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Abstract

T his thesis introduces a novel framework for a real-time occupant de-
tection system capable of extracting both two- and three-dimensional 

information using a single imager with active illumination. The primary 
objective of this thesis is to demonstrate the feasibility of such a low-cost 
classification system with comparable performance to multi-camera based 
stereo vision systems. Severe illumination conditions characterised by a 
frequent and wide illumination fluctuation are also challenging problems 
addressed in this work. The proposed system is designed to solve a problem 
of classifying three occupant classes being an adult, a forward-facing child 
seat, and a rear-facing child seat.

DoubleFlash is employed to eliminate the influence of ambient illumina-
tion and to compress the optical dynamic range of target scenes. The idea 
underlying this technique is to subtract images flashed by different illumina-
tion power levels. The extension of this active illumination technique leads to 
the development of a novel shadow removal technique, called ShadowFlash. 
By simulating an artificial infinite illuminating plane over the field of view, 
the technique produces a shadowless scene without losing image details by 
composing multiple images illuminated from different directions. The Shad-
owFlash technique is then extended to the temporal domain by employing 
the sliding n-tuple strategy, which is introduced to avoid the reduction of 
the original frame rate.

A modified active contour model, facilitated by morphological operations, 
extracts the boundary of the target object from the shadow-free scenes pro-
duced by the ShadowFlasli. Based on the brightness information of the 
image triplet generated by the DoubleFlash, the orientations of the object 
surface at pixel points are estimated by the photometric stereo method and 
integrated into the 3D surface by means of global minimisation. The bound-
ary information is used to specify the region of interest to reconstruct. Inves-
tigating both the two- and three-dimensional properties of vehicle occupants, 
29 features are defined for the training of a neural network. The system is 
tested on a database of over 84,000 frames collected from a wide range of ob-
jects in various illumination conditions. A classification accuracy of 98.9% 
was achieved within the decision-time limit of three seconds.
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2 Chapter 1. Introduction

1.1 Aim of this work
his thesis is concerned with the implementation of a classification sys-

JL tem for occupant detection by recovering three-dimensional surfaces 
using a monocular imager with multiple illuminations in sequences of two 
dimensional images. As the demand for sophisticated vision-based applica-
tions increases, the reconstruction of three dimensional shape, also called 
surface reconstruction becomes more interesting for those systems due to its 
apparent advantage in feature selection.

Since the field of three dimensional imaging was introduced, there have 
been a number of difficulties for employing three-dimensional surface re-
construction into practical vision systems: the calculation of the surface 
generally involves a combination of time consuming tasks such as intensive 
searching, transform of domains, and/or triangulation. And in the early 
days of machine vision the computational cost necessary for the surface re-
construction easily overwhelmed the maximum power of available practical 
computing systems. However, as the performance of the microprocessor has 
been rapidly increased according to Moore’s law over decades while the opti-
misation of algorithms has improved, real-time surface reconstruction based 
vision systems have become no longer imagination.

Although the vision and processor technology has overcome the limita-
tion in terms of real-time functioning hardware implementation, there are 
still some cost sensitive applications which are not able to take an advantage 
of the advanced vision technology due to practical reasons. For example, 
vehicle cabin surveillance system could be one of the most cost-sensitive ap-
plications. To employ a binocular-based stereo system only for recovering 
the three-dimensional shape of a passenger may not be persuasive enough 
for conservative customers. Vehicle manufacturers are still seeking an al-
ternative technology which could guarantee the comparable performance to 
those of systems using multiple imagers while the implementation costs are 
considerably less. The fact is especially true for applications where the gen-
eration of three-dimensional surface in the full resolution with the maximum 
frame rate is unnecessary and a low frame rate version with the degraded 
resolution is acceptable for the purpose.

Another issue that makes the realisation difficult is that practical vision 
systems are often exposed to an uncontrollable lighting environment. Most 
modern vision algorithms assume that the supreme performance is guaran-
teed only if the algorithm operates in a particular illumination condition. 
However, in reality, many vision applications must operate over wide and 
frequent illumination variations which increase the uncertainty of the indi-
vidual image processing tasks.

For example, mainstream CCD based and most of the emerging CMOS 
based imaging sensors provide a high optical dynamic range of 48 to 60dB [51]
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This dynamic range is obviously not sufficient for scenes involving extreme 
contrast (c.f. a scene with both bright and deep-shaded areas), so that the 
images obtained by those imagers often fail to capture the details of the 
scene. Another example could be cast shadows in active lighting conditions, 
which are usually assumed to have a negligible influence on the system per-
formance. In fact, the cast shadows often degenerate the overall performance 
of vision systems by being misclassified as an imaginary object or artifactual 
parts of an object.

In order to address these aforementioned problems, this work proposes 
an alternative system capable of extracting both two- and three-dimensional 
information from the field of view in real-time using the minimal number of 
imaging sensors with some supplementary illuminations. The focus of this 
thesis is mainly to demonstrate the feasibility of such a system by employ-
ing machine vision techniques and additionally to find solutions for potential 
problems accompanied with the practical implementation in extreme illumi-
nation conditions.

The vision-based occupant detection system is chosen as a target system, 
since the design of this system involves most of the common problems ex-
perienced by vision based applications. However, most of investigations and 
experiments in this thesis are not limited to motor vehicle applications but 
also applicable to other machine vision systems in high dynamic range envi-
ronments such as a industrial inspection, building surveillance, etc. Before 
launching into a detailed description of the proposed system, the history 
and fundamental concepts in the domain of occupant detection is briefly 
described in Section 1.2.

1.2 Vision-based occupant detection systems

1.2.1 Motivation

Airbags have saved several thousand lives worldwide so far and protected 
numberless passengers from serious injuries [75]. However, in late 1996, 
reports began to surface of airbags causing serious or fatal injuries in certain 
circumstances. During a frontal automobile collision, momentum can carry 
an unrestrained passenger forward until impact with the vehicle interior 
structure. A properly deployed airbag provides a much softer impact surface 
than a steering wheel or other interior surface, but the airbag must be fully 
inflated before impact to provide the maximum benefit. For the nominal 
48 km/h barrier crash event, the time from impact to full deployment is 
generally in the order of 50 milliseconds. During this time, the occupant 
will move about 5 cm forward relative to the vehicle. It takes the airbag 
about 30 milliseconds to deploy, leaving 20 milliseconds for the sensor system
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Children in rear- 
Adult passengers facing child seats 

4% 11%

Figure 1.1: The statistics of the fatalities caused by airbag deployment from 1990 to 2000. It 
shows that 175 fatalities have been accounted including: 19 children in rear-facing 
child seats, 85 children not in real-facing child seats, 64 adult drivers and 7 adult 
passengers [100].

to determine the crash profile and begin the deployment procedure. Because 
of the short amount of time allowed for deployment for the nominal crash 
pulse, the airbag must inflate aggressively and an occupant who comes in 
contact prematurely with the airbag in the early stages of its deployment is 
at risk of injury from the airbag.

Figure 1.1 shows the statistics of the fatalities caused by the airbag 
deploy. Since 1990, NHTSA 1 has recorded 175 fatalities as a result of an 
airbag deployment by the end of 2000 in the U.S. 104 of these deaths have 
been children while the remaining 71 have been adults. The 86 children who 
died during airbag deployments were front seat passengers. The NHTSA has 
concluded that 76 of these children were totally unrestrained or improperly 
restrained, including ten who were only wearing their lap belts, effectively 
negating the advantages of a safety belt. Figure 1.2 shows a simulation of 
an unbelted child during an airbag deployment. Infants placed in the front 
seat of a car even in a rear-facing child seat have accounted for 19 deaths. 
Placing a child in the front seat of a car in a rear-facing child seat carries 
serious risks because the child’s head is too close to the airbag compartment.

Furthermore, for the 18 people who were properly restrained out of 71 
adult fatalities, NHTSA’s investigations indicate that eight of these people 
were small stature females who were positioned close to the airbag hous-
ing. Two other fatalities involved men, who both lost consciousness before 
impact, thus moving their bodies closer to the airbag compartment. Most 
airbag systems assume that an occupant is a medium weight male (75%) in 
mid-seating position, whereas in reality 70% of the passengers are smaller 
and sitting closer to the airbag pod. Hence, adults can also be endangered 
by airbags if they take up an adverse seating position or attitude, called

'National Highway Transportation and Safety Administration
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Figure 1.2: Simulation of an unbelted child during an airbag deployment.

Abbreviation Occupant class description

FFCS Forward-facing child seat
RFCS Rear-facing child seat
PCSP Person in correct seating position
POOP Person out-of-position
NPOS Noting present on the seat
ODFC An object which does not fit to the other classes

Table 1.1: Description of the predefined occupant classes

out-of-position [100].

1.2.2 Occupant detection systems

The federal response was to propose new regulations in order to avoid pas-
senger injuries due to restraint systems. Recently, the Federal Motor Vehicle 
Safety Standard (FMVSS) 208 set out by the NHTSA announces that nearly 
100 percent of all automobiles sold in U.S. must have the ability to auto-
matically control the deploying power of airbags based on crash type, crash 
severity, occupant type and size, as well as seat belt usage, starting with 
the 2006 model year [99]. Accordingly, almost all vehicle manufacturers 
and most automotive component suppliers are actively developing so-called 
smart or advanced airbags which should eliminate the risks produced by 
current airbag designs. It is likely that some form of these advanced airbags 
will be introduced into the market within the next few years.

The essence of this system is to recognise a passenger in the front pas-
senger seat and adapt the airbag deployment with respect to the predefined
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(a) FFCS (b) RFCS (c) PCSP

P

\ _
(d) POOP (e) ODFC (f) NOPS

Figure 1.3: Illustrations for the six occupant classes: (a) FFCS, (b) RFCS, (c) PCSP, (d) POOP, 
(e) ODFC and (f) NOPS

occupant profiles based on their extensive statistical data. Table 1.1 intro-
duces six occupant classes and their abbreviations which are most commonly 
used and illustration for each class is shown in Figure 1.3. To protect a cor-
rectly seated person (PCSP) the optimum protective airbag modus is to 
inflate an airbag to full size within a minimum of time, while only a reduced 
amount of power is allowed to blow up the airbag for both child seats (FFCS 
and RFCS) and persons in out-of-position (POOP). This can be realised 
by employing the recently introduced multiple stage or de-powered airbag 
systems which have multiple ignitors providing different inflation power ac-
cording to the occupant profiles. If the system detects either an undefined 
object (ODFC) or the absence of an occupant (NOPS), it prevents airbag 
deployment to avoid the high cost of replacement.

The overall system is often explained as the combination of two sub-
systems being occupant detection (OD) and out-of-position detection (OOP 
or OOPD) systems. In order to manage situation-appropriate airbag de-
ployment, an occupant detection system automatically detects the presence 
of an occupant in the passenger seat and categorises it into the predeter-
mined occupant classes while an out-of-position system constantly monitors 
the occupant and initialises the airbag deployment procedure according to 
its behaviour if the occupant has been classified as a person.
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1.2.3 State of the art

Due to the high safety relevance of this application the system must be 
designed to be predictable, error tolerant and accurate. Many different 
approaches on established sensor technology have been tested to realise such 
an advanced airbag system in recent years.

Manual switches

The most intuitive and cheapest solution to deactivate the passenger-side 
airbag is to implement a simple on/off switch being toggled manually by 
the driver or the passenger itself. Although it is not an automatic occupant 
detection system, it still helps to suppress unwanted airbag deployment espe-
cially in case that rear-facing child seats are mounted on the front passenger 
seat. The major disadvantage is that the decision is completely dependent 
on the driver so that he or she may involuntarily forget to switch off the 
airbag deployment when they drive with their child and it could put the 
child in great danger in the event of a collision. Another shortcoming of 
this approach is the fact that it is not possible to actively cope with the 
time-varying situations such as a passenger in out-of-position.

Load sensor systems

Most advanced airbag systems currently in service are usually based on a 
force sensitive sensor matrix in the seat. If a force is applied on the sensor 
matrix the resistance of each sensor changes, and the occupant sit-in pressure 
profile is measured and used for classification. By measuring and reacting 
not only to sit-in weight, but also the buttock print and positioning, centre 
of gravity distribution, variation of the seat assembly and components, and 
tolerances due to temperature and humidity, the system offers relatively high 
performance especially in cooperation with the seat belt tension detecting 
sensors.

The major drawback of these systems is that each new seat construction 
or modification implies an expensive re-design and calibration of the sensor 
matrix. Movement caused by an Active Seat, which is an integrated passen-
ger massage system by alternating fluid pads mounted within the seat, may 
also disturb the system in making a right decision.

Transponder systems

Alternative method to provide automatic child seat recognition capability is 
to implement a simple transponder consisting of a transmitter and receiver 
coil in combination with an electronic control units into a child seat so 
that the child seat can be always appropriately detected by interacting with
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the passenger seat transponder. More importantly, if two transponders are 
integrated, it could be possible to detect the orientation of the child seat. 
However, this approach would introduce a price increase to the child seat 
in a cost-sensitive industry. Availability in only high-end child seats on the 
other hand, would not meet government requirements. Also the detection 
of the out-of-positioned person still remains unresolved.

Machine vision based systems

As manufacturers began to develop various occupant detection systems, the 
vision techniques have attracted much attention due to their superior adapt-
ability to various vehicle cabin environments as compared to the other 
mechatronic methods, and a number of machine vision based approaches 
have been studied to resolve the airbag suppression decision problem in re-
cent years [55, 73, 57, 62, 72, 101, 23, 51]. The following section gives a 
brief overview of already published approaches for monitoring the interior 
of vehicles for reasons of safety and convenience.

Single camera approaches Park proposed an optical occupant detection 
based on the idea of searching for a human face in the scene [73]. If an adult 
face can be detected properly in case of a crash the airbag should be in-
flated, otherwise it should not. A single monochrome camera is employed 
to capture image sequences and a set of eigenfaces is created by using the 
principal component analysis (PCA) for face-image matching. The idea of 
this approach can be easily shared with the other important vehicle cabin 
applications such as a driver drowsiness detection. Nevertheless, it is limited 
in its real application due to the fact that a straight look into the occupant’s 
face is not guaranteed all the time and the large size and orientation vari-
ations of the passenger’s face make it difficult to correlate them with the 
normalised eigenfaces. High illumination fluctuations present in a vehicle 
are another factor the system must overcome to be practical. Furthermore, 
a more accurate distinction between FFCS, RFCS and POOP is necessary 
for the optimised control of multi-stage airbag deployment.

Farmer introduced a low cost, high reliability occupant classification sys-
tem using a single grey-scale camera in [23]. A four-class problem with the 
classes being rear-facing infant seat, child, adult and empty seat was ad-
dressed based on a database of over 21,000 real-world images, collected over 
a period of 4 months in order to prevent the system from being adapted 
to a particular illumination condition. Using supplementary infrared illu-
mination, a CMOS-based camera with a wide-field-of-view lens captured a 
single image and shape features were extracted from the region of interest 
provided by a preceding segmentation task. A set of multiple ¿-nearest 
neighbour classifiers trained using over 150 features, resulted in an overall 
classification accuracy of better than 95%.
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Another grey-scaled monocular camera based occupant detection system 
is proposed by Koch in [51]. Combining a set of images flashed with dif-
ferent radiant intensities, the dynamic range of the scene was successfully 
compressed and the illumination offset produced by the ambient light was 
also completely eliminated. After the adaptive thresholding applied on the 
similarity comparison result between the input and reference image, Fuzzy 
logic is performed on the features reflecting the geometrical properties of an 
occupant and the overall classification rate reached at 94%.

Stereo vision using multiple cameras A stereo vision based occupant 
detection system for the airbag deployment is proposed by Krumm in [55], 
Two different experiments were performed using a single camera and a binoc-
ular stereo camera in order to assess the advantage of having range data from 
stereo images for the classification over intensity images. The experiment 
proved that the binocular stereo technique is less sensitive to varying illumi-
nation conditions and the range data can be used for giving important clues 
to estimate the position of the occupant . The prototype images used for im-
age matching was trained with a set of test images of empty seats and seats 
occupied by rear facing child seats using principal components analysis, and 
the classifier compared input images with the prototypes by matching their 
eigenvectors. Therefore the system was only able to distinguish a limited set 
of RFCS, an empty seat or an object which does not fit to the RFCS class, 
although the classification rate reached at 95.1% on a test of 890 images.

In [101] Trivedi presented a stereo and thermal infrared (TIR) video 
based real-time vision system for both occupant detection and out-of-position 
detection. A comparison was made on a frame-by-frame bases between range 
data captured by a trinocular stereo camera and the TIR images, in detect-
ing the presence of an occupant as well as tracking the head location in the 
background-removed disparity data. The experimental results showed that 
the TIR system (93%) had relatively higher performance than the stereo 
approach (86%), although the TIR camera exhibited some undesired char-
acteristics such as the change of the intensity mapping from skin temperature 
over time. Despite the success of this test, further testing was imperative 
since the comparison test of those system included only one subject at a 
particular time of day in particular weather. Furthermore, thorough cost 
analysis would be imperative to the economies of introducing a TIR sensor.

Alternatives An interesting study employing structured lighting was made 
by Lequellec in [57]. A system based on a CCD camera combined with a light 
beam matrix is developed to output the 3D surface shape of vehicle cockpit 
occupancy. An initial set of possible spot/beam matchings is deduced from 
epipolar constraints provided by the prior calibration of the relative cam- 
era/projector position. Then, using the topological constraints in the 2D
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mesh of illuminated dots, a constraint propagation process eliminates most 
of the combinations possibilities from the initial set of matchings. Finally, 
the 3D corresponding points are then computed via triangulation from this 
matchings set. However, in reality, it is difficult to implement an accurate 
pattern using an infrared light source due to the constant vibration in the 
vehicle environment. Furthermore, such patterns may not provide enough 
resolution for object classification.

In [50] Klomark presented a number of potential machine vision based 
approaches for occupant detection systems and evaluated the usefulness of 
each technique. It is concluded that any simple image matching approaches, 
especially which are based on edge properties of an object, were not satisfac-
tory. The experimental results showed that the robustness to illumination 
varying environments was essential for realising a practical occupant detec-
tion system and a combination of techniques should give enough reliability 
for safety applications.

Summary

These previous studies for vision based occupant detection can be classified 
into two categories depending on the number of cameras used in the system. 
In the earlier versions of occupant detection systems, single camera ap-
proaches were in demand due to the high cost of imaging sensors. However, 
such monocular systems did not provide sufficient 3D information necessary 
for functions such as the out-of-position detection, which is a supplementary 
task guaranteeing low risk deployment according to the position/pose of the 
passenger. As a consequence, the majority of occupant detection systems 
became more dependent on stereo vision techniques using multiple cameras.

Faced with the increasing demand for various vision-based in-vehicle 
applications, the growing number of cameras employed has come under se-
rious scrutiny. For this reason, this research focused on developing a single 
camera system able to generate additional 3D information by using mini-
mal supplementary active illuminations, in order to circumvent the higher 
costs of components and the complication of installation, maintenance and 
calibration. The primary objective of this thesis is to propose a novel frame-
work mainly for, though not restricted to, the occupant detection system, 
as well as to demonstrate the feasibility of alternative systems with com-
parable performance to multi-camera based vision systems. These efforts 
resulted in the development of, (1) a framework capable of extracting three- 
dimensional information of an object with minimal hardware costs, (2) a few 
useful techniques to stabilise the illumination conditions, (3) a set of robust 
and efficient feature descriptions which characterise the size and position of 
the occupant, and (4) a simple pattern recognition module to classify the 
visual cues in categories, which can trigger the safe deployment logic of the
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airbag system.

1.3 System overview

The proposed occupant detection system is designed to classify an object 
in a vehicle for facilitating the airbag control module. The airbag re-

sponses of two occupant classes including ODFC and NOPS were assumed 
that they do not necessarily have to be detected separately if considering 
only the safety requirement. Assuming PCSP and POOP classes were sup-
posed to be distinguished in a out-of-position detection system by sharing 
the classification results made in occupant detection, the target occupant 
classes in this thesis were reduced to three classes being a front facing child 
seat, a rear facing child seat and an adult. Figure 1.4(b) illustrates the 
state transition between the occupant detection and out-of-position mod-
ules. The out-of-position detection is activated only if the object is classi-
fied as an adult, which is the merged class continuously observed after the 
classification in order to detect a person in out-of-position.

Figure 1.4(a) shows a basic framework of the system. A 12-bit high 
dynamic range monochrome imaging sensor with the resolution of 324x244 
at 30 Hz was employed for the image capture. Three infrared light sources 
triggered by a 2-bit gray code signal were used, flashing in sequential or-
der. The gray code sign <1 is also synchronised with the trigger clock in the 
imaging sensor so that each frame must be captured under the pre-assigned 
illumination conditions. Accordingly, four types of images having different 
illumination are consecutively obtained during the acquisition: three images 
by each light source (plus ambient illumination) and one with only ambient 
illumination.

After eliminating the lens distortions, the image sequence is delivered to 
the DoubleFlash module originally introduced in [52], which eliminates the 
ambient illumination fluctuations by subtracting two images exposed by dif-
ferent illumination powers. Being facilitated by a three-stage delay buffer, 
the DoubleFlash method completely removes the ambient illumination and 
produces three images per clock cycle. These images are used by Shad- 
owFlash. [116] to compose a shadow-free image by simulating a virtual light 
source having an infinite extent. A deformable contour model is then applied 
to this shadow-removed image in order to extract the boundary information 
of the object. By fusing the three images created by the DoubleFlash, the 
photometric stereo method reconstructs the 3D surface of the object with 
the help of the segmentation result. Finally, a 29-dimensional feature vec-
tor defined using both 2D and 3D information is utilised to train a neural 
network to make a single decision per each frame. Tapped delay lines are 
introduced to filter noise in both the input and output of the network in 
order to increase temporal consistency of the classification results.
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(a)

(b)

Figure 1.4: System overview: (a) the structure of the proposed system in conjunction with the 
out-of-position detection system, and (b) the state transition diagram of the overall 
system. The transition ’Event’ occurs when any dramatic change happens in the 
field of view, such as any abrupt change of classes.
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1.4 Organisation of the thesis

In Chapter 2, the problem of obtaining illumination-stabilised images in 
high dynamic range environment is discussed. Solutions for the improve-

ment of robustness to the ambient illumination fluctuations and the minimi-
sation of the effects caused by the cast shadows are introduced. Extracting 
two-dimensional information using active contour models is presented in 
Chapter 3 while Chapter 4 discusses the three-dimensional surface recon-
struction method with real-time video sequences based on the photometric 
stereo method. In Chapter 5, a novel feature set collected from both the 
two- and three-dimensional information as well as the design strategies of 
the classifier are introduced. Experimental results considering the occupant 
detection system will be shown, followed by a discussion about the expected 
problems in perspective of the practical system realisation in Chapter 6. Fi-
nally, a summary and the conclusion of this thesis is presented in Chapter 7.
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2.1 Motivation

A lthough innumerable efforts have been made to employ the sophisti-
cated machine vision algorithms to the industrial applications, less at-

tention has been directed to the image sensing techniques. Since the picture 
quality completely relies upon the optical sensor characteristics, the de-
sign and/or selection of an appropriate imager is one of the most essential 
procedures in the overall system design in order to guarantee the optimal 
performance for the individual image processing tasks. Especially for some 
vision applications which operate in an unrestricted illumination conditions 
experiencing extreme contrasts and frequent change of light conditions both 
spatially and temporally, the system performance will not be satisfactory 
unless the intensive investigation for seeking a suitable imaging sensor is 
considered from the beginning of development.

