions). In the following construc-
tion, we will assume that the elements cP′

Q′ and CP′

Q′ exist for any choice of reduced path 
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Fig. 32. The first (respectively last) two paths are Pα and P�
α originating in an alcove with α labelling an 

upper (respectively lower) wall. The origin lies below the α-hyperplane. We call these paths U0, U1, D0, 
and D1 respectively.

P′. We then extend P′ using one of the U0, U1, D0, and D1 paths (which puts a restric-
tion on the form of the reduced expression) but then use a “rex move” to remove obtain 
elements cPQ and CP

Q for P an arbitrary reduced expression.

Definition 7.7. Suppose that λ belongs to an alcove which has a hyperplane labelled by α
as an upper alcove wall. Let Q′ ∈ Stdn,σ(λ). If Q = Q′⊗Pα then we set deg(Q) = deg(Q′)
and we define

CP
Q = REXP

P′⊗Pα
(CP′

Q′ ⊗ 1α) cPQ = rexP
P′⊗Pα

(cP
′

Q′ ⊗ ePα).

If Q = Q′ ⊗ P�
α then we set deg(Q) = deg(Q′) + 1 and we define

CP
Q = REXP

P′⊗Pø
(CP′

Q′ ⊗ SPOTø
α) cPQ = rexP

P′⊗Pø
(cP

′

Q′ ⊗ spotøα).

Now suppose that λ belongs to an alcove which has a hyperplane labelled by α as a 
lower alcove wall. Thus we can choose Pv ⊗ Pα = P′ ∈ Std(λ). For Q = Q′ ⊗ Pα, we set 
deg(Q) = deg(Q′) and define

CP
Q =REXP

Pvøø

(
1v ⊗ (SPOTø

α ◦ FORKαø
αα)

)(
CP′

Q′ ⊗ 1α
)

cPQ =rexP
Pvøø

(
ePv

⊗ (spotøα ◦ forkαø
αα)

)(
cP

′

Q′ ⊗ ePα

)
and if Q = Q′ ⊗ P�

α then we set deg(Q) = deg(Q′) − 1 and we define

CP
Q = REXP

Pvαø

(
1v ⊗ FORKαø

αα

)(
CP′

Q′ ⊗ 1α
)

cPQ = rexP
Pvαø

(
ePv

⊗ forkαø
αα

)(
cP

′

Q′ ⊗ ePα

)
.

In each of the four cases above, the path P is a reduced path by construction (and 
our assumption that P′ is reduced). We remark that the degree of the path, Q, is equal 
to the degree of both the elements cPQ and CP

Q (recall that P is a path associated to a 
reduced word and so is of degree zero).
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Theorem 7.8 (Light leaves basis, [13,18]). For each λ ∈ Ph(n, σ), we fix an arbitrary 
reduced path Pw ∈ Stdn,σ(λ). The algebra S br

h (n, σ) is quasi-hereditary with graded 
integral cellular basis

{CP
Pw

C
Pw

Q | P,Q ∈ Stdn,σ(λ), λ ∈ Ph(n, σ)}

with respect to the Bruhat ordering � on Ph(n, σ), the anti-involution ∗ given by flipping 
a diagram through the horizontal axis and the map deg : Stdn,σ(λ) → Z.

We recalled a general construction of a cellular basis of Hσ
n/Hσ

nyhHσ
n in Theo-

rem 7.1 subject to choosing the reduced expressions. This provides a cellular basis of 
fn,σHσ

n/Hσ
nyhHσ

nfn,σ by idempotent truncation. Choosing our expressions so as to be 
compatible with Theorem 7.8 through the map Ψ, we obtain the following.

Theorem 7.9 (Light leaves basis, [4, Theorem 3.12]). For each λ ∈ Ph(n, σ), choose 
an arbitrary reduced path Pw ∈ Stdn,σ(λ). The algebra fn,σ(Hσ

n/Hσ
nyhHσ

n)fn,σ is quasi-
hereditary with graded integral cellular basis

{cPPw
c
Pw

Q | P,Q ∈ Stdn,σ(λ), λ ∈ Ph(n, σ)}

with respect to the Bruhat ordering � on Ph(n, σ), the anti-involution ∗ given by flipping 
a diagram through the horizontal axis and the map deg : Stdn,σ(λ) → Z.

Theorem 7.10. Let σ ∈ Z� and e ∈ Z>1 and suppose that h ∈ Z�
�0 is (σ, e)-admissible. 

