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parameters = 0.002, 0.0002, 0.0002, maternal chest ECG signal: filter 

length = 6, delay = 4, step-size parameters = 0.002, 0.0002, 0.0002, 

transabdominal ECG signal: filter length = 6, delay = 4, step-size 

parameters = 0.004, 0.0004, 0.0004. Cardiac cycle length is 550 msec 

for (a) and 1000 msec for (b) and (c). 109

Figure 3.10: Third-order Volterra coefficients (linear coefficients (l.h.s.),

quadratic coefficients (middle), and diagonal tensor of cubic coefficients 

(r.h.s.) of (a) a fetal cardiac cycle using fetal scalp electrode (data length 

550 msec), (b) a maternal chest cardiac cycle (data length 1000 msec), 

and (c) a transabdominally measured maternal cardiac cycle (twin 

electrodes, data length = 1000 msec); Third-order Volterra filter 

parameters are as follows; fetal scalp ECG signal: filter length =6, 

delay = 1, step-size parameter = 0.001, 0.0001, 0.0001. Maternal chest 

ECG signal: filter length =6, delay = 6, step-size parameter = 0.001,

0.0001, 0.0001. Trabsabdominal ECG signal: filter length =6, delay = 4, 

step-size parameter = 0.004, 0.0004, 0.0004. 110

Figure 3.11: Third-order Volterra Synthesis of four 250 msec segments of a

maternal transabdominal cardiac cycle; (a) the predominantly maternal 

QRS-complex segment and (b) the first fetal heartbeat with maternal 

contribution(c) the QRS-free ECG segment and (d) the second fetal 

heartbeat with maternal contribution. (I) The unsynthesised segment,

(II) linear, (III) quadratic, and (IV) cubic components. Volterra synthesizer 

parameters for the maternal QRS-complex segment are: filter length = 6, 

delay = 2, step-size parameters =0.001, 0.0001, 0.00001, for the linear, 

quadratic and cubic parts, respectively. Volterra synthesiser parameters for 

the first fetal heartbeat segment are: filter length = 8, delay = 4, step-size
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parameters =0.01,0.001, 0.0001, for the linear, quadratic and cubic 

parts, respectively. Volterra synthesiser parameters for the QRS-free 

ECG segment are: filter length = 8, delay = 6, step-size parameters =

0.02, 0.0002, 0.00002, for the linear, quadratic and cubic parts, 

respectively. Volterra synthesiser parameters for the second fetal 

heartbeat segment are: filter length = 8, delay = 4, step-size parameters = 

0.01, 0.001, 0.0001, for the linear, quadratic and cubic parts, respectively.

Code: cycle 5-1. I l l

Figure 3.12: The mean-squared error of (a) the LMSQV and (b) the LMFQV 

Synthesisers for a typical fetal scalp electrode ECG signal.

(Code: 5-78-80). 114

Figure 3.13: The mean-squared error of (a) the LMSQV and (b) the LMFQV

synthesisers for a typical maternal chest ECG signal. (Code: 5-78-87). 114

Figure 3.14: The mean-squared error of (a) the LMSQV and (b) the LMFQV 

synthesisers for a transabdominally measured maternal ECG signal 

(twin electrodes) (Code: 5-78-87). 114

Figure 3.15: The mean-squared error of (a) the LMSCV and (b) the LMFCV 

synthesisers applied to a fetal scalp electrode ECG signal.

(Code: 5-78-80). 116

Figure 3.16: The mean-squared error of (a) the LMSCV and (b) the LMFCV

synthesisers applied to a maternal chest ECG signal. (Code: 5-78-87). 116

Figure 3.17: The mean-squared error of (a) the LMSCV and (b) the LMFCV 

synthesisers applied to a transabdominally measured maternal ECG 

signal (twin electrodes). (Code: 5-78-87). 116

Figure 3.18: A Signal-flow graph representation of the LMS algorithm. 119

Figure 3.19: A Signal-flow graph representation of the LMF algorithm. 119

Figure 4.1: One maternal chest cardiac cycle (upper panel), maternal

transabdominal (middle panel), and the synchronised and amplified 

fetal ECG (lower panel). The maternal cardiac cycle begins 50 msec 

before the R-wave and ends 50 msec before the next R-wave. Segment I: 

maternal QRS-complex, segment II: the first fetal heartbeat with maternal 

contribution, segment III: QRS-free ECG, and segment IV: the second 

fetal heartbeat with maternal contribution. The subject is at the first stage

xviii



135

of labour, 40 weeks gestation. The maternal cycle has 500 samples at a 

rate of 0.5 KHz. (Code: 5-14).

Figure 4.2: Third-order cumulants (a) before and (b) after linearisation (removing 

the quadratic and cubic parts of a maternal transabdominal ECG signal 

and retaining only the linear part) employing an adaptive LMF-based 

third-order Volterra synthesiser for (I) predominantly maternal 

QRS-complex, (II) the first fetal heartbeat with maternal contribution,

(III) QRS-free ECG, and (IV) the second fetal heartbeat with maternal 

contribution segments. Each segment is 250 msec. Volterra synthesiser 

parameters are: filter order = 3, filter length = 6, delay = 5, step size =

0.002, 0.0004, 0.0001 for linear, quadratic and cubic parts, respectively.

(Code: 5-31). 144

Figure 4.2 (continued): Third-order cumulants (c) before and (d) after

linearisation (removing the quadratic and cubic parts of a maternal 

transabdominal ECG signal and retaining only the linear part) employing 

an adaptive LMS-based third-order Volterra synthesiser for 

(I) predominantly maternal QRS-complex, (II) the first fetal heartbeat 

with maternal contribution, (III) QRS-free ECG and (IV) the second fetal 

heartbeat with maternal contribution segments. Each segment is 250 msec. 

Volterra synthesiser parameters are: filter order = 3, filter length = 6, 

delay = 5, step size = 0.0032, 0.00057, 0.00024 for linear, quadratic and 

cubic parts, respectively. (Code: 5-31). 145

Figure 4.3 (a-e): (al-el) Transabdominally-measured ECG (Code: 16-9) showing 

segmentation (segments I, II, III, and IV,each 250 msec). (a2-e2) The 

corresponding third-order cumulants and their diagonal and walll slices 

(insets).(I) Predominantly maternal QRS-complex, (II) the first fetal 

heartbeat with maternal contribution, (III) QRS-free ECG, and (IV) the 

second fetal heartbeat with maternal contribution. x0, xi, and x2 are, 

respectively, the reference, first and second time lags of the third-order 

cumulants.A third-order Volterra structure is employed to synthesise the 

ECG signal into its linear, quadratic, and cubic parts and retain only the 

linear part. 146

Figure 4.4: Fully connected feed-forward network with one hidden layer and
output layer. 152
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Figure 4.5: The effect of changing (a) the learning rate, (b) the momentum

constant, and (c) the middle layer size, on the classification rate of the 

maternal QRS-complexes (l.h.s.) and the fetal heartbeats with maternal 

contribution (r.h.s.) from transabdominally-measured ECG signals and 

employing third-order cumulant diagonal slices and their templates to be 

matched using a single-hidden-layer perceptron trained with back-propagation 

with momentum. Performance for the maternal QRS-complex segments (l.h.s.) 

and the fetal heartbeat with maternal contribution segments (r.h.s.). Segment 

length is 250 msec each. Best parameters for the maternal QRS-complex 

classification are: learning rate = 0.8, momentum constant = 0.99, 

and middle-layer size = 5x5.  Best parameters for the fetal heartbeat 

classification are: learning rate = 0.8, momentum constant = 0.9, 

and middle-layer size = 5x5.  156

Figure 4.6: A flowchart for the first hybrid system for non-invasive fetal

heartbeat detection using TOC slices for signal processing and single- 

hidden-layer perceptron for classification. The system involves the 

implementation of a new method for calculating any arbitrary TOC slice. 158 

Figure 4.7: A block diagram of the first hybrid method. 159

Figure 4.8: The 8 x 8  matrix representation of cumulant slice templates shown in 

Figure 4.7. Those slices are diagonal, wall, diagonal and wall, and 22.5° 

off diagonal / wall. Sets 1,2, 3, and 4 represent, respectively, segments 

of predominantly maternal QRS-complex, the first fetal heartbeat with 

maternal contribution, QRS-free ECG, and the second fetal heartbeat with 

maternal contribution. 160

Figure 4.9: A typical single-hidden-layer back-propagation neural network

architecture. 162

Figure 4.10: Representation of a third-order cumulant diagonal slice of a 

transabdominally-measured predominantly maternal QRS-complex 

segment by an 8 x 8 matrix to be used as an input for the classifier 

of Figure 4.9. 163

Figure 4.11: Examples of (a) a True Positive (TP), (b) a False Negative (FN), 

and (c) a False Positive (FP) for the classifier, (a) A predominantly 

maternal QRS-complex TOC diagonal slice was correctly matched to a
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maternal QRS-complex TOC diagonal slice template (1-1), (b) a fetal 

heartbeat with maternal contribution TOC diagonal slice was wrongly 

matched to a QRS-free ECG TOC diagonal slice template (III-3), 

and (c) a QRS-free ECG TOC diagonal slice was wrongly matched to 

a fetal heartbeat with maternal contribution TOC diagonal slice template 

(IV-2). 164

Figure 4.12 (a): Third-order cumulants and their diagonal and wall slices (insets) 

for a typical example of transabdominally-measured predominantly 

maternal QRS-complex cumulant matching signature using the first 

hybrid system. The top left hand part of the figure depicts the TOC and 

its slices for a predominantly maternal QRS-complex. The rest of the 

figure shows eight of the ten templates of such signals. Template 2, at the 

top right hand corner, is the one which is matched to the segment. The 

parameters of the classifier are: learning rate = 0.90, moment 

constant = 0.99, and middle layer size is 5 x 5. 166

Figure 4.12 (b): Third-order cumulants and their diagonal and wall slices (insets) 

for a typical example of a transabdominally-measured first fetal heartbeat 

with maternal contribution cumulant matching signature using the first 

hybrid system. The top left hand part of the figure depicts the TOC and 

its slices for the first fetal heartbeat with maternal contribution. The rest 

of the figure shows eight of the ten templates of such signals. Template 2, 

at the top right hand corner, is the one which is matched to the segment.

The parameters of the classifier are: learning rate -  0.90, 

moment constant = 0.99, and middle layer size is 5 x 5. 167

Figure 4.12 (c): Third-order cumulants and their diagonal and wall slices (insets) 

for a typical example of a transabdominally-measured QRS-free ECG 

cumulant matching signature using the first hybrid system. The top left 

hand part of the figure depicts the TOC and its slices for a QRS-free 

ECG segment. The rest of the figure shows eight of the ten templates of 

such signals. Template 4, at the middle of the figure, is the one which is 

matched to the segment. The parameters of the classifier are: 

learning rate = 0.90, moment constant = 0.99, and middle layer size is 

5x5.  168

Figure 4.12 (d): Third-order cumulants and their diagonal and wall slices (insets)
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for a typical example of a transabdominally-measured second fetal 

heartbeat with maternal contribution cumulant matching signature using 

the first hybrid system. The top left hand part of the figure depicts TOC 

and its slices for the second fetal heartbeat with maternal contribution.

The rest of the figure shows eight of the ten templates of such signals. 

Template 2, at the top right hand corner, is the one which is matched to 

the segment. The parameters of the classifier are: learning rate 

= 0.90, moment constant = 0.99, and middle layer size is 5 x 5. 169

Figure 5.1: The effect of linearisation in conjunction with the FFT-based 

second-order statistics (SOS) spectral estimator, (a) The fetal scalp 

electrode full cardiac cycle (Code: 5-1, data length 500 msec), (b) and 

(c) are the chest and transabdominaly-measured (twin electrodes) full 

cardiac cycles at the first stage of labour at 40 weeks, (Code: 5-1, data 

length 1000 msec, the maternal cardiac cycle begins 50 msec before the 

R-wave and ends 50 msec before the next R-wave). A Hanning window is 

used to calculate the power spectrum. Sampling rate = 0.5 KHz, resolution 

= 12 bits. 190

Figure 5.2: The effect of linearisation in conjunction with the FFT-based 

second-order statistics (SOS) spectral estimator, (a) The fetal scalp 

electrode full cardiac cycle (data length 500 msec), (b) the 

transabdominally-measured maternal full cardiac cycle (twin electrodes, 

data length 1000 msec), and (c) segment II of the maternal 

transabdominal signal (inset) containing a fetal heartbeat with maternal 

contribution (data length 250 msec). The maternal cardiac cycle begins 

50 msec before the R-wave and ends 50 msec before the next R-wave.

The subject is at the first stage of labour (40 weeks gestation). A Hanning 

window is used to calculate the power spectrum. Sampling rate =

0.5 KHz, resolution = 12 bits. 192

Figure 5.3: The effect of linearisation in conjunction with the AR second-order 

statistics (SOS) spectral estimator, (a) The fetal scalp electrode full 

cardiac cycle (data length 500 msec), (b) the transabdominally-measured 

maternal full cardiac cycle (twin electrodes, data length 1000 msec), and 

(c) segment II of the maternal transabdominal signal (inset) containing a
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fetal heartbeat with maternal contribution (data length 250 msec).

The maternal cardiac cycle begins 50 msec before the R-wave and ends 

50 msec before the next R-wave. The subject is at the first stage of labour 

(40 weeks gestation). Model order — 11. A Hanning window is used to 

calculate the power spectrum. Sampling rate = 0.5 KHz, resolution =

12 bits. 194

Figure 5.4: The effect of linearisation in conjunction with the Yule-Walker 

second-order statistics (SOS) spectral estimator, (a) The fetal scalp 

electrode full cardiac cycle (data length 500 msec), (b) the 

transabdominally-measured maternal full cardiac cycle (twin electrodes, 

data length 1000 msec), and (c) segment II of the maternal 

transabdominal signal (inset) containing a fetal heartbeat with maternal 

contribution (data length 250 msec). The maternal cardiac cycle begins 

50 msec before the R-wave and ends 50 msec before the next R-wave.

The subject is at the first stage of labour (40 weeks gestation). Code:

35-1. SNR = 29 dB, 23 dB, and 2 dB for (a), (b), and (c), respectively.

Model order = 8. A Hanning window is used to calculate the power 

spectrum. Sampling rate = 0.5 KHz, resolution = 12 bits. 196

Figure 5.5: The effect of linearisation in conjunction with the maximum entropy 

(MEM) second-order statistics (SOS) spectral estimator, (a) The fetal 

scalp electrode full cardiac cycle (data length 500 msec), (b) the 

transabdominally-measured maternal full cardiac cycle (twin electrodes, 

data length 1000 msec), and (c) segment II of the maternal 

transabdominal signal (inset) containing a fetal heartbeat with maternal 

contribution (data length 250 msec). The maternal cardiac cycle begins 

50 msec before the R-wave and ends 50 msec before the next R-wave.

The subject is at the first stage of labour (40 weeks gestation). Code:

35-1. SNR = 29 dB, 23 dB, and 2 dB for (a), (b), and (c), respectively.

A Hanning window is used to calculate the power spectrum. Sampling rate 

= 0.5 KHz, resolution = 12 bits. 199

Figure 5.6: Flowchart of the key calculations of the bispectrum using the

indirect method. 202

Figure 5.7: Maternal transabdominal full cardiac cycles used to calculate the
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bispectrum of Figures 5.8-5.12. The ECG signals haven been 

synthesised using a third-order Volterra structure and only the linear part 

is retained. Segment I: predominantly maternal QRS-complex, segment II: 

the first fetal heartbeat with maternal contribution, segment III: QRS-free 

ECG, and segment IV: the second fetal heartbeat with maternal 

contribution. The maternal cardiac cycle begins 50 msec before the 

R-wave and ends 50 msec before the next R-wave. The subjects are at the 

first stage of labour, 40 weeks gestation. The maternal cycle has 

500 samples or more at a rate of 0.5 KHz. The third-order Volterra 

parameters are: filter length = 6, step-size parameters = 0.001, 0.0002, 

and 0.0004 for linear, quadratic and cubic parts, respectively, delay = 4.

The LMF parameters are: filter length = 12, step-size parameter = 0.004, 

delay = 6. (Code: 5, 9, 12, 16, 19). 203

Figure 5.8: Dual-band-pass filtered bispectra (l.h.s.) and their contour maps 

normalised to the maternal QRS spectral peak (r.h.s.) for the 

transabdominally-measured ECG segments I, II, III, and IV shown in 

Fig. 5.7 (a). Segment I: predominantly maternal QRS-complex,

Segment II: the first fetal heartbeat with maternal contribution;

Segment III: QRS-free ECG; and Segment IV: the second fetal heartbeat 

with maternal contribution. The dual band-pass filter consists of two 

fifth-order Butterworth filters with cut-off frequencies of 10 Hz to 20 Hz, 

and 25 Hz to 40 Hz, respectively, and a pass-band attenuation of 0.5 dB, 

a stop-band attenuation larger than 50 dB. The sampling rate is 

500 Hz.(Code: 5-133). 205

Figure 5.9: Dual-band-pass filtered bispectra (l.h.s.) and their contour maps 

normalised to the maternal QRS spectral peak (r.h.s.) for the 

transabdominally-measured ECG segments I, II, III, and IV shown in 

Fig. 5.7 (b). Segment I: predominantly maternal QRS-complex,

Segment II: the first fetal heartbeat with maternal contribution;

Segment III: QRS-free ECG; and Segment IV: the second fetal heartbeat 

with maternal contribution. The dual band-pass filter consists of two 

fifth-order Butterworth filters with cut-off frequencies of 10 Hz to 20 Hz, 

and 25 Hz to 40 Hz, respectively, and a pass-band attenuation of 0.5 dB, 

a stop-band attenuation larger than 50 dB. The sampling rate is
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206500 Hz.(Code: 12-25).

Figure 5.10: Dual-band-pass filtered bispectra (l.h.s.) and their contour maps 

normalised to the maternal QRS spectral peak (r.h.s.) for the 

transabdominally-measured ECG segments I, II, III, and IV shown in 

Fig. 5.7 (c). Segment I: predominantly maternal QRS-complex,

Segment II: the first fetal heartbeat with maternal contribution;

Segment III: QRS-free ECG; and Segment IV: the second fetal heartbeat 

with maternal contribution. The dual band-pass filter consists of two 

fifth-order Butterworth filters with cut-off frequencies of 10 Hz to 20 Hz, 

and 25 Hz to 40 Hz, respectively, and a pass-band attenuation of 0.5 dB, 

a stop-band attenuation larger than 50 dB. The sampling rate is 500 Hz.

(Code: 9-14). 207

Figure 5.11: Dual-band-pass filtered bispectra (l.h.s.) and their contour maps 

normalised to the maternal QRS spectral peak (r.h.s.) for the 

transabdominally-measured ECG segments I, II, III, and IV shown in 

Fig. 5.7 (d). Segment I: predominantly maternal QRS-complex,

Segment II: the first fetal heartbeat with maternal contribution;

Segment III: QRS-free ECG; and Segment IV: the second fetal heartbeat 

with maternal contribution. The dual band-pass filter consists of two 

fifth-order Butterworth filters with cut-off frequencies of 10 Hz to 20 Hz, 

and 25 Hz to 40 Hz, respectively, and a pass-band attenuation of 0.5 dB, 

a stop-band attenuation larger than 50 dB. The sampling rate is 500 Hz.

(Code: 16-2). 208

Figure 5.12: Dual-band-pass filtered bispectra (l.h.s.) and their contour maps 

normalised to the maternal QRS spectral peak (r.h.s.) for the 

transabdominally-measured ECG segments I, II, III, and IV shown in 

Fig. 5.7 (e). Segment I: predominantly maternal QRS-complex,

Segment II: the first fetal heartbeat with maternal contribution;

Segment III: QRS-free ECG; and Segment IV: the second fetal heartbeat 

with maternal contribution. The dual band-pass filter consists of two 

fifth-order Butterworth filters with cut-off frequencies of 10 Hz to 20 Hz, 

and 25 Hz to 40 Hz, respectively, and a pass-band attenuation of 0.5 dB, 

a stop-band attenuation larger than 50 dB. The sampling rate is 500 Hz.

(Code: 19-2). 209
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Figure 5.13: The effect of changing (a) the learning rate, (b) the momentum 

constant and (c) the middle layer size, on the classification rate of the 

maternal QRS-complexes (l.h.s.) and fetal heartbeats (r.h.s.) from 

transabdominally-measured ECG signals and employing bispectral 

contours and their templates to be matched using a single-hidden-layer 

perceptron using the neural network back-propagation algorithm with 

momentum. Performance for predominantly maternal QRS-complex segments 

(l.h.s.) and fetal heartbeats with maternal contribution segments (r.h.s.). Data 

length 250 msec. Best parameters for the BIC classification is: learning 

rate = 0.2, momentum constant = 0.2, and middle-layer size = 5x5.

(Code: 5-1-100). 214

Figure 5.14: A flowchart for the second hybrid system for non-invasive fetal 

heartbeat detection using bispectral contours for signal processing and 

single-hidden-layer perceptron classification. 216

Figure 5.15 (a): Dual-band-pass filtered bispectral contours for a typical example 

of a transabdominally-measured predominantly maternal QRS-complex 

segment using the second hybrid system. The top left hand part of the 

figure depicts the bispectral contour for the predominantly maternal 

QRS-complex segment. The rest of the figure shows three of the ten 

templates of such signals. Template 1, at the top right hand comer, is the 

one which is matched to the segment. The parameters of the 

classifier are: learning rate = 0.20, moment constant = 0.2, and 

middle layer size is 5 x 5. The bispectrum is computed using the 

indirect method. Optimised Kaiser windows centred at frequencies of 

15 Hz, 16 Hz, 17 Hz, 18 Hz, and 19 Hz for the mother’s QRS-complex 

are used. The dual-band-pass filter consists of two fifth-order 

Butterworth filters with cut-off frequencies of 10 Hz to 20 Hz, and 25 Hz 

to 40 Hz, respectively, and a pass-band attenuation of 0.5 dB, a stop-band 

attenuation larger than 70 dB. 217

Figure 5.15 (b): Dual-band-pass filtered bispectral contours for a typical example 

of a transabdominally-measured first fetal heartbeat with maternal 

contribution segment using the second hybrid system. The top left hand 

part of the figure depicts the bispectral contour for the first fetal heartbeat 

with maternal contribution segment. The rest of the figure shows three of
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the ten templates of such signals. Template 1, at the top right hand corner, 

is the one which is matched to the segment. The parameters of the 

classifier are: learning rate = 0.20, moment constant = 0.20, and the 

middle layer size is 5 x 5. The bispectrum is computed using the indirect 

method. Optimised Kaiser windows centred at frequencies of 28 Hz,

29 Hz, 30 Hz, 31 Hz, 32 Hz, 33 Hz, 34 Hz, 35 Hz, 36 Hz, 37 Hz, and 

38 Hz for the fetal heartbeat are used. The dual-band-pass filter consists 

of two fifth-order Butterworth filters with cut-off frequencies of 10 Hz 

to 20 Hz, and 25 Hz to 40 Hz, respectively, and a pass-band attenuation 

of 0.5 dB, a stop-band attenuation larger than 70 dB. 218

Figure 5.15 (c): Dual-band-pass filtered bispectral contours for a typical example 

of a transabdominally-measure QRS-free ECG segment using the second 

hybrid system. The top left hand part of the figure depicts the bispectral 

contour for a QRS-free ECG segment. The rest of the figure shows three 

of the ten templates of such signals. Template 1, at the top right hand 

comer of the figure, is the one which is matched to the segment. The 

parameters of the classifier are: learning rate = 0.20, moment 

constant = 0.20, and the middle layer size is 5 x 5. The bispectrum is 

computed using the indirect method. Optimised Kaiser windows centred 

at frequencies of 28 Hz, 29 Hz, 30 Hz, 31 Hz, 32 Hz, 33 Hz, 34 Hz,

35 Hz, 36 Hz, 37 Hz, and 38 Hz are used. The dual-band-pass filter 

consists of two fifth-order Butterworth filters with cut-off frequencies of 

10 Hz to 20 Hz, and 25 Hz to 40 Hz, respectively, and a pass-band 

attenuation of 0.5 dB, a stop-band attenuation larger than 70 dB. 219

Figure 5.15 (d): Dual-band-pass filtered bispectral contour for a typical example 

of a transabdominally-measured second fetal heartbeat with maternal 

contribution segment using the second hybrid system. The top left hand 

part of the figure depicts the bispectral contour for the second fetal 

heartbeat with maternal contribution. The rest of the figure shows three 

of the ten templates of such signals. Template 1, at the top right hand 

corner, is the one which is matched to the segment. The parameters of 

the classifier are: learning rate = 0.20, moment constant = 0.20, 

and the middle layer size is 5 x 5. The bispectrum is computed using the 

indirect method. Optimised Kaiser windows centred at frequencies of
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28 Hz, 29 Hz, 30 Hz, 31 Hz, 32 Hz, 33 Hz, 34 Hz, 35 Hz, 36 Hz, 37 Hz, 

and 38 Hz for the fetal heartbeat are used. The dual-band-pass filter 

consists of two fifth-order Butterworth filters with cut-off frequencies of 

10 Hz to 20 Hz, and 25 Hz to 40 Hz, respectively, and a pass-band 

attenuation of 0.5 dB, a stop-band attenuation larger than 70 dB. 220

Figure 6.1: Normalised specially weighted MUSIC-like pseudo-spectrum for 

fetal scalp electrode, and maternal chest full cardiac cycles. Optimised 

Kaiser weighting coefficients were used for the fetal and mother ECGs 

to enhance their spectral peaks at 30 Hz and 15 Hz, respectively. The 

maternal cardiac cycle begins 50 msec before the R-wave and ends 

50 msec before the next R-wave. The subject is at end of term, 40 weeks. 

Model order is 11 and 4, respectively, for the signal and noise subspaces. 

(Code: 5-1). 242

Figure 6.2: Spectral properties of a uterine contraction plus noise segment.

(I) Power spectrum (in dB) and (II) Kaiser shaped weighted MUSIC 

pseudo-spectral peaks (in dB) before (a) and after (b) linearisation using 

only the linear part of the output of a third-order Volterra synthesiser.

The output consists of the linear, quadratic, and cubic parts of the 

transabdominally-measured ECG 250 msec segment, and free of both 

P-waves and QRS-complexes. (Ill) Linearisation signal processing used 

in Figures (I) and (II). The Welch averaged periodogram method is used 

to calculate the power spectrum. The MUSIC model order is 11 and 4 

for the signal and noise subspaces, respectively. Optimised Kaiser 

weighting coefficients were used. Volterra synthesiser parameters are: 

filter length -  6, delay = 2, step-size parameters =0.001, 0.0001, 0.00001, 

for linear, quadratic and cubic parts, respectively. Code: 9-67. 250

Figure 6.3: The bicoherence squared (Kaiser shaped window) of the

transabdominally-measured ECG 250 msec segment which is free from 

both the P-waves and the QRS-complexes (a) before and (b) after 

linearisation using a third-order Volterra synthesiser. Retaining only the 

linear part results in a significant reduction in artefact. The direct method 

was used to calculate the bispectrum and then normalised with the Welch 

averaged periodogram to obtain the bicoherence squared. The Volterra
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synthesiser parameters are: filter length = 6, delay = 2, step-size 

parameters =0.001, 0.0001, 0.00001, for linear, quadratic and cubic 

parts, respectively. Code: 9-67. 251

Figure 6.4: (a) Bispectral contours for the transabdominally-measured ECG 

250 msec segment containing the first fetal heartbeat with maternal 

contribution, (b) Bispectral contours for the synchronised fetal scalp 

electrode ECG. The bispectrum is calculated using the direct method 

with a Kaiser window applied to the 250 msec segment. 252

Figure 6.5: Transversal filter for temporal processing. 259

Figure 6.6: An eigen-spectrum 261

Figure 6.7: The composite transabdominal ECG signal (TECG = MECG +

FECG + the uterine contraction signal (UCS) + noise) is represented by 

the vector OA and Gram-Schmidt (GS) orthogonalised with the UCS 

represented by the vector OB. The signal OE is perpendicular to 

the UCS signal, which is free from any component that might correspond 

to the UCS. 270

Figure 6.8: A flowchart for the third system for non-invasive fetal heartbeat 

detection using both the sequentially optimised and weighted 

MUSIC-like technique and the sequentially optimised, weighted and 

the uterine contraction signal covariance matrix incorporated 

MUSIC-like technique. 271

Figure 6.9: (a) A typical maternal transabdominal cardiac cycle, (b) the 

synchronised and amplified fetal ECG signal measured using two 

electrodes; one electrode is clipped to the fetal scalp, and the other is 

attached to the maternal thigh. The R-wave separation is 40 msec.

(c), (d), (e), (f), and (g) are superimposed and synchronised maternal 

transabdominal and fetal scalp ECGs with maternal R-wave to fetal 

R-wave separation of 35 msec, 23 msec, 18 msec, 14 msec, and 9 msec, 

respectively. The maternal cardiac cycle begins 50 msec before the 

R-wave and ends 50 msec before the next R-wave. The subject is at the 

first stage of labour, 40 weeks gestation. The maternal cycle has 

500 samples or more at a rate of 0.5 KHz. (Code: 5, 9, 12, 16, 19).

Segment I: maternal QRS, segment II: the first fetal heartbeat with 

maternal contribution, segment III: QRS-free ECG, and segment IV:
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presence of a second fetal QRS in segment III, while Segments II and IV 
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Abstract
The thesis proposes and evaluates three state-of-the-art signal processing techniques to detect 
fetal heartbeats within each maternal cardiac cycle, during labour contractions, using only a pair 
of transabdominal electrodes. The first and second techniques are, namely, the structured third- 
order cumulant-slice-template matching and the bispectral-contours-template matching for fetal 
QRS identification, respectively. The third technique is based on the modified and appropriately 
weighted spectral multiple signal classification (MUSIC) with incorporated covariance matrix 
for uterine contraction noise-like interfering signals also contaminated with noise. Essentially, 
two modifications to the standard MUSIC have been developed in order to enhance the 
performance of the spectral estimator in our applied work. The first modification involves the 
introduction of an optimised weighting function to the segmented ECG covariance matrix, and 
is chiefly aimed at enhancing the fetal QRS major spectral peak which occurs at around 30 Hz 
against the mother QRS major spectral peak usually occurring around 17 Hz and all other noise 
contributions. Additional optional pseudo-bispectral enhancement to sharpen the maternal and 
fetal spectral peaks, in particular when the mother and fetal R-waves are temporally coincident, 
have been achieved. The second modification to the spectral MUSIC is the removal of the 
unjustified assumption that only white Gaussian noise is present and the incorporation of the 
actual measured labour uterine contraction covariance matrix in reconfigured subspace analysis. 
This inevitably leads to the generalised eigenvectors -  eigenvalues decomposition modern 
signal processing. This is now coined the modified, interference incorporated pseudo-spectral 
MUSIC. The above mentioned first and second techniques are higher-order statistics-based 
(HOS) and hybrid involving both signal processing and NN classifiers. The third technique is 
second-order statistics-based (SOS). In all techniques, the removal of signal non-linearity with 
the aid of non-linear Volterra synthesisers plays a crucial part in the fetal detection integrity.

Accurately assessed fetal heart classification rates as high as 95% have been achieved during 
labour, thus helping to provide non-invasive transparency to fetal intrapartum welfare. 
Performance analysis and evaluation processes involved more than 30 critical cases classified as 
“fetal under stress in labour” recorded in a London hospital database and used both 
transbadominal ECG electrodes and fetal scalp electrodes. The latter facilitates detection of the 
instantaneous fetal heart rate which is then used as the Reference Fetal Heart Rate in the 
assessment of the classification rate of each of the above mentioned techniques. It will be shown 
that the fetal heartbeats are completely masked by uterine activity and noise artefacts in all the 
recorded transabdominal maternal ECG signals. The fetal scalp electrode was, therefore, 
deemed necessary to provide the highest accurate measure of fetal heart functionality (from the 
hospital viewpoint), and in the assessment of the three non-invasive techniques presented in this 
thesis. The techniques may also be used during gestation and as early as 10 weeks.
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Chapter 1 IN T R O D U C T IO N

CHAPTER ONE

INTRODUCTION

Worldwide, the standard method of monitoring the foetus during labour is the display of 

continuous fetal heart rate (FHR) and the uterine activity which together constitutes the 

cardiotocogram (CTG) (Figure 1.1). By analysis and appropriate interpretation of 

changes in the CTG obstetricians hope to prevent the delivery of dead or impaired 

babies who had suffered as a result of a lack of oxygen during labour and delivery.

1.1 The fetal electrocardiogram

The fetal heart rate is routinely obtained during labour from the electrocardiogram 

(ECG), the electrical activity of the heart or ultrasound. The ECG is obtained invasively 

by measuring differentially between an electrode clipped on the fetal scalp and a 

standard electrode (see Figures 1.2 and 1.3). In practice, to measure the fetal heart rate a 

suitable DSP algorithm is employed to detect, in hardware or software, successive 

QRS-complexes and from these to calculate the R-to-R intervals and the corresponding 

FHR. Most QRS-complex detection methods assume that the shape of the fetal 

QRS-complex is known a priori, but that its time of occurrence is unknown. This 

assumption is reasonable in the case of fetal scalp electrode ECG monitoring as the 

QRS-complex is visible and the SNR is high. However, it is not always valid as the 

shape of the QRS-complex may change from one subject to another and indeed within 

the same subject. Thus by comparing the ECG signal against a known, representative 

QRS-complex template the location of the QRS-complexes in the ECG can be 

determined based on some measure of similarity, for example a high value of 

cross-correlation. Like the adult ECG, normal fetal ECG is characterised by five peaks 

and valleys labelled with successive letters of the alphabet P, Q, R, S, and T. Thus, the 

ECG is said to consist of the P-wave, QRS-complex, and T-wave, as typified in 

Figure 1.2.
1
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Fetal Heart rate (beats/min)

Figure 1.1: An example of a cardiotocogram (CTG). The CTG consists of the fetal heart rate 

pattern (top panel) and the uterine activity (bottom panel).

Figure 1.2: The electrocardiogram (ECG).

TOCO

Storage system

Figure 1.3: Measurement of fetal electrocardiogram.

2



As shown in Figure 1.2, the reciprocal of the heart period, that is the time interval 

between the R-to-R peaks (in milliseconds), multiplied by 60,000 gives the 

instantaneous heart rate. The FHR pattern in the upper half of Figure 1.1 is a plot of 

successive instantaneous heart rates.

Figure 1.4 shows the fetal heart rate before, during, and after labour uterine contractions; 

observe the boundaries of tachycardia and bradychardia. Also, observe the fetal heart 

rate deceleration duration after the peak pressure region of uterine contraction. These 

observation regions are extremely important in assessing fetal wellbeing.
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Figure 1.4: Fetal heart rate (top panel) and uterine contraction activity (bottom panel).
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An important aspect of achieving the highest possible fetal heart detection rate, which is 

the aim of this thesis, is the ability not only to predict the outcome of labour all in good 

time, but also to assess FHR accelerations and decelerations (measured relative to the 

baseline of more than or less than 15 bpm), in sympathy with every dominant uterine 

contraction peak. For example, variable decelerations vary in time and / or shape, and 

are considered ominous only when:

• The decrease is 60 bpm or more.

• The decrease lasts 60 seconds or more.

• The decrease is associated with reduced variability.

• There is a slow return to baseline, or

• The baseline rate is abnormal.

Variable decelerations are seen with umbilical cord compression, but asphyxial features 

may be superimposed.

Late decelerations are when there is either:

• A lag time between the onset of uterine contraction and the deceleration, or

• A lag time between the end of the uterine contraction and the return of the 

baseline FHR to normal.

They are considered ominous, and may indicate uteroplacental insufficiency and fetal 

hypoxia, especially when they occur with 50% of contractions, or with loss of baseline 

variability.

In order to assess FHR accelerations and decelerations, the FHR is calculated from the 

R-R interval (the R-wave resides at the peak of the QRS-complex as shown in Figure 

1.2). A fundamental problem is the reliable detection of the QRS-complexes. Missing 

20 fetal heartbeats in a row around the uterine contraction peak can happen very often 

with all non-invasive FHR detection schemes* particularly when applied during labour. 

Other less severe signal degradation due, for example, to baseline wander, mains 

interference, ADC saturation and movement of the baby or mother will also lead to false 

detection or missed complexes and these are all common problems encountered in fetal 

heart monitoring even in the invasive fetal scalp electrode cases. Obviously all

* To our knowledge, ultrasound and all other modern non-invasive ECG techniques reported in the 

literature fail to provide uninterrupted FHR recordings around the uterine contraction peak.
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problems are grossly exacerbated in transabdominal fetal heart monitoring as opposed to 

fetal scalp electrode FHR monitoring.
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1.2 Brief discussion highlighting problems in detecting fetal ECG, 

non-invasively, from maternal transabdominal ECG signals
1. In a low-noise interval, SNR -  0 dB or worse, the basic problem is to extract the 

fetal QRS-complex from the composite transabdominal maternal ECG signal 

obtained from the abdominal lead, where the overlapping maternal 

QRS-complex is ten times stronger. Sometimes, even the maternal P-wave may 

swamp the weak fetal QRS-complex.

2. There are frequently occurring episodes of coincident mother’s and fetal 

QRS-complexes. This is the most challenging problem, which is imminent in 

about 10% of the recorded ECG data.

3. Common types of noise in ECG measurements such as baseline wander, 

electromyographic (EMG), and motion artefacts are still, to this date, 

problematic in fetal heartbeat detection, as their spectra overlap both the 

mother’s and fetal power spectra and this precludes the use of the power 

spectrum in detection. Current DSP techniques only offer partial solutions to 

suppress noise measurements.

4. During labour, uterine contractions result in very strong signal and noise 

artefacts that can easily drown the faint fetal QRS-complex signal. Essentially, it 

has been found that the uterine activity has a frequency peak overlapping that of 

the fetal QRS at 30 Hz [119]. This, undoubtedly, presents a formidable problem 

in extracting fetal heartbeats in the time or the frequency domain during labour.

5. It is noted, in this thesis, that the nature of the signals representing the maternal 

and fetal QRS-complexes is non-linear, and the physical channel through the 

uterus layers and the abdominal layers is also non-linear. Therefore, it is of 

paramount importance, in the first instance, to use non-linear techniques to 

synthesise, model, and remove as much as possible the non-linearity.

6. Close proximity of the mother’s and fetal non-linear QRS-complex signals 

results in non-stationarity and presents a formidable detection problem.

7. There are limitations to some of the SOS-based detection methods based on 

spectral estimation such as the FFT, the AR, the Yule-Walker, the MEM...etc. 

Apart from the assumption of stationarity, the conventional
5
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SOS-based methods lack sharpness of the peaks and thus have restricted ability 

to resolve spectral peaks.

8. The parametric spectral estimation methods assume white Gaussian noise and 

moderate to high signal-to-noise ratios (SNRs). If the data is contaminated with 

non-Gaussian or coloured noise then this would influence the estimation.

9. There is the issue of resolvability if the spacing between the mother’s and fetal

QRS-complexes is less than the shorter autocorrelation length. This is 

demonstrated in Figure 1.5 which depicts the autocorrelation function (ACF) for 

a fetal QRS-complex of 60 msec duration and a maternal chest QRS-complex of 

normal maximum 110 msec duration. The spacing between the mother’s and 

fetal R-waves is 35 msec. The length of the autocorrelation function is 39

msec and 51 msec, for the fetal scalp electrode QRS-complex and the maternal 

chest QRS-complex, respectively. Since the length of the ACF is larger than the 

spacing between the mother’s R-wave and the fetal R-wave, their respective 

QRS-complexes will not be resolvable. And since the power spectrum forms a 

Fourier Transform pair with the autocorrelation function, it has the same 

information presented in the ACF and it will not be able to resolve the spectral 

peaks of the mother’s and fetal QRS-complexes when their respective R-wave 

spacing is comparatively small. This precludes the use of the power spectrum as 

a tool to identify and detect the fetal QRS-complexes.

Time lag, t (msec)

Figure 1.5: The autocorrelation function (ACF) for a maternal QRS-complex of 110 msec 

duration and a fetal QRS-complex of 60 msec duration. The correlation lengths are 39 msec 

and 51 msec, respectively. The spacing between the maternal and fetal R-waves is 35 

msec. (Code: 16-31).
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10. For methods that rely on multiple surface electrodes, such as Blind Source 

Separation (BSS), and when spatial orthogonalisation is a key element in 

mother’s and fetal signal subspace orthogonalisation, such ECG signals are 

picked up using a large number of electrodes, up to 32 in some reported work 

[98, 114-115]. The latter comes within the broad spectrum category of Singular 

Value Decomposition (SVD)* [110-111, 126-128] of mother, fetal, and noise 

methodologies. In such cases, the fetal heartbeat (FHB) detection is hampered by 

the rather unpredictable configuration of the volume conductor and the 

bioelectric sources when projected on 16 or even 32 surface electrodes. The 

utility of such methods in a real clinical environment is rather limited and very 

often renders FHB detection susceptible to electrode locations, human 

interaction, stage of pregnancy, and position of the foetus. So far, all the reported 

studies referred to herein, however, have not been assessed properly using the 

scalp electrode FHB as the FHB reference. Only high to moderate 

signal-to-noise ratios (SNRs) have been involved in these methods. In fact, all 

the FHBs were visible in their recordings which defies the purpose of using such 

sophisticated signal processing methods. Such methods will be appraised in this 

Chapter (Section 1.5) and in Chapter Four (Section 4.2).

1.3 Selection of some early work on fetal heartbeat detection
In the second half of the last century, some of the non-invasive fetal heartbeat detection 

techniques with variable success rates, as claimed by the authors but have not been 

properly assessed against fetal scalp electrode FHB reference, were reported in the 

literature. Here are some worth mentioning;

(i) Matched filtering applied to the fetal QRS-complex

Generally, matched filters can maximise the signal-to-noise ratio for the detection of a 

known signal in noise. However, the design of optimal matched filters requires 

knowledge of both the signal (mother’s and fetal QRS-complexes) and the correlation 

statistics of the noise. The non-stationary nature of the signal and noise in an ECG

* Fetal heart detection methods involving the generalised singular value decomposition (GSVD) 

methodology will be appropriately addressed in Chapter Six alongside with the new modified 

sequentially optimised and weighted MUSIC with the incorporation of the uterine contraction 

interference signal modified covariance matrix (MUCS MUSIC).
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represents an obstacle in the application of matched filtering to QRS-complex detection 

even for adults [55], Later on, Xue et al. [54] developed a linear adaptive matched filter 

for the detection of adult QRS-complexes in extreme noise [54]. This filter attempts to 

adjust itself to compensate for changing signal shapes and noise conditions. This linear 

adaptive filter may have performed better than the non-adaptive types. However, the 

ECG is a non-linear signal generated from a non-linear system- the human body. It is 

difficult to adapt to a non-linear signal using a linear model. Towards the end of the last 

century, Xue et al. [18] replaced their linear filter by an ANN-based adaptive matched 

filter for adult QRS-complex detection. But no attempt has been made to apply this to 

fetal QRS-complex detection.

(ii) Maternal QRS-complex cancellation applied to transabdominal signals 

Widrow et al. [15] proposed an adaptive filtering and adaptive noise cancellation 

method to extract the FECG from the composite maternal ECG signal; multiple MECG 

signals obtained from chest leads were used to cancel the MECG component identified 

as noise in the composite maternal ECG signal. A variant of the same approach was 

used by Longini et al. [108], where the FECG was obtained through a direct scaled 

subtraction of the thoracic ECG from the transabdominal ECG. Among the other 

methods, autocorrelation and cross correlation techniques were used by Van Bemmel 

[109]; methods termed as “spatial filtering” were used by Bergveld and Meijer [52] and 

Van Oosterom [110], where the FECG signal was produced through a weighted 

combination of signals from multiple electrodes.

All these methods have a common requirement of multiple maternal thoracic ECG 

signals together producing an estimate of the MECG component, which is eliminated 

from the composite maternal ECG signal to obtain the FECG component. Some of the 

problems of the multiple electrode methods are as follows; In the multiple electrode 

methods, there is the need to generate (either through adaptive weighting of the thoracic 

signals [15, 52, 108-110] or otherwise [23, 56, 111]) an estimate of the MECG 

component, which is close to that appearing in the composite maternal ECG signal. To 

achieve this, the number of thoracic as well as transabdominal ECG signals is 

sometimes heuristically chosen. Although some works reportedly use specific numbers 

of thoracic signals (for example 4 in [15] and 3 in [111]), the extraction is sensitive to 

the accuracy in the absolute as well as collective placement of the thoracic electrodes

8



[23, 56, 111], Further, parametric methods [15, 52] may have estimation problems if the 

underlying dynamics keep changing. Another aspect often ignored is the problem of 

eliminating the effects of differential interferences due to extraneous reasons (e.g., due 

to respiratory activity [112]) on the thoracic signals and on the composite abdominal 

signals. All multiple electrode methods suffer from this problem.
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1.4 Current non-invasive techniques

The short- and long-term recording of the fetal heart rate (FHR) is the most frequently 

used diagnostic measurement to determine the fetal health status [17], [84], Recently, it 

has been discovered that by using sophisticated algorithms it is possible to have high 

acquisition rates for FHR as early as the 12th gestational week. Routine medical analysis 

of the recorded FHR diagram is of great clinical importance, and since its introduction it 

has led to the drastic reduction of prenatal and post-natal child mortality [86], Currently, 

there are several different non-invasive methods used in medical practice for the 

measurement of the FHR:

• The ultrasound cardiotocography (CTG) is the most commonly applied diagnostic 

tool which provides an accurate determination of the long-term fetal cardiac 

performance. In recent years, combined ultrasound transducers have appeared, which 

are capable of detecting the fetal heart activity and the uterine contractions as well. 

Frequent measurements of FHR are recommendable, however, the cost of high 

quality CTG devices is unfortunately so high that this technology is not viable for 

low-cost devices used in the home care sector. The CTG has typically 2 MHz 

radiated at 10 mW / cm2 intensity on the fetus. However, this is regarded as unrisky. 

There are two disadvantages with CTG, namely, the loss of acquisition (i) during a 

time window in gestation, and (ii) due to the baby's movement.

• Fetal Magnetocardiography (FMCG) is also applied for the detection of fetal heart 

activity, but primarily for short-term recordings. This technique uses a 

super-conducting quantum interference device (SQUID) to detect changes in the 

magnetic field created by changes in the intracellular current density within the fetal 

heart. It has the advantage of not having any interference from the maternal ECG 

complexes and abdominal muscle action. It requires high-value superconductor 

sensors and a special recording environment (magnetically shielded room). Another 

advantage of this method is that it allows a proper segmentation of the P-wave,

9
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QRS-complex, and ST-segment of the fetal cardiac cycle. A study of 106 pregnant 

women between 20 and 42 weeks gestation using the SQUID technique has resulted 

in a 67% success rate in detecting the fetal QRS-complex in unaveraged recordings, 

75% detection rate of the fetal P-wave, and 72% detection rate of the fetal T-wave 

[30]. FMCG and FECG recordings of similar quality have been consecutively 

obtained from the same patients [27]. The main disadvantages of the system are the 

high cost of the SQUID, the especially purpose-built, non-metal chair and the 

shielded environment required to reduce interference.

• Auscultation is one of the oldest medical tools in history, which has also been applied 

in fetal diagnostics, using specially-formed stethoscopes. The modem form of 

auscultation called phonocardiography, provides for absolutely non-invasive 

electronic recording and computerised analysis of the acoustic cardiac signals. 

Further use has been reported which concerns the analysis of the recorded acoustic 

vibrations, such as electronic stethoscope and heart noise analysis [88-90], 

Unfortunately, the fetal heart activity produces much less acoustic energy, and in 

addition it is surrounded by a highly noisy environment. This makes the detection of 

fetal heart sounds a very complicated problem. Several methods have already been 

proposed for fetal phonocardiographic measurements [91-93]. However, currently 

there are no fetal phonocardiographic devices available.

• Fetal Electrocardiography (FECG) using non-invasive surface electrodes placed on 

the maternal abdomen (transabdominal) is another tool for FHR recording. There are 

numerous methods proposed for the rejection of the disturbing maternal ECG signal. 

These can be found in [17, and references therein]; the automated long-term 

evaluation of FECG is regarded as less robust than CTG. In [17] a failure rate of 

approximately 30% is quoted as an almost unanimous norm [5, 26, 29, 94-96], The 

advantage of FECG is that it can be implemented in small and relatively low-cost 

devices [97].

Some of the most advanced techniques will now be briefly appraised in the following

section.
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1.5 Modern antepartum techniques for non-invasive fetal 
electrocardiogram monitoring

1.5.1 Blind Source Separation (BSS) based on the method of Independent Component 

Analysis (ICA)

(a) Background

Blind source separation describes the process of extracting a number of individual 

signals emitted by statistically independent sources from combinations received by an 

array of sensors. The term “blind” is used to indicate that no prior information or 

training data is available concerning the individual sources or the manner in which they 

have been combined.

It is assumed here that the combination mechanism is linear, instantaneous, and time 

invariant. It is well documented that under these circumstances the signals cannot be 

separated using only second-order statistics. Performing a conventional Principal 

Component Analysis (PCA) based on second-order statistics serves to identify the 

number of signals present and to identify noise components but does not separate the 

signals completely. The principal component signal waveforms are uncorrelated (in the 

noiseless real-mixture two-source sensor scenario, the observations are whitened, 

de-correlated and normalised) but not necessarily statistically independent. They are 

related to the original independent signals by means of an unknown rotation matrix. 

Determining this rotation matrix necessitates the use of Higher-Order Statistics (HOS) 

usually represented by cumulants of order higher than two. Since the third-order 

cumulants of a symmetric distribution are zero, the fourth-order cumulants are most 

commonly used. Note that signals with Gaussian statistics cannot be separated in this 

way since a Gaussian distribution is specified completely by its mean and variance and 

the expected values of the higher order cumulants are zero.

The use of higher-order statistics to separate unknown, independent signals (following 

an initial principal component analysis) is often referred to as Independent Component 

Analysis (ICA). The definitive work on ICA was published by Comon [116]. He used 

the term contrast function to denote a higher-order statistical measure which attains its 

minimum (maximum) value for multiple signals only when the signals are independent.

11



As a convenient form of contrast functions, Comon chose to use the sum of the squares 

of the fourth-order auto-cumulants. For normalised, zero-mean signals (as generated by 

the initial PCA), this should attain a maximum value when the signals are statistically 

independent.

An alternative algorithm for ICA has been developed by Clarke [117-118] and applied 

with great success to a wide range of communication signals received by various 

sensors. This algorithm, known as BLISS, exploits the same sequence as that proposed 

by Comon but differs in the choice of contrast function used to estimate the rotation 

angles.

(b) Appraisal of techniques involving independent component analysis 

Some research workers [98, 114-115] have recently been using Independent Component 

Analysis (ICA), also known as Blind Source Separation (BSS), in pursuit of separating 

mother’s and fetal ECG signals from cutaneous measurements. Perhaps it is more 

prudent to appraise the technique here as a concept for non-invasive fetal heartbeat 

detection and resort to an appendix to provide an informative background. The 

ICA-method itself is discussed at a conceptual level in Appendix A2 part 1 and the 

extraction of FECG by means of BSS in Appendix A2 part 2.

In the publications [98, 114-115] the ICA has been carried out under the following 

assumptions, the validity of each has been challenged in the author’s joint paper [99] 

(a copy of our publication is given in Appendix A3); (1) Sensors (electrodes) are 

assumed to form an instantaneous linear mixture of mother and fetal source signals. 

(2) Noise is assumed to have an additive Gaussian perturbation. (3) Mother’s and fetal 

ECG signals are assumed to be stationary and linear, mutually statistically independent 

and statistically independent from noise. (4) Most of the second-order and fourth-order 

Blind Source Separation (BSS) methods developed to date assume that all ECG 

third-order cumulants vanish, which shows their lack of understanding of ECG 

statistics, hence the need to use the fourth-order cumulants. Furthermore, a crucial factor 

in using Independent Component Analysis (ICA) is the accurate positioning of the 

individual cutaneous electrodes connected to channels numbering from six up to 32 in 

aid of signals’ orthogonalisation.

Chapter 1___________________________________________________________IN T R O D U C T IO N
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References [98, 114-115] have succeeded in separating fetal heartbeats (FHBs) using 

just eight electrodes (channels). But, the collection of data used has been rather limited 

to clean segments taken during gestation periods, and very conveniently chosen to have 

very high signal-to-noise ratio (SNR), and cleverly avoiding data with intrapartum cyclic 

uterine contractions or serious motion artefacts. Furthermore, the aforementioned 

publications have failed to include in their assessment the imminently and most 

frequently occurring episodes of coincident mother’s and fetal heartbeats. This is 

the most challenging problem which is imminent in around 10% of the measured 

data. As mentioned before, due to the non-linear nature of the maternal and fetal 

QRS-complexes and the non-linear physical channel through the uterus layers and the 

abdomen layers, quadratic and higher-order coupling is generated between the mother’s 

and fetal ECGs as their separate signals propagate through the inner tissues. This also 

results in non-stationarity and presents a formidable detection problem even when 

higher-order statistics are used as DSP tools.

Independent Component Analysis (ICA) essentially requires high signal-to-noise ratios 

(SNRs) and has, so far, been used antepartum without appropriate assessment (i.e., no 

provision of fetal scalp electrode ECG reference to confirm the detection of fetal 

QRS-complexes) [98, 114-115].

These methods have been criticised in our paper “Virtues and Vices of Source 

Separation Using Linear Independent Component Analysis for Blind Source Separation 

of Non-linearly Coupled and Synchronised Fetal and Mother ECGs” [99] where the 

following issues have been raised: In our paper [99], there is evidence of non-linear 

quadratic and cubic coupling and non-stationarity in the transabdominally measured 

signals when the fetal and maternal heartbeats are coincident or even close enough. 

This, therefore, requires a high degree of sophistication in the non-linear modelling of 

both the maternal and fetal ECG signals to be able to establish the extent of quadratic 

coupling (cubic coupling is very weak) and incorporate it in the analysis. At this 

juncture, any justification of the key assumption of linearity and mutual statistical 

independence of both maternal and fetal ECG signals which is the basis for the ICA 

techniques, is now questionable [99], We report in Chapter Three the use of non-linear 

Volterra structures which caters for quantifying the linear, quadratic, and cubic parts of 

both the maternal and fetal ECG signals. The subsequent analysis is much more

13



Chapter 1________________________________________________ INTRODUCTION

simplified by including only the linear non-Gaussian component of the ECG signals and 

noise. The analysis referred to includes; (1) the third-order cumulant template matching 

technique (TOC template matching), (2) the bispectral contour template matching 

technique (BIC template matching), and (3) the modified spectral multiple signal 

classification (MUSIC) with incorporated covariance matrix for uterine contraction 

combined with noise. It is worth reporting at the end of this short appraisal that present 

techniques for non-linear ICA only cater for non-linear mixtures and are definitely not 

adequate to separate non-linear sources such as the mother’s / fetal ECGs in non-linear 

noise artefacts which is the case during labour.

1.5.2 Appraisal of techniques involving wavelet transform

This is based on the detection of singularities obtained from the composite abdominal 

signal, using the modulus maxima in the wavelet domain [100], Modulus maxima 

locations of the abdominal signals are used to discriminate between maternal and fetal 

signals. Two different approaches have been considered. In the first approach, at least 

one thoracic signal is used prior to performing the classification whereas in the second 

approach no thoracic signal is needed. A reconstruction method is utilised to obtain the 

fetal ECG signal from the detected fetal modulus maxima. It is worth noting that:

1. The proposed technique [100] is different from the classical time-domain methods, in 

that it exploits the most distinct features of the signal, leading to more robustness 

with respect to signal perturbations.

2. The algorithm is validated using data with high SNR and this is evidenced by the 

visual tracking of all fetal heartbeats which can be detected using a simple threshold 

procedure yielding far less computational overhead.

1.5.3 Appraisal of techniques involving dynamic modelling

The authors [7] described and applied a technique which is an outcome of the theory of 

non-linear dynamical systems. In deterministic dynamical systems, the post-transient 

trajectory of the system is frequently confined to a set of points in state space called an 

“attractor”. Filters based on the concept of an attractor in state space are often found to 

be dramatically superior to linear filtering methods when applied to chaotic systems. 

The improvement in performance comes from exploiting the geometrical information 

the attractor provides. Whenever a multi-dimensional reconstruction of a signal can be 

approximated by a low-dimensional surface (or attractor), projections onto this (hyper)
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surface can improve the signal-to-noise ratio. In this application, the fetal component in 

the first sweep is treated as a contamination of the maternal ECG, when noise reduction 

techniques are suitable for signal separation. It proved to be a much more stable 

procedure to first extract all contaminations from the maternal trace, and then subject 

the output- containing the fetal and noise- to a second sweep of the projective filter. 

Basically there are two key issues related to the questionable assumption of 

signal-to- noise-ratio quantification.

1. Like the methods mentioned in sections 1.5.1 and 1.5.2, the data has 

comparatively high SNR and the fetal heartbeats can be detected by an adaptive 

matched filter like the one previously developed for adult QRS-complex detection 

(see footnote for specific references*) and requires much shorter data samples than 

the dynamic modelling. Thus, the dynamic modelling apparent success at high SNR is 

offset by the required lengthy data (at least 10,000 samples).

2. Due to the beat-to-beat fluctuations of the shape and duration of the ECG waveform, 

the normal ECG cannot be considered to be deterministic [83, 113], In our previous 

publications, we have proved that determinism is found in all adult and fetal ECGs 

for data lengths of 10,000 samples.

1.6 Conventional noise cancellation and adaptive adults’ ECG filtering
Adaptive filtering algorithms are self-adjusted techniques that can be applied to the 

analysis of signals with unknown or time varying statistics [6], Adaptive filtering 

techniques have shown to be useful in many biomedical applications [7], The basic idea 

behind adaptive filtering has been summarised by Widrow et al. [9] and

* [1] T. Schreiber, and D Kaplan, “Signal separation by nonlinear projections: The fetal 

electrocardiogram,” Phys. Rev. E, Vol. 53, p. R4326, 1996.

[2] E. Cicinelli, A. Bartone, I. Carbonara, G. Incampo, M. Bachicchio, G. Ventura, S. Montanaro, and 

G. Aloisio, “Improved equipment for abdominal fetal electrocardiogram recording: description and 

clinical evaluation”, Int. J. Biol. Med. Comput., Vol. 35, pp. 193-205, 1994; De Callerts et al., 

“Description of a real time system to extract the fetal electrocardiogram”, Clin. Phys. Physiol. 

Meas., Vol. 10, Suppl. B, pp. 7-10, 1989. D. Callerts, B. DeMoor, J. Vanderville, W. Sansen, 

“Comparison of SVD methods to extract the fetal electrocardiograms”, Med. Biol. Eng. Comput., 

Vol. 28, pp. 217-224, 1990.

[3] T. Schreiber and D. Kaplan, “Nonlinear noise reduction for electrocardiograms”, CHAOS, Vol. 6, 

pp. 87-92, 1996.
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used in a variety of ECG signal processing applications [8-9], Adaptive filtering is 

necessary in ECG applications because the filter coefficients need to adapt to changing 

signal conditions and noise characteristics. This is due to changes in the signal 

morphology and the noisy environment. Also, there is a spectral overlap between the 

ECG signal and some noise components, and the noise band might be unknown or 

time-varying. This is very serious especially when the noise is non-linearly coupled to 

the signal or has a recursive and / or non-stationary nature.

One simple but important application is in 50 Hz power-line interference cancellation. 

Yelderman et al. [8] used the idea that the maternal chest ECG recording from one of the 

leads can be used as a correlated noise source for adaptive cancellation. To improve the 

signal-to-noise ratio (SNR) multiple channels are employed for adaptive filtering. The ECG 

signal was employed [11] as the reference input to the adaptive filter to cancel the 

cardiogenic artefact from the thoracic signal.

Before discussions regarding different noise cancellation schemes it is prudent to 

describe in sufficient detail the spectral characteristics of adult and fetal scalp electrode 

ECGs.

1.6.1 The Power spectrum of adults ’ ECG components in noise and fetal scalp electrode 

ECG

The power spectrum of the ECG signal can provide somewhat limited but useful 

information about the QRS-complex frequency bands and its localised power. This 

section gives an interpretation of the power spectrum of the adults QRS-complex. In 

order to obtain this information, the QRS-complex of the ECG signal must be selected 

as a template over an 250 msec interval*, and zero-padded prior to the power spectrum 

analysis. The peak of the frequency spectrum obtained corresponds to the peak energy of 

the QRS-complex at 17 Hz. However, the peak of the overall ECG occurs at 14 Hz 

which demonstrates the previously mentioned limitations of FFT-based spectral 

estimators.

* The special length of this temporal window will be addressed in Chapters Four, Five, and Six.
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The ECG waveform contains, in addition to the QRS-complex, the P- and T-waves. The 

templates for the P- and T-waves were taken from our research ECG databank, each 

over an 250 msec interval [123], Figure 1.6 (a) summarises the relative power spectra of 

adult ECG, QRS-complexes, P- and T-waves, motion artefacts, and muscle noise. The 

latter two noise artefacts were isolated from the MIT/BIH Normal Sinus Rhythm (NSR) 

database [50-51]. The peak of the frequency spectrum obtained corresponds to the peak 

energy of the QRS-complex at 17 Hz. However, the peak of the overall ECG occurs at 

14 Hz which demonstrates the previously mentioned limitations of the FFT-based 

spectral estimators. Observe the high spectral content at very low frequencies attributed 

to motion artefact and muscle noise. Figure 1.6 (b) shows a prominent fetal ECG 

spectral peak at 30 Hz. Again, templates extracted from our fetal scalp electrode 

databases have been used in this study. Figure 1.6 (c) is based on a previous paper 

entitled “Novel decision strategy for P-wave detection utilising nonlinearly synthesised 

ECG components and their enhanced pseudospectral resonances”, Dr. M. S. Rizk, et al. 

IEE Proceedings Science, Measurement and Technology, Special section on Medical 

Signal Processing, vol. 147, No. 6, pp. 389-397, November 2000 [123], and gives a 

picture of two multi-window structures which have been used to detect the MUSIC 

pseudo-spectral peaks for the maternal and fetal QRS-complexes based on innovative 

techniques reported in the above joint paper [123], Figure 1.6 (c) will be referred to in 

Section 1.7.

The 50 Hz noise from power-line interference, and possibly other interference from 

electro-surgery equipment in the operating room were extracted using the conventional 

Butterworth filter. Another method is briefly mentioned in the next subsections.

1.6.2 Baseline Wander Reduction

The drift of the baseline with respiration can be represented as a sinusoidal component 

at the frequency of respiration added to the ECG signal. The amplitude and frequency of 

the sinusoidal component should be variables. The amplitude of the ECG signal also 

varies by about 15% with respiration. The variation could be reproduced by amplitude 

modulation of the ECG by the sinusoidal component which is added to the baseline.

Van Alste and Schilder described an efficient finite impulse response (FIR) notch filter 

that is rather effective at removing baseline wander and power line interference [102],
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Figure 1.6: Relative power spectra based on averaging often cardiac cycles of 
(a) adult's ECG signals, QRS-complexes, P- and T-waves, motion artefact and muscle 
noise (the inset shows an extended spectrum), and (b) fetal scalp electrode ECG. The 
Welch averaged periodogram method is used to calculate the power spectrum, (c) 
Optimised Kaiser windows. Each window is designed to enhance one of the MUSIC 
pseudo-spectral peaks for the maternal or the fetal QRS-complex. Part (c) is based on 
[123], courtesy of the IEE Proceedings Science, Measurement and Technology.
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The adaptive filter to remove baseline wander is a special case of notch filtering, with 

the notch at zero frequency (dc). Only one weight is needed, and the reference input is a 

constant with a value of 1. This filter has a zero at dc. Frequencies in the range of 0 to 

0.5 Hz should be removed to reduce baseline drift. If the sampling rate is 500 Hz, the 

convergence parameter p should be smaller than 0.003. The parameter p may be 

dynamically adjusted to obtain the desired low-frequency response. This filter converges 

slowly and therefore cannot track abrupt transients produced by motion artefacts.

1.6.3 Adaptive 50 Hz and 60 Hz Canceller

Power-line interference consists of 50 Hz (or 60 Hz) pickup and harmonics which can 

be modelled as sinusoids and combination of sinusoids. Fumo and Tompkins [103] and 

Sahakian and Fumo [104] described filter designs that subtract 60 Hz sinusoids from 

ECG signals. Widrow et al. [15] described a filter employing two weights so that 

in-phase and out-of phase components of the 60 Hz can be cancelled. In general, 

however, the power-line noise is not a pure 50 Hz (or 60 Hz) sinusoid, but is distorted. 

Therefore it was suggested to use the true interference signal as a reference [59], The 

common-mode signal, usually recorded at the right leg reference electrode, is truly 

correlated with the noise in the ECG signal to be filtered, and the reference signal is the 

common-mode signal.

1.6.4 Multi-lead Canceller for EMG Noise

Muscle contractions cause artefactual millivolt-level potentials to be generated. The 

baseline electromyogram (EMG) is usually in the microvolt range and is, therefore, 

usually insignificant. The signals resulting from muscle contraction can be assumed to 

be transient bursts of zero-mean band-limited Gaussian noise. The variance of the 

distribution may be estimated from the variance and duration of bursts. EMG noise has 

a broad bandwidth which sometimes overlaps that of the ECG [105], Simple low-pass 

filtering, therefore, is not adequate. It is suggested to employ more than one ECG lead 

[59]. Since electrodes are placed at different locations, the EMG noise from various 

leads may be uncorrelated. Uncorrelated inputs to the filter are ensured by selecting two 

orthonormal ECG leads. Noise in orthonormal leads is expected to be uncorrelated.

1.6.5 Motion Artefact Canceller

Motion artefacts are transient baseline changes caused by changes in the electrode-skin
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impedance with electrode motion. As this impedance changes, the ECG amplifier sees a 

different source impedance, which forms a voltage divider with the amplifier input 

impedance. Therefore, the amplifier input voltage depends on the source impedance, 

which changes as the electrode position changes. The usual cause of motion artefacts is 

assumed to be vibrations or movement of the subject. Motion artefact is usually the 

most difficult form of noise to be eliminated from ECG signals. This is because its 

spectrum completely overlaps with that of the ECG, and its morphology often resembles 

that of the P- and T-waves and QRS-complexes [106], [107]. Most linear filtering 

approaches fail to solve this problem. The adaptive recurrent filter [63] is useful in 

cancelling noise from signals that have a repetitive morphology. The primary input to 

the filter is the ECG signal with motion artefact, and the reference signal is an impulse 

that is coincident with the beginning of each P-QRS-T complex. The adaptation takes 

place only for the samples spanning the signal complex, and subtraction of this complex 

from the ECG leaves the motion artefact as residue. Note that since the filter does not 

adapt between QRS-complexes, the baseline between complexes is simply interpolated. 

This clearly results in some signal distortion.

1.6.6 Electrode Contact Noise

Electrode contact noise is a type of transient interference caused by loss of contact 

between the electrode and the skin of the subject. The loss of contact can be permanent, 

or can be intermittent as would be the case when a loose electrode is brought in and out 

of contact with the skin as a result of movements or vibration. This switching action at 

the measurement system input can result in large artefacts since the ECG signal is 

usually capacitively coupled to the system. With the amplifier input disconnected, the 

50 Hz (or 60 Hz) interference may be significant. Electrode contact noise can be 

modelled as a randomly occurring rapid baseline transient which decays exponentially to 

the baseline value and has a superimposed 50 Hz component. This transition may occur 

only once or may rapidly occur several times in succession. Characteristics of this noise 

signal include the amplitude of the initial transition, the amplitude of the 50 Hz 

component, and the time constant of the decay.

1.6. 7 Electro-surgical noise

Electro-surgical noise completely destroys the ECG signal and can be represented by 

large amplitude sinusoids with frequencies approximately between 100 KHz and
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1 MHz. Since the sampling rate of an ECG signal is between 250 Hz and 1000 Hz, an 

aliased version of this signal would be added to the ECG signal. The amplitude, 

duration and possibly the aliaised frequency should be variable.

1.6.8 Noise generated by electronic devices

Artefacts generated by electronic devices in the instrumentation system cannot be 

corrected by a QRS-complex detection algorithm. The input amplifier may saturate and 

no information about the ECG can reach the detector. In this case an alarm must be 

raised to take corrective action.