Pre-processing operations, sometimes referred to as image restoration 
and rectification, are intended to correct for sensor-specific radiometric and 
geometric distortions of data. Radiometric corrections may be necessary 
due to variations in scene illumination and viewing geometry, atmospheric 
conditions, and sensor noise and response. Each of these varies depending on 
the specific sensor and platform used to acquire the data and the conditions 
during data acquisition. Furthermore, it may be desirable to convert and/or 
calibrate the data to known (absolute) radiation or reflectance units to fa-
cilitate comparison between data. Variations in illumination and viewing 
geometry between images for optical sensors can be corrected by modelling 
the geometric relationship between the object of interest, the light sources 
and the sensor. It is also often required to mosaic multiple images from a 
single sensor while maintaining uniform illumination conditions in order to 
be able to more readily compare images collected under different lighting 
conditions.

This chapter begins with a discussion on the available imaging sensor 
technology in conjunction with illumination issues at present and in the near 
future with regard to their usability for high dynamic range environments. It 
continues with the introduction of novel techniques for solving the problems 
which often occur in vision based applications, especially operating in high 
dynamic range environments: The DoubleFlash approach [52] is used for 
capturing a scene under adverse lighting conditions without losing image 
details by employing active illumination. The novel ShadowFlash technique 
that produces a shadow-free scene by approximating an artificial light plane 
with an infinite extent using multiple spot-light sources is also introduced.
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(b)

Figure 2.1: Typical examples of image detail lost due to the limited dynamic range of an im-
ager: (a) a sample image overwhelmed by the ambient illumination, and (b) a scene 
captured by an imager with sufficient optical dynamic range.

2.2 Sensors and illuminations

2.2.1 Optical dynamic range

As machine vision tries to leave the ideal conditions in laboratory environ-
ments with controlled illumination situations, the importance of the optical 
dynamic range for image processing has come into focus in recent years. Op-
tical dynamic range could be defined as the range of irradiance amplitudes 
over which an imager can acquire the scene without unacceptable distortion 
of scene details. The optical dynamic range is usually expressed in dB and 
calculated as follows:

A dynamic-range =  20 • log ( \ (2.1)
V min J

where Emax and Emin are the maximum and minimum irradiance, respec-
tively.

Depending on the definition of the domain in which the irradiance mea-
surements are made, the optical dynamic range can be further split into 
either global or local dynamic range. The global dynamic range means the 
amount of the light fluctuations for a certain amount of time, while the local 
dynamic range simply stands for the irradiance range within a scene at a 
specific time. If the dynamic range of an imager does not fit to the local 
dynamic range of a scene then the details of the scene shown in the image 
will be degraded. An example of the scene where the dynamic range of a 
imager is overwhelmed by the ambient illumination is shown in Figure 2.1.
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Considering the limited dynamic range of the conventional CCD imagers, 
there are various situations where these camera systems cannot provide 
satisfactory image quality. Figure 2.2 shows a graph plotting illumination 
changes as a function of time. The irradian^e power inside of a vehicle was 
measured during motorway drive in the late evening in Germany. Several 
signal peaks occurred due to the reflections caused by incident rays within 
the interior while the signal level went down by a factor of several hundreds 
after sunset. Another irradiance measurement shown in Figure 2.3 was made 
at a parking place by night. The maximum irradiance signals were caused by 
either active interior lighting or the headlights of a closely approaching car. 
The driving route of the last example graph shown in Figure 2.4 includes 
two tunnels where extreme changes of irradiance were detected as the car 
went through the tunnels.

An interesting experiment assessing the dynamic range of vehicle interior 
was made by Koch [51]. After the intensive measurements of irradiance pow-
ers performed in various time and places, it was shown that the maximum 
global dynamic range for the interior of a vehicle could easily reach 191dB 
and it is definitely beyond the abilities of present imagers. Consequently, 
it is necessary to find out the methods with which an image without losing 
scene details can be captured in an high dynamic range environment.

2.2.2 Imaging sensors 

CCD- vs. CMOS-based imagers

Most modern electronic cameras use the CCD1 technology, although MOS1 2- 
based imaging sensors are based on technology developed earlier in the 
1960’s. The main reason for the failure of the early MOS-based imagers 
was due to the fact that the size of the MOS pixel was very large so that 
only limited number of imaging cells were able to be placed in a chip. In 
contrast, the advantage of CCD technology was able to create much smaller 
pixels with the same structure size than the MOS-based imagers. Consid-
ering that the size of each imaging cell determines the signal-to-noise ratio 
of each pixel, it was obvious that the picture quality of CCD-based im-
agers was superior compared to the MOS imagers at the time. However, 
as the CMOS3 integration technology has been replacing the MOSs for last 
decades, the size of the individual pixel has been decreased to dimensions 
comparable to those of CCD imagers. Accordingly, the image quality of

1 Charge Coupled Devices
2 Metal-Oxide Semiconductor
3 Complementary Metal-Oxide Semiconductor logic uses a combination of p-type and 

n-type metal-oxide semiconductor field effect transistors (MOSFETs) to implement logic 
gates. An advanced version of the MOS technology.
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gure 2.2: Irradiance variations during motorway drive. The irradiance level goes down as 
sun sets [51].

Figure 2.3: Irradiance variations in a parking lot. Sudden change of irradiance is possible due to 
the external illumination sources such as the headlights from the other vehicles [51].
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Figure 2.4: Drive through the city of Munich including tunnels [51].

CMOS sensors also has been dramatically improved, almost as good as the 
mainstream CCD sensors nowadays.

Advantages of CMOS sensors

CMOS sensors have a couple of significant advantages against the CCD 
sensors. Detailed comparisons between available sensor technologies were 
made by Koch in his thesis [51] and the following paragraphs present come 
of the major benefits for using CMOS-based sensors.

Active pixel sensors 4 Although the complex pixel structure of CMOS 
cells results in the degradation of image quality, it also could be con-
sidered as the major advantage of CMOS based imagers when em-
ploying an sensing-adaptability to high dynamic range (HDR) envi-
ronments [51]. The extended high dynamic range can be achieved by 
either employing non-linear imaging elements or assembling a HDR 
image from a set of frames of a linear imager with multiple integra-
tion times, and those two ways can be only realised by the active pixel 
sensor (APS) properties of CMOS sensors [94], 4

4 The photodetector and read-out amplifiers are implemented in each pixel, so that the 
sensitivity of each cell can be controlled individually.
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Low power consumption Due to the requirement of only a simple power 
supply voltage for the CMOS imagers, typical CMOS based sensors 
consume only one fourth of the power of equivalent CCD cameras at 
the sensor level for an equivalent pixel clock [25]. Accordingly, they 
provide a much larger operating temperature range. The significantly 
reduced power consumption rate is important for certain stand-alone 
applications which have limited power resources for the operation such 
as mobile devices, automotive applications, etc.

System integrability The system-on-chip integrability with several sup-
plementary signal processing functions is another important advantage 
of CMOS sensors. Due to the compatibility with standard CMOS 
technology it is possible to integrate all the necessary machine vision 
sub-routines into one small camera chip, and obviously this is not 
feasible to the CCD based sensors. The advancement of the CMOS 
manufacturing technology due to the growth of various CMOS-based 
application markets is another important factor that makes the price 
of CMOS imagers cheaper. These are the indispensable feature for 
realising low-cost vision-based systems.

Camera response characteristics

Presently available HDR cameras are usually based on CMOS technology. 
There are basically three different ways to realise a CMOS image sensor for 
HDR environments by extending its limited dynamic range, and the different 
photon-voltage transfer functions in linear, logarithmic and piecewise linear 
operation modes are shown in Figure 2.5.

Non-linear response The straightforward way to provide a high dynamic 
range is to compress the scene intensities by implementing a logarith-
mic voltage-current response of CMOS transistors. With this logarith-
mic intensity compression scheme, a CMOS camera is able to convert 
up to 120dB of intensities into a voltage range of a few hundred milli-
volts. However, this non-linear mapping results in distortion which is 
not recoverable by decompressing the intensity information since the 
textural information at low intensity level is already discarded from 
the acquisition due to the increased sensor noise level.

Linear response Due to the limited photo-sensitivity of CMOS sensors, it 
is not possible to obtain a high dynamic range directly from CMOS 
sensors with a linear response. The dynamic range for a linear pixel 
signal in an CMOS based imaging sensor is limited to less than 80dB 
due to the ASIC noise floor [51]. However, a dynamic range of over 
lOOdB could be obtained by employing an approach to combine a 
HDR image using a set of images, of which each image is exposed 
for a different amount of time so that the different portion of bright-
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ADC output

Figure 2.5: Comparison between different response functions of CMOS cameras.

ness information is assigned to each image. The images are assumed 
to be successively captured by a stationary camera with fixed focal 
length and linear response and finally merged into one image which 
has a greater dynamic range than a single snap image by an external 
logic [61, 41, 82]. Though the approach assumes the scene differences 
during image acquisition are negligible, there is still a possibility of 
having incorrect scene details caused by motion or ambient illumina-
tion fluctuations. And the frame rate is another factor which affects 
the quality of the composed HDR image.

Piecewise linear response A solution to reduce the complexity of com-
posing a HDR image captured with a linear sensor while achieving suf-
ficient image contrast at low light conditions is to employ a piecewise 
linear response [68, 108, 51]. In this technique the sensor’s photo-
sensitivity curve in each individual pixel is initialised at the begin-
ning of acquisition. As the sensor begins to integrate photons, the 
photons are accumulated as in normal linear operation mode until a 
pre-determined voltage level is reached. If the level is not reached this 
may continue over the full integration time. If the signal level exceeds 
the pre-determined threshold the effective integration time is reduced, 
providing lower sensitivity for the bright light level. By this scheme, 
higher contrast level and less noise at the low light level compared to
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Figure 2.6: SollyCam version 3.0

the logarithmic pixel compression are guaranteed.

SollyCam

Since one of the key features in this work is to design a low-cost vision system 
and evaluate it in unconstrained illumination conditions, there was a need 
for designing a suitable camera system for high dynamic range applications 
such as a vehicle interior analysis introduced in Section 1.2. Concerning the 
unsatisfactory features of CCD-based imagers and the necessity of operat-
ing in NIR range, a customised CMOS-based camera called SollyCam was 
designed and used through most of experiments performed in this thesis. By 
providing increased flexibility to the latest version of the SollyCam, the us-
age of the camera is not limited to the occupant detection system but is also 
applicable to another outdoor machine vision applications such as various 
surveillance systems. Facilitated by modern CMOS technology, the sensor 
includes the completely integrated functions of timing unit, A /D  convert-
ers, interface drivers, fixed pattern noise suppression logic, etc. Figure 2.6 
shows the design of the imager used in this work, while the following list 
enumerates some key features of the SollyCam based on the CMOS sensor 
LM9618 from National Semiconductor [68]. •

• VGA resolution (648x488 pixels)
• High dynamic range scene over lOOdB could be captured using its 

piecewise linear response capability.
• 12-bit grey-scale digital image output plus 4 additional reserve bits 

using RS422 interface which is programable by PLD configuration.
• Low power consumption rate (sensor/earnera=160mW/2W), program- 

able power-saving mode.
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• Variable timing and snapshot mode including programable line, row 
and frame delays via I 2C interface.

• Pixel clock up to 12MHz (which provides 30Hz frame rate with the 
resolution of 324x244.)

• Guarantees 70% sensitivity within the near infrared (NIR) range at 
A ~  800nm.

• Low-cost due to mass production.
• Operating temperature: -40 to 85°C
• Embedded trigger logics for controlling active illuminations.

2.2.3 Active illumination

It is most preferable to develop all the vision techniques independent from 
any illumination changes. However, many of modern machine vision al-
gorithms are in fact based on the hypothesis of no illumination variations 
which often makes vision-based systems difficult to be adapted to real world 
situations. An image could be relieved from being disturbed by ambient 
illuminations with support of active illumination5 and many non-lab vision 
applications experiencing unrestricted light conditions could overcome the 
illumination problems this way.

For applications where the active illumination must not be recognised 
by users, such as a vehicle interior monitoring task, near infrared (NIR) is 
often considered a suitable supplementary illumination due to its complete 
invisibility to human eyes as well as the feasibility of manufacturing low-cost 
light emitters. Using a proper bandpass Liter with a centre wavelength of 
778.4nm, all irradiation out of the passband can be completely blocked. In 
addition most of cameras based on the silicon technology are still sensitive at 
these wavelengths and the spectral power density of the sunlight decreases 
significantly beyond the NIR region, i.e. no special imager is required to get 
NIR images if an appropriate bandpass filter is employed. Figure 2.7 shows 
the spectral irradiance of the sunlight observed from the earth through the 
atmosphere while the typical transfer function of the NIR bandpass Liter is 
shown in Figure 2.8.

2.3 Image enhancement: DoubleFlash

2.3.1 Introduction

Due to the limited optical dynamic range of conventional imagers together 
with the wide range of illumination Luctuations in realistic scenes, an illu-

° Illuminating a scene with controllable light sources is called active illum ination  while 
illumination influencing the scene which can not be manipulated is called passive illum i-

nation.
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Figure 2.7: Spectral irradiance of the sunlight after atmosphere.

Figure 2.8: Transfer function of a typical NIR bandpass filter of which the centre wavelength 
A=778.4nm and the bandwidth AA=10.7nm.
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mination regulation technique called DoubleFlash for minimising potential 
illumination fluctuations by employing active illuminations is introduced 
in [52]. Additionally, this method has another effect that the optical dy-
namic range within the image is compressed compared to the image without 
supplementary illuminations. The basic idea of the method is to analyse a 
pair of image frames which are illuminated by light sources of different inten-
sities. Finally, this technique is extended for the shadow removal approach 
discussed in Section 2.4.

2.3.2 Offset reduction

A sequence captured with varying illumination offset and noise usually re-
quires to be refined with support of additional pre-processing steps for image 
analysis [53, 52, 74, 51], and sometimes these pre-processing tasks become 
one of the undesirable factors which hinder the efficiency of a system.

In order to achieve an offset and noise reduction and simplify the pre-
processing procedures the DoubleFlash method employs two light sources 
having different radiance intensities E îgh and Eiow. Suppose that a digital 
image /(n ) only consists of the surface reflectivity ps(n) and irradiance power 
E(n), the image Ix(n) which is illuminated by a light source with irradiance 
Ex is defined as

Ix{n) =  ps(n) • (Ex(n) +  Eamb(n)) (2.2)

where Earnb represents the ambient illumination irradiance.
An image I[ow with only one illumination having irradiance power of Eiow 

is acquired at time n, while the second image Ihigh with the illumination 
power of (Ehigh +  Eamb) from the other supplementary light source at time 
(n +  e) is sequentially captured. Assuming that the position of the camera 
is stationary over time, ps would be constant for all frames. In this case the 
intensity levels of the captured images become only a function of irradiance 
E. As the time difference e tends to zero, the subtraction between the images 
Ihigh and how yields an image which reflects only the difference between 
the received radiant powers of two input images while the influence of the 
ambient illumination Eamb is cancelled out. i.e. the output image I flash 
becomes independent from the light fluctuations as shown in Equation 2.3.

Iflashipl} =  |Ihighfa T £) Ilow{ )̂|
=  Ps,const. ' \ E fiig tiin ) +  E am i,(n )  — (E i oul{ n ) +  E am i , (n )) |

=  Ps,const. ' IEfiigh(jl) — Elow(n)\ (2-3)
qed.
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2.3.3 Dynamic range compression

The utilisation of supplementary illuminations compresses the local dy-
namic range of the flashed image. The dynamic range of an imaging sensor 
A  dynam ic-range is commonly defined as the ratio of its largest non-saturating 
signal to the standard deviation of the noise under dark conditions
Amin.
p̂h *

A,d yn a m ics  ange =  20 ■ log lph
Ami7
lph

(2.4)

where iph represents the photogenerated current at a certain pixel [114].
Supposing that the photogenerated current ip̂  in direct proportion to 

the corresponding intensity level in the same pixel, Equation 2.4 can be 
rewritten as

A dynam icjrange — 20 • log

~  20 • log

nm ax  # p m a x  rs * ^
p m in  . jjjm in

(2.5)

where two surface reflectivity parameters p™ax and p™m are assumed to be 
identical in order to take only the effect of using supplementary illuminations 
into account. In case that the scene is illuminated with irradiance power of 
Espi, the dynamic range of the imager becomes

A sp i
^ d yn a m ic-ra n ge 20 • log

( E Z !  +  Espl\
(2 .6)

Finally, Equation 2.7 shows that the optical dynamic range of a scene 
with a supplementary illumination A s/ynamic range is smaller than a scene 
only with ambient illumination ^ â amic_range-

^ ly n a r m c r a n g e  <

20 • log Jamb T ESpi
^amb ' ^spl 

pmax I p ^amb ' ^spl

<

<

\amb
^ d yn a m ic-ra n g e

20 • log
p m a x  
^  amb 
p m in  
^ a m b

+  Espi
jpmin ( rpmax . r? \ ^

t^am b K ^ a m b  s p l) <
jpmin t? ^
^ amb ̂  spl <

jpmin ^

qed.

pmax
pmin 
^amb
Tpmax ( jpmin , t t  \ 
^am b \-^amb ' ^ sp l)
pmax p ^amb spl
pmax 
^amb (2.7)
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(a) (b) (c)

Figure 2.9: The result of the DoubleFlash method applied to the scene of vehicle interior mon-
itoring: (a) Iiow, (b) Ihigh and (c) I D o u b leF la sh  with the reduced dynamic range 
without ambient illumination.

2.3.4 Experimental results

An example of DoubleFlash is presented in Figure 2.9. Two input images 
how  and Ihigh obtained by a CMOS camera with an optical NIR bandpass 
filter were illuminated with the different irradiance powers. The details of 
both the infant and driver seat were not visible in the same image due to 
the limited dynamic range of the CMOS camera. For example, the vehicle 
interior in Figure 2.9(a) is not clearly visible while the exposure time of the 
imager is focused on illuminating the infant seat. O,. the other hand, the 
extension of the exposure time of the imager resulted in the over-exposed 
areas around the infant seat so that all the details of the infant seat was 
lost. After employing the DoubleFlash method, the image quality for both 
the infant seat and the vehicle interior was considerably improved as shown 
in Figure 2.9.

2.4 Shadow removal: ShadowFlash

2.4.1 Motivation

In the held of machine vision, shadows occur frequently in a wide variety of 
scenes. In many cases, this is undesirable due to the fact that they often lead 
to the result of irretrievable processing failures. For instance, the shadow 
cast by an object results in an improper segmentation result with serious 
artifacts, or detection of an imaginary object. This might result in shadows 
misclassihed as objects or parts of objects due to the over/underestimation 
in a subsequent matching phase. Accordingly, many existing machine vision 
algorithms assume that the results of the processing are not under the in-
fluence of shadows or that the shadows in an image have been removed [31].

To prevent shadows from being misclassified, they must be explicitly
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detected or efficiently removed. Several factors are required to deduce the 
presence of shadows in a scene: the knowledge of geometric information, the 
existence of obstructions, and the characteristics of both materials and light 
sources. Since the knowledge of these factors cannot be readily obtained 
under real world conditions, it is still a difficult task to identify or elim-
inate shadows from the scene. Moreover, detecting shadows also involves 
solving many problems such as region extraction and knowledge representa- 
tion/integration.

Despite all these difficulties, a number of approaches have been stud-
ied to overcome the problem of detecting shadow regions [89, 84, 96, 64], 
Existing shadow detection algorithms can be classified in terms of whether 
the algorithm actively uses knowledge of the environmental conditions or 
not. The geometric information of a scene and the known directions of 
light sources are required in identifying shadows in [54]. It also has been 
shown that shadows can be detected without knowledge of the geometry in 
an image given the following assumptions [96]: a stationary camera [89], a 
light source that is strong enough to generate visible shadows, a background 
containing a sufficient amount of texture, and the dominance of a smooth-
shaped background [96]. However, most of these shadow-related algorithms 
only provide the location of the shadows, and may not provide a complete 
solution for applications that must suppress the shadows invisibly.

The ShadowFlash method was proposed to solve the problem of remov-
ing shadows in an actively illuminated environment by simulating a light 
source with infinite dimensions [116]. This shadow removal technique was 
designed to employ the concepts of the DoubleFlash technique introduced 
in Section 2.3 [52]. Therefore, the ShadowFlash method removes the ambi-
ent illumination as well as the cast shadows while the dynamic range of the 
target scene is compressed. The algorithm requires no boundary extraction 
task, and it consumes minimal processing time. The idea of ShadowFlash 
method can be extended into the temporal domain by employing the sliding 
iV-tuple strategy in order to obtain real-time shadowless video sequences 
without affecting the original frame rate.

This section consists of four subsections. In Subsection 2.4.2, the at-
tributes of shadows and a virtual infinite illuminant plane is analysed. A 
shadow removal algorithm for video sequences, real-time ShadowFlash is 
proposed in Subsection 2.4.3 while Subsection 2.4.4 demonstrates the ex-
perimental results under various illumination conditions. Finally, the limi-
tations of the ShadowFlash approach as well as the future work are discussed 
in Subsection 2.4.5.
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Figure 2.10: Illustration of penumbra and umbra within a shadow scene caused by a spot light 
source

2.4.2 Analysis

Problem of an attenuated-model based shadow removal approach

Figure 2.10 illustrates the formation of a shadow cast by a bright spot light 
source. A cast shadow consists of two discernible parts: the umbra and the 
penumbra. The penumbra is a fringe region of half shadow resulting from 
the partial obstruction of light rays by an object (due to the finite size of 
the light source), while the umbra represents the shadow of the complete 
obstruction. A narrow penumbra may not appear in an image due to the 
digitising effects. However, it is not simple to perfectly remove both umbrae 
and penumbrae when the penumbrae are not negligible in the general image.

The brightness-difference can be estimated through the comparison of 
the intensity at a pixel in the shadow and the adjacent background, and 
a weighting factor can be calculated to compensate for the attenuation of 
illumination within the shadow. The original image and the result of an 
attenuation-model based shadow removal approach are shown in Figure 2.11. 
Due to the heterogeneity of the umbra and penumbra regions, the outlines 
of the shadows are still visible. There are several reliable shadow detection 
algorithms that identify umbrae and penumbrae separately [28]. However, 
the attenuation rate of a penumbra is not practically measurable without



2.4. Shadow removal: ShadowFlash 31

Figure 2.11: Penumbrae problem: (a) a sample image including two shadows caused by two spot 
lights, and (b) the result of the attenuation-model based shadow removal from (a)

the geometrical knowledge of the illuminating sources.

Infinite illuminant plane

A cloud consists of countless aqueous particles. A light ray passing through 
the cloud is evenly scattered due to the reflections against the particles. 
This physical phenomenon causes the photons to be spread over the entire 
cloud and generate a spatially extended virtual light source. Consequently, 
on an overcast day, the white sky makes an infinite size of light source, and 
no shadows occur on the ground (see Figure 2.12).

Based on Gauss’s law, it can be proven that the strength of the electric 
field is independent of the distance from an infinite charged plane. Similarly, 
the irradiance, the amount of light power per surface area, is not influenced 
by the distance from the light source with infinite extent. It is impossible 
to build an infinite plane in real life. However, the simulation of an artificial 
infinite illumination plane is possible in the modern computing environment.

2.4.3 Shadow removal 

Hypothesis

In case of employing two bright spot light sources, the shadows are classified 
into four regions as shown in Figure 2.13: the cast shadows influenced by 
only one light source (a, b), the shadowless region perfectly irradiated by 
both of the light sources (a fl b), and the overlapped shadow region only 
affected by ambient illumination (a U b)c.

The formation is interpreted as a Venn diagram as shown in Figure 2.14. 
Assuming that the universal set represents an image, each set stands for
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Figure 2.12: Shadows on an overcast day.

an area with constant illumination energy from one light source. The in-
tersection represents the set where the surface is illuminated by two light 
sources at the same time. Let us denote that the supplementary irradiance 
ESpu which is greater than another supplementary irradiance Espi2 , that are 
emitted by the right and left light sources in Figure 2.13(1) and (2), respec-
tively6. Assuming that Ex is the irradiance of the region x, the irradiance 
map E (p) of an image can be expressed as:

where p is a position vector, and Eamb represents ambient irradiance.