We have a canonical isomorphism of graded Z-algebras,

f+n,σ (Hσ
n/Hσ

nyhHσ
n) f+n,σ ∼= EndDasph,⊕

BS (Ah0×...×Ah�−1\Âh0+···+h�−1 )
(
⊕w∈Λ(n,σ)Bw

)
.

That is, Theorem A of the introduction holds.

Proof. In Section 5 we defined a map from S br
h (n) to Hσ

n/Hσ
nyhHσ

n via the generators 
of the former algebra. In Section 6 we showed that this map was a homomorphism by 
verifying that the relations for S br

h (n) held in the image of the homomorphism. Now, 
the construction of the light leaves bases in S br

h (n) (respectively Hσ
n) is given in terms 

of the generator (respectively their images). Thus the map preserves the Z-bases and 
hence is an isomorphism. Thus the result follows from Proposition 3.16. �

An earlier attempt to solve the Libedinsky–Plaza conjecture for the classical blob 
algebra (the case of h = 1 and � = 2) has already led to a deeper understanding of 
structure of the diagrammatic Soergel category [19]. We remark that their is no obvious 
intersection between their results and ours (they do not succeed in proving the h = 1
and � = 2 case, but nor do our results imply theirs).
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7.3. Decomposition numbers of Hecke algebras

For λ, μ ∈ Ph(n, σ), we reiterate that we have chosen to fix reduced paths Pw ∈
Stdn,σ(λ) and Pv ∈ Stdn,σ(μ). We define one-sided ideals

S �v
n,σ = S br

h (n, σ)1Pv
S �w

n,σ = S �w
n,σ ∩ Z{CT

Pv
C

Pv

B | T,B ∈ Stdn,σ(μ), μ � λ}

H�μ
+ = S br

h (n)ePv
H�λ

+ = H�λ
+ ∩ Z{cTPv

C
Pv

B | T,B ∈ Stdn,σ(μ), μ � λ}

and we define the standard modules of S br
h (n, σ) and fn,σ(Hσ

n/Hσ
nyhHσ

n)fn,σ by consid-
ering the resulting subquotients. The light leaves construction gives us explicit bases of 
these quotients as follows

ΔZ(w) = {CS
Pw

+ S �λ
n,σ | S ∈ Std+(λ)} fn,σSZ(λ) = {cSPw

+ H�λ | S ∈ Std+(λ)}
(7.4)

respectively for λ ∈ Ph(n, σ). The modules fn,σSZ(λ) are obtained by truncating the 
cell modules (SZ(λ), say) for the cellular structure in Theorem 7.1. For k a field, we 
define

Δk(w) = ΔZ(w) ⊗Z k fn,σSk(λ) = fn,σSZ(λ) ⊗Z k.

We recall that the cellular structure allows us to define bilinear forms, for each λ ∈
Ph(n), there are bilinear forms 〈 , 〉λS and 〈 , 〉λH on Δ(λ) and fn,σSk(λ) respectively, 
which are determined by

C
Pw

P CQ
Pw

≡ 〈CP
Pw

, CQ
Pw

〉λS 1w (mod S �λ
n,σ )

c
Pw

P cQPw
≡ 〈cPPw

, cQPw
〉λH ePw

(mod H�λ
n,σ)

(7.5)

for any P, Q, Pw, Pw ∈ Std(λ). Factoring out by the radicals of these forms, we obtain a 
complete set of non-isomorphic simple modules for S br

h (n, σ) and Hσ
n/Hσ

nyhHσ
n as follows

Lk(w) = Δk(w)/rad(Δk(w)) fn,σDk(λ) = fn,σSk(λ)/rad(fn,σSk(λ))

respectively for λ ∈ P+
h (n). Finally, the projective indecomposable modules are as fol-

lows,

S �v
n,σ =

⊕
w�v

dimt(1vLk(w))Pk(w) H�μ
n,σ =

⊕
λ�μ

dimt(ePμ
Dk(λ))Pk(λ). (7.6)

The isomorphism, Ψ, preserves standard, simple, and projective modules.
The categorical (rather than geometric) definition of p-Kazhdan–Lusztig polynomials 

is given via the diagrammatic character of [13, Definition 6.23]. This graded character is 
defined in terms of dimensions of certain weight spaces in the light leaves basis. Using 
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the identifications of equation (7.4) and (7.6), the definition of the anti-spherical p-
Kazhdan–Lusztig polynomial, pnv,w(t), is as follows,

pnv,w(t) := dimt HomS br
h (n,σ)(P (v),Δ(w)) =

∑
k∈Z

dim[Δk(w) : Lk(v)〈k〉]tk

for v, w ∈ Λ(n, σ). We claim no originality in this observation and refer to [24, Theorem 
4.8] for more details. Through our isomorphism this allows us to see that the graded 
decomposition numbers of symmetric groups and more general cyclotomic Hecke algebras 
are tautologically equal to the associated p-Kazhdan–Lusztig polynomials as follows,