1.7 Non-invasive fetal heartbeat detection: New innovative techniques 

to overcome and tame Gaussian and non-Gaussian noise, non-linear 

noise, and unwanted strong non-linear deterministic signals
In this study, which has led to three innovative techniques to boost the accuracy of fetal 

heartbeat detection non-invasively, before and after the onset of labour, HOS including 

SOS and super-resolution techniques, all incorporating the adaptive non-linear Volterra 

synthesisers have been tested and appraised using ECG data recorded from more than 30 

women in labour and a few women in gestation. Having discussed the problems 

encountered, the main issues here and potential solutions are as follows;

(1) To provide signal HOS domains that are not only free from Gaussian noise, but also 

devoted in their unique 2-d representations of the ECG signals to capturing and 

enhancing discriminant patterns to be used as standard templates of; (i) the mother’s 

QRS-complex deduced from the chest ECG, (ii) the fetal QRS-complex, P-, and 

T-waves deduced from the fetal scalp electrode ECG. The reason for using the whole 

fetal cardiac cycle in the development of templates as opposed to the fetal 

QRS-complex is to avoid using the short data of 60 msec occupied by the fetal 

QRS-complex. The latter would yield high HOS variances and also violate one of the 

conditions given in the literature to separate and orthogonalise the signal and noise 

subspaces in the third MUSIC-based technique presented in Chapter Six. The HOS 

templates will be stored in the template databank and will be used for cross matching 

cumulants and bispectral contours created from the transabdominally measured ECG 

signals that contain the mother’s, fetal and uterine contraction signals as well as noise. 

The latter is referred to as the transabdominal HOS domain. Apart from non-Gaussian
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noise, it also contains the signal HOS representative associated with the uterine 

activities. It has been reported in previous studies [120-122] that the uterine contraction 

is a deterministic chaotic type of signal, but this applies to lengths of data comprising 

tens of maternal cardiac cycles. Within the maternal cardiac cycle, the uterine 

contraction signal supports the third- and higher-order statistics and is definitely 

non-linear. It will be shown in Chapter Six that removing the non-linearity from the 

transabdominally measured ECG signals is not adequate to guarantee the effectiveness 

of the MUSIC-based super-resolution detection technique and that the modelling and 

incorporation of the covariance matrix representing the linearised uterine contraction 

signals (in the absence of any mother’s or fetal QRS-complex events) is of absolute 

necessity prior to performing the generalised singular value decomposition (GSVD) 

involved in the orthogonalisation of the signal and interference plus noise subspaces.

(2) To exploit the pseudo-spectral uniqueness of the mother’s and that of the fetal ECG 

so that when there is coincident mother’s and fetal QRS-complexes, one can resort to 

such individual uniqueness in order to discriminate between the mother and the fetal. 

Each of the mother’s and fetal QRS-complexes has its own unique eigenvector 

discriminant pattern. Such mother and fetal patterns are combined together in the matrix 

obtained from the transabdominally measured ECG signal. Therefore, individual 

weightings are principally used to enhance a particular spectral feature (spectral peak) 

and suppress other features. This is done sequentially for the mother’s QRS-complex 

and then for the fetal QRS-complex every time the mother’s QRS-complex is scanned 

(read). If the two QRS-complexes are coincident temporally, they can only be separated 

due to their different “colours” in the frequency or pseudo-frequency domain. For 

instance, the subspace containing the combined mother and fetal ECG signals can be 

weighted to yield a spectrum with enhanced peak at 17 Hz for the mother’s 

QRS-complex whilst suppressing the 30 Hz-peak of the fetal QRS-complex, and 

sequentially vice versa. Because each subject may have a different frequency peak, the 

17 Hz is one frequency in a cluster of frequencies [123-125], Similarly, the 30 Hz of the 

fetal QRS-complex pseudo-spectral peak is one frequency in a cluster of frequencies. 

One fetal ECG may produce pseudo-spectral QRS peaks that span the whole cluster. 

Therefore, there is a requirement of a sufficient number (5-10)  of optimised windows 

centred at the frequencies of 15 Hz, 16 Hz, 17 Hz, 18 Hz, and 19 Hz for the mother’s 

spectrum, and at the frequencies of 28 Hz, 29 Hz, 30 Hz, 31 Hz, 32 Hz, 33 Hz, 34 Hz, 

35 Hz, 36 Hz, 37 Hz, and 38 Hz for the fetal spectrum (see Figures 1.6 (a), (b), and (c)).
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Unlike other methods that fall in the broad spectrum category of generalised singular 

value decomposition (GSVD) [98, 114-115], this method does not require 

orthogonalising the mother subspace and the fetal subspace in order to separate them. In 

other words, there is no need for an elaborate electrode configuration on the mother’s 

abdomen to result in two orthogonal predominant mother and fetal signal subspaces. In 

summary, this new subspace-based method relies, in the first instance, on 

orthogonalising the desired signal subspace which contains both the mother and fetal 

QRS-complexes against the interference subspace which contains the electrical signal 

emanating from the uterus electro-mechanical activity plus noise artefact. This is 

followed by enhancing the mother’s pseudo-spectral principal peak at 17 Hz against the 

fetal and sequentially enhancing the fetal principal pseudo-spectral peak at 30 Hz 

against the mother’s. Each is performed using specially adapted weights on pre-selected 

segmentations during the maternal cardiac cycle, see (4).

(3) To eliminate the signal or noise quadratic and cubic non-linearity, thereby primarily 

leaving only the linear portions of the mother’s QRS- and fetal QRS-complexes to be 

used as their unique representative signatures or discriminant patterns in their respective 

HOS domains or subspaces during the detection or classification procedures. The 

removal of the above non-linearity from all non-linear background noise or other 

interfering signals is also carried out as a by-product of the operation of the non-linear 

adaptive Volterra processor.

(4) To provide a good estimate for the modified covariance matrix of the 

noise-contaminated interference signal associated with uterine activity to be 

incorporated in the above solutions. An accurate model for the long-term uterine 

activities has already been published elsewhere [119-122],

1.8 Data collection
During the last decade, several ECG recordings were borrowed on loan from the North 

Middlesex Hospital and the Royal Free and University College Medical School. 

Measurements took place between 1995 and 1997 at the North Middlesex Hospital, 

London, and between 1997 and 1999 at the Royal Free and University College Medical 

School, London. Essentially, each of the ECG recordings has one-minute duration and 

consists of synchronised maternal chest, maternal transabdominal, and fetal scalp 

electrode ECG signals. The subjects included 30 pregnant women during gestation and 

at full-term, 40 weeks gestation. The transabdominal signals were obtained with the
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consent of women using a pair of electrodes, Sonicaid 8000, a Pentium II PC and an 

interface card. Ag-AgCl Beckman electrodes of 8 cm in diameter, and 25-cm spaced 

centres are positioned on the abdominal wall after careful preparation of the skin, which 

lowers the inter-electrode impedance of about 10 kQ. The electrode pair is set over the 

umbilicus, and lined up with the median vertical axis of the uterus. The ground 

electrode is located on the woman’s hip. An ECG monitor device (Sonicaid, Oxford 

Instruments) was used to record fetal scalp electrode, maternal chest and maternal 

transabdominal ECG signals. Data sets are sampled at 500 Hz. The ECG monitoring 

device has built-in filters to eliminate the baseline wander, high frequency components 

and 50 Hz noise in the signal.

1.9 Data Pre-processing
Data were analysed in this thesis without the need for any pre-processing. However, in 

some cases, as will be seen in Chapters Four, Five, and Six, a second- or third-order 

Volterra synthesiser was used to extract the linear part of the signal before applying 

higher-order statistics to that part only and ignore the quadratic and cubic parts of the 

signal.

1.10 Assessment and validation strategy
The following definitions are used throughout the thesis.

Definitions

1- The Sensitivity (Se) is defined as the ratio of the True Positives (TP) to the sum of the 

True Positives and the False Negatives (FN). The sensitivity reports the percentage 

of the true beats that are correctly classified by the algorithm.

2- The Specificity (Sp) is defined as the ratio of the True Positives (TP) to the sum of 

the True Positives (TP) and the False Positives (FP). It reports the percentage of 

classified heartbeats which are in reality true beats.

3- The classification rate: The mean value of the sensitivity and the specificity is used as 

the criterion for the effectiveness of the technique.

1.11 Outline of the thesis
The first few sections of Chapter Two are devoted to definitions and properties of
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cumulants and cumulant spectra. This is followed by familiarisation with the unique 

structural properties of the third-order cumulants and typified examples of an adult male 

chest ECG, maternal chest ECG, transabdominally-measured ECG, as well as fetal ECG 

signal using scalp-electrode are presented. Section 2.9 shows results of calculating the 

third-order cumulants (TOC) and their diagonal and wall slices for fetal scalp electrode, 

maternal chest, and maternal transabdominal ECG signals, and segments of the latter. 

Section 2.9 also shows results of calculating the bispectra and their slices for the above 

mentioned signals. Section 2.10 shows examples of calculating the bicoherence squared 

for the aforementioned signals. Section 2.11 shows the effect of the proximity of the 

mother’s QRS- and the fetal QRS-complexes on the non-stationarity of the signal. 

Section 2.12 depicts the bispectra and bicoherence squared of three types of noise in 

ECG signals. These types are, namely, the baseline wander, electromyographic (EMG), 

and motion artefact noise. A summary is given in Section 2.13.

Chapter three introduces the LMS- and the LMF-based quadratic and cubic Volterra 

synthesisers. Brief summaries of the standard LMS and LMF algorithms are given in 

Section 3.2. This is followed by description of the LMS- and LMF-based second- and 

third-order Volterra structures in section 3.3. Section 3.4.1 describes the model order 

selection criterion. Section 3.4.2 shows results of directly applying the LMS- and 

LMF-based adaptive algorithms to predict ECG signals, and assess the resultant 

mean-squared errors. Adaptive LMS-based second- and third-order Volterra structures 

are then applied to synthesise ECG signals in Section 3.4.3. The LMS- and LMF-based 

second- and third-order Volterra synthesisers are then applied to fetal scalp electrode, 

maternal chest, and maternal transabdominal ECG signals in Section 3.4.4. A summary 

is given in Section 3.5.

Chapter Four starts by discussing the following issues; (1) ECG cumulant database,

(2) classification, (3) ECG segmentation and window minimum length, (4) window 

overlapping, (5) calculation of an averaged fetal heart rate within one maternal cardiac 

cycle, (6) the effect of using more than one slice and linearisation on the classification 

rate, and (7) shortcomings of the cumulant matching technique. Section 4.2 presents 

previous work on independent component analysis with its virtues and vices. Section 4.3 

provides a brief description of the detection key operations of the TOC template 

matching technique. Section 4.4 briefly describes the equations for the TOC 1-d
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diagonal and wall slices, examines the effect of reducing the length of segmentation on 

the variance of the third-order cumulants, the effect of reducing the length of 

segmentation on the variance, skewness, and kurtosis for white Gaussian noise, and the 

effect of linearisation on third-order cumulants. Typical examples of the TOCs and their 

diagonal and wall slices with and without linearisation are then shown, and the TOC 

variance is calculated. Section 4.5 describes the back-propagation with momentum 

algorithm. It then describes the optimisation of the parameters of the single-hidden-layer 

classifier. Results are shown for the maternal QRS-complex and fetal heartbeat 

classification rates for different TOC slices with and without linearisation employing 

second- and third-order Volterra synthesisers with LMF update. A summary and 

conclusions are given in Section 4.6.

Chapter Five is divided as follows. Section 5.2 references previous joint work on 

non-invasive fetal heartbeat detection using the bispectrum. Section 5.3 refers to the 

detection key operations. Section 5.4 caters for displaying the effect of linearisation in 

conjunction with a number of second-order statistics (SOS) spectral estimators, namely, 

(i) the FFT, (ii) the auto-regressive (AR), (iii) the Yule-Walker, and (iv) the maximum 

entropy (MEM). Section 5.5 presents preliminary investigations of ECG bispectrum, 

including typical examples of bispectra and their contours, followed by the estimation of 

the variance. Section 5.6 gives a detailed description of the second hybrid system which 

uses several bispectral contours as the discriminants in detecting the occurrences of fetal 

heartbeats within each maternal cardiac cycle. Section 5.6.1 shows the results of 

optimising the single-hidden-layer classifier. Section 5.6.3 shows the results of maternal 

QRS-complex and fetal heartbeat classification with and without linearisation, and 

employing both second- and third-order Volterra synthesisers with LMF update. 

Summary and conclusions are given in Section 5.7.

Chapter Six describes a third method for non-invasive fetal heartbeat detection using the 

sequentially optimised, weighted spectral MUSIC with the incorporation of the modified 

covariance matrix of the uterine activity during labour. Section 6.2 provides discussions 

of some relevant issues. These issues include the role of ECG linearisation and the issue 

of coincident mother and fetal QRS-complexes. Section 6.3 addresses some problems 

associated with mother and fetal spectral resolution in a labour environment, and the 

proposed solutions. Section 6.4 reviews some relevant previous studies that paved the
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way for the development of the new technique. Section 6.5 presents a detailed statement 

of research. It describes a particular class of modified MUSIC, namely, the sequentially 

optimised, weighted spectral MUSIC algorithm, also involving a reconfigured 

interference plus noise sub space to incorporate the modified covariance matrix of the 

uterine activity in such a spectral estimator. For convenience, the mathematical 

formulation of the conventional MUSIC is presented in Section 6 .6 . Section 6.7 is 

devoted to the mathematical formulation of the new class of MUSIC, and deals with the 

incorporation of the modified covariance matrix of the linearised non-Gaussian uterine 

contraction interference signal (UCS) in the sequentially optimised, weighted MUSIC. 

Also, the concepts of oriented energy and signal-to-signal ratio, and the alternative 

projection method of Gram-Schmidt orthogonalisation are then briefly described. 

Results are detailed in Section 6 .8 . Summary and conclusions are given in Section 6.9. 

Chapter seven draws conclusions for the thesis.
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HIGHER-ORDER STATISTICS: APPLICATION TO 

ECG SIGNALS

2.1 Introduction

2.1.1 Motivations behind using higher-order statistics in processing ECG 

signals

Essentially, adequate knowledge of the higher-order statistics (HOS) of both the 

mother’s and fetal ECG signals must first be acquired in order to pave the way for fetal 

QRS-complex identification and detection. There are several motivations behind using 

higher-order statistics in processing ECG signals. These motivations will be discussed 

further in the context of the material presented in the next few chapters:

(i) ECG signals are predominantly non-Gaussian [46], [50], and exhibit quadratic and 

higher-order non-linearities supported by third- and fourth-order statistics, 

respectively. It is worth mentioning that, in general, the third-order cumulants can 

support any of the following; (a) linear non-Gaussian signal, (b) non-linear signal, 

and (c) both (a) and (b).

(ii) The mother’s and fetal QRS-complex bispectral contours do not overlap with that 

of the baseline wander and that of the EMG above -20 dB normalised to the peak of 

the maternal QRS-complex bispectrum (as will be seen in Section 2.12). So it is 

comparatively easy to detect and classify either using the bispectral contour 

template matching technique (BIC template matching).

(iii) In the higher-order statistics domain (higher than the second-order domain), 

Gaussian noise diminishes in the HOS domains if the data length is adequate [3-4], 

This implies that it is possible, under certain conditions, to process the ECG signal 

in Gaussian noise-free domains. We have found ([46, 50], also see sections 4.4.3 

and 4.4.4) that for ECG signals a minimum length of 1 sec is adequately long to 

suppress Gaussian noise in the higher-order statistical domains, whilst not long
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enough to violate Hinich’s criterion of “local” stationarity [59], Hinich tests for 

Gaussianity and linearity are performed on ECG signals in Appendix A4. In 

general, ECG signals are non-stationary in the statistical sense, but relatively short 

data can be successfully treated with conventional signal processing tools primarily 

designed for stationary signals. For example, when dealing with individual cardiac 

cycles, non-stationarity is not an issue but when one takes on board the heart rate 

time series which is chaotic and multi-dimensional then it is not wise to assume 

stationarity for analysis purposes [56-57].

(iv) In the third-order domain all sources of noise with symmetric probability density 

functions (pdfs), e.g., Gaussian and uniform, will vanish. The ECG signals are 

retained because they have non-symmetric distributions [58].

(v) Our previously published results show that all ECG signals do contain measurable 

quantities of quadratic and, to a lesser extent, cubic non-linearities [47, 57, 60]. 

Such measurable quantities of non-linearity if not synthesised and removed before 

any further processing for the purpose of signal identification and classification 

could lead to poor performance with regard to fetal QRS-complex detection rates.

In this thesis, the adaptive third-order Volterra structure shown in Figure 2.1 (a) has 

been used to synthesise the linear, quadratic, and cubic components of ECG signals. The 

conventional frequency domain Volterra model of a cubically non-linear system 

modelling with a non-Gaussian input shown in Figure 2.1 (b) and used by Nam and 

Powers [4] has not been used in this thesis.

It will be shown in Chapters Four and Five that the removal of non-linearities in the 

transabdominal ECG signal yields an increase in the fetal heartbeat detection rates by up 

to 7% in the third-order cumulant matching technique (Chapter Four), and 3% in the 

bispectral contour template matching technique (Chapter Five).

2.1.2 Layout of the rest of the Chapter

The first few sections of this chapter are devoted to definitions and properties of 

cumulants and cumulant spectra. This is followed by familiarisation with the unique 

structural properties of the third-order cumulants of an adult male’s chest ECG, 

maternal chest ECG, transabdominally-measured ECG, as well as fetal ECG signal
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using scalp-electrode. The non-linearity and non-stationarity of ECG signals are 

investigated in Sections 2.10 and 2.11 using the bispectrum and bicoherence squared, 

respectively.
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(b)

Figure 2.1: (a) An adaptive third-order Volterra structure, (b) Frequency domain Volterra model 
of a cubically non-linear system. Y(À) is defined by the equation;

Y (l) = H , ( A . ) X ( A , )  + Y  H2 ( c o , ,  c o 2 ) X ( c o , ) X ( c o 2 )
co] ©2

+ Z Z  Z H 3 (coI,co2 ,co3 )X(col)X(co2 )X(co3)
©l ©2

For noise identification and characterisation in the third-order statistical domain, good 

use is made of all the recorded normal ECG signals contained in the MIT/BIH NSR and
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AR databases; user guide and manual are found in references [51] and [52], and a brief 

description of a number of individual records is given in Appendix A5. The third-order 

cumulants, bispectra, and bicoherence squared of some noise components, namely, the 

baseline wander, electromyographic (EMG), and motion artefact noise isolated from the 

MIT/BIH NSR and AR database are analysed in Section 2.12. By knowing the statistics 

of these noise components, this serves to facilitate the detection of ECG signals against 

a cocktail of background noise in either the cumulant or the bispectrum domain. As will 

be seen in Chapter Five, higher detection rates of fetal QRS-complex can be easily 

achieved in the enhanced fetal QRS-complex bispectrum domain against both maternal 

and motion artefact bispectral contribution. It is important to mention that bispectral 

enhancement has been carried out after removing the baseline wander, and in difficult 

cases, after linearisation (removing the non-linearity from the noise contaminated 

maternal transabdominal signal). Conclusions are given in Section 2.13.
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2.2 Cumulants

Given a set of n real variables {xi, x2, ..., xn}, their joint moments of order 

r = ki + k2 + ... + kn are given by [ 1 ] :

Mom [x[“ ,x ^ ,...,x nk"] = E{x[1 ,xk2 ,...,xnkn} = (-j)M Yk2 r Sr<t>(co,, co2, . . . ,  r a j

oto['otok2 ...ctokn
, (2 . 1)

a>i =<ï>2 -■ • =con =0

....... j(co,x, ,co^x,,...,conxn), . , . . . , . . _where (̂co, ,co7 ,...,con)VE{e 1 1  2 2  } is their joint characteristic function.

E {.} denotes the expectation operator. Another form of the joint characteristic function

is defined as the natural logarithm of <))(<»,, co,,..., con), i.e.,

T/(co] ,co2,.. . ,co ) V ln[([)(co1 ,(û2,...,co )]. (2.2)

For Gaussian processes, the logarithm of the characteristic function is a polynomial of 

degree two. Hence, all cumulants of order three and higher will be identically zero. The 

joint cumulants of order r of the same set of random variables, are defined as the
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coefficients in the Taylor expansion of the second characteristic function about zero,

i.e.,
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cum [xyx^..,x :M =E <x y x y . . , x ^ H - Jy ^ M > : • (2.3)
(Dj =®2=’ ■

Thus, the joint cumulant can be expressed in terms of the joint moments of a set of 

random variables. For example, the moments of the random variable {xi} are defined

as:

mi = Mom[xi] = E{ x\}. (2.4)

m2 = Mom[xi,xi] = E{ xfi}. (2.5)

m3 = Mom[xi,xi,xi] = E[xi ]. (2 .6 )

They are related to its cumulants by

ci = Cum[xt] = mi.

c2 = Cum[xi,xi] = mb - mi"

c3 = Cum[xi,xi,xi] =m 3 -  3 m2 mi + 2 m f

(2.7)

(2 .8)

(2.9)

For three random variables xj, x2, and x3 the third-order cumulants are defined as [1]:

Cum[xi,x2,x3] = E{x ix 2x 3} - E{xi}. E{x2x3} - E{x2}. E{xix3} -

E { x 3}. E { x ,x 2} + 2 E {x i} . E { x 2}. E { x 3}, (2.10)

Or defined in terms of three lags of a variable x,

C3 (T1 ’T2) _ m3 vtl ’ L2 mi
X X

[m2 (Ti ( +m 2 ( T2  ̂+ m 2 [ T2 t i )1 + 2 '(mi
X)3

(2 . 11)
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If the set of random variables is jointly Gaussian, then all the information about their 

distribution is contained in the moments of order n <2. Therefore, all the moments of 

order greater than two (n > 2) have no new information to provide. This leads to the fact 

that all joint cumulants of order n > 2 are identically zero for Gaussian random 

variables. Hence, the cumulants of order greater than two, in some sense, measure the 

non-Gaussian nature of a time series. The third-order cumulant has six symmetry regions,

C3 (T1 ~ X2 - 'C 2) =  C3X( —TP T2 —Tl)

2.3 Properties of cumulants

1. Cum [aixi, a2x2, ..., anxn] = aja2... an Cum [xh x2, ..., xn].

2. C u m u lan ts  are  sym m etric  fu n ctio n s in  th e ir  a rgum en ts, e .g ., 

C u m [x i,x 2,X3 ] =  C u m [x 2,xi,X 3 ] =  C u m [x 3 ,x2,x i], and  so on.

3. If the random variables {xj, x2, ..., xn} can be divided into any two or more groups 

which are statistically independent, their nth-order cumulant is identical to zero; i.e., 

Cum[xi, x2, ..., xn] = 0, whereas in general Mom[xi, x2, ..., xn] 0.

4. If the sets of random variables {xi, x2, ..., xn} and {yi, y2, ..., yn} are independent, 

then

Cum[xi+yi, x2+y2, ..., xn+yn] = Cum[xi, x2, ..., xn] + Cum[yh y2, ..., yn], (2.13) 

whereas in general

Mom[xj+yi, x2+y2, ..., xn+y„] * Mom[xj, x2, ...,x n] +Mom[yi,y2, ...,y n]. (2.14)

5. If the set of random variables {xi, x2, ..., xn} is jointly Gaussian, then all the 

information about their distribution is contained in the cumulants of order n < 2 . 

Therefore, all cumulants of order greater than two (n > 2) have no new information 

to provide. This leads to the fact that all joint cumulants of order n > 2 are identical 

to zero for Gaussian random vectors. Hence, the cumulants of order greater than 

two, in some sense, measure the non-Gaussian nature of a time series.

C 3 ( t , , T 2 ) =  C ^ ( T 2 , T i )  =  C 3 ( - T 2 , T i - X 2 )  =  C3( X
(2.12)
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2.4 One-dimensional third-order cumulant slices

Chapter 2______________________________________________HIGHER-ORDER STATISTICS

Since higher-order cumulants and spectra are multi-dimensional functions, their 

computation may be impractical in some applications due to excessive crunching. This 

is caused by the large CPU time taken to calculate HOS functions, compared to SOS 

functions. It was suggested to use 1 -d slices of multi-dimensional cumulants, and their 

1-d Fourier transforms, as ways of extracting useful information from higher-order 

statistics of non-Gaussian stationary processes [9],

The third-order cumulants of a non-Gaussian process, {x(k)}, is given by [3]:

X
( t , , t 2 )  = Cum{x(k),x(k + x1),x(k + T 2 ) } . (2.15)

One-dimensional slices of C3 (x ,, x2) can be defined as:

r2, (x)VCum(x(k), x(k), x(k + t )} = c* (0, x) , and (2.16)

r *2 (x)VCum{x(k), x(k + x), x(k + x)} = c* (x,x), (2.17)

Define the following even and odd functions:

(2.18)

(2.19)

A 1-d spectrum could be defined as:

R 2 j (co )  =  Y j r2 ,i ( x ) e  ' n  =  Y H i ( t )  • c o s ( “ x )  -  j q ^ . i  ( T)  • s i n ( c o x ) } . (2.20)
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2.5 Cumulant spectra

Higher order spectra1 2 are defined as the multi-dimensional Fourier transforms of the higher 

order statistics of the superimposed signals in the presence of noise [10-12], The nth-order 

cumulant spectrum of a process (x(k)} is defined as the (n-l)-dimensional Fourier 

transform of the nth-order cumulant sequence. The nth-order cumulant spectrum is thus 

defined as [3]:
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+oo +oo

(2.21)
T ,=-C° T „ _ , = - 0 0

where l(Dj| < 7i for i = l,2,...n-l, and Icoj +co2 + ... + con-i| -  71 ■

Special cases

(1) Power spectrum (n = 2):
+C0

C » = £ c î(t ) e - * \  (2 ,2 2 )
T = —co

where c2 (T)is the covariance.

(2) Bispectrum (n = 3):
+00 +00

C3 (co, ,C02) = Y  Y j e
T ] = —00 T 2 = - ° 0

-j(ffljH+“2T2 )
(2.23)

where c ^ t , , ^ )  is the third-order cumulant. Key steps of calculating the bispectrum 

using the indirect and the direct methods are summarised in Figure 2.2.

(3) Trispectrum (n = 4):
+00 +00 +00

Cï(œ1,co2,û)3)=  Y  T j  Y  c 4(t d t 2^3) e“j(“lTl+“2T2+“3T3)
T I = - 0 0  I 2 — GO x 3 = - 0 0

where c ] ( t , , t 2 , t 3 )  is the fourth-order cumulant.

(2.24)

1 Polyspectra, including bispectrum and trispectrum.

2 Cumulants or moments.
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where i=l, 2, k. S|=max(0,-m,-n). 
S2 =min(M-l,M-l-m,M-l-n). L<M-1,

w(m,n) is a 2-d window function.

(a)

A0 = f s / N g is the required spacing between 
frequency samples. X = 0 , 1, ..., M/2. i=l,2,...,k.

2  nf$
0<A.2̂ S2ci . A.2+A-1—fs/2. CO, —

a>2 = 2  4 ,
N„

A,.

(b)

Figure 2.2: Flowchart of the key calculations of the bispectrum using (a) the indirect method, 
and (b) the direct method.
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Conventional higher-order statistics (HOS) estimates are asymptotically unbiased and 

consistent [9], and easy to implement using FFT-based methods. The ability to resolve 

harmonic components is limited by the uncertainty principle of the Fourier transform. 

There are numerous methods for higher-order spectrum (polyspectrum) estimation based 

on parametric methods. MA models have been treated in [14-16]. Spectral estimation 

methods based on non-causal AR models were developed in [17-19], Methods based on 

ARMA models have been published [20-21]. The description of MA, AR and ARMA 

methods based on higher-order statistics is the subject of tutorial papers [22-24], 

A review of cumulant spectra and the asymptotic properties of their estimators were 

given in [31]. Practical considerations for bispectral estimation were given [32] and the 

relationship between the bispectrum and conventional methods for their estimation was 

discussed [33-35].

2.6 Nth-order coherency function

A normalised cumulant spectrum or the nth-order coherency index is a function that 

combines the cumulant spectrum of order n and the power spectrum. It is defined as [3]

P n ( c o , , co 2 , • • . ,  c o n_, ) V
C„(®i ,co2,. >«Vi)

[ C > , ) . C > 2). •C2 (con_, ).C2 (ce, + co2 + ... + con_, ) ] 2
(2.25)

The third-order (n = 3) coherence index is also called bicoherence. The nth order 

coherence index is useful for the detection and characterisation of non-linearities in time 

series via phase relations of their harmonic components. The coherency index is used to 

differentiate between linear non-Gaussian processes and non-linear processes when both 

have non-zero cumulants. If the coherency index is zero, then the process is linear and 

Gaussian. If the nth order coherency index is not frequency dependent, then the process 

is linear non-Gaussian. If the coherency index is frequency dependent, then the process 

is non-linear [3].

2.7 Non-stationarity and the OT region of the bispectrum

The bispectrum of a stationary sampled process must be zero in the triangle region OT 

(Figure 2.3), i.e., in the region defined by the triangle OT = {coi, (0 2 : 0 0 2 ^ coi, 

7i < CO] + « 2  < 2 7i - coi} (chapter 8 , pp. 373 in [3]). The bispectrum in the OT region

48



Chapter 2 HIGHER-ORDER STATISTICS

(Figure 2.3) will be non-zero if the process is non-stationary. The bispectrum has 12 

symmetric regions. The knowledge of the bispectrum in one triangular region is enough for 

a complete description of the bispectrum of a real process.

Figure 2.3: Symmetry regions of the bispectrum showing discrete-time principal domain. 

2.8 Statistical measures

A second-order statistical measure is the variance which is defined as:

Two higher-order statistics measures are called the skewness and the kurtosis. Skewness 

and kurtosis have their own physical meanings. The skewness measures the asymmetry 

of a distribution around its mean. A positive skewness indicates that the distribution is 

skewed to the right, whereas a negative skewness indicates that the distribution is 

skewed to the left. The kurtosis measures how peaky or flat a distribution is with respect 

to a Gaussian distribution. A positive kurtosis indicates that a density is more peaked 

around its mean value than the density of a Gaussian distribution, whereas a negative 

kurtosis indicates that a density is more flat around its mean value than the density of a 

Gaussian distribution.

V

©1 + C02 / 2 = 7t

(2.26)
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 ̂ / L /1

The skewness is defined as 7 3  Vcf (0,0) = ----- — [ [ C3 (coj,co2 ).da>]-dco2 > (2.27)

and the kurtosis is defined as

it it n
(2.28)

A statistical measure could be described as an unbiased estimate when the expected 

value of the estimated statistic is, asymptotically, equal to the true value. For example an 

estimate of the cumulant spectra is said to be unbiased if

The bias is defined as the difference between the true value and the expected value.

2.9 Statistics of ECG signals

A. Second-order statistics

2.9.1 The Probability Density Functions (pdfs) of ECG signals

Here, we concern ourselves with the three essential ECG signals used in the fetal 

QRS-complex detection; 1) the maternal chest ECG signal. This is measured using one 

surface electrode positioned on the chest and one reference electrode on the thigh.

2) The transabdominally-measured ECG signal which contains both maternal and fetal 

contributions amongst other deterministic and chaotic signals plus noise artefacts [60], 

This is acquired using twin surface electrodes positioned near the mother’s umbilicus 

and synchronised with the maternal chest signal. And 3) the fetal scalp electrode ECG 

signal which will always be used as a reference signal in the assessment of any 

particular QRS detection technique based on non-invasive transabdominally-measured

A X

E C 3 (co1 ,co2) =Cg (co1 ,co2)- (2.29)
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ECG signals*’ **. The non-symmetry of the probability density functions (pdfs) of the 

above mentioned signals is shown in the histograms of Figure 2.4 and supports their 

third-order cumulants.

2.9.2 The second-order cumulants (autocorrelation functions) of ECG signals 

Figure 2.5 (a) shows a full maternal transabdominal cardiac cycle (1000 msec) which 

has been divided into four segments, I, II, III, and IV. These segments represent

(I) the predominantly maternal QRS-complex, (II) the first fetal heartbeat with maternal 

contribution, (III) QRS-free ECG, and (IV) the second fetal heartbeat with maternal 

contribution, respectively. Figure 2.5 (b) shows a typical example of the second-order 

cumulants (autocorrelation functions) for the segments shown in Figure 2.5 (a). The 

auto-correlation function (ACF) of the maternal QRS-complex (I) could be 

distinguished from the three other ACFs in (II, III, and IV) as it crosses the x-axis in a 

much smaller lag time. The ACF of the fetal heartbeat with maternal contribution 

segments (II and IV) could be distinguished from that of the QRS-free ECG (III) in that 

they decay smoothly with less peaks.

2.9.3 The power spectrum of ECG signals

Figure 2.6 depicts the power spectrum using the FFT method for (a) fetal scalp electrode 

ECG signal (data length 500 msec), (b) maternal transabdominal ECG (data length 

1000 msec), and (c) segment II of the transabdominal signal (inset) containing fetal 

heartbeat with maternal contribution (data length 250 msec). The maternal cardiac cycle 

begins 50 msec before the R-wave and ends 50 msec before the next R-wave. The 

subject is at the first stage of labour (40 weeks gestation). The FFT method reveals a 

fetal scalp electrode ECG principal spectral peak at 30 Hz. The FFT method for the 

transabdominal cardiac cycle reveals the maternal principal spectral peak of 15 Hz. 

However, the FFT does not clearly show a fetal spectral peak from the segmented 

transabdominal signal. There is a shallow peak at 28 Hz and a shifted peak at 42 Hz.

* Sensitivity: Se = 

** Specificity: Sp

TP
TP + FN 

TP
TP + FP

where TP is the number of true positives, FN is the number of false negatives, and FP is the number of false positives. 
The sensitivity Se reports the percentage of true beats that were correctly detected by the algorithm. The specificity 
reports the percentage of detected heartbeats which were in reality true beats.
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Histogram of maternal transabdominal ECG

Figure 2.4: Histograms of typical templates of (a) a maternal chest ECG,
(b) a fetal scalp electrode FECG, and (c) a maternal transabdominal ECG. They all 
show non-Gaussian distribution.
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Time (msec)

Figure 2.5 (a): Maternal transabdominal cardiac cycle (1000 msec) which has been 
divided into four segments; (!) maternal QRS-complex, (II) the first fetal heartbeat with 
maternal contribution, (III) QRS-free ECG, and (IV) the second fetal heartbeat with 
maternal contribution. The maternal cardiac cycle begins 50 msec before the R-wave and 
ends 50 msec before the next R-wave. The subject is at the first stage of labour (40 weeks 
gestation).
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Segment I 
250 msec

Segment II 
250 msec

Figure 2.5 (b): Typical examples of the second-order cumulants computed using the 
segments I, II, III, and IV shown in Figure 2.5 (a) of maternal transabdominal ECG.
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Figure 2.6: The power spectrum using the FFT method for (a) fetal scalp electrode ECG 
(data length 500 msec), (b) maternal transabdominal ECG signal (data length 1000 msec), 
and (c) segment II of the transabdominal signal (inset) containing a fetal heartbeat with 
maternal contribution (data length 250 msec). The maternal cardiac cycle begins 50 msec 
before the R-wave and ends 50 msec before the next R-wave. The subject is at the first stage 
of labour (40 weeks gestation).
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B  T h ird -o rd e r s ta tis tic s

2.9.4 Typified examples of cumulants and their slices for individual cardiac 

cycles

The maternal chest ECG is measured using the standard three-lead electrode system. 

The maternal transabdominally-measured signals are obtained using two surface 

electrodes. The electrode pair is set over the umbilicus, and lined up with the median 

vertical axis of the uterus. The ground electrode is located on the woman’s hip. The fetal 

scalp electrode is used when deemed necessary. Multi-dimensional TOCs were 

computed for the above ECG signals (full cardiac cycles) as well as for the four 

segments of the maternal transabdominal cardiac cycles. The four segments were coded 

as I, II, III, and IV, each of length 250 msec which has been considered short enough as 

not to satisfy the assumption of non-stationarity, and long enough to meet the threshold 

of the higher-order statistical variances. The four coded segments ascribe to the 

following often occurring scenario; (I) Segment I, 0 -  250 msec; Predominantly 

maternal QRS-complex (no fetal QRS-complex present), (II) Segment II, 251 msec -

500 msec; The first fetal heartbeat with maternal contribution, (III) Segment III,

501 msec -  750 msec; QRS-free ECG, and (IV) Segment IV, 751 msec -  1000 msec; 

The second fetal heartbeat with maternal contribution.

Figure 2.7 (a), (b), (c), and (d) each depicts ECG signals (upper panel) and their 

third-order cumulants (lower panel) for fetal scalp ECG (550 msec), maternal chest 

ECG (900 msec), and two different and randomly picked transabdominally-measured 

maternal ECGs (1000 msec each). The subject is at 40 weeks gestation after the water 

has been broken hence facilitating fetal scalp measurements. The maternal cardiac cycle 

begins 50 msec before the R-wave and ends 50 msec before the next R-wave.

A quick glance at the similarities of the four cumulant patterns in Figure 2.7 (a), (b), (c) 

and (d), gives some hope of successful detection of the fetal presence in the maternal 

cardiac cycle. To complicate matters further, the two transabdominal cumulants in 

Figure 2.7 (c) and (d) look dissimilar even though both contain two fetal 

QRS-complexes. However, the best way to distinguish between those patterns is to slice 

them and look for discriminant features as will be shown next.
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Fetal scalp electrode ECG

Sample

Maternal chest ECG

50

(a) (b)

Figure 2.7: ECG signals (upper panel) and their third-order cumulants (lower panel) for (a) fetal 
cardiac cycle using fetal scalp electrode ( data length 550 msec), (b) maternal chest cardiac 
cycle using one surface electrode and a reference electrode (data length 900 msec), (c) and (d) 
are two maternal transabdominal cardiac cycles measured using twin surface electrodes (data 
length 1000 msec each). The maternal cardiac cycle begins 50 msec before the R-wave and 
ends 50 msec before the next R-wave. The subject is at the first stage of labour, 40 weeks, 
(Code: cycle 5-31 and 5-1679).
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Maternal transabdominal ECG Maternal transabdominal ECG

(C) (d)

50

Figure 2.7 (continued): ECG signals (upper panel) and their third-order cumulants (lower panel) 
for (a) fetal cardiac cycle using fetal scalp electrode (data length 550 msec), (b) maternal chest 
cardiac cycle using one surface electrode and a reference electrode (data length 900 msec),
(c) and (d) are two maternal transabdominal cardiac cycles measured using twin surface 
electrodes (data length 1000 msec each). The maternal cardiac cycle begins 50 msec before 
the R-wave and ends 50 msec before the next R-wave. The subject is at the first stage of 
labour, 40 weeks gestation, (Code: cycle 5-31 and 5-1679).
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Figure 2.8 shows the third-order cumulants and their diagonal (l.h.s.) and wall (r.h.s.) 

slices of one transabdominal cardiac cycle which is segmented into four segments of 

250 msec each for (I) predominantly maternal QRS, (II) the first fetal heartbeat with 

maternal contribution, (III) QRS-free ECG, and (IV) the second fetal heartbeat with 

maternal contribution. The diagonal and wall TOC slices of the maternal segment (I) are 

easily distinguished from the diagonal and wall TOC slices of segments (II), (III), and 

(IV). Furthermore, the diagonal and wall TOC slices of the fetal QRS segments (II) and 

(IV) are distinguishable from the diagonal and wall TOC slices of the QRS-free ECG 

segment (III) in that there is a distinguishable and well-formed peak at the origin in both 

diagonal and wall TOC slices. The peak of the QRS-free ECG segment is much 

narrower and more related to motion artefact than a signal.

Note that having computed the two-dimensional TOC, either the diagonal or the wall 

slice could be used in the detection / classification process. Therefore, computing the 

full multi-dimensional TOC and then extracting individual slices is an unnecessary 

waste of the CPU time. So, why not compute any arbitrary 1-d slice directly without 

firstly having to compute the three-dimensional TOC and secondly extract the 1 -d slice? 

In fact, the TOC-diagonal and the TOC-wall slices are straightforward to compute 

directly, by freezing one of the two cumulant lags and changing the other one. However, 

to compute any other arbitrary slice requires the development of an auxiliary algorithm 

which is described in Chapter Four, and to my knowledge it has not been previously 

reported in the relevant literature. It has been found that performing direct computations 

of the 1-d TOC slices instead of computing the 2-d TOC firstly and secondly extracting 

individual 1-d slices results in saving of more than 99% of the CPU time.

Figure 2.9 shows four selected slices of the third-order cumulants computed using one 

cardiac cycle for each of the following; (a) and (b) an adult male and female chest, 

respectively, (c) maternal transabdominal, and (d) fetal scalp electrode ECG signal.

2.9.5 Typified examples of the bispectrum, contour maps and slices for 

individual cardiac cycles

Now, in a similar fashion to the third-order cumulants and cumulant slices analyses 

presented in section 2.9.4, we proceed with the bispectral analysis. Figure 2.10 shows 

the 2-d bispectrum magnitudes (upper panel) and the corresponding contours (lower
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Figure 2.8: (a) Maternal transabdominal ECG signal (upper panel) and the synchronised fetal ECG 
signal measured using fetal scalp electrode (lower panel), (b), (c), (d) and (e) are the third-order 
cumulants and their diagonal (l.h.s.) and wall (r.h.s.) slices for segments I, II, III, and IV, respectively, 
each segment is 250 msec. Segment I: pre-dominantly maternal QRS-complex, segment II, the first 
fetal heartbeat with maternal contribution, segment III: QRS-free ECG, and segment IV: the second 
fetal heartbeat with maternal contribution. The maternal cardiac cycle begins 50 msec before the 
R-wave and ends 50 msec before the next R-wave. (Code: cycle 5-14).
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(a)
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Figure 2.9: Third order cumulant slices at 0° (wall), 11.25° , 22.50°, and 45° (diagonal) 
for (a) male chest cardiac cycle using one surface electrode (data length 1180 msec),
(b) maternal chest cardiac cycle using one surface electrode (data length 900 msec),
(c) maternal transabdominal cardiac cycle using twin surface electrodes (data length 
1000 msec), and (d) fetal cardiac cycle using fetal scalp electrode (data length 550 msec). 
The maternal cardiac cycle begins 50 msec before the R-wave and ends 50 msec before 
the next R-wave. The female subject is at the first stage of labour, 40 weeks gestation, 
(code: (a) 7-1, (b) 5-15, (c) 5-7, and (d) 5-1).
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Figure 2.10: The bispectrum magnitude (upper panel) and contour map (lower panel) for (a) a fetal 
cardiac cycle using fetal scalp electrode (data length 550 msec), (b) a maternal chest cardiac cycle 
(data length 1000 msec), and (c) a maternal transabdominal cardiac cycle (data length 1000 msec). 
The maternal cardiac cycle begins 50 msec before the R-wave and ends 50 msec before the next 
R-wave. The subject is at the first stage of labour, 40 weeks gestation. The direct method is used to 
calculate the bispectrum. (Code: 5-1).
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Figure 2.10 (continued): The bispectrum magnitude (upper panel) and contour map (lower panel) for 
(a) a fetal cardiac cycle using fetal scalp electrode (data length 550 msec), (b) a maternal chest 
cardiac cycle (data length 1000 msec), and (c) a maternal transabdominal cardiac cycle (data length 
1000 msec). The maternal cardiac cycle begins 50 msec before the R-wave and ends 50 msec 
before the next R-wave. The subject is at the first stage of labour, 40 weeks gestation. The direct 
method is used to calculate the bispectrum. (Code: 5-1).
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Figure 2.10 (continued): The bispectrum magnitude (upper panel) and contour map (lower panel) for 
(a) a fetal cardiac cycle using fetal scalp electrode (data length 550 msec), (b) a maternal chest 
cardiac cycle (data length 1000 msec), and (c) a maternal transabdominal cardiac cycle (data length 
1000 msec). The maternal cardiac cycle begins 50 msec before the R-wave and ends 50 msec 
before the next R-wave. The subject is at the first stage of labour, 40 weeks gestation. The direct 
method is used to calculate the bispectrum. (Code: 5-1).
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panel) using one cardiac cycle for; (a) fetal scalp electrode ECG, (b) maternal chest 

ECG, and (c) maternal transabdominal ECG signal.

Before attempting to assess any advantages of the ECG bispectrum over and above the 

power spectrum one should regress, for a moment, to view the power spectrum and 

locate the frequency ranges for adult’s and fetal QRS-complexes. The power spectrum 

of appropriately sampled ECG showed the QRS-complex principal peak in the 

frequency range from 15 Hz to 20 Hz, and 25 Hz to 40 Hz, for the mother’s chest ECG 

and fetal scalp electrode ECG, respectively. Unfortunately, the power spectrum has 

limitations as an estimator in terms of resolution, variance, and clarity of the spectrum to 

be able to produce clear and distinguishable peaks for the P-waves. Therefore, an 

alternative spectrum estimator was used instead, namely, the multiple signal 

classification (MUSIC) pseudo-spectrum. In separate publications [62-65], the 

MUSIC-based pseudo-spectrum also showed that the principal peaks for the p-waves 

occupy a range from 5 Hz to 8 Hz for adults. The principal peaks for the P-waves of the 

fetal scalp electrode ECG occupy a range from 8 Hz to 10 Hz. The same MUSIC-based 

spectral estimators have revealed high local energy peaks around 5 Hz due to motion 

artefact.

Now returning to the cardiac cycle bispectra shown in Figure 2.10, it is clearly seen that 

all significant twin-frequency peaks occur at frequencies lower than the p-wave and 

QRS-complex frequencies. In fact it is very difficult to observe any p-wave or 

QRS-complex frequencies. The only thing that could be construed from these results is 

that the combined effect of the low temporal resolution resulting from using the whole 

cardiac cycle and the low spectral resolution inherent in the bispectrum formation, the 

QRS-complex twin peaks which should occur at frequency ranges from (15 Hz, 15 Hz) 

to (20 Hz,20 Hz) for adults and from (25 Hz,25 Hz) to (40 Hz,40 Hz) for fetal scalp 

electrode ECG are completely masked and cannot be found even at -30 dB normalised 

to any significant low frequency peak. Instead, only low frequencies predominate.

Figure 2.11 shows the bispectra of fetal scalp electrode and maternal chest ECG signals 

(upper panel) and the corresponding contour maps (lower panel). The maternal cardiac 

cycle begins 50 msec before the R-wave and ends 50 msec before the next R-wave. The 

subject is at the first stage of labour, 40 weeks gestation. The bispectrum is calculated
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Figure 2.11: The bispectra of (a) a fetal scalp and (b) a maternal chest ECG signal (upper 
panel) and the corresponding contour maps (lower panel). The maternal cardiac cycle begins 
50 msec before the R-wave and ends 50 msec before the next R-wave. The subject is at the 
first stage of labour, 40 weeks gestation. The bispectrum is calculated using the direct method. 
A Hanning window is used to calculate the bispectrum which is averaged for smoothing. 
(Code: cycle 5-21).
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Figure 2.11: The bispectra of (a) a fetal scalp and (b) a maternal chest ECG signal (upper 
panel) and the corresponding contour maps (lower panel). The maternal cardiac cycle begins 
50 msec before the R-wave and ends 50 msec before the next R-wave. The subject is at the 
first stage of labour, 40 weeks gestation. The bispectrum is calculated using the direct method. 
A Hanning window is used to calculate the bispectrum which is averaged for smoothing. 
(Code: cycle 5-21).
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using the direct method which involves calculating a two-dimensional Fourier 

transform. The Hanning window is used in calculating the bispectrum which is averaged 

for smoothing. The bispectral peaks of the fetal scalp electrode and maternal chest 

QRS-complexes exist at (40 Hz,40 Hz) and (13 Hz, 13 Hz), respectively. However, they 

are shifted, shallow and inconclusive even though they are centred near the right 

frequency pairs, (30 Hz,30 Hz) for the fetal scalp electrode and (17 Hz,17 Hz) for the 

maternal chest ECG.

The next step is to try to improve the temporal resolution by applying appropriate 

segmentations to the QRS-complexes. Instead of taking one cardiac cycle for an adult, 

which is on average 1000 msec, now we concern ourselves with the 250 msec 

QRS-complex segment which is centred on the R-wave and runs 125 msec in opposite 

direction. This also applies to the fetal scalp electrode ECG signal but with a reduced 

QRS-complex length of typically 60 msec. Figure 2.12 (top) depicts bispectral slices of 

the fetal QRS-complex which shows the correct position of a spectral peak at 30 Hz but 

only on the diagonal slice. Figure 2.12 (middle and bottom) show maternal chest and 

transabdominal QRS-complex bispectrum slices. The maternal chest and abdomen both 

exhibit spectral frequencies of 17 Hz and 15 Hz, respectively, but only on the diagonal 

slice. As we can see, considerable improvement has resulted due to improving the 

temporal resolution prior to the bispectral calculations for both fetal and maternal chest 

segmented QRS-complexes. However, looking at the maternal chest and transabdominal 

bispectral diagonal slices, we observe lowering of the QRS peak frequency from 17 Hz 

to 15 Hz.

A possible cause of this shifting in the QRS-complex frequency peak is the 

susceptibility and lack of predictability of the bispectral representation of 

highly-complex multi-frequency signals. As reported in [5], during labour contractions 

the presence of very strong deterministic and chaotic signals emanating from the uterus, 

and the accompanying motion artefacts result in highly dimensional transabdominal 

signals [5]. Consequently it is very difficult to isolate with integrity the maternal and 

fetal QRS-complex spectral peaks without first resorting to super-resolution algorithms 

using eigenvector-based projections as will be revealed in Chapter Six.
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15 Hz Bispectrum slices of a maternal transabdominal ECG signal 
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Figure 2.12: Bispectrum slices at 0° (wall), 11.25°, 22.50°, and 45° (diagonal) for 250 msec 
segments of; fetal cardiac cycle using fetal scalp electrode (upper panel), maternal chest 
cardiac cycle (middle panel), and maternal transabdominal cardiac cycle (lower panel). The 
maternal cardiac cycle begins 50 msec before the R-wave and ends 50 msec before the next 
R-wave. The subject is at the first stage of labour, 40 weeks gestation, (code: 5-1).
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2.10 Non-linearity of ECG Signals
The non-linearity in the ECG signal can be detected using the bicoherence squared. 

Figure 2.13 depicts the bicoherence squared and their corresponding contour maps using 

one cardiac cycle for a fetal scalp electrode, maternal chest, and maternal 

transabdominal ECG. The bicoherence squared has peaks at the frequency pairs of (6 

Hz, 15 Hz) and (14 Hz, 14 Hz) for the fetal scalp cardiac cycle, (15 Hz, 15 Hz) for the 

maternal chest cardiac cycle, and (7.5 Hz,7.5 Hz) for the maternal transabdominal 

cardiac cycle. These bicoherence peaks support non-linearity.

2.11 The effect of proximity of the mother’s and fetal non-linear 
QRS- complexes
There is a general consensus that individual cardiac cycles are locally stationary. This 

will be substantiated in Appendix A4 by the Hinich test [8], However, when applying a 

highly dimensional signal such as the transabdominal ECG that has several individual 

non-linear and deterministic signals overlapping both in the time and frequency 

domains, all coexisting in a cocktail of noise and motion artefact, it is prudent to 

re-examine the validity of the stationarity assumption in relation to such signals. It is 

only natural to expect that the proximity of two non-linear signals such as the mother’s 

and fetal QRS-complexes would result in non-linear (quadratic and higher-order) 

coupling and this in turn would invoke non-stationarity. This has already been the 

subject of several investigations [60] and it is beyond the scope of this thesis.

This section, however, demonstrates the above to be true by inspecting the bispectral 

OT region shown in Figure 2.14. Shown in the Figure are two typical 

transabdominally-measured maternal ECG cycles, ((al), (a2)), and two synchronised 

fetal scalp ECG cycles ((bl), (b2)). The lower parts of the Figure, (cl) and (c2), consist 

of the corresponding maternal bispectral contour maps at a level o f -30 dB. The two R- 

waves of the maternal and fetal QRS-complexes in (al) and (bl), respectively, are 

separated by 200 msec. The resultant bispectrum in (cl) does not support the OT region. 

However, the situation is totally different when the two R-waves are as close as 35 msec 

as shown in Figure 2.14 (a2) and (b2). Now the OT region of the bispectrum in (c2) is 

fully occupied and non-stationary. This means we cannot use conventional signal 

processing techniques to separate the mother’s and fetal QRS-complexes. This problem 

has been adequately solved by linearising (at least removing the quadratic coupling) the
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(a)
Figure 2.13: The bicoherence squared (upper panel) and contour map (lower panel) for (a) a fetal 
cardiac cycle using fetal scalp electrode (data length 550 msec), (b) a maternal chest cardiac cycle 
(data length 1000 msec), and (c) a maternal transabdominal cardiac cycle (data length 1000 msec). 
The maternal cardiac cycle begins 50 msec before the R-wave and ends 50 msec before the next 
R-wave. The subject is at the first stage of labour, 40 weeks gestation. The bispectrum is calculated 
using the direct method. A Hanning window is used to calculate the bispectrum which is averaged for 
smoothing. (Code: 5-51).
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(b)
Figure 2.13 (continued): The bicoherence squared (upper panel) and contour map (lower panel) for 
(a) a fetal cardiac cycle using fetal scalp electrode (data length 550 msec), (b) a maternal chest 
cardiac cycle (data length 1000 msec), and (c) a maternal transabdominal cardiac cycle (data 
length 1000 msec). The maternal cardiac cycle begins 50 msec before the R-wave and ends 
50 msec before the next R-wave. The subject is at the first stage of labour, 40 weeks gestation.
The blspectrum is calculated using the direct method. A Hanning window is used to calculate the 
bispectrum which is averaged for smoothing. (Code: 5-51).
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Figure 2.13 (continued): The bicoherence squared (upper panel) and contour map (lower panel) for 
(a) a fetal cardiac cycle using fetal scalp electrode (data length 550 msec), (b) a maternal chest 
cardiac cycle (data length 1000 msec), and (c) a maternal transabdominal cardiac cycle (data 
length 1000 msec). The maternal cardiac cycle begins 50 msec before the R-wave and ends 
50 msec before the next R-wave. The subject is at the first stage of labour, 40 weeks gestation.
The bispectrum is calculated using the direct method. A Hanning window is used to calculate the 
bispectrum which is averaged for smoothing. (Code: 5-51).

73



Chapter 2 HIGHER-ORDER STATISTICS

(cl) (c2)
Figure 2.14: (a1), (a2) Two typical examples of maternal transabdominal cardiac cycles, (b1) and 
(b2) are the corresponding fetal ECG signal using fetal scalp electrode. The first fetal QRS-complex 
in (b1) is separated from the maternal QRS-complex in (a1) by 200 msec. The first fetal 
QRS-complex in (b2) is separated from the maternal QRS-complex in (a2) by 35 msec. The 
corresponding bispectrum contour maps at a level o f-30 dB for the two cycles in (a1) and (a2) are 
shown in (c1) and (c2), respectively. The R-wave of the first fetal QRS-complex in (b1) is separated 
from the R-wave of the maternal QRS-complex in (a1) by 200 msec. The corresponding bispectrum in 
(c1) does not show extra activity in the OT region. The R-wave of the first fetal QRS-complex in (b2) 
is separated from the R-wave of the maternal QRS-complex in (a2) by 35 msec. The corresponding 
bispectrum in (c2) shows extra activities in the OT region due to non-linear coupling between the 
mother and the baby. The maternal cardiac cycle begins 50 msec before the R-wave and ends 
50 msec before the next R-wave. The subject is at the first stage of labour, 40 weeks gestation. Fetal 
cardiac cycle data length is 550 msec, and transabdominal ECG cardiac cycle data length is 
1000 msec. (Code: (a) 5-1, (b) 5-31).
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transabdominal signal before attempting to separate individual QRS-complexes 

(Chapters Four, Five and Six).

2.12 Cumulants and Bispectra of noise components
The MIT/BIH NSR and AR databases [51-52] have recordings of the three main types 

of noise in ECG signals, namely, (a) baseline wander, (b) electromyographic (EMG) 

noise, and (c) motion artefact. The following statistics help in the processing stages of 

the fetal heartbeat detection. It will be shown in later chapters that, when using 

super-resolution techniques the requirement for Gaussian and non-Gaussian extraction 

and suppression is eliminated except for the conventional removal of baseline wander 

which is embedded in all data acquisition systems (baby monitors).

(a) Baseline Wander noise

Figure 2.15 depicts second- and third-order statistics of a baseline wander noise segment 

of 10,000 samples (approximately 30 sec) extracted from the MIT/BIH NSR and AR 

databases. Both the bispectrum and the bicoherence squared show high peaks at low 

frequencies (< 5 Hz). This means that the effect of the baseline wander noise on both 

maternal and fetal QRS-complexes at 15 Hz and 30 Hz, respectively, is not significant. 

However, it is prudent to eliminate such noise in the pre-processing stage. One 

conventional method of eliminating baseline wander employs a high-pass filter such as 

Butterworth high-pass filter of order 5, cut-off frequency of 1 Hz, a transition period of 

1 Hz, a minimum ripple of -50 dB outside the main frequency lobe. As mentioned in 

Section 1.6.2, the frequency range of the baseline wander is 0 - 0.5 Hz.

(b) Electromyographic noise

Figure 2.16 shows some statistics of an electromyographic (EMG) noise segment of

10,000 samples extracted from the MIT/BIH NSR and AR databases. The noticeable 

feature is that the bispectrum is confined to low frequencies less than (10 Hz, 10 Hz). 

This means that it will not interfere with the isolation of the adult QRS-complex 

bispectrum peak which occupies frequencies between (15 Hz, 15 Hz) and (20 Hz,20 Hz), 

provided that an appropriate super-resolution technique is employed. But the 

bicoherence squared of the EMG noise is spread over a wide band of frequencies, up to 

(120 Hz ,120 Hz). The carpet effect of the non-linearity attributed to the EMG noise will 

be eliminated by linearising the transabdominal signal prior to fetal QRS-complex
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Figure 2.15: Characterisation of 10,000 samples of baseline wander noise extracted from the 
MIT/BIH database and sampled at 360 samples per second, (a) time series, (b) its histogram 
showing non-Gaussian pdf, (c) third-order cumulants, (d) power spectrum using the averaged 
periodogram method, (e) the bispectrum (l.h.s.) calculated using the direct method with contour 
maps (r.h.s.) and (f) the bicoherence squared (l.h.s.) with contour maps (r.h.s.).
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Figure 2.16: Characterisation of 10,000 samples of electromyographic noise extracted from the 
MIT/BIH database and sampled at 360 samples per second, (a) time series, (b) its histogram, 
showing non-Gaussian pdf,(c) third-order cumulants, (d) power spectrum using the averaged 
periodogram method, (e) the bispectrum (l.h.s.) calculated using the direct method with contour 
maps (r.h.s.) and (f) the bicoherence squared (l.h.s.) with contour maps (r.h.s.).
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detection in the third-order statistical domain. Under broad signal and noise conditions, 

linearisation of the transabdominal ECG signal not only removes to a great extent the 

signal non-linearity, but also partially eliminates other types of non-linearity due to 

noise.

(c) Motion artefact noise

Figure 2.17 depicts second- and third-order statistics of a motion artefact noise segment 

of 10,000 samples extracted from the MIT/BIH NSR and AR databases. The bispectrum 

has many frequencies in the triangle region of (0 Hz,0 Hz), (0 Hz,3 5 Hz) and 

(35 Hz,0 Hz). These bispectral frequencies of motion artefact would be overlapping 

with those of the maternal and fetal QRS-complexes, albeit at around -20 dB level. 

However, the level of noise at the QRS-complex spectra is comparatively small and it 

will be shown in Chapter Six that the effect of motion artefact on the detection of 

QRS-complexes is not noticeable. Figure 2.17 (f) reveals that the bicoherence squared is 

rather confined to very low frequencies. As mentioned above, linearisation plays a 

definitive role.

2.13 Discussions
The objective of this chapter is to introduce the subject of higher-order statistics (HOS) 

and its applications to the non-linear / non-Gaussian ECG signals encountered in this 

thesis. This is to pave the way for employing HOS-based techniques as the solution to 

the formidable problem of transabdominal fetal heartbeat detection during labour. 

Indeed, high detection rates can be accomplished by invoking the HOS-based 

techniques, namely, the third-order cumulant or the TOC template matching and the 

bispectral contours template matching which is abbreviated as the BIC template 

matching, and which utilises a set of different levels of bispectral contours.

The key question we attempt to answer at this juncture is why do HOS-based techniques 

yield the highest possible FHRs? The reasons behind achieving high FHRs when using 

the HOS-based well-refined techniques are; (1) Under broad signal and noise 

conditions, higher-order cumulants and their spectra become high signal-to-noise ratio 

domains where detection, parametric estimation and signal classification can be 

performed. (2) The Gaussian noise diminishes in the HOS domains if the data length is 

adequate. We have found that for ECG signals a minimum length of 1 sec is sufficiently
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(f)
Figure 2.17: Characterisation of 10,000 samples of motion artefact noise extracted from the MIT/BIH 
database and sampled at 360 samples per second, (a) time series, (b) its histogram, showing 
non-Gaussian pdf,(c) third-order cumulants, (d) power spectrum using the averaged periodogram 
method, (e) the bispectrum (l.h.s.) calculated using the direct method with contour maps (r.h.s.) and (f) 
the bicoherence squared (l.h.s.) with contour maps (r.h.s.).
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long to suppress Gaussian noise and maintain a low level of HOS variances in the HOS 

domains, whilst not sufficiently long to violate Hinich’s criterion for “local” stationarity.

(3) In the third-order domain all sources of noise with symmetric probability density 

functions (pdfs), e.g., Gaussian and uniform, will vanish. The ECG signals are retained 

because they have non-symmetric distributions. This implies that it is more than 

adequate to utilise only the TOCs and their bispectrta. There is no need to seek 

higher-than-third-order statistics as implicated in all the Independent Component 

Analysis applications to FHR detection. (4) The mother’s QRS- and the fetal QRS- 

bispectral contours, which are used as the discriminant patterns in the identification and 

classification, only overlap with the bispectra of the baseline wander and that of the 

EMG at very low levels (around -20 dB normalised to the peak of the maternal QRS- 

complex bispectrum). Therefore, it is comparatively easy to detect and classify QRS- 

complexes in ECG signals utilising either the TOC or the BIC template matching 

techniques.

Detection key operations

Apart from the initial ECG pre-processing and critical segmentation the following key 

operations are performed;

(1) Signal linearisation as a key step in the identification and classification process 

The ECG signals are inherently non-linear. They exhibit quadratic, cubic and 

higher-order non-linearities supported by the third-, fourth-, and higher-order cumulants. 

However, using TOC- and BIC-templates could compromise the identification and 

classification of the mother’s QRS- or the fetal QRS-complexes. Because the inherent 

ECG non-linearities can at certain levels interact with the non-linearity of the physical 

channel, particularly, when there are strong uterine activities and this results in serious 

distortions to the individual TOC or BIC discriminant patterns. This could result in a 

significant mismatch when using the TOC or BIC templates to identify the maternal and 

the fetal QRS-complexes in transabdominally-measured ECG signals. It is, therefore, 

very important to remove, as much as possible, all types of non-linearities in the 

transabdominally-measured ECG signals and leave only the “refined” linear 

non-Gaussian components. This will be appreciated in later chapters.

The types of non-linearity of individual ECG signals, namely, the maternal chest full 

cardiac cycle, the fetal scalp electrode full cardiac cycle, and the maternal
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transabdominally-measured full cardiac cycle, have been first identified and quantified 

using the bicoherence squared and subsequently removed using the adaptive non-linear 

Volterra filtering structures. Essentially, now all attention is given to the detection of 

QRS-complexes that are almost linear non-Gaussian in the presence of linear 

non-Gaussian noise.

(2) Data scenarios

Multi-dimensional TOCs were computed for the above ECG signals (full cardiac cycles) 

as well as for the four segments of the maternal transabdominal cardiac cycles. The four 

segments were coded as I, II, III, and IV, each of length 250 msec which, as mentioned 

earlier, must satisfy the two criteria of HOS low variance and pseudo-stationarity. It is 

interesting to report that the four coded segments have often ascribed to one of the 

following scenarios;

Scenario 1:

(I) Segment I, 0 -250  msec; Predominantly maternal QRS-interval (no fetal 

heartbeat present),

(II) Segment II, 251 msec -  500 msec; The first fetal heartbeat with maternal

contribution,

(III) Segment III, 501 msec- 750 msec; QRS-free ECG, and

(IV) Segment IV, 751 msec -  1000 msec; The second fetal heartbeat with 

maternal contribution.

Scenario 2:

(I) Segment I, 0 -  250 msec; Both maternal and fetal QRS-complexes,

(II) Segment II, 251 msec -  500 msec; QRS-free ECG,

(III) Segment III, 501 msec- 750 msec; The second fetal heartbeat with maternal 

contribution, and

IV) Segment IV, 751 msec -  1000 msec; Either QRS-free ECG or possibly the third 

fetal heartbeat with maternal contribution.

Obviously noise and uterine contractions are present in all transabdominally-measured 

ECG signals. The above critical segment length assumes, on average, a mother heart rate 

(MHR) of 60 bpm. For faster or slower MHR, the segment length is adaptively 

decreased or increased accordingly in order to accommodate any such variations in 

MHR. Obviously, any reduction below the critical window length of 250 msec would
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result in an increase of the HOS variance. In the worst reported case by 0.5 dB for 

MHR= 100 bpm.

(3) Direct computations of individual 1-d TOC slices

It is also shown that, having computed the two-dimensional TOC, either the diagonal or 

the wall slice or a combination of the diagonal and wall slices is used in the detection / 

classification process. Therefore, computing the full multi-dimensional TOC and then 

extracting individual slices is an unnecessary waste of the CPU time. So, why not 

compute any arbitrary 1-d slice directly without firstly having to compute the 

two-dimensional TOC and secondly extract the 1-d slice? In fact, the TOC-diagonal and 

the TOC-wall slices are straightforward to compute directly, by freezing one of the two 

cumulant lags and changing the other one. However, to compute any other arbitrary slice 

requires the development of an auxiliary algorithm which is described in Chapter Four, 

and to my knowledge it has not been previously reported in the relevant literature. It has 

been found that performing direct computations of the 1-d TOC slices instead of 

computing the 2-d TOC firstly, and secondly extracting individual 1-d slices results in 

saving of more than 99% of the CPU time. The same applies to the 2-d bispectrum. 

However, it has to be borne in mind that it is the matching of the horizontal bispectral 

contours that will be used in the BIC template matching technique instead of the

1-d polar bispectral slices. Because in order to use the 1-d polar bispectrum slices 

effectively one needs to use a minimum of 24 polar slices so as not to miss the capturing 

of rapid changes or null features in the bispectrum that could be used as discriminant 

patterns. Whereas for BIC contours the number of discriminant horizontal slices 

required for detection / classification does not exceed 10.

Bispectral features of QRS-complexes

The power spectrum of appropriately sampled ECG showed the QRS-complex principal 

peak in the frequency range from 15 Hz to 20 Hz, and 25 Hz to 40 Hz, for the mother’s 

chest ECG and fetal scalp electrode ECG, respectively. Unfortunately, the power 

spectrum has limitations as an estimator in terms of resolution, variance, and clarity of 

the spectrum to be able to produce clear and distinguishable peaks for the P-waves. 

Therefore, an alternative spectrum estimator was used instead, namely, the multiple 

signal classification (MUSIC) pseudo-spectrum. In separate publications [62-65], the 

MUSIC-based pseudo-spectrum also showed that the principal peaks for the p-waves
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occupy a range from 5 Hz to 8 Hz for adults. The principal peaks for the P-waves of the 

fetal scalp electrode ECG occupy a range from 8 Hz to 10 Hz. The same MUSIC-based 

spectral estimators have revealed high local energy peaks around 5 Hz due to motion 

artefact.

As with cumulants, their bispectra were computed for the above mentioned ECG data 

samples and segmentations using the direct method which involves calculating a 

two-dimensional Fourier transform. The following bispectral peaks have been observed 

only on the bispectral diagonal slice;

(1) At (17 Hz, 17 Hz) and (15 Hz, 15 Hz) for the maternal chest and the transabdominal 

ECGs, respectively. So, there is a shift in the bispectral peak from 17 Hz to 15 Hz in 

the transabdominal ECG.

(2) At (30 Hz,30 Hz) and less prominently at (20 Hz,20 Hz) for the fetal scalp electrode 

ECG.