If the irradiance of all areas (Ea =  Eb =  Ear  ̂ =  EiaXJbyb) can be 
equalised, the simulation of an infinite illuminant plane would be able to 
deliver the constant illumination power to the entire area as discussed in 
Subsection 2.4.2. Accordingly, the aim of this work is to equalise the irradi-
ance levels of the area illuminated by active illumination. However, since no 
information is obtainable to restore the original textures due to the offset 
reduction scheme, the equalisation task for the area (aUb)c is not considered 
in our approach (Ea =  Eb =  Eanb /  E(au6)c).

if p £ a 
if p e ò 
if p E a fi b 
if p E (a U b)c

( 2.8)
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(aUb)c overlapped 
cast shadow

(2) left spot light

V
source (1) right spot light source

(a) cast shadow (b) cast shadow

Figure 2.13: Illustration for the formation of shadows with two spot light sources

ShadowFlash

Let us denote the radiant intensity If as the power emitted from the point 
light source x into the unit solid angle6 7, and the irradiance Ex is the power 
received at the unit surface element. Assume that the difference of dis-
tances between an object and each light sources is a small constant ex . By 
neglecting ex , the relation between the irradiance and the radiant intensity 
is simplified to

Ex =  lim ^
ex-+0 (d +  6a,)2 ~  C IeX

where d is the average distance, and c is an adequate constant. Thus, the 
irradiance power caused by two light sources are equivalent if the radiant 
intensity of the light source (1) If is identical with If (see Equation 2.8 and 
Figure 2.13).

Assume that three differently illuminated images are used as an input 
of the system with two separate .supplementary light sources. It is supposed 
that the acquisition time for each image is short enough to neglect scene 
differences between the input images. For the first image /„, the left light 
source has the irradiance Espn while the right light source has Espi2 - And 
the second image If, is illuminated with the opposite irradiance to Ia. Espi2

6The subscript ’spV implies 'supplementary'.
7The radiant intensity in this paper appears with the superscript e (electromagnetic) 

to distinguish it from an image /.
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Figure 2.14: A Venn diagram based on the amount of the irradiance power.

is supported to the both sides of the third image I0ffset■ The positions of 
both light sources are arbitrary, but they must not be coincident.

The distribution of the irradiance for each input image is illustrated in 
Figure 2.15(a), (b), and (c). Assuming that there is no illumination inter-
ference caused by the self-reflection, the supplementary irradiance powers 
Espn and Espi2 are added to the ambient irradiance Eamb while influencing 
the corresponding parts of the Venn diagram. With the combination of the 
input images, Ia, h-, and I0f f set, one can finally composite an irradiance- 
equalised image lout- This is given by:

lout =  |la Ib\ T {la V lb) — 2 • IQffset (2-9)

Assume that the two supplementary illumination sources can illuminate 
the scene with two different irradiance levels, Espu and Espi2 , and that Espn 
is always greater than Espi2 - Supposing that min (Espu, Espi2) > Eamb, then 
the irradiance of each region is adjusted as:

Ea,out = I ( Espi i + E amb) {E spi2 + E amb)\

T {{E spii +  Eamb) +  (Espi2 +  Eamb)}
2 • (Espi2 T Eamb)

= 2 • (Espii -  Espi2) (2.10)
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(f)

Figure 2.15: Illustration of the shadow removal procedure: (a) Ia, (b) (c) / 0/ / set, (d)
I\a-b\ =  ha — h\’ (e) la + b =  la +  h  ~  2 ' ¡offsets and (f) =  I\a~b\ +
la+b 2 ' Iof f  s e t
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Eb,out =  \{Espl2 E Eamb) — (EgpH +  Eamb) |
A { (ESpl2 3" Eamf)) A [ESpi\ A £"amfc)}
— 2 • (ESpi2 A Eamb)

=  2 • (Espll — Espl2) (2.11)

Eanb,out =  I (ESpll E ESpi2 A Eamb)
(ESP12 A ESpi\ A Earnb) |

“I- {(E spn “1“ Espi2 A E0rni))
T (ESpi2 A ESpii A Eamb)'\
— 2 • (2 ■ ESpi2 A Earnb)

=  2 • (Espll -  Espi2) (2.12)

Consequently, the entire region of interest has the same irradiance power 
as if the image is illuminated by an infinite illumination plane. These re-
gions reconstruct a modified irradiance map E'(p) with the same irradiance 
2 • (ESpii — Espi2)- Note that all of these areas are still brightened by the am-
bient light so that the average intensity of an image might be considerably 
disturbed by an illumination change within the environment. By employing 
the offset reduction technique, the ambient irradiance Eamb can be com-
pletely removed. Given the relationship between the irradiance and image 
as shown in Equation 2.8, an output image without shadows is achieved 
from the modified irradiance map E'(p). The dynamic range of this output 
becomes wider in proportion to the difference between two supplementary 
illumination levels (Espn — Espi2)- Figure 2.15(d) and (e) show the pro-
cedure of the algorithm, and the resultant irradiance map is illustrated in 
Figure 2.15(f). In case where one irradiance level of the supplementary light 
source is zero (Espi2 =  0), the algorithm can be mathematically replaced by 
the max-operation of the first and second input images {max {Ia. If))-

The number of necessary input frames lVj„ to create one shadow-free im-
age is equal to the number of employed light sources nnght plus an additional 
image for calculating the ambient light suppression.

Ein — nught A 1 (2.13)

All the experiments in this work are performed with three light sources , 
making the number of inputs four, including ambient light. If the ambient 
illumination image I0f f sei is negligible, the number of input images can be 
reduced to nught by ignoring the DoubleFlash. However, the robustness to 
deal with illumination change is lost.

8The minimum number for the practical photometric stereo method. Discussed in 
Chapter 4.
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Output sequence

r m  n

n

iliiilllilM
(a) successive computation after Nin images

Output sequence

Input sequence

(b) continuous calculation by the sliding Ar-tuple strategy

Figure 2.16: Comparison between the non-sliding and sliding TV-tuple strategy with three illu-
mination sources

Real-time ShadowFlash: sliding A-tuple strategy

The idea of ShadowFlash can be extended to the temporal domain by syn-
chronising the illumination sources with the trigger signal of a imager so that 
the imager produces a video sequence of (• • • , I b, ¡ o f f s e t ,  ¡ a ,  h -  ¡ o f f s e t  J o . ,  •••) 

where Ix are the images illuminated by the light source x while ¡offset rep-
resents an image having only ambient illumination. However, the direct 
application of the ShadowFlash method to the temporal domain raises two 
problems. First, the frame rate of the output sequence will be reduced to 
j j — accompanied with a nught~frame delay in the beginning of the acqui-
sition, because Nin images are required to obtain one shadowless image as 
explained in Equation 2.13. Secondly, if any object in the scene moves during 
a Arm-tuple, some artifacts will occur around the boundary of the object.

In order to avoid the frame rate reduction, a sliding N-tuple strategy 
is proposed. A memory window with the width of N{n frames is created, 
whereby the window is moving along the time axis. In the window, Nin 
differently illuminated successive images are constantly refreshed. These 
images continuously form a set of inputs to create a shadow-free output 
image. In Figure 2.16 an example of the sliding Al-tuple method for three 
supplementary light sources (IVjn =  4) is given. Figure 2.16(a) shows that the 
frame rate of the result sequence is divided by four while the output frames 
are consecutively calculated by employing the sliding Af-tuple strategy in 
Figure 2.16(b).

Established shadow detecting algorithms commonly employ a set of spa-
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tial convolution filters for detecting image regions with damped texture com-
pared to a shadow-free reference image. Hence, the number of necessary 
fixed/floating point operations per pixel are proportional to the number of 
elements within the spatial convolution masks. One of the most important 
advantage of the proposed algorithm compared to conventional shadow de-
tection approaches is the processing cost. The proposed algorithm requires 
only a few fixed point operations per pixel for both detecting and removing 
shadows. Another advantage is that no shadow-free reference image is nec-
essary which has to be updated over time. Finally, since the ShadowFlash 
is the extended version of the DoubleFlash technique, it also compresses the 
dynamic range of the scene while the ambient illumination is completely 
removed.

Fast moving objects may distort the result of the sliding TV-tuple strat-
egy. The amount of distortion depends on the frame rate of the imager. 
When the imager produces frames with sufficient speed, the artifacts caused 
by moving objects should be negligible. In case of a slow frame rate com-
pared to the velocity of moving objects within the scene, a supplementary 
algorithm should be implemented to detect and correct the difference be-
tween frames. However, if such a correction filter is added to the Shad-
owFlash approach, the speed advantage over the other algorithms will be 
reduced or lost.

2.4.4 Experimental results

Several different experiments to demonstrate both the basic idea of the Shad-
owFlash and sliding TV-tuple strategy are conducted. In the first experiment, 
two identical halogen bulbs are used for supplementary illuminations, while 
another halogen lamp is installed for simulating ambient illumination. The 
irradiance power Espi2 is minimised in order to maximise the dynamic range 
of the output image. A CCD camera is used for taking images with 640 x 480 
pixel resolution in 8-bit intensity levels. The positions of both the bulbs 
and camera are chosen to minimise the overlapped shadow regions. The 
experiment is performed with a metallic object on the complex-textured 
background.

Figure 2.17(a) and (b) represent the input images with the existence of 
both the supplementary and ambient illuminations from different directions. 
Some parts of the texture on the background are obscured due to the shad-
ows, although the textures are still visible within them. The histograms 
of these images are also shown in Figure 2.18(a) and (b), respectively. In 
Figure 2.17(c), the image illuminated only by the ambient light is shown.

The results of the interim stage of the procedure are shown in Fig-
ure 2.17(d) and (e). Figure 2.17(d) shows the composite image of the two 
input images with supplementary illumination. In this step, the intensity
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Figure 2.17: Examples of ShadowFlash with the ambient illumination: (a) input image with the 
right light source I a, (b) input image with the left light source /&, (c) input image 
only with the ambient illumination I 0 f f s e t >  (d) I a +  A , (e) \ I a  — /fc|, and (f) the 
result of ShadowFlash algorithm I Qut

resolution of the image is temporarily doubled to 9 bits due to the addition 
process (Ia +  h )  as shown in Figure 2.18(d). In principle, all of the textures 
in the input images are identical. Thus, it is obvious that the pixels which 
have the intensities greater than zero after the subtraction process \Ia — If,\ 
have been illuminated with different irradiance powers (see Figure 2.17(e)). 
Figure 2.18(e) shows the distribution of the histogram biased to zero.

Figure 2.17(f) shows the result image of the ShadowFlash algorithm. 
The shadows which have covered the background textures are successfully 
removed while the patterns of the background are completely restored by 
simulating the illumination from an infinite illuminant plane. The dynamic 
range of the field of view is also conserved as shown in Figure 2.18(f). The 
intensity resolution of the image has doubled in the result of the addition 
phase. Flowever, the frequency per every 2nd intensity level has zero value 
because another addition-operation of the algorithm makes all the intensity 
values turn into even numbers in the final task as shown in the small window 
in Figure 2.18(f). Therefore, the intensity resolution can be compressed to 
8 bits again by eliminating the lowest bit.

Another experimental result for colour images is shown in Figure 2.19. 
The input images are taken by a colour CCD camera having both the Auto 
Gain Control (AGC) and Gamma correction functions enabled. Since the 
shadows cast by the ambient illumination in the input images are not visible 
or very weak due to the effect of the nonlinear intensity compression, the
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(d) (e) (f)

Figure 2.18: Intensity histograms for the inputs and the result where the ambient light exists: 
(a) la, (b) 4 , (c) I0f f s e t , (d) la +  h ,  (e) \Ia ~  41, and (f) Iout

algorithm could be modified to:

lo u t ~  |la  ~ Ib\ T (la  T Ib) ~  Tndx(Ia, /{,) (2.14)

Consequently, the influence of ambient illumination is not suppressed in
lout-

An example for outdoor images is presented in Figure 3.7. There is a 
considerable amount of time interval between the scenes in Figure 3.7(a) 
and (b). Since the ambient illumination information I0ffset is not available, 
the simplified algorithm shown in Equation 2.4.4 is used. Although most 
of the shadows are successfully eliminated, some artifacts emerged in the 
result because of the scene difference such as the moving pedestrians.

In Figure 2.21, the shadows are not completely removed because the irra-
diance powers of the supplementary illuminations are not evenly distributed 
over the field of view. The self-reflection caused by the surface with a large 
constant reflectance is another reason. The overlapped shadow between two 
objects (the shadow of the right side-view mirror) still remains due to the 
limitation of the proposed algorithm.

Finally, a sequence synchronised with three infrared illumination sources 
installed in different positions and the results of real-time ShadowFlash are 
shown in Figure 2.22. The scene contains a background with complex tex-
tures while ambient illumination exists. The sequence is recorded by a HDR
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(a) (b) ( c )

Figure 2.19: Examples of ShadowFlash for colour images taken by a CCD camera with AGC: 
(a) / 0, (b) / b, and (c) Iout

Figure 2.20: Examples of ShadowFlash for outdoor images:(a) Ia, (b) /&, and (c) Iout

CMOS camera at 30 frames per second with 324 x 244 pixel resolution and 
12-bit intensity levels.

In the original sequence, the ambient illumination is coming through 
the windows and therefore the background is dimly visible. Each frame il-
luminated by the installed light sources contains at least one strong cast 
shadow. The results are very successful since all the cast shadows are com-
pletely removed while the ambient illumination coming through the windows 
is suppressed. The complex texture of the background is also satisfactorily 
restored. Some visible distortions occur around the moving object when 
the object moves fast. However, the influence of those artifacts may not be 
significant if the results are applied for object tracking purpose.

2.4.5 Discussion

A real-time shadow removal method based on the radiation power analysis 
is proposed. With a reasonable number of controllable supplementary il-
luminations, the ShadowFlash algorithm simulates an infinite illumination 
plane over the field of view and eliminates both shadows and ambient il-
luminations from the scene. By employing the sliding Ar-tuple strategy, 
the idea could be extended to the temporal domain. Finally, the proposed 
approach could successfully remove cast shadows from a complex-textured
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(a) (b) (c)

Figure 2.21: Less successful case due to the uneven distributed illumination: (a) / a, (b) / and
(c) lo u t

scene without distorting the recovered background. Another achievement 
is that the algorithm works without any support of region extraction tasks, 
so that its processing time is dramatically decreased compared to the other 
shadow detection algorithms. High reliability can be also guaranteed if the 
irradiance powers of active illuminations are evenly distributed.

Limitations and required conditions

Several requirements had to be met in order to obtain the satisfactory results 
in the experiments.

• The dynamic range of the imager must be wide enough to cover the 
entire local dynamic range of the scene, i.e. there must not be any 
pixels which are over-exposed in an input image.

• The irradiance on the target surface from each light source should be 
equal to obtain satisfactory results, i.e. the radiant intensities I e of the 
light sources should be approximately equivalent while the distance d 
from each light source to the target surface is similar.

• The self-reflection on the surface of an object caused by the supple-
mentary light sources could result in some artifacts upon the recovered 
background. To avoid the undesirable effects, the supplementary illu-
minations should be carefully positioned taking both the camera and 
object into account.

• The frame rate must be sufficiently fast for minimising the ambiguity 
caused by motion.

• Finally, the overlapped shadow region must be minimised.

2.5 Precis

In this chapter, various problems caused by the limited dynamic range of 
the present imaging sensors were discussed. After defining the high dy-

namic range environments, a few hardware-level solutions based on manipu-
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Figure 2.22: Sample sequence of Real-time ShadowFlash: (a) original sequence and (b) Real- 
time ShadowFlash
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lating sensor responses to extend the dynamic range of the imaging sensors 
were introduced.

Finally, two image processing based approaches for improving both the 
optical dynamic range and the quality of an image acquired by a conventional 
imager with support of active illumination were discussed.

DoubleFlash Mainstream CCD based and most of the emerging CMOS 
based image sensors do not provide sufficient optical dynamic range 
for monitoring the interior of a vehicle where people experience ex-
treme variations of illumination either spatially or temporally [51]. 
In order to capture images without losing image details in such an 
environment, it is essential to employ an imager suitable to the high 
dynamic range and/or a novel approach to decrease the dynamic range 
without varying illumination offset. The DoubleFlash technique was 
employed in the proposed system, which combines the advantages of 
offset reduction and dynamic range compression by illuminating two 
input images with different radiant intensities, originally introduced 
in [52].

ShadowFlash Nearly all vehicle interior monitoring applications introduce 
supplementary light sources (usually in the near-infrared region) in or-
der to attain an appropriate illumination offset. Therefore, strong cast 
shadows are unavoidable in the field of view. Shadows often create er-
roneous segmentations causing false detection of imaginary objects, 
which hinders the overall performance of a system. The ShadowFlash 
method is a method to eliminate shadows without distorting the origi-
nal textures of the scene by simulating a virtual light source of infinite 
size. The algorithm uses multiple images where each image has been 
flashed fr :n a different direction. The number of necessary input im-
ages Nin to create one shadow-free image is equal to the number of 
employed light sources nnght plus an additional image for calculat-
ing the ambient light suppression. Since the proposed approach does 
not require any region extracting tasks, an advantage in perspective 
of lower computing cost and processing reliability could be achieved 
compared to the conventional shadow detect ion/removal algorithms.
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3.1 Motivation

3.1.1 Introduction

Segmentation is an activity to obtain a compact representation for distin-
guishing objects of interest from a background. For most vision applications, 
segmentation is a key step in image analysis. For example, the detection of 
the numberplate position is critical for an automatic numberplate identifi-
cation system. Separating individual characters from the words is a crucial 
task for analysing a document in the field of handwriting recognition. For 
occupant detection systems, the occupant should be distinguished from the 
irrelevant background components such as a passenger seat.

Autonomous segmentation is one of the most difficult tasks in image 
processing, and this step often determines the eventual success or failure of 
the overall system operation. False extraction of an object boundary may 
result in illusory objects causing misjudgement on analysing the object and 
decrease the reliability as well as the system performance. Effective segmen-
tation techniques are critical to a successful solution, therefore, considerable 
care should be taken to design a segmentation process.

Most of early segmentation algorithms are based on one of two basic 
properties of intensity values: discontinuity and similarity [30]. Segmenta-
tion approaches based on these properties are well studied in the last decades 
and appear commonly in various vision applications [43, 30. 95, 24], In the 
first category, the approach is to partition an image by analysing the at-
tributes of an image such as abrupt changes of intensity level. The principal 
areas of interest within this category are observation of lines or edges of the 
object of interest. However, a method based on the edge property is prone to 
failure due to the weak capability of connecting broken lines in the presence 
of blurring. Similarity is another key property for segmentation. A good 
similarity measurement usually provides more effective segmentation results 
than the approaches based only on the discontinuity property. The principal 
approaches in this category are based on thresholding, region growing, as 
well as region splitting and merging. For example, a thresholding technique 
which makes a decision based on local pixel information could be effective if 
the foreground intensity level is sufficiently different from the range of the 
background intensity level.

Although the segmentation algorithms based on elementary image at-
tributes are relatively straightforward to implement, their limited robustness 
to noise makes it difficult to derive reliable segmentation results. Recently, 
most studies in the field of segmentation focus on developing algorithms 
capable to overcome problems which could not be handled by the conven-
tional approaches. The followings are the descriptions of three most popu-
lar approaches in modern segmentation research: region-based approaches,
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probabilistic models and elastic models.

Region based approaches A region-based method is based on the as-
sumption that the goal of segmentation is to determine which compo-
nents of a data set naturally belong together. An image is partitioned 
into connected regions by grouping neighbouring pixels of similar in-
tensity levels. Adjacent regions are then merged under criteria such as 
homogeneity or sharpness of region boundaries. Overstringent criteria 
create unwanted image fragments while lenient ones overlook blurred 
boundaries and overmerge. Hybrid techniques using a mixture of these 
two methods are also popular. A good example is clustering, origi-
nally introduced by Ohlander [70]. More sophisticated models based 
on various statistical characteristics of an image have been utilised as 
clustering methods [87, 105, 111]. The partition based on normalised 
cuts introduced by Shi [92, 93] have also shown some success. The nor-
malised cuts split an image into homogeneous groups by minimising 
the disassociation between the groups and maximising the association 
within the group. Although the region-based methods are quite useful 
for particular applications, most of these approaches tend to be rather 
arbitrary since there is not much theory available to predict what/how 
should be clustered at the end of segmentation process.

Probabilistic models A number of important vision problems could be 
phrased as problems of missing useful elements of the data. These 
problems are addressed by this missing variable model. Segmentation 
could be thought of as a method to determine which of a number of 
sources a measurement came from. For example, segmenting an image 
into regions involves determining which source of color and texture 
generated the image pixels (i.e. which region a pixel belongs to in the 
sample).
Most of the missing variable models applied to the image segmenta-
tion are based on mixture models. The basic assumption underlying 
the segmentation is that the different image layers present in a pixel 
contribute independently to its intensity. Therefore, the intensity of 
a pixel is the sum of the brightness of image layers which compose 
that pixel. A successful inference algorithm, known as expectation 
maximisation (EM) [20], can be used to compute maximum likelihood 
estimates given incomplete samples for various segmentation models. 
A number of studies have been made for the segmentation model se-
lection, especially for motion and ranged data [63, 47, 8].
The standard problem in segmentation using missing variable models 
is to predict the number of missing variables (image layers) beforehand. 
This is particularly difficult for a scene where the textural attribute 
of the object of interest is ambiguous and no geometric constraints
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are given. Since most of the approaches for solving the missing vari-
able problems involve intensive iteration procedures, segmentation by 
probabilistic models is less suitable for applications operated in an 
embedded real-time system with limited hardware capability.

Elastic models A connectivity-preserving relaxation-based segmentation 
method, usually referred to as either the active contour model or snake, 
was first introduced by Kass in [46]. The method starts with some 
initial boundary shape represented in the form of spline curves, and 
iteratively modify it by applying various shrink/expansion operations 
as some energy functions are minimised. The energy functions gener-
ally consist of (i) internal contour force which enforces the smoothness,
(ii) image force which attracts the contour to the desired features, and
(iii) external constraint force.
This active contour model provides a powerful interactive tool for im-
age segmentation. However, since this approach relies on strictly local 
information, the original snake model is vulnerable to image noise. 
The preliminary shape of a target object must be given before active 
contour proceeds with its evolution. Thus, the active contours are es-
pecially useful when either a priori information of the target object is 
given, or at least the approximate boundary of the object of interest 
is predictable.

Despite of numerous efforts for decomposing an image into useful groups, 
there are no comprehensive theories of segmentation at the moment. Since 
segmentation remains an open problem in vision, the key issue is to deter-
mine what representation is suitable for the problem at hand.

3.1.2 Segmentation for a vehicle cabin environment

For the vehicle interior monitoring applications, few approaches have em-
ployed segmentation techniques [55, 62, 50, 101]. Since most of these studies 
are based on binocular stereo vision techniques, a segmentation task is not 
essential for recovering object surfaces. Nevertheless, valuable information 
could be extracted by analysing two-dimensional geometry of the target ob-
ject. In [51], Koch showed that the vehicle occupant classification result 
could reach 95% by utilising only two-dimensional geometric information 
obtained from a single monochrome imager.

The difficulty of video object segmentation mainly comes from the in-
consistent deformation of objects. In case of a non-rigid object, the segmen-
tation task becomes even more challenging due to the diversity of shapes 
originating from its unpredictable deformation. Incidentally, some occu-
pant classes for the vehicle in-cabin monitoring involve highly unpredictable 
movements as well as frequent exaggerated deformation properties.



3.1. Motivation 49

Some active stereo vision techniques such as the photometric stereo method 
require integrating surface normal vectors for reconstructing the object sur-
face. In this case, the boundary extraction process is indispensable for suc-
cessful results. Assuming that the intensity at a part of a target object 
is overwhelmed by noise, this could propagate unacceptable errors through 
the vector estimation, and unrecoverable distortions may be produced on the 
entire surface of the object as the result of vector integration. Since most 
vector integration methods are not capable of handling abrupt changes of 
depth, it is also important to isolate an area with closer ranges of depth.