pnv,w(t) =
∑
k∈Z

dim[Δk(w) : Lk(v)〈k〉]tk =
∑
k∈Z

dimt[fn,σSk(λ) : fn,σDk(μ)〈k〉]tk

for λ, μ ∈ Ph(n, σ) where the equality follows immediately from our isomorphism. Fi-
nally, we remind the reader that truncation by fn,σ is to a co-saturated subset of weights 
and so preserves the decomposition matrices of these algebras, see for example [10, Ap-
pendix]

7.4. Counterexamples to Lusztig’s conjecture and intersection forms

In [28], the counterexamples to Soergel’s conjecture are presented in the classical 
(rather than diagrammatic) language of intersection forms associated to the fibre of a 
Bott–Samelson resolution of a Schubert varieties. However, Williamson emphasises that 
all his calculations were done using the equivalent diagrammatic setting of the light 
leaves basis, which is “explicit and amenable to computation”. Moreover, Williamson’s 
counterexamples are dependent on the diagrammatics because it is only “from the dia-
grammatic approach [that] it is clear that [the intersection form] Ikx,w,d is defined over 
Z” in the first place (see Section 3 of [28] for more details). In terms of the light leaves 
cellular basis, Williamson’s calculation makes a clever choice of a pair of partitions λ, μ
(equivalently, words w, v ∈ Ŝh labelling the alcoves containing these partitions) for which 
there exists a unique element Q ∈ Stdn,σ(λ) such that Q ∼ Pv ∈ Stdn,σ(μ). By highest 
weight theory, we have that

dλμ(t) =
{
tdeg(Q) if 〈CQ

Pw
, CQ

Pw
〉λS = 0 ∈ k

0 otherwise

and Williamson proved for λ, μ ∈ Ph,1(n) (a pair from “around the Steinberg weight”) 
that the form is zero for certain primes p > h whereas it is equal to 1 for k = C (and 
hence disproved Lusztig’s and James’ conjectures).

Now, clearly the Gram matrices of the bilinear forms in equation (7.5) are preserved 
under isomorphism. Thus applying our isomorphism (and Brundan–Kleshchev’s [8]) one 
can view Williamson’s counterexamples as being found entirely within the context of the 
symmetric group. More generally, we deduce the following:
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Theorem 7.11. Theorem B of the introduction holds.
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Appendix A. Weakly graded monoidal categories

In this appendix we describe the framework for constructing the breadth-enhanced 
diagrammatic Bott–Samelson endomorphism algebras. Informally, “breadth-enhanced” 
means that we record and keep track of the “breadth” of Soergel diagrams, including 
the “blank spaces” between strands. This is contrary to the usual working assumption 
that Soergel diagrams are defined only up to isotopy. We will say a few words for why 
we have chosen to break this convention in this paper.

Soergel diagrams and KLR diagrams have an important fundamental difference. KLR 
diagrams, which are essentially decorated wiring diagrams, always have the same number 
of nodes on the top and bottom edges. By contrast, the top and bottom edges of a Soergel 
diagram may not have the same number of nodes. This basic observation is enough to 
ensure that a Soergel diagram cannot correspond to only one KLR diagram under the 
isomorphism in the main theorem. For example, suppose the isomorphism maps the 
α-coloured spot diagram to a KLR diagram spotα, with bottom edge P and top edge 
Q. Then the empty Soergel diagram (with no strands at all) should map to the KLR 
idempotent eQ. However it is also clear that the empty Soergel diagram should correspond 
to the empty KLR diagram.

The breadth-enhanced diagrammatic Bott–Samelson endomorphism algebra intro-
duces new idempotents, indexed by expressions in the extended alphabet S ∪ {∅}. This 
ensures that the isomorphism is well defined, with each breadth-enhanced Soergel dia-
gram corresponding to a single KLR diagram. The breadth of a breadth-enhanced Soergel 
diagram is simply the number of strands of the corresponding KLR diagram, divided by 
h. We draw breadth-enhanced Soergel diagrams so that the width is proportional to the 
breadth. In particular, we write 1∅ to indicate the empty Soergel diagram of breadth 1
(i.e. a “blank space”), which corresponds to the KLR idempotent eP∅ with h strands. 
The breadth-enhanced algebras are Morita equivalent to the usual diagrammatic Bott–
Samelson endomorphism algebras, by simply truncating with respect to the idempotents 



94 C. Bowman et al. / Advances in Mathematics 429 (2023) 109185
indexed by expressions which do not contain ∅. Thus once we prove the isomorphism 
for the breadth-enhanced algebras, we immediately obtain an isomorphism for the usual 
Bott–Samelson algebras.