Quadratic coupling in transabdominally measured ECG signals

It has been found in maternal transabdominal ECG signals that close proximity of the 

mother’s and fetal QRS-complexes initiates additional quadratic and higher-order 

non-linearities that could be due to higher-order “coupling” or mixing of the mother’s 

and fetal own harmonics and the concomitant mixing of the ECG signals and the 

non-linear uterine contraction interference signal. This so called “coupling” between 

mother’s and fetal ECGs was mentioned in [60] and manifested in a newly formed 

bicoherence squared peak(s) which did not exist in either of the isolated mother’s 

bicoherence squared or the isolated fetal bicoherence squared computed form their 

respective ECG signals. The non-linear second-order or third-order Volterra structure 

has been used [60] to quantify the effect of this coupling, in part. The rest of the 

quantification process is carried out using the bicoherence squared.

Although it is beyond the scope of this thesis, it is worth mentioning that, depending on 

the bispectrum estimation method employed, the techniques for the detection and 

quantification of quadratic phase coupling are divided into two categories: the 

conventional and the parametric. Conventional techniques are based on the bicoherence 

spectrum and they are better qualifiers of the phase coupling [29, 66]. However, their 

resolution is limited by the “uncertainty principle” of the Fourier transform. On the other
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hand, parametric techniques are based on the auto-regressive (AR) modelling of the 

third-order cumulants. Although the parametric AR methods are not good quantifiers, 

they possess a high-resolution capability, much higher than the frequency resolution of 

the conventional methods [10, 38], The so-called “coupling” results in non-stationarity 

in the transabdominal ECG signal. This is evidenced by the filling of the bispectrum OT 

region which is used as a measure of non-stationarity in non-Gaussian signals (see 

Figure 2.3).

Noise identification in mate and non-pregnant female adults

For noise identification and characterisation in the third-order domain, good use is made 

of the MIT/BIH NSR and AR databases [51-52]. Apart from Gaussian noise, there exist 

three types of non-Gaussian noise in ECG signals, namely, baseline wander, 

electromyographic (EMG), and motion artefact noise. 10,000 samples of each of these 

three types of noise are analysed. A brief summary of their second- and third-order 

statistics is shown in Table 2.1.

The effect of the baseline wander noise on both the maternal and the fetal 

QRS-complexes at 17 Hz and 30 Hz, respectively, is not significant. We can see from 

Table 2.1 that only the bispectrum of the motion artefact and the bicoherence squared of 

the EMG noise have frequencies that would potentially overlap with those of the 

QRS-complexes of the mother and the fetal, albeit at -20 dB level. Again referring to 

the MIT/BIH NSR and AR databases, the bicoherence squared of the EMG noise is 

spread over a wide band of frequencies, up to (120 Hz ,120 Hz). The carpet effect of the 

non-linearity attributed to the EMG noise will be significantly reduced by linearising the 

transabdominal signal prior to fetal QRS detection in the third-order statistical domain. 

Under broad signal and noise conditions, linearisation of the transabdominal ECG 

signals not only removes to a great extent the signal non-linearity, but also partially 

eliminates other types of non-linearity due to noise or non-linearity due to strong uterine 

contractions.

Also, we can deduce from Table 2.1 that there would be overlapping between the 

bispectral frequencies of motion artefact and those of the maternal and the fetal 

QRS-complexes, albeit at around -20 dB level. However, the level of noise at the 

QRS-complex spectra is comparatively small and it will be shown in Chapter Six that by
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Noise 
X. type 

2nd & 3rd

order statistics

Baseline wander Electromyographic Motion artefact

pdf Non-symmetric Non-symmetric Non-symmetric

3rd order cumulants Support Support Support

Bispectrum Frequencies < 5 Hz Frequencies < 10 Hz Frequencies < 35 Hz

Bicoherence Sq. Frequencies < 5 Hz Frequencies < 120 Hz Frequencies < 5 Hz

Table 2.1: Summary of second- and third-order statistics of three types of noise in ECG signals, 

namely, baseline wander, electromyographic noise, and motion artefact.

using QRS-complex tailor-made spectral windows, the effect of motion artefact on the 

detection of the QRS-complexes is not noticeable.
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CHAPTER THREE

Chapter 3 ADAPTIVE LMS- AND LMF-BASED SECOND- AND THIRD-ORDER VOLTERRA

THE APLICATION OF ADAPTIVE LMS- AND 

LMF-BASED SECOND-AND THIRD-ORDER 

VOLTERRA SYNTHESISERS TO ECG SIGNALS

3.1 Introduction

3.1.1 Aim

As mentioned in the previous chapters the maternal transabdominal ECG signal is 

non-Gaussian and possesses quadratic and cubic non-linearities. The contaminating 

noise contains Gaussian, non-Gaussian, and non-linear components. The maternal 

transabdominal ECG signal is a combined maternal and fetal ECG and there is also 

another formidable signal combined with it, namely, the uterine contraction interference 

signal (UCS) during labour. Each one of these three combined signals is non-linear by 

its own right. The objective of this chapter is to decompose the maternal transabdominal 

ECG signal into its linear, quadratic and cubic parts and retain only the linear part for 

further signal processing. A non-linear predictor / synthesiser is sought to carry out this 

task because employing a linear structure to cater for such non-linear signals would lead 

to a suboptimal solution. The predictor / synthesiser will try to model as faithfully as 

possible the linear, quadratic and cubic parts of the transabdominal ECG signal. This is 

done by predicting each sample of the maternal transabdominal full cardiac cycles 

before segmentation. The linear (and non-Gaussian) synthesised part of each segment of 

the maternal transabdominal cardiac cycle will be used for fetal heartbeat classification 

and detection in the following three chapters. In order to synthesise and linearise (retain 

only the linear part and remove the quadratic or the quadratic and cubic parts as 

applicable) the ECG signals, non-linear structures should be utilised. The main concern 

of this chapter, therefore, is to synthesise and linearise the fetal scalp electrode, the 

maternal chest, and more importantly the maternal transabdominal ECG signals using 

adaptive Least-Mean-Square- (LMS) and Least-Mean-Fourth-based (LMF), second- and
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third-order Volterra structures. The reason for synthesising the fetal scalp electrode and 

maternal chest ECG signals is that they are used to create higher-order statistics 

templates to be used in conjunction with the first and second hybrid systems as it will be 

shown in Chapters Four and Five. In this thesis, the following abbreviations are 

followed;

LMSQV LMS-based Quadratic (second-order) Volterra

LMFQV LMF-based Quadratic (second-order) Volterra,

LMSCV LMS-based Cubic (third-order) Volterra, and

LMFCV LMF-based Cubic (third-order) Volterra,

The reason for applying an LMF-based filter to the above mentioned ECG signals is 

because it has the ability to track higher-order statistical variations while the LMS 

algorithm is limited to tracking variations in the second-order statistics domain only. 

The LMF algorithm is based on updating the error to the power four, which makes it 

converge faster than the LMS algorithm, which is based on updating the squared error. It 

will be shown that this is an advantage when dealing with ECG signals.

3.1.2 Layout of the Chapter

The structure of the chapter is as follows. First brief summaries of the standard LMS 

and LMF algorithms are given in Section 3.2. This is followed by descriptions ot the 

LMS- and LMF-based second- and third-order Volterra structures in Section 3.3. 

Section 3.4.1 describes the model order selection criterion. Section 3.4.2 shows results 

of directly applying the LMS- and LMF-based adaptive algorithms to predict ECG 

signals (Figure 3.1), and assess the resultant mean-squared errors. Adaptive LMS-based 

second- and third-order Volterra structures are then applied to synthesise ECG signals in 

Section 3.4.3. The LMS- and LMF-based second- and third-order Volterra synthesisers 

are then applied to fetal scalp electrode, maternal chest, and maternal transabdominal 

ECG signals in Section 3.4.4. Conclusions are given in Section 3.5.

3.2 Adaptive LMS and LMF Algorithms
3.2.1 Background

Filtering implies extracting information from a signal at time / by using data before and 

including time t. Prediction, however, is aimed at deriving information about the signal
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Input signal

System output 2 

System output 1

Figure 3.1: Prediction as a basic class of adaptive filtering applications.

at time t + A in the future by using data available before and including time t. The design 

of Wiener filters, which is a class of optimum linear discrete-time filters, requires prior 

information about the statistics of the data to be processed. However, adaptive filters do 

not require such information. For adaptive filters, the parameters of the filter are updated 

from one iteration to the next. The parameters become data dependent which makes it 

possible for the filter to perform satisfactorily in an environment where complete 

knowledge of the relevant signal statistics is not available. In a stationary environment, 

after successive iterations of the adaptive filtering algorithm it converges to the 

optimum Wiener solution in some statistical sense. In a non-stationary environment, the 

algorithm offers a tracking capability, whereby it can track time variations in the 

statistics of the input data, provided that the variations are sufficiently slow. Adaptive 

algorithms have fast speed of operation in terms of the CPU time and they are 

computationally efficient. There are four basic classes of adaptive filtering applications: 

(a) class I: identification; (b) class II: inverse modelling; (c) class III: prediction (see 

Figure 3.1); and (d) class IV: interference cancellation [31]. In this chapter the 

prediction operation will be considered.

The issue of prediction is one of the most basic and pervasive learning tasks. It is a 

temporal signal processing problem in that we are given a set of N past samples x(n-l), 

x(n-2), ..., x(n-N) that are usually uniformly spaced in time, and the requirement is to 

predict the present sample x(n). Prediction may be solved using error-correction learning 

in a supervised manner in the sense that the training examples are drawn directly from 

the time series itself. Specifically, the sample x(n) serves the purpose of the desired 

response; hence given the corresponding prediction x(n) produced by the structure on
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the basis of the previous samples x(n-l), x(n-2), x(n-N), we may compute the

prediction error as:

e(n) = x(n) -  x(n|n-1, ..., n-N), (3.1)

and thus use the error-correction learning to modify the step-size parameter of the 

structure. Prediction may be viewed as a form of model building in the sense that the 

smaller we make the prediction error in a statistical sense, the better will the structure 

serve as a statistical model of the underlying process responsible for the generation of 

the time series. The problem of designing an optimum linear fdter that provides the 

theoretical framework for linear adaptive filters was first conceived by Kolmogorov [71] 

and solved shortly afterwards independently by Wiener [72].

3.2.2 The Least-Mean-Square (LMS) Algorithm

The steepest descent adaptive filter, which is a gradient search technique, is an iterative 

procedure for obtaining the parameters that minimises a function. At each iteration of 

the steepest descent procedure, the values of the weights are modified in the direction in 

which the error function decreases most rapidly. According to the steepest descent 

algorithm, the weights of the filter assume time-varying form, and their values are 

adjusted in an iterative fashion along the error surface with the aim of moving them 

progressively towards the optimum solution. The LMS algorithm is a stochastic 

implementation of the method of the steepest descent. When the filter operates in an 

unknown environment, the exact measurements of the gradient vector are not possible 

since this requires a prior knowledge of both the autocorrelation and cross-correlation 

functions.

A standard linear LMS filter with transversal, tapped-delay, structure is shown in 

Figure 3.2. The output of the filter is related to its input by the relation:

N - l

y ( n) “  X(n-i) , (3 .2)
i=0

and the weights of the filter are updated using a standard LMS adaptation rule, which is
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derived from the Widrow-Hoff algorithm that uses an instantaneous estimation of the 

gradient.

a(n +1) = a(n) + 2p e(n)x(n), (3.3)

where x(n) is the input vector, y(n) is the output vector, a(n) is the N x 1 tap weight 

coefficients vector and p is the step-size parameter. Figure 3.3 (a) shows a flowchart of 

the standard LMS algorithm. The LMS algorithm was introduced for adaptive noise 

cancellation [3]. Since then many variations and improvements were suggested and 

implemented. They show faster convergence or better tracking abilities. A thorough 

examination of the LMS performance analysis was provided in [6]. The LMS algorithm 

is not demanding in computational complexity. It is relatively simple to implement. The 

LMS does not require measurements of the pertinent correlation functions, nor does it 

require matrix inversion.

3.2.3 The least-mean-fourth (LMF) Algorithm

The least-mean-square (LMS) algorithm minimises the expected value of the squared 

difference between the estimated output and the desired response, i.e., {E I e(n)| }. A
2N

more general case is to minimise E{e(n) } [7]. This represents a general class of 

steepest descent algorithms for adaptive filtering which allow error minimisation in the 

mean fourth, sixth, .. etc. N = 1 is the Least-Mean-Square (LMS) and N = 2 is the 

Least-Mean-Fourth (LMF), which is summarised in Figure 3.3 (b). The LMF algorithm
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(a) (b)

Figure 3.3: Flowcharts of two adaptive prediction algorithms: (a) the LMS, and (b) the LMF.
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updates the weights as follows:

a,(n + 1) = a i(n) + 2|ai ,e3(n).x(n). (3.4)

The LMF has, in general, a faster convergence than the LMS algorithm. It has generally 

a lower weight noise than the LMS algorithm, with the same speed of convergence. It 

was shown to have 3 dB to 10 dB lower mean-squared error (MSE) than the LMS 

algorithm [7],

There are three parameters to optimise in order to achieve the best performance for ECG 

signals. These parameters are: the number of tap weight coefficients of the filter, N, the 

step size parameter, p and the number of delay elements, A. The choice of the optimum 

values of these parameters is based, by and large, on trial and error. The optimum values 

are found in three steps. Each time two of the parameters are given fixed initial guesses 

and the third parameter is changed.

3.3 Volterra Structures
3.3.1 Background

Linear adaptive filters are based on the minimum mean-squared error criterion. The 

Wiener filter, that results from the application of such a criterion, can only relate to 

second-order statistics of the input data and no higher. This constraint limits the ability 

of a linear adaptive filter to extract information from the input data that are 

non-Gaussian. The use of a Wiener (linear) adaptive filter to extract signals of interest in 

the presence of non-Gaussian processes will yield sub-optimal solutions. We may 

overcome this limitation by incorporating some form of non-linearity in the structure of 

the adaptive filter. One type of adaptive non-linear filters is a Volterra filter. In Volterra 

filters, the non-linearity is localised at the front end of the filter. A non-linear adaptive 

filter may be decomposed into a non-linear Volterra expander followed by a linear FIR 

adaptive filter. The Volterra filter is attractive since it can deal with a general class of 

non-linear systems while its output is still linear with respect to its various higher-order 

system kernels or impulse responses. A formal solution to the optimum non-linear 

filtering problem is mathematically intractable. Nevertheless, in the 1950s a great deal 

of brilliant work was done by Zadeh [73], Wiener et al. [74] and others that did much to
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clarify the nature of the problem. Gabor was the first to conceive the idea of a non-linear 

adaptive filter [75] and built such a filter [76], Gabor proposed a shortcut through the 

mathematical difficulties of non-linear adaptive filtering by constructing a filter that 

optimises its response through learning. The output of the filter is expressed in the form

N N N

y (n )  =  E a h x k-il+i + Z Z  a fi.i2 x k-i,+i x k-i2 * i +•••■ (3.5)
¡1=1 ¡1=1 ¡2=1

where x(0), x(l), ..., x(N) are samples of the filter input. Nowadays, this polynomial is 

referred to as the Gabor-Kolomogrov polynomial or a discrete form of the Volterra 

series. The first term of the polynomial represents a linear filter characterised by a set of 

coefficients {a'n}. The second term characterised by a set of dyadic coefficients {a2̂ }  

is non-linear; this term contains the products of two samples of the filter input, and so 

on for the higher-order terms. The coefficients of the filter are adjusted via gradient 

descent to minimise the mean squared value of the difference between a desired 

response d(n) and the actual filter output, y(n).

The Volterra series is a well-known method of describing non-linear dynamic systems. 

It is a generalisation of the Taylor series expansion of a function. However, the Volterra 

series has a drawback, which is the large number of parameters to be estimated leading 

to a large CPU time. The recent popularity of the Volterra filtering is due to the 

advancement in computer technology, which in turn allows one to estimate the relevant 

higher-order statistics required to calculate the higher-order Volterra kernels for 

non-linear systems [19-20]. The truncated Volterra series (the Volterra filter) is an 

attractive non-linear system representation because the parameters of this model are 

linearly related to the output.

Consider a single input single output discrete time-invariant system with non-linearities, 

a polynomial of order N and filter length M. The output Yk is expressed in terms of the 

inputs xk as follows:
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N N N

+ 1 1 ^ ¡1 ,¡2 ^k-il+l^ 'k~i2+l

N N (3.6)

¡1=1 ¡n =1

where an . , i e { l , . . . M }  are referred to as the Volterra Kernels.

The Volterra non-linear system identification involves the estimation of the Volterra 

kernels in the time domain or the Volterra transfer functions in the frequency domain. 

The following section describes more realistic truncated second- and third-order 

Volterra structures.

3.3.2 Second- and third-order Volterra Structures

The basic Volterra structure as given below is a series of polynomial terms. These terms 

are formed from known values of a given time series (x(n)}. Such series have been used 

widely in the field of system identification [21], An estimate of x(n+l) can be derived 

via:

where N is the number of samples. From Eq. (3.6) we can see that a second-order 

Voltera structure consists of a parallel combination of linear and quadratic filters and 

has the form of:

N - l  N N

x(n + l) = a0 + ^ a * x n_ii a i])i2x( n - i 1)x ( n - i2)+....

(3.7)

N N N

^ ¡ 1  ^ k - i j + 1 + 1 1 (3.8)

Based on Eq. (3.6), a third-order-order Volterra structure has the form of:
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N N N

(3.9)
^  a ili2,i3x k - i 1+ lx k - i2 + lx k - i3+l 

¡1=1 i2=l ¡3=1

From the structure of the series, it is evident that the number of terms involved will 

quickly become computationally unmanageable as p and N are increased. For p = 3, the 

number of terms Mthird-order voiterra grows as a cubic polynomial i.e.,

Rank deficiency is exploited in Appendix A4 to reduce redundancy in the number of 

Voiterra coefficients and to reduce the CPU processing time without compromising the 

mean-squared error (MSE) threshold. A third-order Voiterra structure is shown in 

Figure 3.4. Throughout this chapter, second- and third-order Voiterra structures are 

used.

3.3.3 LMF-based second- and third-order Voiterra synthesisers

Conventional methods of estimating the parameters of Voiterra structures use the LMS 

algorithm to update the estimates. In this section, adaptive LMF-based second- and 

third-order Voiterra structures are developed and then applied in Section 3.5 to fetal 

scalp electrode, maternal chest, and maternal transabdominal ECG signals. In the sequel, 

these filters will be referred to as second-order LMF-Voiterra and third-order 

LMF-Volterra. The conventional adaptive LMS algorithm in the Voiterra structure is 

replaced by an adaptive LMF algorithm. The linear, quadratic, and cubic weights of the 

LMF-based Voiterra structure are updated as:

Mthird-order Voiterra -  ( 6  + 1 1 N + 6  N2 + N3) / 6 . (3.10)

a ;, (n +1) = a,, (n) + 2pM .e3(n).x(n) (3.11)

(n +1) = a i]i2 (n) + 2p,,,2 .e3 (n).x(n).x(n) (3.12)
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Input

Output

Figure 3.4: A third-order Volterra structure.

aill2,3 (n +1) -  a i]i2l3 (n) + 2pjli2i3 .e3 (n).x(n).x(n).x(n) (3.13)

The extension of the conventional LMS-based Yolterra to the LMF-based Volterra is 

done to make use of the advantages of higher-order statistics, especially its robustness to 

Gaussian noise and its tracking capability in the higher-order statistics domain. The 

parameters of the LMF algorithm were optimised by trial and error to achieve the best 

performance in terms of the speed of convergence, minimum mean-squared error and 

tracking.

3.4 Results

3.4.1 Model order selection

The best choice of the filter order, N, is not generally known a priori and it is usually 

necessary to postulate several model orders then compute error criteria that indicate 

which model order to choose. One well-known criterion is the Akaike Information 

Criteria (AIC). The AIC determines the model order by minimising an information 

theoretic function

AIC(N) = Nd ln(pN) + 2N (3.14)
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Where Nd is the number of data samples and pN is the estimated white noise variance,

A 2
the linear prediction error variance will be used for this estimate, pm

t

Figure 3.5 shows the model order selection using Akaike Information Criteria (AIC) 

with values of AIC(N) plotted versus model orders for three transabdominally-measured 

cardiac cycles (data length 3000 msec). The step-size parameter is 0.03 for the linear 

adaptive LMS algorithm. The best order, or filter length, is to be chosen between 6 and 

10. Three cardiac cycles were used so that the model order can be chosen within 3 sec to 

be able to start synthesising the ECG signal prior to any classification or detection.

3.4.2 Mean-squared error comparison of LMS- and LMF-based FIR predictors 

when applied to maternal transabdominal ECG signals

The LMS and LMF adaptive algorithms have been used in conjunction with an 

optimised FIR filter to predict the formidable maternal transabdominal ECG signal 

during the first stage of labour. Figure 3.6 (a-b) shows that the LMS algorithm takes 

about seven cardiac cycles to converge to a minimum mean-squared error (MSE) of

0.05. Figure 3.6 (c-d) shows that the LMF algorithm takes the same time to converge 

with a slightly smaller MSE of 0.04. The parameters of the LMS and LMF are, 

respectively, filter length = 10 and 23, delay = 4 and 6, and step-size parameter = 0.03,

0.008. The level of the errors at the output is -13 dB and -14 dB for the LMS and the 

LMF filters, respectively. Therefore, the LMF-based filter has a slightly better 

performance in terms of its mean-squared error for the same convergence time than that 

of the LMS-based filter.

3.4.3 LMS-based Volterra synthesiser when applied to fetal scalp, maternal 

chest, and maternal transabdominal ECG signals

In this section an LMS-based Volterra structure is used to decompose fetal scalp, 

maternal chest, and maternal transabdominal ECG signals into their linear, quadratic 

and cubic parts and the linear part only is retained for further analysis of the signal.

Figure 3.7 shows a third-order Volterra structure that represents the signal as linear, 

quadratic and cubic parts. The output is taken from the linear part to represent the linear
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Figure 3.5: M od e l o rd e r se lection  us ing  A ka ike  In fo rm ation  C riteria  (AIC). The va lues o f  
A IC (N ) are p lo tte d  a ga in s t seve ra l m od e l o rders  fo r th ree  m a te rna l transabdom ina l 
ca rd iac  cyc les  (da ta  length  3000  m sec). The s tep-s ize  p a ra m e te r is 0 .03  fo r the  line a r 
adaptive  LM S -a lgorithm . Code: 5.
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(b)
F igure  3 .6 : The app lica tion  o f  the  LM S a nd  the LM F  a lgorithm s to e ig h t m a te rna l transabdom ina lly  m ea su red  ca rd iac  cyc les  (tw in  surface  
e lectrodes), (a, c) E ig h t ca rd iac  cyc les  be fo re  a nd  a fte r the app lica tion  o f  the LM S and  the LM F  a lgorithm s, respective ly , (b, d) The m ean- 
squa red  e rro r o f  the e ig h t ca rd ia c  cyc les  fo r the  LM S  a nd  the LM F a lgorithm s, respective ly . The e rro r s igna ls  a re show n as insets. The 
op tim ised  pa ram ete rs  are ; The LM S  filte r: N  = 6, p = 0.03, A =2. The L M F  filte r: N  = 8, p = 0.04, A =3. The m a te rna l ca rd iac  cyc le  beg ins  50  
m sec be fo re  the  R -w ave  a nd  ends  50 m s e c  be fo re  the  n e x t R -wave. The su b jec t is  a t the firs t s tage  o f  labour, 40  w eeks gesta tion . Code: 5-1- 
9.
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(c)

(d)
Figure  3 .6  (con tinued): The app lica tion  o f  the  LM S  and  the LM F  a lgorithm s to e ig h t m a te rna l transabdom ina lly  m ea su re d  ca rd iac  cyc les  (tw in  
surface  e lectrodes), (a, c) E ig h t ca rd ia c  cyc les  be fo re  a nd  a fte r the app lica tion  o f the  LM S  and  the LM F  a lgorithm s, respective ly , (b, d) The 
m ean-squa red  e rro r o f  the e ig h t ca rd ia c  cyc les  fo r the  LM S a nd  the  LM F  a lgorithm s, respective ly . The e rro r s igna ls  are  show n  as insets. The 
optim ised  p a ram ete rs  are; The LM S  filte r: N  = 6, p = 0 .0 3 , A =2. The LM F  filte r: N  = 8, p = 0.04, A =3. The m a te rna l ca rd ia c  cycle  beg ins 50  
m sec be fo re  the  R -w ave a nd  ends 50 m se c  be fo re  the  n e x t R -w ave. The su b jec t is  a t the firs t s tage  o f  labour, 40  w eeks gesta tion . Code: 5-1- 

9.
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Figure 3.7: A n adaptive  th ird -o rd e r Volterra  s truc tu re  w ith the o u tp u t taken as the lin e a r p a rt o f  
the structure, yL(nj.

part of the signal alone. A flowchart of the third-order Volterra structure is shown in 

Figure 3.8, where aq, aqq and ai,i2i3 are the weighting vectors for the linear, quadratic 

and cubic parts of the third-order Volterra structure, respectively. The corresponding 

step-size parameters are p,,5 p,,,2 and Pi,i2i3.

Figure 3.9 depicts the linear, quadratic and cubic parts of the fetal scalp electrode, 

maternal chest and maternal transabdominal ECG signals. These signals are tested for 

Gaussianity and linearity in Appendix A4, Section A4.2. Figure 3.10 shows the 

corresponding Volterra linear, quadratic and cubic kernels. Figure 3.11 shows the linear, 

quadratic and cubic Volterra parts of four 250 msec maternal transabdominal segments; 

these segments are; the predominantly maternal QRS-complex, the first fetal heartbeat 

with maternal contribution, QRS-free ECG, and the second fetal heartbeat with maternal 

contribution. This representation will be used later on in Chapters Four, Five and Six.

3.4.4 Mean-squared error comparison of the LMS- and LMF-based second- and 

third-order Volterra synthesisers when applied to fetal scalp electrode, maternal 

chest, and maternal transabdominal ECG signals

Using as input the fetal scalp electrode, maternal chest, and maternal transabdominal 

ECG signals, the MSE performance of the LMSQV synthesiser is compared with that of 

the LMFQV synthesiser. This is followed by comparing the MSE performance of the
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Figure 3.8: A F low cha rt o f  the adaptive  L M S -based  th ird -o rd e r Volterra a lgorithm .
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Figure 3.9: T h ird -o rde r Volterra syn the s ised  signals. L in e a r (top  panel), q ua d ra tic  (m idd le  pane l) 
a nd  cub ic  (bo ttom  pane l) p a rts  o f  the  th ird -o rd e r Volterra  rep re sen ta tion  o f  (a) a fe ta l E C G  s igna l 
us ing  fe ta l sca lp  e lectrode, (b) a m a te rna l ch es t E C G  signal, a nd  (c) a m a te rna l transabdom ina l 
E C G  signal. The m a te rna l ca rd iac  cyc le  b eg ins  50 m se c  be fo re  the  R -w ave  and  ends 50 m sec  
be fo re  the  n e x t R -w ave. The su b je c t is  a t the  firs t s tage  o f  labour, 40  w eeks gesta tion . The 
Volterra pa ram e te rs  are as fo llow s ; fe ta l E C G  s igna l: filte r leng th  = 8, d e lay  = 2, s tep-s ize  
pa ram e te rs  = 0.002, 0.0002, 0.0002, m a te rna l ch e s t E C G  s igna l: f ilte r leng th  = 6, d e lay  = 4, 
s tep-s ize  p a ram e te rs  = 0.002, 0.0002, 0 .0002, tran sab d om in a l E C G  s igna l: f ilte r length  = 6, de lay  
= 4, s tep-s ize  p a ram e te rs  = 0.004, 0.0004, 0.0004. The leng th  o f  the  ca rd iac  cyc le  is 550  m sec  
fo r  (a) a nd  1000 m sec  fo r (b) a nd  (c).
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(b)

(c )

Figure 3.10: Third-order Volterra coefficients (linear coefficients (l.h.s.), quadratic coefficients 
(middle), and diagonal tensor of cubic coefficients (r.h.s.) of (a) a fetal cardiac cycle using fetal 
scalp electrode (data length 550 msec), (b) a maternal chest cardiac cycle (data length 1000 
msec), and (c) a transabdominally measured maternal cardiac cycle (twin surface electrodes, 
data length = 1000 msec). The third-order Volterra filter parameters are as follows; fetal scalp 
ECG signal: filter length =6, delay = 1, step-size parameter = 0.001, 0.0001, 0.0001. Maternal 
chest ECG signal: filter length =6, delay = 6, step-size parameter = 0.001, 0.0001, 0.0001. 
Trabsabdominal ECG signal: filter length =6, delay = 4, step-size parameter = 0.004, 0.0004, 
0.0004.
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0.07

Quadratic

- 0.01

IV
Cubic

Fetal heartbeat with 
maternal contribution
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(a) (b)
Figure 3.11: Third-order Volterra Synthesis of four 250 msec segments of the maternal 
transabdominal cardiac cycle of Figure 3.9; (a) the predominantly maternal 
QRS-complex segment and (b) the first fetal heartbeat with maternal contribution. (I) the 
unsynthesised segment, and its (II) linear, (III) quadratic, and (IV) cubic parts. The 
Volterra synthesiser parameters for the maternal QRS-complex segment are: filter length 
= 6, delay -  2, step-size parameters =0.001, 0.0001, 0.00001, for the linear, quadratic 
and cubic parts, respectively. The Volterra synthesiser parameters for the first fetal 
heartbeat segment are: filter length = 8, delay = 4, step-size parameters =0.01,0.001, 
0.0001, for the linear, quadratic and cubic parts, respectively. Code: cycle 5-1.
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Figure 3.11 (continued): Third-order Volterra Synthesis of four 250 msec segments of 
the maternal transabdominal cardiac cycle of Figure 3.9; (c) the QRS-free ECG 
segment and (d) the second fetal heartbeat with maternal contribution. (I) the 
unsynthesised segment, and its (II) linear, (III) quadratic, and (IV) cubic parts. The 
Volterra synthesiser parameters for the QRS-free ECG and the second fetal heartbeat 
segments are: filter length = 8, delay = 4, step-size parameters =0.01, 0.001, 0.0001, for 
the linear, quadratic and cubic parts, respectively. Code: cycle 5-1.
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LMSCV synthesiser with that of the LMFCV synthesiser. In each case the parameters 

have been optimised to yield the best performance for individual signals.

(i) LMSQV versus LMFQVsynthesisers

Figure 3.12 shows the MSE of both the LMSQV and the LMFQV synthesisers when 

applied to a fetal scalp electrode ECG signal. At the start of the iterations, the MSE of 

the LMFQV is about 3 dB below that of the LMSQV. Then, both synthesisers equalise 

towards convergence. It is interesting to note that the fetal scalp electrode ECG signal is 

predominantly linear and is decomposed as follows; input = 0 dB, output = - 0.03 dB 

linear and -20 dB quadratic.

Figure 3.13 shows the MSE of both the LMSQV and LMFQV synthesisers when 

applied to a maternal chest ECG signal. At the start of the iterations, the MSE of the 

LMFQV is about 3 dB below that of the LMSQV. Then, both synthesisers equalise 

towards convergence. Note that the maternal chest ECG signal is predominantly linear 

and is decomposed as follows; input = 0 dB, output = - 0.02 dB linear and -19 dB 

quadratic.

Figure 3.14 shows the MSE of both the LMSQV (l.h.s.) and LMFQV (r.h.s.) 

synthesisers when applied to a maternal transabdominal ECG signal. The LMFQV starts 

with an initial error which is about 39% of that of the LMSQV. The LMFQV takes only 

two cardiac cycles to converge whilst the LMSQV converges in nine cardiac cycles. 

Also, the LMFQV approaches convergence with an MSE of 2.5 x 10'4 which is less than 

that of the LMSQV (7.4 x 10'3); a definite improvement of 14 dB. Note that the 

maternal transabdominal ECG signal is predominantly linear and is decomposed as 

follows; input = 0 dB, output = - 0.015 dB linear and -17 dB quadratic.
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(a) LMSQV

I I_______
2 7 5 0

Figure 3.12: The mean-squared error of (a) the LMSQV and (b) the LMFQV Synthesisers when 
applied to the fetal scalp electrode ECG signal of Figure 3.9. (Code: 5-78-80).

l.O
(a) LMSQV

4 0 0 1

Figure 3.13: The mean-squared error of (a) the LMSQV and (b) the LMFQV synthesisers when 
applied to the maternal chest ECG signal of Figure 3.9. (Code: 5-78-87).

Figure 3.14: The mean-squared error of (a) the LMSQV and (b) the LMFQV synthesisers 
when applied to the maternal transabdominal ECG signal of Figure 3.9 (Code: 5-78-87).
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(ii) LMSCV versus LMFCVsynthesisers

Figure 3.15 shows the MSE of both the LMSCV and LMFCV synthesisers when applied 

to a fetal scalp electrode ECG signal. At the start of the iterations, the MSE of the 

LMFCV is about 3 dB below that of the LMSCV. Then, both synthesisers equalise 

towards convergence. Note that the fetal scalp electrode ECG signal is predominantly 

linear and is decomposed as follows; input = 0 dB, output = - 0.03 dB linear, -20 dB 

quadratic, and -39 dB cubic.

Figure 3.16 shows the MSE of both the LMSCV and LMFCV synthesisers when applied 

to a maternal chest ECG signal. At the start of the iterations, the MSE of the LMFCV is 

about 3 dB below that of the LMSCV. Then, both synthesisers equalise towards 

convergence. Note that the maternal chest ECG signal is predominantly linear and is 

decomposed as follows; input = 0 dB, output = - 0.02 dB linear, -19 dB quadratic, and 

-36 dB cubic.

Figure 3.17 shows the MSE of both the LMSCV (l.h.s.) and LMFCV (r.h.s.) 

synthesisers when applied to a maternal transabdominal ECG signal. At the start of 

iterations, the LMFCV is 6 dB below that of the LMSCV. The LMFCV takes only two 

cardiac cycles to converge whilst the LMSCV converges in nine cardiac cycles. Also, 

the LMFCV has a steady-state (after convergence) mean-squared error of 1.5 x 10'6 

whilst that of the LMSCV is 3 x 10'3 which is an improvement of approximately 13 dB. 

Note that the maternal transabdominal ECG signal is predominantly linear and is 

decomposed as follows; input = 0 dB, output = - 0.015 dB linear, -17 dB quadratic, and 

-33 dB cubic.

The parameters for the adaptive LMS- and LMF-based quadratic and cubic Volterra 

synthesisers are summarised in Table 3.1.
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(a) LMSCV

Figure 3.15: The mean-squared error of (a) the LMSCV and (b) the LMFCV synthesisers when 
applied to the fetal scalp electrode ECG signal of Figure 3.9. (Code: 5-78-80).

Figure 3.16: The mean-squared error of (a) the LMSCV and (b) the LMFCV synthesisers when 
applied to the maternal chest ECG signal of Figure 3.9. (Code: 5-78-87).
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Figure 3.17: The mean-squared error of (a) the LMSCV and (b) the LMFCV synthesisers 
when applied to the maternal transabdominal ECG signal of Figure 3.9. (Code: 5-78-87).
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Algorithm Number of 

elements, N

Delay,

A

Step-size parameter, 

F

CPU

(msec)

LMS Quadratic Volterra 8 6 0.002, 0.0004 25

LMS Cubic Volterra 6 6 0.001,0.0001,0.0001 350

LMF Quadratic Volterra 8 5 0.001, 0.0002 40

LMF Cubic Volterra 6 5 0.001,0.0002,0.0004 450

(a)

Algorithm Number of 

elements, N

Delay,

A

Step-size parameter, 

F

CPU

(msec)

LMS Quadratic Volterra 6 2 0.002, 0.0004 35

LMS Cubic Volterra 6 2 0.001,0.0001,0.0001 700

LMF Quadratic Volterra 6 2 0.001,0.0002 50

LMF Cubic Volterra 6 2 0.001,0.0002,0.0004 850

(b)
Algorithm Number of 

elements, N

Delay,

A

Step-size parameter, 

F

CPU

(msec)

LMS Quadratic Volterra 6 2 0.002, 0.0004 35

LMS Cubic Volterra 6 2 0.001,0.0001,0.0001 700

LMF Quadratic Volterra 6 2 0.001,0.0002 50

LMF Cubic Volterra 6 2 0.001,0.0002, 0.0004 850

(c)

Table 3.1: The optimised parameters of the LMSQV, LMSCV, LMFQV, and LMFCV adaptive 
algorithms compared in Figures 3.12 to 3.17 for (a) fetal scalp electrode, (b) maternal chest, and 
(c) maternal transabdominal ECG signals.
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3.5 Summary and conclusions

General discussions
The objective of this chapter is to decompose the maternal transabdominal ECG signal 

into its linear, quadratic, and cubic parts and retain only the linear part. The maternal 

transabdominal ECG signal is a combined maternal and fetal ECG and there is also 

another formidable signal combined with it, namely, the uterine contraction interference 

signal (UCS) during labour. Each one of these three combined signals is non-linear by 

its own right. To synthesise the maternal transabdominal ECG signal, a non-linear 

predictor / synthesiser is sought to carry out this task because employing a linear 

structure to cater for such non-linear signals would lead to a suboptimal solution. The 

predictor / synthesiser will try to model as faithfully as possible the linear, quadratic and 

cubic parts of the ECG signal. This is done by predicting each sample of the maternal 

transabdominal full cardiac cycles before employing segmentation. The linear (and 

non-Gaussian) part of each segment of the maternal transabdominal cardiac cycle will 

be used for fetal heartbeat classification and detection in the following three chapters.

Prediction may be viewed as a form of model building in the sense that the smaller we 

make the prediction error in a statistical sense, the better will the structure serve as a 

statistical model of the process responsible for the generation of the time series. When 

this process is of a non-linear nature, the use of a Volterra structure provides a powerful 

method for solving the prediction problem by virtue of the non-linear processing units 

built into its construction. The only exception to the use of non-linear units, however, is 

the output of the structure, which is linearly related to its inputs. The coefficients of the 

Volterra filter are adjusted via gradient descent to minimise the mean squared value of 

the difference between the desired response and the actual filter output.

Detailed results
1. Summary of the LMS and LMF algorithms

The adaptivity of the Volterra structure is carried out using two candidate algorithms, 

namely, the LMS and the LMF algorithms. The LMS algorithm is simple to implement, 

able to operate satisfactorily in an unknown environment and able to track time 

variations of the input statistics. The LMF algorithm however, is able to track variations 

in the higher-order statistics of the input signal. The LMS and LMF algorithms are
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summarised in Tables 3.2 and 3.3, respectively. Figures 3.18 and 3.19 show signal-flow 

graph representations of the LMS and the LMF algorithms, respectively.

1. Initialisation: Set a,(l) = 0 1. Initialisation: Set aj(l) = 0

for k = 1,2, ..., p for k = 1, 2, ..., p

2. Filtering: For time n = 1, 2,.. compute 2. Filtering: For time n = 1, 2,.. compute
N-l N-l

y(n) _ ^ a i X(n—i) , y (n) ~ ^ a i x (n-i) ,
i=0 i=0

e(n) = d(n) -  y(n), e(n) = d(n) -  y(n),

a(n +1) = a(n) + 2p e(n)x(n), a i(n + l) = a i(n) + 2p, ,e3(n).x(n).

for k = 1,2, ..., p. for k = 1,2, ..., p.

Table 3.2: Summary of the LMS algorithm. Table 3.3: Summary of the LMF algorithm.

Figure 3.19: A signal-flow graph 

representation of the LMF algorithm.
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2. Comparison of the performance of both the LMS and LMF algorithms

In this chapter the standard LMS and LMF predictors are applied to full cardiac cycles 

of the maternal transabdominal ECG signals and it is shown that the LMF predictor 

slightly outperforms its LMS counterpart in terms of the mean-squared error by 1 dB for 

the same convergence time, possibly because the LMS algorithm is limited to tracking 

variations in the second-order statistics domain only. The advantage of the LMF 

algorithm against the LMS algorithm is that when both the LMF and LMS are set to 

have the same step-size parameter for the weight adaptation process, the LMF will have 

substantially lower weight noise than the LMS. The LMF algorithm leads to a lower 

mis-adjustment than the LMS algorithm for the same speed of convergence. However, 

the main limitation of the LMS and LMF filters is their relatively slow rate of 

convergence, which is attributed to the exclusive use of first-order information 

(gradient).

3. Comparison of the performance of the LMS-based and LMF-based second- and 

third-order Volt err a synthesisers

Second-order and third-order Volterra synthesisers are used to linearise the fetal scalp 

electrode, the maternal chest, and the maternal transabdominal ECG signals by 

removing the quadratic or the quadratic and cubic parts, respectively, and retaining only 

the linear part. The Volterra structures are attractive since they can deal with a general 

class of non-linear systems while their outputs are still linear with respect to their inputs 

via their linear, quadratic and cubic parts of their transfer functions.

Adaptive LMF-based second- and third-order Volterra structures are developed and 

applied to full cardiac cycles of the fetal scalp electrode, the maternal chest, and the 

maternal transabdominal ECG signals. The extension of the conventional LMS-based 

Volterra to the LMF-based Volterra is done to make use of the advantages of 

higher-order statistics, especially its robustness to Gaussian noise and its tracking 

capability.

Adaptive LMS- and LMF-based second- and third-order Volterra structures are used to 

decompose the aforementioned ECG signals into their linear, quadratic and cubic parts 

and retain only the linear part. The LMF-based second-order Volterra (LMFQV) takes 

only two cardiac cycles to converge whilst the LMS-based second-order Volterra
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(LMSQV) converges in nine cardiac cycles when both structures are applied to maternal 

transabdominal ECG signals. Also, the LMFQV approaches convergence with an MSE 

which is 14 dB below that of the LMSQV. The LMF-based third-order Volterra 

(LMFCV) takes only two cardiac cycles to converge whilst the LMS-based third-order 

Volterra (LMSCV) converges in nine cardiac cycles when both structures are applied to 

maternal transabdominal ECG signals. After convergence of both synthesisers, the MSE 

of the LMFCV is 13 dB below that of the LMSCV. Hence, both the adaptive LMF- 

based second- and third-order Volterra structures outperform the adaptive LMS-based 

second- and third-order Volterra structures by 14 dB and 13 dB, respectively. The third- 

order Volterra structure yields a better performance in terms of the MSE than the 

second-order Volterra structure by approximately 20 dB. The CPU time could be 

reduced by eliminating redundant coefficients from the third-order Volterra synthesiser 

as explained in Appendix A4, Section A4.3. In practice, however, it might be prudent to 

compromise and use an LMF-based second-order Volterra as opposed to an LMF-based 

third-order Volterra structure. This would simplify the implementation of the algorithm 

in software or hardware and reduce the CPU time required by two orders of magnitude 

which will make it more attractive for on-line implementations in handheld or portable 

devices.
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CHAPTER FOUR

NON-INVASIVE FETAL HEARTBEAT DETECTION 

USING THIRD-ORDER CUMULANT SLICES 

MATCHING IN CONJUNCTION WITH ANN 

CLASSIFIERS

4.1 Introduction

4.1.1 Aim

The aim of this chapter is to describe the first hybrid system (e.g., signal processing in 

conjunction with classification), using the mother and fetal third-order cumulants 

(TOC), which carry the signature imprints of their respective QRS-complexes, in the 

signal processing phase. The classification phase employs an LMS-based 

single-hidden-layer perceptron.

4.1.2 Artificial neural network design consideration

The subject of knowledge representation inside an artificial neural network is very 

complicated. The subject becomes even more complicated when we have multiple 

sources of information activating the network, as in the case of the 2-d third-order 

cumulants from transabdominal ECG containing the maternal and fetal ECGs, and the 

uterine contraction interference signal (UCS) plus noise.

Early research studies which have not been presented in this chapter, but have been 

carried out under an two-and-half-year research contract*, exploited the whole 

multi-dimensional structures of the third- and fourth-order cumulants of the ECG 

signals presented in this thesis in conjunction with multi-layered feed-forward neural 

networks. The justification for this multi-layer perceptron network was based entirely on 

the assumption that by including a sufficient number of hidden layers, the network

* Permission has been granted for publications without revealing the company’s name.
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would be enabled to extract both third- and fourth-higher-order statistics embedded in 

the cumulants presented to the network input. The multi-dimensional ECG cumulants 

were created first, and subsequently a pre-selected number of slices were extracted and 

cascaded side-by-side to be presented to the input layer of the MLP. In the early days of 

this research, it was difficult to make a decision, just by mere observations of the 

available 1-d third-order cumulant slice or 2-d fourth-order cumulant slice patterns 

produced from the transabdominally-measured ECG signals, as to which of such slices 

would show a distinguishable pattern which could be matched to the corresponding 

mother or fetal ECG templates. Particularly, those templates of the fetal scalp electrodes 

which have been used as a reference, so that the fetal heartbeat detection could be 

verified in the midst of those complex maternal environments and counted within each 

maternal cardiac cycle.

In an attempt to restrict the size of the neural network to only two hidden layers, instead 

of three or four layers, prior information had to be built into the design of the MLP by 

using a combination of two techniques [65]: (1) restricting the network architecture 

through the use of network connections and (2) constraining the choice of synaptic 

weights by the use of weight sharing [70], The issue of prior information was addressed 

in terms of the most discriminant patterns in the one-dimensional third-order cumulant 

slice or the two-dimensional fourth-order cumulant slices.

How to build invariances into neural network design

There exist at least three techniques for rendering classifier-type neural networks 

invariant to changes (or transformation due to an object manifestation as in speech 

recognition and Radar Doppler [71]). Only the first and second techniques of the 

following three have been applied to fetal heart monitoring:

(1) Invariance by training. A neural network has a natural ability for pattern 

classification. This ability may be exploited directly to obtain change invariance 

as follows. The network is trained by presenting it a number of different 

examples of the same fetal heartbeat cumulants or bispectra, with the examples 

being chosen to correspond to different changes (i.e., different fetal heartbeats 

positions in the maternal cardiac cycle) of the third-order cumulant. Provided 

that the number of examples is sufficiently large, and if the network is trained to 

learn to discriminate the different third- or fourth-order cumulants of the ECG

Chapter 4_____________________________________ CUMULANT MATCHING TECHNIQUES
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250 msec segments, we may then expect the network to generalise correctly 

changes other than those shown to it. It was found, however, from an 

engineering perspective, invariance by training has disadvantages. When a 

neural network has been trained to recognise a third-order cumulant slice in an 

invariant fashion with respect to known changes, it is not obvious that this 

training will also enable the network to recognise other representatives of 

different classes invariantly (e.g., cumulants of the QRS-free ECG segment). 

The solution was found to provide templates of the third-order cumulant slices 

of the QRS-free ECG segment.

(2) Invariant feature space. The second technique of creating an invariant 

classifier-type neural network rests on the premise that it may be possible to 

extract features that characterise the essential information content of an input 

data set, and which are invariant to changes of the input [70], It has to be 

emphasised that this applies only to linearised ECG data sets. The important 

features characterising key cumulant slices, such as the diagonal and wall slices, 

are (i) the shape of the main lobe, and (ii) the number and positions of the side 

lobes. If such features are used, then the network as a classifier is relieved from 

the burden of having to delineate the range of changes of a fetal heartbeat, still 

swamped by noise and maternal contributions, with complicated decision 

boundaries. Indeed, the only differences that may arise between different 

instances of the same ordered fetal heartbeat (first heartbeat-to-first heartbeat 

correspondence, or second heartbeat-to-second heartbeat correspondence, etc) 

are due to unavoidable factors such as motion artefact and noise. The use of an 

invariant-feature space offers three distinct advantages; (i) The number of 

features applied to the network may be reduced to realistic levels; (ii) the 

requirements imposed on network design are relaxed; and (iii) invariance for all 

fetal heartbeats with respect to known changes is assured [71]; however, this 

approach requires prior knowledge of the important features. This prior 

knowledge can be acquired using a feature detector. A feature detector is 

employed to reduce the input data by extracting certain ‘features” that 

distinguish the 2-d third-order cumulants of one class (say the mother) from 

another class (say the fetal). This feature detector has already been used in our 

preliminary investigation by looking at approximately 15 slices of each of the 

ECG cumulants in the database, and deciding which slice in each class
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provides the most discriminant features. The unique structural properties of 

individual diagonal, wall, and both diagonal and wall slices of the third-order 

cumulants (TOC) of ECG signals are the results of this human feature detector 

[54, 57]. More discussions are given in the final section of this chapter as well 

as a review of work done on the subject of locally structured multi-layer 

perceptrons which was carried out under a contract with an international 

company (the said company insists on confidentiality). This has prompted us 

to consider the single-hidden-layer neural network with only two cumulant 

slices presented at its input layer, namely, the linear non-Gaussian 

third-order cumulant diagonal and wall slices of the ECG signals.

(3) Invariance by structure. Invariance may be imposed on a neural network by 

structuring its design appropriately. Specifically, synaptic connections between 

the neurons of the network are created such that changed versions of the same 

input are forced to produce the same output [70],

4.1.3 The single-hidden-layer perception and a one-dimensional cumulant slice 

In this thesis a single-hidden-layer neural network is considered with only two cumulant 

slices presented at its input layer, namely, the linear non-Gaussian third-order cumulant 

diagonal and wall slices of the ECG signals. In this Chapter, third-order cumulants are 

used because of their ability to suppress Gaussian noise and all other noise components 

with symmetric probability density functions. Linearisation of the ECG data is a crucial 

key step. As mentioned in Chapter Three, this is accomplished by using either an 

LMF-based adaptive second- or third-order Volterra synthesiser. After linearisation, the 

third-order cumulants support linear non-Gaussianness peculiar to the signals they 

represent and this can be used as the discriminant features which are then fed to a 

single-hidden-layer perceptron with the ubiquitous back-propagation algorithm with 

momentum.

In general, in order to create any cumulant slice, one has to build up the whole 

two-dimensional cumulant structure and then choosing the appropriate co-ordinate 

system for the cutting plane which is used for slicing the cumulants at any arbitrary 

angle. This process does not apply to the special cases of the diagonal and wall slices as 

they are much simpler to create by freezing one time lag and letting the second lag vary 

as the cumulant calculation is performed as described by Eqs. (4.2) and (4.3) in

131



Section 4.4.1. There are mathematical formulae designed by the author which describe 

any arbitrarily chosen off diagonal and off wall one-dimensional slice and this helps to 

reduce the CPU time by 99%.

4.1.4 Layout of the Chapter

The Chapter starts by discussing the following issues; (1) ECG cumulant database,

(2) classification, (3) ECG segmentation and window minimum length, (4) window 

overlapping, (5) calculation of an averaged fetal heart rate within one maternal cardiac 

cycle, (6) the effect of using more than one slice and linearisation on the classification 

rate, and (7) shortcomings of the cumulant matching technique. Section 4.2 presents 

other relevant research work on independent component analysis with its virtues and 

vices. Section 4.3 provides a brief description of the detection key operations of the 

TOC template matching technique. Section 4.4 briefly describes the equations for the 

TOC 1-d diagonal and wall slices, examines the effect of reducing the length of 

segmentation on the variance of the third-order cumulants, the effect of reducing the 

length of segmentation on the variance, skewness, and kurtosis for white Gaussian 

noise, and the effect of linearisation on third-order cumulants. Typical examples of the 

TOCs and their diagonal and wall slices with and without linearisation are then shown, 

and the TOC variance is calculated. Section 4.5 describes the back-propagation with 

momentum algorithm. It then describes the optimisation of the parameters of the 

classifier. Results are shown for maternal QRS-complex and fetal heartbeat 

classification rates for different TOC slices with and without linearisation employing 

second- and third-order Volterra synthesisers with LMF update. Summary and 

conclusions are given in Section 4.6.
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4.1.5 Abbreviations

In this thesis, the following abbreviations are used for convenience;

Three-dimensional Third-Order Cumulants

Fetal scalp electrode cardiac cycle TOC

Fetal scalp electrode cardiac cycle TOC diagonal slice

Fetal scalp electrode cardiac cycle TOC wall slice

Maternal-chest cardiac cycle TOC

Maternal-chest cardiac cycle TOC diagonal slice

Maternal-chest cardiac cycle TOC wall slice

= TOC.

FS TOC, 

FSTOCD, 

FS TOC W . 

MC TOC . 

MC TOC D . 

MC TOC W .
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Maternal-chest QRS-complex TOC =

Maternal-chest QRS-complex TOC diagonal slice =

Maternal-chest QRS-complex TOC wall slice =

Matemal-transabdominal cardiac cycle TOC =

Maternal-transabdominal cardiac cycle TOC diagonal slice = 

Maternal-transabdominal cardiac cycle TOC wall slice = 

Maternal-transabdominal QRS-complex TOC =

Maternal-transabdominal QRS-complex TOC diagonal slice= 

Maternal-transabdominal QRS-complex TOC wall slice =

Fetal transabdominal ECG TOC diagonal slice =

and Fetal transabdominal ECG TOC wall slice =

MC ORS TOC,

MC ORS TOC D . 

MC ORS TOC W. 

MT TOC, 

M IIQ C D  ,

MT TOC W .

MT ORSTOC,

MT ORS TOC D , 

MT ORS TOC W , 

FT ECG TOC D, 

FT ECG TOC W .

4.1.6 ECG cumulant database

During the last decade, several ECG recordings were borrowed on loan from the North 

Middlesex Fiospital and the Royal Free and University College Medical School. 

Essentially, each of the ECG recordings has one-minute duration and consists of 

synchronised maternal chest, maternal transabdominal and fetal scalp electrode ECG 

signals. Data acquisition is briefly described in Section 1.8. Such ECG recordings have 

been used to produce third- and fourth-order cumulants and their diagonal and wall 

slices. This is referred to as the cumulant database.

4.1.7 Classification

One hundred and sixty one-dimensional TOC slices (please refer to Section 2.13: 1-3) 

have been used as templates for the desired signals in the Artificial Neural Network 

(ANN) classifier. The classifier is a single-hidden-Layer Perceptrion based on a 

modified Back-Propagation technique [13]. The modified back-propagation algorithm 

has a momentum term which helps to avoid local minima [13]. A brief description is 

given in Section 4.5.

4.1.8 ECG segmentation and window minimum length

The duration of the fetal cardiac cycle varies from 250 msec (for a heart rate of 

240 bpm) to 500 msec (for a heart rate of 120 bpm) for a range of fetal heart rate 

between 240 bpm and 120 bpm. The fetal QRS-complex itself occupies between 50 

msec and 70 msec. In this thesis, the fetal heartbeat is detected in a flag window of
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length 250 msec. This window length serves two criteria; (i) it is the minimum length 

yielding an acceptable upper threshold of both the deterministic and stochastic noise 

types inherent in the higher-order statistics of the ECG signals encountered (see Section 

4.4), and (ii) this window length allows the detection of one, two, three, or four fetal 

heartbeats (FHBs) within one maternal transabdominal cardiac cycle. For example, for 

maternal heartbeat of 60 bpm, the R-wave-to-R-wave = 1000 msec, and four segments x 

250 msec = one maternal cardiac cycle = possible four fetal cardiac cycles. Figure 4.1 

shows the synchronised maternal chest, maternal transabdominal, and fetal scalp 

electrode cardiac cycles. In this particular case, there are two fetal scalp electrode 

cardiac cycles for each maternal cardiac cycle.

4.1.9 Window overlapping

When detecting the fetal heartbeat within the “maternal” transabdominal cardiac cycle, 

90% overlapping windows, each of 250 msec duration, are scanned at a rate of 100 Hz 

with a sampling rate of 0.5 KHz. The overlapping percentage should be carefully chosen 

to compensate for the apparent loss of temporal resolution due to lengthy window 

which, as mentioned above, is dictated by the maximum threshold of the variance of the 

third-order cumulants. Assuming that the average fetal QRS-complex duration is 60 

msec, this may be encountered at the beginning, middle, or end of the flag window. 

Hence by using a window overlapping of 90%, any fetal QRS-complex which may be 

missed because it starts to evolve, say, 20 msec before the end of a window, can 

definitely be picked up by the next one or two overlapping windows when it completes 

its full duration of 60 msec and has definitely reached its full peak and signature (the 

R-wave). If this particular QRS-complex has enough strength to be picked up by two 

successive overlapping windows, the algorithm will count it as one FHB. It has been 

found that reducing the overlapping below 90% yielded missed fetal heartbeats.

4.1.10 Calculation of an averaged fetal heart rate within one maternal cardiac 

cycle

The instantaneous fetal heart rate is calculated by measuring the interval between two 

successive R-waves and this requires pinpointing accurately the R-point of the 

QRS-complex. This cannot be achieved without a visual display of the R-wave. 

Although the ECG TOC template matching technique is very effective in detecting the
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Figure 4.1: One maternal chest cardiac cycle (upper panel), maternal transabdominal (middle panel), and the synchronised and amplified 
fetal ECG (lower panel). The maternal cardiac cycle begins 50 msec before the R-wave and ends 50 msec before the next R-wave. Segment 
I: maternal QRS-complex, segment II: the first fetal heartbeat with maternal contribution, segment III: QRS-free ECG, and segment IV: the 
second fetal heartbeat with maternal contribution. The subject is at the first stage of labour, 40 weeks gestation. The maternal cycle has 
500 samples at a rate of 0.5 KHz. (Code: 5-14).
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occurrence of the QRS-complex as a whole even when it is completely buried in noise, 

it cannot locate the R-wave over a window length of 250 msec (which satisfies the 

criterion for the variance threshold). We have to bear in mind that, in most 

transabdominal ECG recordings (85%), the fetal QRS-complexes cannot be seen as they 

are completely masked by other signals and motion artefact. This obscurity accounts for 

the lower success rate of fetal heartbeat detection in all other reported and appropriately 

assessed fetal heartbeat detection techniques [63],

We can measure fairly accurately the adult heartbeats and calculate the instantaneous 

heart rate for adults [41]. Hence, by counting the number of fetal heartbeats (FHBs) that 

have occurred between two successive maternal R-waves, one can easily calculate the 

averaged FHR within the maternal cardiac cycle. Thus,

FHR = MHR x Number of FHBs /  number of maternal heartbeats

On average, the maternal cardiac cycle is 1000 msec. Two maternal cardiac cycles 

measure 2 sec. So, detecting and displaying up to eight FFIBs will take less than 

2.000030 sec which is well within the manufacturers’ detection-to-display interval of 

3.75 sec*.

4.1.11 Combined cumulant slices and linearisation of transabdominal ECG 

signals

It will be shown in Section 4.5.7.2 that a linear combination of diagonal and wall slices 

of the TOC can improve the detection rate by up to 1% over and above the 77.8% 

obtainable using only either slice. Using two more arbitrary slices off-diagonal and 

off-wall would result in a further improvement of up to 1%. Using two slices instead of 

only one results in an two-fold increase in the CPU time of 1 msec using Unix WS. A 

Further improvement of 6% to 8% is attainable with ECG signal linearisation (removing 

the synthesised quadratic and cubic non-linearities from both signal and noise) using 

second- and third-order Volterra synthesisers, respectively. The latter results are also 

given in Section 4.5.7.2.

* For example, the CPU time for detecting a 250 msec segment using a Texas Instruments TMS320C40 is 20 ps.
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4.1.12 Shortcoming of the TOC template matching technique 

It will be shown in section 4.5.7.2 that the TOC template matching technique of 

linearised maternal transabdominal ECG signals can reach a high detection rate of 86%,

i.e., for every 100 fetal heartbeats (FHBs) only 14 are missed. Most of the missing 

14 beats in every 100 beats have been found to coincide with the maternal 

QRS-complexes or occur during depolarisation of the maternal P- and T-waves. Those 

events unavoidably lead to significant distortion of the fetal third-order cumulants. This 

means that the cumulant signatures will not be close to the cumulant template signature 

stored in the database. It will also be shown in Chapter Six that the third non-invasive 

MUSIC-like technique is not susceptible to the co-existence of maternal and fetal QRS- 

complexes or the co-existence of the maternal P-wave or T-wave and the fetal QRS- 

complex since the corresponding spectral peaks are usually adequately separated. Higher 

detection rates of up to 95.5% have been achievable using the above mentioned 

technique.

4.2 Other relevant research work involving cumulants based on 

Independent Component Analysis (ICA)
Some research workers [98, 114-115] have recently been using Independent Component 

Analysis (ICA), also known as Blind Source Separation (BSS), in pursuit of separating 

mother’s and fetal ECG signals from cutaneous measurements. In the publications [62, 

64-65] the ICA has been carried out under the following assumptions, the validity of 

each of which has been challenged in the author’s joint paper [63] (a copy of our 

publication is given in Appendix A3); (1) Sensors (electrodes) are assumed to form an 

instantaneous linear mixture of mother and fetal source signals. (2) Noise is assumed to 

have an additive Gaussian perturbation. (3) The mother’s and fetal ECG signals are 

assumed to be stationary and linear, mutually statistically independent and statistically 

independent from noise. (4) Most of the second-order and fourth-order Blind Source 

Separation (BSS) methods developed to date assume that all ECG third-order cumulants 

vanish, which shows their lack of understanding of ECG statistics, hence the need to use 

the fourth-order cumulants. Furthermore, a crucial factor in using Independent 

Component Analysis (ICA) is the accurate positioning of the individual cutaneous 

electrodes connected to channels numbering from six up to 32 in aid of signals’ 

orthogonalisation.
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References [62, 64-65] have succeeded in separating fetal heartbeats (FHBs) using just 

eight electrodes (channels). But, the collection of data used has been rather limited to 

clean segments taken during gestation periods, and very conveniently chosen to have 

very high signal-to-noise ratio (SNR), and cleverly avoiding data with intrapartum cyclic 

uterine contractions or serious motion artefacts. Furthermore, the aforementioned 

publications have failed to include in their assessment the imminently and most 

frequently occurring episodes of coincident mother’s and fetal heartbeats. This is 

the most challenging problem which is imminent in around 10% of the measured 

data. As mentioned before, due to the non-linear nature of the maternal and fetal 

QRS-complexes and the non-linear physical channel through the uterus layers and the 

abdomen layers, quadratic and higher-order coupling is generated between the mother’s 

and fetal ECGs as their separate signals propagate through the inner tissues. This also 

results in non-stationarity and presents a formidable detection problem even when 

higher-order statistics are used as DSP tools.

Independent Component Analysis (ICA) essentially requires high signal-to-noise ratios 

(SNRs) and has, so far, been used antepartum without appropriate assessment (i.e., no 

provision of fetal scalp electrode ECG reference to confirm the detection of fetal 

QRS-complexes) [62, 64-65],

These methods have been criticised in our paper “Virtues and Vices of Source 

Separation Using Linear Independent Component Analysis for Blind Source Separation 

of Non-linearly Coupled and Synchronised Fetal and Mother ECGs” [62] where the 

following issues have been raised: In our paper [99], there is evidence of non-linear 

quadratic and cubic coupling and non-stationarity in the transabdominally measured 

signals when the fetal and maternal heartbeats are coincident or even close enough. 

This, therefore, requires a high degree of sophistication in the non-linear modelling of 

both the maternal and fetal ECG signals to be able to establish the extent of quadratic 

coupling (cubic coupling is very weak) and incorporate it in the analysis. At this 

juncture, any justification of the key assumption of linearity and mutual statistical 

independence of both maternal and fetal ECG signals which is the basis for the ICA 

techniques, is now questionable [99]. We report in Chapter Three the use of non-linear 

Volterra structures which caters for quantifying the linear, quadratic, and cubic parts of 

both the maternal and fetal ECG signals. The subsequent analysis is much more
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simplified by including only the linear non-Gaussian component of the ECG signals and 

noise. The analysis referred to includes; (1) the third-order cumulant template matching 

technique (TOC template matching), (2) the bispectral contour template matching 

technique (BIC template matching), and (3) the modified spectral multiple signal 

classification (MUSIC) with incorporated covariance matrix for uterine contraction 

combined with noise. It is worth reporting at the end of this short appraisal that present 

techniques for non-linear ICA only cater for non-linear mixtures and are definitely not 

adequate to separate non-linear sources such as the mother’s / fetal ECGs in non-linear 

noise artefacts which is the case during labour.

4.3 Brief description of detection key operations

Operation 1- Creating ECG cumulant database

Please refer to Section 2.13: 1-3.

Operation 2- Detecting the maternal QRS-complexes and pinpointing their

R-waves

This step includes sequential reading of the ECG recording and processing each of the 

90% overlapping windows (length 250 msec) to compute the diagonal or wall slice 

TOC. The slice is then matched to the templates until a maternal QRS-complex is 

detected. Once the first MT QRS TOC D and the MT QRS TOC W have been detected, 

an auxiliary subroutine is used to accurately pinpoint the position of the R-wave [41]. If 

the second successive segment detects a maternal QRS-complex then it is discarded 

because it is the same complex detected twice in two adjacent windows. The whole 

process of window TOC template matching technique is repeated until the second 

maternal QRS-complex is detected and its R-wave is pinpointed. The maternal heart rate 

is accurately calculated from the knowledge of the current and previous R-wave 

positions.

Operation 3- Detecting the fetal cardiac cycles within each maternal cardiac cycle

Now the search for the fetal cardiac cycle begins at -50 msec from the position of the 

detected maternal R-wave even though the TOC template matching technique cannot 

detect fetal events under the maternal QRS-complex and as mentioned earlier fetal flag 

windows for this particular technique must not overlap with the first window containing 

the maternal QRS-complex. Window overlapping, each with fetal cumulant template
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matching, continues until the first, second, and possibly third FT ECG TOC D and 

FT ECG TOC W signatures have been matched to at least one corresponding template 

for each one of them. Once the FT ECG TOC D and FT ECG TOC W have been 

template matched, which means fetal heartbeat detection, the window will be flagged as 

a detection window. If the next overlapping window detects a fetal heartbeat, it will be 

discarded because it is the same fetal heartbeat that has just been detected in the 

previous window. The number of fetal heartbeats detected within the maternal cardiac 

cycle is counted and the following ratio is calculated;

The average FHR = MHR x Number of FHBs / number of maternal heartbeats

In the above formula, the instantaneous maternal heart rate is previously known with 

some degree of accuracy, and the relative fetal to maternal heartbeat is also known 

within the maternal cardiac cycle. Hence, the averaged fetal heart rate can be calculated 

within each maternal cardiac cycle.

Operations 2 and 3 are repeated for all individual maternal cardiac cycles.

4.4 Preliminary investigations of ECG Third-order cumulants
4.4.1 Mathematical modelling of third-order cumulant 1-d slices 

Definitions concerning higher-order statistics are given in Chapter 2. In this section we 

give definitions of third-order cumulant slices. Consider a non-Gaussian signal {X(k)} 

with third-order cumulants given by [1]:

( t , , t 2 ) = Cum{X(k), X(k + x,), X(k + t 2 )}. (4.1)

The calculations of the third-order cumulants (see Chapter 2) are implemented off-line 

due to the large CPU time required to calculate the lags in different dimensions. One 

way of reducing this load is to use 1-d slices of the third-order cumulants.

One-dimensional slices of q * (x1, t 2) can be defined as:

r2,i (T)VCum{X(k),X(k),X(k + T)} = (0,x) , and (4.2)
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rU2 (T)VCum{X(k), X(k + x), X(k + x)} -  c * (x, x ). (4.3)

This will have the effect of reducing the CPU time by reducing the complexity of the 

operations by at least three orders of magnitude. The calculations of third-order 

cumulant slices are comparable to those of autocorrelation and take CPU time of 

approximately 1 msec unlike third-order cumulants, which take 1 to 3 sec to calculate 

depending on the segment length. The motivation behind the use of the one-dimensional 

TOC D or TOC W. instead of multi-dimensional sequences in the identification of 

mother’s QRS-complexes, the first and second fetal heartbeats with maternal 

contribution, and QRS-free ECG, is due to excessive number crunching in the latter 

which can take a CPU time in excess of 1 sec. The CPU time for a diagonal slice is of 

the order of 1 msec. For a sampling rate of 0.5 KHz and an FHR of the order of 

120 bpm, a real-time system can be easily implemented.

4.4.2 New (auxiliary) algorithm for direct calculations of 1-d TOC arbitrary slices 

There are mathematical formulae designed by the author which describe any arbitrarily 

chosen off diagonal and off wall one-dimensional slice and this helps to reduce the CPU 

time by 99%. A brief description of the algorithm is given in the flowchart shown in 

Figure 4.6.