Despite the importance of the aforementioned problems, surprisingly, 
little of the research related to vehicle interior monitoring has paid much at-
tention to developing a segmentation strategy. For example, Koch proposed 
a segmentation method based on the similarity analysis between frame se-
quences in [51]. Although the method provides strong edges when objects 
have prominent motions, the unreliable performance for stationary objects 
makes it difficult to employ the method directly to the active vision tech-
niques as discussed above.

In this section, an active contour model based on concavity analysis is 
proposed to solve the above-mentioned difficulties. The main reasons for 
employing the active contour model for this work are: (i) the ease of ini-
tialising an active contour model due to the fact that the object of interest 
is supposed to dominate the field of view, (ii) the ability to handle diverse 
shapes caused by unpredictable deformations and finally (iii) the reliability 
for providing precise object boundaries in most circumstances. The im-
proved boundary should facilitate the surface reconstruction by discarding 
unnecessary and/or inaccurate information. On the other hand, since mo-
tion estimation is very time-consuming and usually unreliable for non-rigid 
objects, the analysis of motion is not considered in the proposed approach.

3.1.3 Overview

Like most of other machine vision applications, the boundary extraction 
task is of great importance in the proposed system to provide useful primary 
information. In this work, the textural similarity of an input frame with re-
spect to a reference background is computed based on their local statistical 
properties. While the local and global illumination changes are stabilised by 
the DoubleFlash technique and all the cast shadows are removed by Shad- 
owFlash, the morphological operations provide an approximate boundary of 
the target object by merging image fragments. The approximate boundary 
is then used for initialising an active contour model. In order to improve 
the mobility of the active contour, convexity defects are computed by inves-
tigating the convex hull generated around the initial boundary.
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3.2 Approximate boundary extraction

3.2.1 Texture-based object detection

To discriminate a target object from a background is an important task. A 
way to perform this task is to subtract the input image from the reference 
image containing only background components. Suppose that the camera 
position is stationary and illumination is constant over time, the background 
subtraction leaves only non-zero areas that correspond to the transitional 
(foreground) image components. Assuming that an object image IQbj is a 
binary image which isolates the foreground components, the Iabj could be 
expressed as a function of the target Itarget and reference image Iref-

lobj {Itar get-i Iref) =  0 if fcomp {Itargets Iref) i; £
=  1 otherwise (3.1)

where e is a small positive number and f COmp represents a textural similarity 
measurement which returns a real number proportional to the closeness 
between two input images.

Background maintenance

Given an appropriate background, many formidable problems can be re-
solved easily by separating a foreground from a background. Normally, the 
difficult part of the background subtraction is not the subtraction task itself 
but the design of a background model.

In certain situations, only limited space is allowed between an imager 
and object of interest. For example, a passenger monitoring system usu-
ally suffers from the limited physical distance between the installed camera 
and occupant. In this case, a significant portion of the background is con-
stantly occluded by the target object. Since the change of the background 
is only partially monitored unless the occupant disappears from the scene, 
the background maintenance becomes a difficult problem. Especially when 
the object has either relatively low mobility or no motion, it is extremely 
difficult to predict the object of interest without the support of a reliable 
segmentation task. For example, a child seat in a vehicle may not be distin-
guishable from the movable passenger seat where the child seat is mounted. 
During a specific time interval, a child seat could generate less motion than 
a passenger seat. In this case, the child seat could be falsely classified as 
a part of the background and be erroneously updated along with the real 
background.

An unstable illumination condition is another factor that makes the back-
ground maintenance difficult. The frequent change of ambient illumination 
disturbs the background updating process by increasing the uncertainty for
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estimating brightness at a specific pixel position. An illumination condi-
tion with a constant vibration also makes the updated background image 
ambiguous.

Despite the fact that great efforts have been spent on solving the above- 
mentioned problems [67, 59, 22, 80, 98, 97, 16, 119, 120, 88, 79], presently 
there is no ultimate background maintenance algorithm which guarantees 
sufficient reliability for safety-critical applications. Although the problem of 
the illumination fluctuation have been successfully addressed by employing 
the illumination techniques discussed earlier in Chapter 2, the rest of the 
problems may not be solved by any vision approaches. Therefore, a fixed 
background taken by a stationary imager is assumed in this work. By sub-
tracting the fixed background from the sequences, fixed pattern noise caused 
by the imager could also be suppressed. Nonetheless, the use of the fixed 
reference background in reality should be minimised due to some movable 
interior parts in a vehicle such as passenger seats.

Similarity measurement based on statistical analysis

Statistical analysis of textures involves the computation of the distribution 
of certain properties such as gray level, average value, deviation, dispersion, 
entropy, etc. For example, if the histogram of an image segment is divided by 
total number of pixels of the segment , the result represents the probability 
that the certain gray level appears in the image segment. A typical deviation 
shows the dispersion with respect the average value.

It has been shown that any statistics higher than second-order con-
tain little information that could be used for the texture analysis [45], and 
that region-based image processing normally provides more reliable results 
than pixel-based approaches. Consequently, a similarity measuring func-
tion which investigates first- and second-order statistics associated with the 
subimaging is employed for detecting an object of interest in this work. The 
size of the subimage is empirically chosen to be 5x5, which is comparable to 
the size of a texture primitive of the applied scene. The textural similarity 
function fcomp consists of a series of two low-order statistics and a intensity 
difference between the two input images. Assuming that the intensity dif-
ference image Idi/ /  is derived from subtracting two input images I  tar get and 
Iref, the similarity measurement function f Comp(') is defined as

fcomp{Itargeti Iref) ~  a ' l-̂ diff +  fi ' &diff ffi 7  " Idiff (3.2)

where Pdiff and &diff are the first- and second order statistics of the dif-
ference image and a, (3 and 7  are weighting constants. The first and third 
terms of the similarity measurement function might be replaced with more 
sophisticated filters such as a Gaussian filter.
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3.2.2 Morphological operations

A thresholding process often separates an object into scattered image pieces 
when the object has either complex textures or extreme contrast. This 
occurs especially when the average intensity level of the foreground is similar 
to the one of the background, and may lead to the failure of subsequent 
processes by falsely discarding critical information. The problem could be 
resolved by combining together image fragments in close proximity which 
originally belong to a single object.

Morphology is a technique of image processing based on shapes [33]. 
The basic idea in mathematical morphology is to convolve an image with 
a given mask known as a structuring element, and to binarise the result of 
the convolution using a given function. The structuring element is a binary 
matrix used to define a neighbourhood shape and size for morphological 
operations. It consists of only ones and zeroes which define an arbitrary 
shape and size. By choosing the size and shape of the structuring element, 
a morphological operation sensitive to specific shapes can be constructed. 
Functional descriptions of two principal morphological operations are as 
follows [10 2 ]:

Dilation Dilation adds pixels to the boundary of an object in an image. 
The dilation process is performed by laying the structuring element 
on the image and sliding it across the image in a manner similar to 
convolution. If the origin of the structuring element coincides with 
a ’O' pixel in the image, there is no change; move to the next pixel. 
If the origin of the structuring element coincides with a T ’ pixel in 
the image, perform the OR logic operation on all pixels within the 
structuring element. With a dilation operation, all the T  pixels in the 
original image will be retained while any boundaries will be expanded 
and small holes will be filled.

Erosion Erosion removes pixels on object boundaries. The erosion process 
is similar to dilation, but the operation turns pixels to ’O’, not ’ I ’ . As 
sliding the structuring element across the image, there is no change if 
the origin of the structuring element coincides with a ’0 ’ in the image. 
If the origin of the structuring element coincides with a T ’ in the image, 
and any of the T  pixels in the structuring element extend beyond the 
object ( T  pixels) in the image, then change the T ’ pixel in the image 
to a ’O’ .

Many complex operations can be also defined based on various combi-
nations of multiple applications using dilation and erosion. The most useful 
of these for morphological filtering are called opening and closing. Open-
ing consists of erosions followed by dilations. This cleans up the image by 
removing small bright spikes or noise and then returning the remaining ob-
jects to their original size. Reversely, closing is formed by dilations followed
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by erosions and is used to fill small holes in an object and/or to join broken 
boundaries into continuous segments.

Binary morphology has been successfully used in several segmentation 
systems [90, 78, 115, 56]. In this work, the closing operation is used to elim-
inate small noise particles. To recombine separated image blobs, dilation 
operations are repeatedly performed ten times. Finally, an approximate 
boundary is generated which constantly encloses the object of interest. For 
these operations, a 3x3 rectangular structuring element is used since the 
shape of the structuring element does not significantly influence system per-
formance.

3.2.3 Deciphering of object of interest

Even after the morphological operations, multiple image fragments can re-
main unconnected, and a decision should be made for selecting the object of 
interest among the image blobs. In many cases, reliable determination of an 
object of interest is only possible after significant information has been ex-
tracted about the object portrayed. Unfortunately, methods for extracting 
this information often require a shape description which could be provided 
only by a recogniser. This is of course not optimal since the overhead of a 
recognition task usually exceeds that of segmentation itself. For example, 
the segmentation of a particular person in a group of people may not be 
possible without the supervision of a recogniser specialised to that person.

For some applications where an imager is placed close to an object of 
interest, the solution to this problem becomes much simpler. In case of 
vehicle interior monitoring applications, the camera location is constrained 
by the limited physical space inside a vehicle. This usually causes the object 
of interest to dominate the field of view. In this work, the largest image blob 
is chosen as an target object in case that the size of the blob is greater than 
a pre-determined threshold. The two-dimensional location of the object 
centroid with respect to the centre of the camera view is also used since the 
object of interest is usually located closer to the camera focus than other 
unimportant objects.

3.3 Active contour models

3.3.1 Introduction

An active contour model called a snake is an energy-minimising spline guided 
by external image and internal spline forces. Snakes may be understood as 
a special case of a more general technique of approximating a deformable 
model to an image by means of energy minimisation, while the mobility of



54 Chapter 3. 2D processing: object segmentation

each snaxel1 depends on the contour's shape and location with respect to 
the target object [95].

Numerous provisions have been made in the literature to improve the 
robustness and stability of the snakes [1, 29, 14, 58, 10, 69, 9, 76, 77, 12, 
91. 103]. For example, Cohen introduced a balloon force which can either 
inflate or deflate the contour [14], This force helps the snake to ignore spu-
rious isolated weak image edges and counters its tendency to shrink. The 
snake with the balloon force becomes more robust to the initial position and 
image noise. Nevertheless human intervention is still necessary to decide 
whether an inflationary or deflationary force is needed. Amini suggested us-
ing dynamic programming to minimise the energy function [1]. This method 
exhaustively searches all the admissible solutions, and each iteration results 
in a locally optimum contour. Geiger proposed to solve the problem in a 
single iteration by allowing the contour to be searched from anywhere in 
a large area around the initialisation position [29]. Neuenschwander pro-
posed to let the user specify the two end points of the desired contour [69]. 
As the optimisation process progresses, the edge information is propagated 
from the end points towards the centre. Fua proposed to reach the desired 
goal by imposing attractor and tangent constraints, where the attractor con-
straint forces the contour to move towards or pass by a particular point in 
the image while the tangent constraint forces the contour to have a certain 
tangent at a particular point [27]. Finally, the concept of active contour 
has been successfully extended to perform tasks such as edge and subjective 
contour detection, motion tracking, stereo matching and image segmenta-
tion [107, 83, 113, 121, 60].

In this section, an active contour model based on the convexity defects 
analysis is proposed. The approximate boundary produced by the tasks 
described in Section 3.2 is used for initialising the active contour. A convex 
hull is created around the approximate boundary and used for computing 
the convexity defects of the contour. The convexity defect improves the 
deformation of the active contour by providing higher mobility at a concave 
boundary.

3.3.2 Fundamentals

The active contour model used in this work was originally introduced by 
Atkins in [2], An active contour V  is defined as a collection of n-snaxels in 
the two-dimensional coordinates:

V  =  {v i,v 2 ■ ■ ■ ,vn} where Vi -  [xi,yi] (3.3) *

*A snake cell: for the rest o f this work snaxel will be used to refer to such points or 
elements o f  the snake.
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The snake model is basically an elastic curve which can dynamically conform 
to object shapes in response to internal force Eint and external force Eext. 
Given the contour V . an energy function for the contour can be stated as

n
E {V) =  (<* ' Eint (vi) +  (3 • Eext (Vi)) (3.4)

2 —  0

where the internal forces Eint keep the snake smooth and the external forces 
Eext couple the snake to the target image attracting the snake to features 
of interest. For segmentation applications, these features could be object 
boundaries. The a and (3 are weighting constants.

The internal and external forces (Ejnt and Eext) are matrices where the 
value at the center of each matrix corresponds to the contour energy at the i- 
th snaxel V{. Other values in the matrices correspond spatially to the energy 
at each point in the neighbourhood of vl. The snaxel Vi is moved to the point 
v\ corresponding to the location of the minimum value in the neighbourhood 
matrix. This process is illustrated in Figure 3.1. Finally the snake contour 
V  approaches to the boundary of the target object as the energy function 
E is minimised and stops its deformation when this minimisation process 
reaches the minima.

Internal Energy

The internal energy function is intended to enforce a shape on the deformable 
contour and to maintain a constant distance between the snaxels in the 
contours. Additional sub-functions can be added to influence the motion 
of the contour [3, 76, 77]. The internal energy function Eint is defined as 
follows:

OtEintiyi) = cEconinuity(Vi) T bEbaiioon(u,) (3-5)
where Econtinuityi^i) is the continuity energy which compels the snake to 
have a smooth shape while Ebaiiooni î) is a balloon force causing the polygon 
to expand or contrast. The constants c and b provide the relative weighting 
of the energy functions.

Continuity Energy In the absence of other influences, the continuity en-
ergy forces a closed deformable contour to form a circle. Each energy 
element ejk(vi) in the matrix Econtinuity is defined as follows:

ejk(vi) =  |j ĵj-||"ifc(«i) -  7(^ -1 + ^+i)H2 (3-6)

where njk{vi) is one of the snaxel candidates at the coordinate (j, k) 
in the neighbourhood matrix. For a closed contour, the contour V is 
given a modulus of n. i.e. vn+l =  vt. 7  is then defined as follows:

1

, _ M l i (3.7)
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Figure 3.1: Illustration for the deformation of an active contour model.

Finally the snaxel v% moves towards the new position having minimum 
energy as making the contour V  a circle. The behavior caused by 
the continuity energy is illustrated in Figure 3.2. Normalisation is 
required to make the continuity force Econtinuity independent of the 
size, location, and orientation of the contour. The normalisation factor 
||V|| is the average distance between the vertices in V:

IMI =  - X > i + i - « i ||2 (3-8)n L—'
i= 1

Balloon Force In this work, a balloon force is defined to force the contour 
to move inwards in the absence of external influences [1 1 ], i.e. the 
active contour initialised outside of the target object shrinks under 
the influence of a reversed balloon force until it approaches the object 
boundary.
The balloon energy f^alloon f°r a snaxel vz is expressed as a dot prod-
uct:

ejfc(vf) = n, • (vj -  njk(\i)) (3.9)
where n, is the inward unit normal vector at the snaxel vl. Hence, 
the balloon energy is smallest at the points farthest from vi in the 
direction of n,. The concept of the balloon force is demonstrated in 
Figure 3.3. In order to get the normal vector n*, a tangent vector t* 
at the snaxel Vi is calculated and rotated by 90°. The tangent vector 
tj is defined as:
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Figure 3.2: Illustration for the movement of a snaxel with respect to the continuity energy: 
the snaxel Vi moves towards the snaxel candidate v\ as the continuity energy is 
minimised.

External Energy

The external energy function attracts the deformable contour to interesting 
features, such as object boundaries in an image. Any energy expression that 
accomplishes this attraction can be considered as the external energy. In 
this work, the Laplacian in a 3x3 region is used to provide the gradient 
information.

The external energy function is expressed as

f3Eext{vi) =  g -V 2/(u i) (3.11)

where the Laplacian of a 2D function /(•) is a second-order derivative defined
as

V2/  = d2f  , d2f
+dx2 dy2

The constant g is provided to adjust the relative weights of the terms

(3.12)

3.3.3 Dynamic programming

The concept of an active contour model using dynamic programming, origi-
nally introduced by Geiger [29], is employed in this work. For local optimi-
sation methods such as the greedy algorithm, the optimisation process of the 
snake’s energy function takes place at each snaxel locally without regard to
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Figure 3.3: Illustration of the snaxel movement according to the balloon force: the position v[ 
having minimum energy is chosen as a new candidate for the snaxel V{.

how the current decision affects the total energy of the solution. However, 
the implementation of the dynamic programming results in repositioning 
the snaxels optimally within the search neighbourhood for each iteration by 
considering all possible choices.

The dynamic programming formalism also allows enforcing hard con-
straints such as a limit on the distance between snaxels on the contour. 
Finally, in the discrete dynamic programming formulation, the active con-
tour is guaranteed to converge to a final solution in a finite number of iter-
ations since the energy measure is monotonically decreasing with time [1 ]. 
This is an important feature for implementing a real-time system since the 
maximum processing time is always predictable.

The energy minimising function Emin consists of a set of sub-functions 
of which each sub-function corresponds to a pair of adjacent snaxels [29]:

E(v0,v i , . . .  ,n„_i) =  E0(v0,vi) +  Ei(v i,u2) H------- h En- i(un-i,wo) (3.13)

Each snaxel takes one of m candidates as its updated position while the 
number of candidates m generally corresponds to the number of the possi-
ble locations within the given neighbourhood matrix2. An approach to solve 
this minimisation task is to employ exhaustive searching by considering the 
problem as a m x n-dimensional travelling salesman problem. However, this 
exhaustive search dramatically increases the processing time. A more effi-
cient strategy is to use discrete dynamic programming, assuming an updated 
snaxel position v[ as a state variable in the z-th decision stage. Dynamic 
programming determines the minimum not by means of derivatives, but 
rather by a straightforward search technique. Since the minimisation of the

2A 3x 3  neighbourhood matrix is used for this application.
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Figure 3.4: Demonstration for a snake using dynamic programming: the blue arrow stands for 
a link which creates minimal energy, and the red ones represent the traces of an 
optimal contour.

energy function can be viewed as a discrete multistage search process, the 
technique of dynamic programming can be applied to the active contour 
models. Starting from the initial point on the contour, the minimisation 
problem is treated as one where each of a finite set of minimisation stages 
corresponds to snaxel positions.

The dynamic programming solution involves generating the sequence of 
optimal value functions sq where for obtaining each Si a minimisation is 
performed over a single dimension over tq. The function Sj is defined as:

Si(vi) =  min (si_i(uj_i) +  £*(ui_i, Vj)) (3-14)
V i —  1

Figure 3.4 shows an example in case of nine candidates per stage, of 
which each candidate corresponds to an entry in the 3 x 3  grid of the neigh-
bourhood matrix centred at the current snaxel position rq. The first column 
of Vi is a position matrix where each entry represents the index of the can-
didate chosen from the t>j_i neighbourhoods, while the values in the second 
column show the energy costs propagated from the selected candidates in 
the first column. The numbers associated with given arrows correspond to 
the internal energies of the possible choices in decision sets. For each can-
didate of the next snaxel 1 , the candidate at the u, having the minimum 
sum of the forward cost and internal energy is selected. By tracing back the 
minimum energy snaxels in the position matrix from the last snaxel column, 
an optimal contour can be found.
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Approximate boundary

Figure 3.5: The definition of convexity defects with respect to the convex hull created around 
an object boundary.

3.3.4 Convexity defects driven active contour models

A drawback of using an active contour model is that their convexity prop-
erties are poorly understood. Specifically, it has been known that active 
contour models are non-convex and that solutions are rather complex for 
real-time applications [106, 17, 18]. Some known solutions often involve dis-
continuities in the final contour, and this accounts for the phenomenon of 
convergence to the wrong result.

Since the morphological operation should provide an initial contour en-
closing a target object, an active contour model shrinks inwards as the 
energy minimisation proceeds. The outline of a non-rigid object usually 
involves concave curvatures. Although the negative balloon force enforces 
the snaxels to move towards the centroid of the contour, the contour may 
not reach the global minima due to the continuity energy which controls the 
regularity of the active contour. The continuity energy involuntarily hinders 
the snaxels from approaching to the concave curvatures of the target bound-
ary by decreasing the edge-sensitivity of the active contour. Therefore, the 
aim of this section is to find a relatively simple solution which improves the 
segmentation performance at concave boundaries. By analysing the concav-
ity of the target boundary, a set of weighting constants which facilitate the 
contour deformation to overcome the undesirable effects of the continuity 
energy is proposed.

A solution to this problem could be to individualise the snaxels according 
to their geometrical relationships. In the beginning of each active contour 
evolution, a convex hull is created around the initial boundary of the ac-
tive contour. A sequence of snaxels in the initial boundary exists normally
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Figure 3.6: Typical examples for an active contour model with support of convexity defects: 
segmentation results (a) with and (b) without concavity analysis. The results are 
superimposed by the ShadowFlash result.

between two consecutive convex hull vertices while each pair of the ver-
tices form a line segment. For each sequence, a convexity defect is defined 
as the maximum vertical distance between the sequence and correspond-
ing line segment. For example, the convexity defect of a sequence adjacent 
to/overlapping the corresponding line segment is zero. Finally, the energy 
function for a given active contour V  in Equation 3.4 can be improved as

n

E{ V)  = (a-  Eint (vi) +  (3 ■ Eext (vt)) (3.15)
i= o

where m is the convexity defect corresponding to the i-th snaxel. The def-
inition of convexity defects is shown in Figure 3.5 while a typical example 
demonstrating the influence of the convexity defects analysis is presented in 
Figure 3.6.

3.4 Experimental results

T his section presents the evaluation of the proposed segmentation ap-
proach. Image sequences with the resolution of 324x244 were collected 

at 30Hz by a 12-bit grey scale HDR camera with supplementary active il-
luminations introduced in Chapter 2. Over 40 different objects including 
both rigid and non-rigid shapes are used for capturing the test sequences 
under varying illumination conditions. While the position of the camera 
remains stationary, a reference background is obtained. The fixed pattern 
noise caused by the imager as well as the background image components is 
eliminated by subtracting the reference background from the sequences. The 
reference background used in this experiment is shown in Figure 3.7. Af-
ter suppressing the lens distortion using the pre-calibrated lens parameters,
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Figure 3.7: The reference background used in the experiment: due to its low contrast, the 
brightness level of the reference background is manually improved while a passenger 
seat is shown in the scene (see Figure 6.2). The static fixed pattern noise presented 
in the input sequences is suppressed by the background subtraction process.

the DoubleFlash technique is applied to the sequences to generate ambi-
ent illumination-independent frames. The real-time ShadowFlash creates 
shadow-free image sequences without reduction of the frame rate.

Figure 3.8 shows an example of successful segmentation for a non-rigid 
object belonging to the Adult class. Figure 3.8(a)-(c) were illuminated by 
three active light sources from different directions while Figure 3.8(d) is im-
aged by only ambient illumination. These four consecutive frames formed a 
quadlet of input images which were used for the real-time ShadowFlash tech-
nique. Since 33 milliseconds of time delay (30Hz) exist between the frames, 
motion of the person is noticeable. The result of the ShadowFlash applied 
to the input quadlet is shown in Figure 3.8(e) where most of the shadow pre-
sented in the input quadlet was successfully removed. Figure 3.8(f) shows 
the result of the texture similarity measurement described in Equation 3.2, 
and its binarised version is shown in Figure 3.8(g). Following morphological 
operations, the image fragments were merged together in Figure 3.8(h), and 
the approximate boundary for initialising an active contour model in Fig-
ure 3.8(i) was generated from the largest image blob in Figure 3.8(h). By 
investigating the concavity of the active contour with respect to the convex 
hull in Figure 3.8(j), the object of interest is successfully extracted by the 
active contour model as shown in Figure 3.8(k).