The machinery for building breadth-enhanced algebras is the notion of a weakly graded 
monoidal category. Weakly graded monoidal categories can be thought of as generaliza-
tions of graded monoidal categories, with the grade shifts represented by tensoring with 
a fixed shifting object. The construction of breadth-enhanced algebras is then analogous 
to defining a graded category from a non-graded category by concentrating the objects 
in certain fixed degrees.

We have chosen to write this appendix using the categorical (rather than the algebraic) 
perspective. We hope that this will make the results more applicable and the proofs 
easier to read. All the categories below will be assumed to be small. We will also use 
“monoidal” to mean “strict monoidal” unless stated otherwise. It is probably possible to 
generalize everything to arbitrary monoidal categories, but this will not be necessary for 
our purposes.

A.1. Definition and examples

Definition A.1. A weakly graded monoidal category is a monoidal category (A, ⊗) together 
with an object in the Drinfeld centre with trivial self-braiding. This consists of the 
following data:

◦ an object I in A called the shifting object;
◦ for each object X in A, an isomorphism sX : X ⊗ I

∼−→ I ⊗ X called a simple 
adjustment

such that

(WG1) the simple adjustments {sX} are the components of a natural isomorphism s :
(−) ⊗ I ⇒ I ⊗ (−);

(WG2) for any objects X, Y in A the following diagram commutes

X ⊗ Y ⊗ I
sX⊗Y

1X⊗sY

I ⊗X ⊗ Y

X ⊗ I ⊗ Y

sX⊗1Y

(WG3) we have sI = 1I⊗I .

Example A.2. Suppose A• is a graded monoidal category, i.e. a monoidal category whose 
Hom-spaces are graded modules. For the moment, let us drop the assumption of strict-
ness and suppose that A• is strictly associative, but with non-trivial unitors. In the 
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usual way we may construct a new category A by adding grade shifts and restricting to 
homogeneous morphisms. More precisely, the objects of A are the formal symbols X(m)
for each object X of A• and each m ∈ Z, and the Hom-spaces are

HomA(X(m), Y (n)) = Homn−m
A• (X,Y ).

It is clear that the grade shift (1) is an autoequivalence of A. Moreover, the tensor 
product X(m) ⊗ Y (n) = (X ⊗ Y )(m + n) gives A the structure of a monoidal category. 
Now let 1 be the identity object in A• and set I = 1(1). We observe that

X(m) ⊗ 1 = (X ⊗ 1)(1) ρX(1)−−−−→ X(m + 1) λX(1)←−−−− (1⊗X)(1) = 1⊗X(m),

and it is straightforward to check that the isomorphisms sX(m) = λX(m)(1)−1 ◦ρX(m)(1)
satisfy axioms (WG1)–(WG3). Thus A has the structure of a weakly graded monoidal 
category.

The main result which we will need in the next subsection is a coherence theorem 
for weakly graded monoidal categories. Roughly, coherence for weakly graded monoidal 
categories means that every diagram built up from s and identity morphisms (using com-
position and tensor products) commutes. The precise formulation of coherence requires 
some combinatorial constructions, which we describe below. Let W be the set of non-
empty words in the symbols e and x. We define the following semigroup homomorphisms 
length : W → Z�0 and breadth : W → Z�0 on the generators:

length(e) = 0 breadth(e) = 1

length(x) = 1 breadth(x) = 0.

For w ∈ W of length n, we can associate a functor wA : An → A by replacing each 
e with the object I, each x with the identity functor 1A, and tensoring the resulting 
sequence. More formally, we fix

eA : ∗ −→ A xA : A −→ A

∗ �−→ I A �−→ A

and inductively define

(ew)A : An −→ A (xw)A : An+1 −→ A

(A1, . . . , An) �−→ I ⊗ wA(A1, . . . , An) (A1, . . . , An+1) �−→ A1 ⊗ wA(A2, . . . , An+1)

where n = length(w).
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Theorem A.3. Let u, v ∈ W such that length(u) = length(v) and breadth(u) =
breadth(v). There is a unique natural isomorphism uA ∼= vA built up from tensor prod-
ucts and compositions of components of s, s−1, and the identity.