4.4.3 The effect of reducing the length of segmentation on the variance of the 

third-order cumulants for QRS-free ECG segments

To provide a reasonably accurate estimate for third-order cumulants one has to maintain 

the variance below a threshold value. The definition for the variance is given in 

Eq. (2.26). It increases with decreased data length until it seriously compromises the 

validity of the third-order cumulant calculations. The threshold value is established by 

first calculating the variance of the third-order cumulants for a very long ECG signal 

and then gradually reducing the signal length to that which is comparable with the 

deterministic signal to be detected whilst plotting the resultant variances versus signal 

lengths (number of samples). The results are tabulated in Table 4.1 and it is shown that 

reducing the data length from 250 msec to 124 msec would result in more than doubling 

of the variance for the third-order cumulants of the concerned ECG signal. The reason 

for removing the QRS-complexes prior to calculating the variance is to work in the
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Time (msec) 20000 8000 4000 2000 1000 500 250 124

Variance of 

Cumulants

0.02 0.05 0.09 0.11 0.15 0.18 0.21 0.45

Table 4.1: The variance of the third-order cumulants for QRS-free segments of different lengths 

taken from fetal scalp electrode ECG.

realm of low signal-to-noise ratios which is encountered in weak fetal heartbeat 

detection.

4.4.4 The effect of reducing the length of segmentation on the variance, 

skewness, and kurtosis of white Gaussian noise

The fundamental reason for employing higher-order statistics to detect fetal heartbeats is 

based on the assumption that white Gaussian noise will not have third- or higher-order 

cumulants. However, the assumption is only valid for sufficiently long data length. 

Therefore, the effect of reducing the data length on the variance, skewness, and kurtosis 

of white Gaussian noise has to be investigated. White Gaussian noise is synthetically 

generated using the NAG library and Fortran 77, and the variance, skewness and 

kurtosis are calculated for different data lengths and these are tabulated in Table 4.2. 

The statistics start to deviate from that of Gaussian noise by more than 10% when the 

segment length is below 250 msec (with a variance of 1.2172).

Time (msec) Mean Variance Skewness Kurtosis

20000 -0.0016 1.0017 -0.0038 0.0648

8000 -0.0017 1.0029 -0.0046 0.1324

4000 -0.002 0.9825 -0.00656 0.1858

2000 0.0121 0.9741 0.0604 0.2631

1000 0.0411 1.0175 0.0728 0.4463

500 0.0852 1.0226 0.0902 0.7083

250 0.0917 1.0629 0.0985 0.9893

124 0.1243 1.2172 0.1371 1.6557

Table 4.2: The effect of reducing the length of segmentation on the variance, skewness, and

kurtosis of white Gaussian noise.
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4.4.5 The effect of linearisation on cumulants

In some cases the maternal transabdominal ECG signal is severely corrupted with noise 

and it is extremely difficult to detect the fetal heartbeat in the third-order cumulants 

domain. An example of this is shown in Figure 4.2 in conjunction with Figure 4.1 which 

shows the ordered segmentation (I, II, III, and IV) of the transabdomiannlly-measured 

maternal cardiac cycle. It is impossible to distinguish the QRS-free ECG segment 

(Figure 4.2 (a) III) and the fetal heartbeat segments (Figure 4.2 (a) II and IV) from their 

third-order cumulants. Linearisation (removing the quadratic and cubic parts of the 

signal using the optimised adaptive LMF-based third-order Volterra structure of 

Section 3.4- relevant parameters are found in the caption of Figure 4.2), has showed 

significant improvement. The parameters used are: filter order = 3, filter length = 6, 

delay = 5, step-size parameters = 0.002, 0.0004, 0.0001 for linear, quadratic and cubic 

parts, respectively.

Figure 4.2 (b) shows the third-order cumulants after synthesising the signal using a 

third-order Volterra structure with LMF update and retaining only the linear part of the 

signal. The noise is partially suppressed, and the fetal heartbeat segments (Figure 4.2 (b) 

II and IV) are now recognisable from the third-order cumulants. The main disadvantage 

of using linearisation is that it is an off-line routine. It takes CPU time of 2-3 sec to 

clean one full maternal transabdominal cardiac cycle. Figure 4.2 (c), (d) shows similar 

results using an adaptive LMS-based third-order Volterra synthesiser.

4.4.6 Typical examples of TOCs and their diagonal and wall slices

An optimised third-order Volterra structure is employed to decompose the ECG signal 

into its linear, quadratic, and cubic parts and retain only the linear part (the parameters 

are like those found in Section 4.4.5 and Figure 4.2). Figures 4.3 (a) - (e) depict five 

maternal transabdominal ECG signals with segmentation and their corresponding TOCs 

and their diagonal and wall slices for predominantly maternal QRS-complexes, the first 

fetal heartbeats with maternal contribution, QRS-free ECGs, and the second fetal 

heartbeats with maternal contribution. The diagonal and wall TOC slices of the maternal 

QRS-complexes, segment (I) in Figures 4.3 (a-e), are easily distinguished from the 

diagonal and wall TOC slices of segments (II), (III), and (IV). Furthermore, the diagonal 

and wall TOC slices of the fetal heartbeat segments, (II) and (IV) in Figures 4.3 (a, d-e), 

are distinguishable from the corresponding diagonal and wall TOC slices of the
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(a) (b)
Figure 4.2: Third-order cumulants of the maternal transabdominal ECG signal of Figure 4.1, (a) before and 
(b) after linearisation. The segmentation order shown on the l.h.s. of the Figure mark the following portions of 
the ECG: (!) predominantly maternal QRS-complex, (II) the first fetal heartbeat with maternal contribution,
(III) QRS-free ECG, and (IV) the second fetal heartbeat with maternal contribution segments. Each segment is 
250 msec. Linearisation has been carried out using an adaptive LMF-based Volterra synthesiser. The Volterra 
synthesiser parameters are: filter order -  3, filter length = 6, delay = 5, step size -  0.002, 0.0004, 0.0001 for 
linear, quadratic and cubic parts, respectively. (Code: 5-31).
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Figure 4.2 (continued): Third-order cumulants of the maternal transabdominal ECG signal of Figure 4.1,
(c) before and (d) after linearisation. The segmentation order shown on the l.h.s. of the Figure mark the 
following portions of the ECG: (!) predominantly maternal QRS-complex, (II) the first fetal heartbeat with 
maternal contribution, (III) QRS-free ECG, and (IV) the second fetal heartbeat with maternal contribution 
segments. Each segment is 250 msec. Linearisation has been carried out using an adaptive LMS-based 
Volterra synthesiser. The Volterra synthesiser parameters are: filter order = 3, filter length = 6, delay = 5, step 
size = 0.002, 0.0004, 0.0001 for linear, quadratic and cubic parts, respectively. (Code: 5-31).
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Third-order cumulant and its diagonal and wall slices of the transabdominally-

Third-order cumulant and its diagonal and wall slices of the transabdominally- 
measured QRS-free ECG

Third-order cumulant and its diagonal and wall slices of the transabdominally- 
measured first fetal heartbeat with maternal contribution

SEGMENT II

Third-order cumulant and its diagonal and wall slices of the transabdominally- 
measured second fetal heartbeat with maternal contribution

t 1 / t 0 t 2/t 0
SEGMENT III

t 1/t 0 t 2/t 0
SEGMENT IV

(a2)
Figure 4.3 (a1, a2): (a1) Transabdominally-measured ECG (Code: 16-9) showing segmentation (segments I, II, III, and IV,each 250 msec). (a2) The corresponding 
third-order cumulants and their diagonal and walll slices (insets). (I) Predominantly maternal QRS-complex, (II) the first fetal heartbeat with maternal contribution,
(III) QRS-free ECG, and (IV) the second fetal heartbeat with maternal contribution. x0, xhand x2 are, respectively, the reference, first and second time lags of the 
third-order cumulants.A third-order Volterra structure is employed to synthesise the ECG signal into its linear, quadratic, and cubic parts and retain only the linear part.
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Figure 4.3 (b1, b2): (b1) Transabdominally-measured ECG (Code: 5-32) showing segmentation (segments I, II, III, and IV,each 250 msec). (b2) The corresponding 
third-order cumulants and their diagonal and walll slices (insets).(I) Predominantly maternal QRS-complex, (II) the first fetal heartbeat with maternal contribution,
(III) QRS-free ECG, and (IV) the second fetal heartbeat with maternal contribution.x0, t ,, and t 2 are, respectively, the reference, first and second time lags of the 
third-order cumulants. A third-order Volterra structure is employed to synthesise the ECG signal into its linear, quadratic, and cubic parts and retain only the linear part.
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(c1)

Third-order cumulant and its diagonal and wall slices of the transabdominally-

SEGMENT I

Third-order cumulant and its diagonal and wall slices of the transabdominally- 
measured QRS-free ECG

Third-order cumulant and its diagonal and wall slices of the transabdominally-

Third-order cumulant and its diagonal and wall slices of the transabdominally- 
measured second fetal heartbeat with maternal contribution

Diagonal Wall

t 1 / t 0 t 2/t 0
SEGMENT IVSEGMENT III

(c2)
Figure 4.3 (c1, c2): (c1) Transabdominally-measured ECG (Code: 5-33) showing segmentation (segments I, II, III, and IV,each 250 msec). (c2) The corresponding 
third-order cumulants and their diagonal and walll slices (insets). (I) Predominantly maternal QRS-complex, (II) the first fetal heartbeat with maternal contribution, (III) 
QRS-free ECG, and (IV) the second fetal heartbeat with maternal contribution. x0> T ,and x2 are, respectively, the reference, first and second time lags of the third-order 
cumulants. A third-order Volterra structure is employed to synthesise the ECG signal into its linear, quadratic, and cubic parts and retain only the linear part.
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Third-order cumulant and its diagonal and wall slices of the transabdominally-

SEGMENT I

Third-order cumulant and its diagonal and wall slices of the transabdominally- 
measured QRS-free ECG

Third-order cumulant and its diagonal and wall slices of the transabdominally-

Third-order cumulant and its diagonal and wall slices of the transabdominally- 
measured second fetal heartbeat with maternal contribution

(d2)
Figure 4.3 (d1, d2): (d1) Transabdominally-measured ECG (Code: 5-31) showing segmentation (segments I, II, III, and IV,each 250 msec). (d2) The corresponding 
third-order cumulants and their diagonal and walll slices (insets). (I) Predominantly maternal QRS-complex, (II) the first fetal heartbeat with maternal contribution,
(III) QRS-free ECG, and (IV) the second fetal heartbeat with maternal contribution.x0, i\,and x2 are, respectively, the reference, first and second time lags of
the third-order cumulants. A third-order Volterra structure is employed to synthesise the ECG signal into its linear, quadratic, and cubic parts and retain only the linear part.
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Third-order cumulant and its diagonal and wall slices of the transabdominally- Third-order cumulant and its diagonal and wall slices of the transabdominally- 
measured first fetal heartbeat with matelrnal contribution

Diagonal Wall

SEGMENT II

Third-order cumulant and its diagonal and wall slices of the transabdominally- 
measured QRS-free ECG

Third-order cumulant and its diagonal and wall slices of the transabdominaOy- 
measured second fetal heartbeat with maternal contribution

(e2)
Figure 4.3 (e1, e2): (e1) Transabdominally-measured ECG (Code: 16-23) showing segmentation (segments I, II, III, and IV,each 250 msec). (e2) The corresponding 
third-order cumutants and their diagonal and walll slices (insets).(l) Predominantly maternal QRS-complex, (II) the first fetal heartbeat with maternal contribution,
(III) QRS-free ECG, and (IV) the second fetal heartbeat with maternal contribution. x0, r uand x2 are, respectively, the reference, first and second time lags of 
the third-order cumulants.
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QRS-free ECG segments (III). However, those of segments (II) and (IV) in Figures 4.3 

(b) and (c) could be mistaken for QRS-free ECG segments. Note that the peaks of the 

QRS-free ECG segments, (III) in Figures 4.3 (b-e), are much narrower and more related 

to motion artefact than a signal.

4.4.7 Estimation of the cumulant matching variance

The variance of the TOC is defined as the expected value of the squared difference 

between the computed TOC of the 250 msec flag window of the transabdominal ECG 

signal and the computed TOC from the synchronised fetal scalp electrode ECG 

250 msec window.

2
Varc — E [(Cum(l], T2 )  Transabdominal — Cum(T], X2 )  fetal scalp ] z (4-4)

The above variance ranges from 0.64 -  4.2, average = 2.381, when calculated for

120.000 FHBs.

4.5 The single-hidden-layer perceptron back-propagation with momentum
4.5.1 Source knowledge presentation

A simplified version of the network with a single-hidden-layer is shown in Figure 4.4. 

As mentioned in Section 4.1, The 1-d input cumulant slices presented at the input layer 

of source nodes (see Figure 4.4) still has to be represented by a matrix, which may be 

scanned with a single neuron that has a local respective field, and the synaptic weights 

of the neuron are stored in corresponding locations in a layer called the feature map.

4.5.2 The back-propagation algorithm

The algorithm is based on the error-correction learning rule, and could be viewed as a 

generalisation of the least-mean-square (LMS) algorithm. The error back-propagation 

process consists of two passes through the single-hidden-layer of the network: a forward 

pass and a backward pass. The development of the back-propagation algorithm 

represents a landmark in neural networks [65] in that it provides a computationally 

efficient method for the training of multi-layer perceptron.

The back-propagation algorithm provides an approximation to the trajectory in weight 

space computed by the method of steepest descent. The smaller the learning rate,
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Input layer Layer of Layer of

of source hidden output

nodes neurons neurons

Figure 4.4: Fully connected feed-forward network with one hidden layer and output layer.

the smaller will be the changes of the weights in the network from one iteration to the 

next, and the smoother the trajectory will be in weight space. This improvement is 

attained at the cost of a slower rate of learning. If the learning rate parameter is too large 

so as to speed up the rate of learning, the resulting large changes of the weights assume 

such a form that the network may become unstable.

A major limitation of the back-propagation algorithms is the slow rate of convergence to 

a global minimum of the error-performance surface. This limitation is a distinct 

consequence of the fact that the algorithm operates entirely on the basis of first-order 

information, namely, the gradient of the error-performance surface with respect to the 

adjustable parameter (weights) in the single-hidden-layer perceptron.

The back-propagation learning process may be accelerated by incorporating a 

momentum term. The use of momentum introduces a feedback loop. This loop can have 

a highly beneficial effect on the learning behaviour of the back-propagation algorithm. 

In particular, it may have the benefit of preventing the learning process from being stuck 

at a local minimum on the error-performance surface of the single-hidden-layer 

perceptron. This simple method of increasing the rate of learning avoids the danger of 

instability by modifying the delta-rule by including a momentum term, which is a
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positive number called the momentum constant (a review of some neural network 

applications of this algorithm is given in [10]).

Figure 4.4 illustrates a typical fully connected back-propagation network [66], Each 

layer has a specific function. The input layer accepts an input pattern and redistributes it 

to all neurones in the middle layer. The output layer accepts a stimulus pattern from the 

middle layer and constructs the output response pattern of the network.

A back-propagation network operates in a two-step sequence during training. First, an 

input pattern is presented to the input layer of the network. The resulting activity flows 

through the network until the network’s response is generated at the output layer. In the 

second step, the network’s output is compared to the desired output for that particular 

input pattern. If it is not correct, an error is generated, which is propagated back through 

the network from the output layer back to the input layer.

4.5.3 Summary of the back-propagation network operations

To implement a full connection back-propagation network, the following formulae are 

used, with the notion:

w ® = synaptic weight of a neuron in layer I. 

v (l) = net internal activity levels of neurons in layer I. 

y  ^  = function signal of neuron in layer I.

¿>(l) = local gradient of neurons in layer I.

Each neuron consists of a linear combiner followed by a non-linearity (sigmoid 

function). Thus the non-linearity is distributed uniformly throughout the network. For 

each neuron j in layer I the net internal activity is:

For each neuron j in layer I the function signal, using the sigmoidal non-linearity, is:

P
(4.5)

(4.6)
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with the derivative y'(I) = y(I). (l-y(I)). For each neuron j in the output layer L the error 

signal is:

ej{ri) = dj(n) -  Oj(n), (4.7)

where d/n) is the jth element of the desired response. For each neuron j in the output 

layer L the local gradient is:

d(‘-\n) = ef^nyOjO?)[l -  oy(/i)], (4.8)

while for each neuron j in layer I it is:

5(lj \n )  = -  y {‘\ n ) ^ 5 (l +x\n ) w ^ \ n ) . (4.9)
J k

The synaptic weights update in layer I, according to the generalised delta-rule, is: 

w^in  + 1) = w(9(rc) + crfw^i«) -  w^(n -  l)j + pd̂ 'd {n), (4.10)

where a  is the momentum constant and P is the learning-rate parameter.

0.0 < P < 1.0 and 0.0 < a  < 1.0 .

The back-propagation algorithm provides a comparatively efficient way to compute 

instantaneous partial derivatives. The algorithm recursively modifies the synapses 

between neural fields. The algorithm first modifies the synapses between the output 

field and the penultimate field of hidden or interior neurons. The algorithm then uses 

this information to modify the synapses between the hidden fields all the way back to 

the synapses between the first hidden layer field and the input field. The computational 

complexity of the algorithm is linear. It provides a powerful device for extracting 

information contained in the training data and storing it in the weights of the network.
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4.5.4 Optimisation of the parameters of the back-propagation algorithm

Two important parameters of the network are the learning rate (P) and the momentum 

constant (a). The learning rate is used to update the current weights from the previous 

ones. The momentum constant ensures that the weights are updated in the same previous 

direction even if the changes in the values of the weights are suddenly dropped to zero. 

This is important to avoid local minima, by giving the routine a momentum to keep 

moving.

Figure 4.5 shows the effect of changing the learning rate (P), the momentum constant 

(a) and the middle layer size on the classification of the maternal QRS-complexes and 

the fetal heartbeats using the TOC template matching technique. Figure 4.5 (a) shows 

that the classification rate increases with increasing the learning rate to a value of 0.8. 

Beyond this, the classification rate deteriorates because the learning is too high which 

makes the weights increase rapidly more than the required amounts to follow the 

changes in the slices. Figure 4.5 (b) shows that the momentum constant gives the best 

performance at a value of 0.99 for the maternal QRS-complex segments (l.h.s.) and 0.9 

for the fetal heartbeat segments (r.h.s.). Values below these are not enough to push the 

routine towards the optimum convergence steady state values. Higher values tend to 

push the routine away from the desired values for convergence and miss the global 

minimum of the mean-squared error (MSE). Figure 4.5 (c) shows that a middle layer 

size of 5 x 5 achieves the highest classification rates for both the maternal QRS- 

complex and the fetal heartbeats segments.

4.5.5 Description of the first hybrid technique

In this chapter, a single-hidden-layer perceptron is used for the classification of the 

third-order cumulant slices of the maternal QRS-complexes, the first fetal heartbeat with 

maternal contribution, QRS-free ECG, and the second fetal heartbeat with maternal 

contribution from maternal transabdominal ECG segments. This is achieved using a 

standard back-propagation with momentum algorithm [8],

Figure 4.6 shows a flowchart of the first hybrid system. The input and output layers have 

a dimension of 8 x 8 and the hidden layer has a dimension of 5 x 5. The input to the first 

layer is the third-order cumulants diagonal and wall slices. The network is trained using 

TOC slice templates obtained from the maternal chest and fetal scalp electrode ECGs as
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Figure 4.5: The effect of changing (a) the learning rate, (b) the momentum constant, and 
(c) the middle layer size, on the classification rate of the maternal QRS-complexes (l.h.s.) 
and the fetal heartbeats with maternal contribution (r.h.s.) from transabdominally- 
measured ECG signals and employing third-order cumulant diagonal slices and their 
templates to be matched using a single-hidden-layer perseptron back-propagation with 
momentum. Performance for the maternal QRS-complex segments (l.h.s.) and the fetal 
heartbeat with maternal contribution segments (r.h.s.). Segment length is 250 msec each. 
The optimised parameters are: maternal QRS-complex classification: learning rate = 0.8, 
momentum constant = 0.99, and middle-layer size = 5x5,  fetal heartbeat classification: 
learning rate = 0.8, momentum constant = 0.9, and middle-layer size =5x5.
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Figure 4.6: A flowchart for the first hybrid system for non-invasive fetal heartbeat detection 
using TOC slices for signal processing and single-hidden-layer perceptron for classification. The 
system involves the implementation of a new method for calculating any arbitrary TOC slice.
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well as previously detected and earmarked transabdominal ECG segments. The latter 

training sequences are templates of the diagonal and wall slices of the third-order 

cumulants of four segments from maternal transabdominal full cardiac cycles. The input 

to the network is eight template patterns. These are the third-order cumulant diagonal 

and wall slices of four segments from one transabdominal cardiac cycle. For example 

the first pair are MT QRS TOC D and MT QRS TOC W, the second pair are 

FT ECG TOC D and FT ECG TOC W, the third pair are ORS-free TOC D and 

ORS-free TOC W, and the fourth pair are FT ECG TOC D and FT ECG TOC W. The 

network is trained over the eight patterns. The training terminates when the worst error 

in all patterns in one pass is less than 0.1. Typically the average error will be in the 

range of 0.001.

Figure 4.7 shows a block diagram of the first hybrid system. First the neural network is 

trained on the templates. The TOC slice templates (sets 1 to 4 in Figure 4.8) are used as 

input to the classifier. Each one of the 10 templates in each set is used as an input and 

the weights of each neuron in the classifier are optimised by changing the learning rate 

and the momentum constant until the error is minimised. Then the transabdominal ECG 

signal with 250-msec window is used as an input to the classifier. The instantaneous 

weights of the input signal are compared to those of the templates which are stored in 

the memory. The two sets of parameters are correlated. Once a signal is classified the 

output will be set to 1. The classification of the four segments involves a pattem-by- 

pattern updating rather than batch updating for the weight adjustments. This is more 

suitable to speed up the performance. Pattem-by-pattem updating tends to be orders of 

magnitude faster than batch updating. Flowever, it should be noted that pattem-by- 

pattem updating is harder to parallelise.

Figure 4.8 shows the 8 x 8 matrix representation of the TOC templates shown in 

Figure 4.7. Those slices are diagonal, wall, diagonal and wall, and 22.5° off diagonal / 

wall. Sets 1, 2, 3, and 4 represent, respectively, segments of predominantly maternal 

QRS-complex, the first fetal heartbeat with maternal contribution, QES-free ECG, and 

the second fetal heartbeat with maternal contribution.

Figure 4.9 shows a typical single-hidden-layer back-propagation neural network 

architecture with 8 inputs. It shows how the templates are used as inputs to the
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Figure 4.7: A block diagram of the first hybrid system.
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Figure 4.8: The 8 x 8  matrix representation of cumulant slice templates shown in Figure 4.7. Those slices 

are diagonal, wall, diagonal and wall, and 22.5° off diagonal /wall. Sets 1, 2, 3, and 4 represent, respectively, 

segments of predominantly maternal QRS-complex, the first fetal heartbeat with maternal contribution, 

QRS-free ECG, and the second fetal heartbeat with maternal contribution. •  and O represent 1 and 0, 

respectively.
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Figure 4.9: A typical single-hidden-layer back-propagation neural network architecture.
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classifier. These will then be followed by the input signals once the classifier settles 

down using the templates.

Figure 4.10 shows an example of the representation of a third-order cumulant diagonal 

slice of a transabdominally-measured predominantly maternal QRS-complex segment 

by an 8 x 8 matrix to be used as an input for the classifier of Figure 4.9. The diagonal 

slice is represented by 0’s and l ’s in the 8 x 8  matrix form.

Figure 4.11 shows an example of each of the following for the classifier: (i) a True 

Positive (TP), (ii) a False Negative (FN), and (iii) a False Positive (FP). The first one is 

a predominantly maternal QRS-complex TOC diagonal slice which is correctly matched 

to a maternal QRS-complex TOC diagonal slice template (1-1) resulting in a true 

positive. The second is a first fetal heartbeat with maternal contribution TOC diagonal 

slice which is wrongly matched to a QRS-free TOC D template (III-3) resulting in a 

false negative. The third example is a QRS-free TOC D which is wrongly matched to a 

second fetal heartbeat with maternal contribution TOC diagonal slice (IV-2) resulting in 

a false positive.

4 .5 .6 Cumulant matching of the transabdominal maternal QRS-complexes and 

the fetal heartbeats to the previously identified and prepared templates 

In this section we show how effectively the cumulant matching technique works with 

only 10 templates of maternal transabdominal QRS-complexes and 20 templates of fetal 

heartbeats with maternal contribution. Figures 4.12 (a) -  (d) are self explanatory. Each 

part of the figure shows one of the four transabdominal ECG segments (data length 

250 msec) and eight of the corresponding templates used for matching, and highlighting 

the template that is matched to the segment. An optimised third-order Volterra structure 

is employed to synthesise the four transabdominal ECG segments and the corresponding 

templates. Figure 4.12 (a) depicts the TOCs and their diagonal and wall slices (insets) 

for the predominantly maternal QRS-complex segment (top left panel). The rest of the 

figure shows eight of the ten templates of such signals. Template 2 is the one which is 

matched to the segment (top right panel). Figure 4.12 (b) depicts the TOCs and their 

diagonal and wall slices (insets) for the first fetal heartbeat with maternal contribution 

segment (top left panel). The rest of the figure shows eight of the ten templates of such 

signals. Template 2 is the one which is matched to the segment (top right panel).
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Figure 4.10: R epresen ta tion  o f  a th ird -o rd e r cu m u la n t d iagona l s lice  o f  a 

tran sab d om in a lly -m e asu red  p re do m in an tly  m a te rna l Q R S -com plex se gm en t b y  an 8 x  8 m atrix  to be 

used  as an inp u t fo r  the  s ing le -h id de n -laye r c la ss ifie r o f  F igu re  4.9.
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Input signal Template matched

1-1

(a)

IV-2

(c)

Figure 4.11: E xam p les  o f  (a) a True Pos itive  (TP), (b) a Fa lse  N egative  (FN), and  (c) a False  

Positive  (FP) fo r  the c lassifie r, (a) A p re d o m in a n tly  m a te rna l Q R S -com p lex TO C  d iagona l slice  

w as co rrec tly  m a tch ed  to a m a te rna l Q R S -com p lex TO C  d iagona l s lice  tem p la te  (1-1), (b) a fe ta l 

h e a rtb e a t w ith m a te rna l con tribu tion  TO C  d iagona l s lice  w as w rong ly  m a tch ed  to a Q R S-free  

E C G  TO C  d iagona l s lice  tem p la te  (III-3), and  (c) a Q R S -free  EC G  TO C  d iagona l s lice  was 
w rong ly  m a tch ed  to a fe ta l hea rtb e a t w ith  m a te rna l con tribu tion  TOC d iagona l s lice  tem plate  

(IV-2).
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Predominantly maternal QRS TOC

\ Diagonal V Wall \  Diagonal ■y Wall \  Diagonal \  Wall

V / —V — --------- V

Maternal QRS TOC template 3

Maternal QRS TOC template 1 Maternal QRS TOC template 2

Maternal QRS TOC template 4 Maternal QRS TOC template 5

Maternal QRS TOC template 6 Maternal QRS TOC template 7
(a)

Maternal QRS TOC template 8

Figure 4.12 (a): Third-order cumulants and their diagonal and wall slices (insets) for a typical example of transabdominally-measured 
predominantly maternal QRS-complex cumulant matching signature using the first hybrid system. The top left hand part of the figure depicts the 
TOC and its slices for a predominantly maternal QRS-complex. The rest of the figure shows eight of the ten templates of such signals.
Template 2, at the top right hand part of the figure, is the one which is matched to the segment. The parameters of the single-hidden-layer 
perceptron are: learning rate = 0.80, moment constant = 0.99, and middle layer size is 5x5.
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First fetal heartbeat TOC

First fetal heartbeat TOC template 3

First fetal heartbeat TOC template 1 First fetal heartbeat TOC template 2

First fetal heartbeat TOC template 4 First fetal heartbeat TOC template 5

First fetal heartbeat TOC template 6 First fetal heartbeat TOC template 7
(b)

First fetal heartbeat TOC template 8

Figure 4.12 (b): Third-order cumulants and their diagonal and wall slices (insets) for a typical example of a transabdominally-measured first 
fetal heartbeat with maternal contribution cumulant matching signature using the first hybrid system. The top left hand part of the figure depicts 
the TOC and its slices for the first fetal heartbeat with maternal contribution. The rest of the figure shows eight of the ten templates of such 
signals. Template 2, at the top right hand part of the figure, is the one which is matched to the segment. The parameters of the single-hidden- 
layer perceptron are: learning rate = 0.80, moment constant = 0.90, and middle layer size is 5x5.
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Figure 4.12 (c): Third-order cumulants and their diagonal and wall slices (insets) for a typical example of a transabdominally-measured 
QRS-free ECG cumulant matching signature using the first hybrid system. The top left hand part of the figure depicts the TOC and its slices for 
a QRS-free ECG segment. The rest of the figure shows eight of the ten templates of such signals. Template 4, at the middle of the figure, is the 
one which is matched to the segment. The parameters of the single-hidden-layer perceptron are: learning rate = 0.80, moment constant = 0.90, 
and middle layer size is 5x5.
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Second fetal heartbeat TOC Second fetal heartbeat TOC template 1 Second fetal heartbeat TOC template 2

Second fetal heartbeat TOC template 3 Second fetal heartbeat TOC template 4 Second fetal heartbeat TOC template 5

Second fetal heartbeat TOC template 6 Second fetal heartbeat TOC template 7 Second fetal heartbeat TOC template 8
(d)

Figure 4.12 (d): Third-order cumulants and their diagonal and wall slices (insets) for a typical example of a transabdominally-measured second 
fetal heartbeat with maternal contribution cumulant matching signature using the first hybrid system. The top left hand part of the figure depicts 
TOC and its slices for the second fetal heartbeat with maternal contribution. The rest of the figure shows eight of the ten templates of such 
signals. Template 2, at the top right hand part of the figure, is the one which is matched to the segment. The parameters of the 
single-hidden-layer perceptron are: learning rate = 0.80, moment constant = 0.90, and middle layer size is 5x5.
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Figure 4.12 (c) depicts the TOCs and their diagonal and wall slices (insets) for a 

QRS-free ECG segment (top left panel). The rest of the figure shows eight of the ten 

templates of such signals. Template 4 is the one which is matched to the segment 

(middle panel). Figure 4.12 (d) depicts the TOCs and their diagonal and wall slices 

(insets) for the second fetal heartbeat with maternal contribution segment (top left 

panel). The rest of the figure shows eight of the ten templates of such signals. 

Template 2 is the one which is matched to the segment (top right panel).

4.5.1 The maternal QRS-complex and the fetal heartbeat classification rates

4.5. 7.1 The maternal QRS-complex classification rate

Table 4.3 shows a top classification rate of 100% for maternal QRS-complexes using 

the TOC template matching technique with single-hidden-layer classification. The 100% 

classification rate has been achievable with or without linearisation. It makes no 

difference to the results. However, to complete this section here is a brief description of 

the optimised parameters required for the maternal QRS-complex linearisation process.

Parameters

As mentioned before, this employs a second- or third-order Volterra synthesiser. Each 

of these synthesisers employs an LMF algorithm update. The learning rate and 

momentum constant are, respectively, 0.8 and 0.99. The second-order Volterra 

parameters are: filter length = 6, step-size parameters = 0.005, and 0.0004 for linear 

and quadratic parts, respectively, delay = 4. The third-order Volterra parameters are: 

filter length = 6, step-size parameters = 0.001, 0.0002, and 0.0004for linear, quadratic 

and cubic parts, respectively, delay = 4.
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Third-order Cumulant (TOC) 

matching template slice type and in 

conjunction with ANN classifiers

TOC

Diagonal

slice

TOC

Wail

slice

Classification rate (%) 100.00 100.00

Table 4.3: The classification rate for maternal QRS-complexes using maternal 

transabdominally-measured ECGs and their respective TOC diagonal or wall slices.

169



To calculate the maternal heart rate an auxiliary method to pinpoint the R-wave is 

needed. For this application we have a choice of either using the superior patent binding 

technique [41] or adaptive thresholding which is less accurate when one deals with 

deformed QRS-complexes in heart patients. The results presented here have been 

obtained using the latter method since all mothers’ ECGs exhibit normal-to-the-patient 

QRS-complexes. The instantaneous maternal heart rate is calculated by dividing 60 by 

the R-to-R interval (in seconds). The application of this auxiliary routine leads to a 

maternal heart rate with an accuracy of 99.85%.

4.5.7.2 Fetal heartbeat detection quality and classification rate for the TOC template 

matching technique

Before attempting to assess the first hybrid technique for non-invasive fetal heartbeat 

detection some definitions are appropriate here:

Definitions

1- The Sensitivity (Se) is defined as the ratio of the True Positives (TP) to the sum of the 

True Positives and the False Negatives (FN). The sensitivity reports the percentage 

of true beats that are correctly classified by the algorithm.

2- The Specificity (Sp) is defined as the ratio of the True Positives (TP) to the sum of 

the True Positives (TP) and the False Positives (FP). It reports the percentage of 

classified heartbeats which are in reality true beats.

3- The classification rate: The mean value of the sensitivity and the specificity is used as 

the criterion for the effectiveness of the technique.

Table 4.4 shows the fetal heart detection quality and classification rate using 

transabdominally-measured ECGs and their respective TOC diagonal or wall slices with 

and without linearisation. The combined diagonal and wall slices improve the 

classification rate by about 1% over and above that achieved by either slice. A further 

improvement of about 1% is achieved by using two off-diagonal and off-wall slices. 

Using a second-order Volterra synthesiser results in a higher detection rate of 83.49%. 

The highest achievable classification rate for non-invasive fetal heartbeat detection 

using the first hybrid system is 86.16% when a third-order Volterra synthesiser is 

employed in conjunction with single-hidden-layer classifiers. Note that the classification
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rate for coincident mother’s and fetal QRS complexes is 0%. The classification rate of 

non-coincident mother’s and fetal QRS-complexes is 95.55%.

Parameters

The second-order Volterra parameters are: filter length = 6, step-size parameters =

0.005, and 0.0004 for linear and quadratic parts, respectively, delay = 5. The third-order 

Volterra parameters are: filter length = 6, step-size parameters = 0.001, 0.0002, and

0.0004 for linear, quadratic and cubic parts, respectively, delay = 5. The learning rate 

and the momentum constant are 0.80 and 0.90, respectively.
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Third-order Cumulant 
(TOC) matching template 

slice type with and without 
linearisation using Volterra 

and in conjunction with 

ANN classifiers

Detection quality Classification

rate

(%)Se

(%)

Sp

(%)

FP,

out of 

120000

FN, 

out of 

120000

TOC Diagonal slice without 

linearization

76.24 79.38 24744 28512 77.81

TOC Wall slice without 

linearization

76.24 79.38 24744 28512 77.81

TOC Diagonal and Wall slices 

without linearization

77.13 80.24 23712 27444 78.74

TOC Diagonal, wall, diagonal 

and wall, and an off-diagonal 

and off-wall 22.5° slice without 

linearization

78.04 81.18 22584 26352 79.69

Linearised diagonal slice using 

2nd order adaptive LMF 

Volterra synthesiser

82.37 84.61 18468 21156 83.49

Linearised wall slice using 2nd 

order adaptive LMF Volterra 

synthesiser

82.37 84.61 18468 21156 83.49

Linearised diagonal slice using 

3rd order adaptive LMF 

Volterra synthesiser

84.46 87.85 14500 18648 86.16

Linearised wall slice using 3rd 

order adaptive LMF Volterra 

synthesiser

84.46 87.85 14500 18648 86.16

Table 4.4: Fetal heart detection quality and classification rate using transabdominally-measured 

ECG and their respective TOC diagonal or wall slices with and without linearisation. The total 

number of fetal heartbeats is 120,000 and the total number of maternal ECG recordings, is 30. 
The performance was assessed against synchronised fetal scalp heartbeats. All mothers were 

during the first stage of labour at 40 weeks of gestation.
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4.6 Summary and conclusions

General discussions
Early research studies which have not been presented in this chapter, but have been 

carried out under an two-and-half-year research contract*, exploited the whole 

multi-dimensional structures of the third- and fourth-order cumulants of the ECG 

signals presented in this thesis in conjunction with multi-layered feed-forward neural 

networks. The justification for this multi-layer perceptron network was based entirely on 

the assumption that by including a sufficient number of hidden layers, the network 

would be enabled to extract both third-and fourth-higher-order statistics embedded in 

the cumulants presented to the network input. The multi-dimensional ECG cumulants 

were created first and subsequently a pre-selected number of slices were extracted and 

cascaded side-by-side to be presented to the input layer of the MLP. In the early days of 

this research, it was difficult to make a decision, just by mere observations of the 

available 1-d third-order cumulant slice or 2-d fourth-order cumulant slice patterns 

produced from the transabdominally-measured ECG signals, as to which of such slices 

would show a distinguishable pattern which could be matched to the corresponding 

mother or fetal ECG templates. Particularly, those templates of the fetal scalp electrodes 

which have been used as a reference, so that the fetal heartbeat detection could be 

verified in the midst of those complex maternal environments and counted within each 

maternal cardiac cycle.

In an attempt to restrict the size of the neural network to only two hidden layers, instead 

of three or four layers, prior information had to be built into the design of the MLP by 

using a combination of two techniques [65]: (1) restricting the network architecture 

through the use of network connections and (2) constraining the choice of synaptic 

weights by the use of weight sharing [70], The issue of prior information was addressed 

in terms of the most discriminant patterns in the one-dimensional third-order cumulant 

slice or the two-dimensional fourth-order cumulant slices. Also, those patterns, as 

perceived by an observer, usually change in a corresponding way as the 

transabdomianlly-measured data were scanned over each maternal cardiac cycle. For 

example, the first fetal heartbeat to occur after the mother’s QRS-complex interval was

* Permission has been granted for publications without revealing the company’s name.
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clear from either maternal P- or maternal T-wave. Accordingly, the only change to the 

fetal cumulants was due to its surrounding environment, e.g., uterine contraction signals 

and noise artefact. The situation is not the same for the second and possibly the third 

fetal heartbeats within the same cardiac cycle as these may overlap with the T-wave of 

the present cardiac cycle or the P-wave of the next. Accordingly, a primary requirement 

of cumulant pattern recognition is to design a classifier that is invariant to such changes. 

In other words, a class estimate presented by an output of the classifier must not be 

affected by change in the cumulant structures as we scan the transabdominally-measured 

ECG signals from the first to the second or even third fetal heartbeat occurrences within 

each maternal cardiac cycle. This also applies to changing environment from one 

maternal cardiac cycle to the next. Particularly, as the maternal ECG including the fetal 

ECG override the peaks and valleys of labour contractions. We may recall, that it is 

crucial to monitor fetal heart rates as accurately as possible during painful contractions 

to assess the accelerations and decelerations of the fetal heart rates in sympathy with 

such electromechanical events. This has been briefly discussed in Chapter One.

There exist at least three techniques for rendering classifier-type neural networks 

invariant to changes (or transformation due to an object manifestation as in speech 

recognition and Radar Doppler [71]). Only the first and second techniques of the 

following three have been applied to fetal heart monitoring:

(1) Invariance by training. A neural network has a natural ability for pattern 

classification. This ability may be exploited directly to obtain change invariance 

as follows. The network is trained by presenting it a number of different 

examples of the same fetal heartbeat cumulants or bispectra, with the examples 

being chosen to correspond to different changes (i.e., different fetal heartbeats 

positions in the maternal cardiac cycle) of the third-order cumulant. Provided 

that the number of examples is sufficiently large, and if the network is trained to 

learn to discriminate the different third- or fourth-order cumulants of the ECG 

250 msec segments, we may then expect the network to generalise correctly 

changes other than those shown to it. It was found, however, from an 

engineering perspective, invariance by training has disadvantages. When a neural 

network has been trained to recognise a third-order cumulant slice in an invariant 

fashion with respect to known changes, it is not obvious that this training will 

also enable the network to recognise other representatives of different classes
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invariantly (e.g., cumulants of the QRS-free ECG segment). The solution was 

found to provide templates of the third-order cumulant slices of the QRS-free 

ECG segment.

(2) Invariant feature space. The second technique of creating an invariant 

classifier-type neural network rests on the premise that it may be possible to 

extract features that characterise the essential information content of an input 

data set, and which are invariant to changes of the input [70]. It has to be 

emphasised that this applies only to linearised ECG data sets. The important 

features characterising key cumulant slices, such as the diagonal and wall slices, 

are (i) the shape of the main lobe, and (ii) the number and positions of the side 

lobes. If such features are used, then the network as a classifier is relieved from 

the burden of having to delineate the range of changes of a fetal heartbeat, still 

swamped by noise and maternal contributions, with complicated decision 

boundaries. Indeed, the only differences that may arise between different 

instances of the same ordered fetal heartbeat (first heartbeat-to-first heartbeat 

correspondence, or second heartbeat-to-second heartbeat correspondence, ...etc) 

are due to unavoidable factors such as motion artefact and noise. The use of an 

invariant-feature space offers three distinct advantages; (i) The number of 

features applied to the network may be reduced to realistic levels; (ii) the 

requirements imposed on network design are relaxed; and (iii) invariance for all 

fetal heartbeats with respect to known changes is assured [71]; however, this 

approach requires prior knowledge of the important features. This has prompted 

us to consider the single-hidden-layer neural network with only two cumulant 

slices presented at its input layer, namely, the linear non-Gaussian third-order 

cumulant diagonal and wall slices of the ECG signals.

(3) Invariance by structure. Invariance may be imposed on a neural network by 

structuring its design appropriately. Specifically, synaptic connections between 

the neurons of the network are created such that changed versions of the same 

input are forced to produce the same output [70],

The single-layer perceptron operates on the premise that the patterns to be classified are 

linearly separable. Linear separability requires that the patterns to be classified must be 

sufficiently separated from each other to ensure that the decision surfaces consists of
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hyper-planes*.
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The perceptron convergence algorithm is non-parametric in the sense that it makes no 

assumptions concerning the form of the underlying probability distributions of one class 

or another; it operates by concentrating on errors that occur where different classes of 

the cumulant or spectral patterns become too close. For example, the spectral pattern of 

the uterine contraction shares the same spectral peak with the spectral pattern of the fetal 

ECG. This problem is addressed in Chapter Six. The perceptron convergence has been 

addressed when using the back-propagation algorithm in conjunction with either the 

MLP network (in earlier studies and involving the overall cumulants) or the 

single-hidden-layer perceptron used in this thesis in the context of the third-order 

cumulant slice matching hybrid classifier.

Detailed results
1. The effect of the chosen window length on the third-order cumulant variance

The transabdominal ECG signal is linearised and segmented prior to the third-order 

cumulant calculations. The window length is carefully chosen to serve two criteria; (i) to 

yield an acceptable upper threshold of both the deterministic and stochastic noise types 

inherent in the higher-order statistics of the ECG signals encountered, and (ii) to allow 

the detection of one, two, three, or four fetal heartbeats (FHBs) within one maternal 

transabdominal cardiac cycle.

It has also been shown that the variance of an 250 msec Gaussian noise segment is equal 

to 1.0629 which is close to the ideal value of l.O. The variance would increase by more 

than 20% if the segment length is halved. The TOC variance of the fetal heartbeat 

segments has been calculated. It ranges from 0.64 to 4.2 with an average value of 2.381.

2. Calculation of averaged fetal heart rates

Templates of third-order cumulant diagonal and wall slices are used as the desired 

response of the single-hidden-layer perceptron in the training phase. The TOC template

* Class A and class B must not be too close to each other. Otherwise, they become non-linearly separable. 

Quoting from Section 13.2 of the book by Minsky and Papert, [72]: This would also hold true for the 

multi-layer perceptron.
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matching procedure starts by matching the slices of the segments to the templates until 

the first and the second maternal QRS-complexes are detected and their R-wave are 

pinpointed. The maternal heart rate is accurately calculated from the knowledge of the 

current and previous R-wave positions. Then, the search for the fetal heartbeat starts at 

50 msec before the first maternal R-wave and continues until we reach the second 

maternal R-wave. Although the ECG TOC template matching technique is very 

effective in detecting the occurrence of the fetal heartbeats as a whole even when it is 

completely buried in noise, it cannot locate the fetal R-wave over a window length of 

250 msec. However, we can measure fairly accurately the maternal heartbeats and 

calculate the instantaneous heart rate for the mother. Hence, by counting the number of 

fetal heartbeats that have occurred between two successive maternal R-waves, one can 

easily calculate the averaged FHR within the maternal cardiac cycle;

The average FHR = MHR x Number of FHBs / number of maternal heartbeats

In the above formula, the instantaneous maternal heart rate is previously known with 

some degree of accuracy, and the relative fetal to maternal heartbeat is also known 

within the maternal cardiac cycle. Hence, the averaged fetal heart rate can be calculated 

within each maternal cardiac cycle.

3. Parameters of the single-hidden layer perceptron

A major limitation of the back-propagation algorithms is the slow rate of convergence to 

a global minimum of the error-performance surface because the algorithm operates 

entirely on the gradient of the error-performance surface with respect to the weights in 

the single-hidden-layer perceptron. The back-propagation learning process is accelerated 

by incorporating a momentum term. The use of momentum introduces a feedback loop 

which prevents the learning process from being stuck at a local minimum on the 

error-performance surface of the single-hidden-layer perceptron.

The network has been optimised in terms of its learning rate, momentum constant, and 

hidden layer size to achieve the minimum mean-squared error. The optimum learning 

rate is found to be 0.8. The optimum momentum constant is found to be 0.99 and 0.90 

for the maternal QRS-complex and the fetal heartbeat with maternal contribution 

segments, respectively. The single-hidden-layer has an optimum dimension of 5 x 5.
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The input to the first layer is the third-order cumulants diagonal and wall slices. The 

network is trained using TOC slice templates. The input to the network is eight template 

patterns. These are the third-order cumulant diagonal and wall slices of four segments 

from one transabdominal cardiac cycle. For example the first pair are maternal 

QRS-complex TOC diagonal and wall slices, the second pair are the first fetal heartbeat 

TOC diagonal and wall slices, the third pair are QRS-free ECG TOC diagonal and wall 

slices, and the fourth pair are the second fetal heartbeat TOC diagonal and wall slices. 

The network is trained over the eight patterns. The training terminates when the worst 

error in all patterns in one pass is less than 0.1. Typically the average error will be in the 

range of 0.001.

4. The classification rate for maternal QRS-complex and fetal heartbeat 

segments

The results of the first hybrid system indicates that a linear combination of diagonal and 

wall slices of the TOC can improve the detection rate by up to 1% over and above the 

77.8% obtainable using only either slice. Using two more arbitrary slices off-diagonal 

and off-wall would result in a further improvement of up to 1%. Using two slices 

instead of only one results in an two-fold increase in the CPU time of 1 msec using Unix 

WS.

Further improvement of 6% to 8% is attainable with maternal transabdominal ECG 

signal linearisation employing second- and third-order Volterra synthesisers, 

respectively. Based on the first hybrid system using TOC slices for signal processing 

and subsequent single-hidden-layer classification, 100% and 86.16% classification rates 

have been achieved for maternal QRS-complex and fetal heartbeats, respectively. Note 

that the classification rates for coincident and non-coincident mother’s and fetal QRS- 

complexes are 0% and 95.55%, respectively.

The remaining undetected 13.84% fetal heartbeats include 9.8% overlap with the 

maternal QRS-complexes and 4% occur during depolarisation of the maternal T-waves. 

Those events unavoidably lead to significant distortion of the fetal third-order 

cumulants. This means that the cumulant signatures will not be close to the TOC 

template signature stored in the database. Examples of false negatives and false 

positives have been found in the following cases, respectively, (i) a fetal heartbeat with
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maternal contribution TOC diagonal slice was wrongly matched to a QRS-free ECG 

TOC diagonal slice template, and (ii) a QRS-free ECG TOC diagonal slice was wrongly 

matched to a fetal heartbeat with maternal contribution TOC diagonal slice template.
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Chapter 5 BISPECTRUM CONTOURS

CHAPTER FIVE

NON-INVASIVE FETAL HEARTBEAT DETECTION 

USING BISPECTRAL CONTOUR MATCHING IN 

CONJUNCTION WITH ANN CLASSIFIERS

5.1 Introduction

5.1.1 Aim

This chapter describes the second hybrid system (e.g., signal processing in conjunction 

with classification), using the mother and fetal ECG bispectral contours (BIC), which 

carry the signature imprints of their respective QRS-complexes, in the signal processing 

phase. As with the first hybrid system, the classification phase employs LMS-based 

single-hidden-layer classifiers. The mother’s chest ECGs and the fetal scalp electrode 

ECGs have been used as templates or the HOS representatives in the classification. The 

bispectral contour matching technique is used herewith for the first time to identify the 

signatures of both the maternal and fetal QRS-complexes.

In the previous chapter, brief descriptions are given for the ECG database, ECG 

segmentation and window maximum length, window overlapping, calculation of an 

averaged fetal heart rate within one maternal cardiac cycle, the strategy behind creating 

the template database, linearisation using second- and third-order Volterra synthesisers, 

and single-hidden-layer perceptron design and classification criteria. In this Chapter, the 

same procedure is applied with the replacement of the third-order cumulant slices by the 

bispectral contours (usually 10 contours including the tip of the peak and are spaced by 

approximately 1 dB). The CPU time for the bispectrum computation is almost twice that 

for cumulants and 2000 times that for individual TOC slices.

It will be shown that the highest achievable Fetal Fleartbeat (FHB) classification rate 

using the BIC template matching technique is 90.12% with reduced false positives and
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negatives associated with the power spectrum-based FHB classification rate of 70%. 

Furthermore, the BIC has a marginally improved classification performance over and 

above the TOC during episodes of overlapping fetal QRS-complexes and maternal 

T-waves. As mentioned above, this is achieved at the expense of complexity and 

computation time.

5.1.2 Layout of the Chapter

It was considered prudent to report on some second-order statistics spectral estimators 

with and without linearisation to show the remarkable advantage gained by using the 

third-order statistics instead. However, this does not include appropriately chosen 

MUSIC-based techniques with their unique subspace structural properties and accurate 

estimation of the interference signal as this will be the subject of Chapter Six. The 

Chapter is divided as follows. Section 5.2 references previous joint work on 

non-invasive fetal heartbeat detection using the bispectrum. Section 5.3 refers to the 

detection key operations. Section 5.4 caters for displaying the effect of linearisation in 

conjunction with a number of second-order statistics (SOS) spectral estimators, namely,

(i) the FFT, (ii) the auto-regressive (AR), (iii) the Yule-Walker, and (iv) the maximum 

entropy (MEM). Section 5.5 presents preliminary investigations of ECG bispectrum, 

including typical examples of bispectra and their contours, followed by the estimation of 

the variance. Section 5.6 gives a detailed description of the second hybrid system which 

uses several bispectral contours as the discriminants in detecting the occurrences of fetal 

heartbeats within each maternal cardiac cycle. Section 5.6.1 shows the results of 

optimising the single-hidden layer perceptron. Section 5.6.3 shows the results of 

maternal QRS-complex and fetal heartbeat classification with and without linearisation, 

and employing both second- and third-order Volterra synthesisers with LMF update. 

Summary and conclusions are given in Section 5.7.

5.2 Previous work
There is no reported work in the literature on the subject of non-invasive fetal heartbeat 

detection using the bispectrum except that jointly published by the author using the 

pseudo-bispectrum [35],
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5.3 Detection key operations
These are exactly the same as those described in Section 4.3 except that the third-order 

cumulant slices are now going to be replaced by the bispectral contours.

5.4 Second-order statistics (SOS) spectral estimation
The general problem of spectral estimation is that of determining the spectral content of 

a signal based on a finite set of measured data [52]. Formally, the Power Spectral 

Density (PSD) is defined as the Fourier Transform (FT) of the Autocorrelation Function 

(ACF) [53], The PSD function describes the distribution of power with frequency. 

Spectrum estimation is accomplished by either non-parametric or parametric methods. 

Non-parametric methods include FFT-based methods such as the Periodogram. 

Parametric methods include model identification methods such as the Auto-Regressive 

(AR), the Yule-Walker, and the maximum entropy (MEM). The eigenvector subspace 

methods are the subject of Chapter Six.

5.4.1 Non-parametric methods

The FFT-based method (The periodogram)

The PSD is calculated as

PxAx(f) = N x -d ) .« "1' “
k=0

2

(5.1)

or the power spectral density is calculated as

f ” ( f ) = T T F i o '  0 £ f » (f) s  '•
(5.2)

The sharpness of the peaks in Eq. (5.2) is due to the non-linear warping caused by the 

transformation 1 / (1 - x). The apparent increase in resolution is gained at the expense of 

a large increase in the variance of the spectral peaks’ amplitudes. Both spectral 

estimators contain the same information. In other words, the sharpness of the peaks of a 

spectral estimate is not related to its resolution. For classical methods (FFT-based), the 

bias of the estimator can be reduced at the expense of an increase in the variance, and 

vice versa. However, both types of errors cannot be reduced simultaneously. The
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periodogram is an inconsistent estimator in that even though the average value 

converges to the true value as the data record length becomes large, the variance stays 

constant. The periodogram will yield statistically inconsistent (unstable) PSD estimates 

because the expectation operation of the PSD has been ignored. The averaged 

periodogram will reduce the variance, but the bias will increase. The application of 

temporal windows reduces the levels of the sidelobes. However, the mainlobe width 

will increase. The key disadvantage of the classical spectral estimation is the 

distortioning impact of sidelobe leakage due to the inherent windowing of finite data 

sets. For a finite data set, trade-offs among resolution, stability (minimising the estimate 

variance), and leakage suppression are necessary.

Eq. (5.2) is used to calculate the power spectrum in conjunction with a Hanning window 

(alpha = 0.54). The power spectrum is calculated with and without linearisation. An 

optimised third-order Volterra structure (see Section 3.4) is employed to decompose the 

ECG signal into its linear, quadratic, and cubic parts and retain only the linear part. The 

power spectrum of a fetal scalp electrode full cardiac cycle, data length 500 msec, is 

depicted in Figure 5.1 (a). There is a principal spectral peak at 30 Hz [106], 

Non-linearity has not affected the frequency of the principal peak. However, removing 

non-linearity seems to help in sharpening it. There is apparent reduction in the spectral 

content at lower frequencies.

Figure 5.1 (b) shows the frequency content of a maternal chest full cardiac cycle, data 

length 1000 msec. There is one sharp peak at 14 Hz and three small peaks in the range 

of 6 Hz to 12 Hz. Note that the accurate frequency of the spectral peak of the adult 

QRS-complex is at 17 Hz [107] and not at 14 Hz. The FFT-based method is biased 

because the calculated spectral peak of the QRS-complex of the maternal chest ECG 

deviates from the normal frequency of the adult QRS-complexes. The removal of 

non-linearity sharpens the spectral peaks at 6 Hz, 10 Hz, and more so at 12 Hz, 

significantly.

Figure 5.1 (c) shows the frequency content of a maternal transabdominal full cardiac 

cycle, data length 1000 msec. There is a sharp maternal principal spectral peak at 17 Hz 

and four smaller peaks at 5 Hz, 13 Hz, 25 Hz, and 31 Hz. The small peak at 31 Hz may 

or may not correspond to the fetal principal spectral peak. The removal of non-linearity
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Figure 5.1: The effect o f  linearisation in conjunction with the FFT-based second- 
order statistics (SOS) spectral estimator, (a) The fetal scalp electrode full cardiac cycle 
(Code: 5-1, data length 500 msec), (b) and (c) are the chest and transabdominaly-measured 
(twin electrodes) full cardiac cycles at the first stage of labour at 40 weeks, (Code: 5-1, data 
length 1000 msec, the maternal cardiac cycle begins 50 msec before the R-wave and ends 
50 msec before the next R-wave). A Hanning window is used to calculate the power 
spectrum. Sampling rate -0 .5  KHz, resolution = 12 bits.
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has definitely sharpened and raised the levels of all the spectral peaks.

Figure 5.2 (a-c) shows the spectral peaks calculated using the FFT method for a fetal 

scalp electrode cardiac cycle, a transabdominally-measured cardiac cycle, and a segment 

of the maternal transabdominal ECG signal containing a fetal heartbeat with maternal 

contribution (inset). A Hanning window is used to calculate the power spectrum (alpha 

= 0.54). The power spectrum is calculated with and without linearisation. An optimised 

third-order Volterra structure is employed to decompose the ECG signal into its linear, 

quadratic, and cubic parts and retain only the linear part. The power spectrum of a fetal 

scalp electrode full cardiac cycle, data length 500 msec, is depicted in Figure 5.2 (a). 

There is a principal spectral peak at 31 Hz and other peaks at 14 Hz and 26 Hz. 

Non-linearity has not affected the frequency of the principal peak. Flowever, removing 

non-linearity seems to help in sharpening it.

Figure 5.2 (b) shows the frequency content of a maternal transabdominal full cardiac 

cycle, data length 1000 msec. There are five spectral peaks at 6 Hz, 14 Hz, 20 Hz, 

27 Hz, and 32 Hz. Note that there is a strong motion artefact peak at 6 Hz. There is a 

sharp maternal principal spectral peak at 14 Hz. Again, the FFT-based method is biased 

because the calculated spectral peak of the QRS-complex of the maternal chest ECG 

deviates from the normal frequency of the adult QRS-complexes. The small peak at 

32 Hz may or may not correspond to the fetal principal spectral peak. The removal of 

non-linearity has definitely sharpened and raised the levels of all the spectral peaks.

Figure 5.2 (c) shows the frequency content of a segment of the maternal transabdominal 

ECG signal containing a fetal heartbeat with maternal contribution, data length 

250 msec. There are three spectral peaks at 15 Hz, 24 Hz, and 42 Hz. There is no fetal 

principal spectral peak shown using the FFT method. With the removal of non-linearity, 

there is apparent reduction in the spectral content at lower frequencies.

5.4.2 Parametric methods

The primary motivation for many of the alternative spectral estimators has been the 

unsatisfactory performance of classical spectral estimators. Three parametric methods 

are used for spectral estimation, namely, the Auto-Regressive (AR), the Yule-Walker, 

and the Maximum Entropy (MEM).
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Figure 5.2: The effect o f  linearisation in conjunction with the FFT-based second- 
order statistics (SOS) spectral estimator, (a) T he fetal scalp electrode full cardiac cycle 
(data length 500 msec), (b) the transabdominally-measured maternal full cardiac cycle (twin 
electrodes, data length 1000 msec), and (c) segment II of the maternal transabdominal signal 
(inset) containing a fetal heartbeat with maternal contribution (data length 250 msec). The 
maternal cardiac cycle begins 50 msec before the R-wave and ends 50 msec before the next 
R-wave. The subject is at the first stage of labour (40 weeks gestation). A Hanning window is 
used to calculate the power spectrum. Sampling rate = 0.5 KHz, resolution = 12 bits.
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1. The AR method:

To estimate the PSD using an AR model we need to estimate the parameters of the 

model, a(l), a(2),..., a(p). The PSD is given as [53]

Pa r (0  = ---------------------- —-------------------- :r  (5-3)
|1 + a(l). exp(-j27tf +... + a(p). exp(-j27tfp)

The incorporation of a model leads to the replacement of the general spectral estimation 

problem by a parameter estimation problem. If the model is accurate, but a poor spectral 

estimator of the parameters is used, poor (increased variance) spectral estimates will 

result. Different models may yield similar results, but one model may require fewer 

model parameters and therefore be more efficient than the other models in its 

representation of the data.

Figure 5.3 (a-c) shows the results of the AR method for a fetal scalp electrode cardiac 

cycle, a transabdominally-measured cardiac cycle, and a segment of the maternal 

transabdominal ECG signal containing a fetal heartbeat with maternal contribution 

(inset). Hanning window is used to calculate the power spectrum (alpha = 0.54). The 

power spectrum is calculated with and without linearisation. An optimised third-order 

Volterra structure is employed to decompose the ECG signal into its linear, quadratic, 

and cubic parts and retain only the linear part. The AR spectrum of the fetal scalp 

electrode full cardiac cycle, data length 500 msec, is depicted in Figure 5.3 (a). There is 

a sharp principal spectral peak at 30 Hz [106] and a small peak at 24 Hz. Non-linearity 

has not affected the frequency of the principal peak. With the removal of non-linearity, 

there is apparent reduction in the spectral content at lower frequencies. The sharp peaks 

that characterise the AR spectra are apparent in this figure.

Figure 5.3 (b) shows the AR spectrum of a maternal transabdominal full cardiac cycle, 

data length 1000 msec. There is a sharp maternal principal spectral peak at 15 Hz. The 

frequency deviation from the actual frequency of 17 Hz [107], is due to the AR bias as 

previously mentioned with the FFT-based method. There is a sharp motion artefact peak 

at 2 Hz. There is a small peak at 35 Hz which may or may not correspond to the fetal 

principal spectral peak. The removal of non-linearity has sharpened and raised the level 

of the principal spectral peak. With the removal of non-linearity, there is apparent
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(c)

Figure 5.3: The effect o f  linearisation in conjunction with the AR second-order 
statistics (SOS) spectral estimator, (a) The fetal scalp electrode full cardiac cycle (data 
length 500 msec), (b) the transabdominally-measured maternal full cardiac cycle (twin 
electrodes, data length 1000 msec), and (c) segment II of the maternal transabdominal signal 
(inset) containing a fetal heartbeat with maternal contribution (data length 250 msec). The 
maternal cardiac cycle begins 50 msec before the R-wave and ends 50 msec before the next 
R-wave. The subject is at the first stage of labour (40 weeks gestation). Model order =11. A 
Hanning window is used to calculate the power spectrum. Sampling rate = 0.5 KHz, resolution 
= 12 bits.
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reduction in the spectral content at lower frequencies.

Figure 5.3 (c) shows the AR spectrum of a segment of the maternal transabdominal 

ECG signal containing a fetal heartbeat with maternal contribution, data length 

250 msec. There is a small peak at 33 Hz which may or may not correspond to the fetal 

principal spectral peak. There is a very small peak at 48 Hz. The removal of 

non-linearity has sharpened and raised the level of the principal spectral peak. With the 

removal of non-linearity, there is apparent reduction in the spectral content at lower 

frequencies.

2. The Yule-Walker method

The Yule-Walker method is based on estimating the autocorrelation parameters and 

minimising the estimate of the prediction error power. Those parameters are obtained 

using the following equation [53]:

1 = 1,2,...., p. (5.4)

The autocorrelation parameters can be used to calculate the PSD in a similar way to that 

of Eq. (5.3). Figure 5.4 (a-c) shows the results of the Yule-Walker method for a fetal 

scalp electrode cardiac cycle, a transabdominally-measured cardiac cycle, and a segment 

of the maternal transabdominal ECG signal containing a fetal heartbeat with maternal 

contribution (inset). The Hanning window is used to calculate the power spectrum 

(alpha = 0.54). The power spectrum is calculated with and without linearisation. An 

optimised third-order Volterra structure is employed to decompose the ECG signal into 

its linear, quadratic, and cubic parts and retain only the linear part. The Yule-Walker 

spectrum of the fetal scalp electrode full cardiac cycle, data length 500 msec, is depicted 

in Figure 5.4 (a). There is a shallow principal spectral peak at 30 Hz [106], There is a 

strong motion artefact at 2 Hz and a small peak at 16 Hz. Non-linearity has not affected 

the frequency of the principal peak. With the removal of non-linearity, there is apparent 

reduction in the spectral content at lower frequencies.

Figure 5.4 (b) shows the Yule-Walker spectrum of a maternal transabdominal full 

cardiac cycle, data length 1000 msec. There are sharp maternal principal spectral peaks
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13 Hz Normalised Frequency
(b)

Figure 5.4: The effect of linearisation in conjunction with the Yule-Walker second-order statistics 
(SOS) spectral estimator, (a) The fetal scalp electrode full cardiac cycle (data length 
500 msec), (b) the transabdominally-measured maternal full cardiac cycle (twin electrodes, data 
length 1000 msec), and (c) segment II of the maternal transabdominal signal (inset) containing a 
fetal heartbeat with maternal contribution (data length 250 msec). The maternal cardiac cycle 
begins 50 msec before the R-wave and ends 50 msec before the next R-wave. The subject is at 
the first stage of labour (40 weeks gestation). Code: 35-1. SNR = 29 dB, 23 dB, and 2 dB for (a), 
(b), and (c), respectively. Model order = 8. A Hanning window is used to calculate the power 
spectrum. Sampling rate =0.5 KHz, resolution = 12 bits.
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at 13 Hz and 15 Hz before and after linearisation, respectively. The frequency deviation 

from the actual frequency of 17 Hz [107], is due to the Yule-Walker bias as previously 

mentioned with the FFT-based method. The removal of non-linearity has sharpened and 

raised the level of the principal spectral peak and shifted it from 13 Hz to 15 Hz.

Figure 5.4 (c) shows the Yule-Walker spectrum of a segment of the maternal 

transabdominal ECG signal containing a fetal heartbeat with maternal contribution, data 

length 250 msec. There is a very small and shallow peak at 28 Hz which may or may not 

correspond to the fetal principal spectral peak. There is a very strong motion artefact at 

2 Hz and a shallow peak at 12 Hz. With the removal of non-linearity, there is apparent 

reduction in the spectral content at lower frequencies.

The Yule-Walker method (Figure 5.4 a-c) produced shallower peaks than the AR 

method (Figure 5.3 a-c). This is perhaps due to the model order estimated for the former 

as 8 which is lower than that estimated for the latter as 11. The variation in performance 

among the various spectral estimation methods may often be attributed to how well the 

underlying assumed model matches the process under analysis. When the model is an 

accurate representation of the data, spectral estimates can be obtained with performance 

exceeding that of the classical spectral estimators (e.g., the periodogram).

3. The MEM method

The MEM method is based on maximising the entropy per sample and applying the 

technique of Lagragian multipliers to obtain the PSD [53]:

Pme mC O ' - -------------------------- . (5-5)

2 X  exp(-j27tfk)
k=-p

where the ^k‘s are the Lagragian multipliers. The MEM method is identical to the AR 

method only for Gaussian random processes and a known autocorrelation sequence of 

uniform spacing.

The results of the maximum entropy method (MEM) for a fetal scalp electrode cardiac 

cycle, a transabdominally-measured cardiac cycle, and a segment of the maternal
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transabdominal ECG signal containing a fetal heartbeat with maternal contribution 

(inset) are shown in Figure 5.5 (a-c). The Hanning window is used to calculate the 

power spectrum (alpha = 0.54). The power spectrum is calculated with and without 

linearisation. An optimised third-order Volterra structure is employed to decompose the 

ECG signal into its linear, quadratic, and cubic parts and retain only the linear part (see 

Section 3.4). The MEM spectrum of the fetal scalp electrode full cardiac cycle, data 

length 500 msec, is depicted in Figure 5.5 (a). There is a principal spectral peak at 30 Hz 

[106], There is a strong motion artefact at 1 Hz. Non-linearity has not affected the 

frequency of the fetal principal peak. With the removal of non-linearity, there is a small 

reduction in the spectral content at lower frequencies.

Figure 5.5 (b) shows the MEM spectrum of a maternal transabdominal full cardiac 

cycle, data length 1000 msec. It shows the characteristic maternal spectral peak at 

15 Hz. The frequency deviation from the actual frequency of 17 Hz [107], is due to the 

MEM bias as previously mentioned with the FFT-based method. The removal of 

non-linearity has not sharpened, indeed it is broader, but only raised the level of the 

principal spectral peak. This might be due to a model mismatch after linearisation. With 

the removal of non-linearity, there is a small reduction in the spectral content at lower 

frequencies.

Figure 5.5 (c) shows the MEM spectrum of a segment of the maternal transabdominal 

ECG signal containing a fetal heartbeat with maternal contribution, data length 

250 msec. There is a very shallow and small peak at 27 Hz. There is a strong motion 

artefact at 2 Hz. With the removal of non-linearity, there is a small reduction in the 

spectral content at lower frequencies. The MEM method has failed to detect the fetal 

peaks. One reason for this could be the low signal-to-noise ratio of the fetal ECG signal 

at 2 dB calculated from the singular values of segment II of the transabdominal ECG 

signal (see Appendix A4, Section A4.4).