A typical rigid object in the FFCS class is segmented in Figure 3.9. As 
a result of the morphological operations, a small image fragment is acciden-
tally combined with the target object blob resulting in an artifact on the 
approximate boundary as shown in Figure 3.9(h) and (i). The convexity de-
fect at this artifact is minimal since the artifact is in contact with the convex 
hull. Despite of the minimal convexity defect, the influence of the artifact 
is practically removed after the active contour deformation as shown in Fig-
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ure 3.9(k). Another segmentation example for the RFCS class is presented 
in Figure 3.10. The artifact produced by the morphological operations is 
also successfully suppressed by the snake deformation. Nevertheless, the 
boundary approximation at the concavity failed regardless of the improved 
mobility based on the convexity defect analysis.

The advantage of employing the ShadowFlash technique for the segmen-
tation process is evaluated in Figure 3.11. The image on the left side of 
Figure 3.11(a) was illuminated by a single light source creating the strong 
cast shadows on the object surface, while most of shadow was suppressed 
in the ShadowFlash image on the right side. The textural similarity be-
tween the object and background in the shadowed region was significantly 
increased due to the reduction of the average brightness level, and the ini-
tial boundary was generated improperly, causing the snake evolution to fail 
(shown in the left side of Figure 3.11(b),(c) and (d)). On the other hand, 
the input image on the right side, in which the irradiance of the surface was 
homogeneous, did not suffer from the effect of shadows. In the right side 
of Figure 3.11(d), the segmentation performance was dramatically improved 
after employing the ShadowFlash compared to the one with a single light 
source. Two more examples are shown in Figure 3.12 and 3.13 for the eval-
uation of the ShadowFlash effect with respect to the proposed segmentation 
process. In both cases, the segmentation results were significantly corrupted 
due to the uneven distribution of illumination.

An example of a less successful case is presented in Figure 3.14. Although 
the ShadowFlash method improved the homogeneity of the intensity level, 
the textural property of the target object in the scene was unexpectedly 
similar to the one of the background. As a consequence, the high textural 
similarity led the thresholding process to obtain the undesired result for the 
initial boundary creation.

3.5 Precis

In this section, the problem of extracting the boundaries of non-rigid ob-
jects is addressed. The influence of ambient illumination and cast shadows 

were minimised by employing the DoubleFlash and ShadowFlash techniques 
demonstrated in Chapter 2. The similarity measurement between each input 
frame and reference background produced object candidates after threshold-
ing. Morphological operations were employed to combine image blobs as well 
as to eliminate noisy image fragments. The largest image blob among the 
candidates was chosen as a target object, and an approximate boundary 
was extracted from the image blob for initialising an active contour model. 
Convexity defects were computed to improve the mobility of the active con-
tour while dynamic programming was employed for the energy minimisation
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method.
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0 ) (k)

Figure 3.8: Segmentation result applied to the Adult class. The background of the input quadlet 
is beforehand suppressed using the reference background shown in Figure 3.7: (a)-(d) 
the quadlet of input frames, (f) the texture similarity image, (g) the thresholding 
result applied to (f), (h) the morphological operation result, (i) the approximate 
(initial) boundary for the snake evolution, (j) the convex hull and (k) the snake 
result.
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Figure 3.9: Segmentation result applied to the FFCS class. The artifact on the initial boundary 
is successfully removed after the snake evolution: (a)-(d) the input quadlet, (f) the 
texture similarity image, (g) the thresholding result applied to (f), (h) the morpho-
logical operation result, (i) the approximate (initial) boundary, (j) the convex hull 
and (k) the snake result.
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Figure 3.10: Segmentation result applied to the RFCS class: (a)-(d) the input quadlet, (f) the 
texture similarity image, (g) the thresholding result applied to (f), (h) the mor-
phological operation result, (i) the approximate (initial) boundary, (j) the convex 
hull and (k) the snake result.
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Figure 3.11: The effect of the ShadowFlash technique applied to the segmentation process: (a) 
left: the input image illuminated by a single light source and right: the Shad-
owFlash image, (b) the textural similarity measurement results, (c) the image 
blobs after conducting the morphological operations, (d) the active contour ap-
proximation results.
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Figure 3.12: Another example for segmentation via the ShadowFlash technique: (a) left', the 
input image illuminated by a single light source and right: the ShadowFlash image, 
(b) the textural similarity measurement results, (c) the image blobs after conduct-
ing the morphological operations, (d) the active contour approximation results.
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Figure 3.13: The evaluation of segmentation result with the ShadowFlash technique: (a) left: 
the input image illuminated by a single light source and right: the ShadowFlash 
image, (b) the textural similarity measurement results, (c) the image blobs after 
conducting the morphological operations, (d) the active contour approximation 
results.
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Figure 3.14: Example of less successful segmentation: the boundary approximation failed due 
to the loss of textural information caused by the high textural similarity between 
the target object and reference background: (a)-(d) the input quadlet, (f) the tex-
ture similarity image, (g) the thresholding result, (h) the morphological operation 
result, (1) the approximate (initial) boundary, (j) the convex hull and (k) the snake 
deformation result.
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4.1 Motivation

Image acquisition always contracts the three-dimensional information of 
the scene to two-dimensional information of the image due to the pro-

jection on the 2D image plane. Therefore the reconstruction of the depth 
information from the 2D image is a fundamental problem in machine vision. 
Since fast and non-contact shape measurements are of significant importance 
in various applications such as industrial inspection, robot vision, surveil-
lance as well as virtual reality, the technologies for three dimensional shape 
measurements have been in a phase of rapid development for a number of 
years [42].

For example, faced with the increasing demand for various vision-based 
vehicle in-cabin monitoring applications, the capability of providing three- 
dimensional information has become increasingly important. The recon-
struction of object surfaces necessitates greater power and bandwidth of im-
age processing hardware to handle the accumulated data as well as special 
sensors for acquiring images. The higher processing power and bandwidth 
results in dramatically higher overall system costs. Therefore, the research 
for implementing a 3D-based vision system with an embedded platform of 
low cost is of great importance for industrial applications in terms of mass 
production.

In this chapter, the problem of developing a low-cost single camera solu-
tion capable of 3D surface reconstruction is addressed. Various 3D sensing 
techniques are introduced followed by a discussion on the drawbacks of clas-
sical stereo vision techniques. The necessity of a low-cost real-time 3D shape 
reconstruction system has led to the use of photometric stereo methods in 
which an object surface is computed by integrating shading information. 
Upon examination of the fundamentals of the photometric stereo method. 
Wei’s algorithm [104] is chosen as the surface integration method of the 
proposed system. Finally, the advantages and drawbacks of the proposed 
system compared to the stereo vision based systems are discussed, and the 
experimental results are presented.

4.2 3D sensing techniques and their limitations

Given tremendous advances in computer vision, it is no longer a prob-
lem to process the data from 3D object surfaces even in real-time. The 

problem which remains is the fast and precise acquisition of the depth infor-
mation within a large volume and a natural environment. There are vari-
ous methods for 3D sensing techniques, which deliver the three-dimensional 
shape and physical dimensions of an object. From the knowledge of the 
underlying physical and theoretical principles which define the limitations 
of the shape reconstruction performance, an optimal 3D sensing technique
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can be selected to satisfy the environmental requirements of the given ap-
plication.

The vast number of known 3D imaging techniques are based on three 
different principles [42]: triangulation, time-of-flight measurement and in-
terferometry. Triangulation is the most widely used technique for opti-
cal shape measurements. Systems based on this method lise mechanically 
scanned illumination, structured light projection or stereoscopy with several 
stationary cameras. The rapid progress of optical triangulation, especially 
(1) active methods with structured lighting, (2) passive methods with dig-
ital photogrammetry, and (3) combinations of both, is already a big step 
towards the goal of real-time stereo vision. Time-of-flight techniques detect 
distance by measuring the time of flight of the envelope of a modulated op-
tical signal. Methods based on interferometry measure depth also by means 
of the time of flight, but they require coherent mixing and correlation of the 
wavefront reflected from the target object with a reference wavefront.

This section introduces a number of 3D sensing techniques employed 
to the wide range of industrial applications requiring shape reconstruction. 
The discussion is focused mainly on, but not restricted to, their suitability 
to the occupant detection system. Since the aim of this work is to propose 
an alternative framework with the comparable performance to stereo vision 
based occupant detection systems, a further discussion is presented on stereo 
vision techniques in terms of both economical and theoretical aspects in 
Section 4.3.

4.2.1 Ultrasonic imaging

Ultrasonography is a cheap, widely available and non-hazardous imaging 
modality for estimation of volumes by analysing 3D ultrasound data which 
promises accuracy and precision. This technique is especially useful to re-
liably calculate volumes of organs in medical imaging. However, the at-
tenuation of the ultrasonic beam sets the practical limitation on the range 
of depth measurement and this restricts the applicability of the ultrasonic 
imaging technique. Additional difficulties with ultrasound are the significant 
sensitivity of the propagation speed of sound to pressure and temperature.

4.2.2 Laser scanning

Laser scanning is another non-contact 3D sensing technique based on the tri-
angulation principle where the distance to the object is computed by means 
of a directional light source. This technology uses the same principle as laser 
targeting systems in military aircraft for air or ground targeting. By paint-
ing a surface using a laser beam, the laser triangulation sensor determines 
the depth and in some cases, the orientation of the surface being observed.
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The more sophisticated versions feature scanning lasers that project a plane 
instead of a spot onto the surface of the object. The laser plane projection 
and its degree and direction of distortion can be analysed to render orien-
tation information about the target surface. A major advantage compared 
to other sensing techniques is the possibility for parameter optimisation for 
every measure point and which provides high depth resolution and accuracy 
compared to other depth sensing techniques. The use of laser also means 
that the sensor is impervious to all ambient lighting changes. However, the 
laser scanning technique requires complex signal processing to detect quan-
titative depth information with reasonably high resolution at video frame 
rate. Eye safety is another important factor to be concerned with prior to 
employing this technique.

4.2.3 Structured lighting

Structured lighting is an active triangulation method which calculates the 
three-dimensional shape of the object based on the deformation of the light 
patterns projected on the target object’s surface. The calculations are simple 
and fast so that the shape of the scene could easily be extracted, provided 
that the feature points of the projected pattern are accurately detected. 
However, in reality, it is difficult to implement an accurate pattern using an 
infrared light source due to the constant vibration in the vehicle environ-
ment. Furthermore, such patterns may not provide enough resolution tor 
object classification.

4.2.4 Time-of-flight cameras

Recently, a time-of-flight (TOF) imager which consists of an array of single 
point distance measurement units measuring the runtime or phases of the 
emitted light from a supplementary light source, is of great interest in the 
industry. The TOF imager has a great advantage in that it directly mea-
sures the absolute depth as well as the local brightness and determines a 
complete distance map of the scene without any delay. Due to the contin-
uing advances of solid-state technology, measurement precision will soon be 
in the millimeter range, and such cameras will be miniaturised to a size not 
much larger than the conventional CCD cameras. Nevertheless, as the mea-
surement range is limited by the maximum radiant power, the possibility of 
violating the eye safety still remains to be solved.

4.2.5 Shape from shading

The reconstruction of non-planar surfaces from a single irradiance image is 
one of the classical tasks in scene analysis [48]. The shape-from-shading 
techniques deliver 3D information as normal vectors of the surface elements
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from the image irradiance and the known position of the camera and the 
light sources. By integrating the surface normal vectors, the 3D shape of 
a target object can be computed. The major advantage of this method is 
the economical hardware requirements compared to the other 3D sensing 
techniques. However, as there is insufficient information contained in an 
arbitrary irradiance image to reconstruct the object surface unambiguously, 
a shape-from-shading based surface reconstruction system is far from being 
a complete and video-rate depth image acquisition at the moment.

The problems with shape-from-shading has led to the proposal of the 
photometric stereo method which reconstructs the object surface by utilising 
multiple irradiance images [109]. The difficulties with shape-from-shading 
could be mitigated by acquiring multiple images of the object under differ-
ent illuminations. Each image provides one constraint on the normal, and 
therefore two images are sufficient to recover the normal up to small num-
ber of possible solutions, and three images yields a unique solution for each 
image pixel. Photometric stereo enables relaxing the strong smoothness con-
ditions imposed by classical shape-from-shading approaches, and therefore 
yields more reliable shape estimates.

4.2.6 Stereo vision

The technical realisation of the passive triangulation method called stereo 
vision is the classical approach towards shape recovery which has been used 
in photogrammetry for many decades. Static stereo analysis denotes a very 
active field of research in computer vision where it is assumed that at least 
two cameras capture a scene at the same time or within certain time interval. 
For depth information, multiple cameras are required with known relative 
positions or self-calibrating methods. Stereo vision is the most widely em-
ployed shape reconstruction technique for industrial applications due to the 
well-established underlying principles as a result of intensive research for 
decades as well as the resemblance to the human vision system.

Most of currently available commercial occupant detection systems are 
based on the binocular-stereo vision technique with support of active illu-
mination. However, high computing power with multiple cameras signifi-
cantly increases the overall system implementation cost. Major advantages 
of this technology are its independence from object dimensions and maturity 
of underlying principles. Its drawbacks include more expensive specialised 
sensors, larger physical size, and more difficult calibration. Further detailed 
discussion about the stereo vision techniques is presented in the following 
section.
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( a ) (b)

Figure 4.1: Non-standard stereo geometry vs. standard stereo geometry: (a) a general geometric 
situation with arbitrarily placed cameras and (b) a standard stereo geometry where 
two image planes are coplanar.

4.3 Stereo vision techniques

T his section discusses the drawbacks of the classic multi-camera based 
stereo vision techniques in terms of the cost-performance effectiveness 

for industrial applications.

4.3.1 Fundamentals

Figure 4.1(a) shows a general geometric situation with arbitrarily placed 
cameras. An epipolar line is the intersection of an epipolar plane with an 
image plane where the epipolar plane is defined by the surface point Psurface 
and the optical centres of the two cameras Oieft and Oright■ This epipolar 
line significantly simplifies the image matching process by constraining all 
the object points on the epipolar line in the left image plane to be pro-
jected into the corresponding points on the epipolar line in the right image 
plane which is uniquely defined by the left epipolar line. However, since the 
calculation of the epipolar lines involves complicate triangulation processes, 
most practical stereo vision systems employ a proper arrangement of cam-
eras which leads to a simplification of the epipolar line estimation called 
standard stereo geometry [48]. With the use of the standard stereo geome-
try, the epipolar lines in the two image planes coincide with the horizontal 
scanning rows of the images, and this simplifies the estimation of epipo-
lar lines underlying the binocular image acquisition situation as shown in 
Figure 4.1(b).

Figure 4.2 illustrates the fundamental concept of the depth estimation in
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Figure 4.2: Illustration of the basic concept of the stereo vision technique: (a) the standard 
stereo geometry where two image planes are coplanar and (b) the triangulation 
process in case of the standard stereo geometry. P denotes a point on the ob-
ject surface while O ief t  and O r ight represent the camera origins. Two black lines 
stretched from the origins are the optical axes of two cameras. The focal length /  
is defined as the distance between the camera origin and the image centre.

case of the standard stereo geometry. The a pair of image planes generated 
by two different cameras are coplanar while the focal lengths of the cameras 
fleft and fright are identical. In case that the coordinate system is oriented 
at the left camera, the focal points of the left and right camera lie at the 
camera origins O;e/t =  (0,0, 0) and Oright =  (b, 0, 0), respectively. While the 
distance between two cameras defines the camera baseline b, the two optical 
axes of the cameras are assumed to be parallel. Suppose that a object surface 
point P  =  (X, Y, Z ) is projected into two corresponding image points

Pleft =  {pClefti Vleft) and Pright = i r̂ighti Vright)

in the left and right image plane, respectively. The disparity between the 
projected image points with respect to the projected image point p ief t is 
defined as

Uleft) =  i,x left ~~ xrighti Vleft — Vright)-
Since the two image planes are coplanar, yieft is identical to yright and the 
definition of the disparity can be simplified to

^(Xle/t) =  (%left bright)-

The triangulation process for estimating the distance between the object 
surface and left camera is illustrated in Figure 4.2(b). The depth Z with 
respect to the focal points of the two cameras is defined as

z = f _ X _ _ f - { X - b )

%left b r i g h t
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Figure 4.3: The result of a poor correspondence analysis due to the high textural similarity 
caused by the lack of sufficient textures at particular regions: (a) and (b) a syn-
thetic stereo image pair, and (c) the disparity map produced by a region-based 
correspondence matching algorithm.

where /  =  f[ef t =  fright- By eliminating X  from the equations, the depth 
Z is finally expressed as

•Eleft bright

which is a function of the baseline b, the focal length /  and the disparity 
between two corresponding image points. Since the focal length and baseline 
are constant, the absolute depth of an object is proportional to the distance 
between the corresponding pixels.

4.3.2 Limits and drawbacks 

Robustness to homogeneous textures

Stereo vision algorithms operate by correspondence analysis which locates 
same features in both images. Using the geometrical relationship between 
the cameras and the location of the features in each image, the depth of 
each feature can be triangulated and finally used for constructing a depth 
map. The challenge is the successful identification and location of these 
corresponding object features in both camera images.

There have been a vast number of research addressing the computation 
of the disparity between two corresponding points in stereo image pairs for 
decades. These research are mostly based on only two different approaches: 
feature-based and intensity-based correspondence analyses.

If a correspondence matching is based on comparing image features such 
as edges, corners, etc., then this technique is called feature-based correspon-
dence analysis. This approach is less sensitive to the illumination variations. 
Furthermore, the ambiguities in correspondence analysis are significantly re-
duced compared to intensity-based approaches since the number of possible
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candidates for the matching is considerably smaller. Therefore, the accu-
racy of determined disparities are usually higher than the intensity-based 
approaches. Since some problems of the feature-based stereo vision system 
are immediately apparent, the feature-based approaches are less suitable to 
the vision applications where the shapes of target objects are deformable 
(non-rigid) such as the occupant detection systems. First, the depth map is 
sparse since edge features are required in both images to produce points of 
correspondence. Second, the technique fails to extract depth data at points 
where the boundary feature aligns with line separating the camera geome-
try. Because of these limitations, there is currently some on going work on 
combining stereo viewing with other techniques, notably conventional 2D 
image segmentation and shape from shading and texture methods [66].

Intensity-based correspondence analysis is based on the assumption that 
corresponding pixels have a similar intensity value. Since identical intensity 
values can occur in many points of a given image, a set of neighbouring pixels 
in an image window are used for the correspondence analysis by employing 
some similarity measuring functions. Assuming that the illumination con-
ditions of a target scene are controllable, the performance of this approach 
could become comparable to that of the feature-based techniques. However, 
areas with no significant texture or with repetitive texture like a chess table 
increase the image matching ambiguity and mostly lead the system to fail 
to deduce the disparity accurately. For example, since the clothing, hair, 
and skin of passengers in a vehicle often do not include significant textures, 
the occupant detection systems based on the intensity based stereo vision 
frequently fail to provide a dense depth map of the target occupant. Fig-
ure 4.3 shows the result of correspondence analysis performed on a pair of 
synthetic stereo images by a region-based stereo algorithm. The disparities 
on the checker-textured floor are poorly estimated due to the insufficient 
similarity information caused by the absence of textures in these areas.

Implementation cost and hardware complexity

There are several fundamental factors which affect the implementation cost 
of practical stereo vision systems: (1) Although the market prices of imagers 
have been dramatically lowered due to increasing demand of such digital 
imagers, the necessity for multiple imagers is the major factor to increase 
the hardware costs. (2) To minimise the influence of potential illumination 
changes in a target scene, it is inevitable to employ active illuminations for 
most of the stereo vision systems exposed to natural illumination conditions. 
(3) To improve the accuracy of the correspondence analysis, stereo vision 
systems tend to employ high image resolution as well as subpixel techniques. 
The higher image resolution also adds to the overall system cost due to the 
necessity of faster computation and wider bandwidth of image processing 
hardware as well as complex electric wiring. (4) Since a certain amount
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of the baseline distance between two cameras must be guaranteed for the 
satisfactory depth resolution, the dimension of a single stereo vision system 
becomes significantly large. Assuming that several passenger seats have to 
be analysed independently, the integration of multiple stereo vision-based 
occupant detection systems will not be possible within the vehicle interior 
roof of the limited space.

Sensitivity to mechanical vibrations

For example, an occupant detection system is in most instances exposed 
to the wide range of mechanical vibrations. This greatly detracts from the 
stability of the positioning of the sensor arrays during image acquisition, 
and the system should be repaired or re-calibrated after the use of several 
years. This problem may be solved by using not only a single image row 
for the correspondence analysis, rather a certain interval of rows. How-
ever, this solution still can not entirely overcome the problem of constant 
vibrations and/or unintended strong mechanical impacts. In case that both 
stereo cameras are sufficiently well mounted, the problem with vibrations 
can be reduced significantly. Nevertheless, this hardware requirement would 
decrease the applicability of such stereo vision systems.

Depth resolution

The geometrical laws underlying the stereo vision techniques also restrict 
the feasibility of the stereo vision based applications in practice. The depth 
resolution is defined as the number of the depth steps used for describing 
the reconstructed 3D surface of an object. Since the focal length as well 
as the baseline distance of a stereo vision system is constant over time, 
the depth is only a function of the disparity between the corresponding 
pixels in the stereo image pair as shown in Equation 4.1. Finally, the depth 
resolution can be derived by computing the difference between the minimum 
and maximum disparities within the estimated depth range of the target 
object. If the spatial resolution of the camera is not sufficiently high, the 
system may have difficulties to identify the target object due to the limited 
number of the estimated depth steps in case that only a limited physical 
distance between the imager and target objects is allowed.

For occupant detection systems, the favourite location for the cameras 
is the electronic console box near to the room mirror. Assuming that the 
behaviour of a passenger follows a general pattern, the distance between the 
passenger and cameras should lie between 50 to 100 centimetres. Suppose 
that the focal length is 2.5 millimetres, the pixel size of the camera is 7.5 
micrometres, and the baseline distance between two identical cameras is 5 
centimetres. According to Equation 4.1, the disparity dxfar at 100 centime-
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tres away from the cameras is calculated as

_  0.05 x 0,0025
7.5 X 10~6 X dxfar

dxfar =  16.7 pixels.

Similarly, the disparity dxnear at 50 centimetres is

„ „ 0.05 x 0.00250.5 =  ------------- --------------
7.5 X 10 b X dxnear

dxnear =  33.3 pixels.

Finally, the depth resolution Adx of an object located between 50 and 100 
centimetres is computed as

A dx =  dxnear — dx f ar =  16.7 pixels.

The result implies that the depth map reconstructed by the stereo vision 
without support of the subpixel resolution has only 17 depth steps in the 
vehicle environments, and this may not deliver sufficient information for the 
classification.

4.4 Photometric Stereo Method

4.4.1 Introduction

The photometric stereo method (PSM) is an extended version of the shape- 
from-shading (SFS) using multiple light sources, which constructs the rela-
tive depth of the object by using its reflection properties. Unlike the shape- 
from-shading, which suffers from the lack of sufficient information in an 
arbitrary irradiance image to reconstruct the object surface unambiguously, 
it was successfully proven that the photometric stereo method performs the 
surface recovery with greater ease, especially when there are more than three 
light sources.

Since multiple illuminations are already employed for the ShadowFlash 
method, it is simple to apply the photometric stereo method, for there is no 
need to provide additional hardware for such an implementation. The prob-
lem of using the photometric stereo method for this application is that any 
abrupt movements of objects in-between two successive frames may cause 
a significant distortion of the recovered surface. However, after months of 
repeated tests, in reality it has been concluded that the amount of distortion 
caused by motion is acceptable for applications which do not need to make 
decisions frame-wise, especially for systems which do not require high spa-
tial resolution of the scene. The frame rate of the imager is also a primary 
factor which influences the reconstruction performance.
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The overall task of the photometric stereo method involves two major 
procedures: estimation of surface normals, and integration of the object sur-
face from the normal vectors. The estimation of the surface normal vector 
could be performed independent of albedo by solving irradiance equations 
supported by a priori information about the direction and power of the il-
lumination sources [48]. The Frankot-Chellappa algorithm [26], based on 
minimising integrability conditions in the frequency domain, is employed af-
ter a minor modification to improve its robustness for small artifacts caused 
by motion regardless of its disadvantage in the processing time.