We will defer the proof to the end of this appendix.
We call a component of any natural isomorphism arising from Theorem A.3 an ad-

justment. For two morphisms f : X → Y and g : Z → W we write f ∼ g and say that f
and g are adjustment equivalent if there exist adjustments

q : X ∼−→ Z r : Y ∼−→ W

such that g = r ◦ f ◦ q−1.

Example A.4. For any morphism f : X → Y in A, we have f ⊗ 1I ∼ 1I ⊗ f , because

f ⊗ 1I = s−1
Y ◦ (1I ⊗ f) ◦ sX

by the naturality of simple adjustments.

A.2. Breadth grading

Suppose A is a monoidal category. Assuming A is small, the set Ob(A) has the 
structure of a monoid. We call a monoidal homomorphism b : Ob(A) → Z�0 a breadth 
function.

Definition A.5. Let A be a monoidal category with a breadth function b. The weak grading 
of A concentrated in breadth b is the following weakly graded monoidal category A[b].

Objects The objects of A[b] are formal free tensor products of objects in A and a new 
object I. In other words, each object X in A[b] is a formal sequence

I⊗r0 ⊗X1 ⊗ I⊗r1 ⊗X2 ⊗ · · · ⊗ I⊗rm−1Xm ⊗ I⊗rm

for some non-negative integers r0, rm, positive integers r1, r2, . . . , rm−1, and 
non-identity objects X1, X2, . . . , Xm in A. The tensor product on objects in 
A extends in the obvious way to objects in A[b]. We also extend the breadth 
function b to a monoidal homomorphism b : Ob(A[b]) → Z�0 by fixing b(I) = 1.

Morphisms For any object X of the above form write X ′ for the object

X1 ⊗X2 ⊗ · · · ⊗Xm

in A. We define
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HomA[b](X,Y ) =
{

HomA(X ′, Y ′) if b(X) = b(Y ),
0 otherwise.

Composition and tensor products follow from those in A.
Weak grading For X an object in A[b], the natural isomorphism sX : X ⊗ I → I ⊗X in 

A[b] corresponding to the identity morphism 1X′ in A gives A[b] the structure 
of a weakly graded monoidal category.

If f : X → Y is a morphism in A[b], write f ′ : X ′ → Y ′ for the corresponding 
morphism in A. It is easy to check that this mapping is functorial. We write b(f) for the 
non-negative integer b(X) = b(Y ).

Remark A.6. The category A[b] is the weak graded analogue of the following graded 
construction. For a monoidal category A with a breadth function b, define a grading by 
setting deg f = b(X) − b(Y ) for each morphism f : X → Y . As in Example A.2, we add 
grade shifts and restrict to homogeneous morphisms to obtain the category A〈b〉. We 
may extend the breadth function b to all of A〈b〉 as above. For any morphism g : U → V

in A〈b〉, we have 0 = deg g = b(U) − b(V ), which allows us to define the breadth of g to 
be b(g) = b(U) = b(V ) as in the weakly graded case.

Our naming convention for A[b] (“concentrated in breadth b”) comes from a special 
case of the above graded construction. If A is a category of modules over some ring R, 
then we may equivalently construct the grading by considering R to be a graded ring 
concentrated in degree 0 and each object X to be concentrated in degree −b(X).

As a consequence of our coherence result, there is an alternative presentation of A[b]
in terms of generators and relations. First we introduce a way of embedding morphisms 
from A into A[b].

Definition A.7. Let f : U → V be a morphism in A. The (left) minimal breadth repre-
sentative of f is the morphism g : X → Y in A[b] such that g′ = f and

X = I⊗max(0,b(V )−b(U)) ⊗ U , Y = I⊗max(0,b(U)−b(V )) ⊗ V .

Theorem A.8. Let M be the set of all minimal breadth representatives of morphisms in 
A. The category A[b] is generated as a monoidal category by the morphisms

{1I} ∪ {sX : X ∈ Ob(A)} ∪M

subject to the following relations:

◦ the usual weak grading axioms (WG1)–(WG3);
◦ for morphisms f : X −→ Y, g : Z −→ W, h : U −→ V in M such that f ′ ◦ g′ = h′, 

we have
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(1⊗max(0,b(g)−b(f))
I ⊗ f) ◦ (1⊗max(0,b(f)−b(g))

I ⊗ g) ∼ 1⊗max(b(f),b(g))−b(h)
I ⊗ h;

◦ for morphisms f : X −→ Y, g : Z −→ W, h : U −→ V in M such that f ′ ⊗ g′ = h′, 
we have

f ⊗ g ∼ 1⊗b(f)+b(g)−b(h)
I ⊗ h.