There are some limitations of the second-order statistics-based spectral estimation 

methods. The second-order statistics methods assume that the data is stationary. The 

conventional methods lack sharpness of the peaks and have restricted ability to resolve 

spectral peaks. The FFT-based method failed to detect and resolve the peak. Also results 

obtained using the Maximum Entropy Method (MEM) and the Yule-Walker method did
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Figure 5.5: T he e ffe c t o f  l in e a r is a tio n  in  c o n ju n c tio n  w ith  th e  m a x im u m  e n tro p y  (M E M )  
s e c o n d -o rd e r  s ta t is t ic s  (S O S ) s p e c tra l e s tim a to r, (a) The fetal scalp electrode full cardiac cycle 
(data length 500 msec), (b) the transabdominally-measured maternal full cardiac cycle (twin 
electrodes, data length 1000 msec), and (c) segment II of the maternal transabdominal signal 
(inset) containing a fetal heartbeat with maternal contribution (data length 250 msec). The 
maternal cardiac cycle begins 50 msec before the R-wave and ends 50 msec before the next 
R-wave. The subject is at the first stage of labour (40 weeks gestation). Code: 35-1 SNR = 29 dB, 
23 dB, and 2 dB for (a), (b), and (c), respectively. A Hanning window is used to calculate the power 
spectrum. Sampling rate = 0.5 KHz, resolution = 12 bits.
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not show sharp peaks for the fetal ECG. The parametric methods require an optimum 

choice of the model order. If the choice of the model order does not represent the 

information in the data then the AR will produce spurious peaks. Using the AR method, 

the fetal peak can be distinguished around 33 Hz albeit very small. The computational 

complexity of the periodogram is in the order of N log2 N, where N is the segment 

length. However, the computational complexities of the AR, the Yule-Walker, and the 

MEM methods are of the order of N2.

5.5 Preliminary investigations of ECG bispectrum
5.5.1 Background

The nth-order cumulant spectrum of a process {x(k)} is defined as the 

(n-l)-dimensional Fourier transform of the nth-order cumulant sequence. The nth-order 

cumulant spectrum is thus defined as [3]:

q ( C 0 1,C02,...,C0n_l ) =  ••• Y j  Cn (Tl ’T2 > ' " U l )
- j(c o 1Ti+co2x 2+ ...+ m nTn_l )

(5.6)

where IcoJ < n for i = l,2,...n-l, and |cOj +co2 +... + con_,|<7r

The bispectrum, n = 3, is defined as:

C 3X(W, © ) = z  £  c bx (u ^ 2)
- j ( o ) j  q  + o>2 t 2 )

x  ]  =  - 0 0  T  2  =  “ 00

(5.7)

where c ^ t , , ^ )  is the third-order cumulant sequence. The indirect method of

estimating the bispectrum is shown in Figure 5.6. Note that the computational 

complexity of the bispectrum is of the order of N3.

5.5.2 Typical examples of blspectra and their contours

Data collection and pre-processing are described in Sections 1.8 and 1.9, respectively. 

Data segmentation is described in Section 2.13: 1-3. As mentioned in the previous 

chapters, linearisation is a key step in the signal processing and it is applied using an 

optimised third-order Volterra synthesiser to all the results included here (please see the 

caption of Figure 5.7 for parameters). Figures 5.7 (a-e) depict the maternal
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Where i=l, 2, k. Si=max(0,-m,-n). 
s2=min(M-l,M-l-m,M-l-n). L<M-1, 
w(m,n) is a 2-d window function.

Figure 5.6: Flowchart of the key calculations of the bispectrum using the indirect method.
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(a)

(b)

Figure 5.7: The m a te rna l transabdom ina l fu ll ca rd iac  cyc les  used  to ca lcu la te  the b ispec trum  o f 
F igu res  5 .8-5.12. The EC G  s igna ls  have  been syn th e s ise d  us ing  an o p tim ised  th ird -o rd e r 
Volterra s truc tu re  and  o n ly  the lin e a r p a rt is  reta ined. S egm ent I: p re d o m in a n tly  m ate rna l 
Q R S -com plex, se gm en t II: the firs t fe ta l hea rtb e a t w ith m a te rna l contribu tion , se gm en t III: 
Q R S -free  ECG , and  se gm en t IV: the se con d  fe ta l h ea rtb e a t w ith m a te rna l contribu tion . The 
m ate rna l ca rd iac  cyc le  beg ins  50 m sec  be fo re  the R -w ave  and  ends 50 m sec befo re  the nex t 
R -w ave. The su b jec ts  are  a t the firs t s tage  o f labour, 40  w eeks gesta tion . The m a te rna l cyc le  
has 500 sa m p le s  o r  m ore  a t a ra te  o f  0 .5  KHz. The th ird -o rd e r Volterra pa ram e te rs  are: filte r  
leng th  = 6, s tep -s ize  pa ram e te rs  -  0.001, 0.0002, and  0 .0004  fo r  linear, q ua d ra tic  and  cub ic  
parts, respective ly , d e lay  = 4. The L M F  pa ram e te rs  are: filte r leng th  - 1 2 ,  s tep-s ize  p a ra m e te r -  
0.004, d e la y  = 6. (C ode: 5, 9, 12, 16, 19).
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(d )

(e)

Figure 5.7 (continued): The m aternal transabdominal full cardiac cycles used to calculate the 
bispectrum of Figures 5.8-5.12. The ECG signals have been synthesised using an optimised 
third-order Volterra structure and only the linear part is retained. Segment I: predominantly 
maternal QRS-complex, segment II: the first fetal heartbeat with maternal contribution, segment 
lll:QRS-free ECG, and segment IV: the second fetal heartbeat with maternal contribution. The 
maternal cardiac cycle begins 50 msec before the R-wave and ends 50 msec before the next 
R-wave. The subjects are at the first stage of labour, 40 weeks gestation. The maternal cycle 
has 500 samples or more at a rate of 0.5 KHz. The third-order Volterra parameters are: filter 
length = 6, step-size parameters = 0.001, 0.0002, and 0.0004 for linear, quadratic and cubic 
parts, respectively, delay = 4. The LMF parameters are: filter length = 12, step-size parameter = 
0.004, delay = 6. (Code: 5, 9, 12, 16, 19).
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transabdominal ECG signals used to calculate the bispectrum of Figures 5.8 - 5.12, 

respectively. Figures 5.8 -  5.12 depict dual-band-pass filtered bispectra and their 

contours normalised to the maternal QRS-complex spectral peak for the 

transabdominally-measured ECG segments I, II, III, and IV. Segment I: predominantly 

maternal QRS-complex, segment II: the first fetal heartbeat with maternal contribution; 

segment III: QRS-free ECG, and segment IV: the second fetal heartbeat with maternal 

contribution. The dual-band-pass filter consists of two fifth-order Butterworth filters 

with cut-off frequencies of 10 Hz to 20 Hz, and 25 Hz to 40 Hz, respectively, a 

pass-band attenuation of 0.5 dB, and a stop-band attenuation larger than 70 dB. The 

sampling rate is 500 Hz. Optimised Kaiser weighting coefficients are used for the fetal 

and mother’s ECGs to enhance their spectral peaks at 30 Hz and 17 Hz, respectively. 

The Kaiser windows are centred at frequencies of 15 Hz, 16 Hz, 17 Hz, 18 Hz, and 

19 Hz for the mother’s QRS-complex, and at frequencies of 28 Hz, 29 Hz, 30 Hz, 

31 Hz, 32 Hz, 33 Hz, 34 Hz, 35 Hz, 36 Hz, 37 Hz, and 38 Hz for the fetal heartbeat.

Figure 5.8 (I) shows the maternal QRS-complex principal bispectral peaks and contours 

centred at the frequency pairs (15 Hz, 5 Hz) and (15 Hz, 20 Hz). These maternal 

frequency pairs with a frequency peak at 15 Hz deviate from the actual frequency of 

17 Hz [35, 107], which is due to the BIC bias. The maternal optimised Kaiser window 

centred at 15 Hz will help to detect this deviated peak. Figure 5.8 (II) shows the first 

fetal heartbeat principal bispectral peak and contours at the frequency pair 

(28 Hz, 13 Hz). The fetal frequency peak of 28 Hz deviates from the actual frequency of 

30 Hz [106], which is due to the BIC bias. The fetal optimised Kaiser window centred at 

28 Hz will help to detect this deviated peak. Figure 5.8 (III) shows the QRS-free ECG 

bispectral peaks and contours centred at the frequency pairs (28 Hz, 3 Hz) and 

(28 Hz, 15 Hz). Note that although the QRS-free ECG shares the same frequencies as 

the fetal heartbeat, the BIC bispectral peak of the QRS-free ECG is at approximately -30 

dB which is more than 15 dB lower than that of the first and second fetal heartbeats 

(depicted in Figure 5.8 II and IV, respectively). Figure 5.8 (IV) shows the second fetal 

heartbeat principal bispectral peak and contours centred at the frequency pair 

(28 Hz, 12 Hz). Again, the fetal frequency peak of 28 Hz deviates from the actual 

frequency of 30 Hz [106], which is due to the BIC bias. The fetal optimised Kaiser 

window centred at 28 Hz will help to detect this deviated peak.
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(IV) The bispectrum of the the second fetal heartbeat with maternal contribution 
Figure 5.8: Dual-band-pass filtered bispectra, Kaiser shaped window, (l.h.s.) and their 
contour maps normalised to the maternal QRS spectral peak (r.h.s.) for the 
transabdominally-measured ECG segments I, II, III, and IV shown in Fig. 5.7 (a).
Segment I: predominantly maternal QRS-complex, Segment II: the first fetal heartbeat 
with maternal contribution; Segment III: QRS-free ECG; and Segment IV: the second 
fetal heartbeat with maternal contribution. The dual band-pass filter consists of two fifth- 
order Butterworth filters with cut-off frequencies of 10 Hz to 20 Hz, and 25 Hz to 40 Hz, 
respectively, and a pass-band attenuation of 0.5 dB, a stop-band attenuation larger than 
50 dB. Some transabdominally-measured bispctral templates are shown in Figure 5.15 (a- 
d). The sampling rate is 500 Hz.(Code: 5-133).
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Figure 5.9: Dual-band-pass filtered bispectra, Kaiser shaped window, (l.h.s.) and their 
contour maps normalised to the maternal QRS spectral peak (r.h.s.) for the 
transabdominally-measured ECG segments I, II, III, and IV shown in Fig. 5.7 (b). 
Segment I: predominantly maternal QRS-complex, Segment II: the first fetal heartbeat 
with maternal contribution; Segment III: QRS-free ECG; and Segment IV: the second 
fetal heartbeat with maternal contribution. The dual band-pass filter consists of two 
fifth-order Butterworth filters with cut-off frequencies of 10 Hz to 20 Hz, and 25 Hz to 
40 Hz, respectively, and a pass-band attenuation of 0.5 dB, a stop-band attenuation 
larger than 50 dB. Some transabdominally-measured bispctral templates are shown in 
Figure 5.15 (a-d). The sampling rate is 500 Hz.(Code: 12-25).
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Figure 5.10:. Dual-band-pass filtered bispectra, Kaiser shaped window, (l.h.s.) and 
their contour maps normalised to the maternal QRS spectral peak (r.h.s.) for the 
transabdominally-measured ECG segments I, II, III, and IVshown in Fig. 5.7 (c). 
Segment I: predominantly maternal QRS-complex, Segment II: the first fetal heartbeat 
with maternal contribution; Segment III: QRS-free ECG; and Segment IV: the second 
fetal heartbeat with maternal contribution. The dual band-pass filter consists of two 
fifth-order Butterworth filters with cut-off frequencies of 10 Hz to 20 Hz, and 25 Hz to 
40 Hz, respectively, and a pass-band attenuation of 0.5 dB, a stop-band attenuation 
larger than 50 dB. Some transabdominally-measured bispctral templates are shown in 
Figure 5.15 (a-d). The sampling rate is 500 Hz. (Code: 9-14).
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Figure 5.11: Dual-band-pass filtered bispectra, Kaiser shaped window, (l.h.s.) and 
their contour maps normalised to the maternal QRS spectral peak (r.h.s.) for the 
transabdominally-measured ECG segments I, II, III, and IV shown in Fig. 5.7 (d). 
Segment I: predominantly maternal QRS-complex, Segment II: the first fetal heartbeat 
with maternal contribution; Segment III: QRS-free ECG; and Segment IV: the second 
fetal heartbeat with maternal contribution. The dual band-pass filter consists of two 
fifth-order Butterworth filters with cut-off frequencies of 10 Hz to 20 Hz, and 25 Hz to 
40 Hz, respectively, and a pass-band attenuation of 0.5 dB, a stop-band attenuation 
larger than 50 dB. Some transabdominally-measured bispctral templates are shown in 
Figure 5.15 (a-d). The sampling rate is 500 Hz.(Code: 16-2).
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Figure 5.12: Dual-band-pass filtered bispectra, Kaiser shaped window, (l.h.s.) and 
their contour maps normalised to the maternal QRS spectral peak (r.h.s.) for the 
transabdominally-measured ECG segments I, II, III, and IV shown in Fig. 5.7 (e). 
Segment I: predominantly maternal QRS-complex, Segment II: the first fetal heartbeat 
with maternal contribution; Segment III: QRS-free ECG; and Segment IV: the second 
fetal heartbeat with maternal contribution. The dual band-pass filter consists of two 
fifth-order Butterworth filters with cut-off frequencies of 10 Hz to 20 Hz, and 25 Hz to 
40 Hz, respectively, and a pass-band attenuation of 0.5 dB, a stop-band attenuation 
larger than 50 dB. Some transabdominally-measured bispctral templates are shown in 
Figure 5.15 (a-d). The sampling rate is 500 Hz.(Code: 19-2).

209



Chapter 5 BISPECTRUM CONTOURS

Figure 5.9 (I) shows the maternal QRS-complex principal bispectral peaks and contours 

centred at the frequency pairs (17 Hz, 2 Hz) and (17 Hz, 17 Hz). Figure 5.9 (II) shows 

the first fetal heartbeat principal bispectral peaks and contours at the frequency pairs 

(28 Hz, 3 Hz), (28 Hz, 17 Hz), and (28 Hz, 28 Hz). The three fetal frequency peaks of 

28 Hz deviate from the actual frequency of 30 Hz [106], which is due to the BIC bias. 

The fetal optimised Kaiser window centred at 28 Hz will help to detect this deviated 

peak. Figure 5.9 (III) shows the QRS-free ECG principal bispectral peak and contours 

centred at the frequency pair (30 Hz, 15 Hz). Note that although the BIC of the 

QRS-free ECG is close to the principal bispectral peak of the fetal, it is approximately at 

-21 dB which is 4 dB lower than that of the fetal. Figure 5.9 (IV) shows the second fetal 

heartbeat principal bispectral peaks and contours centred at the frequency pair 

(29 Hz, 29 Hz). Again, the fetal frequency peak of 29 Hz slightly deviates from the 

actual frequency of 30 Hz [106], which is due to the BIC bias. The fetal optimised 

Kaiser window centred at 29 Hz will help to detect this deviated peak.

Figure 5.10 (I) shows the maternal QRS-complex principal bispectral peaks and 

contours centred at the frequency pairs (18 Hz, 5 Hz) and (18 Hz, 16 Hz). These 

maternal frequency pairs with a frequency peak at 18 Hz slightly deviate from the actual 

frequency of 17 Hz [107], which is due to the BIC bias. The maternal optimised Kaiser 

window centred at 18 Hz will help to detect this deviated peak. Figure 5.10 (II) shows 

the first fetal heartbeat principal bispectral peaks and contours at the frequency pairs 

(30 Hz, 5 Hz), (30 Hz, 18 Hz), and (30 Hz, 30 Hz). The fetal optimised Kaiser window 

centred at 30 Hz will help to detect these peaks. Note that these peaks are sharper than 

those depicted in Figures 5.9 (II) and 5.10 (II). Figure 5.10 (III) shows the QRS-free 

ECG bispectral peak and contours centred at the frequency pair (27 Hz, 15 Hz). Note 

that the BIC of the QRS-free ECG is at approximately -12 dB which is 3 dB and 6 dB 

lower than that of the first and second fetal heartbeats, respectively. Figure 5.10 (IV) 

shows the second fetal heartbeat principal bispectral peak and contours centred at the 

frequency pairs (30 Hz, 5 Hz), and (30 Hz, 28 Hz). The fetal optimised Kaiser window 

centred at 30 Hz will help to detect these peaks.

Figure 5.11 (I) shows the maternal QRS-complex principal bispectral peak and contours 

centred at the frequency pairs (18 Hz, 5 Hz) and (18 Hz, 18 Hz). These maternal 

frequency pairs with a frequency peak at 18 Hz slightly deviate from the actual
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frequency of 17 Hz [107], which is due to the BIC bias. The maternal optimised Kaiser 

window centred at 18 Hz will help to detect this deviated peak. Figure 5.11 (II) shows 

the first fetal heartbeat principal bispectral peaks and contours at the frequency pairs 

(28 Hz, 5 Hz), (28 Hz, 17 Hz) and (28 Hz, 28 Hz). These three fetal frequency pairs 

with frequency peaks at 28 Hz slightly deviate from the actual frequency of 30 Hz [106], 

which is due to the BIC bias. The fetal optimised Kaiser window centred at 28 Hz will 

help to detect this deviated peak. Figure 5.11 (III) shows the QRS-free ECG bispectral 

peak and contours centred at the frequency pair (28 Hz, 15 Hz). Note that although the 

BIC of the QRS-free ECG is at the same frequency of the first fetal heartbeat but it is at 

approximately -23 dB which is 15 dB lower than that of the first fetal heartbeat and 

10 dB lower than that of the second fetal heartbeat, depicted in Figure 5.11 (IV). Note 

that both fetal heartbeats have bispectral peaks that are sharper than that of the QRS-free 

ECG segment. Figure 5.11 (IV) shows the second fetal heartbeat biaspectral peaks and 

contours centred at the frequency pairs (28 Hz, 5 Hz), and (28 Hz, 21 Hz). The two fetal 

frequency pairs with frequency peaks at 28 Hz slightly deviate from the actual frequency 

of 30 Hz [106], which is due to the BIC bias. The fetal optimised Kaiser window 

centred at 28 Hz will help to detect this deviated peak.

Figure 5.12 (I) shows the maternal QRS-complex principal bispectral peaks centred at 

the frequency pairs (16 Hz, 5 Hz) and (16 Hz, 19 Hz). These maternal frequency pairs 

with a frequency peak at 16 Hz slightly deviate from the actual frequency of 17 Hz 

[107], which is due to the BIC bias. The maternal optimised Kaiser window centred at 

16 Hz will help to detect this deviated peak. Figure 5.12 (II) shows the first fetal 

heartbeat principal bispectral peaks at the frequency pairs (29 Hz, 5 Hz) and 

(29 Hz, 30 Hz). These fetal frequency pairs with a frequency peak at 29 Hz slightly 

deviate from the actual frequency of 30 Hz [106], which is due to the BIC bias. The fetal 

optimised Kaiser window centred at 29 FIz will help to detect this deviated peak. 

Figure 5.12 (III) shows the QRS-free ECG bispectral principal peaks centred at the 

frequency pairs (20 Hz, 5 Hz) and (23 Hz, 20 Hz). Note that the BIC of the QRS-free 

ECG is at approximately -15 dB which is 5 dB lower than that of the first fetal heartbeat 

and 7dB lower than that of the second fetal heartbeat. Figure 5.12 (IV) shows the second 

fetal heartbeat principal bispectral peak centred at the frequency pair (30 Hz, 28 Hz). 

The fetal optimised Kaiser window centred at 30 Hz will help to detect this deviated 

peak.
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5.5.3 Estimation of the bispectral contour matching variance 

The variance of the BIC is defined as the expected value of the squared difference in 

frequency (in Hz) between the computed BIC of the 250 msec flag window of the 

transabdominal ECG signal and the computed BIC from the synchronised fetal scalp 

electrode ECG 250 msec window.

Varb E [(Bis(cO), CO2) Transabdominal Bis(CD), ©2) fetal scalp ] (5-8)

The above variance ranges from 0.47 -  3.3, average = 1.716, when calculated for

120.000 FHBs. The variance indicates the deviation of the frequency of the BIC (in Hz) 

of the transabdominal ECG signal from that of the fetal scalp electrode around 30 Hz.

5.6 The single-hidden-layer perceptron employing the back-propagation 

with momentum algorithm
As mentioned in Chapter Four, single-hidden-layer perceptron classifiers are trained in a 

supervised manner with the back-propagation algorithm which is based on the 

error-correction learning rule. The back-propagation algorithm provides a 

computationally efficient method for the training of the classifiers. The 

back-propagation algorithm is a first-order approximation of the steepest descent 

technique. It depends on the gradient of the instantaneous error surface in weight space. 

The algorithm is therefore stochastic in nature. It has a tendency to zigzag its way about 

the true direction to a minimum on the error surface. Consequently, it suffers from a 

slow convergence property. A momentum term is employed to speed up the 

performance of the algorithm. The classifier used here is exactly the same as that used in 

Section 4.5.

5.6.1 Optimisation of the parameters of the back-propagation algorithm

Figure 5.13 shows the effect of changing the learning rate (P), the momentum constant 

(a) and the middle layer size on the classification of the maternal QRS-complexes and 

the fetal heartbeats using the BIC template matching technique. The effect of changing 

the learning rate on the classification rate is shown in Figure 5.13 (a). Small values of 

P are not able to track the variations in the bispectral contours. For classification of the 

bispectral contours, P reaches its optimum value at 0.2. For values larger than 0.2, the
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a n d  (c) th e  m id d le  la y e r  s iz e  on  th e  c la s s if ic a tio n  ra te  o f  th e  m a te rn a l 
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h e a rtb e a ts  w ith  m a te rn a l c o n tr ib u tio n  s e g m e n ts  (r.h .s .) . D a ta  le n g th  2 5 0  m s e c . The  
o p tim is e d  p a ra m e te rs  fo r  th e  B IC  c la s s if ic a tio n  a re : le a rn in g  ra te  = 0 .2 , m o m e n tu m  

c o n s ta n t =  0 .2, a n d  m id d le - la y e r  s iz e  =  6 x 6 .  (C o d e : 5 -1 -1 0 0 ).
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output values are too large so that the difference with respect to the reference signal 

(template) will increase. This leads to larger error that will be fed back to the network, 

which will lead to slower convergence. The network will take long time to converge, or 

it might not converge at all. The optimum value of the momentum constant is found to 

be 0.2, as depicted in Figure 5.13 (b). Smaller values are not enough to push the 

adaptations to avoid local minima. While larger values tend to affect the routine 

detrimentally by bypassing the global minimum. The performance deteriorates 

significantly as the learning rate and the momentum constant diverge from their 

optimum values. The number and size of the middle layers were investigated by trial 

and error. There is a trade off between networks that should be small enough to allow 

faster implementation, and larger networks in size and number of hidden layers which 

are very slow and can not be implemented on-line using the current technology. Large 

networks could have complex relationships that represent non-linearities that might not 

exist in the real signals at all. The optimum parameters indicated in Figure 5.13 are 

calculated without considering the CPU time factor which might render those 

parameters undesirable for real-time applications. The CPU time for training is in the 

range of 17 to 60 sec. The average mean-squared error (MSE) is 0.04. The worst error is 

0.1, which is the criterion for convergence. The implemented neural network has a 

single middle layer size of 6 x 6 as shown in Figure 5.13 (c). The number of passes 

(epochs) required for training varied from 6 to 14.

5.6.2 Bispectral contour template matching of the trabsabdominal maternal 

QRS-complex and fetal heartbeat to the previously identified and prepared 

templates

In this section we show how effective the bispectral contour template matching 

technique works with only 10 templates of maternal transabdominal QRS-complexes 

and 20 templates of fetal heartbeats with maternal contribution. A flowchart of the 

bispectral contour template matching technique is given in Figure 5.14. Figures 5.15 (a) 

-  (d) are self explanatory. Each part of the figure shows one of the four transabdominal 

ECG segments (data length 250 msec) and three of the corresponding templates used for 

matching, and highlighting the template that was matched to the segment. An optimised 

third-order Volterra structure is employed to synthesise the four segments and the 

corresponding templates. Figure 5.15 (a) depicts the bispectral contour for the
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Figure 5.14: A flowchart for the second hybrid system for non-lnvasive fetal heartbeat detection 
using bispectral contours for signal processing and single-hidden-layer perceptron classification.
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Figure 5.15 (a): Dual-band-pass filtered bispectral contours, Kaiser shaped window, for a typical example of a transabdomlnally-measured 
predominantly maternal QRS-complex segment using the second hybrid system. The top left hand part of the figure depicts the bispectral 
contour for the predominantly maternal QRS-complex segment. The rest of the figure shows three of the ten templates of such signals. 
Template 1, at the top right hand part of the figure, is the one which is matched to the segment. The parameters of the single-hidden layer 
perceptron classifier are: learning rate = 0.20, moment constant = 0.2, and middle layer size is 6x6.  The bispectrum is computed using the 
indirect method. Optimised Kaiser windows centred at frequencies of 15 Hz, 16 Hz, 17 Hz, 18 Hz, and 19 Hz for the mother’s QRS-complex are 
used. The dual-band-pass filter consists of two fifth-order Butterworth filters with cut-off frequencies of 10 Hz to 20 Hz, and 25 Hz to 40 Hz, 
respectively, and a pass-band attenuation of 0.5 dB, a stop-band attenuation larger than 70 dB.
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Figure 5.15 (b): Dual-band-pass filtered bispectral contours, Kaiser shaped window, for a typical example of a transabdominally-measured 
first fetal heartbeat with maternal contribution segment using the second hybrid system. The top left hand part of the figure depicts the 
bispectral contour for the first fetal heartbeat with maternal contribution segment. The rest of the figure shows three of the ten templates of such 
signals. Template 1, at the top right hand part of the figure, is the one which is matched to the segment. The parameters of the classifier are: 
learning rate = 0.20, moment constant = 0.20, and middle layer size is 6x6.  The bispectrum is computed using the indirect method. Optimised 
Kaiser windows centred at frequencies of 28 Hz, 29 Hz, 30 Hz, 31 Hz, 32 Hz, 33 Hz, 34 Hz, 35 Hz, 36 Hz, 37 Hz, and 38 Hz for the fetal 
heartbeat are used. The dual-band-pass filter consists of two fifth-order Butterworth filters with cut-off frequencies of 10 Hz to 20 Hz, and 25 Hz 
to 40 Hz, respectively, and a pass-band attenuation of 0.5 dB, a stop-band attenuation larger than 70 dB.
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Figure 5.15(c) : Dual-band-pass filtered bispectral contours, Kaiser shaped window, for a typical example of a transabdominally-measure 
QRS-free ECG segment using the second hybrid system. The top left hand part of the figure depicts the bispectral contour for a QRS-free ECG 
segment. The rest of the figure shows three of the ten templates of such signals. Template 1, at the top right hand part of the figure, is the one 
which is matched to the segment. The parameters of the classifier are: learning rate = 0.20, moment constant = 0.20, and middle layer size is 6 
x 6. The bispectrum is computed using the indirect method. Optimised Kaiser windows centred at frequencies of 28 Hz, 29 Hz,
30 Hz, 31 Hz, 32 Hz, 33 Hz, 34 Hz, 35 Hz, 36 Hz, 37 Hz, and 38 Hz are used. The dual-band-pass filter consists of two fifth-order Butterworth 
filters with cut-off frequencies of 10 Hz to 20 Hz, and 25 Hz to 40 Hz, respectively, and a pass-band attenuation of 0.5 dB, a stop-band 
attenuation larger than 70 dB.
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Figure 5.15 (d): Dual-band-pass filtered bispectral contour, Kaiser shaped window, for a typical example of a transabdominally-measured 
second fetal heartbeat with maternal contribution segment using the second hybrid system. The top left hand part of the figure depicts the 
bispectral contour for the second fetal heartbeat with maternal contribution. The rest of the figure shows three of the ten templates of such 
signals. Template 1, at the top right hand part of the figure, is the one which is matched to the segment. The parameters of the classifier are: 
learning rate = 0.20, moment constant = 0.20, and middle layer size is 6x6.  The bispectrum is computed using the indirect method. Optimised 
Kaiser windows centred at frequencies of 28 Hz, 29 Hz, 30 Hz, 31 Hz, 32 Hz, 33 Hz, 34 Hz, 35 Hz, 36 Hz, 37 Hz, and 38 Hz for the fetal 
heartbeat are used. The dual-band-pass filter consists of two fifth-order Butterworth filters with cut-off frequencies of 10 Hz to 20 Hz, and 25 Hz 
to 40 Hz, respectively, and a pass-band attenuation of 0.5 dB, a stop-band attenuation larger than 70 dB.
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predominantly maternal QRS-complex segment (top left panel). The rest of the figure 

shows three of the ten templates of such signals. Template 1 is the one which is matched 

to the segment (top right panel). Figure 5.15 (b) depicts the bispectral contour for the 

first fetal heartbeat with maternal contribution segment (top left panel). The rest of the 

figure shows three of the ten templates of such signals. Template 1 is the one which is 

matched to the segment (top right panel). Figure 5.15 (c) depicts the bispectral contour 

for a QRS-free ECG segment (top left panel). The rest of the figure shows three of the 

ten templates of such signals. Template 1 is the one which is matched to the segment 

(top right panel). Figure 5.15 (d) depicts the bispectral contour for the second fetal 

heartbeat with maternal contribution segment (top left panel). The rest of the figure 

shows three of the ten templates of such signals. Template 1 is the one which is matched 

to the segment (top right panel).

The classification of the four segments involves a pattem-by-pattern updating rather 

than batch updating for the weight adjustments. This is more suitable to speed up the 

performance. Pattern-by-pattern updating tends to be orders of magnitude faster than 

batch updating. However, it should be noted that pattem-by-pattem updating is harder to 

parallelise.

5.6.3 The maternal QRS-complex and the fetal heartbeat Classification rates

5.6.3.1 The maternal QRS-complex classification rate

Table 5.1 shows a top classification rate of 100% for maternal QRS-complexes using 

bispectral contours for signal processing and single-hidden-layer perceptron 

classification. The 100% maternal QRS-complex classification rate has been achievable 

with or without linearisation. It makes no difference to the results. However, to 

complete this section a brief description of the optimised parameters required for the 

linearisation process will be given.

To calculate the maternal heart rate an auxiliary method to pinpoint the R-wave is 

needed. For this application we have a choice of either using the superior patent binding 

technique [105] or adaptive thresholding which is less accurate when one deals with 

deformed QRS-complexes in heart patients. The results presented here have been
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obtained using the latter method since all mothers’ ECGs exhibit normal-to-the-patient 

QRS-complexes. The instantaneous maternal heart rate is calculated by dividing 60 by

Spectral matching template in 

conjunction with ANN classifiers

The power 

spectrum

The bispectrum 

contours

Classification rate 99.84 100.00

Table 5.1: The classification rate for the maternal QRS-complex using maternal 

transabdominally-measured ECGs and their respective power spectrum and bispectral contours.

the R-to-R interval (in seconds). The application of this auxiliary routine leads to a 

maternal heart rate with an accuracy of 99.85%.

Parameters

The second-order Volterra parameters are: filter length = 6, step-size parameters = 

0.005, and 0.0004 for linear and quadratic parts, respectively, delay = 3. The 

third-order Volterra parameters are: filter length = 6, step-size parameters = 0.001, 

0.0002, and 0.0004 for linear, quadratic and cubic parts, respectively, delay = 4. 

A dual-band-pass filter is applied to the bispectrum, the first has a band-pass of 10 Hz 

to 20 Hz and the second has a band-pass of 25 Hz to 40 Hz. Optimised Kaiser windows 

centred at frequencies of 15 Hz, 16 Hz, 17 Hz, 18 Hz, and 19 Hz for the mother’s 

spectrum, and at frequencies of 28 Hz, 29 Hz, 30 Hz, 31 Hz, 32 Hz, 33 Hz, 34 Hz, 

35 Hz, 36 Hz, 37 Hz, and 38 Hz for the fetal spectrum are used in both the power 

spectrum and the B1C.

5.6.3.2 Fetal heartbeat detection quality and classification rate for the bispectral 

contour template matching technique

Before attempting to assess the second hybrid technique for non-invasive fetal heartbeat 

detection some definitions are appropriate here:

Definitions

1- The Sensitivity (Se) is defined as the ratio of the True Positives (TP) to the sum of the 

True Positives and the False Negatives (FN). The sensitivity reports the percentage 

of true beats that are correctly classified by the algorithm.

2- The Specificity (Sp) is defined as the ratio of the True Positives (TP) to the sum of
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the True Positives (TP) and the False Positives (FP). It reports the percentage of 

classified heartbeats which are in reality true beats.

3- The classification rate: The mean value of the sensitivity and the specificity is used as 

the criterion for the effectiveness of the technique.

Table 5.2 summarises the results of the fetal heartbeat detection using the power 

spectrum method (second-order statistics), and the bispectrum contour template 

matching technique. In this section, optimised adaptive LMF-based second- and 

third-order Volterra synthesisers are employed.

The power spectrum method has a classification rate of 71.47%. By using the second 

hybrid system the classification rate increased to 87.72% without linearisation, and to 

88.28% and 90.12% using second- and third-order Volterra synthesisers with LMF

Spectral matching template 

type with and without 
linearisation using Volterra 

and in conjunction with 

ANN classifiers

Detection quality Classification

rate

(%)
Se

(%)

Sp

(%)

FP, 

out of 

120000

FN, 

out of 

120000

Power spectrum with 

linearisation

71.29 71.44 34272 34537 71.37

Bispectral contour without 

linearisation

87.97 87.46 15048 14436 87.72

Linearised bispectral contour 

using 2nd order adaptive LMF 

Volterra synthesiser

88.53 88.04 14352 13764 88.28

Linearised bispectral contour 

using 3rd order adaptive LMF 

Volterra synthesiser

90.53 89.73 12324 11364 90.12

Table 5.2: Fetal heart detection quality and classification rate using transabdominally-measured 
ECG and their respective power spectrum and bispectral contours with and without linearisation. 

The total number of fetal heartbeats is 120,000 and the total number of maternal ECG 
recordings is 30. The performance was assessed against synchronised fetal scalp heartbeats. 

Ail mothers were during the first stage of labour at 40 weeks of gestation.
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update, respectively. The second hybrid method has an improvement of 19% and 4% in 

the classification rate over and above that achieved with the second-order statistics and 

the TOC template matching technique, respectively. Note that the classification rate of 

the coincident mother’s and fetal QRS-complexes is 0%. The classification rate of non-

coincident mother’s and fetal QRS-complexes is 99.21%.

Parameters

The second-order Volterra parameters are: filter length = 6, step-size parameters = 

0.005, and 0.0004 for linear and quadratic parts, respectively, delay = 5. The 

third-order Volterra parameters are: filter length = 6, step-size parameters = 0.001, 

0.0002, and 0.0004 for linear, quadratic and cubic parts, respectively, delay = 5. 

A dual-band-pass filter is applied to the bispectrum, the first has a band-pass of 10 Hz 

to 20 Hz and the second has a band-pass of 25 Hz to 40 Hz. Optimised Kaiser windows 

centred at frequencies of 15 Hz, 16 Hz, 17 Hz, 18 Hz, and 19 Hz for the mother’s 

spectrum, and at frequencies of 28 Hz, 29 Hz, 30 Hz, 31 Hz, 32 Hz, 33 Hz, 34 Hz, 

35 Hz, 36 Hz, 37 Hz, and 38 Hz for the fetal spectrum are used in both the power 

spectrum and the BIC.

5.7 Summary and conclusions

General discussions
The hybrid bispectral contour matching technique is an extension to the hybrid cumulant 

matching technique presented in the previous chapter. Therefore, the choice of the NN 

classifier is based on the general discussion presented previously. Prior information 

remain as valuable assets and are very much exploited herein. It is the matching of the 

horizontal 2-d bispectral contours that has been used in the BIC template matching 

technique instead of the 1-d polar bispectral slices. Because in order to use the 1-d polar 

bispectrum slices effectively, one needs to use a minimum of 24 polar slices to facilitate 

capturing the most rapid changes in the bispectrum including null features that could be 

used as discriminant patterns. Whereas for BIC contours, provided that they are 

horizontally cut at a maximum number of 1 0  levels, a good quality discriminant picture 

can be made available for the neural network classifier. For example, it is very unlikely 

that maxima and troughs are missed because of any changes in their respective 

positions.
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Approximately 50,000 maternal cardiac cycles have been included in the analysis. The 

numbers of bispectral contours compound templates are 1 0  for the maternal chest, 1 0  for 

the fetal scalp, and 140 for the transabdominally-measured 250 msec segments, 

respectively. Each bispectral compound template is made of 10 horizontal templates at 

different levels. Starting from a normalised 0 dB and going down in steps of 1 dB each 

to a -  10 dB.

The maternal transabdominal ECG signal is linearised using an optimised LMF-based 

second- or third-order Volterra synthesiser. The second-order Volterra synthesiser 

parameters are: filter length = 6 , step-size parameters = 0.005, and 0.0004 for linear and 

quadratic parts, respectively, delay -  5. The third-order Volterra synthesiser parameters 

are: filter length = 6 , step-size parameters = 0.001, 0.0002, and 0.0004 for linear, 

quadratic and cubic parts, respectively, delay = 5. The transabdominal ECG signal is 

segmented into four segments containing; (I) The maternal QRS-complex, (II) the first 

fetal heartbeat with maternal contribution, (III) QRS-free ECG, and (IV) the second fetal 

heartbeat with maternal contribution. To segment the transabdominal ECG signals, the 

window length is carefully chosen to; (i) Yield an acceptable upper threshold of both the 

deterministic and stochastic noise types inherent in the higher-order statistics of the 

ECG signals encountered, and (ii) allow the detection of one, two, three, or four fetal 

heartbeats (FHBs) within one maternal transabdominal cardiac cycle.

The classification procedure starts by matching the bispectral contours of the segments 

to those of the templates until the first and the second mother’s QRS-complexes are 

detected and their R-waves are pinpointed. The maternal heart rate is accurately 

calculated from the knowledge of the current and previous R-wave positions. Then, the 

search for the fetal heartbeat starts at 50 msec before the first maternal R-wave and 

continues until we reach the second maternal R-wave. Although the ECG bispectral 

contour template matching technique is very effective in detecting the occurrence of the 

fetal heartbeats as a whole in the frequency domain even when it is completely buried in 

noise, it cannot locate the R-wave in the time domain over a window length of 

250 msec. However, we can measure fairly accurately the maternal heartbeats and 

calculate the instantaneous heart rate for the mother. Hence, by counting the number of 

fetal heartbeats that have occurred between two successive maternal R-waves, one can 

easily calculate the averaged FHR within the maternal cardiac cycle;
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The average FHR = MHR x Number of FHBs / number of maternal heartbeats

In the above formula, the instantaneous maternal heart rate is previously known with 

some degree of accuracy, and the relative fetal to maternal heartbeat is also known 

within the maternal cardiac cycle. Hence, the averaged fetal heart rate can be calculated 

within each maternal cardiac cycle.

Detailed results
1. The effect of window length on the bispectral contour variance

The variance of the bispectrum for the optimum window length of 250 msec with FHB 

occurrence ranges from 0.47 to 3.3 with an average value of 1.716. Note that the 

variance of the bi spectrum is smaller than that of the third-order cumulants. A further 

15% increase in the variance of the bispectrum is due to an increase in the maternal 

heartbeat from 60 bpm to 100 bpm. The latter has resulted in an 30% decrease in 

segment size.

2. Parameters of the single-hidden layer perceptron

The network has been optimised in terms of its learning rate, momentum constant, and 

hidden layer size to achieve the minimum mean-squared error. The optimum learning 

rate is found to be 0.2. The optimum momentum constant is found to be 0.2. The single- 

hidden-layer has an optimum dimension of 6  x 6 . The input to the first layer is the 

bispectral contours of the four transabdominally-measured ECG segments. The network 

is trained using the BIC templates. During the training phase, the input to the network is 

four template patterns. These are the BIC of four segments from one transabdominal 

cardiac cycle. For example the first is the maternal QRS-complex BIC, the second is the 

first fetal heartbeat BIC, the third is the QRS-free ECG BIC, and the fourth is the second 

fetal heartbeat BIC. The network is trained over ten templates of each of the four 

segments. The training terminates when the worst error in all patterns in one pass is less 

than 0.1. Typically the average error will be in the range of 0.001.

3. The classification rate for maternal QRS-complex and fetal heartbeat 

segments

Results obtained from 30 cases using the non-invasive transabdominally-measured ECG 

signal, with the simultaneous fetal scalp electrode ECG signal as a reference, show that
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the second hybrid method has a classification rate of 1 0 0 % for normal, healthy maternal 

QRS-complexes and 90.12% for fetal heartbeats. It has been shown that an 

improvement of 1% to 3% is attainable with ECG signal linearisation employing 

second- and third-order Volterra synthesisers, respectively. Conventional methods 

(based on the power spectrum) of fetal heartbeat detection have a success rate in the 

range of 70%. The second hybrid system has a significantly higher classification rate.

The classification rate of fetal heartbeats for non-coincident mother’s and fetal 

QRS-complexes is 99.21%. The classification rate of fetal heartbeats for coincident 

mother’s and fetal QRS-complexes is 0%. This means that the hybrid bispectral 

contours technique fails to resolve the fetal beat when both the mother and fetal 

QRS-complexes are synchronised.

The bispectral contour template matching technique improved the classification rate by 

approximately 4% over and above that of the third-order cumulant template matching 

technique. The difference in performance is not due to better resolvability of the latter 

over the former in the case of coincident mother’s and fetal QRS-complexes, as both 

techniques fail in this respect. But, it is due to the fact that the BIC template matching 

technique can resolve a few of the fetal QRS-complexes occurring within the T-wave 

region of the mother.
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CHAPTER SIX

MODIFIED SPECTRAL MUSIC WITH WEIGHTED 

SUBSPACES AND INCORPORATED
COVARIANCE MATRIX FOR COMBINED UTERINE 

CONTRACTION AND NOISE ARTEFACT

6.1 Introduction

6.1.1 Aim

Presented in this Chapter is the third and most successful FFIR detection technique. It is 

aimed at enhancing the spectral resolution of characteristic peaks uniquely identifying 

individual ECG signals contained in the transabdominally-measured data, namely, the 

QRS-complexes of the mother and the fetal. It is based, in the first instance, on 

partitioning two subspaces; the first subspace contains the ECG signal bearing the 

mother and fetal, and the second orthogonal subspace contains the uterine contraction 

interference signal (UCS) plus noise. This is reminiscent of, but more superior to, the 

conventional multiple signal classification (MUSIC) spectral estimator which exploits 

the orthogonality between the signal and noise subspaces provided that the noise is 

additive white Gaussian. In this new version of modified spectral MUSIC, subsequent 

separation of the mother and fetal QRS-complexes is performed in their shared signal 

subspace.

6.1.2 How is the separation of the coexisting or non-coexisting mother’s and 

fetal QRS-complexes performed?

The spectral content of the mother’s QRS-complex and that of the fetus are different and 

indeed unique. The mother’s QRS-complex principal spectral peak is found around 

17 Hz, and the fetal QRS-complex principal spectral peak is found around 30 Hz.
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Accordingly, such individual spectral content can be exploited herewith in the 

identification and detection of either signal within the maternal cardiac cycle. The 

Kaiser filtered weighted MUSIC previously published algorithm has been devoted to 

identifying in the frequency domain anomalous QRS-complexes and P-waves such as 

P-on-T-waves and P-on-QRS-complex episodes for adult patients [37], However, for 

FHR detection in labour one has to overcome two major problems in the 

transabdominally-measured ECG data, namely, poor signal spectral resolution and the 

influence of the coexisting labour contraction signals* [62] which not only exhibit a 

fairly broad spectrum, but also are uniquely characterised by having localised energy 

resonances, one of which is seriously overlapping with the fetal distinctive strong peaks 

which will be used as the fetal spike event. The fetal heartbeat detection is accomplished 

by thresholding the enhanced fetal spikes in the frequency domain. The most 

challenging problem is, therefore, not only to enhance the quality and resolution of the 

mother and fetal QRS-complexes’ principal pseudo-spectral peaks, abbreviated as 

MPPP and FPPP, respectively, but also to nudge the uterine contraction interference 

signals (UCS) plus noise into a separate subspace which will be named the interference 

subspace (I-subspace), whereby orthogonalisation is forced between the I-subspace and 

the signal subspace (S-subspace) containing both the mother and / or the fetal QRS 

signature imprints.

At this juncture of time, it is worth writing a statement or two about the meaning of 

windowed data in the literature [79], Starting with a scalar-valued process, it is 

well-known that subspace-based identification of sinusoidal frequencies is possible if 

the scalar-valued data is windowed to form a low-rank vector-valued process. 

MUSIC- and ESPRIT-like estimators have, for some time, been applied to this vector 

model. The rank properties of certain weighting functions and residual covariance 

matrices were left as an open question in [37]. The statistical properties of subspace 

methods when applied to windowed (or weighted) data models are inevitably different 

from models where the low-rank structure is physically present in the system (such as an 

antenna array in directional finding applications). In this chapter, the so called temporal

* Labour contractions behave like deterministic, non-linear, and chaotic signals when considered 

over a sufficiently long data sample of almost 10 sec or longer [62]. However, for an 

250 msec segment they exhibit noise-like characteristics.
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window is restricted to 250 msec and is not aimed at a specific rank reduction (as 

sometimes referred to in the literature as an optimum window). Following this brief 

discussion, it has been decided not to attempt to answer the effect of the rank properties 

of the Kaiser weighted MUSIC.

In this thesis, the Kaiser filter weights are applied to each of the 250 msec window 

(segment) and the weights are optimised to enhance the principal peaks of either 

QRS-complex in their respective temporal domains.

In pursuing separation of signals and interference signals, or signals and noise, two 

auxiliary methods have been used based on the concepts of oriented energy and 

signal-to-signal ratio, and the Gram-Schmidt orthogonalisation. This is done in 

addition to the MUSIC well established Generalised Singular Value Decomposition 

(GSVD) which deals with partitioning signal and coloured noise (as opposed to 

Gaussian noise) subspaces.

6.1.3 What distinguishes this subspace-based technique from the previously 

published subspace-based technique for adults [37]?

The novelty of this technique rests on its dealing with the UCS during the strong and 

most painful peaks of labour contractions which are, apart from their noise-like 

characteristics, heavily contaminated with other noise artefact. To pave the way for the 

studies based on this technique, it is prudent to discuss the relevant issues. This is done 

in the following sections. Before we proceed with such issues it is convenient to provide 

a layout of this chapter.

6.1.4 Layout of the Chapter

Section 6.2 provides discussions of some relevant issues. These issues include the role 

of ECG linearisation and the issue of coincident mother and fetal QRS-complexes. 

Section 6.3 addresses some problems associated with mother and fetal spectral 

resolution in a labour environment, and the proposed solutions. Section 6.4 reviews 

some relevant previous studies that paved the way for the development of the new 

technique. Section 6.5 presents a detailed statement of research. It describes a particular 

class of modified MUSIC, namely, the sequentially optimised and weighted spectral 

MUSIC algorithm, also involving a reconfigured interference plus noise subspace to
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incorporate the modified covariance matrix of the uterine activity in such a spectral 

estimator. For convenience, the mathematical formulation of the conventional MUSIC is 

presented in Section 6 .6 . Section 6.7 is devoted to the mathematical formulation of the 

new class of MUSIC, and deals with the incorporation of the modified covariance 

matrix of the linearised non-Gaussian uterine contraction interference signal (UCS) in 

the sequentially optimised and weighted MUSIC. Also, the concepts of oriented energy 

and signal-to-signal ratio, and the alternative projection method of Gram-Schmidt 

orthogonalisation are then briefly described. Results are detailed in Section 6 .8 . 

Summary and conclusions are given in Section 6.9.

6.2 Discussions of relevant issues

6.2.1 The role of linearisation in FHR applications confined to this thesis 

The two novel hybrid techniques presented in Chapters Four and Five exploit the 

Gaussian-free TOC and BIC unique signatures of individual mother’s and fetal 

QRS-complex templates. The QRS higher-order statistics signature templates are then 

incorporated in the memory of an LMS-based classifier in order to obtain high fetal 

heartbeat classification rates of the incoming TOCs or BICs of the 

transabdominally-measured ECG signals that contain the mother’s QRS, or the fetal 

QRS, or both QRSs. Therefore, placing both the TOC-based and the BIC-based 

techniques in the same conceptual hybrid framework which combines both signal 

processing and neural network classification. The classification rates for the hybrid 

TOC-based and the hybrid BIC-based FHR techniques are 86.16% and 90.12%, 

respectively. The difference in performance is not due to better resolvability of the latter 

in the frequency domain over the former in the time domain when dealing with episodes 

of coincident mother and fetal QRS-complexes, as both techniques fail in this respect. 

Rather, it is due to the fact that the BIC technique can resolve a few of fetal 

QRS-complexes occurring within the T-wave region of the mother. Unfortunately, the 

non-linear transabdominally-measured ECG signals are always contaminated by the 

non-linear labour uterine contraction interference signals (UCS) and some non-linear 

noise, and this renders their HOS representatives as distorted candidates which makes 

difficult the matching between the HOS templates and the transabdominal ECG 

components, namely, the mother and fetal QRS-complexes. The HOS templates created 

from measuring the mother’s chest ECG and the fetal scalp electrode ECG databases are
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themselves non-linear and must be linearised alongside with their transabdominal 

counterparts before incorporating them in the classifiers. They are, however, not as 

much influenced by uterine contraction and other artefacts associated with the 

transabdominally-measured counterparts. Linearisation is, therefore, of crucial 

importance in the signal processing phase of all the above mentioned ECG signals. 

Linearisation is performed by means of synthesising the non-linearity of all ECG 

signals; the mother’s chest (template), the fetal scalp electrode (template), and the 

transabdominally-measured with noise, into their quadratic and cubic components using 

adaptive LMS-based Volterra filters (see Figure 2.1). Only the linear components are 

retained for further processing. By removing the non-linearity from the ECG signals, we 

are left with the linear* non-Gaussian TOC and BIC. This minimises non-linear 

sourced distortions and in general improves the quality of the HOS representative 

templates and drastically improves the fetal heart detection rates during labour. There is 

a set of allowable deformation of the HOS templates due to morphological variations** 

and non-Gaussian noise artefact.

6.2.2 Coincident mother and fetal QRS-complexes

The mother and fetal QRS-complexes often coincide making it impossible to separate 

them using any time-domain-based technique. Even with the higher-order statistics 

TOC, as reported earlier, there is a 13.8% failure rate due to 9.8% mother QRS and fetal 

QRS coincidences, and 4% fetal QRS and maternal T-wave coincidences. The BIC 

failure rate of 9.8% is purely due to mother QRS and fetal QRS coincidences as there is 

a shortcoming in acquiring sufficiently high resolution to separate the bispectral peaks 

of the mother and fetal QRS-complexes. The overlapping of the fetal QRSs and the 

maternal T-waves can be resolved by the BIC template matching technique. The above 

percentages of QRS-complex coincident episodes have been found in the 50,000 

maternal heartbeat database. The alternative is to try to resolve them in the

* The ECG quadratic and cubic components and their HOS have been used in other studies beyond the 

scope of this thesis [39-40],

** When sets of HOS templates are created from the mother’s chest ECG signals and the fetal scalp 

electrode ECG signals, certain deformations are allowed to cater for morphological variations in 

each ECG recordings, which may not be obvious to the discerning eye, and certainly does not affect 

the performance of the QRS neural network classifiers. This is done by randomly selecting 

QRS-complexes over the first few cardiac cycles.
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frequency-domain. More detailed analyses are given in Section 6.3.5. The modified 

spectral MUSIC, which is the subject of this Chapter, is motivated, at least in part, by 

the shortcoming of all other techniques to detect FHBs when masked by the mother’s 

QRS-complex. The other motivation is to combat interference and noise using only 

second-order statistics. The following sections are designed to promote awareness of the 

problems and solutions encountered in the implementation of the third and most 

successful FHB detection technique.

6.3 Specific problems associated with mother and fetal spectral resolution 

in a labour environment, and solutions
6.3.1 The New tailored subspace-based spectral estimation of mother’s and 

fetal QRS-complexes during labour

Now, we seek to exploit a multiple signal classification (MUSIC) methodology which 

incorporates a tailor-made subspace fitting for individual QRS spectral signatures based 

on a priori information. In a simplified term, if we ignore the influence of the uterine 

contraction interference signals for a moment, the technique is based on weighting the 

covariance matrix of the transabdominally-measured signals, which in turn uniquely 

modifies the signal and noise subspaces with the view that this will enhance and retain 

only those terms (eigenvectors) that result in the mother QRS principal pseudo-spectral 

peak at 17 Hz, or if we wish, the fetal QRS principal pseudo-spectral peak at 30 Hz as 

depicted in Figure 6.1 (not at the same time). This figure has been brought forward 

prematurely from Section 6 . 8  in order to visualise the important spectral characteristics 

of the mother and fetal and appreciate the difference between their spectral contents. In 

essence, one could say that, in the absence of uterine contraction interference signals 

and assuming white Gaussian noise* presence, this is a specially** weighted 

MUSIC-like technique. It will be recognised in the following sections that, both the 

signal and noise subspaces will have been modified or reconfigured by two tailor-made 

weighting Kaiser functions, one is aimed at enhancing the mother QRS spectral peak 

and the other is aimed at enhancing the fetal QRS spectral peak. Obviously, the two

* Most MUSIC-based estimation techniques require the additive noise to be white and Gaussian.

** The tailor-made weighting function is the Kaiser filter [7] which has been used in all our ECG 

analysis over the last decade [37-38, 40-42], For further information, see Appendix A6 and 

Figures 5.15 (a-d).

241



Chapter 6 MODIFIED SPECTRAL MUSIC

MUSIC
Pseudo-
spectral
peaks
(dB)

17 Hz
Frequency (Hz)

Figure 6.1: Normalised specially weighted MUSIC-like pseudo-spectrum for fetal scalp 
electrode, and maternal chest full cardiac cycles. Optimised Kaiser weighting coefficients are 
used for the fetal and mother ECGs to enhance their spectral peaks at 30 Hz and 17 Hz, 
respectively. The maternal cardiac cycle begins 50 msec before the R-wave and ends 50 msec 
before the next R-wave. The subject is at end of term, 40 weeks. Model order is 11 and 4, 
respectively, for the signal and noise subspaces. (Code: 5-1).
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Kaiser weighting functions will be applied sequentially as the same data segment is 

scanned twice. Again, this technique detects the fetal heartbeat in an 250-msec flag 

window by thresholding the resultant principal pseudo-spectral peak (FPPP) in the 

frequency domain, counts the number of beats in every maternal cardiac cycle, and 

computes the averaged FHR per maternal cycle. The computer algorithm has to first 

pinpoint two successive R-waves of the mother’s QRS-complexes, and then divides the 

cardiac cycle into four segments 250 msec each, starting with a reference point 

approximately 50 msec before the first R-wave and ends at 50 msec before the second 

R-wave. Dr. Sabry-Rizk and Mr Zgallai have devised a very accurate adult 

QRS-complex detection scheme. Since the mother’s QRS segment is scanned twice 

“sequentially” to establish the fetal presence, it may be prudent to use parallel signal 

processing and divide the input data into two streams in order to achieve simultaneous 

scanning and weighted MUSIC processing, each with different Kaiser weighting 

functions. The problem of synchronisation can be solved by allowing for a certain lag of 

around 20 psec (using Unix WS) which counts for the difference between computing 

times of the Kaiser weighted mother’s and fetal pseudo-spectral patterns and additional 

signal processing. The time allocated to the former is devoted to the identification of the 

maternal QRS-complex in the frequency domain and subsequent pinpointing of the 

R-wave in the time domain within the 250-msec segment, using a sophisticated 

technique [72] which permits very accurate instantaneous MHR. The time allocated to 

the latter is devoted to the identification of the fetal QRS-complex in the frequency 

domain and thresholding of the fetal principal peak (FPPP). The fetal R-wave cannot be 

pinpointed in the time domain because the fetal QRS-complex is usually buried under 

noise and motion artefact and it is rather difficult to detect. Therefore, the presence of 

the fetal is blindly registered over the entire 250-msec flag window. For a fixed window 

length of 250 msec, the fetal CPU time required for the above mentioned operations is 

less than the mother CPU time by 20 psec using Unix WS. The algorithm is limited to 

identifying and registering each fetal heartbeat occurrence within the flag window and 

counting the number of FHBs within each maternal cardiac cycle. Therefore, the fetal 

heart rate will not be instantaneous, instead it will be related to the mother heart rate, 

which can be as accurate as 99.85% [72], for each individual maternal cardiac cycle.

Essentially, this subspace-based technique depends on a priori information of the 

mother and fetal spectral content particularly the characteristics and allocations of their
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respective principal peaks and, therefore, requires initial familiarisation with the 

dominant spectral features of the following ECG signals’ template databases; (a) the 

mother’s chest, (b) the fetal scalp electrode, (c) the uterine contraction interference 

signals, and (d) noise artefact. Unlike the two HOS-based techniques described in the 

previous chapters, the spectral templates will not be required in the fetal identification 

process, rather they are merely used to observe possible spectral variations in adults and 

fetals and to implement a multiple overlapping window structure in the frequency 

domain for each of the fetal and mother principal pseudo-spectral peaks. In general, the 

Kaiser weighted spectral MUSIC estimator routine seeks to orthogonalise the signal and 

noise subspaces using a commercial singular value decomposition (SVD) subroutine 

based on the assumption of additive white Gaussian noise, after incorporating the 

appropriate Kaiser weighting coefficients into the frequency localiser function within 

the routine. Obviously, any commercial SVD presumes an identity matrix for the noise 

which is not the case of the linearised non-Gaussian interference signals (UCS) and the 

accompanying linearised non-Gaussian motion artefact. An immediate solution is to use 

the generalised singular value decomposition (GSVD) which is not based on white 

Gaussian noise and can deal with coloured and non-Gaussian noise provided that the 

coloured noise covariance matrix is known a priori or can be estimated. This obviously 

leads us to the next important operation to be performed, namely, the development and 

incorporation of a modified covariance matrix of the UCS in the interference subspace 

(I-subspace)* associated with the transabdominal ECG signals. The I-subspace may now 

contain the UCS plus noise as opposed to the noise-only subspace associated with the 

conventional MUSIC. This is now the second modification introduced to the I-subspace 

which will be orthogonalised and separated from the signal subspace (S-subspace) 

containing both the mother and fetal QRS-complexes by performing the generalised 

singular value decomposition (GSVD)** [29, 32-33].

* which replaces the noise subspace in the MUSIC estimator.

** The principle which is used to decompose any information matrix into orthogonal component dyads 

or modes. Generalised SVD implies that no assumption is being made of white Gaussian during the 

implementation of the SVD. Instead, coloured or non-Gaussian noise is used in the mathematical 

formulation which makes the orthogonalisation of signal subspace and noise subspace much more 

sophisticated [29, 32-33].
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The concept of oriented energy and signal-to-signal ratio will also be used when 

performing the GSVD to separate the above mentioned subspaces. This will be briefly 

discussed in Section 6.7.3.

Having explained the concept of the modified weighted UCS covariance matrix 

incorporated MUSIC-like technique some detailed analyses are now in order. We may 

recall that the individual ECG spectral content for the mother and the fetal have been 

depicted in Figure 6.1. The Principal Pseudo-spectral Peaks (PPPs) of the mother’s 

QRS-complex at 17 Hz is coloured blue, and the fetal principal pseudo-spectral peak at 

30 Hz is coloured red. However, there may be small frequency variations in the 17 Hz 

and 30 Hz centres in each adult ECG and each fetal ECG due to normal morphological 

changes, or indeed from one ECG to another [41-43]. This may necessitates the 

provision of several overlapping windows centred at 15 Hz, 16 Hz, 17 Hz, 18 Hz, and 

19 Hz for the mother, and 28 Hz, 29 Hz, 30 Hz, 31 Hz, 32 Hz, 33 Hz, 34 Hz, 35 Hz, 

36 Hz, 37 Hz, and 38 Hz for the fetal.

The word “pseudo” is usually encountered in frequency estimation methods that do not 

result in the actual power spectrum of the underlying process [1-2]. The power spectrum 

for an adult’s standard ECG may or may not show the principal peak at 17 Hz [50, 64], 

due to lack of resolution. Even if one uses other eigenvector-based spectral 

techniques without the means to mitigate the effect of an unknown noise field, the 

desired resolution is not guaranteed. In other words, the noise field must be 

accurately incorporated in the subspace either by measuring it without a signal or 

by estimating it using AR modelling.

6.3.2 The UCS short-term and long-term statistical behaviour

The nature of the UCS changes with the length of the observation data. For instance, if 

the UCS is observed over 10,000 samples it can be modelled as deterministic, 

non-linear, and chaotic signals [34-36, 62], However, when observed over an 250-msec 

window, the UCS may look just like noise. This prompts us to use at least two methods 

to orthogonalise the signal and interference subspaces. The first method is the GSVD 

assuming that the UCS is just like coloured non-Gaussian noise. The second method is 

using the concept of oriented energy and signal-to-signal ratio. A third method may 

involve the Gram-Schmidt orthogonalisation routine. The choice of the method rather
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depends on which one would yield minimum residual UCS in the QRS-complex 

subspace. Now follows a summary of the UCS short- and long-term statistics which 

have been analysed and accurately modelled using a new special non-linear structure by 

Dr. Sabry-Rizk and Mr. Zgallai over a number of years [34-36, 62] and the relevant 

tests, namely, the Hinich linearity test [6 6 ] and the chaoticity test [67-70],

Short-term statistics (data length 250 msec)

1- The modified covariance matrix of the UCS, I noise matrix, is correlated because 

its off diagonal elements are non-zero. The Hinich Test for Gaussianity was 

applied to the I noise matrix. The matrix does not satisfy the hypothesis of 

Gaussianity at a confidence level of 95%. The Gaussianity parameter, S-Gauss, 

was calculated to be 163.5 which is different from 0 for the Gaussianity 

assumption to be valid. So it is assumed that the I noise matrix is non-Gaussian.

2- The statistics of the Inoise matrix are calculated from the following equations for 

the variance, skewness, and kurtosis;
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The variance is defined as y? Vco (0) = jcfy(co).dco
2 71 J

- 7 1

(6 . 1)

The skewness as 7 3  Vc? (0,0) = 1

(2n)2

n  71

J J C3 ((o1 ,(o2 ).dco1 .dco2

- 7 1 - 7 1

(6.2)

and the kurtosis as

74 VC4 (0,0,0) 1

(2t t)3

71 71 71

J J |  C4 (c0 ],(0 2 ,c0 3 ).dc0 ].dc0 2 -dc03

- 7 1 - 7 1 - 7 1

(6.3)

The variance of I n0ise equals 0.957, the skewness equals 1.321, and the 

Kurtosis equals 2.637. The skewness and kurtosis are calculated from the 

third- and fourth-order statistics of the I noise which confirms that I n0iSe 

is non-Gaussian because its higher-order statistics are not equal to zero.

3- The statistics of I noise are different from the Uniform and Laplace noise 

which do not support third-order statistics because they are symmetrically
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distributed. They are also different from the Exponential and Rayleigh because 

its second, third- and fourth-order statistics are not related by one constant, e.g., 

X, a.

Long-term statistics (data length 10,000 msecj

The UCS signal, when considered over a sufficiently long data sample of length 10,000 

or more [62], is deterministic, chaotic, and multi-fractal. Essentially, the multi-fractility 

is indicative of normality in this case. Based on the Hinich linearity test and the Hurst 

component analysis test [63] which will now be described.

Tests

The Hinich linearity test [66]:

The test is based on the observation that for a linear process the skewness will be 

constant [6 6 ], In the Hinich linearity test, the inter-quartile range of the estimated 

bicoherence squared is computed; a quantity, A, proportional to the mean value of the 

bicoherence squared is also computed; the theoretical inter-quartile range of a chi-square 

random variable with two degrees of freedom and non-centrality parameter, A, is then 

computed. The linearity hypothesis should be rejected if the estimated and theoretical 

inter-quartile ranges are very different from one another. The non-centrality parameter is

(6.4)

where A is the non-centrality parameter, N is the number of samples, p is the 

signal-to-noise ratio, and r s is the skewness of the signal. The estimated and theoretical 

inter-quartile ranges are 268.91 and 42.59, respectively. Hence, the non-linearity 

hypothesis was accepted.

The Chaoticity Hurst component test [67-70]:

The test is based on the observation that multi-fractal signals can be decomposed into 

many subsets characterised by different local Hurst exponents, h, which quantify the 

local singular behaviour and relate to the local scaling of the signal. The local value of h 

is extracted using the Wavelet theory. The local exponent, h, is evaluated through the 

modulus of the maxima values of the wavelet transform at each point of the signal. A
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function Zq(a) is defined as the sum of the qth powers of the local maxima of the 

modulus of the wavelet transform coefficients at scale a. The scaling of that partitioning 

function, Zq(a), is estimated. For small scales we expect the partitioning function Zq(a) 

scales as a power law,

Zq(a) s  at(q) (6.5)

For certain values of q, the exponents t(q) have familiar meanings. In particular, t(2) is 

related to the scaling exponent of the Fourier power spectra,

S(f) s  1/f b , as b = 2 + t(2). (6 .6 )

For positive q, Zq(a) reflects the scaling of the large fluctuations and strong 

singularities, whereas for negative q, Zq(a) reflects the scaling of the small fluctuations 

and weak singularities. For multi-fractal signals, t(q) is a non-linear function:

t(q) = q h - D(h), (6.7)

where h = dt/ dq is not constant. The fractal dimension D(h) is related to t(q) through a 

Legendre transform:

D(h) = q h - t(q) (6 .8 )

The local Hurst exponents, h, quantify the local singular behaviour and thus relate to the 

local scaling of the time series. Using the 10,000 samples of the UCS, the partitioning 

function was calculated for scales a > 8  and for values of q ranges from -5 to 5. It was 

found that t(q) is a non-linear function of q; also D(h) has non-zero values for a broad 

range of the local Hurst exponents, h, which indicates that the corresponding UCS is a 

multi-fractal signal [62], The range of scaling exponents (0 < h < 0.4) with non-zero 

fractal dimension D(h) indicates that the fluctuations in the UCS exhibit anti-correlated 

behaviour (h = 1 / 2  corresponds to uncorrelated behaviour; h > 1 / 2  corresponds to 

correlated behaviour). Hence, the UCS is a deterministic, non-linear, and chaotic signal.
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6.3.3 The UCS spectral characteristics

The UCS broad spectrum will now be briefly addressed. It has been found from 

previous research studies [52-53] that, the spectrum of UCS may include comparatively 

strong narrowband spectral components centred around 5 FIz, 30 Hz, 45 Hz, 60 Hz, and 

90 Hz in addition to some broadband components. Figure 6.2 depicts UCS spectral 

characteristics before and after linearisation using a third-order Volterra synthesiser. 

Figure 6.3 depicts the effect of linearisation on the UCS’s bicoherence squared. 

Linearisation has resulted in an average reduction of about 9 dB in spectral peaks at 

frequency pairs of (32 Hz,18 Hz), (32 Hz,48 Hz), and (48 Hz,32 Hz), which are strongly 

overlapping with the fetal frequency pairs depicted in Figure 6.4 (a,b) at (30 Hz, 7 Hz), 

(30 Hz, 18 Hz), and (30 Hz, 26 Hz).

In particular, the uterine contraction component at 30 Hz usually masks the principal 

spectral components of the fetal [52]. The most challenging problem is, therefore, the 

isolation of the fetal Principal Pseudo-spectral Peak (FPPP) at 30 Hz in the presence of 

the UCS peak at the same frequency [39-41], This Chapter proposes using a new 

pseudo-spectral localiser which incorporates the modified covariance matrix 

representing the uterine contraction interference signals plus coexisting noise artefact, 

and seeks to reduce the influence of background uterine activities in the pseudo-spectral 

MUSIC localisation procedure by partitioning the two subspaces; one contains the 

desired signal parameters and the other contain the UCS parameters. An accurate 

estimate of the UCS modified covariance matrix, however, is needed to be incorporated 

in the pseudo-spectral localiser. For this purpose, a portion of the data that contains only 

noise fields and does not contain any signal information such as the P-waves or the 

QRS-complexes is utilised. When such a segment of the data that is P-wave- and 

QRS-complex-free is sufficiently long for the MUSIC pseudo-spectral localiser (in this 

case 250 msec or 250 samples at 1 KHz sampling rate), an accurate estimate of the UCS 

modified covariance matrix can be obtained.