4.4.2 Reflection models

The amount of light encoded into the gray value of a particular pixel of 
a digital image can be seen as the result of interactions between surface 
materials and light sources [48]. Since all the shading-based shape recovery 
approaches including the photometric stereo method are influenced by the 
lighting conditions as well as the reflection characteristics of the observed 
objects, it is necessary to model the properties of both the illumination and 
object materials.

To simplify the process of the surface orientation estimation, a Lam-
bertian surface is assumed in this work. A Lambertian surface is a surface 
of perfectly matte properties, which means that it adheres to Lambert’s 
cosine law. Lambert’s cosine law states that the reflected or transmitted 
luminous intensity in any direction from an element of a perfectly diffusing 
surface varies as the cosine of the angle between that direction and the nor-
mal vector of the surface. As a consequence, the luminance of that surface 
is the same regardless of the viewing angle.

The reflection properties can be represented relatively easily by a so- 
called reflectance map originally introduced in [36]. The reflectance map 
R(p, q) determines the proportion of light reflected as a function of p and q, 
where the quantity (p , q) is referred to as the gradient vector defined as

g r a d ( Z )  =  ( p .q f  =  (| i ,| i )  (4.2)

at the image point (x,y) with a surface function 2 =  z(x,y).
Finally the Lambertian reflectance map can be derived using normalised 

dot products of the surface normal vector n =  (p, q, — l )7 and the illumina-
tion direction vector s =  (pSl qs, — 1)T based on the radiance equation [39]:

R( n°) = E 0 ■ p 

E q ■ p

noTs°
p ■ ps +  q ■ qs +  1

V'p2 + g2 + 1 • VpÎ + QÎ + 1
n

where n and s' (4.3)
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where Eq denotes the light source irradiance and p represents the albedo 
which describes the ratio of reflected to incoming radiation.

Assuming that each surface element receives the same irradiance, the 
scene radiance, and hence image intensity, depends only on the surface nor-
mal defined by the surface gradients p and q. Since the viewed image inten-
sity is directly proportional to the surface radiance [32], the image intensity 
E {x ,y ) and reflectance map R(p,q) can be made equivalent by setting the 
proportional constant c to one:

E{x, y) =  c - R(p, q) ~  R(p, q). (4.4)

This result, called the image irradiance equation, is the most important 
tool to describe the relationship between irradiances, scene radiances, and 
surface gradients as the equation is the basis of the shading based shape 
recovery methods [48].

4.4.3 Surface normal estimation

In case that the illumination direction and the reflectance function of a given 
surface are known, a constraint could be provided to the orientation of the 
surface normal. Assuming that a Lambertian surface is illuminated by a dis-
tant point source of intensity Eq, Equation 4.3 associated with Equation 4.4 
can be rearranged as

noTs° = ~ — — =  constant. (4.5)
E0 ■ p

Since the intensity value of the surface E(x,y)  is constant, the passible can-
didates of the surface orientation can be displayed by a right circular cone as 
shown in Figure 4.4(a). This explains the difficulty of the surface normal es-
timation using the shape-from-shading approach with a single light source. 
Since there is an infinite number of possible solutions, the surface orien-
tation can only be determined uniquely in special cases requiring sufficient 
constraints. To determine local surface orientation without such constraints, 
additional information is required. The simplest approach is to take mul-
tiple shaded images illuminated by the light sources in different positions, 
rather than one. This is called the photometric stereo method, originally 
introduced in [109].

In case of three light sources, the image irradiance equations of the sys-
tem are defined as

Eoi ■ p ■■ n oTs l

E02 ■ p'■ noTS2

Eq3 ■ p ' n°TS3

Ei
E2
e 3
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(a) (b)

Figure 4.4: Illustration of the set of solutions of the different shading based shape recovery 
methods represented by the right circular cones. The red area shows the candidates 
of the surface orientation: (a) the shape-from-shading approach with a single light 
source and (b) the photometric stereo method with three light sources.

Since the normalised surface normal n° is a part of all equations, the equa-
tions can be represented in a matrix form:

E =  pE0 • S • n° (4 .6 )

where the image irradiance matrix E is

E =  { E i ,  i?2, E j , ) T

and the light source irradiances are represented as the diagonal matrix

Eo =

The illumination direction vectors are also described by the matrix

S =  (s°,S2, S3)7" =

- E ’o i 0 0

0 E 02 0

0 0 E o s

slæ s ly SU
«° «° s°b2x *2y *2z
«° «° «° b3x *3y *32

After inverting the matrices Eo and s, the unit surface normal n° scaled by 
the albedo p can be derived as

p ■ n° =  S ' 1 E o“ 1 -E . (4.7)
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(b)

Figure 4.5: Illustration of the estimated surface normal candidates in the existence of various 
noise sources: the red area represents a set of the possible surface normals with 
errors.

Since the surface normal vector n° is a unit vector, the equation can be 
rearranged by dividing the equation by its norm:

S“ 1 • E 0_1 • E 
S“ 1 -Eo ' 1 • E|| '

(4.8)

Finally the surface normal vector becomes independent of the surface reflec-
tivity p. This property is helpful for the realisation of an albedo-independent 
photometric stereo method, since only the irradiances and the directions of 
the light sources have to be known, and discontinuous albedo changes are 
more likely for real-world objects. Figure 4.4(b) illustrates that the unique 
solution of the photometric stereo methods using three light sources is found 
at the intersection of three right circular cones.

4.4.4 Surface integration

Since the surface normals obtained by the photometric stereo methods only 
describe the orientations of the surface, these information still have to be 
transformed into depth to provide sufficient three-dimensional information 
of the object. The estimation process of the surface normals involves various 
noise sources such as sensor noise, optical lens distortions, non-linear transfer 
function of the sensor, etc. Therefore, the shape reconstruction accuracy 
depends significantly on the performance of such a transformation module. 
Figure 4.5 shows that the number of the possible surface normal solutions 
under the influence of noise becomes larger compared to Figure 4.4(b). The
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objective of these transformation algorithms is to minimise the ambiguities 
in these solutions.

There are two prominent approaches to recover the object surface from 
the surface normals: local propagation and global minimisation [49].

Local propagation

Local propagation approaches start from a single reference surface point or 
a set of surface points where the shape either is known or can be uniquely 
determined and propagate the shape information across the whole image. 
In [15] Coleman proposed a surface reconstruction method which starts the 
integration in the middle of the gradient field scanning all four quadrants 
in column direction where their initial path forms a cross in the array. The 
averaged surface normal is computed from two points in sequence, defining 
a surface tangent from the previous point to the next location. Healey ex-
tended this to an eight-point method in [34]. Another scanning path parallel 
to the x- or y-axis, where the gradient values were averaged for obtaining 
increments in height, was proposed by Wu in [112]. Bichsel [5] developed 
an efficient minimum downhill approach which directly recovers depth and 
guarantees a continuous surface. Given initial values at the singular points, 
the algorithm looks in eight discrete directions in the image and propagates 
the depth information away from the light source to ensure the proper ter-
mination of the process. Although all these algorithms are relatively faster 
than the minimisation-based techniques, such local propagation algorithms 
have the drawback that errors may be propagated without any control mech-
anisms.

Global minimisation

Global minimisation approaches compute the solution which minimises an 
energy function over the entire image. The function can involve the bright-
ness constraint and other constraints such as the smoothness constraint, 
the integrability constraint, the gradient constraint, and the unit normal 
constraint [38, 39, 37, 26, 118, 110, 117, 104],

Frankot and Chellappa presented a solution to enforce strict integra- 
bility in an iterative shape-from-shading algorithm while the integrability 
constraint is based on minimising the following function [26]:

where the gradient values on the target surface Z(x ,y ) are Zx and Zy: and 
p and q are the estimated gradients obtained by shading-based shape recon-
struction methods. The original solution for the surface slopes is projected

(4.9)
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onto a subspace of surfaces which can be represented by a set of Fourier basis 
functions, and fulfills automatically the integrability constraint. The advan-
tage of this algorithm over other approaches which incorporate integrability 
by the use of a penalty function, is the enforcement of strict integrability, 
whereas the penalty term affects the solution only close to integrability.

In [104], Wei introduced another constraint to deal with the local deflec-
tion of the surface area and curvature, and the cost function to minimise 
was extended to

JJ ( (Zx -  p f  +  (.Zy -  dxdy

+ A

+

(Z ‘x +  Zy) dxdy

{Zxx +  ^Zly +  Zyy) dxdy (4.10)

where the subscripts represented the partial derivatives of the surface. The 
non-negative parameters A and y  established a trade-off between the con-
straints. By formulating the special case of Fourier basis functions, the 
optimisation problem is interpreted into the frequency domain while a com-
putationally efficient implementation was possible by using the fast Fourier 
transform. This approach is especially useful when the boundary conditions 
are unknown and the target scene is composed of fairly complicated surfaces.

4.4.5 Advantages and drawbacks 

Texture dependency

As discussed in Section 4.3.2, the problem with employing the stereo vision 
techniques is these techniques' inability to handle surfaces without signifi-
cant textures. This is not suitable for applications which require high ro-
bustness in the case that the operational environments experience a limited 
range of textural variations. Since the depth estimation of the shading- 
based surface reconstruction methods does not depend on the accuracy of 
the correspondence analysis but only depends on the reflection property of 
the given input images, the dense representations of surface shape is guaran-
teed unless the dynamic range of the scene exceeds the maximum capability 
of the imager.

Absolute depth vs. relative depth

In contrast to the passive stereo vision approaches, one problem with the 
shading-based shape recovery methods is that only relative depth can be 
produced rather than absolute depth. This means that the prediction of the 
absolute distance between the imager and object could be a difficult task



90 Chapter 4. 3D processing: surface reconstruction

for the shading-based approaches. The rough approximation of absolute 
depth from the given relative depth might still be possible if the geometry 
of the imaging system is completely known. However, the design of such 
an intensive geometry calibration process requires sophisticated algorithms 
with higher computational complexity, which increases the system imple-
mentation cost as well as the difficulty of maintenance, and reduces the 
feasibility of practical low-cost 3D imaging systems. Furthermore, the sur-
face description based on relative depth already provides sufficient amount 
of geometrical information for applications where only the determination of 
object types is considered.

Cost and complexity of implementation

The efficient and economical implementation as well as lower maintenance 
cost are critical factors to assess the feasibility for industrial mass produc-
tion. The proposed system has the great advantage over the stereo vision- 
based systems of a reduced number of hardware components. For example, 
since extremely limited space is reserved for a vehicle interior monitoring 
system, it has been a great problem for the system developers to assemble 
the system into one compact package which suits the customer’s taste and 
such a constraint is not easy to overcome for a stereo vision-based system due 
to its minimum baseline alignment requirement. In contrast, the underlying 
technique of the proposed system requires only one imager with no geometri-
cal constraints. This makes the package design simpler and straightforward 
as greater freedom of placement is allowed. Considering most of the stereo 
vision based systems employ active illuminations for obtaining satisfactory 
brightness in the field of view, the additional costs of the required light 
sources are insignificant compared to the stereo vision system. The loca-
tions of the illumination sources are chosen under geometrical constraints 
imposed by the ShadowFlash technique discussed in Section 2.4. However, 
the problem of wiring the light sources in the limited space in a vehicle roof 
could become a negative factor to increase the implementation complexity.

Surface distortion

There are various noise sources which can cause distortion of the recovered 
object surface. In this section, three major distortion factors which often 
occur in the proposed system are discussed.

Self-reflections and cast shadows Any intra-object or inter-object re-
flections can result in the false computation of surface normals due 
to the unevenly biased surface irradiances. Since the prediction of 
the self-reflections assumes the orientations of all the surfaces affect-
ing the target surface are known beforehand, it is difficult to com-
pletely eliminate the influence of the potential reflections. Similar to
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the self-reflections, shadows cast by strong light sources is another 
primary factor to disturb the surface estimation process. Based on 
the proposed shadow removal technique discussed in 2.4, it is possible 
to generate shadow-free inputs for the photometric stereo method by 
simulating three artificial infinite illumination planes which illuminate 
the surface from different directions. For such a simulation, nine light 
sources located at different positions are required. In this case, the ad-
vantages of the implementation cost and the system compactness over 
the stereo vision based systems will be compromised. The inter-frame 
delay will become another significant factor to reduce the quality of 
the reconstructed surface.

Imager characteristics Since the photometric stereo method assumes that 
the surface intensity is directly proportional to the radiance power of 
the employed light source, the use of a HDR imager could cause surface 
distortion due to its non-linear response characteristics. This problem 
could be resolved by providing an appropriate reflectance map or by 
employing a linearisation process similar to gamm,a correction. Any 
functions affecting the sensitivity characteristics of the imager such as 
the automatic gain control (AGC) must be disabled before the acqui-
sition. Improper design of a lens-undistortion could also cause serious 
defects on the recovered surface as a consequence of the interpolation.

Motion Since the theory underlying the photometric stereo method is based 
on the assumption that no motion is present m the field of view during 
the acquisition process, unrecoverable distortions could occur on the 
reconstructed surface as a consequence of object’s movements. The 
proposed system can be influenced by the motion caused by the frame 
delay due to the sequentially captured input images. There are mainly 
three approaches to minimise the influence of object motion: (1) By 
assuming sufficient frame rate of the imager, the amount of distor-
tion caused by motion would be acceptable for applications which do 
not require frame-wise decision. In general, low time requirement for 
image acquisition only allows the errors caused by the fast moving seg-
ments, which contain minor descriptive information about the target 
object. (2) Downsampling is another approach used to minimise the 
ambiguity of deducing the irradiance vector E by observing the lower 
spatial frequency components. Specifically, this method is preferable 
in the case that only the coarse description of the object shape is re-
quired for subsequent processes. (3) Motion detection techniques such 
as optical flow may enable the estimated motion vectors to compen-
sate for the scene changes between frames caused by objects’ motion. 
However, this approach may not be suitable to provide practical and 
cost saving solutions, considering the complexity of such algorithms.
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4.5 Experimental Results

T he proposed real-time 3D surface reconstruction approach is evaluated 
in this section. The same image sequences used for the segmentation 

evaluation were reused for the experiments. The ambient illumination of 
the sequences were successfully eliminated after applying the DoubleFlash 
method discussed in Section 2.3, while the image distortion caused by the op-
tical lens was corrected using the camera parameters provided by the camera 
calibration. The fixed pattern noise as well as the background components of 
the input sequences were also suppressed by subtracting the reference back-
ground from the sequences. Three sequentially captured image frames were 
finally used as an input triplet for the photometric stereo method for surface 
reconstruction. These input triplets were associated with the segmentation 
results of the shadow-suppressed images for specifying the region of interest 
to reconstruct. The overlapped region of the three segmentation results was 
taken into account for the surface reconstruction. Assuming a Lambertian 
surface, the surface normals were computed from each pixel while some ex-
tremely erroneous vectors detected by simple thresholding were replaced by 
the average of the neighbour surface normals. By minimising the Wei energy 
function presented in Equation 4.10, the object surface was integrated based 
on the estimated surface normals in the region of interest.

4.5.1 Reconstruction examples

Some typical surface recovery examples of the different occupant classes as 
well as the needle map representations of their surface normals are shown 
through Figure 4.6, 4.7, and 4.8. Figure 4.6(f) shows the segmentation re-
sult applied on the ShadowFlash image (e) composed of the input quadlet 
(a)-(d). The object boundary information was used for determining valid 
surface normals for the surface integration process by discarding the normal 
vectors out of the region of interest. As a consequence of flaws in the seg-
mentation results, the surface normals on the fringe of the object tended to 
deviate as shown in Figure 4.6(g). After scaling the relative depth informa-
tion by a constant, the successfully reconstructed surface of the FFCS class 
is presented in Figure 4.6(h). Although the recovered surface experienced 
some distortions caused by the non-linear characteristics and the perspective 
projection of the imager, the recovered object surface provided the sufficient 
information of the shape of the given object. In Figure 4.6, 4.7 and 4.8(i), 
the surface reconstruction results of three occupant classes are shown af-
ter rotated by 90 degrees to display the surfaces on the x-z image plane. 
The surfaces computed by the proposed system did not provide superior 
details of the object shapes to the stereo vision based system. However, the 
apparent difference of the recovered surfaces between the occupant classes 
nonetheless provided sufficient information for distinguishing those classes.
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4.5.2 Evaluation of the reconstructed surface accuracy

The examples for evaluating the surface reconstruction sensitivity to differ-
ent depths is demonstrated in Figure 4.9. Indeed, the quantitative evaluation 
of the reconstructed surface accuracy computed by any shading-based shape 
recovery methods is not simple as the methods only provide relative depth. 
Two input triplets having different depth properties were acquired, and the 
surfaces reconstructed from these inputs were used for a depth comparison 
after being scaled by the same constant factor.

Figure 4.9(a) shows the ShadowFlash results of the input triplets in the 
situations being a child seat occupied by a baby and a child seat with a baby 
holding a toy. The needle map representation of the surface normal vec-
tors and the surface reconstruction results based on the estimated surface 
normals are presented in Figure 4.9(b) and (c), and the 90-degree rotated 
versions of the results are compared in Figure 4.9(d). Similar to the for-
mer surface reconstruction examples, the depth difference caused by the use 
of different objects was successfully reflected in the reconstruction results 
despite the limited descriptions of the surfaces.

Another example is shown in Figure 4.10 to evaluate the accuracy of a 
reconstructed object surface. Two different situations are setup depending 
on a sphere-shaped object and a child seat under the identical illumination 
conditions. The input triplets are displayed on the left side of Figure 4.10, 
where each of the triplet elements is superimposed on the same image plane 
using different colour space. Although the surface of the sphere object is 
significantly distorted as a consequence of the inaccurate surface normal 
estimation, the depth difference between the two examples are apparent 
while the overall shapes of the child seats are successfully recovered as shown 
in the right side of Figure 4.10.

4.5.3 Surface reconstruction of temporal sequences

An example sequence of a vehicle passenger leaning forward is shown in 
Figure 4.11(a). To reflect the general tendency of vehicle passengers’ move-
ments, the behaviour of the passenger was not under control during the 
sequence acquisition. Although the sequence was captured at 30 Hz, only 
every fifth frame of the sequence is displayed in this example. As shown in 
Figure 4.11(b), the surface normals on the passenger’s head often contained 
severe errors due to the estimation ambiguity caused by the inhomogeneous 
surface reflectivity. The intensity values of the input triplet at the outline 
of the object were extremely sensitive to the deformation of the object, and 
such sensitivity often caused the false integration of the surface. In Fig-
ure 4.11(c) and (d), the surface integration results of the given sequence 
from the different views are presented. Despite the considerable time delay 
between input frames, the recovered surfaces maintained the rough shapes
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of the passenger's head and shoulder. The results are encouraging as they 
suggest the possibility of extension of the proposed system to the passenger 
out-of-position detection system.

4.6 Precis

By exploiting the pre-existing active illumination hardware, the photo-
metric stereo method is employed as the surface reconstructing tech-

nique of the proposed system. The suitability of the proposed approach to 
the low-cost real-time 3D imaging applications is compared to that of the 
classical stereo vision techniques under the assumption of operation environ-
ments characterised by objects with no significant textures, close proxim-
ity between the imager and the target objects, and geometrical constraints 
imposed by limited space. The surface normal estimation with three dif-
ferently illuminated input images is discussed followed by the introduction 
of the Wei algorithm [104] based on the global minimisation of several con-
straints. Comparison of the proposed system with stereo vision techniques 
is discussed in terms of ease of implementation, robustness to noise, and 
economic aspects.
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Figure 4.6: Examples of the surface reconstruction of a FFCS class: (a)-(d) the input quadlet,
(e) ShadowFlash result, (f) segmentation result, (g) needle map, (h) and (i) surface
reconstruction results viewed from the top and rotated 90 degree about y -axis.
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Figure 4.7: Examples of the surface reconstruction of a RFCS class: (a)-(d) the input quadlet,
(e) ShadowFlash result, (f) segmentation result, (g) needle map, (h) and (i) surface
reconstruction results viewed from the top and rotated 90 degree about y-axis.
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(h) (i)

Figure 4.8: Examples of the surface reconstruction of an adult class: (a)-(d) the input quadlet,
(e) ShadowFlash result, (f) segmentation result, (g) needle map, (h) and (i) surface
reconstruction results viewed from the top and rotated 90 degree about y-axis.
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(i) (ii)

Figure 4.9: Evaluation of surface reconstruction sensitivity to different depth: (a) the original 
frames, (b) needle map representations, (c) and (d) surface reconstruction results 
viewed from the top and 90 degree rotated, respectively, (i) a child seat occupied 
by a baby and (ii) a child seat with a baby holding a toy.



4.6. Precis 99

Figure 4.10: Comparison of the reconstructed surfaces with different depths: the accuracy of 
the reconstructed surface can be compared using (a) an empty seat and (b) the 
same seat occupied by a sphere-shaped object.
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(a) (b) (c) (d)

Figure 4.11: An example sequence of the 3D surface reconstructed from an adult class: (a)
the original input sequence, (b) the needle maps, (c) and (d) the sequence of the
reconstructed surface viewed from the top and rotated 90 degree, respectively.
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5.1 Introduction

5.1.1 Motivation

One of the tasks most machine vision systems must accomplish is classifi-
cation. Pattern classification could be summarised as the categorisation of 
some input data into identifiable classes via the extraction of significant fea-
tures or attributes of the data from a background of irrelevant details. Pat-
tern classification has found various applications including character recog-
nition, fingerprint identification, minefield detection, vehicle occupant clas-
sification, etc.

The basic idea underlying pattern classification is to extract features, 
which are measurements of quantities considered useful in distinguishing 
members of different classes. Measurements of different features are then 
adjoined to form a feature vector, and the classifier assigns an object to 
a category by utilising the abstraction provided by the feature vector rep-
resentation about the object of interest. Finally, the information obtained 
from the image of an object can be used to identify a point in some multi-
dimensional feature space [39].

The degree of difficulty of the classification problem depends mainly on 
the variability in the feature values for objects in the same category relative 
to the difference between feature values for objects in different categories. 
The variability of feature values for objects in the same category may be due 
to complexity or noise. Noise interferes with all non-trivial decision and pat-
tern recognition problems in some form. Noise can be defined as any prop-
erty of the sensed pattern which is not due to the true underlying model but 
instead to randomness in the real world [21], For example, a large number 
of highly complex transformations arise in pattern recognition. Transforma-
tions such as non-rigid deformations which arise in three-dimensional object 
recognition are far more severe. A good example is the radical variation in 
the image of a constantly moving vehicle occupant. Similarly, variations in 
illumination or the complex effects of cast shadows may need to be taken 
into account.

5.1.2 State of the art

Like other machine vision applications, the efficient representation of a fea-
ture vector as well as the selection of a appropriate classifier are of great 
significance for an occupant detection system. In [55], Krumm proposed 
a t/iree-class occupant classification method based on template matching. 
Principle components analysis was employed to provide a set of prototype 
images from the preprocessed image data. A number of invariant coefficients 
were generated by the eigenvectors extracted from both the intensity and 
disparity data and used for image comparison based on the nearest neighbour
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classifier. Relatively high classification performance was achieved based on 
a limited idealised image set. However, the simple features sensitive to the 
variation of environmental conditions lowered the feasibility of such a sys-
tem.