Proof. Let B be the monoidal category defined by the above generators and relations. 
It is clear that the same relations hold in A[b], so there is a functor B → A[b]. It is 
enough to show that this functor is full and faithful. Let X, Y be objects in B such that 
b(X) = b(Y ). We will show that any morphism X → Y can be written in the form

q ◦ (1b(X)−max(b(X′),b(Y ′))
I ⊗ f) ◦ p−1,

where p, q are adjustments and f is a minimal breadth representative. In other words, 
we will show that every morphism in B is adjustment equivalent to the tensor product of 
a minimal breadth representative and some number of copies of 1I . This automatically 
gives fullness and faithfulness of the functor above, which proves the result. Since the 
generating morphisms of B are all already of this form, it is enough to show that any 
composition or tensor product of two morphisms of this form is again of this form. Now, 
consider a composition

q ◦ (1⊗m
I ⊗ f) ◦ p−1 ◦ t ◦ (1⊗n

I ⊗ g) ◦ r−1

of two morphisms of the above form. Both f and g are minimal breadth representatives, 
so their domains and codomains are “left-adjusted”, i.e. of the form I⊗l ⊗ U for some 
object U in A and some non-negative integer l. The adjustment p−1◦t is an isomorphism 
between I⊗n ⊗ codg and I⊗m ⊗ domf which are both left-adjusted, so in fact they must 
be equal. By Theorem A.3 we must have p = t, so the composition above equals

q ◦ (1⊗m
I ⊗ f) ◦ (1⊗n

I ⊗ g) ◦ r−1 = q ◦ (1⊗(m−j)
I ⊗ 1jI ⊗ f) ◦ (1⊗(n−k)

I ⊗ 1⊗k
I ⊗ g) ◦ r−1

∼ q ◦ (1⊗(m−j)
I ⊗ h) ◦ r−1

where j = max(0, b(g) − b(f)), k = max(0, b(f) − b(g)), and h is the minimal breadth 
representative of f ′ ◦ g′. Similarly, consider a tensor product of two morphisms of the 
above form. We have

(q ◦ (1⊗m
I ⊗ f) ◦ p−1) ⊗ (t ◦ (1⊗n

I ⊗ g) ◦ r−1)

= (q ⊗ t) ◦ (1⊗m
I ⊗ f ⊗ 1⊗n

I ⊗ g) ◦ (p−1 ⊗ r−1)

∼ (q ⊗ t) ◦ (1⊗(m+n)
I ⊗ f ⊗ g) ◦ (p−1 ⊗ r−1)

∼ (q ⊗ t) ◦ (1⊗(m+n+b(f)+b(g)−b(h))
I ⊗ h) ◦ (p−1 ⊗ r−1),
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where h is the minimal breadth representative of f ′ ⊗ g′. �
A.3. Proof of coherence

We conclude with the proof of the coherence theorem for weakly graded monoidal 
categories (Theorem A.3). The strategy is broadly similar to Mac Lane’s proof of the 
coherence theorem for monoidal categories [20, VII.2]. This involves first proving the 
result for a single object X in the category A, and then extending to all of A.

Now let S be the set of words in the symbols {σw, σ−1
w : w ∈ W } ∪ {ιe, ιx} defined 

inductively as follows. For any w ∈ W we have σw, σ−1
w ∈ S . Moreover, for any α ∈ S

and w ∈ W we also have ιeα, ιxα ∈ S and αιe, αιx ∈ S . For convenience we write 
ιw for ιw1ιw2 · · · ιwm

, where w = w1w2 · · ·wn is a word in W . We inductively define 
dom : S → W and cod : S → W as follows:

dom(σw) = we cod(σw) = ew

dom(σ−1
w ) = ew cod(σ−1

w ) = we

dom(ιwα) = wdom(α) cod(ιwα) = wcod(α)

dom(αιw) = dom(α)w cod(αιw) = cod(α)w

Let G be the quiver with vertices given by W and arrows given by S . It is easy to verify 
that for any word in α ∈ S , length(dom(α)) = length(cod(α)) and breadth(dom(α)) =
breadth(cod(α)). Thus the graph G has components Gn,k whose vertices Wn,k consist of 
words of length n and breadth k.

Now let A be a weakly graded monoidal category. We fix an object X in A and set

JX(e) = I JX(x) = X

JX(ew) = I ⊗ JX(w) JX(xw) = X ⊗ JX(w)

JX(σw) = swX
JX(σ−1

w ) = s−1
wX

JX(ιwα) = 1wX
⊗ JX(α) JX(αιw) = JX(α) ⊗ 1wX

Proposition A.9. Let u, v ∈ W such that length(u) = length(v) and breadth(u) =
breadth(v). Suppose α1 ◦ · · · ◦ αm and α′

1 ◦ · · · ◦ α′
m′ are two paths in G from u to 

v. Then

JX(αm) ◦ · · · ◦ JX(α1) = JX(α′
m′) ◦ · · · ◦ JX(α′

1).