6.3.4 The criteria used in the evaluation of spectral estimation methods

In evaluating spectral and spatio-temporal estimation methods employed in Radar, 

Sonar, and biomedical signals such as electroencephalogram and magnetocardiogram, 

three criteria are usually used. The first is resolution', the ability of an estimate to reveal 

the presence of two equal-energy sources which have nearly equal bearings. When the
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Uterine contraction plus noise, (P-wave and QRS-complex free), segment

Frequency (Flz)
(I)

(H I )

Figure 6.2: Spectral properties of a uterine contraction plus noise segment.
(I) Power spectrum (in dB) and (II) Kaiser shaped weighted MUSIC pseudo-spectral 
peaks (in dB) before (a) and after (b) linearisation using only the linear part of the 
output of a third-order Volterra synthesiser. The output consists of the linear, quadratic, 
and cubic parts of the transabdominally-measured ECG 250 msec segment, and free 
of both P-waves and QRS-complexes. (Ill) Linearisation signal processing used in 
Figures (I) and (II). The Welch averaged periodogram method is used to calculate the 
power spectrum. The MUSIC model order is 11 and 4 for the signal and noise 
subspaces, respectively. Optimised Kaiser weighting coefficients were used. Volterra 
synthesiser parameters are: filter length = 6, delay = 2, step-size parameters =0.001, 
0.0001, 0.00001, for linear, quadratic and cubic parts, respectively. Code: 9-67.
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P-QRS free segment

(a)

Significant reduction in non-linearity

100

(b)

Figure 6.3: The bicoherence squared (Kaiser shaped window) of the 
transabdominally-measured ECG 250 msec segment which is free from both the 
P-waves and the QRS-complexes (a) before and (b) after linearisation using a 
third-order Volterra synthesiser. * Retaining only the linear part results in a significant 
reduction in artefact. The direct method was used to calculate the bispectrum and then 
normalised with the Welch averaged periodogram to obtain the bicoherence squared.
* The Volterra synthesiser parameters are: filter length = 6, delay = 2, step-size 
parameters =0.001, 0.0001, 0.00001, for linear, quadratic and cubic parts, respectively. 
Code: 9-67.
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First fetal heartbeat bispectral contour

(a)

Fetal scalp electrode bispectral contour

Frequency(Hz) 
(b)

-2.9 dB 

-3.9 dB 

-4.9 dB 

-5.9 dB 

-6.9 dB 

-7.9 dB

Figure 6.4: (a) Bispectral contours for the transabdominally-measured ECG 250 msec 
segment containing the first fetal heartbeat with maternal contribution, (b) Bispectral 
contours for the synchronised fetal scalp electrode ECG. The bispectrum is calculated 
using the direct method with a Kaiser window applied to the 250 msec segment.
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two signal sources are resolved, two distinctive peaks are present in the spectrum; if not 

resolved, only one peak is found. A spectral estimate yielding the sharpest peak usually 

implies that the bearing has been resolved. However, the sharpness of a peak can always 

be increased by raising the spectrum to a power greater than one. Such a computation 

does not increase the accuracy to which source bearings can be distinguished. In the case 

presented in this thesis a fetal heartbeat is detected only when the fetal principal peak at 

30 Hz raises above a predetermined threshold. Therefore, it is of crucial importance to 

eliminate any other contribution to the spectrum at this particular frequency. The FPPP 

artificial sharpness will have a marginal effect on the outcome in a fully automated 

system.

The second criterion is the bias of the estimate. When one source is present, the bias 

(the error in the location of the spectral peak) is usually zero (the estimate is unbiased). 

However, when the two sources are present, the bias is usually non-zero. These two 

criteria of the “goodness” of a spectrum may conflict: Good resolution is often obtained 

at the expense of a biased estimate. In the fetal case, the higher the bias, the more the 

deviation of the detected FPPP away from the actual FPPP at around 30 Hz will be.

The third criterion is variability, the range of frequencies “bearings” over which the 

location of a spectral peak can be expected to vary. Analytical evaluation of the 

variability for a given spectral estimate is usually difficult. From a practical point of 

view, the first, second, and possibly third fetal heartbeat within one maternal cardiac 

cycle may exhibit frequencies at 28 Hz, 29 Hz, 30 Hz, ..., 37Hz, and 38 Hz while the 

actual fetal scalp measured frequencies are much more confined to a range of 30 Hz to 

32 Hz. This is primarily due to the second and third fetal QRS-complexes overlapping 

with the maternal T-wave or the next P-wave within the fourth segment of the maternal 

cardiac cycle.

6.3.5 The Problem of coincident mother’s and fetal QRSs

Difficult situations arise in which the maternal and fetal heart rates are almost 

commensurate. Episodes of coincident or near coincident mother’s and fetal 

QRS-complexes have been found in about 10% of the transabdominal ECG data. In 

such episodes about every ten seconds a fetal heartbeat coincides with the maternal 

QRS-complex. This is similar to one problem which has often arisen in Radar
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applications [54] and it revolves around having two coincident targets with different 

temporal and spectral characteristics. Such a problem and others different in nature 

(Sonar, and underground buried objects) have been dealt with using one or two of the 

following spectral estimation methods that are based on partitioning the signal and noise 

subspaces; (i) the conventional multiple signal classification (MUSIC) method [4],

(ii) the Pisarenko harmonic decomposition method [71], (iii) the eigenvector method [1- 

2], and (iv) the minimum norm method [1-2]. Such subspace parameter or frequency 

estimation methods differ only in what “sub-subspace” of the noise subspace they each 

use [1, 21, 51].

The best candidate in the literature of modern super-resolution spectral methods, which 

can accommodate both peak resolvability and modification to either the signal subspace 

or the so called noise subspace is the spectral multiple signal classification (MUSIC). 

The MUSIC is a highly popular eigenvector-based suboptimal parameter (or frequency) 

estimation method which has partly supplanted the optimal and more traditional 

Maximum Likelihood (ML) approach because the MUSIC is computationally more 

efficient and offers estimation performance comparable with that of the ML method in 

lower SNR or shorter data sample.
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6.4 Previous studies have paved the way for the new development

6.4.1 Joint publications

In previous publications, second- and third-order weighted spectral MUSIC techniques 

to detect adult’s QRS-complexes and anomalous P-waves, e.g., P-on-T waves and P-on- 

QRS waves which are extremely difficult to spot by observing ECG recordings have 

been presented [37-38], The fetal heartbeat detection scheme which recognises 

prominent FPPP and appropriately reconfigures the signal and noise subspaces to 

enhance the FPPP against all background contamination is reminiscent of the previously 

published scheme which was aimed at adult’s QRS-complex and P-wave detection 

schemes. Now, a few reconfigured and optimised subspace templates for the fetal QRS 

principal pseudo-spectral peaks (FPPPs) have to be purposely developed from clinical 

databases (see Sections 1.8 and 4.1.6). For brevity, the spectral estimate will be referred 

to as the weighted spectral MUSIC because by virtue of definition the conventional 

MUSIC is not weighted. However, the high success rate which has been achieved using 

the weighted spectral MUSIC to detect adult’s QRS-complexes and P-waves cannot be
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guaranteed in detecting FPPPs which is sometimes at -20 dB (normalised to the 

MPPPs), and overlapping with strong spectral components attributed to non-QRS 

signals and uterine activities in noise even after the quintessential linearisation process. 

The incorporation, therefore, of a modified covariance matrix representing the 

instantaneous uterine activity within the realm of the maternal cardiac cycle, into the 

weighted spectral MUSIC algorithm is the second most crucial step (the first being 

linearisation of the ECG) in separating coincident mother’s and fetal QRS-complexes 

during labour in the linearised weighted spectral MUSIC fetal heartbeat detection.

6.4.2 Virtues and vices of the conventional MUSIC

The MUSIC algorithm is a product of an eigenvector-based projection approach to the 

mathematical formulation of the temporal problem of estimating the frequencies of 

complex sinusoids in additive noise. Basically, the rationale of such an approach is to 

partition the observation space (observed or measured data), spanned by the 

eigenvectors of a correlation matrix (or data covariance matrix), into two subspaces that 

are referred to as the signal subspace and the noise subspace. It has to be emphasised 

that the noise is assumed to be white Gaussian [57-60]. The algorithm forms a null 

spectrum with the noise-subspace eigenvectors of the data correlation matrix and then 

searches iteratively for nulls in this spectrum. The MUSIC, in this spectral form, needs 

to perform a computationally expensive, say, ^-dimensional iterative search for £  

extrema of a highly non-linear scalar function to estimate the M  parameters of all £  

signal frequency sources. Clearly, the signal is a continuous function, but as it is 

recorded, say, every 1 msec, it can be thought of as a vector of dimensionality as large as 

the number of milliseconds in the subject’s mean heart cycle, or in our case the 

250 msec temporal window. Whether this iteration converges to the global (rather than 

the local) optimum and the speed of convergence depend on the availability of a priori 

estimates of the number of spectral peaks in the maternal and fetal ECG signal 

subspaces and noise subspaces close to the actual global optimum (the model order for 

the signal and noise subspaces). If the -^-dimensional signal subspace is estimated 

perfectly, then the signal frequencies are simply found at the .2?global maximisers. Any 

errors in our estimate would yield a single global maximum and at least {£  -1) local 

maxima. Finding the first frequency source is simple over a sufficiently densely sampled 

signal grid. Identifying the remaining local maxima becomes more difficult since 

non-linear search techniques may miss shallow or adjacent peaks and return to a
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previous peak. Any “peak-picking” algorithm would rapidly become complex and 

subjective as the model order increases. In order to avoid such a problem when dealing 

with transabdominally-measured combined maternal and fetal signals, we now introduce 

the sequentially optimised, weighted MUSIC.

6.5 Detailed statement of research
6.5.1 The sequentially optimised, weighted MUSIC algorithm

The novelty of the sequentially optimised, weighted MUSIC applied to first enhance the 

mother’s principal pseudo-spectral peak and then the fetal principal pseudo-spectral 

peak is to avoid the above mentioned peak-picking problem entirely. We, instead, 

remove the component of the signal subspace that is spanned by the first maternal 

source with its principal lobes and sidelobes and then perform a search to find the fetal 

frequency source as the new global maximiser over the modified subspace. In this way, 

we replace the problem of finding £  local maxima with one in which we find the 

frequency sources as ^global maxima over their respective modified signal subspaces. 

To expand on this, the algorithm first reads the data sample (250 msec window) and 

uses an optimum weighting function developed from the mother’s chest ECG which 

yields the MPPP at around 17 Hz [38], And then the algorithm goes back and re-reads 

the same data sample having modified the subspace with a newly weighted function 

which is developed entirely from the fetal scalp electrode database and yields the FPPP 

at around 30 Hz (this can be adjusted to cater for FPPPs at 28 Hz, 29 Hz, 30 Hz, 31 Hz, 

32 Hz, ....,37 Hz, and 38 Hz).

6.5.2 The reconfigured interference plus noise subspace to incorporate the 

modified covariance matrix of the linearised non-Gaussian uterine activity in the 

weighted MUSIC estimator

In an exhaustive study recently completed on abdominal electromyographic signals 

(AEMG) during labour contractions [35], it has been demonstrated in the most 

convincing way possible that the underlying dynamics of such contractions are indeed 

multi-fractal chaotic. Work is now in progress to identify a system of non-linear 

differential equations responsible for the generation of different classes of labour 

contractions, particularly pre-term cases. The best we can do at present is to build a 

non-linear model that captures the underlying non-linear dynamics responsible for the 

generation of such chaotic contractions. The modelling of chaotic physiological systems
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from stimulus-response data has advanced in recent years. Most notably, the 

introduction of a new family of embedded multi-step Volterra-like structures [36] which 

exploits the non-linear signal dynamics embedded in the attractor and integrates them in 

the design of such structures to gauge the long-term behaviour of the dynamics. Short 

data samples that can be classified as predominantly uterine noise artefact must be 

isolated within the maternal cardiac cycle and the computation of I noise which represents 

the modified covariance matrix is performed right at the start of the algebraic matrix 

formulation as will be shown in Section 6.8.

The data portions earmarked for the UCS modified covariance matrix ( I noise) are 

250 msec long (see Figure 6.9), falling mostly within segments III in the case of those 

maternal cardiac cycles that are free from coincident mother and fetal QRS-complexes 

in segments I, OR in segments II and IV for maternal cardiac cycles that do exhibit 

occurrences of coincident mother and fetal QRS-complexes in Segments I.

6.6 Mathematical formulation of the conventional MUSIC (The analysis given 

in this section is based on Adaptive filter theory, S. Haykin, Ch. 12, pp. 445-455, 

Prentice Hall, 2nd edition, 1991, [1]).

6.6.1 Conventional MUSIC assumptions

Consider a received signal (u(i)} that consists of L complex sinusoids whose complex 

amplitudes are a ]? ci2, a L and whose angular frequencies are coi, ©2 , ..., © l , 

respectively. Specifically, u(i) of the received signal is written as [1]:

L

u(i) = exp(yiu//) + v(/), i = 0, 1, . . . ,N-l (6.9)
1=1
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where v(i) is a complex sample of additive receiver noise, and N is the total data length. 

The following assumptions are made:

1- The complex sinusoidal components of the received signal are uncorrelated with 

each other, which means that
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E [ a ka , ]  =

p
1,

k = l
(6.10)

0, k * l

2- The receiver noise is white, which means that

E [ v , v ] ]  =
j  = i 
j * i '

(6 .11)

6.6.2 Data processing

For the processing (filtering) of data, it is proposed to use a transversal filter of length 

M + 1 as indicated in Figure 6.5. Given the time series of Eq. (6.9), the problem then is 

to estimate the unknown amplitudes and unknown frequencies contained in the time 

series.

6.6.3 Data Matrix

Given the time series of length N as in Eq. (6.9) and the transversal filtering structure of 

length M + 1 as in Figure 6.5, we may define the data matrix A by writing

u(M) u(N - 1) u {  0) u \ N - M  + 1)

AH =
u ( M - 1) u ( N - 2)

• •
• •

u {  1) u \ N - M  + 2) 

• •

u( 0)
••
u { N - M  + 1) u \ M ) u ' ( N - 1)

__y

forward half backward half

(6.12)

The elements constitute the left half of the matrix A11 in Eq. (6.12) represent the various 

sets of tap inputs used for forward filtering. The complex conjugated elements 

constituting the right half of the matrix AH represent the corresponding sets of tap inputs 

used for backward filtering. Note that in the forward or backward half in Eq. (6.12), as 

we move from one column of A11 to the next, we drop one input sample and add a new
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Figure 6.5: Transversal filter for temporal processing.

one, and of course reorder the data. This has the effect of temporal smoothing.

6.6.4 The conventional MUSIC algorithm

To motivate the development of the multiple signal classification (MUSIC) algorithm 

[4-6], consider first the (M + l)-by-(M + 1) ensemble averaged covariance matrix R for 

an input signal that consists of L uncorrelated zero-mean complex sinusoids and an 

additive white-noise process of zero mean and variance a 2, as in Eq. (6.9). The angular 

frequencies of the sinusoids are denoted by coj, « 2, ..., coL, and their average power by 

Pi, P 2 , . . . ,  P l - We may thus express the ensemble-averaged covariance matrix R in the 

following form:

R = S D SH + a 21, (6.13)

where I is the (M + l)-by-(M + 1) identity matrix. The rectangular matrix S is the 

(M + l)-by-L frequency matrix defined by:
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S = [si, s2, ...., sL]

exp(-y'iy,) exp { - jm2)

exp( -j2co]) exp(-;2iy2)

1

exp (rja)L ) 

exp {-j2coL)

[_exp{-jMcox ) exp(-jMco2 ) . . .  exp(- jMco, )J

(6.14)

Note that the 1th column of the matrix S, namely, the vector S| is determined by the 

1th complex sinusoid of angular frequency coj. The diagonal matrix D in Eq. (6.13) is the 

K-by-K covariance matrix of the sinusoids, defined by

D = diag(Pi, P2, ..., PL), (6.15)

Let Xi> X2 >. .. > A-m+i denote the eigenvalues of R, and Vi > V2 > .. >vm+i denote the 

eigenvalues of S D SH, respectively. Then, from the representation shown in Eq. (6.13) 

we deduce that

^i = Vj+a2, i = 1,2, ...M +l (6.16)

We assume that the signal matrix S is of full column rank L, which is justified if the 

L complex sinusoids in the time series of Eq. (6.9) have distinct frequencies, and the 

L columns of the matrix S are, therefore, linearly independent. This assumption then 

implies that the (M + 1 - L) smallest eigenvalues of the matrix S D S 11 are equal to zero. 

Correspondingly, the smallest eigenvalue of the covariance matrix R is equal to ct with 

multiplicity (M + l -  L), as shown by

k; =
Vj + a ”

la 2,
i = l,....L

i = L + 1,....,M +1
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Note that, in general, Vj /  P;, i = 1,2, ..., L. Figure 6.6 illustrates a plot of A,] versus i for 

L = 8 and M = 10, assuming an additive white noise background. Such a plot is referred 

to as an eigen-spectrum.

Let qi, q2, ..., qM+i denote the eigenvectors of the covariance matrix R. All the 

(M + 1 -  L) eigenvectors associated with the smallest eigenvalues of R satisfy the 

relation

R q, = o2 qi, i = L + 1 , ..., M + 1 (6.18)

or equivalently,

(R - a 2I) q; = 0, i = L + 1 , ..., M + 1 (6.19)

Using Eq. (6.13), we may rewrite Eq. (6.19) as

S D SH qi = 0, i = L + 1 , M + 1 (6.20)
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Eigenvalue ordering number, i

Figure 6.6: An eigen-spectrum.
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Since the matrix S is assumed to be of full column rank L and since the matrix D is 

diagonal with all entries being non-zero, which is a consequence of Eq. (6.10), it follows 

from Eq. (6.20) that

SHqi = 0, i = L + 1 , M + 1 (6.21)

or more explicitly, from the line of Eq. (6.14)

S|H qi — 0, i = L + 1 , M + 1

1=1,2, ... , L (6.22)

where the vector Si constitutes the 1th column of matrix S.

A fundamental property of the eigenvectors of a covariance matrix is that they are 

orthogonal to each other. Hence, the eigenvectors qi, ..., qL span a subspace that is the 

orthogonal complement of the space spanned by the eigenvectors qL+i, ..., qM+i-  

Accordingly, we deduce from Eq. (6.21) that

span {sj, ..., sL} = span {qi , ..., qL} (6-23)

The span (si, ..., sijrefers to a subspace that is defined by the set of all linear 

combinations of the vectors si, ..., Sl . The span { qi , ..., q ^ is  similarly defined.

Thus, the eigenvalue decomposition of the (M + l)-by-(M + 1) covariance matrix R of 

superimposed complex sinusoids in noise suggests the following two important 

observations:

1- The space spanned by the eigenvectors of R consists of two disjoint subspaces: 

One subspace called the signal plus noise subspace, is spanned by the 

eigenvectors associated with the L largest eigenvalues of R. The second 

subspace, called the noise subspace, is spanned by the eigenvectors associated 

with the (M + 1 -  L) smallest eigenvalues of R. These two subspaces are 

orthogonal complement of each other. This first observation follows from 

Eq. (6.22).
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2- Given the eigenvectors of R, we may define the frequencies of the complex 

sinusoids in the input signal by searching for those sinusoidal signal vectors 

that are orthogonal to the noise subspace. This second observation follows from 

Eq. (6.21).

6.6.5 Practical Considerations

We may use a sample average that equals the scaled version of the covariance matrix <I>, 

as shown by

A 1
R = ------------- O ,

2 ( N - M )
(6.24)

where <l> is itself related to the data matrix A as follows

O = AH A, (6.25)

and the scaling factor, 1 / [ 2 . (N - M) ], accounts for the fact that the time averaging is 

performed over 2 (N - M) data points. In any event, let vi, V2, ..., vM+i denote the
A

eigenvectors of the estimate R. In accordance with observation 1, we may define a set of
A

eigenvectors v i ,  \z ,  . . . ,  v l  associated with the L largest eigenvalues of the estimate R, 

and a set of eigenvectors v l + i , . . . ,  v m + i associated with the (M +  1 -  L) smallest
A

eigenvalues of R. Let

V n  -  [v l + i , . . . ,  V m +1 ] (6.26)

and

Vs= [vi, v2, ..., vL]. (6.27)

We naturally have

V n H V s= 0  (6.28)

which is in line with observation 1. However, owing to the presence of uncertainty in
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the eigenvector estimates, v i, \ 2, vm +i , arising because of the finite number of
A

samples used to generate R, the orthogonality relations of Eq. (6.21) that are responsible 

for observation 2 no longer hold. In the context of the latter point, we can search for the 

signal vectors that are most closely orthogonal to the noise subspace. Accordingly, in 

the MUSIC algorithm it is proposed to estimate the angular frequencies of the complex 

sinusoids in the input signal as the peaks of the MUSIC spectrum estimate:

S m u s i c  (co)  = ----------------- -
M +1

where the variable frequency vector or frequency scanning vector s(co) is defined by

The product Vn VnH represents a projection on the noise subspace.

Eq. (6.29) for the MUSIC spectrum* is based on the use of a projection matrix related 

to the noise subspace. It can be shown that the MUSIC spectrum may also be computed 

using the formula

signal subspace, and s(co) is a frequency scanning vector. Note that although this 

formula and that of Eq. (6.29) are mathematically equivalent, they make different 

computational demands. Appendix A9 describes a summary of the conventional MUSIC

A

* Note that the SM1Jsic(w) is based on a single realisation of the underlying stochastic process represented 

by the given data matrix A. As such, it represents an estimate of the exact MUSIC spectrum based on the 

eigen-decomposition of the ensemble-averaged covariance matrix of the process, hence the use of a hat in
A

the symbol SMUSic(co).

(6.29)

s" ( û>)V*V"s (co)

(6.30)

S m u s i c ( o )  =
M + 1 -  sH (co)VsVsHs(co)

(6.31)

where M + 1 is the dimension of the data matrix, Vs VSH is the projection matrix on the
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algorithm and some computational considerations.
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6.7 Mathematical formulation of the incorporation of l n0ise in the 

sequentially weighted MUSIC
6.7.1 Weighted MUSIC for mother’s and fetal QRS principal pseudo-spectral 

peaks

Eq. (6.29) is the formula used in the MUSIC algorithm for estimating the frequencies of 

complex sinusoids that are corrupted by additive white noise. Note that in this formula 

all the singular vectors that constitute the matrix Vn , in accordance with Eq. (6.22) are 

weighted equally.

Since the mother’s and fetal QRS-complex principal pseudo-spectral peaks (MPPPs) 

and (FPPPs) occur around 17 Hz and 30 Hz, respectively, it is prudent to introduce 

some sort of optimised weighting functions, Wmi and Wf,, to enhance the mother’s and 

fetal QRS-complex principal pseudo-spectral peaks (MPPPs) and (FPPPs) around 17 

Hz and 30 Hz, respectively. This weighting is considered crucial factor in isolating the 

principal pseudo-spectral peaks in both the mother’s and the fetal QRS-complexes. 

Appendix A6 describes such a weighting filter based on Kaiser window [7].

The weighted MUSIC for the mother’s and fetal QRS-complexes is described by 

Eqs. (6.32) -  (6.33), respectively:

S  m u s i c  (co) =
1

M+\

I  w,
i=L+ 1

S%,

(6.32)

S  MUSIC ( co )
M+\

I  w„
i=L+\

sH\ i

(6.33)

6.7.2 The sequentially optimised weighted M U S IC  with the incorporation of the 

modified covariance matrix of the U C S , l n0iSe

The theory of the MUSIC described in this chapter has been based on the assumption
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that the additive noise process (v(i,k)} is white and satisfies the following condition
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E[v(i ,k)v\j ,k)] j  = i 
j * i

(6.34)

where the variance a 2 is common. In other words, the covariance matrix of the noise 

process {v(i,k)} consists of a diagonal matrix equal to a 21, where I is an identity matrix. 

Correspondingly, the ensemble-averaged covariance matrix of the received signal 

process {u(i,k)}has the form given in Eq. (6.5), reproduced here for convenience

R  =  S D S h  + g 2 I ,  (6.35)

where the matrices S  and D  are the (M + l)-by-L frequency matrix and the diagonal 

matrix defined by the average power in the input signal, respectively.

In a more general case of a coloured noise background, the covariance matrix of the 

noise process (v(i,k)} takes on a non-diagonal structure. Correspondingly, the 

covariance matrix of the received signal process {u(i,k)}is modified as follows

R  =  S  D  S H +  Incise ( 6 - 3 6 )

where I noise is the covariance matrix of the UCS plus noise {v(i,k)}. The MUSIC 

algorithm may indeed be generalised to deal with this new situation.

Here is a brief description of the generalisation process. In the above equation we 

assumed that the noise and signal are uncorrelated. Let us denote g j  as an eigenvector 

obtained by solving the generalised eigenvalue problem

R  gi= h  Incise gi- (6.37)

Using gi, it is easy to show that

( R  - Incise) g > S D S H i i  = 0  for i = L+l, ..., M+l. (6.38)
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Since both S and D are full rank matrices, the above equation results in

SHg = 0 for i = L+l, M+l. (6.39)

Eq. (6.39) indicates that the spectral peaks of the frequency scanning vector SH(co) can 

be found by checking the orthogonality between the modified and weighted noise 

subspace projector Gn GnH and the sinusoidal vectors. Here Gx is defined as

Gn  = [gL+i, .... gM+i]. (6.40)

The eigenvectors are normalised in such a way that

g i H Inoise g T = 5 i j ,  ( 6 . 4 1 )

where ôÿ is Kronecker’s delta = 1 when i = j, and ôÿ = 0 when i ^ j. Therefore, the 

spectral MUSIC localiser for correlated noise is given by

J(x) = -
s sH r

(6.42)

where ^min (.,.) indicates the generalised minimum eigenvalue of the matrix pair given in 

parenthesis. This thesis proposes using the above localiser to reduce the influence of 

background noise due to uterine activity and other non-Gaussian ECG noise in the 

spectral MUSIC localisation procedure. An accurate estimate of the noise covariance 

matrix, however, is needed to use the localiser. For this purpose, one should find a 

portion of the data that is at least predominantly occupied by noise, if not completely free 

from any signals. For transabdominally-measured ECG signals, such a portion can be 

found in a data portion taken in segments free from mother’s and fetal QRSs and 

maternal P-waves.

6.7.3 The concepts of oriented energy and signal-to-signal ratio

This section describes the concepts of oriented energy and oriented signal-to-signal ratio

of a vector sequence and shows their relationships with the SVD and GSVD. The
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justification behind using the signal-to-signal ratio is to cater for partitioning two 

subspaces, each contains at least one signal, namely, the signal subspace (S-subspace) 

containing the mother and fetal QRS-complexes and the interference subspace 

(I-subspace) containing the UCS.

Consider a sequence of p-vectors {ak}, k = 1, q, and arrange them as the columns of 

a p x q matrix, A. Then Ee[A], the energy of the vector set in the direction of unit vector 

e c  <̂ , is defined as

q

Ee[A] = I ( e T ak)2 = || eT A ||2 (6.43)

There exists a relationship between the singular values and vectors of the matrix A and 

its directions of extremal oriented energy as follows:

Eui[A] = || UlT A ||2 = CTi2 (6.44)

where Uj is a column vector of U in the SVD of A (see Appendix A10) and a, is the 

corresponding singular value of A. Moreover, we know from linear algebra that each Ui 

contains the coefficients of a linear combination of the rows of A, such that 

ui‘ A A1 Uj || = || u;1 A ||2 reaches extremal value, which equals o,2. In other words, the 

columns Uj, of the U-matrix in the SVD of A provide directions in the column space of A 

for which the oriented energy is extremal. Therefore, the SVD of a matrix A finds rA = 

rank (A) orthonormal directions of extremal oriented energy.

The oriented signal-to-signal ratio, R* [A, B], of two sets of p-vectors {ak} and {bk}, 

(k = 1, ..., q), in the direction of unit vector e a  $£, is defined as

Re [A, B] = Et.[A] / E,[B] = II eT A ||2 / || eT B ||2 (6.45)

In analogy with the oriented energy-SVD relationship, a relationship between the 

oriented signal-to-signal ratio concept and the GSVD exists. If the GSVD of matrices A 

and B is given as in the GSVD theorem of Appendix All;  then

Re [A, B] = (a; / |3i)2 for e = Xj / || x;
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For proof see [73-75]. Applied to the signal separation problem, this can be interpreted 

as follows: assume that A contains p signals that are all mixed with an unwanted signal, 

while B contains only contributions from the unwanted signal. The GSVD of the matrix 

pair (A, B) then looks for directions in the column space of A and B for which the 

oriented ratio of wanted signal to unwanted signal is extremal.

6.7.4 Gram-Schmidt orthogonalisation: An alternative projection method

Now the third orthogonalisation method will be briefly described. In order to facilitate 

partial or total elimination of the uterine contraction interference signal (UCS) from the 

composite transabdominal ECG signal (TECG) the two signals with noise must first be 

linearised. This helps to get rid of higher-order trends and may render the signals linear 

and non-Gaussian. Then the latter composite signal is Gram-Schmidt (GS) 

orthogonalised [76-78] with the former (the unwanted signal) and projected onto it (see 

Appendix A13). Both signals can be measured. Flowever, the UCS still contains low 

levels of the TECG signal, e.g., T- and u-waves. Essentially, the TECG signal occupies 

the whole cardiac cycle.

Figure 6.7 illustrates how the composite transabdominal ECG signal (TECG = MECG 

+ FECG + the uterine contraction interference signal (UCS) + noise) is represented by 

the vector OA and Gram-Schmidt (GS) orthogonalised with the UCS represented by the 

vector OB. The signal OE is perpendicular to the UCS signal, which is free from any 

component that might correspond to the UCS.

6.7.5 Summary of the sequentially optimised, weighted MUSIC with the 

incorporation of the modified covariance matrix of the uterine contraction 

interference signal ( l n 0 i s e )

A flowchart for the sequentially optimised, weighted MUSIC with the incorporation of 

the modified covariance matrix of the uterine contraction interference signal, Inoise, is 

given in Figure 6.8.
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of the 
TECG 
segment 
onto the 
IJCS

Figure 6.7: The composite transabdominal ECG signal (TECG = MECG + FECG + the uterine 

contraction interference signal (UCS) + noise) is represented by the vector OA and 

Gram-Schmidt (GS) orthogonalised with the UCS represented by the vector OB. The signal OE 

is perpendicular to the UCS signal, which is free from any component that might correspond to 

the UCS.
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Read the transabdominally-measured ECG (TECG) input data segment, (x), 250 msec each, overlapping 
hv 90%

«----A

Add all the available data samples in the present segment, sum = sum + x(l), divide the sum by the 
number of samples, mean = sum / N, and subtract the mean from the samples, x(i) = x(i) -  mean.

Linearise the TECG segment using a second- or third-order Volterra synthesiser by retaining only the linear part 
and removing the quadratic or the quadratic and cubic parts, respectively.

*
Input the initial parameters, the model order for both the signal and interference subspaces, the maternal and fetal 
weiehtine Kaiser coefficients. Wm; and Wk . respectively. Initialise the maternal !VIHB and fetal FHB counters.

Setup the measured TECG data covariance matrix, R.

Employ sequentially five optimised spectral Kaiser weighting functions at +/- 1 Hz centred at 17 Hz.

Method I:
If the maternal MHB counter is less than two*, apply the sequentially optimised, weighted MUSIC-like estimator 
employing the SVD (see Appendix A ll)

S M U S I C  ( i » )  =
1

M  + \

i = L + 1

S H \ i

( 1)

If the maternal MHB counter is larger than two then apply the sequentially optimised, weighted, and the uterine 
contraction signal covariance matrix incorporated MUSIC-like estimator by implementing the generalised 
singular value decomposition (GSVD) (for more details see Appendix AI 1 and Appendix A12).

Method 2:
For the optimised, weighted MUSIC-like estimator, (a) calculate the oriented energy of the input data covariance 
matrix using Eq. (6.43).
(b) Calculate the singular values from the oriented energy using Eq. (6.44). These singular values are equivalent 
to those calculated using Method 1 above.

For the sequentially optimised, weighted, and the uterine contraction signal covariance matrix incorporated 
MUSIC estimator, (a) calculate the oriented energy of both the TECG covariance matrix and the UCS covariance 
matrix using Eq. (6.43).
(b) Then calculate the oriented signal-to-signal ratio using Eq. (6.45).
(c) Calculate the ratio of the singular values of the TECG and the UCS covariance matrices using Eq. (6.46). 
These are equivalent to the ratio of the singular values of the TECG and the UCS covariance matrices calculated 
using Method 1 above.

Method 3:
(a) Define a unit vector along the UCS axis in the subspace (see Appendix A14).
(b) Project the TECG vector onto the UCS axis in the subspace using the unit vector as in Eq. (A.14.1).
(c) Calculate the orthogonal vector to the UCS axis in the subspace using Eq. (A.14.2).
(d) Estimate the pseudo-spectrum of the orthogonal vector using the above mentioned estimators in Method 1. 

Does the input signal have a principal pseudo-spectral peak above the threshold level o f -  5 dB?

T N

Add 1 
to the 

present 
window 
number

yy
Figure 6.8: A flowchart for the third system for non-invasive fetal heartbeat detection using both 
the sequentially optimised, weighted MUSIC-like technique and the sequentially optimised, 
weighted and the uterine contraction interference signal covariance matrix incorporated MUSIC 
technique.
* For the first cardiac cycle, the sequentially optimised, weighted MUSIC estimator is used. During the 

first cardiac cycle, the QRS-free ECG segment is used to estimate the uterine contraction interference 
signal covariance matrix, Inoise. Then the sequentially optimised, weighted and the uterine contraction 
interference signal covariance matrix incorporated MUSIC estimator could be used starting from the 

second maternal cardiac cycle.
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Figure 6.8 (continued): A flowchart for the third system for non-invasive fetal heartbeat detection 
using both the sequentially optimised, weighted MUSIC technique and the sequentially 
optimised, weighted and the uterine contraction interference signal covariance matrix 
incorporated MUSIC technique.

* For the first cardiac cycle, the sequentially optimised and weighted MUSIC estimator is used. During 
the first cardiac cycle, the QRS-free ECG segment is used to estimate the uterine contraction signal 

covariance matrix, I„0jSe. Then the sequentially optimised, weighted and the uterine contraction signal 
covariance matrix incorporated MUSIC estimator could be used starting from the second maternal 
cardiac cycle.

** Replace WMi by WFi.
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6.8 R esu lts

6.8.1 Data collection and pre-processing

Data collection and pre-processing are described in Sections 1.8 and 1.9, respectively. 

The data portions earmarked for the UCS modified covariance matrix ( I noise) are 

250 msec long (see Figure 6.9), falling mostly within segments III in the case of those 

maternal cardiac cycles that are free from coincident mother and fetal QRS-complexes 

in segments I, OR in segments II and IV for maternal cardiac cycles that do exhibit 

occurrences of coincident mother and fetal QRS-complexes in Segments I.

6.8.2 Results for the sequentially optimised, weighted MUSIC with and without 

the incorporation of the UCS modified covariance matrix (1 n o iS e )

First, the sequentially optimised, weighted spectral MUSIC localiser of Eqs. (6.32-6.33) 

is applied to the transabdominally-measured ECG four segments depicted in Figure 6.9 

(a-g).
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Figure 6.10 (A) depicts the resultant pseudo-spectrum of segments I, II, III, and IV 

shown in Figure 6.9 (a). The maternal MPPP is clearly detected at 17 Hz as shown at the 

top left hand part of the Figure. The FPPP of the first fetal heart beat, which is 

coincident with the maternal QRS-complex in segment I (with maternal and fetal 

R-wave separation of 40 msec), was detected at 30 Hz and can be seen at the inset of the 

top left hand part of the Figure. The FPPP of the second fetal heartbeat is detected at 

32 Hz as can be seen in the bottom left hand part of the Figure. The top and bottom parts 

of the Figure at the right hand side are QRS-free segments. Comment: Clear Fetal 

Principal Peaks (FPPs) at 30 Hz and 32 Hz in segments I and III, respectively.

Next the proposed localiser of Eq. (6.42) employing the sequentially optimised, 

weighted MUSIC with the incorporation of the UCS modified covariance matrix ( I n0ise) 

is applied to the same segments. The UCS modified covariance matrix is calculated 

using the data portion in segment II. The results are shown in Figure 6.10 (B). The 

maternal MPPP is detected at 17 Hz as shown at the top left hand part of the Figure. The 

FPPP of the first fetal heart beat, which is coincident with the maternal QRS-complex in 

segment I (with maternal and fetal R-wave separation of 40 msec), is detected at 30 Hz 

and can be seen at the inset of the top left hand part of the Figure. The FPPP of the 

second fetal heartbeat is detected at 32 Hz as can be seen in the bottom left hand part of
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(b)

(c)

F ig u re  6 .9 : Coincident mother's and fetal QRS-complexes. (a) A typical maternal 
transabdominal cardiac cycle, (b) the synchronised and amplified fetal ECG signal measured 
using two electrodes; one electrode is clipped to the fetal scalp, and the other is attached to the 
maternal thigh. The R-wave separation is 40 msec, (c), (d), (e), (f), and (g) are superimposed 
and synchronised maternal transabdominal and fetal scalp ECGs with maternal R-wave to fetal 
R-wave separation of 35 msec, 23 msec, 18 msec, 14 msec, and 9 msec, respectively. The 
maternal cardiac cycle begins 50 msec before the R-wave and ends 50 msec before the next 
R-wave. The subject is at the first stage of labour, 40 weeks gestation. The maternal cycle has 
500 samples or more at a rate of 0.5 KHz. (Code: 5, 9, 12, 16, 19). Segment I: maternal QRS, 
segment II: the first fetal heartbeat with maternal contribution, segment III: QRS-free ECG, and 
segment IV: the second fetal heartbeat with maternal contribution.
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(e)

(f)

(g)
Figure 6.9 (continued): Coincident mother's and fetal QRS-complexes.(a) A typical maternal 
transabdominal cardiac cycle, (b) the synchronised and amplified fetal ECG signal measured 
using two electrodes; one electrode is clipped to the fetal scalp, and the other is attached to the 
maternal thigh. The R-wave separation is 40 msec, (c), (d), (e), (f), and (g) are superimposed 
and synchronised maternal transabdominal and fetal scalp ECGs with maternal R-wave to fetal 
R-wave separation of 35 msec, 23 msec, 18 msec, 14 msec, and 9 msec, respectively. The 
maternal cardiac cycle begins 50 msec before the R-wave and ends 50 msec before the next 
R-wave. The subject is at the first stage of labour, 40 weeks gestation. The maternal cycle has 
500 samples or more at a rate of 0.5 KHz. (Code: 5, 9, 12, 16, 19). Segment I: maternal QRS, 
segment II: the first fetal heartbeat with maternal contribution, segment III: QRS-free ECG, and 
segment IV: the second fetal heartbeat with maternal contribution.
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Segment I (Maternal and first* fetal QRSs, Rm-Rf separation is 40 msec) Segment II (QRS-free ECG)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
Frequency(Hz)

Segment III (Second* fetal QRS)

Frequency(Hz)

Frequency(Hz)
Segment IV (QRS-free ECG)

Frequency (Hz)

Figure 6.10 A: Weighted spectral MUSIC for the transabdominally-measured ECG signal of Figure 6.9 (a). Both mother's and fetal QRS-complexes coexist 
in segment I with their respective R-wave separation at 40 msec. Fetal Principal Peak (FPP) at 32 Hz indicates the presence of a second fetal QRS in 
segment III, while the content of segments II and IV are chiefly noise artefacts. Comment: Clear Fetal Principal Peaks (FPPs) at 30 Hz and 32 Hz in 
segments I and III, respectively. * within the maternal cardiac cycle.
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Segment I (Maternal and first* fetal QRSs, Rm-Rf separation is 40 msec) Segment li (QRS-free ECG)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
Frequency(Hz)

Segment III (Second* fetal QRS)
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Figure 6.10 B: Weighted and I noise incorporated spectral MUSIC for the transabdominally-measured ECG signal of Figure 6.9 (a). Both mother's and fetal 
QRS-complexes coexist in segment I with their respective R-wave separation at 40 msec. Fetal Principal Peak (FPP) at 32 Hz indicates the presence of a 
second fetal QRS in segment III, while segments II and IV contain noise artefacts. * within the maternal cardiac cycle. Comments: Clear Fetal Principal 
Peaks (FPPs) at 30 Hz and 32 Hz in segments I and III, respectively. When I noise is incorporated the MUSIC peaks are less sensitive to small deviations in 
the model order. By incorporating the I noise the FPPs tend to be sharper at 32 Hz when there are small deviations in the model order such as 13=9+4 and 
11=7+4. There is an appreciable noise artefact reduction in the QRS-free segments.
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the Figure. The top and bottom parts of the Figure at the right hand side are QRS-free 

segments. Comments: Clear Fetal Principal Peaks (FPPs) at 30 Hz and 32 Hz in 

segments I and III, respectively. When I noise is incorporated the MUSIC peaks are less 

sensitive to small deviations in the model order. By incorporating the I n0jSe the FPPs tend 

to be sharper at 32 Hz when there are small deviations in the model order such as 

13=9+4 and 11=7+4. There is an appreciable noise artefact reduction in the QRS-free 

segments.

Figure 6.11 (A) and (B) show the results using the sequentially optimised, weighted 

MUSIC with and without the incorporation of the UCS modified covariance matrix for 

the case of maternal and fetal R-wave separation of 35 msec as depicted in 

Figure 6.9 (c). Figure 6.11 (A) shows similar results to those of Figure 6.10 (A) using 

the sequentially optimised, weighted MUSIC, with the maternal FPPP at 17 Hz shown 

at the top left hand part of the Figure, the FPPP of the first fetal heartbeat at 30 Hz 

shown in the inset of the top left hand part of the Figure, and the FPPP of the second 

fetal heartbeat at 32 Hz shown at the bottom left hand part of the Figure. Comments: 

The same as in Figure 6.10 (A).

With the incorporation of the UCS modified covariance matrix, Figure 6.11 (B) shows 

that the FPPP of the second fetal heartbeat at the bottom left hand part of the Figure is 

sharper than that of Figure 6.11 (A) using the sequentially optimised, weighted MUSIC. 

Also, the peak is now shifted to 30 Hz using the model order 15 = 11+4.  Comments: 

The same as in Figure 6.10 B. Furthermore, the second fetal FPP is much sharper with 

Inoise incorporated. Sharper peaks. There is an appreciable noise artefact reduction in the 

QRS-free segments.

Figure 6.12 (A) and (B) show the results using the sequentially optimised, weighted 

MUSIC with and without the incorporation of the UCS modified covariance matrix for 

the case of maternal and fetal R-wave separation of 23 msec as depicted in 

Figure 6.9 (d). In Figure 6.12 (A), note that the MPPP at the top left hand part of the 

Figure is now shifted from 17 Hz to 16 Hz using the model order of 15 = 11 + 4. The 

FPPPs of both the first and second fetal heartbeats are detected at 30 Hz at the top and 

bottom left hand parts of the Figure, respectively. Comments: There is a shift in the 

Mother's QRS Principal Pseudo-spectral Peak (MPPP) from 17 Hz to 16 Hz.
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Segment I (Maternal and the first* fetalQRSs, Rm-Rf separation is 35 msec)
1

0.9
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Frequency (Hz)

Segment II (QRS-free ECG)

Frequency (Hz)

Segment III (the second* fetal QRS)
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Segment IV (QRS-free ECG)

Frequency (Hz)
Figure 6.11 A: Weighted spectral MUSIC for the transabdominally-measured ECG signal of Figure 6.9 (c). Both mother's and fetal QRS-complexes coexist 
in Segment I with their respective R-wave separation at 35 msec. Fetal principal peak (FPP) indicates the presence of a second fetal QRS in segment III, 
while Segments II and IV contain noise artefact. * within the maternal cardiac cycle. Comments: The same as in Figure 6.10 A.
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Figure 6.11 B: Weighted and I noise -incorporated spectral MUSIC for the transabdominally-measured ECG signal of Figure 6.9 (c). Both mother's and fetal 
QRS-complexes coexist in Segment I with their respective R-wave separation at 35 msec. Fetal principal peak (FPP) indicates the presence of a second 
fetal QRS in segment III, while Segments II and IV contain noise artefact. * within the maternal cardiac cycle. Comments: The same as in Figure 6.10 B. 
Furthermore, the second fetal FPP is much more sharper with I noise incorporated, sharper peaks. There is an appreciable noise artefact reduction in the 
QRS-free segments.
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Figure 6.12 A: Weighted spectral MUSIC for the transabdominally-measured ECG signal of Figure 6.9 (d). Both mother's and fetal QRS-complexes coexist 
in Segment I with their respective R-wave separation at 23 msec. Fetal principal peak (FPP) indicates the presence of a second fetal QRS in segment III, 
while Segments II and IV contain noise artefact. * within the maternal cardiac cycle. Comments: There is a shift in the Mother's QRS Principal Peak (MPP) 
from 17 Hz to 16 Hz.
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Segment I (Maternal and the first* fetal QRSs, Rm-Rf separation is 23 msec)
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Figure 6.12 B: Weighted and I noise-incorporated spectral MUSIC for the transabdominally-measured ECG signal of Figure 6.9 (d). Both mother's and fetal 
QRS-complexes coexist in Segment I with their respective R-wave separation at 23 msec. Fetal principal peak (FPP) indicates the presence of a second 
fetal QRS in segment III, while Segments II and IV contain noise artefact. * within the maternal cardiac cycle. Comments: In addition to comments of Figure 
6.10 B, sharper Mother Principal Peak (MPP) at 16 Hz. The FPP is less sensitive to a small deviation from the optimum model order, 11+4, as in the case of 
the model order 9+4. Both yield the same FPP. There is an appreciable noise artefact reduction in the QRS-free segments.
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With the incorporation of the UCS modified covariance matrix, Figure 6.12 (B) shows 

that the MPPP at the top left hand part of the Figure is shifted from 17 Hz to 16 Hz and 

is also sharper. The FPPP of the first fetal heartbeat is detected at 30 Hz using model 

orders of 15 = 11 + 4 and 13 = 9 + 4. Comments: In addition to the comments of 

Figure 6.10 B, sharper Mother Principal Peak (MPP) at 16 Hz. The FPP is less sensitive 

to a small deviation from the optimum model order, 11+4, as in the case of the model 

order 9+4. Both yield the same FPP. There is an appreciable noise artefact reduction in 

the QRS-free segments.

Figure 6.13 (A) and (B) show the results using the sequentially optimised, weighted 

MUSIC with and without the incorporation of the UCS modified covariance matrix for 

the case of maternal and fetal R-wave separation of 18 msec as depicted in 

Figure 6.9 (e). Figure 6.13 (A) depicts the maternal MPPP at 17 Hz shown at the top left 

hand part of the Figure, the FPPP of the first fetal heartbeat at 30 Hz shown in the inset 

of the top left hand part of the Figure, and the FPPP of the second fetal heartbeat at 

31 Hz shown at the bottom left hand part of the Figure. Comments: No additional 

comments.

With the incorporation of the UCS modified covariance matrix, Figure 6.13 (B) shows 

that the MPPP at the top left hand part of the Figure is detected at 17 Hz. The FPPPs of 

the first and second fetal heartbeats are both detected at 30 Hz as shown at the top and 

bottom left hand parts of the Figure, respectively. Comments: There is an appreciable 

noise artefact reduction in the QRS-free segments. No additional comments.

Figure 6.14 (A) and (B) show the results using the sequentially optimised, weighted 

MUSIC with and without the incorporation of the UCS modified covariance matrix for 

the case of maternal and fetal R-wave separation of 14 msec as depicted in 

Figure 6.9 (f). Figure 6.14 (A) shows the maternal MPPP at 17 Hz shown at the top left 

hand part of the Figure, the FPPP of the first fetal heartbeat is shifted at 31 Hz shown in 

the inset of the top left hand part of the Figure. The FPPP of the second fetal heartbeat is 

at 30 Hz shown at the bottom left hand part of the Figure. Comments: 1) As a result of 

the close proximity of Rm and Rf, the FPPP exhibits increased sensitivity to small 

deviations from the optimal model order in segment I. 2) Also, there is a loss of 

resolution for FPPP in segment III.
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Figure 6.13 A: Weighted spectral MUSIC for the transabdominally-measured ECG signal of Figure 6.9 (e). Both mother's and fetal QRS-complexes coexist 
in Segment I with their respective R-wave separation at 18 msec. Fetal principal peak (FPP) indicates the presence of a second fetal QRS in segment III, 
while Segments II and IV contain noise artefact. * within the maternal cardiac cycle. Comments: No additional comments.
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Segment I (Maternal and the first* fetal QRSs, Rm-Rf separation is 18 msec)
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Figure 6.13 B: Weighted and I noise incorporated spectral MUSIC for the transabdominally-measured ECG signal of Figure 6.9 (e). Both mother's and fetal 
QRS-complexes coexist in Segment I with their respective R-wave separation at 18 msec. Fetal principal peak (FPP) indicates the presence of a second 
fetal QRS in segment III, while Segments II and IV contain noise artefact. * within the maternal cardiac cycle. Comments: There is an appreciable noise 
artefact reduction in the QRS-free segments. No additional comments.
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Segment I (Maternal and the first* fetal QRSs, Rm-Rf separation is 14 msec) Segment II (QRS-free ECG)
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Figure 6.14 A: Weighted spectral MUSIC for the transabdominally-measured ECG signal of Figure 6.9 (f). Both mother's and fetal QRS-complexes coexist 
in Segment I with their respective R-wave separation at 14 msec. Fetal principal peak (FPP) indicates the presence of a second fetal QRS in segment III, 
while Segments II and IV contain noise artefact. * within the maternal cardiac cycle. Comments: 1) As a result of the close proximity of R m and R f, the FPP 
exhibits increased sensitivity to small deviations from the optimal model order in segment I. 2) Also, there is a loss of resolution for FPP in segment III.
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Segment I (Maternal and the first* fetal QRSs, Rm-Rf separation is 14 msec) Segment II (QRS-free ECG)
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Figure 6.14 B: Weighted and l noise incorporated spectral MUSIC for the transabdominally-measured ECG signal of Figure 6.9 (f). Both mother's and fetal 
QRS-complexes coexist in Segment I with their respective R-wave separation at 14 msec. Fetal principal peak (FPP) indicates the presence of a second 
fetal QRS in segment III, while Segments II and IV contain noise artefact. * within the maternal cardiac cycle. Comments: The same comments as in 
weighted spectral MUSIC of Figure 6.14 A. There is an appreciable noise artefact reduction in the QRS-free segments.
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With the incorporation of the UCS modified covariance matrix, Figure 6.14 (B) shows 

similar results to those of Figure 6.14 (A). Comments: The same as in Figure 14 (A). 

There is an appreciable noise artefact reduction in the QRS-free segments.

Figure 6.15 (A) and (B) show the results using the sequentially optimised, weighted 

MUSIC with and without the incorporation of the UCS modified covariance matrix for 

the case of maternal and fetal R-wave separation of 9 msec as depicted in Figure 6.9 (g). 

Figure 6.15 (A) depicts the maternal MPPP at 17 Hz shown at the top left hand part of 

the Figure, the FPPP of the first fetal heartbeat is shifted at 31 Hz shown in the inset of 

the top left hand part of the Figure. The FPPP of the second fetal heartbeat is at 31 Hz 

shown at the bottom left hand part of the Figure. Comments: 1) As a result of close 

proximity, the FPPP tends to broaden. 2) Also, as a result of the close proximity of Rm 

and Rf, the FPPP exhibits increased sensitivity to small deviations from the optimal 

model order in segment I.

Figure 6.15 (B) depicts the results of the I noise incorporation for the

transabdominally-measured ECG signal of Figure 6.9 (g). Both mother's and fetal QRS- 

complexes coexist in Segment I with their respective R-wave separation at 9 msec. The 

fetal principal peak (FPPP) indicates the presence of a second fetal QRS in segment III, 

while Segments II and IV contain noise artefact. Comments: The same comments 

applied to close proximity as in Figure 6.15 A. However, the fetal FPP is stronger and 

sharper around 31 Hz, and there is significant noise reduction in the QRS-free segments.

Comments

1. The effect of proximity of Rm and R f on the frequency deviation of the FPPPs. The

new MUSIC algorithm is capable of detecting fetal heartbeats, at a rate of almost 92%, 

when the mother and fetal R-waves are almost synchronised, provided that appropriate 

sequential weightings for the mother and the fetal are maintained throughout. As the 

separation between the mother and fetal R-waves is increased, there is a slight increase 

in the corresponding detection rate and a decrease in the FPPP frequency deviations.

2. The effect of the Inoise incorporation on the FPPP. The incorporation of the 

covariance matrix of the UCS not only helps to strengthen and sharpen the FPPPs in 

some cases and hence improves the resolution, but also reduces the sensitivity of the 

FPPPs to any small deviations from the optimal model order.
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Segment I (Maternal and the first* fetal QRSs, Rm-Rf separation is 9 msec) Segment II (QRS-free ECG)
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Figure 6.15 A: Weighted spectral MUSIC for the transabdominally-measured ECG signal of Figure 6.9 (g). Both mother's and fetal QRS-complexes coexist 
in Segment I with their respective R-wave separation at 9 msec. Fetal principal peak (FPP) indicates the presence of a second fetal QRS in segment III, 
while Segments II and IV contain noise artefact. * within the maternal cardiac cycle. Comments: 1) As a result of close proximity, FPP tends to broaden. 2) 
Also, as a result of the close proximity of R m and R f, the FPP exhibits increased sensitivity to small deviations from the optimal model order in segment I.
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Segment I (Maternal and the first* fetal QRSs, Rm-Rf separation is 9 msec)
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Figure 6.15 B: Weighted and I noise incorporated spectral MUSIC for the transabdominally-measured ECG signal of Figure 6.9 (g). Both mother's and fetal 
QRS-complexes coexist in Segment I with their respective R-wave separation at 9 msec. Fetal principal peak (FPP) indicates the presence of a second fetal QRS 
in segment III, while Segments II and IV contain noise artefact. * within the maternal cardiac cycle. Comments: The same comments applied to close proximity 
as in Figure 6.15 A. However, the fetal FPP is stronger and sharper around 31 Hz, and there is an appreciable noise artefact reduction in the QRS-free segments.
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3. The effect of the Inohe incorporation on the fetal heart detection rate. The

sequentially optimised, weighted MUSIC has resulted in the following fetal heart 

detection rates: (i) 89.23%, 97.51%, and 91.20% for coincident, non-coincident mother 

and fetal QRS-complexes, and overall average, respectively. The sequentially optimised, 

weighted, and Inojse incorporated MUSIC has resulted in the following fetal heart 

detection rates: (i) 93.52%, 99.35%, and 95.50% for coincident, non-coincident mother 

and fetal QRS-complexes, and overall average, respectively. The results have been 

verified by the recording of the instantaneous scalp fetal heart rate.

6.8.3 The bias of the conventional MUSIC, and the sequentially optimised, 

weighted MUSIC with and without the lnoise UCS modified covariance matrix 

incorporation when applied to mother’s and fetal QRS-complex segments

A statistical measure could be described as an unbiased estimate when the expected 

value of the estimated statistic is equal to the true value, asymptotically. For example a 

frequency estimate is said to be unbiased if
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f(co) = f(co). (6.47)

The bias is defined as the difference between the true value and the expected value. 

Hence,

Bias = E f(ro) -f(co). (6.48)

In the case of mother’s and fetal QRS-complexes the true values of the spectral peaks 

are taken to be those obtained from the mother’s chest ECG and fetal scalp electrode 

ECG, respectively. The expected values of the estimates are those obtained using the 

250 msec segments from the maternal transabdominal ECG signal for a predominantly 

maternal QRS segment and a fetal heartbeat with maternal contribution. Those true 

values and estimates were calculated for 1 0 0 0  segments using the following three
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methods: (i) the conventional MUSIC, (ii) the sequentially optimised, weighted MUSIC, 

and (iii) the sequentially optimised, weighted and Inoise incorporated MUSIC. The results 

are shown in Table 6.1 and 6.2, respectively, for mother’s and fetal QRS segments.

For the mother’s and fetal QRS-complex, the more deviation of the detected frequency 

of the MPPP at around 17 Hz and the FPPP around 30 Hz, respectively, from the 

respective actual frequency, the higher the bias will be.
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The

conventional

MUSIC

The sequentially optimised 

and weighted MUSIC

The sequentially optimised, 

weighted, and I noise 

incorporated MUSIC

Bias 1.97 1.54 1.23

Table 6.1: The bias of three spectral methods used to estimate the principal spectral peaks of 

1000 transabdominally-measured mother’s QRS-complex segments. These methods are the 

conventional MUSIC, and the sequentially optimised, weighted MUSIC with and without the 

incorporation of the UCS modified covariance matrix.

The

conventional

MUSIC

The sequentially optimised 

and weighted MUSIC

The sequentially optimised, 

weighted, and I noise 

incorporated MUSIC

Bias 3.84 3.32 2.15

Table 6.2: The bias of three spectral methods used to estimate the principal spectral peaks of 

1000 transabdominally-measured fetal heartbeat with maternal contribution segments. These 

methods are the conventional MUSIC, and the sequentially optimised, weighted MUSIC with and 

without the incorporation of the UCS modified covariance matrix.

6.8.4 Estimation of the FPPP variance

The variance of the third detection method is defined as the expected value of the 

squared difference between the computed FPPP of the 250 msec flag window of the 

transabdominal ECG signal and the computed FPPP from the synchronised fetal scalp 

electrode ECG 250 msec window.

A  A

VarM — E [(S MUSIC ( ® ) t ransabdominal — SM U SIc(® )fetal scalp
2 (6.49)

The variance ranges from 0 - 8 ,  average = 4.127, when calculated for 120,000 FHBs.
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6.9 Summary and conclusions
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General comments

1. Modifications to the conventional MUSIC

The modified spectral MUSIC is motivated, at least in part, by the shortcoming of all 

other techniques to detect FHBs when masked by the mother’s QRS-complex. The other 

motivation is to combat interference and noise using only second-order statistics. 

However, by limiting ourselves to only the second-order statistics whilst dealing with 

non-linear signals and non-linear noise, we have succumbed to face all sorts of 

problems. The one which stands out is the problem of the uterine contraction 

interference signal (UCS) and noise artefact, which do not easily conform to any 

specific probability distribution as the statistics change with time and eventually take on 

a chaotic nature for sufficiently long data. And to make matter even worse, the spectrum 

of the UCS contains resonances with a strong peak around 30 Hz overlapping the fetal 

principal pseudo-spectral peak. We have found from previous published work that, by 

removing non-linearity from the ECG signals, we can, in fact, enhance the resonances of 

the fetal spectrum and weaken or suppress the resonances of the background UCS. 

Therefore, a systematic approach was adopted and by breaking down the unsolvable 

problem, a tractable solution was obtained. This approach is summarised as follows; 

(i) linearise the whole ECG data, (ii) do not include any unqualified assumptions 

regarding noise statistics, (iii) deal with the actual second-order statistics of the 

interfering signals and noise, and (iv) perform all the eigen-structured MUSIC 

mathematical formulation based on the actual ECG signals and the actual residual UCS 

interference plus artefact, and not on a hypothetical Gaussian or non-Gaussian noise for 

that matter. The latter necessitates isolating and measuring the UCS plus noise and 

examining its short-term properties within the 250 msec frame, and then incorporate its 

covariance matrix into the mathematical formulation of the MUSIC.

2. How has previous research paved the way to the above systematic approach?

It is well-known that the conventional eigen-structured MUSIC has been developed on 

the basis of the second-order statistics (correlation matrix) of the data, and the additive 

spatially or temporally white Gaussian noise model [4]. In the presence of non-Gaussian 

noise which does not fit any workable model, the MUSIC fails as an estimator. In the
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mid 1990s, the author and supervisor considered a cumulant-based MUSIC as a natural 

progression to providing a solution to the problem of fetal ECG detection in a noisy 

environment. The subject of cumulant-based MUSIC was formulated by R. Pan and 

C. L. Nikias [80] in an attempt to circumvent the noise-modelling problem and exploit 

the property of noise-free cumulants in the identification of harmonics. In theory, 

cumulants could be made free from Gaussian-noise for sufficiently long data. However, 

even if the cumulant-based MUSIC is susceptible to the changes in the probability 

distributions of the labour noise cocktail, if nothing is done about it. This had resulted in 

a limited success in fetal heart monitoring. Fortunately, this has played a definitive role 

in tackling the unavoidable problem of noise-modelling of the non-linear uterine 

contraction artefacts. However, this has proven to be a cumbersome problem due to the 

non-conformative behaviour of the raw multi-resonances UCS. Such an UCS, in the 

presence of the strong mother’s QRS-complex, takes on a different form from that in a 

QRS-free environment. (This difference prevails in the higher-order statistical domains). 

As we discovered by conducting a separate investigation to study the chaotic behaviour 

of uterine contraction signals [62], The obvious solution then was to tame all the 

transabdominally-measured ECG data by getting rid of the intrinsic non-linearities prior 

to any signal- or noise-modelling and subspace restructuring. It has been found more 

tractable to deal with linear non-Gaussian data rather than non-linear data. Essentially, 

efforts were diverted to isolating and measuring the uterine contraction interference 

signal (UCS) in a QRS-free interval as the maternal cardiac cycle is scanned segment by 

segment. And then linearise and compute its residual covariance matrix to be embedded 

in its respective reconfigured subspace. This subspace can be made orthogonal to the 

other subspace containing both the mother’s and fetal QRS-complexes. In conclusion, in 

pursuing the eigen-structured MUSIC, no assumptions have been made whatsoever on 

the type of accompanying noise.

3. The UCS short-term and long-term statistical behaviour

The nature of the UCS changes with the length of the observation data. The UCS when 

observed over 1 0 , 0 0 0  samples was found to be deterministic, non-linear, and chaotic 

signal*. However, when observed over an 250-msec window, the UCS behaves more or

*  The definition o f determinism is that future events are set causally by past events. So the next points to 

the closest point should describe the past events to the measurements at each point and we can therefore 

predict future events by taking an average o f these points.
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less like noise. In pursuing separation of signals and interference signals, or signals and 

noise, two auxiliary methods have been used based on the concepts of oriented energy 

and signal-to-signal ratio, and the Gram-Schmidt orthogonalisation. This is done in 

addition to the MUSIC well established Generalised Singular Value Decomposition 

(GSVD) which deals with partitioning signal and coloured noise (as opposed to 

Gaussian noise) subspaces. The results presented in this chapter are based on the latter.

The rest was relatively easy and focused on separating two subspaces: (1) The first 

S-subspace contains either the covariance matrix of the coincident mother and fetal 

QRS-complexes, or predominantly one QRS-complex, and (2) the second I-subspace 

contains the modified covariance matrix of the residual uterine contraction interference 

signal (UCS).

4. How is the separation of the coexisting or non-coexisting mother’s and fetal 

QRS-complexes performed?

The spectral content of the mother’s QRS-complex and that of the fetus are different and 

indeed unique. The mother’s QRS-complex principal spectral peak is found around 

17 Hz., and the fetal QRS-complex principal spectral peak is found around 30 Hz. 

Accordingly, such individual spectral content can be exploited herewith in the 

identification and detection of either signal within the maternal cardiac cycle. The 

Kaiser filtered weighted MUSIC previously published algorithm has been devoted to 

identifying, in the frequency domain, anomalous QRS-complexes and P-waves such as 

P-on-T-waves and P-on-QRS-complex episodes for adult patients [37]. However, for 

FHR detection in labour, one has to overcome two major problems in the 

transabdominally-measured ECG data, namely, poor signal spectral resolution and the 

influence of the coexisting labour contraction signals which not only exhibit a fairly 

broad spectrum, but also is uniquely characterised by having localised energy 

resonances, one of which is seriously overlapping with the fetal distinctive strong peak 

around 30 Hz which represents the fetal spike. The fetal heartbeat detection is 

accomplished by thresholding the enhanced fetal spikes in the frequency domain. The 

most challenging problem is, therefore, not only to enhance the quality and resolution of 

the mother and fetal QRS-complexes’ principal pseudo-spectral peaks, abbreviated as 

MPPP and FPPP, respectively, but also to suppress the UCS resonances and nudge its 

modified covariance matrix into a separate subspace which is named the interference
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subspace (I-subspace). Orthogonalisation is forced between the I-subspace and the 

signal subspace (S-subspace) containing either the covariance matrix of both the 

mother’s and fetal QRS-complexes or predominantly one QRS-complex. Again, 

depending on the coefficients of the Kaiser filter, the desired QRS-complex will prevail 

and the other will be attenuated. The data segment containing both mother’s and fetal 

QRS-complexes can be read and re-read sequentially, or is divided into two separate 

streams and weighted differently in parallel so that individual QRS-complex principal 

peaks can be thresholded and detected simultaneously.

5. The choice of the window length

When choosing the window length, two factors were considered to be of importance; 

(1) To maximise the temporal resolution for the fetal heartbeat detection (the window 

segment should be short enough to capture the fetal heartbeat with the highest possible 

temporal resolution); and (2 ) the window length should be sufficiently long to limit the 

MUSIC variance. The Kaiser filter weights are applied to each of the 250 msec window 

(segment) and the weights are optimised to enhance the principal peaks of either 

QRS-complex in their respective temporal domains.

The rank properties of certain weighting functions and residual covariance matrices 

were left as an open question in this thesis.

6. What does distinguish this subspace-based technique from the previously 

published subspace-based technique for adults [37]?

The novelty of this technique rests on its dealing with the UCS during the strong and 

most painful peaks of labour contractions which are, apart from their noise-like 

characteristics, heavily contaminated with other noise artefact. Short data samples that 

can be classified as predominantly uterine noise artefact have been isolated within the 

maternal cardiac cycle and the computation of I noise which represents the modified 

covariance matrix is performed and incorporated in the modified spectral MUSIC 

steering vector prior to the GSVD orthogonalisation. The 250 msec data portions 

earmarked for the UCS modified covariance matrix ( I noise) fall mostly within 

segments III in the case of those maternal cardiac cycles that are free from coincident 

mother and fetal QRS-complexes in segments I, OR in segments II and IV for maternal 

cardiac cycles that do exhibit occurrences of coincident mother and fetal
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7. S uccessfu l detection  o f  co inc iden t m o th e r an d  fe ta l Q R S -com plexes has  

resu lted  In an increase  o f  9.3%  an d  5.4%  o ver a n d  above the TOC an d  the B IC  

tem plate  m atch ing  techniques, respectively .

The mother and fetal QRS-complexes often coincide making it impossible to separate 

them using any time-domain-based technique. Even with the higher-order statistics 

TOC, as reported earlier, there is a 13.8% failure rate, partially due to 9.8% rate of 

QRS-complex coincidences, and the rest, 4% rate, is due to overlapping fetal 

QRS-complex and maternal T-wave. The BIC failure rate of 9.8% is purely due to 

QRS-complex coincidences as there is a shortcoming in acquiring sufficiently high 

resolution to separate the bispectral peaks of the mother and fetal QRS-complexes. The 

overlapping of the fetal QRSs and the maternal T-waves can be resolved by the BIC 

template matching technique. The above percentages of QRS-complex coincident 

episodes have been found in the 50,000 maternal heartbeat database. The alternative is 

to try to resolve them in the frequency-domain.

Detailed results

1. S u m m ary  o f  short-term  s ta tis tics  o f the m o d ified  covariance m atrix  o f the  

UCS, I  noise m atrix

• The modified covariance matrix of the UCS, I noise matrix, is correlated because 

its off diagonal elements are non-zero.

• The Hinich Test for Gaussianity was applied to the I noise matrix. The matrix does 

not satisfy the hypothesis of Gaussianity at a confidence level of 95%. The 

Gaussianity parameter, S-Gauss, was calculated to be 163.5 which is different 

from 0 for the Gaussianity assumption to be valid. So it is assumed that the I noise 

matrix is non-Gaussian.

• The statistics of the I noise matrix are calculated from the following equations for 

the variance, skewness, and kurtosis;

1 nrThe variance is defined as y\  Vc* (0) = —  ¡C2 (co).dco
— 2tt j-71
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The skewness as y? VC3 (0,0) = 1

(2tt)2

71 71

J J C3 (to, ,co2 ).dco1 ,dco2

- 7 1 - 7 1

and the kurtosis as

y^Vc^ (0,0,0)
1

(2 t i)3

n  71 71

I I J  C4(©i,ro2 ,W3).d<Di.dco2.dco3
- 7 1 - 7 1 - 7 1

• The variance of InoiSe equals 0.957, the skewness equals 1.321, and the 

Kurtosis equals 2.637. The skewness and kurtosis are calculated from the 

third- and fourth-order statistics of the I noise which confirms that I noise

is non-Gaussian because its higher-order statistics are not equal to zero.

• The statistics of I noise are different from the Uniform and Laplace noise 

which do not support third-order statistics because they are symmetrically 

distributed. They are also different from the Exponential and Rayleigh because 

its second, third- and fourth-order statistics are not related by one constant, e.g.,

X, a.