Legendre moments representation of the edge image obtained from a sin-
gle grey-scale camera was employed as the feature set by Farmer in [23]. In 
order to solve a four-class classification problem, multiple k-nearest neighbour- 
based classifiers were combined by taking the average of the probabilities 
from each of those classifiers. The final decision was made by choosing the 
class with the lowest average distance to its ¿-nearest neighbours based on 
the Manhattan distance metric. Although the classification results were en-
couraging considering the large intra-class variation, the ambiguity of the 
feature set caused by the two-dimensional projection of three-dimensional 
deformable objects might result in insufficient system reliability in reality. 
Furthermore, shape based image matching techniques have been used only 
in limited capacities and are still not mature enough to provide a high degree 
of automated classification process.

The eight-class occupant detection system proposed by Marin-Hernandez 
in [62] utilised the global occupancy description built from the percentage of 
3D points in the 3D surface image for classification. A recursive algorithm is 
proposed to find the minimum number of 3D points which define the external 
surface of the passenger. The areas between the passenger and airbag were 
divided into several regions, and the number of the 3D points counted in 
each region was used for composing a feature vector. The classification 
was made by the method of the k-nearest neighbours based on a relatively 
small database. The contribution of this work was the introduction of the 
volumetric density in three-dimensional representation deduced from the 
geometric information of a given occupant. However, the 3D points density 
became greater in the surfaces closer to the imager because of the severe 
perspective caused by the wide-angle lens configuration. Furthermore, the 
system performance depended entirely on the reliability of the provided 
surface information which could be easily distorted by various noise sources 
such as mechanical vibration, illumination change, partial occlusion, etc.

Koch introduced an occupant detection system using a single mono-
chrome camera with active illumination in [51]. Based on the t/iree-dimensional 
shape representation of occupants, several useful geometrical features were 
defined such as spread angles and blob proportions. Six occupant classes 
were assigned to distinguish the objects in the moderate size of image data 
collected in the real vehicle environment, and the theory of fuzzy logic is 
employed for a classifier. The experimental results successfully showed the 
feasibility of an occupant classification system based on 2D image process-
ing with high performance. The major problem of this work was the lack of 
consideration for the perspective distortion caused by the projection of three-
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dimensional objects into the two-dimensional image plane. By ignoring the 
influence of the projection distortion, the classification rate was significantly 
reduced as a result of the increased ambiguity between the occupant classes.

5.1.3 Summary

In this chapter, the problem of categorising vehicle passengers into several 
predetermined occupant classes is addressed. The aim of this chapter is 
to (1) minimise the system implementation cost by decreasing the role of 
the classifier with computationally efficient and economic features, and (2) 
obtain high reliability as well as performance independence from the severe 
automotive environmental conditions. A number of useful features based 
on both two- and f/iree-dimensional geometric attributes of possible vehicle 
occupants are suggested, in which each feature is designed to discriminate 
at least one occupant class from the other two classes. The dimension of the 
feature vector is limited to 29 dimensions by taking into account beforehand 
the curse of dimensionality problem. To reflect the dynamic properties 
of the occupants, a neural network with the partially recurrent structure is 
proposed as the classifier designed to solve a i/iree-class problem. Two tapped 
delay lines are employed for stabilising the erroneous fluctuation of feature 
values and for providing time-varying weights resulting from the confidence 
change of the extracted features caused by the occupants’ motion.

he choice of distinguishing features is a important design step and de-
pends on the characteristics of the problem domain. Although seeking 

the distinguishing features invariant to any irrelevant transformations of in-
put is an essential task to make the job of the classifier trivial, it was still 
difficult to find apparent features which clearly discriminate all the classes. 
Therefore, each feature is designed to specify at least one class from the 
others. For example, the occupant size could be used for distinguishing an 
adult from the child seat classes. The definitions of the proposed features 
are discussed in this section. Another important design factor to take into 
account is to guarantee the invariability with respect to possible translations 
which could be produced by the movable passenger seats.

5.2.1 Extended Gaussian image: 4 dimensions

The extended Gaussian image (EGI) is a histogram of the surface normals 
computed over a discretised Gaussian sphere. The surface normals are easily 
obtained during surface reconstruction. As it can be expected that the rear-
facing child seat should have a different aspect of its surface direction from

5.2 Feature selection
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the ones from the other two classes, the surface normals can be used as a 
key feature. The object surface is divided into surface patches based on the 
similarity of the surface normal primitives using quadtree subregioning. At 
each surface patch, an averaged surface normal vector is calculated from the 
surface normal primitives belonging to the patch. Consequently, the influ-
ence of the erroneous normal vectors caused by various noise sources such as 
the frame delay and trivial reflectance model can be minimised. Finally, the 
EGI histogram is divided into bins of 90 degrees each, and the number of the 
averaged normal vectors belonging to each bin are calculated. Normalised 
by the sum of the total average surface normals, the /emr-dimensional EGI 
features invariant to translation are defined.

5.2.2 Surface depth: 4 dimensions

The profile of the depth information projected from the top of an object is 
also used as a feature. The relative depth computed as a result of the pho-
tometric stereo method cannot be directly used for the quantitative analysis 
of the object shape. Therefore, the estimated depth values of each input 
frame are normalised to the numbers between zero and one. Since the cam-
era coordinate system differs from the world coordinate system, a rotational 
transformation is performed with a given rotation matrix R  representing 
three partial transformations (pan, tilt and roll angles) in order to provide 
a depth profile projected along the z-axis of the world coordinate system. A 
brief illustration of changing the view point is shown in Fig.5.1. After the 
rotational transformation, the object surface is divided into four equally- 
spaced regions while from the average of the normalised surface depth is 
computed from each region.

5.2.3 Spread axes information: 9 dimensions

With the successful recovery of the object surface, three extrema E\, E2 
and £ 3  on the surface are defined in three dimensional space as shown in 
Figure 5.2. These extrema are used for defining the following useful features:

Spread axes The spread axes are the lines between the centre of gravity 
of the object volume and the extrema.

Spread angles The spread angles az  1 , «X 2 and a x 3 are defined as the 
angles between the spread axes and the coordinate system 

Relative spread angles The relative spread angles /3\2 , P13 and /%3 are 
the angles between the spread axes themselves.

These two angle characteristics and the lengths of the spread axes are used 
as nine key features for the classifier. Since these three feature sets are cor-
related with the centre of gravity, they become invariant to any translation 
transformation. The features become independent of the object size as well
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Virtual view
m  Camera view

(b)

Figure 5.1: Features from depth information: (a) the camera calibration provides the rotational 
matrix R with respect to the world coordinate origin. In principle, all the three- 
dimensional features are rotationally transformed in order to make them correctly 
viewed from the top, and (b) the four equally spaced regions are defined on the object 
surface and the average depth levels of these regions are utilised as 4-dimensional 
features.
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'2

X2

Figure 5.2: Spread axes information: the extrema E i, E2  and E 3  are defined as a most upper, 
most front (left) and most rear (right) point on the recovered surface, respectively.

as its absolute position by being normalised by the maximum value of each 
feature set. A few examples are shown in Figure 4.6, 4.7, and 4.8(i).

5.2.4 Relative position of the upper extremum: 1 dimension

The relative position of the upper extremum E\ along the x-axis could be 
a good clue to specify the rear-facing child seat class against the other two 
classes. As shown in Figure 5.2, the relative position Pg, is simply defined

where W  and We 1 are the width of the object and the distance along the 
x-axis between the El and E3, respectively. This feature is independent of 
translation since the feature value is only correlated with/normalised by the 
width of the target object.

5.2.5 Volumetric ratio and compactness: 2 dimensions

As it is not possible to recognise what happens behind the object, it is dif-
ficult to define the absolute volume of the object. Even if the assumption 
is made that the object has a flat back side, the volume of the target may 
still be extremely sensitive to the segmentation result. For example, a few 
pixels of errors in extracting the object boundary may result in a signif-
icant overestimation of the volume due to a couple of improper z-layers

as
(5.1)
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produced by the erroneous boundary during the surface integration process. 
Consequently, the ratio of the three-dimensional surface area to the two- 
dimensional boundary area is defined as the volumetric ratio, which should 
increase as the volume of the object expands. Assuming a flat back side, the 
proportion, or compactness, of the object volume to a hexahedron enclosing 
the object could also provide robust estimation of its volume.

5.2.6 Other 2D geometric information: 9 dimensions

In [40], Hu derives a set of seven functions which make use of the central 
moments of an image blob. Their output is independent of any translation, 
rotation or mirror image of a particular blob, and they can be used in 
conjunction with both the image blob itself and the edge-processed contour 
image. Hu’s equations are based on the uniqueness theory of moments: 
the infinite sequence of moments mpq is uniquely determined by the joint 
function /(x ,y ); conversely, the function f ( x , y ) is uniquely determined by 
an infinite sequence of moments rnvq. For a digital image of size (TV, M) the 
(p +  q)-th order moments mpq are calculated as

N M

mPQ =  Y  Y  y x̂Pyq (5-2)
x=l y=l

for p,q =  [0,1. 2 • • •). Similarly, the normalised central moments of a digital 
blob image are inherently translation independent. The definition of the 
normalised central moments for p.q =  [0,1,2 • • •) is

N  M

hPq = Y Y f ( x’ y)(x ~ x v̂(y ~ y^  ( 5 -3 )
x=l y— 1

where (x,y) denotes the centroid of the contour.
In general, gross image shape is well represented by the lower-order mo-

ments, and high-order moments reflect only the subtleties of a silhouette or 
boundary image. Nearly all work with moment invariants, including the nor-
malised and Hu’s central moments, depend only on moments of order zero 
to three. Since minor differences in outlines of the vehicle passengers are 
not significant, only three low-order components of both normalised central 
moments and Hu moments are selected as features, along with the width, 
height and two-dimensional area of the object boundary.

5.3 Classifier design

5.3.1 Occupant class assignment and operation assumption

The goal of most smart airbag systems is to categorise the objects in a pas-
senger seat into six-predetermined classes for adaptive airbag deployment
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as discussed in Section 1.2.2. In reality, it is difficult to design an ultimate 
system which perfectly discriminates all types of potential occupants that 
could be presented within a vehicle. Such a system should be completely 
independent of the geometrical variations of objects, robust to severe il-
lumination conditions, and invariant to transformations including objects’ 
deformation. This may be realised only if either an infinite amount of data 
is provided or several of the available safety technologies work together.

The less ideal but more attainable solution could be provided by re-
ducing the problem domain at hand. The complexity of a classifier mostly 
depends on the number of classes, which is determined based on both the 
analytic purposes of the target system and the quality of available data. 
The increase of target classes requires the larger dimensions of plausible 
features along with the more sophisticated pattern recognition theory. And 
the demand for a large number of samples grows exponentially with the 
dimensionality of the feature space. This limitation is called the curse of 
dimensionality introduced in [4], and severely restricts the practical classifi-
cation applications. The fundamental reason for the curse of dimensionality 
is that high-dimensional functions have the potential to be much more com-
plicated than low-dimensional ones, and that those complications are harder 
to discern [21]. Moreover, if little or nothing in the way of data reduction is 
provided, this leads to severe requirements for computation time and stor-
age.

Consequently, the number of occupant types to be classified in this work 
is reduced based on the following assumptions: (1) there is no need for de-
tecting an empty seat (NPOS) or other unknown objects which do not fit to 
the other occupant classes (ODFC) for a safety reason. (2) Since a passen-
ger out-of-position detection system takes charge of discriminating between 
the person out-of-position (POOP) and person in correct seating position 
(PCSP) classes as shown in Figure 1.4, only the superclass of those two 
person classes called adult is provided by the proposed occupant detection 
system. Finally, the number of occupant classes is limited to three by distin-
guishing only two child seat classes and an adult class: adult, forward-facing 
child seat (FFCS) and rear-facing child seat (RFCS).

Since a change of the occupant type is unlikely during driving, it is suf-
ficient to perform the classification only at the beginning of operation in 
most cases, unless any dramatic change in the field of view occurs (see Fig-
ure 1.4(b)). Alternatively, the classification can be performed periodically if 
there are still sufficient processing power and hardware resources remaining 
for the passenger out-of-position detection system. The average processing 
time required to make a decision for existing vision-based occupant detection 
systems is around three seconds. A goal of the proposed system is to reach 
a decision within this aforementioned three seconds time frame. During this
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time, this system should be capable of processing of 90 frames with a frame 
rate of 30 Hz prior to making a final decision.

5.3.2 System design requirements

Several requirements has to be satisfied to realise a practical occupant de-
tection system. The design of the proposed classifier should be flexible and 
adaptable to take into account future child seat designs. Some practical 
issues which may arise include (1) the necessity of frequent system updates 
with new data sets and (2) the flexibility to add further types of classes to 
the classifier structure to accommodate potential occupant class variation. 
However, it is unlikely to recall the products whenever an update is neces-
sary. Furthermore, no modification of the system structure will be allowed 
after the completion of the system design due to the vehicle safety regula-
tions. Accordingly, system updates should be restricted to changes of the 
internal parameters by minimal remote data transmissions, and minor mod-
ification to non-critical system components by means of officially approved 
firmware updates.

5.3.3 Neural networks

A generic neural network (NN) can be described as a computational sys-
tem consisting of a set of highly interconnected processing elements called 
artificial neurons, which process information as a response to external stim-
uli [19, 21]. An artificial neuron is a simplistic representation that emulates 
the signal integration and threshold firing behaviour of biological neurons 
by means of mathematical equations. The network adapts to the given data 
by changing the connection weights by an amount proportional to the dif-
ference between the desired output and the actual output. Neural networks 
have seen an explosion of interest over the last few years, and are being suc-
cessfully applied across an extraordinary range of problem domains, in areas 
as diverse as finance, medicine, engineering, geology and physics. Indeed, 
wherever there are problems of prediction, classification or control, neural 
networks are being introduced.

A neural network can be one of the available solutions for the problem 
addressed in Section 5.3.2. The adaptability to the future child seat variation 
and the potential for the increasing occupant classes could be achieved by 
changing the interconnection weights between neurons. Neural networks 
are also more robust at data analysis than statistical methods because of 
their ability to handle small variations of parameters and noise. Various 
high performance neural network processors available in the market should 
make the implementation of real-time embedded systems simple. Despite 
the relatively slow learning process, a fast classification is another merit of 
employing neural networks.
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Inputs Artificial

Figure 5.3: The structure of a neuron: inputs from one or more previous neurons are individually 
weighted, then summed. The result is scaled between 0 and 1 by an activation 
function, and the output value is passed on to the neurons in the next layer.

Introduction

Figure 5.3 shows an illustration for a basic processing unit in a neural net-
work. A neuron receives a number of inputs x either from original data, or 
from the output of other neurons in the neural network. These input signals 
are passed between neurons over connection links where each connection 
link has an associated weight w multiplying the transmitted signal. Each 
neuron has an internal state called its activation which eventually becomes 
the output of the neuron. An activation function f  is applied to the sum 
of weighted input signals to determine its activation signal while the bias b 
allows the activation to change independently of the inputs. Many different 
functions may be used as activation functions depending on the desired out-
put characteristics. Typically, a neuron sends its activation as a signal to 
several other neurons. A neuron can send only one signal at a time. How-
ever, a signal may be broadcast to several other neurons. The mathematical 
expression of a typical artificial neuron is as follows:

A key feature of neural networks is an iterative learning process in which 
a set of sample data is presented to the network one at a time, and the 
weights associated with the input values are adjusted each time. After all 
cases are presented, the process often starts over again. During this learning 
phase, the network learns by adjusting the weights so as to be able to pre-
dict the correct class label of input samples. Advantages of neural networks 
include their high tolerance to noisy data, as well as their generalisation 
ability to classify patterns on which they have not been trained. Generali-
sation refers to the ability of a neural network, having learned the essential
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Figure 5.4: A typical example of a multi-layer neural network: the typical back-propagation 
network has an input layer, an output layer, and at least one hidden layer.

information content of training data, to achieve reasonable performance for 
test data not seen before which is drawn from the same input space.

Network topologies

There are two principal neural network topologies which define how data 
flows between the input, hidden, and output processing units: feed-forward 
and recurrent networks.

Feed-forward networks (FNNs) A neural network where the data flow 
from input to output units is strictly feed-forward, is called as a feed-forward 
network. The earliest kind of neural network is a two-layer perceptron net-
work originally introduced by Papert in [65]. This perceptron network con-
sists of a single layer of output nodes while the inputs are fed directly to 
the outputs via a series of weights. The crucial problem of the perceptron is 
that this network is only capable of learning linearly separable patterns by 
allowing only one layer of adaptive weights. The exclusive-or (XOR) func-
tion is a classical example of a pattern classification which is non-linearly 
separable. Feed-forward networks with more than two layers, also called as 
multi-layered perceptrons, overcome this limitation because they are able to 
adapt multi-layers of weights by using more sophisticated learning rules. 
Back-propagation, popularised by Rumelhart in [85]. is one of the most pop-
ular and effective learning models for multi-layered networks. The power 
of back-propagation lies in its ability to train hidden layers and thereby es-
cape the restricted capabilities of the perceptrons by providing a complex
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Figure 5.5: The conceptual illustrations for two network topologies: (a) a feed-forward network 
and (b) a recurrent network with an additional connection from the hidden unit to 
itself.

non-linear decision boundary. Figure 5.4 illustrates a typical structure of 
three-layered back-propagation networks.

Recurrent networks (RNNs) In cases where neural networks deal with 
data in the temporal domain, the most common architecture is a recurrent 
neural network with internal feedback connections which makes the system 
biologically more plausible. Basically, a recurrent neural network is a mod-
ification to the feed-forward architecture for temporal data processing. The 
conceptual difference between the feed-forward and recurrent networks is 
illustrated in Figure 5.5. In recurrent networks, information about past in-
puts is fed back into and mixed with the current inputs through recurrent 
or feedback connections for hidden or output units. In this way, the neural 
network contains a memory of the past inputs via the activations. These 
recurrent networks can have an infinite memory depth and thus find relation-
ships through time as well as through the instantaneous input space. Most 
real-world data contains information in its time structure. The recurrent 
networks have an dynamic internal state which is essential for many tem-
poral processing tasks. Therefore, they are computationally more powerful 
than other adaptive models such as Hidden Markov Models, Support Vector 
Machines, and feed-forward networks [13, 71, 35]. In principle, the recurrent 
networks can implement almost arbitrary sequential behavior, which makes 
them promising for various applications such as adaptive robotics, speech 
recognition, music composition, attentive vision, etc.

Fully recurrent networks acquire their dynamic properties by providing 
two-way connections between all processors in the neural network. Unlike 
feed-forward network variants which have a deterministic time to produce
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Figure 5.6: Recurrent network topologies: examples of (a) a fully recurrent neural network and 
(b) a partially recurrent network.

an output value based on the time for the data to flow through the network, 
the fully recurrent networks can take an indeterminate amount of time.

Partially recurrent neural networks are feed-forward networks that in-
clude feedback connections to a set of units called context units. A context 
unit is basically an internal state memory which remembers past activity 
of the network. This structure of recurrence compromises the system com-
plexity between a feed-forward network and a fully recurrent network due 
to the capability of using the popular back propagation training algorithm. 
In [44], Jordan proposed three-layer back-propagation networks, with the 
addition of feedback connections from the output layer to its context units. 
This internal feedback loops make the Jordan networks capable of learning 
to recognise and generate temporal patterns, as well as spatial patterns. 
This makes the Jordan networks useful in such areas as signal processing 
and prediction where time plays a dominant role.

5.3.4 Implementation

Considering that the proposed features did not reflect any dynamic proper-
ties of the passenger, it was necessary to construct a classifier model which 
is able to handle and classify temporal series. Therefore, trained in a super-
vised way, a partially recurrent network proposed by Jordan [44] is employed 
with the support of two tapped delay lines.

The network is designed to have 29 input units and 3 output units accord-
ing to the dimension of the extracted feature vector as well as the number
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x (n -l) x(n-2)

x(n)

Figure 5.7: A delay line with one tap: the output of the delay line o is obtained from the delayed 
signal x(n — 1) multiplied by the weight w(n — 1).

of occupant classes. Since the system complexity is dependent on the num-
ber of units, the optimal structure of a neural network is expected to have 
the minimal number of hidden units sufficient to achieve the desired error 
value on the training set. In most situations, there is no way to determine 
the best number of hidden units without training several networks and esti-
mating the generalisation error of each. Insufficient number of hidden units 
can cause high training error as well as high generalisation error due to the 
under-fitting problem. Conversely, too many hidden units may yield low 
training error but the system may still have high generalisation error due to 
over-fitting and high variance [86, 6]. For the proposed system, the optimal 
number of the hidden units is experimentally obtained to be 15 by training 
the network with a different number of the hidden units.

A tapped delay line is a delay memory providing access to its contents at 
arbitrary intermediate delay length values. Each tapped delay line improves 
the accuracy of overall classification performance by filtering the noise com-
ponents in the stream of either feature vector (input) or classification result 
(output). As discussed in Section 4.4.5, the occupants’ motion can produce 
erroneous patterns by distorting the reconstructed object shapes despite a 
fast frame rate. A time-varying weight w(n) based on the amount of motion 
is used for minimising the undesirable influence of the surface distortion 
caused by motion. For the simplicity, the amount of motion between the 
adjacent frames is measured by counting the number of pixels which expe-
rience brightness changes beyond a certain threshold. The number of the 
motion pixels are then normalised by the sum of the motion pixels occurred 
in the delay lines. A delay line with a single tap is shown in Figure 5.7. 
Assuming that the length of a delay line is N, the output of the delay line 
o is computed as

o = X  • wT



116 Chapter 5. Classification

where X  and w are the vectors of the input pattern matrices x and time- 
varying weights w, composed of their time series for the interval [0, N]:

X  = (x(n),x(n — 1), • ■ ■ ,x(n  — TV)) and
w = (w(n), w(n — 1), • • • , w(n — N ) ) .

The average of the past observation of the weighted input pattern vector 
o is used as the smoothed input pattern for the Jordan network. Similarly, 
the tapped delay line at the output of the network provides a smoothed 
version of the classification result. The delay lines act as weighted averaging 
windows moving through time to get rid of random variations from the 
sequences.

The proposed Jordan network is shown in Figure 5.8(a) while Figure 5.8(b) 
presents the overall structure of the classifier module. According to the as-
sumption discussed in Section 5.3.1, the maximum time delay length of the 
proposed system is limited to 90 frames, allowing the system to monitor 
three seconds of the passenger history. Therefore, the sum of the lengths of 
the delay lines must satisfy the following condition:

(N  +  1) +  (M  +  1) < 90 clocks

where N  and M  are the lengths of the input and output delay lines.

5.4 Precis

In this chapter, the design issue of a classifier for the occupant detection 
system is explored. The domain of the given classification problem is 

limited to solve a three-class problem since there is no need to detect empty 
seats as well as unknown objects for the safety reason. A number of the 
novel features to help effectively describe the tendencies of the occupant 
candidates in terms of two- and three-dimensional geometric aspects are 
proposed. These features are designed to distinguish at least one occupant 
class from the other two classes. A partially recurrent neural network is 
chosen as the classifier due to its ability to handle temporal data and the 
ease of network training. Two tapped delay lines with time-varying weights 
based on the motion information are employed to minimise the risk of over-
concentrating on localised features and to reflect the dynamic characteristics 
caused by the movements of the occupants.
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( a )

N
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Figure 5.8: Classifier design: (a) the proposed Jordan network design after the learning process 
and (b) the proposed classifier framework with two tapped delay lines.
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Figure 6.1: The proposed system implemented in the x-window environment.

6.1 Introduction

T he aim of this chapter is to evaluate the applicability of the proposed 
framework discussed in the prior chapters to the given specific prob-

lem of classifying occupant types in a vehicle. The detailed description of 
the system setup for the experiments and the environmental conditions for 
data collection are discussed in Section 6.2. The quantitative evaluation of 
the proposed system according to the different types of the three occupant 
classes as well as the varying time periods for history observation are pre-
sented in Section 6.3. This is followed by a discussion on the overall system 
performance and analysis of the classification error cases in Section 6.4.