Proof. Let n = length(u) = length(v) and k = breadth(u) = breadth(v). We will pivot 
on the sink vertex w(n,k) = ekxn in the component Gn,k. Every nonempty word in S
contains exactly one symbol of the form σw or σ−1

w for w ∈ W . Call such words directed 
or anti-directed respectively. It is easy to check that for any two directed words α, α′

with the same domain and codomain, we must have JX(α) = JX(α′).
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We inductively define a function ρ : W → Z�0 by

ρ(e) = 0 ρ(x) = 0 ρ(ew) = ρ(w) ρ(xw) = ρ(w) + breadth(w).

We also inductively define a function cann,k mapping words in Wn,k to directed paths 
in Gn,k by

can0,1(e) = ∅ can1,0(x) = ∅ cann,k(ew) = ιecann,k−1(w)

cann,k(xw) = (ιk−1
e σxι

n−1
x ) ◦ · · · ◦ (ιeσxι

k−2
e ιn−1

x ) ◦ (σxι
k−1
e ιn−1

x ) ◦ (ιxcann−1,k(w))

It can be shown that cann,k(w) is the longest directed path in Gn,k from w to w(n,k), 
and that ρ(w) = length(cann,k(w)).

Lemma A.10. For any u ∈ Wn,k, JX maps all directed paths from u to w(n,k) to the 
same morphism.

Before we prove this lemma, we will show that the proposition follows from it almost 
immediately. For α ∈ S let inv(α) be the word obtained by switching the symbols 
σw ↔ σ−1

w . Clearly JX(inv(α)) = JX(α)−1, and we may write any anti-directed word 
as the formal inverse of a directed word. Let us write the path αm ◦ · · · ◦ α1 from u to v
in this manner, using formal inverses of directed words for any anti-directed word that 
appears. For example, if α2 is the only anti-directed word in this path, we write:

u
α1 • •

inv(α2) α3 • •
αm

v

Now draw canonical paths downwards to w(n,k) underneath each of these objects:

u
α1 • •

inv(α2) α3 • •
αm

vX

w(n,k) w(n,k) w(n,k) w(n,k) w(n,k) w(n,k)

After applying JX , each square commutes by the above lemma, so

JX(αm) ◦ · · · ◦ JX(α1) = JX(cann,k(v))−1 ◦ JX(cann,k(u)).

Since the right-hand side only depends on u and v, we are done. �
Proof of Lemma A.10. We induct on ρ(u), n and k. Suppose we have two directed paths 
from u to wn,k which start with α and α′ respectively.
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u

w w′

α α′

w(n,k) w(n,k)

As ρ(w) < ρ(u), we are then done by induction. Otherwise, suppose w 	= w′ and α 	= α′. 
It is enough to find some w′′ ∈ W and some paths from w and w′ to w′′ such that the 
following diamond

u

w w′

α α′

w′′

commutes after applying JX . For if so, then ρ(w′′) < ρ(u), and by induction the trape-
zoids in the following diagram

u

w w′

α α′

w′′

w(n,k) w(n,k)w(n,k)

commute after applying JX , and therefore the whole diagram commutes.

Case 1. If α = ιzβ and α′ = ιz′β′ for some z, z′ ∈ W and β, β′ ∈ S , then both z and 
z′ begin with some non-empty word z′′. Thus u, w, and w′ also begin with z′′, and we 
can write α and α′ as ιz′′γ and ιz′′γ′ respectively. Let u′ = dom(γ), y = cod(γ), and 
y′ = cod(γ′), and let n′ and k′ be the length and breadth of y (or y′) respectively. Since 
y is a strict subword of w, we must have n′ < n or k′ < k. Taking w′′ = z′′w(n′,k′) we 
obtain the following diamond

u = z′′u′

w = z′′y w′ = z′′y′

ιzβ = ιz′′γ ιz′β′ = ιz′′γ′

ιz′′cann′,k′ (y) ιz′′cann′,k′ (y′)
w′′ = z′′w(n′,k′)
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which commutes after applying JX by induction on n and k. A similar proof works if 
α = βιz and α′ = β′ιz′ for some z, z′′ ∈ W and β, β′ ∈ S .