2. Multiple overlapping windows to track deviations in the MPPP and FPPP 

frequencies

Up to five overlapping and optimised Kaiser weighted windows have been used in the 

detection of the following mother’s QRS-complex principal spectral peaks; 15 Hz, 

16 Hz, 17 Hz, 18 Hz, and 19 Hz. Up to ten overlapping and optimised Kaiser weighted 

windows have been used in the detection of the following fetal QRS-complex principal 

spectral peaks; 28 Hz, 29 Hz, 30 Hz, 31 Hz, 32 Hz, 33 Hz, 34 Hz, 35 Hz, 36 Hz, 37 

Hz, and 38 Hz. The optimised Kaiser weights for the mother and fetal have been given 

in Appendix A6 . Because there are inevitable deviations in the 17 Hz and the 30 Hz of 

the mother and fetal QRS-complex pseudo-spectra, respectively.

3. The choice of the model order

As with any eigen-structured MUSIC estimator, the model order has to be chosen very 

carefully. The optimum model order is eleven for the signal and four for the noise. 

The method presented in this chapter is not sensitive to small deviations in the 

model order.
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4. Calculations of the bias and variance of the sequentially optimised, weighted, 

and Inoise incorporated MUSIC

Assume a mother’s heart rate of 60 bpm yielding a cardiac cycle length of 1000 msec. 

Each maternal cardiac cycle has been divided into four segments (temporal windows) of 

250 msec each. If the mother’s heart rate reaches say, 100 bpm the individual 

segmentation length is reduced by 1 0 0  msec reducing the segment length to 150 msec. 

And this would result in an increase in the variance of 15%. The effect on the 

QRS- interval is marginally small as a normal interval is from 90 msec to 110 msec. The 

segmentation usually starts at 50 msec before the mother’s R-wave and continues until 

the end of the first segment, albeit 250 msec or 163 msec. The other three equal 

segments are increased or decreased according to the mother’s heart rate. It was reported 

earlier that a decrease in the temporal window, or the segment length, can increase the 

variance by up to 15% of the value assigned to the critical 250 msec.

Common definitions of the bias and variance are found in Modern Spectral Estimation: 

Theory and Applications, by S. Kay, Prentice Hall, 1987, [21].

• The bias of the modified spectral MUSIC. The bias is defined as the averaged 

differences in frequencies, over 1 0 , 0 0 0  cases, of the transabdominally-measured 

fetal MUSIC peaks and those of the fetal scalp electrode. It was shown that the 

sequentially optimised, weighted, and In0ise incorporated MUSIC has a bias of 

1.23 and 2.15 for mother’s and fetal principal spectral peaks, respectively. This 

is lower than that of the conventional MUSIC by approximately 45%. The 

improvement in the bias is because the principal spectral peaks of the fetal 

heartbeat segment are closer to that calculated from the fetal scalp electrode 

segment. For the mother’s QRS-complex, the more deviation of the detected 

frequency of the MPPP around 17 Hz from that of the mother’s chest ECG, the 

higher the bias will be. Similarly, for the fetal QRS-complex, the more deviation 

of the detected frequency of the FPPP around 30 Hz from that of the fetal scalp 

electrode, the higher the bias will be. •

• The variance of the modified spectral MUSIC. The variance is defined as the 

averaged, squared differences in frequencies, over 1 0 , 0 0 0  cases, of the 

transabdominally-measured fetal MUSIC peaks and those of the fetal scalp
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electrode. The variance of the fetal principal spectral peaks ranges from 0 to 8 , 

with an average value of 4.127.

5. Performance analysis of fetal heart monitoring in cases of coincident and 

non-coincident mother’s and fetal QRS-complexes

Assuming a mother’s heart rate of 60 bpm yielding a cardiac cycle length of 1000 msec. 

Each maternal cardiac cycle has been divided into four equal segments (temporal 

windows) of 250 msec. The average rate by which the first fetal event coincides with the 

QRS-complex of the mother is 9.8%, based on 50,000 maternal cardiac cycles. When 

the two QRSs of the mother and fetal coincide in segment I, segment II is usually free 

from such events and may be taken as the UCS plus noise artefact segment. On average, 

the second fetal heartbeat occurs in segment III. And if there is a third fetal heartbeat 

(i.e., the fetal heart rate is three times the mother’s), then it is likely to occur over both 

the fourth segment of the present cycle and the first segment of the next cycle. In most 

cases, we have encountered two fetal heartbeat occurrences within each maternal cardiac 

cycle. When the mother’s heart rate goes up during painful labour contractions, we still 

found more or less two fetal heartbeat occurrences within each maternal cardiac cycle. 

The deceleration of the fetal heart rate after the peak of labour contractions is normal 

and not proven to be related to the mother’s heartbeat as her heart will still be racing for 

a while after the peak of contractions.

The effect of proximity of the mother’s and fetal R-wave on the frequency deviation of the 

fetal principal spectral peak around 30 Hz, and on the fetal heart detection rate

Performance analysis has included the effect of proximity of the mother’s and fetal 

R-wave on the frequency deviation of the fetal principal spectral peak around 30 Hz, 

and on the fetal heart detection rate, in all observed cases of coincident mother and fetal 

QRS-complexes. The sequentially optimised, weighted, and Inoise incorporated MUSIC 

algorithm has been applied to approximately 50,000 maternal cardiac cycles, including 

4,873 coincident QRS-complexes cases. The results are tabulated in Table 6.3.

It can be clearly seen that even for a fixed model order of 11 and 4 for the signal and 

noise subspace, respectively, the new MUSIC algorithm is capable of detecting fetal 

heartbeats, at a rate of almost 92%, when the mother and fetal R-waves are almost
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Averaged 

Rm-Rf separation 

(msec)

40 35 25 20 15 7 0

Frequency 

deviation in the 

fetal FPPP ± (Hz)

1.73 1.92 2.09 2.17 2.31 2.52 2.74

Number of 

overlapping 

windows

5 5 5 5 8 9 10

Average 

detection 

rate (%)

93.81 93.63 93.56 93.49 93.24 92.35 91.83

Table 6.3: The effect of proximity of the mother’s and fetal R-wave on the frequency deviation 

of the fetal principal spectral peak around 30 Hz, and on the fetal detection rate. The total 

number of fetal heartbeats is 120,000. The number of coincident mother and the first fetal 

QRS-complexes is 4,873. The average fetal heart detection rate is 93.52% for coincident mother 

and the first fetal QRS-complexes within the maternal cardiac cycle. Otherwise, the average fetal 

heart detection rate is 99.5% for the second or third occurrences of fetal heartbeats within the 

maternal cardiac cycle. The overall fetal heart detection rate for the 120,000 FHBs is 95.5%. 

The model order is fixed at 11 and 4 for the signal and noise subspace, respectively.

synchronised, provided that appropriate sequential weightings for the mother and the 

fetal are maintained throughout.

As the separation between the mother and fetal R-waves is increased, we can see a slight 

increase in the corresponding detection rate and a decrease in the FPPP frequency 

deviations.

The effect of the incorporation of the UCS modified covariance matrix on the fetal 

principal pseudo-spectral peak

The incorporation of the covariance matrix of the UCS helps to strengthen and sharpen 

the FPPPs for the optimum model order and in some cases it appears to be tolerant to a 

change in the model order from 11 and 4 to 9 and 4 for the signal and noise subspace, 

respectively. It has also resulted in a significant noise artefact reduction in the QRS-free 

segments.
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detection rate
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The sequentially optimised, weighted and InoiSe incorporated MUSIC has resulted in the 

following fetal heart detection rates: (i) 93.52% for coincident mother and fetal 

QRS-complexes, (ii) 99.35% for non-coincident mother and fetal QRS-complexes, and

(iii) 95.50% overall average.

Without the incorporation of the UCS modified covariance matrix into the mathematical 

formulation of the sequentially optimised, weighted MUSIC, the following fetal heart 

detection rates have been obtained: (i) 89.23% as opposed to the 93.52% for coincident 

mother and fetal QRS-complexes, (ii) 97.51% as opposed to the 99.35% for 

non-coincident mother and fetal QRS-complexes. Because in the former no “appropriate 

noise model” was assumed in the analysis, and (iii) 91.20% overall average.
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CHAPTER SEVEN

FINAL CONCLUSIONS

The three proposed non-invasive state-of-the-art signal 

processing techniques
The thesis proposes and evaluates three state-of-the-art signal processing techniques to 

detect fetal heartbeats within each maternal cardiac cycle, during labour contractions, 

using only a pair of transabdominal electrodes. A second pair of electrodes may be used 

for the mother’s chest ECG. The first and second techniques are, namely, the structured 

third-order cumulant-slice-template matching and the bispectral-contours-template 

matching for fetal QRS identification, respectively. The third technique is based on the 

modified and appropriately weighted spectral multiple signal classification (MUSIC) 

with incorporated covariance matrix for uterine contraction noise-like interfering signals 

also contaminated with noise. Essentially, two modifications to the standard MUSIC 

have been developed in order to enhance the performance of the spectral estimator in 

our applied work. The first modification involves the introduction of an optimised 

weighting function to the segmented ECG covariance matrix, and is chiefly aimed at 

enhancing the fetal QRS major spectral peak which occurs at around 30 EIz against the 

mother QRS major spectral peak usually occurring around 17 Hz and all other noise 

contributions. Additional optional pseudo-bispectral enhancement to sharpen the 

maternal and fetal spectral peaks in particular when the mother and fetal R-waves are 

temporally coincident has been achieved. The second modification to the spectral 

MUSIC is the removal of the unjustified assumption that only white Gaussian noise is 

present and the incorporation of the actual measured labour uterine contraction 

covariance matrix in reconfigured subspace analysis. This inevitably leads to the 

generalised eigenvectors -  eigenvalues decomposition modern signal processing. This is 

now coined the modified, interference incorporated pseudo-spectral MUSIC. The above 

mentioned first and second techniques are higher-order statistics-based (HOS) and
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hybrid involving both signal processing and NN classifiers. The third technique is 

second-order statistics-based (SOS).

In all techniques, the removal of signal non-linearity with the aid of non-linear Volterra 

synthesisers plays a crucial part in the fetal detection integrity. Essentially, Chapter Two 

has provided a complete coverage of the application of higher-order statistics to ECG 

data, and Chapter Three has exploited the non-linear Volterra synthesiser in relation to 

the concept of ECG signal and noise linearisation. The adaptively optimised parameters 

of the LMS-based and the LMF-based second- and third-order Volterra synthesisers 

were given in all the relevant figure captions in this thesis. During a clinical trial in a 

London hospital, a PC was provided by our software with fixed optimised Volterra 

parameters, and this has not changed the outcome as given in this conclusion. Also, the 

parameters of the single-hidden-layer perceptron classifier were fixed.

The thesis has covered current non-invasive FHR monitoring techniques and has given 

adequate appraisal to all other non-invasive modern signal processing techniques, 

including those based on higher-order statistics, wavelet transform, and non-linear 

dynamic modelling. None of such techniques had been properly assessed against a 

reference fetal scalp electrode, and in the majority of cases the fetal heartbeat is visible 

in their moderate-to-high SNR ECG data.

Adequate individual chapter’s discussions and conclusions have been presented and will 

not be repeated here for brevity and because it is now prudent to concentrate on 

conclusions that are only relevant to the three non-invasive signal processing techniques 

presented in this thesis, and given in Chapters Four, Five, and Six.

Data acquisition
The extraction and subsequent analysis of the fetal electrocardiogram (FECG) from the 

maternal abdomen (transabdominally) can potentially provide the clinician with an 

indication of fetal status. Currently, such FECG assessment can be performed during 

labour, using signals obtained from a scalp electrode. This is invasive and undesirable 

during labour, and may even be the cause of fetal infection in an otherwise normal 

healthy labour. This is not an overstatement, particularly before the onset of labour, as it 

necessitates rupturing the maternal sack which contains the amniotic fluid, prematurely,
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to allow access to and clipping of the fetal scalp. Assuming of course that the fetal is not 

in a breached position, e.g., head first. It is, therefore, very desirable to be able to 

monitor the fetal ECG transabdominally without any loss of signals, as in the case of the 

ultrasound mode, during antepartum and intrapartum. It is particularly valuable to have 

continuous transabdominal FECG monitoring before, during, and after each painful 

uterine contraction peak as this determines whether the fetal responds normally to this 

enormous pressure which is attributed to perfect precession electromechanical activities, 

as previously investigated in the higher-order statistical domains by Dr. M. Sabry-Rizk 

and Mr. Zgallai under a research contract. This has been mentioned briefly in the thesis. 

The Doppler ultrasound requires skill to operate and position the transducer so as to 

acquire the fetal ultrasound, making it unsuitable for long-term ambulatory monitoring. 

The opposite is true for our PC-based techniques, because there is no sensitivity as to 

whereabouts the electrode pair is positioned on the abdomen. In fact, the techniques 

presented here can pick up the occurrences of the fetal heartbeat from a pair of bipolar 

electrodes placed on the mother’s chest, albeit at -13 dB or so measured from the 

mother’s R-wave. This is because HOS-based techniques, when appropriately exploited 

with a view of minimising the Gaussian noise and identifying the range and extent of 

distortion, and provided that the latter does not affect the discriminant properties of the 

cumulants or their bispectra which applies to fetal/mother ECG, can be used in adaptive 

discriminant patterns “robustification”.

Signals obtained from the maternal thorax and abdomen via a specially designed 

four-channel isolation amplifier which has a flat frequency response between 0.5 and 

100 Hz and 3 dB points at 0.05 and 250 Hz. This extended low frequency response, 

together with the accompanying flat phase response, minimises distortion of the low 

frequency components in the FECG such as the P- and T-waves which could hinder 

precise clinical diagnosis.

Transabdominal signals are taken in either vertical or horizontal directions, with 

electrodes spaced about 25 cm apart and equidistant with the umbilicus. These 

transabdominal signals consist of maternal and fetal ECG complexes (typical amplitudes 

of 100 pv and 20 pv, respectively) as well as a variety of noise sources. In order to make 

these signals’ magnitudes suitable for digitisation, amplification by a factor of 1 0 , 0 0 0  is 

required. Digitisation is performed at a sampling rate of 500 Hz with 16-bit resolution.
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The electrodes used are the wet gel disposable (silver/silver/chloride) type. The fetal 

scalp electrode is clipped to its head. The common reference electrode is attached to the 

mother’s thigh. The skin is first cleaned with alcohol-saturated cotton wool to remove 

grease, dirt and dead skin, thus decreasing the skin electrode impedance.

Problems associated with obtaining suitable traces include large baseline drift (which 

can cause amplifier saturation), abdominal muscle noise which can swamp the ECG 

signals, and 50 Hz interference. All has been dealt with in the thesis, particularly the 

challenging problem of labour uterine contraction.

Critical data segmentation for the second- and third-order 

statistics-based techniques
Because the fetal heart detection techniques presented in the thesis rely on adequate 

mother QRS-complex detection in the first instance, the emphases here are on 

delineating the boundary of each maternal cardiac cycle by first detecting the mother’s 

QRS-complexes. This is followed by dividing the cardiac cycle into four segments, 

coded as I, II, III, and IV (segment I contains the mother’s QRS-complex and any fetal 

heartbeat), with a view to improve both the temporal and spectral resolutions, as well as 

limiting the HOS variances and the MUSIC variance. On average, the cardiac cycle is

1,000 msec for a mother’s heart rate of 60 bpm. Therefore, individual segments have 

equal length of 250 msec. This also applies to the synchronised fetal scalp electrode 

ECG signal, but with a typical fetal QRS-complex length of 60 msec, as opposed to a 

normal QRS-complex range between 90 msec and 110 msec in adults. It is very 

common to have two fetal heartbeats in each maternal cardiac cycle. It is less common 

to have three fetal heartbeats in each maternal cardiac cycle. Four fetal occurrences 

within a maternal cardiac cycle is a rare event. As the mother’s heart rate increases or 

decreases, this inevitably affects the QRS-complex resolution in both the time and the 

frequency domains, as well as the corresponding variance. Naturally, the ECG segment 

length ranges from 150 msec to 300 msec, for a corresponding range of mother’s heart 

rate from 100 bpm to 50 bpm. The behaviour of the uterine contraction interference 

signals takes on the form of short-term noise-like. As opposed to its long-term 

non-linear chaotic behaviour.
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D a ta  s c e n a r io s

The above mentioned four segments were coded as I, II, III, and IV, each of length 

250 msec. These four coded segments have often ascribed to one of the following 

scenarios;

Scenario 1:

(I) Segment I, 0 -  250 msec; Predominantly maternal QRS-interval (no fetal

heartbeat present),

(II) Segment II, 251 msec -  500 msec; The first fetal heartbeat with maternal

contribution,

(III) Segment III, 501 msec- 750 msec; QRS-free ECG, and

(IV) Segment IV, 751 msec -  1000 msec; The second fetal heartbeat with

maternal contribution.

Scenario 2:

(I) Segment I, 0 -250  msec; Both maternal and fetal QRS-complexes,

(II) Segment II, 251 msec -  500 msec; QRS-free ECG,

(III) Segment 111,501 msec -  750 msec; The second fetal heartbeat with maternal

contribution, and

IV) Segment IV, 751 msec -  1000 msec; Either QRS-free ECG or possibly the 

third fetal heartbeat with maternal contribution.

T h e  s h o r t- te rm  s ta t is t ic a l b e h a v io u r  o f  th e  u te r in e  c o n tra c t io n  in te r fe re n c e  

s ig n a ls  (U C S )

The nature of the UCS changes with the length of the observation data. For instance, if 

the UCS is observed over 10,000 samples it can be modelled as deterministic, 

non-linear, chaotic, and multi-fractal signals [1-4], First, we need to quantify the 

long-term statistics before we refer to short-term statistics.

UCS Long-term statistics (data length 10,000 msec). Essentially, the multi-fractility is 

indicative of normality in this case. Based on the Flinhch linearity test and the Hurst 

component analysis test which will now be described.

The Hinich linearity test: The test is based on the observation that for a linear process 

the skewness will be constant. In the Hinich linearity test, the inter-quartile range of the 

estimated bicoherence squared is computed; a quantity, A, proportional to the mean 

value of the bicoherence squared is also computed; the theoretical inter-quartile range of
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a chi-square random variable with two degrees of freedom and non-centrality parameter, 

A, is then computed. The linearity hypothesis should be rejected if the estimated and 

theoretical inter-quartile ranges are very different from one another. The non-centrality

of samples, p is the signal-to-noise ratio, and T is the skewness of the signal. The 

estimated and theoretical inter-quartile ranges are 268.91 and 42.59, respectively. 

Hence, the non-linearity hypothesis was accepted.

The Chaoticity Hurst component test'. The test is based on the observation that 

multi-fractal signals can be decomposed into many subsets characterised by different 

local Hurst exponents, h, which quantify the local singular behaviour and relate to the 

local scaling of the signal. The local value of h is extracted using the Wavelet theory. 

The local exponent, h, is evaluated through the modulus of the maxima values of the 

wavelet transform at each point of the signal. A function Zq(a) is defined as the sum of 

the qth powers of the local maxima of the modulus of the wavelet transform coefficients 

at scale a. The scaling of that partitioning function, Zq(a), is estimated. For small scales 

we expect the partitioning function Zq(a) scales as a power law, Zq(a) = at(q). For certain 

values of q, the exponents t(q) have familiar meanings. In particular, t(2) is related to the 

scaling exponent of the Fourier power spectra, S(f) = 1/fb , as b = 2 + t(2). For positive 

q, Zq(a) reflects the scaling of the large fluctuations and strong singularities, whereas for 

negative q, Zq(a) reflects the scaling of the small fluctuations and weak singularities. 

For multi-fractal signals, t(q) is a non-linear function: t(q) = q h - D(h), where h = dt/ dq 

is not constant. The fractal dimension D(h) is related to t(q) through a Legendre 

transform: D(h) = q h - t(q). The local Hurst exponents, h, quantify the local singular 

behaviour and thus relate to the local scaling of the time series. Using the

10,000 samples of the UCS, the partitioning function was calculated for scales a > 8  and 

for values of q ranges from -5 to 5. It was found that t(q) is a non-linear function of q; 

also D(h) has non-zero values for a broad range of the local Hurst exponents, h, which 

indicates that the corresponding UCS is a multi-fractal signal. The range of scaling 

exponents (0 < h < 0.4) with non-zero fractal dimension D(h) indicates that the 

fluctuations in the UCS exhibit anti-correlated behaviour (h = 1/2 corresponds to 

uncorrelated behaviour; h > 1/2 corresponds to correlated behaviour). Hence, the UCS is 

a deterministic, non-linear, and chaotic signal.

parameter is A = 2N r s , where A is the non-centrality parameter, N is the number
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UCS Short-term statistics (data length 250 msec)

1- The Hinich Test for Gaussianity was applied to the 250 msec UCS segments The 

UCS does not satisfy the hypothesis of Gaussianity at a confidence level of 95%. 

The Gaussianity parameter, S-Gauss, was calculated to be 163.5 which is 

different from 0 for the Gaussianity assumption to be valid. So it is assumed that 

the UCS is non-Gaussian.

2- The statistics of the UCS are calculated from the following equations for the 

variance, skewness, and kurtosis;

The variance is defined as y* Vc£ (0) = —  [C-» (co).dco,
— 2tc j

— 71

71 71

the skewness as y3 VC3 (0 ,0 ) = -----— J J C3 (coj ,©2 )-dc0 ] .dcc>2

(2fyf -71 -7 1

and the kurtosis as

71 71 71

Y4 Yc 4 (0,0,0) = ----- - [ [ [ C^fyq, C0 2, CO3 ).d(Oj.dto?.dio3 . The variance of
( 2 n f  J n J J K

the UCS equals 0.957, the skewness equals 1.321, and the Kurtosis equals 2.637. 

The skewness and kurtosis are calculated from the third- and fourth-order 

statistics of the UCS which confirms that the UCS is non-Gaussian because its 

higher-order statistics are not equal to zero.

The statistics of the UCS are also different from the Uniform and Laplace noise 

which do not support third-order statistics because they are symmetrically 

distributed. It is also different from the Exponential and Rayleigh because its 

second, third- and fourth-order statistics are not related by one constant, e.g.,

X, a.

C h a ra c te r is t ic s  o f  th e  m o tio n  a r te fa c t  n o is e . The second- and third-order 

statistics of a motion artefact noise segment of 1 0 , 0 0 0  samples were extracted from the 

MIT/BIH NSR and AR databases. On the one hand, the power spectrum has proven not 

to be accurate enough to be relied upon in a thesis like this which deals with the 

higher-order statistics of motion artefact. On the other hand, the bispectrum depicts 

many frequencies in the triangle region of (0 Hz,0 Hz), (0 Hz,35 Hz) and (35 Hz,0 Hz). 

These bispectral frequencies of motion artefact would be overlapping with those of the 

mother’s and fetal QRS-complexes, albeit at around -20 dB level. However, the level of
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noise at the QRS-complex spectra is comparatively small, and the effect of motion 

artefact on the detection of QRS-complexes is not noticeable. The bicoherence squared 

is rather confined to very low frequencies.

The first hybrid system: The third-order cumulant slice 

template matching in conjunction with a single-layer 

perceptron
Early research studies which have not been presented in this thesis, but have been 

carried out under an two-and-half-year research contract, exploited the whole 

multi-dimensional structures of the third- and fourth-order cumulants of the ECG 

signals presented in this thesis in conjunction with multi-layered feed-forward neural 

networks. The justification for this multi-layer perceptron network was based entirely on 

the assumption that by including a sufficient number of hidden layers, the network 

would be enabled to extract both third-and fourth-higher-order statistics embedded in 

the cumulants presented to the network input. The multi-dimensional ECG cumulants 

were created first and subsequently a pre-selected number of slices were extracted and 

cascaded side-by-side to be presented to the input layer of the MLP. In the early days of 

this research, it was difficult to make a decision, just by mere observations of the 

available 1 -d third-order cumulant slice or 2 -d fourth-order cumulant slice patterns 

produced from the transabdominally-measured ECG signals, as to which of such slices 

would show a distinguishable pattern which could be matched to the corresponding 

mother or fetal ECG templates. Particularly, those templates of the fetal scalp electrodes 

which have been used as a reference, so that the fetal heartbeat detection could be 

verified in the midst of those complex maternal environments and counted within each 

maternal cardiac cycle.

Current research studies have focused on the use of a single-hidden-layer perceptron and 

a one-dimensional cumulant slice. There are mathematical formulae and software 

developed by the author which deal with any arbitrarily chosen off diagonal and off wall 

one-dimensional slice and this helps to reduce the CPU time by 99%.
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D e ta ile d  re su lts

1. The e ffec t o f  the chosen w indow  length  on the th ird -o rd er cum ulan t variance

The transabdominal ECG signal is linearised and segmented prior to the third-order 

cumulant calculations. The window length is carefully chosen to serve two criteria; (i) to 

yield an acceptable upper threshold of both the deterministic and stochastic noise types 

inherent in the higher-order statistics of the ECG signals encountered, and (ii) to allow 

the detection of one, two, three, or four fetal heartbeats (FHBs) within one maternal 

transabdominal cardiac cycle.

It has also been shown that the variance of a Gaussian noise segment of the same length 

is equal to 1.0629 which is close to the ideal value of 1.0. The variance would increase 

by more than 20% if the segment length is halved. The TOC variance of the fetal 

heartbeat segments has been calculated. It ranges from 0.64 to 4.2 with an average value 

of 2.381.

2. C alcu lation  o f  averag ed  fe ta l h eart rates

Templates of third-order cumulant diagonal and wall slices are used as the desired 

response of the single-hidden-layer perceptron in the training phase. The TOC template 

matching procedure starts by matching the slices of the segments to the templates until 

the first and the second maternal QRS-complexes are detected and their R-wave are 

pinpointed. The maternal heart rate is accurately calculated from the knowledge of the 

current and previous R-wave positions. Then, the search for the fetal heartbeat starts at 

50 msec before the first maternal R-wave and continues until we reach the second 

maternal R-wave. Although the ECG TOC template matching technique is very 

effective in detecting the occurrence of the fetal heartbeats as a whole even when it is 

completely buried in noise, it cannot locate the fetal R-wave over a window length of 

250 msec. However, we can measure fairly accurately the maternal heartbeats and 

calculate the instantaneous heart rate for the mother. Hence, by counting the number of 

fetal heartbeats that have occurred between two successive maternal R-waves, one can 

easily calculate the averaged FHR within the maternal cardiac cycle;

The average FHR = MHR x Number of FHBs / number of maternal heartbeats
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In the above formula, the instantaneous maternal heart rate is previously known with 

some degree of accuracy, and the relative fetal to maternal heartbeat is also known 

within the maternal cardiac cycle. Hence, the averaged fetal heart rate can be calculated 

within each maternal cardiac cycle.

3. P aram eters  o f the s ing le -h idden  lay e r perceptron

A major limitation of the back-propagation algorithms is the slow rate of convergence to 

a global minimum of the error-performance surface because the algorithm operates 

entirely on the gradient of the error-performance surface with respect to the weights in 

the single-hidden-layer perceptron. The back-propagation learning process is accelerated 

by incorporating a momentum term. The use of momentum introduces a feedback loop 

which prevents the learning process from being stuck at a local minimum on the 

error-performance surface of the single-hidden-layer perceptron.

The network has been optimised in terms of its learning rate, momentum constant, and 

hidden layer size to achieve the minimum mean-squared error. The optimum learning 

rate is found to be 0.8. The optimum momentum constant is found to be 0.99 and 0.90 

for the maternal QRS-complex and the fetal heartbeat with maternal contribution 

segments, respectively. The input layer size of the neural network is 8  x 8 . The single- 

hidden-layer has an optimum dimension of 5 x 5. The input to the first layer is the third- 

order cumulants diagonal and wall slices. The network is trained using TOC slice 

templates. The input to the network is eight template patterns. These are the third- 

order cumulant diagonal and wall slices of four segments from one transabdominal 

cardiac cycle. For example the first pair are the maternal QRS-complex TOC diagonal 

and wall slices, the second pair are the first fetal heartbeat TOC diagonal and wall slices, 

the third pair are QRS-free ECG TOC diagonal and wall slices, and the fourth pair are 

the second fetal heartbeat TOC diagonal and wall slices. The network is trained over the 

eight patterns. The training terminates when the worst error in all patterns in one pass is 

less than 0.1. Typically the average error will be in the range of 0.001.

4. The c lassifica tion  rate  fo r m atern al Q R S -com plex  a n d  fe ta l h eartbeat 

segm ents

The results of the first hybrid system indicates that a linear combination of diagonal and 

wall slices of the TOC can improve the detection rate by up to 1% over and above the
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77.8% obtainable using only either slice. Using two more arbitrary slices off-diagonal 

and off-wall would result in a further improvement of up to 1%. Using two slices, 

instead of only one, result in an two-fold increase in the CPU time of 1 msec using Unix 

WS.

Further improvement of 6 % to 8 % is attainable with maternal transabdominal ECG 

signal linearisation employing second- and third-order Volterra synthesisers, 

respectively. Based on the first hybrid system using TOC slices for signal processing 

and subsequent single-hidden-layer classification, 1 0 0 % and 86.16% classification rates 

have been achieved for maternal QRS-complex and fetal heartbeats, respectively. Note 

that the classification rates for coincident and non-coincident mother’s and fetal QRS- 

complexes are 0% and 95.55%, respectively.

The remaining undetected 13.84% fetal heartbeats include 9.8% overlap with the 

maternal QRS-complexes and 4% occur during depolarisation of the maternal T-waves. 

Those events unavoidably lead to significant distortion of the fetal third-order 

cumulants. This means that the cumulant signatures will not be close to the TOC 

template signature stored in the database. Examples of false negatives and false 

positives have been found in the following cases, respectively, (i) a fetal heartbeat with 

maternal contribution TOC diagonal slice was wrongly matched to a QRS-free ECG 

TOC diagonal slice template, and (ii) a QRS-free ECG TOC diagonal slice was wrongly 

matched to a fetal heartbeat with maternal contribution TOC diagonal slice template.

The averaged classification rate is 86.16% for 120,000fetal heartbeats.

Fetal heartbeats falling within the maternal QRS-complex have not been detected.

The second hybrid system: The bispectral contours template 

matching in conjunction with a single-hidden-layer perceptron
The hybrid bispectral contour matching technique is an extension to the above 

cumulant-based hybrid technique. Therefore, the choice of the NN classifier is based on 

the general discussion presented previously. Prior information remains as a valuable 

asset and is very much exploited herein. It is the matching of the horizontal 2-d 

bispectral contours that has been used in the BIC template matching technique instead of 

the 1-d polar bispectral slices. Because in order to use the 1-d polar bispectrum slices
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effectively, one needs to use a minimum of 24 polar slices to facilitate capturing the 

most rapid changes in the bispectrum including null features that could be used as 

discriminant patterns. Whereas for BIC contours, provided that they are horizontally cut 

at a maximum number of 1 0  levels, a good quality discriminant picture can be made 

available for the neural network classifier. For example, it is very unlikely that maxima 

and troughs are missed because of any changes in their respective positions.

Approximately 50,000 maternal cardiac cycles have been included in the analysis. The 

numbers of bispectral contours compound templates are 1 0  for the maternal chest, 1 0  for 

the fetal scalp, and 140 for the transabdominal ly-measured 250 msec segments, 

respectively. Each bispectral compound template is made of 10 horizontal templates at 

different levels. Starting from a normalised 0 dB and going down in steps of 1 dB each 

to a -  10 dB.

The maternal transabdominal ECG signal is linearised using an optimised LMF-based 

second- or third-order Volterra synthesiser. The second-order Volterra synthesiser 

parameters are: filter length = 6 , step-size parameters = 0.005, and 0.0004 for linear and 

quadratic parts, respectively, delay = 5. The third-order Volterra synthesiser parameters 

are: filter length = 6 , step-size parameters = 0.001, 0.0002, and 0.0004 for linear, 

quadratic and cubic parts, respectively, delay = 5. The transabdominal ECG signal is 

segmented into four segments containing; (I) The maternal QRS-complex, (II) the first 

fetal heartbeat with maternal contribution, (III) QRS-free ECG, and (IV) the second fetal 

heartbeat with maternal contribution. To segment the transabdominal ECG signals, the 

window length is carefully chosen to; (i) Yield an acceptable upper threshold of both the 

deterministic and stochastic noise types inherent in the higher-order statistics of the 

ECG signals encountered, and (ii) allow the detection of one, two, three, or four fetal 

heartbeats (FHBs) within one maternal transabdominal cardiac cycle.

The classification procedure starts by matching the bispectral contours of the segments 

to those of the templates until the first and the second mother’s QRS-complexes are 

detected and their R-waves are pinpointed. The maternal heart rate is accurately 

calculated from the knowledge of the current and previous R-wave positions. Then, the 

search for the fetal heartbeat starts at 50 msec before the first maternal R-wave and 

continues until we reach the second maternal R-wave. Although the ECG bispectral
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contour template matching technique is very effective in detecting the occurrence of the 

fetal heartbeats as a whole in the frequency domain even when it is completely buried in 

noise, it cannot locate the R-wave in the time domain over a window length of 

250 msec. However, we can measure fairly accurately the maternal heartbeats and 

calculate the instantaneous heart rate for the mother. Hence, by counting the number of 

fetal heartbeats that have occurred between two successive maternal R-waves, one can 

easily calculate the averaged FHR within the maternal cardiac cycle;

The average FHR = MHR x Number of FHBs / number of maternal heartbeats

In the above formula, the instantaneous maternal heart rate is previously known with 

some degree of accuracy, and the relative fetal to maternal heartbeat is also known 

within the maternal cardiac cycle. Hence, the averaged fetal heart rate can be calculated 

within each maternal cardiac cycle.

D e ta ile d  resu lts

1. The e ffec t o f  w indow  length  on the b isp ec tra l con tour variance

The variance of the bispectrum for the optimum window length of 250 msec with FHB 

occurrence ranges from 0.47 to 3.3 with an average value of 1.716. Note that the 

variance of the bispectrum is smaller than that of the third-order cumulants. A further 

15% increase in the variance of the bispectrum is due to an increase in the maternal 

heart beat from 60 bpm to 100 bpm. The latter has resulted in a 40% decrease in 

segment size.

2. P aram eters  o f the s in g le -h idden  lay e r p e rcep tron

The network has been optimised in terms of its learning rate, momentum constant, and 

hidden layer size to achieve the minimum mean-squared error. The optimum learning 

rate is found to be 0.2. The optimum momentum constant is found to be 0.2. The input 

layer dimensions are 8 x 8 . The single-hidden-layer has an optimum dimension of 6  x 6 . 

The input to the first layer is the bispectral contours of the four transabdominally- 

measured ECG segments. The network is trained using the BIC templates. During the 

training phase, the input to the network is four template patterns. These are the BIC of 

four segments from one transabdominal cardiac cycle. For example the first is the 

maternal QRS-complex BIC, the second is the first fetal heartbeat BIC, the third is the
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QRS-free ECG BIC, and the fourth is the second fetal heartbeat BIC. The network is 

trained over ten templates of each of the four segments. The training terminates when 

the worst error in all patterns in one pass is less than 0.1. Typically the average error 

will be in the range of 0 .0 0 1 .

3. The c lassifica tion  rate  fo r m atern a l Q R S -com plex  an d  fe ta l heartbeat 

segm ents

The indirect method of calculating the bispectrum has been employed. The CPU time is 

2 sec. Results obtained from 30 cases using the non-invasive transabdominally- 

measured ECG signal, with the simultaneous fetal scalp electrode ECG signal as a 

reference, show that the second hybrid method has a classification rate of 1 0 0 % for 

normal, healthy maternal QRS-complexes and 90.12% for fetal heartbeats. It has been 

shown that an improvement of 1% to 3% is attainable with ECG signal linearisation 

employing second- and third-order Volterra synthesisers, respectively. Conventional 

methods (based on the power spectrum) of fetal heartbeat detection have a success rate 

in the range of 70%. The second hybrid system has a significantly higher classification 

rate.

The classification rate of fetal heartbeats for non-coincident mother’s and fetal 

QRS-complexes is 99.21%. The classification rate of fetal heartbeats for coincident 

mother’s and fetal QRS-complexes is 0%. This means that the hybrid bispectral 

contours technique fails to resolve the fetal beat when both the mother and fetal 

QRS-complexes are synchronised.

The bispectral contour template matching technique improved the classification rate by 

approximately 4 % over and above that of the third-order cumulant template matching 

technique. The difference in performance is not due to better resolvability of the latter 

over the former in the case of coincident mother’s and fetal QRS-complexes, as both 

techniques fail in this respect. But, it is due to the fact that the BIC template matching 

technique can resolve a few of the fetal QRS-complexes occurring within the T-wave 

region of the mother.

The averaged classification rate is 90.12% for 120,000fetal heartbeats.
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Fetal heartbeats falling within the maternal QRS-complex have not been detected. 

Fetal heartbeats falling within the maternal P- and T-waves have been detected.

The third system: The Sequentially optimised weighted and 

uterine contraction interference signal modified covariance 

matrix incorporated MUSIC
The third technique is based on the modified and appropriately weighted spectral 

multiple signal classification (MUSIC) with incorporated covariance matrix for uterine 

contraction noise-like interfering signals also contaminated with noise. Essentially, two 

modifications to the standard MUSIC have been developed in order to enhance the 

performance of the spectral estimator in our applied work. The first modification 

involves the introduction of an optimised weighting function to the segmented ECG 

covariance matrix, and is chiefly aimed at enhancing the fetal QRS major spectral peak 

which occurs at around 30 Hz against the mother QRS major spectral peak usually 

occurring around 17 Hz and all other noise contributions. Additional optional 

pseudo-bispectral enhancement to sharpen the maternal and fetal spectral peaks, in 

particular when the mother and fetal R-waves are temporally coincident, has been 

achieved. The second modification to the spectral MUSIC is the removal of the 

unjustified assumption that only white Gaussian noise is present and the incorporation 

of the actual measured labour uterine contraction covariance matrix in reconfigured 

subspace analysis. This inevitably leads to the generalised eigenvectors -  eigenvalues 

decomposition modem signal processing. This is now coined the modified, interference 

incorporated pseudo-spectral MUSIC.

The novelty of this technique rests on its dealing with the UCS during the strong and 

most painful peaks of labour contractions which are, apart from their noise-like 

characteristics, heavily contaminated with other noise artefact. Short data samples that 

can be classified as predominantly uterine noise artefact have been isolated within the 

maternal cardiac cycle and the computation of the USC covariance matrix which 

represents the modified covariance matrix is performed and incorporated in the 

modified spectral MUSIC steering vector prior to the GSVD orthogonalisation. The 

250 msec data portions earmarked for the UCS modified covariance matrix fall mostly 

within segments III in the case of those maternal cardiac cycles that are free from 

coincident mother and fetal QRS-complexes in segments I, OR in segments II and IV
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for maternal cardiac cycles that do exhibit occurrences of coincident mother and fetal 

QRS-complexes in Segments I.

T h e  s p e c tr a l  c h a ra c te r is t ic s  o f  th e  u te r in e  c o n tra c t io n  in te r fe re n c e  s ig n a l

It has been found from previous research studies [4-5] that, the spectrum of the uterine 

contraction interference signals may include comparatively strong narrowband spectral 

components centred around 5 Hz, 30 Hz, 45 Hz, 60 Hz, and 90 Hz in addition to some 

broadband components. Several figures in Chapter Six have depicted the UCS spectral 

characteristics before and after linearisation using an optimised third-order Volterra 

synthesiser. Linearisation has resulted in an average reduction of about 9 dB in spectral 

peaks at frequency pairs of (32 Hz, 18 Hz), (32 Hz,48 Hz), and (48 Hz,32 Hz), which are 

strongly overlapping with the fetal frequency pairs at (30 Hz, 7 Hz), (30 Hz, 18 Hz), and 

(30 Hz, 26 Hz).

M o d if ic a t io n s  to  th e  c o n v e n t io n a l M U S IC

The modified spectral MUSIC is motivated, at least in part, by the shortcoming of all 

other techniques to detect FHBs when masked by the mother’s QRS-complex. The other 

motivation is to combat interference and noise using only second-order statistics. 

However, by limiting ourselves to only the second-order statistics whilst dealing with 

non-linear signals and non-linear noise, we have succumbed to face all sorts of 

problems. The one which stands out is the problem of the uterine contraction 

interference signal (UCS) and noise artefact, which do not easily conform to any 

specific probability distribution as the statistics change with time and eventually take on 

a chaotic nature for sufficiently long data. And to make matter even worse, the spectrum 

of the UCS contains resonances with a strong peak around 30 Hz overlapping the fetal 

principal pseudo-spectral peak. We have found from previous published work that, by 

removing non-linearity from the ECG signals, we can, in fact, enhance the resonances of 

the fetal spectrum and weaken or suppress the resonances of the background UCS. 

Therefore, a systematic approach was adopted and by breaking down the unsolvable 

problem, a tractable solution was obtained. This approach is summarised as follows; 

(i) linearise the whole ECG data, (ii) do not include any unqualified assumptions 

regarding noise statistics, (iii) deal with the actual second-order statistics of the 

interfering signals and noise, (iv) perform all the eigen-structured MUSIC mathematical 

formulation based on the actual ECG signals and the actual residual UCS interference
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plus artefact, and not on a hypothetical Gaussian or non-Gaussian noise for that matter, 

and (v) optimise the weighting functions for the covariance matrix of the segmented 

data based on the natural spectral peaks of the mother’s at around 17 Hz against that of 

the fetal at around 30 Hz, or of the fetal against that of the mother’s. This is done 

sequentially by re-scanning the mother’s QRS segment, or by splitting the data in halves 

in two parallel streams, and applying the appropriate optimised weighting function to 

the corresponding stream. In (iv), it is necessary to isolate and measure the UCS plus 

noise and examining its short-term properties within the 250 msec frame, and then 

incorporate its covariance matrix into the mathematical formulation of the MUSIC.

In pursuing separation of signals and interference signals, or signals and noise, two 

auxiliary methods have been used based on the concepts of oriented energy and 

signal-to-signal ratio, and the Gram-Schmidt orthogonalisation. This is done in 

addition to the MUSIC well established Generalised Singular Value Decomposition 

(GSVD) which deals with partitioning signal and coloured noise (as opposed to 

Gaussian noise) subspaces.

The rest was relatively easy and focused on separating two subspaces: (1) The first 

S-subspace contains either the covariance matrix of the coincident mother and fetal 

QRS-complexes, or predominantly one QRS-complex, and (2) the second I-subspace 

contains the modified covariance matrix of the residual uterine contraction interference 

signal (UCS).

H o w  is  th e  s e p a ra t io n  o f  th e  c o e x is t in g  o r  n o n -c o e x is t in g  m o th e r ’s  a n d  

fe ta l  Q R S -c o m p le x e s  p e r fo rm e d ?

The spectral content of the mother’s QRS-complex and that of the fetus are different and 

indeed unique. The mother’s QRS-complex principal spectral peak is found around 

17 Hz., and the fetal QRS-complex principal spectral peak is found around 30 Hz. 

Accordingly, such individual spectral content can be exploited herewith in the 

identification and detection of either signal within the maternal cardiac cycle. The 

Kaiser filtered weighted MUSIC previously published algorithm has been devoted to 

identifying in the frequency domain anomalous QRS-complexes and P-waves such as 

P-on-T-waves and P-on-QRS-complex episodes for adult patients [6 ], Similarly, the 

optimised Kaiser filtered weighted MUSIC can be applied to detect the fetal
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QRS-complex principal spectral peak. This will be appropriately addressed shortly. 

However, for FHR detection in labour one has to overcome two major problems in the 

transabdominally-measured ECG data, namely, poor signal spectral resolution and the 

influence of the coexisting labour contraction signals which not only exhibit a fairly 

broad spectrum, but also is uniquely characterised by having localised energy 

resonances, one of which is seriously overlapping with the fetal distinctive strong peak 

around 30 Hz which represents the fetal spike. The fetal heartbeat detection is 

accomplished by thresholding the enhanced fetal spikes in the frequency domain. The 

most challenging problem is, therefore, not only to enhance the quality and resolution of 

the mother and fetal QRS-complexes’ principal pseudo-spectral peaks, abbreviated as 

MPPP and FPPP, respectively, but also to suppress the UCS resonances and nudge its 

modified covariance matrix into a separate subspace which is named the interference 

subspace (I-subspace).

Orthogonalisation is forced between the I-subspace and the signal subspace 

(S-subspace) containing either the covariance matrix of both the mother’s and fetal 

QRS-complexes or predominantly one QRS-complex. Again, depending on the 

coefficients of the Kaiser filter, the desired QRS-complex will prevail and the other will 

be attenuated. The data segment containing both mother’s and fetal QRS-complexes can 

be read and re-read sequentially, or is divided into two separate streams and weighted 

differently in parallel so that individual QRS-complex principal peaks can be 

thresholded and detected simultaneously.

D e ta ile d  resu lts

1. M u ltip le  overlapp ing  w indow s to track deviations in  the M P P P  an d  FP P P  

frequencies

Up to five overlapping and optimised Kaiser weighted windows have been used in the 

detection of the following mother’s QRS-complex principal spectral peaks; 15 Hz, 

16 Hz, 17 Hz, 18 Hz, and 19 Hz. Up to ten overlapping and optimised Kaiser weighted 

windows have been used in the detection of the following fetal QRS-complex principal 

spectral peaks; 28 Hz, 29 Hz, 30 Hz, 31 Hz, 32 Hz, 33 Hz, 34 Hz, 35 Hz, 36 Hz, 37 Hz, 

and 38 Hz. Because there are inevitable deviations in the 17 Hz and the 30 Hz of the 

mother and fetal QRS-complex pseudo-spectra, respectively.
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2. The choice  o f  the m o d e l o rder

As with any eigen-structured MUSIC estimator, the model order has to be chosen very 

carefully. The optimum model order is eleven for the signal and four for the noise. 

The method presented in this chapter is not sensitive to small deviations in the 

model order as revealed in Section 6 .8 .

3. C a lcu la tions  o f the b ias a n d  variance o f the seq u en tia lly  o p tim ised  w eighted, 

a n d  UCS covariance m atrix  in co rp o rated  M U S IC

The bias of the modified spectral MUSIC. It was shown that the sequentially optimised 

weighted, and UCS covariance matrix incorporated MUSIC has a bias of 1.23 and 2.15 

for mother’s and fetal principal spectral peaks, respectively. This is lower than that of 

the conventional MUSIC by approximately 45%. The improvement in the bias is 

because the principal spectral peaks of the fetal heartbeat segment are closer to that 

calculated from the fetal scalp electrode segment. For the mother’s QRS-complex, the 

more deviation of the detected frequency of the MPPP around 17 Hz from that of the 

mother’s chest ECG, the higher the bias will be. Similarly, for the fetal QRS-complex, 

the more deviation of the detected frequency of the FPPP around 30 Hz from that of the 

fetal scalp electrode, the higher the bias will be.

The variance of the modified spectral MUSIC. The variance of the fetal principal 

spectral peaks ranges from 0 to 8 , with an average value of 4.127.

4. P erfo rm ance  analys is  o f  fe ta l heart m o n ito ring  in cases o f co inc iden t and  

n o n -co in c id en t m o th e r’s an d  fe ta l Q R S -com plexes

Assuming a mother’s heart rate of 60 bpm yields a cardiac cycle length of 1000 msec. 

Each maternal cardiac cycle has been divided into four equal segments (temporal 

windows) of 250 msec. The average rate by which the first fetal event coincides with the 

QRS-complex of the mother is 9.8%, based on 50,000 maternal cardiac cycles. When 

the two QRSs of the mother and fetal coincide in segment I, segment II is usually free 

from such events and may be taken as the UCS plus noise artefact segment. On average, 

the second fetal heartbeat occurs in segment III. And if there is a third fetal heartbeat 

(i.e., the fetal heart rate is three times the mother’s), then it is likely to occur over both 

the fourth segment of the present cycle and the first segment of the next cycle. In most 

cases, we have encountered two fetal heartbeat occurrences within each maternal cardiac 

cycle. When the mother’s heart rate goes up during painful labour contractions, we still
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found more or less two fetal heartbeat occurrences within each maternal cardiac cycle. 

The deceleration of the fetal heart rate after the peak of labour contractions is normal 

and not proven to be related to the mother’s heartbeat as her heart will still be racing for 

a while after the peak of contractions.

The effect of proximity of the mother’s and fetal R-wave on the frequency deviation of the 

fetal principal spectral peak around 30 Hz, and on the fetal heart detection rate

Performance analysis has included the effect of proximity of the mother’s and fetal 

R-wave on the frequency deviation of the fetal principal spectral peak around 30 Hz, 

and on the fetal heart detection rate, in all observed cases of coincident mother and fetal 

QRS-complexes. The sequentially optimised weighted, and UCS covariance matrix 

incorporated MUSIC algorithm has been applied to approximately 50,000 maternal 

cardiac cycles, including 4,873 coincident QRS-complexes cases. The results are 

tabulated in Table 7.1.

It can be clearly seen that even for a fixed model order of 11 and 4 for the signal and 

noise subspace, respectively, the new MUSIC algorithm is capable of detecting fetal 

heartbeats, at a rate of almost 92%, when the mother and fetal R-waves are almost 

synchronised, provided that appropriate sequential weightings for the mother and the 

fetal are maintained throughout.

As the separation between the mother and fetal R-waves is increased, we can see a slight 

increase in the corresponding detection rate and a decrease in the FPPP frequency 

deviations.

The effect of the incorporation of the UCS modified covariance matrix on the fetal 

principal pseudo-spectral peak

The incorporation of the covariance matrix of the UCS helps to strengthen and sharpen 

the FPPPs for the optimum model order and in some cases it appears to be tolerant to a 

change in the model order from 11 for the signal and 4 for the noise to 9 for the signal 

and 4 for the noise. It has also resulted in a significant noise artefact reduction in the 

QRS-free segments.
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Averaged

Rm-Rf separation

(msec)

40 35 25 20 15 7 0

Frequency 

deviation in the 

fetal FPPP ± (Hz)

1.73 1.92 2.09 2.17 2.31 2.52 2.74

Number of

overlapping

windows

5 5 5 5 8 9 10

Average 

detection 

rate (%)

93.81 93.63 93.56 93.49 93.24 92.35 91.83

Table 7.1: The effect of proximity of the mother’s and fetal R-wave on the frequency deviation 

of the fetal principal spectral peak around 30 Hz, and on the fetal detection rate. The total 
number of fetal heartbeats is 120,000. The number of coincident mother and the first fetal 

QRS-complexes is 4,873. The average fetal heart detection rate is 93.52% for coincident 

mother and the first fetal QRS-complexes within the maternal cardiac cycle. Otherwise, 

the average fetal heart detection rate is 99.35% for the second or third occurrences of 

fetal heartbeats within the maternal cardiac cycle. The overall fetal heart detection rate for 
the 120,000 FHBs is 95.5%. Model order is fixed at 11 for the signal and 4 for the noise.

The effect of the incorporation of the UCS modified covariance matrix on the fetal heart 

detection rate

The sequentially optimised weighted, and UCS covariance matrix incorporated MUSIC 

has resulted in the following fetal heart detection rates: (i) 93.52% for coincident mother 

and fetal QRS-complexes, (ii) 99.35% for non-coincident mother and fetal 

QRS-complexes, and (iii) 95.50% overall average.

Without the incorporation of the UCS modified covariance matrix into the mathematical 

formulation of the sequentially optimised, weighted MUSIC, the following fetal heart 

detection rates have been obtained: (i) 89.23% as opposed to the 93.52% for coincident 

mother’s and fetal QRS-complexes, (ii) 97.51% as opposed to the 99.35% for 

non-coincident mother’s and fetal QRS-complexes. Because in the former no 

“appropriate noise model” was assumed in the analysis, and (iii) 91.20% overall 

average.
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The average fetal heart detection rate is 93.52% for coincident mother and the first 

fetal QRS-complexes within the maternal cardiac cycle.

Otherwise, the average fetal heart detection rate is 99.5% for the second or third 

occurrences of fetal heartbeats within the maternal cardiac cycle.

The overall fetal heart detection rate for the 120,000 FHBs is 95.5%.

Final remarks
The author would like to recommend the third system for non-invasive fetal heartbeat 

detection. It has the highest fetal heartbeat detection rate of 95.5%. It can detect fetal 

heartbeats falling within the maternal QRS-complex even when the mother’s R-wave 

and the fetal-‘s R-wave are synchronised. There is no need for the pseudo-bispectral 

enhancement to sharpen the maternal and fetal spectral peaks, as this is done at the 

expense of bispectrum computations, which results in an increase in the CPU time and 

does not improve the detection rate. Furthermore, one cannot implement the simple 

thresholding technique for detecting the fetal spectral spikes as in the one-dimensional 

MUSIC-based pseudo-spectrum presented in this thesis. There is no requirement to 

licence the use of NN classifiers in clinics, as in the case of the first and the second 

hybrid techniques. The VLSI implementation of the tracking and updating of the GSVD 

has already been developed for code division multiple access (CDMA), and some 

algorithms are based on subspace tracking by Moonen et al. [7],

References
[1] M. Sabry-Rizk, W. Zgallai, A. MacLean, K. T. V. Grattan, E. R. Carson, “The 

Application of a Novel Class of Embedded Dynamic Cubic Volterra to Long-Term 

Prediction of Chaotic and Multi-Fractal Electromyographic Signals During 

Labour,” the 4th International Conference on Neural Networks and Expert Systems 

in Medicine and Healthcare, Greece, June 2001.

[2] M. Sabry-Rizk, W. Zgallai, E. R. Carson, K. T. V.Grattan, A. MacLean, and P.

Hardiman, “Non-linear dynamic tools for characterising abdominal 

electromyographic signals before and during labour,” Transactions of the 

Institute of Measurement and Control, Vol. 22, pp. 243-270, 2000.

[3] M. Sabry-Rizk, W. Zgallai, A. MacLean, and E. R. Carson, “Multi-fractility in

labour contraction dynamics,” The 2nd Joint Conference of the IEEE Engineering in 

Medicine and Biology Society and the Biomedical Engineering Society, 23-26

331



Chapter 7 FINAL CONCLUSIONS

October 2002, Houston, Texas, USA.

[4] M. Sabry-Rizk, W. Zgallai “Novel Volterra Predictor Based on State-Space

Equilibrium of Nonlinear Single- or Multi-Fractal Signals” Proceedings of the 

SPIE’s 45th Annual Meeting, the International symposium on Optical 

Science and Technology, SPIE2000, Advanced Signal Processing Algorithms, 

Architectures, and Implementations X, USA, Vol. 4116, pp. 322-333, 30/7- 

4/8/2000.

[5] M. Sabry-Rizk, W. Zgallai E. R. Carson, K. T. V. Grattan, P. Hardiman, P. 

Thompson and A. Maclean, “Modified MUSIC Pseudospectral Analysis Reveals 

Common Uterus and Fetal Heart Resonances During Labour Contractions”, the 22nd 

Annual International Conference of the IEEE Engineering in Medicine and Biology 

Society, EMB2000, USA, 23-28/7/2000.

[6 ] M. Sabry-Rizk, W. Zgallai, C. Morgan, S. El-Khafif’ E. R. Carson, and K. T. V.

Grattan, “Novel decision strategy for P-wave detection utilising nonlinearly 

synthesised ECG components and their enhanced pseudospectral resonances,” IEE 

Proceedings Science, Measurement and Technology, Special section on Medical 

Signal Processing, vol. 147, No. 6 , pp. 389-397, November 2000.

[7] M. Moonen, P. Van Dooren, J. Vandewalle, “A singular value decomposition

updating algorithm for subspace tracking”, SIAM J. Matirx Anal Appl., Vol. 13, 

No. 4, pp. 1015-1038, October 1992.

332



APPENDIX A1

List of Publications

[1] M Sabry-Rizk, W Zgallai, E. R. Carson, K. T. V. Grattan, A. MacLean, and P. 

Hardiman Non-linear dynamic tools for characterising abdominal 

electromyographic signals before and during labour. Trans Inst Measurement and 

Control, vol. 22, pp. 243-270, 2000.

[2] M. Sabry-Rizk, W. Zgallai, C. Morgan, S. El-Khafif' E. R. Carson, and K. T. V. 

Grattan, “Novel decision strategy for P-wave detection utilising nonlinearly 

synthesised ECG components and their enhanced pseudospectral resonances,” IEE 

Proceedings Science. Measurement and Technology. Special section on Medical 

Signal Processing, vol. 147, No. 6 , pp. 389-397, November 2000.

[3] M. Sabry-Rizk, W. Zgallai, E. R. Carson A. MacLean, K. T. V. Grattan, “Multi- 

fractility in Fetal Heart Beat Dynamics,” 2nd European Medical & Biological 

Engineering Conference Vienna (Austria), December 04-08, 2002.

[4] M. Sabry-Rizk, W. Zgallai, A. MacLean, and E. R. Carson, “Multi-fractility in 

labour contraction dynamics,” The 2nd Joint Conference of the IEEE Engineering in 

Medicine and Biology Society and the Biomedical Engineering Society,23-26 

October 2002, Houston, Texas, USA.

[5] M Sabry-Rizk, W. Zgallai, A. McLean, E. R. Carson, and K. T. V. Grattan, “Virtues 

and Vices of Source Separation Using Linear Independent Component

Analysis for Blind Source Separation of Non-linearly Coupled and Synchronised 

Fetal and Mother ECGs,” EMBS 2001.

[6 ] M. Sabry-Rizk, W. Zgallai, A. MacLean, K. T. V. Grattan, E. R. Carson, “The 

Application of a Novel Class of Embedded Dynamic Cubic Volterra to Long-Term 

Prediction of Chaotic and Multi-Fractal Electromyographic Signals During 

Labour,” the 4th International Conference on Neural Networks and Expert Systems 

in Medicine and Healthcare, Greece, June 2001.

[7] M. Sabry-Rizk, W. Zgallai, E. R. Carson, S. El-Khafif, C. Morgan, and K. T. V.

333



Grattan Novel decision strategy for P wave detection utilising non-linearly 

synthesised ECG components and their enhanced pseudospectral resonances”, 

IASTED-SIP 2001, Honolulu, Hawaii, USA, August 2001.

[8 ] M. Sabry-Rizk, W. Zgallai E. R. Carson, K. T. V. Grattan, P. Hardiman, P. 

Thompson and A. Maclean, “Modified MUSIC Pseudospectral Analysis Reveals 

Common Uterus and Fetal Heart Resonances During Labour Contractions”, the 22nd 

Annual International Conference of the IEEE Engineering in Medicine and Biology 

Society, EMB2000, USA, 23-28/7/2000.

[9] M. Sabry-Rizk, W. Zgallai “Novel Volterra Predictor Based on State-Space 

Equilibrium of Nonlinear Single- or Multi-Fractal Signals” SPIE’s 45th Annual 

Meeting, the International symposium on Optical Science and Technology, 

SPIE2000, Advanced Signal Processing Algorithms, Architectures, and 

Implementations X, USA, vol. 4116, pp. 322- 333, 30/7-4/8/2000.

[10] M. Sabry-Rizk, W. Zgallai, E. R. Carson, S. El-Khafif, C. Morgan, and K. T. V. 

Grattan Novel decision strategy for P wave detection utilising non-linearly 

synthesised ECG components and their enhanced pseudospectral resonances”, IEE 

International conference, MEDSIP2000, Bristol, UK, September 2000.

[11] M. Sabry-Rizk, W. Zgallai, S. El-Khafif, E. Carson and K. Grattan, “Highly 

Accurate Higher Order Statistics Based Neural Network Classifier of Specific 

Abnormality in Electrocardiogram Signals,” ICASSP99, Vol. II, Speech processing 

II Audio and Electrtoacoustics Neural Networks for Signal Processing, pp. 1033- 

1036, USA, 15- 19/3/1999.

[12] M. Sabry-Rizk, S. El-Khafif, E. Carson, W. Zgallai, K. Grattan, C. Morgan and P.

Hardiman, “Suspicious Polyphase Patterns of Normal Looking ECGs Provide Fast 

Early Diagnoses of a Coronary Artery Disease,” IEEE Proceedings of the joint 

EMBS/BMES conference, pp. 979, 13-16 October 1999.

[13] M. Sabry-Rizk, W. Zgallai, “Higher Order Statistics Are Indispensable Tools in 

The Analysis of Electrocardiogram Signals,” IEE Colloquium on Statistical Signal 

Processing, January 1999.

[14] M. Sabry-Rizk, W. Zgallai, S. El-Khafif, E. Carson, K. Grattan, “Higher- Order 

Ambulatory Electrocardiogram Identification and Motion Artifact Suppression 

With Adaptive Second- and Third-Order Volterra Filters,” SPIE '98 Advanced 

Signal Processing Algorithms, Architectures, and Implementations VIII Vol. 3461,

pp. 417-431, San Diego, USA, 19-24 July 1998.

334



[15] M. Sabry-Rizk, W. Zgallai, P. Hardiman, and J. O’Riordan, “MUSIC-Based 

Bispectrum Detector: A Novel Non- Invasive Detection Method For Overlapping 

Fetal And Mother ECG Signals,” Proceedings of the 19th IEEE International 

Conference on Engineering in Medicine and Biology, EMBS, pp. 72- 75, USA, 

October 1997.

[16] W. Zgallai, M. Sabry-Rizk, P. Hardiman, and J. O’Riordan, “Third-order cumulant 

signature matching technique for non-invasive fetal heart beat identification,” 

ICASSP, IEEE International Conference on Acoustics, Speech, and Signal 

Processing, vol. 5, pp 3781-3784, Germany, 1997.

[17] M. Sabry-Rizk, W. Zgallai, P. Hardiman, and J. O’Riordan, “Applications of higher 

order cepstral techniques in problems of fetal heart signal extraction,” SPIE, 

International Symposium on Optical Science and Measurements, Vol. 2846, pp. 

395-411, Colorado, USA, August 1996.

[18] M. Sabry-Rizk, W. Zgallai, P. Hardiman, and J. O’Riordan, “Blind deconvolution- 

homomorphic analysis of abnormalities in ECG signals,” IEE colloquium, #144, 

pp. 5/1-9, London, 1995.

[19] M. Sabry-Rizk, W. Zgallai, P. Hardiman, and J. O’Riordan, “ Applications of 

adaptive poly cepstral based filtering to ECG analysis,” in proceedings of the 

international workshop on medical and biological signal processing, (E. C.

Ifeachor, ed.), pp. 14-19 Plymouth, UK, September, 1995.

[20] M. Sabry-Rizk, D. Romare, W. Zgallai, K. T. V. Grattan, P. Hardiman and J. 

O’Riordan “Higher order statistics (HOS) in signal processing: Are they of any 

use?,” IEE Colloquium, Digest #111, pp. 1/1-1/6, London, May 1995.

335



APPENDIX A2

A2.1 Independent Component Analysis (ICA)

Assume the following basic linear statistical model:

Y = M X + N (A2.1)

in which Y is referred to as the observation vector, X is called the source 

vector and N represents additive noise. M e i ^ lxJis the mixing matrix.

The goal of ICA consists of the estimation of the transfer matrix M and / or the 

corresponding realisations of the source vector X, given only realisations of the output 

vector Y, under the following assumptions:

• the columns of M are linearly independent;

• the components of X are mutually statistically independent, as well as 

statistically independent from the noise components.

Most of the current ICA algorithms rely on the first assumption for identifiability. The 

second assumption is the actual key ingredient for ICA. It is a very strong hypothesis, 

but also quite natural in lots of applications.

It is impossible to determine the norm of columns of M in Eq. (A2.1), since a rescaling 

of these vectors can be compensated by the inverse scaling of the source signal values. 

Similarly the ordering of the source signals, having no physical meaning, cannot be 

identified. For non-Gaussian sources, these indeterminacies are the only way in which 

an ICA solution is not unique [8 ], [20],

The ICA assumptions do not allow to distinguish between the signal and the noise term 

in Eq. (A2.1). Hence, the source signals will be estimated as X, by a simple matrix 

multiplication

X = WT Y. (A2.2)
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As an example, W 1 can take the form of the pseudo-inverse M t, with M an estimate of 

the mixing matrix. More generally, various beamforming strategies [22] can be applied.

Exploitation of the fact that the source signals are uncorrelated leads to a classical 

principal component analysis (PCA), which only allows to estimate the sources as well 

as the mixing matrix up to an orthogonal transformation. To illustrate this, let us assume 

that the sources have unit variance. Then we have (we omit the noise term at this point, 

for clarity)

Cy = M M t  (A2.3}

in which Cy is the covariance matrix of Y. Substitution of the singular value 

decomposition (SVD) of the mixing matrix M = U S V 1 shows that the eigenvalue 

decomposition (EVD) of the observed covariance allows to estimate the column space 

of M while the factor V remains unknown

Cy = U S 2 Ut = (U S) (U S)t . (A2.4)

As is well known, U and S might be found directly, in a numerically more reliable way, 

from the SVD of the observed dataset [13].

The solution to the ICA problem lies in the fact that the assumption of statistical 

independence is stronger than the notion of uncorrelated signals. Statistical 

independence is not only a claim on the second-order statistics of the signals, but also on 

their higher order statistics (HOS) [16]. More precisely, it is not sufficient that the 

source covariance Cx is a diagonal matrix, in addition, the higher-order cumulants of the 

source vector should be diagonal higher-order tensors. (A higher-order tensor can 

intuitively be imagined as a multi-way matrix, of which the entries are characterised by 

more than two indexes; its diagonal is defined as the entries for which all the indexes 

are equal.)

If we focus at the fourth-order level (third-order cumulants vanish for even probability 

density functions), then we have the following. The fourth-order cumulant Cx(4) of a real 

zero-mean stochastic vector X is defined by

337



Cx(4) i i i2Í3Í4 = E{Xi, Xi2 Xi3 Xi4} -E{Xi, Xi2 }E{Xi3 Xi4} 

-E{Xij Xi3 }E{Xi2 Xi4} -E{Xij Xi4 }E{Xi2 Xi3} (A2.5)

for all index values; E denotes the expectation. For every component Xi of X that has a 

non-zero mean, Xi has to be replaced by Xi -E{Xi}. It can be proven that the link 

between the cumulant of the observations and the cumulant of the sources is a straight 

generalisation of its second-order counterpart, Eq. (A2.3)

(CvW )i,¡3¡3¡4 - Z (M ),UI (M) 12J2 (M) , 3J3 (M) 14j4 (CXW ) J|J2J3J4 (A2.6)
j l J 2 j3 i4

for all index values, in which Cx(4) is diagonal. A nice property is that higher-order 

cumulants are insensitive to additive Gaussian noise. Eq. (A2.6) means that the 

unknown mixing matrix M is not only a diagonaliser of the covariance matrix Cy, but 

also of the cumulant tensor Cy(4), which leads to a sufficient amount of constraints to 

solve the problem. From an algebraic point of view, this means that the ICA solution 

can be obtained by means of multi-linear generalisations of the EVD (see e.g., [6 , 8 , 

10]). Actually, since the first paper on the subject [14], ICA has become a hot topic in 

the signal processing world. Apart from multi-linear algebra, solutions have been based 

on principles of neural networks and information theory, ([7], [15] and the references 

therein).

Although generally PCA does not allow to identify the mixing matrix nor the source 

signals, there are some cases in which it does lead to a reasonably good source 

separation. A straightforward example consists of the situation in which the mixing 

matrix has mutually orthogonal columns (having mutually distinct norms, if we assume 

that the sources have unit variance), as is clear from Eq. (A2.4). A second example is 

the situation in which the source variances are very different (assuming that the norms 

of the corresponding columns of M have a comparable magnitude). Next, consider a 

setup with, e.g., two sources, of which the variances are given by afi and a 2 , with 

CTi2 »  a 22. Reference [21] proved that in this case PCA yields, for both source 

estimates, an interference-to-signal ratio of the order of ct22 / a fi. This corresponds to 

the fact that the dominant eigenvector of Cy turns out to be an accurate estimate of the 

first column of M in this scenario; the second eigenvector however, is not necessarily a
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good estimate of the second column of M but it is approximately orthogonal to the first 

one. In the context of research on ICA, similar results have independently been obtained 

in [1 1 ] and [19].