6.2 Experimental setup

6.2.1 Algorithm implementation and hardware embodiment

The algorithms are implemented in C/C+-1- programming languages with 
support of OpenCV libraries based on Linux environments [7]. A multi-
threaded program is employed to minimise the risk of processing delay that 
might be caused by one of the algorithm modules. The advantage of using 
a thread group instead of a single serial program is the ability to carry out 
several operations in parallel. Thus, the overall system does not experience 
delay caused by the slowest algorithm module. GTK+ libraries are also 
utilised to provide the real-time GUI environment as shown in Figure 6.1.

The specification of the system used for the experiments is as follows:

• Pentium 4 processor at 2.8 GHz with 1024 MB RAMs
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Figure 6.2: Experimental setup: (a) the illuminations are placed to form a right triangle around 
the imager, and (b) the setup simulates the situation where the imager is located at 
the roof console near the rear-view mirror in a vehicle cabin.
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Figure 6.3: Typical samples of child seats.

• SCSI HDDs with the bandwidth of 160MB/s
• SollyCam with the dynamic range of 105dB (discussed in 2.2.2)
• Optical lens with the viewing angle of 120 degrees
• Digital frame grabber capable of 36-bit image data acquisition at 

33MHz
• Three very high power infrared illuminators with peak emission at 

880nm
• External controller for synchronising the infrared illuminators with the 

imager.

The arrangement of the imager and illuminations is shown in Figure 6.2(a). 
The three infrared illumination sources are placed around the imager form-
ing a equilateral triangle, placing the imager in the center of the triangle. 
This geometry maximises both ShaaowFlash and surface reconstruction per-
formances. The location of the imager with respect to a passenger seat is 
determined as shown in Figure 6.2(b) to simulate the actual environment 
where the camera is located at the roof console of a vehicle cabin.

6.2.2 Data collection

The conditions under which these experiments were conducted were idealised 
in several aspects as compared to real-world conditions inside a vehicle. The 
sample sequences were collected in a laboratory environment which imitates 
a vehicle interior where the textures of the scene were simplified. 578 sample 
sequences were collected with a resolution of 320x240 in 12-bit gray scale at 
30 Hz under varying illumination conditions provided by a number of high 
power halogen light sources. 199 sequences were recorded from 25 persons, 
while 379 sequences were taken from 29 different types of child seats which 
represented approximately 70% of available child seat products in the current 
European market. The length of the sequences varied from 100 to 500 frames 
depending on the occupant’s behaviour pattern. The portions of the FFCS 
and RFCS classes in the child seat sequences made up roughly 50% each
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Figure 6.4: Various supplementary objects for providing the diversity of the test scene: (a) a 
passenger reading a newspaper, (b) a child seat covered by a blanket, (c) a child 
seat occupied by a baby holding a ball and (d) a teddy bear.

of the total sequences. The behaviour pattern of the passengers were not 
restricted to allow any possible movements in a vehicle setting. In order to 
simulate the diversity of the passengers in real environments, supplementary 
objects including some blankets, toys and newspapers were included in the 
sequence acquisition. Some typical examples of the child seats used in the 
experiments are shown in Figure 6.3, while Figure 6.4 presents examples of 
these additional objects employed in the experiments.

6.3 Evaluation

6.3.1 Processing time

Although the proposed system is designed to operate in real-time, the process-
ing speed was not of great concern in evaluating the system as many im-
provements may be made by optimising the implementation prior to series 
production. In the experiments, an average time of 103.7 milliseconds for
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Pre-processing 
& segmentation

Surface
reconstruction

Classification Overall

Processing 
time (ms)

18.20
(17.55%)

53.44
(51.53%)

32.06
(30.92%)

103.7

Table 6.1: Processing time consumed in each processing module.

a single frame processing was achieved, mainly due to the supplementary 
codes for the GUI display in a non-embedded system environment. This 
result is approximately three times greater than the target processing time 
of 33 milliseconds (30Hz).

Table 6.1 shows the average processing time reserved by different process-
ing stages. Over 50% of the total processing time was used for reconstructing 
object surfaces. This suggested that most effort should be focused on the 
optimisation of the 3D reconstruction algorithm module for improving the 
real-time performance of the system. Further improvements of the process-
ing time is discussed in Section 7.4.

6.3.2 Feature consistency

A synthesised sequence with 30 input quadlets was used for evaluating the 
suitability of the proposed feature set. 10 of the 30 quadlets were ran-
domly collected from each occupant class. The sequence was a collection of 
diverse scenes with varying illumination conditions, various types of child 
seats in different positions and directions, extreme motion and several ad-
ditional objects used to diversify the scenes. The average values of some
multi-dimensional features are used for simple display. The response of 
each feature detector is plotted in Figure 6.5. Although the responses of 
most proposed features were highly consistent within the same occupant 
class, some features such as the size of occupants, volumetric ratio, and 
compactness are relatively difficult to distinguish. These three features are 
strongly correlated with the volumetric sizes of vehicle occupants. Many 
earlier occupant detection systems implement volumetric attribute based 
object classification. However, experimental results show these features to 
provide insufficient distinguishability, which help to explain the difficulty of 
classification based on simple volumetric attributes of the target objects.

6.3.3 Network training

The sample sequences were divided into two groups creating a training and 
testing set, while the amount of sequences sampled from each class were 
evenly split in order to avoid unintended dominance of samples from any
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Figure 6.5: Feature consistency: the feature values with respect to the different types of occupant 
classes are compared.

one class. The patterns for the neural network were extracted from the 
sample sequences after the normalisation, while the actual occupant types 
were manually recorded.

The proposed Jordan network was trained by the resilient back-propagation 
(Rprop) algorithm with the training set [81]. The regular logistic activation 
function was set to all the neurons, and the initial values at the network’s 
synapses were randomly chosen. In order to avoid overtraining the network, 
the learning was halted when the network reached the error minima where 
the mean squared output error reached 0.0793 after 120 iterations.

6.3.4 Classification performance evaluation

Since the neural network only makes a single frame decision, the classifica-
tion performance was evaluated according to the lengths of two tapped delay 
lines using the testing set. The sum of the lengths of the delay lines was 
limited to under 90 frames. Two experiments were conducted for evaluating 
the effectiveness of employing the tapped delay lines and the motion-based 
weighting: (1) simple delay lines (no weights) and (2) delay lines employing 
the weights (weighted averaging).
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Class type FFCS RFCS Adult Overall
Error rate(%) 14.2 15.4 0.725 6.66

Favourite error RFCS(99.5%) FFCS(90.0%) RFCS(68.3%) N/A

Table 6.2: Error statistics without the tapped delay lines. Overall error rate: 6.66%

Jordan network performance

Table 6.2 shows the error analysis according to the class types without sup-
port of the tapped delay lines. The overall classification error rate of the 
ordinary Jordan network reached 6.66%, which was comparable to the per-
formances of the existing occupant detection systems based on vision tech-
nology discussed in Section 1.2.3.

Most errors occurred in discerning between the FFCS and RFCS classes 
due to their similar characteristics of the geometry caused by the alteration 
of additional objects. For example, a baby holding a teddy bear in the RFCS 
covered by a blanket coincidentally provided similar three-dimensional char-
acteristics to the FFCS classes. Similar volumetric dimensions of child seats 
could be another factor which increases the ambiguity between the child seat 
classes.

However, low error rate in the adult class was achieved even with test 
sequences involving the large amount of motion. Most classification errors 
occurred in situations where the geometry of the target scene was signif-
icantly disturbed or occluded by additional objects (e.g. the passengers 
held unfolded newspapers in their movement). Contrast of clothing mate-
rials similar to the background was another source of errors causing false 
segmentation.

Network with non-weighted delay lines

The total number of the delay taps were limited to 90 to satisfy the three 
seconds requirement discussed in Section 5.3.4. No weights were employed 
for this experiment. Upon applying the tapped delay lines, the error rates 
of all classes were dramatically decreased as shown in Table 6.3. The best 
classification rate of 98.9% was achieved after setting the lengths of the input 
and output delay lines to 31 and 59, respectively.

In Figure 6.6, the classification error space computed by the proposed 
network with respect to the lengths of two delay lines is presented. It shows 
that the system is more sensitive to the length of the output delay buffer 
due to the recurrent network’s adaptability to sequential behavior. However, 
as the sizes of both delay lines increases, the difference of the sensitivity 
becomes negligible.
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Class type FFCS RFCS Adult Overall
Error rate(%) 10.1 13.7 0 1.14

Favourite error RFCS( 100.0%) FFCS(91.7%) N/A N/A

Table 6.3: Error statistics with the tapped delay lines. Overall error rate: 1.14%

Class type FFCS RFCS Adult Overall
Error rate(%) 7.67 18.9 0.82 2.20
Favorite error RFCS(59.0%) FFCS(56.1%) FFCS(73.2%) N/A

Table 6.4: Error statistics of the system employing the weighted averaging approach for both 
input and output data streams. Overall error rate: 2.20%

Network with weighted delay lines

Another experiment employing the weighted delay lines were conducted us-
ing the Jordan network identically trained as the former experiment. The 
motion information was extracted from the acquired image sequences. The 
amount of motion was defined as the difference of the number of pixels 
which have intensity changes between a pair of adjacent frames. Table 6.4 
shows the overall classification performance as well as the local error rates 
according to the different occupant classes when the motion based weighted 
averaging are applied to the delay lines. Although marginal improvement 
was expected from employing the weighted averaging scheme, results shows 
that the classification performance decreased by 1.1% compared to that of 
the network employing non-weighted delay lines. In the FFCS class, a per-
formance improvement of 2.3% is gained, while no improvement is observed 
in the other two classes. In Figure 6.7, the plot of error surface with respect 
to the lengths of the delay lines is presented.

6.4 Discussion

Superior classification performance was achieved in the experiments com-
pared to the existing vision based occupant detection systems introduced 

in Section 1.2.3. The performance of the proposed system in reality could be 
lower than the experimental results, considering that the sample sequences 
were collected under simplified conditions. Nevertheless, the goal of demon-
strating the feasibility of an alternative classification system of comparable 
performance to binocular-based systems was successfully accomplished.

As most samples in the adult class had distinctive geometric dimensions 
compared to the two child seat classes, the lowest failure rate was achieved 
in this occupant type regardless of object motion. Most of the classifi-
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Figure 6.6: Classification error space produced by the proposed Jordan network with respect to 
different lengths of the tapped delay lines.

Figure 6.7: Error space plot of the classifier with the delay lines weighted by the motion infor-
mation.
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cation failures occurred between the FFCS and RFCS classes due to the 
compounded error factor from (1) the additional objects used to diversify 
the scenes, and (2) the false construction of the object surfaces caused by 
various noise sources discussed in Section 4.4.5.

Nevertheless, these are encouraging results, as the misclassification be-
tween an adult and child seat generally poses greater danger than that of 
the misclassification between two child seats. However, this suggests the 
necessity of developing new features for better discrimination of those child 
seat classes.

Two typical examples for misclassification are shown in Figure 6.8. In 
Figure 6.8(a), the passenger was recognised as a rear-facing child seat. The 
female in the scene was relatively small and comparable in size to some larger 
child seats. Some surface distortions were caused by the false segmentation 
result. Furthermore, the newspaper produced a secondary volumetric peak 
in the opposite side of the head position. This resulted in the erroneous 
estimation of the features associated with the spread axes as well as the 
depth property. The average surface normal direction used for estimating 
the EGI characteristics was also significantly affected by the normal vectors 
on the newspaper which generated strong directional tendency opposite to 
that of common adult types.

Figure 6.8(b) shows another misclassification example of a forward-facing 
child sea+ detected as a rear-facing child seat. The scene in this example 
simulates a situation where the carrying handle of the child seat is up and 
covered by a blanket in order to block direct sunlight from the baby. Al-
though the segmentation as well as the estimation of the surface normals 
were successful, the limited capability of the photometric stereo method for 
a discontinuous object surface produced a smooth surface on the uncovered 
part of the child seat. The volumetric peak of the target object was located 
slightly closer to the front than the rear side of the child seat, which brought 
ambiguity to the estimation of both the depth histogram and the relative 
position of the upper extrema.

The maximum motion tolerance of the system was observed to be ap-
proximately between 5- to 10-pixel distance depending on the reflectivity 
of surface materials and the location of the point where the depth was esti-
mated. For example, it was difficult to estimate the accurate surface normals 
using the brightness information taken from the points on surfaces with low 
and/or inhomogeneous reflectance such as human hair. The depth estima-
tion of the point located on the object boundary was usually more sensitive 
to motion than the one in the middle of the surface with uniform reflectivity.

Another unsuccessful misclassification caused by severe motion is pre-
sented in Figure 6.9. The amount of motion involved in the original input 
sequence shown in Figure 6.9(a) exceeded the maximum tolerance of the
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system, thus producing the significant distortions in the ShadowFlash re-
sults as shown in Figure 6.9(b). The severe motion resulted in the blurred 
ShadowFlash images, which caused the false estimation of the object bound-
ary to include larger areas than the size of the actual object. Furthermore, 
the severe motion also brought a significant amount of unmatched areas in 
the PSM input triplets. In Figure 6.9(c), the inaccurately estimated surface 
normals were observed on the surface of the newspaper. Subsequently, the 
overall reconstruction process of the object surfaces was greatly hindered by 
the erroneous normal vectors due to the nature of the global minimisation 
used for the surface integration. Finally, the significantly distorted surfaces 
as shown in Figure 6.9(d) produced invalid feature vectors resulting in a 
misclassification.

The unstable response of the classifier in the temporal domain was suc-
cessfully suppressed after employing the tapped delay lines capable of ob-
serving the feature history. The tolerance of the classifier in the temporal 
domain, however, may be further improved by employing alternative classi-
fiers with more sophisticated memory structures such as time-delay neural 
networks. Unfortunately, the effectiveness of the weighted delay lines could 
not be proven in this work. There were two potential causes for the poor 
classification performances: (1) the motion information extracted by the rel-
atively simple algorithm was not sufficiently correlated with the amount of 
the surface distortion; (2) some short sample sequences with limited motion 
were inappropriate for evaluating the system response with respect to the 
change of motion.
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(a) (b)

Figure 6.8: Misclassification examples: (a) a passenger misclassified as a RFCS class, and (b) a 
forward facing child seat mistaken as a rear facing child seat. Each column shows 
images of the ShadowFlash result, the segmentation result, the needle map repre-
sentation of the surface normals, and the recovered 3D surface of the target objects 
rotated by 90 degrees.
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Figure 6.9: Sample sequence for the surface distortion caused by severe motion: (a) the original 
input sequence, (b) the ShadowFlash sequence, (c) the needle map representation 
of the estimated surface normals, and (d) the surface reconstruction results.
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7.1 Precis

In this thesis, a classification system based on three-dimensional informa-
tion provided by a single camera with multiple illumination sources was 

proposed. The system is mainly designed to solve a problem of classifying 
vehicle passengers for safe airbag deployment. Most vision-based occupant 
detection systems developed in recent years suffered from vehicle environ-
ments characterised by large and frequent change of illumination conditions. 
Extreme contrast in a vehicle interior also required the high dynamic range 
of the imagers.

The proposed system was able to eliminate the influence of ambient il-
lumination by employing the DoubleFlash technique originally introduced 
by Koch in [52]. This technique also compressed the dynamic range of the 
target scene by utilising two input images with different illumination power 
levels. The concept of the DoubleFlash technique was extended to the novel 
shadow removal technique, namely ShadowFlash. Cast shadows, frequently 
misclassified as imaginary objects, degenerated overall system performance. 
This technique suppressed such cast shadows based on the approach of sim-
ulating an infinite illumination plane by using a number of images illumi-
nated by different light sources. By employing the sliding N-tuple strategy, 
the ShadowFlash method was extended to the temporal domain to provide 
shadowless scenes in real-time without reducing the original frame rate.

The extraction of the object boundary was an essential task to provide a 
priori knowledge about the two-dimensional geometry of the target object for 
subsequent processes. The similarity between an input frame and reference 
background was measured to create a set of target object candidates. The 
number of the candidates were reduced by the morphological operations 
which merged image blobs close in proximity. The image blob with the 
largest area would be designated as the target object. The boundary of 
the selected object was utilised as an initial boundary for active contour 
deformation. Dynamic programming was employed for efficient calculation 
of the optimal energy minimisation solution. The concavity analysis of the 
initial boundary provided the improved mobility to the active contour model.

The segmentation result was delivered to the surface recovery module 
for specifying the region of interest to reconstruct. To achieve the aim of de-
signing a system capable of reconstructing three-dimensional object surface 
with minimal hardware costs in real-time, the photometric stereo method 
provided the optimal solution since the technique could exploit the exist-
ing illumination sources originally employed for the real-time ShadowFlash. 
After eliminating the influence of the ambient illumination from the input 
sequences using the DoubleFlash technique, three images subsequently cap-
tured under different illumination conditions were used to form an input 
triplet of the photometric stereo method. The technique calculated the sur-
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face normal vectors by solving an albedo-independent irradiance equation 
which assumed a Lambertian surface. The integration of the object surface 
based on these normal vectors was performed by minimising several global 
constraints which controlled the integrability as well as the smoothness of 
the constructed object surface.

By ignoring non safety critical situations such as an empty seat, the given 
classification problem was simplified to a three-class problem. A feature 
vector with 29 dimensions was defined based on the information extracted 
from both two- and three-dimensional geometry of the object of interest. 
The feature space was efficiently designed to discriminate at least one vehicle 
occupant class from the other two. A partially-recurrent neural network 
was selected as a classifier due to its superior ability to handle temporal 
sequences. To improve the dynamic property of the classifier, two tapped 
delay lines were employed to play the role of moving average windows.

The experiments were conducted under the idealised condition rather 
than a real vehicle environment. 578 passenger sequences including adults, 
forward facing child, seats, and rear facing child seats were collected with a 
few additional objects to diversify the test scenes. Several supplementary 
illumination sources also provided various illumination conditions to the test 
sequences, emulating the possible illumination situations in a vehicle. The 
sequences were evenly split into the training and testing set to ensure no 
dominance by any occ u ant class. The learning process of the proposed 
neural network was performed with the training set. The classification rate 
of the partially-recurrent network was originally 93.3%. With the support 
of the tapped delay lines, the performance improved to 98.8%, with most 
misclassifications occurring between the FFCS and RFCS classes.

7.2 Assessment

This thesis proposed a novel structure of a real-time classification system 
operating in a high dynamic range environment. The main achieve-

ment of this work is the introduction of multipurpose active illuminations 
synchronised with a single imager. The purpose of active illumination can 
be summarised as

1. to provide the necessary light sources for the DoubleFlash technique to 
minimise the influence of ambient light fluctuations in a high dynamic 
range environment,

2. to help the ShadowFlash technique suppress unintended cast shadows 
without the distortion of texture details,

3. to provide the triple-active illumination required for the reconstruc-
tion of the three-dimensional surface of an object performed by the 
photometric stereo method.
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By exploiting the existing illumination hardware for various purpose, low 
cost implementation and compact packaging of the system were accom-
plished.

ment in this work. The ShadowFlash technique simulated an infinite arti-
ficial illumination plane by combining multiple images captured under dif-
ferent illumination conditions, and successfully suppresses most undesirable 
shadows cast by strong light sources. Unlike other available shadow re-
moval techniques, the proposed approach did not suffer from the degradation 
of textural details of target scenes. The simple algorithm caused minimal 
processing overload which allowed for implementations in low-cost real-time 
embedded systems.

This thesis also suggested a number of features designed for discerning 
vehicle occupants. The proposed features were (1) efficient to describe the 
geometric characteristics of the occupants, (2) robust to the interference 
caused by various noise sources, and (3) highly consistent in an occupant 
class. The proposed features could be utilised in any platforms for the 
extraction of both two- and three-dimensional information of objects.

he main constraints to vision based passenger detection systems in the
passenger vehicle environment are (1) cost, (2) system size, and (3) 

camera positioning. As the automotive sector is highly cost sensitive, any 
system must maintain sufficiently low cost to meet mass production require-
ment. Small camera size is advantageous for mounting in the limited space 
in the vehicle cabin. Furthermore, the space constraint dictates that only 
finite possibilities are available for placement of the camera system.

The two main paths to achieving successful occupant detection for the 
vehicle interior are (1) stereo vision based systems, and (2) monocular vision 
based systems. For a stereo camera system, it is more critical (compared to 
monocular systems) to have high flexibility for multi-camera placement in 
the limited cabin space. The monocular system addresses the limited cabin 
space problem with a different approach which inherently requires less space 
(e.g. using one camera instead of two).

The paramount issue in either approach is to provide techniques capable 
of accurate passenger classification under such tight constraints. The main 
contributions of this work can be divided into two areas: automotive safety 
applications, and machine vision systems. In the automotive arena, a major 
goal is to explore the feasibilities of the monocular approach in the current 
automotive technology and industry environment. It is also the hope of this 
work to further contribute to the field by introducing a novel monocular

The development of a novel shadow removal approach was another achieve-

7.3 Contribution
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camera occupant detection system as a stepping stone to future research 
and industry deployment. Finally, to the field of machine vision, the key 
contribution of this work is to extend the capability of the monocular vision 
system to cover applications requiring three-dimensional information in real-
time.

7.4 Future work
further research should be continued on the following topics:

ShadowFlash The proposed ShadowFlash technique is applicable to vari-
ous environments experiencing frequent illumination changes such as 
a face recognition system of a cash dispenser or access authorisation 
system for building surveillance. The ShadowFlash method can signif-
icantly reduce the image processing cost and thus increase the recog-
nition robustness if the systems have limited space, cost or design 
constraints.

Background maintenance As discussed in Section 3.2.1, the proposed 
framework was designed under the assumption of the fixed background 
model. For the realisation of the practical system, an improved back-
ground model capable of handling movable background objects such 
as a passenger seat should be developed. Alternatively, the core algo-
rithms can be refined to make the system independent of the influence 
of any background change.

Moving object problem The proposed system experienced surface dis-
tortions caused by motion. The best way to overcome the moving 
object problem may be to simultaneously capture all the frames of 
an input quadlet. By employing multiple illumination sources with 
different wave lengths or a multi-frequency spectrum light source col-
laborated with corresponding optical bandpass filters, it should be 
possible to provide the input quadlets by splitting the captured image 
according to the wavelengths. An alternative solution for the moving 
object problem is to acquire an image by differently illuminating each 
line of the image sensor where the light sources are synchronised to 
the line clock rather of the sensor. The captured image is split into 
several sub-images, of which each image is influenced by a different 
light source [51].

Segmentation dependency In the proposed system, the quality of the 
reconstructed object surface is highly dependent on the segmentation 
result. A poorly-segmented object often involves areas which are not
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appropriately flashed by the active illumination, and this distorts the 
recovered surface by producing inaccurate surface normals. The prob-
lem is especially serious if a global optimisation approach is employed 
for the surface integration. Therefore, the development/introduction 
of more effective boundary extraction techniques is an essential task 
to reduce the reconstruction sensitivity to the segmentation result.

Realistic reflection models The proposed system assumes an idealised 
condition where there is no inter- and intra-reflection in a target scene. 
However, in reality, the reflection properties are uncontrollable due 
to the various materials used in a vehicle interior and the complex 
reflections can interfere the surface normal estimation. Therefore, a 
realistic surface reflection model is necessary for improving system 
performance.

Classification Further improvement of the system performance could be 
achieved by various ways such as:

• introducing an alternative classifier more effectively handling time- 
series models (e.g. the idea of employing the tapped delay lines 
can be extended to employ alternative finite memory machines 
such as time-delay neural networks).

• utilising duster analysis tools such as principle component analy-
sis in order to minimise the dimensionality of the feature space.

• optimising the implemented algorithms for fast and efficient process-
ing.

• providing an embedded platform with dedicated image processing 
units.

Out-of-position detection systems The next step of this work could be 
the extension of the proposed system to passenger out-of-position sys-
tems by providing the information about the precise position and pose 
of the occupants in real-time.

Other applications Finally, the proposed framework could be employed in
various cost sensitive applications requiring non-contact three-dimensional
imaging.
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