Cases 2 & 3. The next cases to consider occur when one of α or α′ is σy for some y ∈ W . 
Without loss of generality suppose α = σy. If α′ is of the form ιz′σy′ for some y′, z′ ∈ W

then we must have y = z′y′ and thus u = ye = z′y′e. Taking w′′ = ez′y′ we obtain the 
following diamond

u = z′y′e

ez′y′ = w w′ = z′ey′

σz′y′ ιz′σy′

σz′ ιy′

w′′ = ez′y′

which commutes after applying JX by (WG2). On the other hand, if α′ is of the form 
σy′ιz′ for some y′, z′ ∈ W , then we must have z′ = z′′e for some z′′ ∈ W , and thus 
y = y′ez′′. Taking w′′ = eey′z′′ we obtain the following diagram

u = y′ez′′e

ey′ez′′ = w w′ = ey′z′′e

σy′ez′′ σy′ ιz′′e

ιeσy′ ιz′′ σey′z′′

w′′ = eey′z′′

which commutes after applying JX , by the naturality of s.

Cases 4 & 5. The last cases are when α = σyιz and α′ = ιz′σy′ for some y, y′, z, z′ ∈ W , 
so that u = yez = z′y′e. Suppose first that z′ starts with ye. Then there is some z′′ ∈ W

such that z′ = yez′′. Using yez = z′y′e it is also clear that z = z′′y′e too. Taking 
w′′ = eyz′′ey′ we obtain the diamond

u = yez′′y′e

eyz′′y′e = w w′ = yez′′ey′

σyιz′′y′e ιyez′′σy′

ιeyιz′′σy′ σyιz′′ ιey′

w′′ = eyz′′ey′

which commutes after applying JX by bifunctoriality of the tensor product. On the 
other hand, if ye starts with z′, then there exists some y′′ ∈ W such that y = z′y′′. This 
also implies that y′e ends with z, so there also exists some z′′ ∈ W such that z = z′′e. 
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This means that y′ = y′′ez′′. This time we complete the diamond in two steps. First, we 
compose ιz′σy′′ez′′ with σz′ιy′′ez′′ . By (WG2) of a weak grading, this composition equals 
σz′y′′ez′′ . Thus we have reduced to a previous case and so we are done.

u = z′y′′ez′′e

ez′y′′z′′e = w w′ = z′ey′′ez′′

σz′y′′1z′′e ιz′σy′′ez′′

σz′1y′′ez′′

ez′y′′z′′e ez′y′′ez′′

w′′ = eez′y′′z′′
σez′y′′z′′ 1eσz′y′′1z′′

�
To extend to the full coherence theorem, we consider objects in a higher category.

Proof of Theorem A.3. Let Iter(A) be the category of functors of the form An → A, 
where n is a non-negative integer. It is clear that Iter(A) is also monoidal, with the 
tensor product of two functors F : Am → A and G : An → A defined to be

(F ⊗G) : Am+n −→ A, (A1, . . . , Am+n) �−→ F (A1, . . . , Am) ⊗G(Am+1, . . . , Am+n)

We observe that wA is precisely J1A(w) as defined above, where we consider the identity 
functor 1A as an object in Iter(A). Applying J1A to any path between u and v gives 
an isomorphism in Iter(A) between uA and vA, or in other words, a natural isomor-
phism between the two functors. Uniqueness of this natural isomorphism follows from 
Proposition A.9. �
Appendix B. List of symbols

For the convenience of the reader we list the symbols used in the main body of the 
paper in three categories: those corresponding to the general setup and basic combina-
torics; those corresponding to the geometry and choice of paths; and those corresponding 
to the various algebras of interest (Tables 1–3). As Appendix A is relatively short and 
self-contained we omit those symbols here.
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Table 1
General symbols.

Symbol §§ Symbol §§ Symbol §§
h 2 � 2 e 2
σ 2 λ 2.1 |λ| 2.1
λ(i) 2.1 ct(r, c,m) 2.1 res(r, c,m) 2.1
P�(n) 2.1 Tλ 2.1 Ph(n) 2.1
Std(λ) 2.1 ∅ 2.1 Sh 2.2
Sf 2.2 Ŝh 2.2 S

f 2.2
w 2.4 w 2.4 rh(t) 2.4
α(p) 2.4 ∅(q) 2.4 i 3.3
sr 3.3 sr(i) 3.3 wp

q 3.3
(i, i + 1)b 4.3 wb 4.3 B 4.3
nib(w) 4.3 nib(i) 4.3 deth 7.1
Stdn 7.1 Γ 7.1 � 7.1

Table 2
Geometry and paths.

Symbol §§ Symbol §§ Symbol §§
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