A2.2 Extraction of the FECG by means of BSSS

The propagation of q bioelectric sources to an array of p body surface electrodes (p > q), 

can be formulated as

Y(t) = M X(t) + N(t) (A2.7)

where Y(t) = (yi(t) ... yp(t) ) 2 contains the potential recordings, X(t) = (xi(t) ... xq(t))T 

contains the signal values of the bioelectric sources, and the noise on each channel is 

represented by N(t) = (ni(t) ...np(t))T. The matrix M describes the propagation from 

source to electrode, i.e., its entry with row number i and column number j gives the gain 

of the jth bioelectric source signal with respect to the ith channel data (1 < i < p; 

1 < j < q). It is natural to assume that the different bioelectric sources, since they 

originate at different locations, correspond to different mechanisms, etc, can be 

approximately modelled as statistically independent. The noise components nj(t) 

(1 < i < p) are assumed to be Gaussian, with variance o n 2 .mutually independent as well 

as independent from the source signals.

As a conclusion the derivation of the antepartum FECG from multi-lead cutaneous 

recordings can be considered as an example of blind source subspace separation (BSSS), 

as discussed in Section A2.1, in which however the sources are of a multi-dimensional 

nature; we will use the term blind source subspace separation (BSSS). The fact that only 

the different source subspaces have to be separated, instead of all the source 

components, allows to reduce the computational cost, in comparison to conventional 

ICA, without loss of medical information. For, example, in the Jacobi type algebraic 

algorithms of [6 , 8 , 1 0 ] the multi-dimensional character of the sources limits the number 

of Jacobi rotation angles that have to be identified, since rotations of the basis vectors 

within one and the same source subspace are irrelevant.
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Since there is a large gap between the amplitudes of the MECG and the FECG, a good 

separation can already be expected from merely PC A, as explained in section A2.1. This 

is the philosophy behind the important class of SVD techniques for the extraction of the 

FECG [3-5]. To enhance the performance, one often tries to choose the electrode 

positions in a way that is more or less likely to correspond to an orthogonal transfer (see 

Section A2.1), but this is still a matter of heuristic rules and trial-and-error.

Conceptually, the higher-order processing step in ICA may add the following 

advantages to the second-order approach.

• It is possible to enhance the quality of separation: whereas the PCA error only 

decreases proportionally to the ratio of the power of the weak source versus the 

power of the strong source, ICA directly aims at a correct reconstruction of the 

mixing matrix. In case the higher order ICA step would fail, one can still resort 

to the results of the PCA, which forms the first step in many ICA algorithms.

• The propagation of the electrical signals can be characterised in an essentially 

unique way. We mention three important implications:

1. The transfer vectors indicate how strongly the different electrodes 

capture each source signal; from this information, better measurement 

positions might be deduced. The positioning of the electrodes is still the 

most crucial factor of the success of the PCA method [5],

2. An important aspect in the evaluation of the fetal wellbeing is the 

quantification of fetal movements [4], At this moment the required 

information can only be obtained by echocardiography or, simply, by asking 

the mother. The number of significant changes in the FECG subspace, which 

could be obtained from an on-line adaptive ICA implementation could be 

very useful information here.

3. The properties of the human body as a conducting medium are, in their 

own, subject of medical research [18], The study of the propagation of the 

fetal heart signal to the mother's skin is an important sub-aspect [17], The 

transfer matrix can provide more understanding with respect to the 

propagation of electrical signals through the body.

• The physician can resort to a more intuitive interpretation of the results: the 

separation of the measured signals into statistically independent source signals
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with a physical meaning, is easier to interpret than a decomposition in 

time-orthogonal principal components.

The FECG extraction is formulated as a blind identification problem, since it is less 

meaningful in practice to resort to a more parametric approach:

• The transfer coefficients are subject to a large uncertainty: the development of 

propagation models is still in its infancy. Moreover, it is clear that length, 

weight, contour, etc. are significantly different from patient to patient.

• The geometrical and resistivity parameters of the body of a single patient are not 

constant in time. Fetal growth, a different position of the fetus in the uterus, the 

variation in the characteristics of the amniotic fluid and the placenta during 

pregnancy, the changing geometry, ... etc., imply important changes of the 

transfer matrix.

• For the application in medical diagnosis and treatment it is crucial that 

unexpected ECG patterns can be detected and examined. For example, the 

parametric formulation of the quasi-periodicity of a regular heart rate pattern 

would hamper the detection of extra systoles (extra heartbeats between the 

regular beat-to-beat pattern).

• Potentially interesting is also the application of BSSS to cardiac electrical 

imaging, a recent generalisation of the ECG, in which more information is 

acquired by using a larger array of (e.g., 2 0 0 ) electrodes to record a sequence of 

"electrical images" of the body [2], This technique can be seen as an emerging 

modality for medical imaging, complementary to, e.g., computed tomography 

and magnetic resonance imaging; it is worth mentioning that in Japan the 

technique is already common practice.
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APPENDIX A3

Virtues and Vices of Source Separation Using Linear Independent Component Analysis for 
Blind Source Separation of Non-linearly Coupled and Synchronised Fetal and Mother ECGs
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Abstract: In this paper, we address the imminent 
problem which arises when researchers unjudiciously 
use a linear and instantaneous (memoryless) model for 
the source mixing structures of independent component 
analysis (ICA), also known as blind source separation 
(BSS), in persuit of separating noisy and frequently non- 
stationary combined mother and fetal electrocardiogram 
(ECG) signals from cutaneous measurements under the 
following false assumptions. (1) Sensors (electrodes) are 
instantaneous linear mixtures of mother and fetal source 
signals. (2) Noise is an additive Gaussian perturbation.
(3) Mother and fetal ECG signals are assumed to be 
stationary and linear, mutually statistically independent 
and statistically independent from noise. (4) Most of the 
second-order (SO) and fourth-order (FO) blind source 
separation (BSS) methods developed this last decade 
assume that third-order cumulants vanish hence the need 
to use FO. All these assumptions are not valid and will 
be challenged. We will expose these vices without 
providing any significant contributions for overcoming 
them. Rather, we provide a framework for investigations 
which are based on conformal mapping of non-linear 
mixtures and novel dynamic non-linear structures with 
time-variant memory to cater for quadratic coupling 
between mother and fetal which is quasi-periodical and 
the concomitant (quasi) cyclo-stationarity. Results given 
here show linear ICA shortfalls in non-stationary 
environment which is precipitated by quadratic coupling 
between mother and fetal ECGs during events of 
synchronised QRS complexes and P-waves and account 
for more than 20% of the 100,000 maternal cardiac 
cycles obtained from several clinical trials.

Keywords: Non-invasive fetal electrocardiogram, Blind 
source separation, linear / non-linear independent 
component analysis, quadratically coupled sources, non-
linear and non-stationary mixtures.

I. DISCUSSIONS

I.1 Issues for discussions
• The unsuitability of using linear independent 

component analysis (ICA) or blind source 
separation (BSS) to the problem of separating fetal 
heartbeat from transabdominally measured signals.

• Wrong assumptions and conditions for solutions to 
the above problem.

• Evidence of non-linear coupling and (quasi) cyclo- 
stationarity in the transabdominally measured 
signals.

• Present techniques for non-linear ICA only cater for 
non-linear mixtures and may not be adequate for 
non-linear mixtures of individually non-linear 
mother / fetal ECGs.

1.2 Linear Independent Component Analysis (ICA)
Blind source separation is to recover unobservable

independent sources (or signals) from multiple observed 
data masked by linear mixing. Most existing algorithms 
for linear mixing models stem from the theory of the 
independent component analysis (ICA) [ 1 ]-[3). Most of 
the second-order (SO) and fourth-order (FO) blind 
source separation methods developed this decade are 
aimed at blindly separating statistically independent 
sources that are assumed zero-mean, stationary and 
ergodic. Nevertheless, in many situations of practical 
interest, such as in non-invasive fetal heartbeat 
identification, the combined sources measured 
transabdominally are (quasi) cyclo-stationary due to non-
linear coupling. In these conditions it becomes important 
to wonder whether the performance of these current SO 
and FO blind source separation methods which have 
been developed for stationary source may be affected by 
the potential non-stationarity of the latter limiting the 
analysis to the SO and FO cumulant-based blind source 
separation methods, the purpose of this paper is to bring 
some answers to this important question by looking at 
the non-linearity, quadratic coupling and non-stationarity 
during events of synchronised QRS complexes and P- 
waves.

1.3 Wrong Assumptions in Mother and Fetal Source 
Separation
Recently, Lathauwer et al. [4-9], Zarzoso et al. [10] 

have attempted to separate mother and fetal 
electrocardiograms from cutaneous 8-32 channel 
recordings, by exploiting the second- and fourth-order 
statistics because notably the solution to the ICA 
problem lies in the fact that the assumption of statistical 
independence is a key factor. Statistical independence is 
relatively strong assumption but it is plausible in many 
contexts because it arises from a lack of physical 
relationship between the various sources. However, they 
focus at the second-order and fourth-order level based on 
the wrong assumption that the third-order cumulants for
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mother and fetal vanish (which is not true). Third-order 
cumulants do exist for mother and fetal ECGs and have 
been successfully exploited in many analyses [24],

Researchers in this field justify using linear mixtures 
based on inaccuracies in the assumption that the transfer 
from bioelectric current sources to body surface 
electrodes can be considered linear and resistive [21]. 
Even if this is justified as first approximation, the non- 
linearities which characterise individual mother and fetal 
cardio-electrical activities [22], [23] will interact during 
their propagation through various body layers and mix 
with motion artefact, before they are finally picked up as 
the ECG signals by electrodes on the skin surface. It is 
important to realise that the cardiac signals have to 
penetrate through a complex system experiencing 
various effects and there is evidence of spectral tuning 
between the fetal heartbeat and uterus contractions [26],
[27]. However, only evidence of quadratic coupling 
between the mother and fetal ECGs will be given in this 
paper due to lack of space. It is worth mentioning that in 
previous publications [22], [23] we provided evidence of 
non-Gaussian and multiplicative noise in individual 
ECGs.

The main drawback of these techniques, therefore, is 
their underlying simplistic assumptions, namely, linear 
sources, linear mixtures, and additive model for noise. 
Also, we strongly oppose the claim that third-order 
cumulants vanish for either mother or fetal ECG [24]. In 
fact, the utilisation of the third-order cumulants to 
extract fetal heart signals from the maternal ECG has 
proven to be a very robust technique provided that the 
observed signals are non-linearly filtered and if 
necessary the linearised signals are deconvovled from 
any multiplicative noise before the third-order cumulant 
matching process is carried out [24], [25], Furthermore, 
only 1-d diagonal slice is needed for the identification 
and reconstruction process [25], [30]. These publications 
prove beyond doubt that the pdfs for both mother and 
fetal ECGs are not even and third-order cumulants do 
exist.

1.4 Non-linear Mixing Update
For non-linear mixing models, many difficulties occur 

and both the linear 1CA theory and existing linear de-
mixing algorithms are no longer applicable because of 
the complexity of non-linear characteristics. In addition, 
there is no guarantee for the uniqueness of the solution 
of non-linear blind source separation unless additional 
constraints are imposed on the mixing transformation 
[ 11].

So far several authors studied the difficult problem of 
the non-linear blind source separation and proposed a 
few efficient de-mixing algorithms [11]-[14], [15-19]. In 
addition, the extension of related linear ICA theories to 
the context of non-linear mixtures has resulted in the 
development of non-linear ICA. The so-called non-linear 
ICA is to employ a non-linear function to transform the 
non-linear mixtures such that the outputs become 
statistically independent after the transformation. 
However, this transformation is not unique without some 
specific constraints on the function of non-linear mixing. 
If s, and s2 are two independent random variables, then 
f(s,) and g(s2) are also statistically independent

regardless of the non-linear functions f and g (see Fig. 
1). At this junction we stress that if S] and s2 are 
themselves non-linear then we suggest a total review to 
the present non-linear ICA theory.

Unknown mixing system Separating system

F ig u re  I :  Non-linear mixing and separating systems fo r  blind signal 
separation.

1.5 Framework for Our Non-linear Model
We have succeeded in non-linearly modelling fetal 

and mother ECGs, and in conformal mapping their 
mixing structures using embedded Volterra-like 
structures with extended memory [28], Modifications to 
the memory of these structures have been introduced to 
cater for non-stationarity [29]. In the next section we 
provide evidence of non-linear quadratic coupling 
between mother and fetal respective ECGs and non- 
stationarity. This is followed by attempting to exploit 
linear ICA in mother / fetal source separation using eight 
electrodes and resulting in several misses during events 
of synchronised mother / fetal QRS complexes and P- 
waves. In general, in the context of linear ICA, it is 
assumed that each sensor receives a mixture of all the 
source signals: if there are fewer sources than sensors the 
received mixture of signals is linearly invertible: ideally 
the separating matrix should approximate the inverse of 
the mixing matrix.

II. RESULTS
Data Acquisition (I) for the purpose o f identification of 
quadratic coupling and the concomitant non- 
stationarity

The data collection process included obtaining data 
from pregnant women at various stages of gestation. 
Abdominal electromyographic signals were obtained 
with consent of women using a pair of electrodes, 
Sonicaid 8000, a Pentium II PC and an interface card. 
Figs. 2 and 3 are self explanatory and show clear 
manifestations of quadratic coupling and non-stationarity 
through the exploitation of the bicoherence squared of 
transabdominally measured ECGs when the QRS- 
complexes and P-waves of mother / fetal overlap. The 
scalp electrode was deemed necessary and was used as a 
marker for fetal heartbeats. Fig. 5 shows blind source 
separation results after carrying out a novel non-linear 
identification procedure on the data of Fig. 4(a), using an 
embedded Volterra-like structure with an extended 
memory and modified to cater for time-variant non-
linearity. Three key channels are shown after the 
identification of the previously missing first, fourth, and 
seventh fetal heartbeats [28], [29].
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Data Acquisition (II) for the purpose o f repeating linear 
Independent Component Analysis

As in Data acquisition (I) but the number of surface 
electrodes is eight (minimum).

Linear ICA Results were obtained following the same 
procedures and algorithms in [4] and are shown in Fig. 4. 
Note that the first, fourth and seventh fetal signals have 
not been identified and marked X in Fig. 4(b). The 
missing fetal complexes are almost invariably coincident 
with maternal QRS complexes or P-waves. These 
missing fetal complexes were recovered using an 
embedded Volterra-like structure with an extended 
memory and modified to cater for time-variant non-
linearity [28], [29].

III. CONCLUSIONS
We have extolled one virtue and several vices of 
exploiting linear independent component analysis in 
separating mother and fetal electrocardiogram sources 
from cutaneous measurements. Linear ICA works well in 
separating mother and fetal sources under two 
conditions, namely, high signal-to-noise ratios and non-
overlapping mother / fetal QRS complexes and P-waves. 
We provided evidence of quadratic coupling between the 
mother and fetal electrocardiograms which increases 
with the proximity of the occurrences of their respective 
QRS-complexes and P-waves. This results in non- 
stationarity which is manifested in the OT triangle of the 
bicoherence squared. We have shown that, by giving one 
typical result due to lack of space, in as many cases as 
more than 20% in the 100,000 maternal cardiac cycles 
obtained from clinical trials, synchronised mother / fetal 
QRS-complexes cannot be detected using linear ICA. 
The need for higher-order statistics in linear / non-linear 
independent component analysis does not preclude using 
the third-order cumulants in the concerned problem. For 
moderate noise (antepartum) and when the uterus is not 
contracting fiercefully as in labour, the separation is 
feasible resorting only to second-order statistics provided 
that non-linearity is removed from the transabdominally- 
measured ECGs.
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(a) (b) (c) (d) (e)

Figure 2: Sim ultaneous recordings o f  maternal chest ECG  (top), fe ta l scalp EC G  (middle) and transabdominal ECG  (bottom), (a) The fe ta l and maternal 
Q RS complexes severely overlapping (synchronised), (c) Fetal QRS-on-ST segment. The second fe ta l Q RS com plex within the maternal cycle coincides 
with her P-wave, (e) Fetal Q RS-on-ST segment. The second fe ta l QRS complex within the maternal cycle coincides with her P-wave.

(b)

Figure 3: Exploitation o f  the bicoherence squared o f  sim ultaneous recordings (see F igure 2) o f  maternal chest ECG (top rows in (a)-(b)), 
transabdominal ECG  (bottom rows in (a)-(b)), and fe ta l scalp EC G  (middle rows in (a)-(b)), to detect quadratic coupling and non-stationarity, 
particularly during events o f  synchronised maternal and fe ta l QRS complexes and P-waves, (a) D iagonal slices and (b) the corresponding contours with 
arrowheads pointing at activities in the O T region indicative o f  non-stationarity [16].
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Figure 4: Simultaneous recordings o f  maternal and fe ta l ECGs.
(a) M aternal chest (top), fe ta l scalp (middle) and transabdominal ECG  signals 
o f  length 2500 samples including five  maternal cycles and 9 fe ta l cycles. The 
fe ta l scalp recording was deemed necessary and was used as a marker fo r  
fe ta l heartbeats.
(b) Outputs o f  8  channel after applying blind source separation using second- 
order (SO) and fourth-order (FO) cumulants o f  the data. Channels I and 2 
show the maternal signal. Channels 3, 4 and 5 are amplified to show the fe ta l 
signals. N ote the first, fourth  and seventh fe ta l signals have not been identified  
and are m arked X. The missing fe ta l complexes are almost invariably 
coincident with either maternal Q RS complexes or P-waves. The remaining 
channels, namely, 6, 7 and 8 are noise channels.

1
Sample

2500

Figure 5: B lind  source separation results after carying out a novel 
non-linear identification procedure on the data o f  Fig. 4 (a), using an 
em bedded Volterra-like structure with an extended memory and modified to 
cater fo r  time-variant non-linearity. Three key channels are shown after the 
identification o f  the previously missing first, fourth  and seventh fe ta l  
heartbeats (arrowheads).
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APPENDIX A4

LINEARITY AND GAUSSIANITY TESTS, 

VOLTERRA STRUCTURES, AND SIGNAL TO 

NOISE RATIO

A4.1 Non-Gaussianity and non-linearity tests

If a signal is Gaussian, its third- (and fourth-) order cumulants must be zero [1]. In 

practice, sample estimates of cumulants will not be exactly zero. So, we need a test to 

determine whether or not estimated quantities are significantly different from zero in a 

statistical sense. For a linear non-Gaussian signal, the absolute value of the bicoherence 

squared is a constant [1], Again, sample estimates of the bicoherence squared will not be 

constant, and we need a test to determine whether the non-constancy is statistically 

significant [2], The bispectrum of the signal is estimated and smoothed; tests are then 

conducted to see whether the bispectral values are significantly different from zero. The 

basic idea is that estimates of the bispectrum are asymptotically complex normal; hence, 

the energy in the bispectrum is chi-square distributed; the number of degrees of freedom 

depends upon the FFT length and the smoothing window.

In the Gaussianity test, the null hypothesis is that the data have zero bispectrum 

(Gaussian). The computed probability of false alarm (PFA) value is the probability that 

the value of the chi-squared random variable with the indicated degrees of freedom will 

exceed the computed test statistic. The PFA value indicates the false alarm probability 

in accepting the alternate hypothesis, that the data have non-zero bispectrum. Usually, 

the null hypothesis is accepted if the PFA is greater than 0.05 (i.e., it is risky to accept 

the alternate hypothesis).
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The power of the test is dependent on the skewness of the signal, but independent of the 

skewness of the noise, assuming that it is known or can be estimated. The probability of 

the detection is the probability that the detection statistic will exceed a threshold where 

the detection statistic under the alternative hypothesis in non-central chi-square with 2K 

degrees of freedom, where K is the number of bifrequency pairs in the principal domain.

The non-centrality parameter is

(A4.1)

where A is the non-centrality parameter, N is the number of samples, p is the 

signal-to-noise ratio, and Ts is the skewness of the signal.

Since the non-centrality parameter has a linear dependence on the skewness of the signal 

and approximately a cubic dependence on the SNR, at low average SNR it is necessary 

for the skewness of the signal to increase by a factor of 8 to achieve a 3 dB improvement 

in detection performance. Also, because of the cubic dependence on the SNR, the 

detection ratio exhibits a rapid increase in probability of detection from near 0 

probability to near a probability of 1 over a small SNR range of only 4 - 5  dB.

The non-centrality parameter also has a linear dependence on N, the sample size. Thus, 

it is necessary to increase the sample size by a factor of 8 for a fixed value of the 

skewness of the signal to achieve a 3 dB improvement in detection performance at low 

average SNR. The bispectrum detector can detect non-Gaussian signals at low average 

SNR for reasonable sample sizes, and reasonable values of the weighted average 

skewness. Thus, it appears that the bispectrum can be used to detect a non-Gaussian 

signal even in the presence of quite low SNR.

In the Linearity test, the inter-quartile range of the estimated bicoherence squared is 

computed; a quantity, A, proportional to the mean value of the bicoherence squared is 

also computed; the theoretical inter-quartile range of a chi-square random variable with 

two degrees of freedom and non-centrality parameter, A, is then computed. The linearity
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hypothesis should be rejected if the estimated and theoretical inter-quartile ranges are 

very different from one another [2], In the following analysis a smoothing parameter 

(cparm) value of 0.51 and an FFT length of 256 are used. The sequences to be tested 

have different number of samples.

A4.2 Non-Gaussianity and non-linearity tests when applied to the linear, 
quadratic and cubic parts of the Volterra synthesiser

We now test the linear, quadratic and cubic parts of fetal scalp electrode, maternal chest 

and maternal transabdominal ECG signals which were used to represent these signals. It 

is shown in Table A4.1 below that the parameter S-Gauss is larger than zero in all cases. 

This indicates that the linear parts of the fetal scalp electrode, maternal chest and 

maternal transabdominal ECG signals as well as the linear parts of quadratic and cubic 

Volterra predictors are all non-Gaussian. Also, the quadratic part of quadratic and cubic 

Volterra as well as the cubic part of cubic Volterra predictors are also all non-Gaussian. 

The last six rows of the table are for signal-free segments with noise artefacts that were 

isolated from transabdominal cardiac cycles. Table A4.1 shows that the linear part of the 

noise is also non-Gaussian.

A linear non-Gaussian process can be generated if an output signal is generated by a 

non-linear filtering operation satisfying a truncated Volterra functional expansion. A 

linear time series will have third-order cumulant values if the input is not normal (its 

probability density function is not Gaussian) and the impulse response is linear. If the 

relationship between the input and the output is non-linear, like in the case of a Volterra 

predictor, then the output is non-Gaussian even if the input is Gaussian. That could be 

the explanation for the linear part of the Volterra synthesiser which is linear and 

non-Gaussian.

A good test statistic to test for linear non-Gaussian or non-linear signals is to use the 

bicoherence [2-3], If a linear signal is Gaussian then the values of its bispectrum and 

bicoherence are zero at all frequencies. If a non-Gaussian signal is linear then all its 

bicoherence values are constants. Elowever, if the value of the bicoherence is frequency 

dependent then the signal is non-linear [1],
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Signal S-Gauss R (estimate) R (theory)

FECG linear 147 25.8149 37.7603

FECG linear of quadratic 139 23.0438 39.1932

FECG quadratic of quadratic 3912 861.8194 78.7328

FECG linear of cubic 126 20.9268 34.3863

FECG quadratic of cubic 3459 826.4141 70.1212

FECG cubic of cubic 4178 458.7681 76.3572

MECG linear 408 27.6948 21.4091

MECG linear of quadratic 379 26.8153 20.9630

MECG quadratic of quadratic 6302 617.6984 87.9746

MECG linear of cubic 316 30.0503 17.9819

MECG quadratic of cubic 7044 671.3088 99.4456

MECG cubic of cubic 11290 875.6768 118.5841

AbdECG linear 151 31.6286 43.5039

AbdECG linear of quadratic 173 32.2683 35.2109

AbdECG quadratic of quadratic 9524 639.6858 116.5349

AbdECG linear of cubic 191 38.8798 28.5174

AbdECG quadratic of cubic 2145 820.3422 103.5432

AbdECG cubic of cubic 7193 710.2506 94.9496

Noise artefact, linear 8940 63.9564 42.3918

Noise artefact, linear of quadratic 7694 57.7569 46.8452

Noise artefact, quadratic of quadratic 9536 325.4379 52.1645

Noise artefact, linear of cubic 7216 55.6703 42.3918

Noise artefact, quadratic of cubic 10832 402.9357 51.8291

Noise artefact, cubic of cubic 13500 163.5049 32.8104

Table A4.1: Statistics for Gaussianity and linearity tests for Volterra linear, quadratic and cubic 
parts of fetal scalp, maternal chest, transabdominal ECG signals, and also for a signal-free 
segment of transabdominal cardiac cycles containing only noise artefacts, (code: 5-1).

For the quadratic and cubic parts of the quadratic and cubic Volterra synthesisers, the 

estimated and theoretical inter-quartile ranges are not close to each other as shown when 

comparing the last two columns of Table A4.1. Hence, the non-linearity hypothesis was 

accepted. This is the case for both the quadratic and cubic parts of fetal scalp electrode, 

maternal chest, and maternal transabdominal ECG signals, as well as the signal-free
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noise artefacts. However, for the linear parts of all the aforementioned signals, the 

differences between the theoretical and estimated values in Table A4.1 are not very 

large, hence the linearity assumption is accepted. It is concluded that the linear parts of 

the Volterra predictors are non-Gaussian and linear. However, the quadratic and cubic 

parts are both non-Gaussian and non-linear.

The linear and quadratic parts of the quadratic Volterra synthesiser, and the linear, 

quadratic and cubic parts of the cubic Volterra synthesisers can be quantified in 

percentages as shown in Table A4.2. The percentage of quadratic and cubic 

non-linearity in fetal scalp electrode, maternal chest, maternal transabdominal ECG 

signals and that of signal-free noise artefacts are less than 4%. Therefore, the largest part 

of the ECG signal is linear and non-Gaussian.

With respect to the overall transabdominal signal, it is noticed that the fetal signal is 

usually 10 -  20% of the maternal signal and the noise is about 5 -  15%. It is noticed that 

in about 50% of the transabdominal ECG cycles the level of the fetal and noise signals 

are the same and that the fetal is buried in noise with an SNR in the range of ±2 dB. 

Calculations of the SNR will be explained in section A4.4. The SNR is calculated for

Signal type L Q C

Chest 96.35 3.65
-

95.90 3.55 0.55

Fetal scalp 96.00 4.00
-

95.55 3.85 0.60

Transabdomianl 96.25 3.75
-

95.75 3.60 0.65

Noise artefacts 97.55 2.45
-

97.09 2.55 0.36

Table A4.2: The p e rcen ta ge  o f  the o ve ra ll m a te rna l chest, fe ta l scalp, m a te rna l transabdom ina l 
E C G  signal, a nd  no ise  a rte fac ts  in the syn the s ised  linear, q ua d ra tic  and  cu b ic  p a rts  o f  the  
Volterra structure . L, Q, and  C denote  the linear, quadratic, and  cub ic  parts , respective ly . A 
b lank  e n try  u n d e r C in the firs t co lum n  on the r ig h t hand  s ide  ind ica tes  a quad ra tic  syn th e s ise r 
with no  cu b ic  part. Code: 5-1.
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the maternal transabdominal ECG signal investigated for linearity and Gaussianity. 

Using the method of section A4.4 it was found that the maternal SNR is in the range of 

20 dB to 25 dB and the fetal SNR is in the range of -2 dB to +5 dB. The tests also 

confirmed that the signals are stationary within the maternal cardiac cycle.

A4.3 C oe ffic ien ts  E lim ina tion  fo r  V o lte rra  S truc tu res

State subspace reduction techniques are used to determine how many of the coefficients 

can arbitrarily be set to zero without degrading the performance of the predictor. 

Starting with a full-rank Volterra predictor of quadratic, cubic only and quadratic and 

cubic structures, the mean -squared error of each predictor is calculated after elimination 

of some of the coefficients. The direct method of coefficient elimination could be 

summarised as follows [7]:

(i) Calculate the eigenvalues and eigenvectors of the correlation matrix </> and hence
ZZ

estimate the rank L. The eigenvectors are collected into a rank matrix V which is 

partitioned V = [Vs Vn ] and indexed such that the eigenvectors which span the

signal subspace are given by, Vs =[v, v 2A v L] and those which span the 

noise subspace are Vn = [vL+I A v M].

(ii) Project each axis vector onto the signal subspace. The lengths of the projections are 

dj. The vector d that contains these lengths is defined as, d = diag(VsVsT). The L 

indices with the largest projections give the indices of the non-linearities that will 

be retained. The remainder indicates those weights that will be set to zero.

(iii) The matrix ipLi is reduced in size by removing the rows and columns corresponding 

to the discarded direction- the axis associated with the shortest projection lengths. 

This gives an L x L matrix <p « . Similarly the M vector <pzx is reduced in size by 

removing the rows corresponding to the discarded directions. This gives an L 

vector <p zx. A set of normal equations (p zza =<p zx is solved for the L vector a 

which contains the desired non-zero elements of a.
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A4.4 S igna l to  Noise Ratio

In real signal applications, one cannot separate the signal and the noise. The SNR is 

defined from the singular values of rectangular data matrix, Rx, constructed for a cyclic 

or quasi-periodic data as follows.

x(l) x(2) ...... x(lf )
x(l f + 1) x(ljr + 2) ...... x(2 lj)

Rx = ...... ...................................

x((L-\)lf + 1) x((L -  X)lf + 2) .....  x(Llf )

(A4.2)

where each row in this matrix contains one period of the signal, I f  is the fundamental 

period length, which is defined as the smallest of the most frequently occurring 

stride-cycles, and L is the number of periods used for calculating the matrix. Applying 

the SVD to this matrix the SNR can be calculated as follows [8]:

SNR =
If
Z

i=p+l

(A4.3)

where sit /= 1,2,......1/ are the singular values of Rx and p  is the number of dominant

singular values, which theoretically constitute the signal subspace and the sum of 

squares of these p  singular values represent the energy content of the signal. For strictly 

periodic process with no noise the total energy is s 2.
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APPENDIX A5

THE MIT-BIH DATABASE

A .5.1 The MIT-BIH N orm al S inus R hythm  Database

This database includes 18 long-term ECG recordings of subjects referred to the 

Arrhythmia Laboratory at Boston's Beth Israel Hospital (now the Beth Israel Deaconess 

Medical Center). Subjects included in this database were found to have had no 

significant arrhythmias; they include 5 men, aged 26 to 45, and 13 women, aged 20 to 

50.

A5.2 The MIT-BIH A rrh y th m ia  Database

Since 1975, the laboratories at Boston's Beth Israel Hospital (now the Beth Israel 

Deaconess Medical Center) and at MIT have supported the research into arrhythmia 

analysis and related subjects. One of the first major products of that effort was the MIT- 

BIH Arrhythmia Database, which was completed in 1980. The database was the first 

generally available set of standard test material for evaluation of arrhythmia detectors, 

and has been used for that purpose as well as for basic research into cardiac dynamics at 

about 500 sites worldwide. Originally, the database was distributed on 9-track half-inch 

digital tape at 800 and 1600 bpi, and on quarter-inch IRIG-format FM analogue tape. In 

August, 1989, a CD-ROM version of the database was produced; since that time, it has 

been on CD-ROM only.

The MIT-BIH Arrhythmia Database contains 48 half-hour excerpts of two-channel 

ambulatory ECG recordings, obtained from 47 subjects studied by the BIH Arrhythmia 

Laboratory between 1975 and 1979. Twenty-three recordings were chosen at random 

from a set of 4000 24-hour ambulatory ECG recordings collected from a mixed 

population of inpatients (about 60%) and outpatients (about 40%) at Boston's Beth Israel
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Hospital; the remaining 25 recordings were selected from the same set to include less 

common but clinically significant arrhythmias that would not be well-represented in a 

small random sample.

The recordings were digitized at 360 samples per second per channel with 11-bit 

resolution over a 10 mV range. Two or more cardiologists independently annotated each 

record; disagreements were resolved to obtain the computer-readable reference 

annotations for each beat (approximately 110,000 annotations in all) included with the 

database.

A5.3 D escrip tion  o f data se ts  105, 108 and 203 o f the  MIT-BIH A rrhy thm ia  

Database

Record 105 (MLII, VI; female, age 73)

Medications: Digoxin, Nitropaste, Pronestyl 

Beats Before 5:00 After 5:00 Total

Normal 405 2121 2526

PVC 12 29 41

Unclassifiable - 5 5

Total 417 2155 2572

Ventricular ectopy 

• 41 isolated beats

Rhythm Rate Episodes Duration

Normal sinus rhythm 78-102 1 30:06

Signal
Episodes Duration

quality

Both clean 31 22:18

Upper noisy 3 0:10

Lower noisy 28 3:27

Both noisy 23 4:06

Unreadable 4 0:04
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Notes:

The PVCs are uniform. The predominant feature of this tape is high-grade noise and 

artifact.

Points of interest:
5:27 Artifact

7:57 PVC

15:16 Normal

17:52 Artifacts

22:02 Noise

26:45 PVC

27:27 Noise

28:08 Noise

29:07 Noise

sinus rhythm

Record 108 (MLII, VI; female, age 87)

Medications: Digoxin, Quinaglute

Beats Before 5:00 After 5:00 Total

Normal 279 1461 1740

APC 1 3 4

PVC 3 13 16

Fusion PVC - 2 2

Junctional escape - 1 1

Blocked APC 2 9 11

Total 285 1489 1774

Supraventricular ectopy

• 4 isolated beats

Ventricular ectopy

• 14 isolated beats

• 2 couplets
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Rhythm Rate Episodes Duration

Normal sinus rhythm 44-78 1 30:06

Signal

quality

Both clean

Episodes

19

Duration

24:05

Upper noisy 3 0:16

Lower noisy 12 2:45

Both noisy 8 3:01

Notes:

There is borderline first degree AV block and sinus arrhythmia. The PVCs are 

multiform. The lower channel exhibits considerable noise and baseline shifts.

Points of interest:
0:22 PVC, blocked APC, noise

4:51 Interpolated PVC

7:41 Axis shift

8:13 PVC, blocked APC, fusion PVC

10:55 Sinus arrhythmia

18:08 Fusion PVC-PVC couplet

20:05 Junctional escape beat

24:20 Blocked APC, APCs

28:10 Noise

29:00 Noise

Record 203 (MLII, VI; male, age 43)

Medications: Coumadin, Digoxin, Heparin, Hygroton, Lasix 

Beats Before 5:00 After 5:00 Total

Normal 426 2103 2529

Aberrated APC 2 - 2  

PVC 71 373 444
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Fusion PVC 1 1

Unclassifiable - 4 4

Total 499 2481 2980

Supraventricular ectopy

• 2 isolated beats

Ventricular ectopy

• 238 isolated beats

• 64 couplets

• 13 runs of 3 beats

• 6 runs of 4 beats

• 1 run of 7 beats

• 1 run of 9 beats

Rhythm Rate Episodes Duration

Normal sinus rhythm 63-173 1 2:43

Atrial flutter 61-180 2 5:14

Atrial fibrillation 54-180 20 21:32

Ventricular trigeminy 100-116 1 0:04

Ventricular tachycardia 124-189 21 0:33

Signal

quality

Episode

s
Duration

Both clean 21 24:28

Upper noisy 20 3:17

Lower noisy 7 1:49

Both noisy 8 0:30

Unreadable 1 0:02

Notes:
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The PVCs are multiform. There are QRS morphology changes in the upper channel due 

to axis shifts. There is considerable noise in both channels, including muscle artifact and 

baseline shifts. This is a very difficult record, even for humans!

Points of interest:
5:00 Ventricular tachycardia, 4 beats and 9 beats

13:14 Atrial fibrillation, ventricular couplets

15:02 Noise

22:02 Ventricular couplet, PVCs

23:25 Noise

24:04 PVCs

24:46 Noise

26:39 Ventricular tachycardia, 7 beats

26:51 Ventricular couplet, PVCs

27:15 Ventricular tachycardia, 3 beats
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APPENDIX A6

Kaiser window and weighted MUSIC

A.6.1 Kaiser window

The first modification to the MUSIC algorithm is done by modifying Eq. (6.29) by 

introducing the parameter IFmfic which represents a Kaiser window function [1] to the 

denominator. Kaiser Window was introduced by Kaiser based on discrete-time 

approximations of the prolate spheroidal wave functions. For the Rectangular, Bartlett, 

Hanning, Hamming, and Blackman windows, the width of the mainlobe is inversely 

proportional to the number of samples, N. However, the minimum stop-band 

attenuation is independent of the window length and is a function of the selected 

window. Hence, to meet a desired stop-band attenuation, the designer is forced to select 

a window that meets the design specifications. It is worth noting that windows with low 

sidelobe levels have broader mainlobe widths, hence requiring an increase in the order 

of the filter N to achieve the desired transition width. The Kaiser window has a variable 

parameter (3k which can be varied to control the sidelobe level with respect to the 

mainlobe peak. As in other windows, the mainlobe width can be adjusted by changing 

the length of the window, which in turn adjusts the transition width of the filter. 

Therefore, the FIR filter can be efficiently designed using the Kaiser window. The 

Kaiser window is defined by [2]:

where 70(x) is the modified zeroth-order Bessel function of the first kind. (3 controls the 

way the window function tapers at the edges in the time domain. 70(x) is normally

0 < i < N -1 (A6.1)
/»(A )

o elsewhere
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evaluated using the following power series expansion

Iw(x) = l + (A6.2)

where typically L < 25. An algorithm due to Kaiser gives an efficient implementation of 

this equation. When (3 = 0, the Kaiser window corresponds to the rectangular window, 

and when it is equal to 5.44, the resulting window is very similar, though not identical, 

to the Hamming window. The value of p is determined by the stoop-band attenuation 

requirements and may be estimated from one of the following empirical relationships:

p = o if A <21 dB, (A6.3)

p = 0.5842 (A -  21)°4 + 0.07886 (A -  21) if 21 dB < A < 50 dB, (A6.4)

P = 0.1102 (A -8 .7 ) if A >50dB, (A6.5)

where A = -20 logio (5) is the stop-band attenuation, § = min(ôp,8s), since the pass-band 

and stop-band ripples are nearly equally, ôp is the desired pass-band ripple and 8S is the 

desired stop-band ripple. The number of filter coefficients, N, is given by

XT A -  7.95N > ---------- ,
14.36Af

(A6.6)

where Af is the normalised transition bandwidth. The values of p and N are used to 

compute the coefficients for the Kaiser window, w(n). Eq. (A6.5) was used to calculate 

P for the Kaiser weighting coefficients of the maternal QRS-complex and the fetal 

heartbeat. P is equal to 6.127 for the former and 6.291 for the latter.

A.6.2 Summary of the window method

1- Specify the ideal or desired frequency response, Hd (co).

2- Obtain the impulse response, hD(n), by evaluating the inverse Fourier
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Transform.

3- Select a window function that satisfies the pass-band or attenuation 

specifications and then determine the number of coefficients using the 

appropriate relationship between the length and the transition bandwidth, Af 

(expressed as a fraction of the sampling frequency).

4- Obtain values of w(n) for the chosen window function and the values of the 

actual coefficients, h(n), by multiplying hD(n) by w(n):

H(n) = hD(n). w(n). (A6.7)

It is clear that the window method is straightforward and requires a minimal amount of 

computational effort. Indeed the coefficients could be obtained with a pocket calculator.

A.6.3 The sequentially optimised and weighted MUSIC

Kaiser has shown that these Kaiser windows are nearly optimum in the sense of having 

the largest energy in the mainlobe for a given peak sidelobe amplitude. The Kaiser 

window is used to design a band-pass filter with a pass-band attenuation of -1 dB, 

minimum stop-band attenuation of -70 dBs, centre frequencies of 17 Hz and 30 Hz, 

respectively, for the maternal QRS-complex and the fetal heartbeat pseudo-spectral 

peaks. The coefficients are arranged in an (M - p + 1) x (M - p + 1) matrix to be 

multiplied by the eignvectors v>j. The matrix of the coefficients can be written as

^ m + l . m + l  ^ m + l , m + 2  * ‘ ' ^ m + l . p + l

wvv MFk
^ m + 2 ,m + l  ^  m+2,m+2 ' ' ’ ^  m+2,p+l

(A6.8)

w p+l,m+l ^p+l,m +2 ' - • ^p+ l.p+ l

Hence, using Eq. (6.29) and Eq. (A6.8), the sequentially optimised and weighted 

MUSIC-like estimator can be expressed as
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1
P ( c o )  = - " -

w l.m+l W l,m+2 •• w i,P+i Vl,m+2 ’ ’ -Vl,p+1

• W 2,m+1 W 2,m+2 " ’ W 2,p+l x 1 e_Jffl ..e-jp<0 X V2,m+1 ^2,m+2 * * * ^2,p+l

W p+l,m+] ^  p+l,m+2 ■■■ W p+l,p+l_ ^p+l,m+l ^p+l,m+2 ' * * ^p+l,p+l

X r
1

V *
l,m+l

V *
l,m+2

V *
l,p+l

V *
2,m+l . . . V *

p+l,m+l
1

V *
2,m+2 . . . V *

p+l,m+2

eJpo)
2,p+l . . . V *

P+1,P+1

(A6.9)

where WuFk can be substituted by WMk and JVfr for the optimised Kaiser weighted 

coefficients for the maternal QRS-complex and the fetal heartbeat principal 

pseudo-spectral peaks, respectively.

A.6.4 The Kaiser coefficients of the mother’s QRS-complex

1.149253201 0.982169251 0.80173 7734 0.5925466 1.04843858

1.663712032 1.319756997 1.559402251 4.151685019 0.435111232

0.824357818 10.03305689 0.075439403 1.446923527 1.005492549

1.13881777 1.010125525 1.112982675 1.054177077 14.64811754

0.40118421 0.939932725 0.948944957 2.150512959 0.945435035

21.48580419 1.908443233 0.094936534 4.192797563 1.223595741

1.119754804 1.006219947 1.357271858 0.6978442 0.654189942

1.094963727 1.121518925 1.318576272 0.249476968 2.081067575

1.961844113 0.552354621 0.102612073 0.295653014 3.50365836

1.0856573 0.956078205 1.120611657 1.102615456 0.794066179

1.337215004 0.596200716 1.583603059 29.95636544 1.303502603

5.169873516 0.179132663 1.207634773 1.163927888 0.785620906

1.040099881 0.851976195 1.907881902 1.213525766 0.715962719
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0.80173 7734 
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0.075439403 

1.112982675 
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0.094936534 
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0.910392996
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1.209602742
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0.507330829

1.091776693

2.83806498 

0.726946252 

0.30245571 

0.012779603

572.8851749

9.289796672 

005875641 

0.5925466 

4.151685019 

1.446923527 

1.054177077 

2.150512959 

4.192797563 

0.6978442 

0.249476968 

0.295653014 

1.102615456 

29.95636544 

1.163927888 

1.213525766

1.686797484 

0.507330829

1.091776693

2.83806498 

0.726946252 

0.30245571 

0.012779603

572.8851749

9.289796672
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0.016670668

1.440875468

42.73184927 

0.051635255 

0.944576488 

0.500212911 

0.491998759 

0.708884569 

0.928383856 

1.04843858 

0.435111232 

1.005492549 

14.64811754 

0.945435035 

1.223595741 

0.654189942 

2.081067575 

3.50365836 

0.794066179 

1.303502603 

0.785620906 

0.715962719

1.245412981 

0.016670668

1.440875468

42.73184927 

0.051635255 

0.944576488 

0.500212911 

0.491998759 

0.708884569
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A.6.5 The Kaiser coefficients of the fetal QRS-complex

0.803229457

0.162722894

2.346422448 

0.195887916

1.418882219

1.423502329 

0.795920399

1.144236728 

0.712360331 

0.02376525 

0.442183146 
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0.275104293 
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0.920867196 
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0.668229781 
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2.21998696 

1.016735978 

0.853962113 

7.144329049 

0.986550086 

1.345310968 

6.197482327 

2.064756017 

0.15361307

1.166246566 

0.565556635

1.133958792

1.047629904 

0.814036855

1.748417424

1.026432666 

0.86826119 

0.98435139

5.33129127 

0.797130643

3.368241266 

0.033388051 

0.271307778 

0.437447316

1.056282753

1.022538206 

0.891178146 

53. 70934865 

3.134019749 

0.58063022 

0.966307464 

1.163190792 

0.671659551 

2.079125547 

0.74765748 

0.543696095 

0.14033888 

0.564061404 

1.275908042 

0.047165648 

1.274750618

5.33129127 

0.797130643

3.368241266 

0.033388051 

0.271307778 

0.437447316

1.056282753

1.022538206 

0.891178146 

53. 70934865
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0.442183146

0.031398548

2.826424829

3.804444914

2.347118826

0.275104293

0.796784829

1.494590521

2.170038053

4.513104819

0.443196011

5.662452698

0.314025664

0.944362516

0.64493068

0.370741375

0.213052688

1.093838379

60.65080259

13.30912445

1.216310945

1.659777066

1.23378891

0.487965395

0.95566187

1.369261662

6.958807533

0.959978893

1.078287642

0.609301348

0.964544114

0.04418504

0.304590322

0.966235902

1.627844817

0.143509155

1.031065453

2.38156286

0.668229781

1.031835537

1.09813755

2.21998696

1.016735978

0.853962113

7.144329049

0.986550086

1.345310968

6.197482327

3.134019749

0.58063022

0.966307464

1.163190792

0.671659551

2.079125547

0.74765748

0.543696095

0.14033888

0.564061404

1.275908042

0.047165648
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APPENDIX A7

An example of the covariance matrix of the uterine contraction 
signal, ln0ise matrix
The list below is an example of the (M + 1) x (M + 1) covariance matrix of the uterine 
contraction signal, I noise matrix, with M + 1 = 15 for QRS-free ECG segment. Note that 
the symbol E denotes the power of 10, for example 5.08E-02 = 0.0508.

1 ( 1 , 1 ) = 0 . 2 3 5 2 4 7 1 ( 1 , 2 )
1 ( 1 , 4 ) = - 0 . 4 1 9 5 3 7 1 ( 1 , 5 )
1 ( 1 , 7 ) = 0 . 0 3 5 3 1 ( 1 , 8 )
1 ( 1 , 1 0 ) = - 0 . 2 1 4 3 1 3 1 ( 1 , 1 1 )
1 ( 1 , 1 3 ) = 0 . 2 5 0 9 8 1 ( 1 , 1 4 )
1 ( 2 , 1 ) = 0 . 2 2 9 5 1 8 1 ( 2 , 2 )
I  ( 2 , 4 ) = - 0 . 3 0 6 3 7 7 I ( 2 , 5 )
1 ( 2 , 7 ) = 5 . 6 2 E - 0 2 1 ( 2 , 8 )
1 ( 2 , 1 0 ) = 3 . 9 5 E - 0 4 1 ( 2 , 1 1 )
I ( 2 , 1 3 ) = - 0 . 3 7 9 2 6 9 1 ( 2 , 1 4 )
1 ( 3 , 1 ) = 0 . 2 3 0 8 1 1 ( 3 , 2 )
1 ( 3 , 4 ) = - 0 . 1 0 1 6 5 1 ( 3 , 5 )
1 ( 3 , 7 ) = - 0 . 1 2 2 7 4 6 1 ( 3 , 8 )
1 ( 3 , 1 0 ) = 0 . 5 2 1 7 6 1 ( 3 , 1 1 )
1 ( 3 , 1 3 ) = - 3 . 4 7 E - 0 2 1 ( 3 , 1 4 )
I  ( 4 , 1 ) = 0 . 2 4 5 3 5 2 1 ( 4 , 2 )
1 ( 4 , 4 ) = 0 . 0 6 7 3 I ( 4 , 5 )
1 ( 4 , 7 ) = - 0 . 3 5 0 1 I ( 4 , 8 )
I ( 4 , 1 0 ) = - 0 . 3 5 3 1 1 ( 4 , 1 1 )
1 ( 4 , 1 3 ) = 0 . 3 0 6 2 5 1 ( 4 , 1 4 )
1 ( 5 , 1 ) = 0 . 2 2 6 7 1 ( 5 , 2 )
1 ( 5 , 4 ) = 0 . 2 1 4 4 1 ( 5 , 5 )
1 ( 5 , 7 ) = - 6 . 7 3 E - 0 2 1 ( 5 , 8 )
1 ( 5 , 1 0 ) = 4 . 5 7 E - 0 3 1 ( 5 , 1 1 )
1 ( 5 , 1 3 ) = 3 . 4 0 E - 0 2 I ( 5 , 1 4 )
1 ( 6 , 1 ) = 0 . 2 2 6 1 6 1 ( 6 , 2 )
1 ( 6 , 4 ) = 0 . 2 5 6 7 2 1 ( 6 , 5 )
1 ( 6 , 7 ) = 0 . 0 3 5 9 6 1 ( 6 , 8 )
I ( 6 , 1 0 ) = - 2 . 1 8 E - 0 2 1 ( 6 , 1 1 )
1 ( 6 , 1 3 ) = - 0 . 1 6 7 7 6 1 ( 6 , 1 4 )
I  ( 7 , 1 ) = 0 . 2 4 6 4 7 1 ( 7 , 2 )
1 ( 7 , 4 ) = 0 . 1 4 1 6 1 ( 7 , 5 )
1 ( 7 , 7 ) = 0 . 4 0 2 1 1 ( 7 , 8 )
1 ( 7 , 1 0 ) = 1 . 1 0 E - 0 2 1 ( 7 , 1 1 )
I  ( 7 , 1 3 ) = - 0 . 2 0 9 I ( 7 , 1 4 )
1 ( 8 , 1 ) = 0 . 2 3 0 6 2 1 ( 8 , 2 )
1 ( 8 , 4 ) = 2 . 7 5 E - 0 8 1 ( 8 , 5 )
1 ( 8 , 7 ) = 3 . 5 3 E - 0 7 1 ( 8 , 8 )
I  ( 8 , 1 0 ) = 3 . 4 9 E - 0 7 1 ( 8 , 1 1 )
I  ( 8 , 1 3 ) = 0 . 4 3 3 9 9 5 1 ( 8 , 1 4 )

1 ( 9 , 1 ) = 0 . 2 5 2 4 7 2 1 ( 9 , 2 )
1 ( 9 , 4 ) = - 0 . 1 2 1 6 6 1 ( 9 , 5 )
1 ( 9 , 7 ) = - 0 . 4 1 2 7 1 ( 9 , 8 )
1 ( 9 , 1 0 ) = - 1 . 6 I E - 0 2 1 ( 9 , 1 1 )
1 ( 9 , 1 3 ) = - 0 . 2 0 6 1 ( 9 , 1 4 )
1 ( 1 0 , 1 ) = 0 . 2 4 4 8 1 ( 1 0 , 2 )
1 ( 1 0 , 4 ) = - 0 . 2 5 7 2 1 ( 1 0 , 5 )

- 0 . 1 5 8 3 5 3 1 ( 1 , 3 ) = 0 . 2 0 9 5 6 4
0 . 3 2 1 5 7 9 1 ( 1 , 6 ) = - 0 . 3 1 8 4 8 2
- 0 . 1 8 1 4 5 4 1 ( 1 , 9 ) = 0 . 3 4 1 0 1 4

0 . 1 0 9 2 9 1 ( 1 , 1 2 ) = - 2 . 1 3 E - 0 2
5 . 0 8 E - 0 2 1 ( 1 , 1 5 ) = 0 . 0 2 1 3 1 5

- 0 . 2 2 1 8 8 4 1 ( 2 , 3 ) = 0 . 2 3 7 6 3
- 0 . 1 5 0 2 4 3 1 ( 2 , 6 ) = - 0 . 2 7 1 8 4 8
7 . 5 4 E - 0 2 1 ( 2 , 9 ) = - 0 . 4 6 2 3 6 3

- 0 . 0 8 2 6 0 2 1 ( 2 , 1 2 ) = - 0 . 1 1 7 3 7
2 . 3 7 E - 0 2 I ( 2 , 1 5 ) = - 0 . 2 4 6 5 7 3

- 0 . 2 5 1 0 3 1 ( 3 , 3 ) = 0 . 2 2 8 1
1 . 0 2 E - 0 1 1 ( 3 , 6 ) = 0 . 2 3 5 5 8 8
0 . 3 2 3 8 3 1 ( 3 , 9 ) = 7 . 3 6 E - 0 2

0 . 2 3 7 3 7 9 I ( 3 , 1 2 ) = 0 . 1 3 4 5 6 6
- 0 . 2 8 2 4 5 I ( 3 , 1 5 ) = 0 . 1 6 3 0 5

- 0 . 3 8 1 2 1 1 ( 4 , 3 ) = 0 . 0 5 3 9 2
- 0 . 3 4 1 5 2 4 1 ( 4 , 6 ) = 0 . I l l
2 . 2 6 E - 0 2 1 ( 4 , 9 ) = - 9 . 1 2 E - 0 2

3 . 4 5 E - 0 2 I ( 4 , 1 2 ) = 0 . 2 2 6 8 4
0 . 3 7 1 6 I ( 4 , 1 5 ) = 0 . 1 2 3 3 4

- 0 . 3 0 3 0 1 1 ( 5 , 3 ) = - 2 . 3 3 E - 0 2

0 . 0 2 0 3 1 ( 5 , 6 ) = 0 . 3 1 5 0 5
- 0 . 3 1 3 1 ( 5 , 9 ) = 0 . 2 3 9 6

; - 0 . 3 1 8 1 7 1 ( 5 , 1 2 ) = - 0 . 2 4 9 1 5
: - 0 . 1 1 4 9 6 I ( 5 , 1 5 ) = - 0 . 3 2 9 6 8
- 0 . 2 4 5 1 ( 6 , 3 ) = - 0 . 2 2 2 3
- 0 . 2 3 4 2 7 1 ( 6 , 6 ) = - 1 . 0 I E - 0 1
- 0 . 3 1 6 8 4 1 ( 6 , 9 ) = - 0 . 1 4 5 9 1

: 0 . 3 3 6 2 1 1 ( 6 , 1 2 ) = - 0 . 2 4 8 9
: - 0 . 1 6 7 1 1 1 ( 6 , 1 5 ) = 0 . 3 7 0 7
- 0 . 1 2 4 5 9 1 ( 7 , 3 ) = - 0 . 3 3 7 4 3
0 . 2 6 8 6 3 1 ( 7 , 6 ) = 4 . 5 7 E - 0 2
0 . 0 8 0 2 1 1 ( 7 , 9 ) = 1 . 7 8 E - 0 2

: 2 . 4 7 E - 0 2 I ( 7 , 1 2 ) = 0 . 4 5 7 6 2
: 0 . 3 4 5 0 4 1 ( 7 , 1 5 ) = - 0 . 2 0 2 6
5 . 9 9 E - 0 7 1 ( 8 , 3 ) = - 0 . 4 2 1 7
- 0 . 1 3 6 6 1 ( 8 , 6 ) = - 0 . 3 2 9
0 . 3 8 8 6 1 ( 8 , 9 ) = - 4 . 2 2 E - 0 8

: - 0 . 0 7 2 2 5 2 8 1 ( 8 , 1 2 ) = 7 . 9 3 E - 0 7
= - 0 . 4 1 ( 8 , 1 5 ) = 2 . 7 3 E - 0 6
0 . 1 3 2 6 1 ( 9 , 3 ) = - 0 . 3 4 4 0 3 4
0 . 2 7 4 6 1 ( 9 , 6 ) = 4 . 8 7 E - 0 2
0 . 0 8 0 7 1 ( 9 , 9 ) = - 1 . 7 8 E - 0 2

= 2 . 8 5 E - 0 2 1 ( 9 , 1 2 ) = - 0 . 4 6 9 5
= 0 . 3 4 0 6 1 ( 9 , 1 5 ) = 0 . 2 0 2 8
: 0 . 2 4 5 1 ( 1 0 , 3 ) = - 0 . 0 6 3 2 3 5
: - 0 . 2 4 2 7 1 ( 1 0 , 6 ) = - 1 . 0 3 E - 0 1
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1 ( 1 0 , 7 ) = - 0 . 3 1 4 5 6
1 ( 1 0 , 1 0 ) = 2 . 1 0 E - 0 2
1 ( 1 0 , 1 3 ) = - 0 . 1 5 8 7 6
1 ( 1 1 , 1 ) = 0 . 2 5 7 0 5
1 ( 1 1 , 4 ) = - 0 . 2 1 4 5 4
1 ( 1 1 , 7 ) = 7 . H E -  02
1 ( 1 1 , 1 0 ) = - 5 . 7 5 E - 0 3
1 ( 1 1 , 1 3 ) = 3 . 7 3 E - 0 2
1 ( 1 2 , 1 ) = 0 . 2 5 3 5 2 1
1 ( 1 2 , 4 ) = 0 . 1 0 1 6 3
1 ( 1 2 , 7 ) = 0 . 0 9 3
1 ( 1 2 , 1 0 ) = 0 . 3 4 3 1
1 ( 1 2 , 1 3 ) = 0 . 2 8 9 6 2 5
1 ( 1 3 , 1 ) = 0 . 2 5 0 1
1 ( 1 3 , 4 ) = 0 . 1 0 1 5
1 ( 1 3 , 7 ) = 0 . 1 5 2 7 4
1 ( 1 3 , 1 0 ) = - 0 . 5 4 2 1
1 ( 1 3 , 1 3 ) = - 4 . 1 3 E - 0 2
1 ( 1 4 , 1 ) = 0 . 2 3 4 9 5
1 ( 1 4 , 4 ) = 0 . 3 1 2 6 3
1 ( 1 4 , 7 ) = - 5 . 8 2 E - 0 2
1 ( 1 4 , 1 0 ) = - 3 . 6 4 E - 0 4
1 ( 1 4 , 1 3 ) = - 0 . 3 8 9 2
1 ( 1 5 , 1 ) = 0 . 2 2 5 2
1 ( 1 5 , 4 ) = 0 . 4 3 9 5
1 ( 1 5 , 7 ) = - 0 . 0 6 1
1 ( 1 5 , 1 0 ) = 0 . 2 2 7 3 4 1
1 ( 1 5 , 1 3 ) = 0 . 2 4 7

1 ( 1 0 , 8 ) = - 0 . 3 1 6 6 3
1 ( 1 0 , 1 1 ) = 0 . 3 3 6 2 1
I ( 1 0 , 1 4 ) = - 0 . 1 5 1 2
1 ( 1 1 , 2 ) = 0 . 3 1 3 5
1 ( 1 1 , 5 ) = 0 . 0 2 1 2
1 ( 1 1 , 8 ) = - 0 . 3 2 8
1 ( 1 1 , 1 1 ) = - 0 . 3 3 1 7
I ( 1 1 , 1 4 ) = - 0 . 1 3 4 6 9
1 ( 1 2 , 2 ) = 0 . 3 2 1 4 6 4
1 ( 1 2 , 5 ) = - 0 . 3 5 2 4 7 4 5
1 ( 1 2 , 8 ) = 2 . 3 6 E - 0 2
1 ( 1 2 , 1 1 ) = 4 . 3 3 E - 0 2
1 ( 1 2 , 1 4 ) = 0 . 3 5 1 9 6 2
1 ( 1 3 , 2 ) = 0 . 3 0 4 3
1 ( 1 3 , 5 ) = 1 . 0 1 E - 0 1
1 ( 1 3 , 8 ) = 0 . 3 2 7 8
1 ( 1 3 , 1 1 ) = 0 . 0 6 2 7 3
1 ( 1 3 , 1 4 ) = - 0 . 2 8 9 2 4
1 ( 1 4 , 2 ) = 0 . 2 4 5 1 8
1 ( 1 4 , 5 ) = - 0 . 1 5 0 2
1 ( 1 4 , 8 ) = 7 . 8 5 E - 0 2
1 ( 1 4 , 1 1 ) = - 0 . 0 9 6
1 ( 1 4 , 1 4 ) = 2 . 4 8 E - 0 2
1 ( 1 5 , 2 ) = 0 . 1 7 8 8 3
1 ( 1 5 , 5 ) = 0 . 3 5 1 5
1 ( 1 5 , 8 ) = - 0 . 1 7 1 4 4
1 ( 1 5 , 1 1 ) = 0 . 1 0 1 7 9
1 ( 1 5 , 1 4 ) = 5 . 0 8 E - 0 2

1 ( 1 0 , 9 ) = 0 . 1 2 1
1 ( 1 0 , 1 2 ) = 0 . 2 2 6 9 7
1 ( 1 0 , 1 5 ) = - 0 . 3 8 0 0 4
1 ( 1 1 , 3 ) = - 3 . 3 0 E - 0 2
1 ( 1 1 , 6 ) = 0 . 3 3 5 0 5
1 ( 1 1 , 9 ) = - 0 . 2 6 5
1 ( 1 1 , 1 2 ) = 0 . 2 8 1 5
1 ( 1 1 , 1 5 ) = 0 . 3 6 8 4
1 ( 1 2 , 3 ) = 0 . 1 2 3 9 4 2
1 ( 1 2 , 6 ) = 0 . 1 1 1 0 8
1 ( 1 2 , 9 ) = 9 . 3 2 E - 0 2
I ( 1 2 , 1 2 ) = - 0 . 2 5 5 8 4
1 ( 1 2 , 1 5 ) = - 0 . 1 1 4 3 5 1
1 ( 1 3 , 3 ) = 0 . 2 2 8 2
1 ( 1 3 , 6 ) = 0 . 2 6 9 8 5 5
1 ( 1 3 , 9 ) = - 7 . 3 5 E - 0 2
1 ( 1 3 , 1 2 ) = - 0 . 1 3 7 4 5 6
1 ( 1 3 , 1 5 ) = - 0 . 1 6 3
1 ( 1 4 , 3 ) = 0 . 2 6 7 7 6
1 ( 1 4 , 6 ) = - 0 . 2 7 1 8
1 ( 1 4 , 9 ) = 0 . 4 5 2 3
1 ( 1 4 , 1 2 ) = 0 . 1 2 5 3
1 ( 1 4 , 1 5 ) = 0 . 2 3 6 5
1 ( 1 5 , 3 ) = 0 . 2 0 9 5
1 ( 1 5 , 6 ) = - 0 . 3 1 8 4
1 ( 1 5 , 9 ) = - 0 . 3 5 1
1 ( 1 5 , 1 2 ) = 2 . 3 7 E - 0 2
1 ( 1 5 , 1 5 ) = - 0 . 1 1 5 7
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APPENDIX A8

Matrix Terminology and Definitions

A8.1 Definitions

Consider an m x n matrix A with elements a ,̂ i = 1,2, ..., m; j = 1,2, ..., n. The 

transpose of A, which is denoted by AT, is defined as the n x m matrix with elements ay, 

or

[At ] y = aji. (A8.1)

Similarly, the hermitian transpose (or conjugate transpose) is denoted by A11 and is 

defined as the n x m matrix with elements

[AH] y = a*ji. (A8.2)

H TFor a real matrix, A = A .

A square matrix is one for which m = n. A real square matrix is a symmetric matrix if 

A = A, and a complex square matrix is symmetric if A = A.

The rank of a matrix is the number of linearly independent rows or columns, whichever 

is less. The inverse of a square n x n matrix is the square n x n matrix A ', for which

A’1 A = A A’1 = I (A8.3)

where I is the n x n identity matrix. The inverse will exist if and only ii the rank of A is 

n. If the inverse does not exist, A is singular.

The determinant of a square n x n matrix is denoted by det (A). It is computed as
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( A 8 . 4 )det(A) = 5 > « c i •
7=1

where

C ^ H V ^ M y . (A8.5)

M ,j  is the determinant of the sub-matrix of A obtained by deleting the ith row and jth 

column and is termed the minor of ay.

A complex square n x n matrix A is positive semi-definite if it is hermitian and its 

hermitian form is non-negative or

x h A x > 0  (A8.6)

for all x ^ 0. If the hermitian form is strictly positive, the matrix is positive definite. 

Similarly, a real square n x n matrix A is positive semi-definite if A is symmetric and

x t A x > 0  (A8.7)

for all x ^ 0. A quadratic form Q is defined as

<=1 7=1

for real ay and x,-. If the quadratic form is strictly positive, A is positive definite.

A partitioned m x n matrix A is one which is expressed in terms of its sub-matrices. An 

example is the 2 x 2 partitioning

A = (A8.9)
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A.8.2 Special Matrices

A diagonal matrix is a square n x n matrix with ay = 0 for i ^ j or all elements off the 

principal diagonal are zero. A diagonal matrix appears as

an 0 • • • 0

0 a 22 • • • 0
(A8.10)

0 0 a nn

The inverse of a diagonal matrix is found by simply inverting each element on the 

principal diagonal.

A generalisation of the diagonal matrix is the square n x n block diagonal matrix

A„ 0 ••• 0

0 A 22 . . .  0
(A8.ll)

0 0

in which sub-matrices Ajj are square and the other sub-matrices are identically zero. The 

dimensions of the sub-matrices need not be identical.

The exchange matrix J is defined as the square n x n matrix
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0 . . .  0 1

1 . . .  0 0

(A8.12)

A lower triangular n x n square matrix is defined as

au 0 • • • 0

a2i a22 • • • 0
(A8.13)

nl n2

The inverse of a lower triangular matrix is also a lower triangular matrix. 

Similarly, an upper triangular square n x n matrix is defined as

l 12

22 ‘2n

(A8.14)

0 0

The inverse of an upper triangular matrix is also an upper triangular matrix.
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A real square n x n matrix is orthogonal if

A'1 = A ‘ (A8.15)

For a matrix to be orthogonal the columns (and rows) must be orthonormal or if ai 

denotes the ith column (or row), the conditions

a a =■ j '

for i * j 

for i = j

must be satisfied. A complex square n x n matrix is unitary if 

A’1 = AH

To be unitary the matrix A must satisfy

a!‘a ;

0

1

for i * j 

for i = j

(A8.16)

(A8.17)

(A8.18)

A.8.3 Matrix manipulation and formulation

(AB)T = BTAT (A8.19)

(A B)h = Bh Ah (A8.20)

(At )-, = (A‘1)t  (A8.21)

( A V  = (A-')h (A8.22)

(A B)'1 = B 1 A'1 (A8.23)
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det (At ) = det (A) (A8.24)

det (Ah) = det* (A) (A8.25)

det (c A) = cn det (A), where c is a scalar (A8.26)

det (A B) = det (A) det (B) (A8.27)

det (A'1) = 1 / det (A) (A8.28)
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APPENDIX A9

Computational considerations and summary of the 
conventional MUSIC algorithm

The theory leading to the development of the MUSIC algorithm has been based on the
A  A

ensemble-averaged correlation matrix, R, or its time-averaged counterpart, <1>. We may 

thus compute the MUSIC spectrum of Eq. (6.29) by performing an eigen-analysis on the
A

correlation matrix tD to compute the noise subspace represented by Vn . From a 

computational viewpoint, however, a more efficient approach is to perform a singular 

value decomposition on the data matrix A directly. The products of this decomposition 

are represented by the singular values ct i, <3 2 , ..., ct m+i, the associated right singular 

vectors vi, V2, . . . ,  v  m+i , and a set of left singular vectors. Insofar as the application of 

the MUSIC algorithm is concerned, the left singular vectors of A are of no interest. On 

the other hand, the squares of the singular values of the data matrix A and the associated 

right singular vectors are of particular interest because they are respectively, the same as 

the eigenvalues of the correlation matrix, O = A11 A, and the associated eigenvectors. In 

computing the MUSIC spectrum, the following points are noteworthy:

1- The MUSIC algorithm assumes knowledge of the model order, that is, the 

number of complex sinusoids contained in the transversal filter input.

2- The singular values of the data matrix A do not actually enter the computation of 

the MUSIC spectrum. Rather, they are used merely as a tool for identifying 

those right singular vectors of A that constitute the noise subspace. Although 

this role may appear to be of a secondary nature, nevertheless, it is crucial to the 

successful application of the MUSIC algorithm.

3- The MUSIC algorithm requires knowledge of only M + 1 -  L smallest singular 

values of the data matrix A. For such a requirement we may use a standard 

routine to compute the M + 1 singular values and associates singular vectors of 

the data matrix A; we may then identify the M + 1 -  L smallest singular values
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and therefore retain the associated right singular vectors for use in the MUSIC 

algorithm. A more efficient procedure, however, is to use an SVD algorithm 

tailor-made for solving the problem at hand.

Table A.9.1 presents a summary of the MUSIC algorithm. Figure A.9.1 presents a block 

diagram of the essential steps involved in the computation of the MUSIC algorithm. 1 2

1) Use the time series {u(i)} to set up a data matrix A.

2) Compute the M+l-L smallest singular values a L+i, ..., ct m+i and therefore identify the 

right singular vectors vL+1, ..., vM+1 . Hence, define the matrix

N tv L+l » L+2 ’ -  ’ VM+1 ]•

3) Compute the projection matrix on the noise subspace, defined by the product 

v n v n h  Hence, compute the MUSIC spectrum estimate

S MUSIC (co) =
s H(co)\N\%s(co) 

for a varying values of angular frequency co in the scanning vector

s(co)=[l, e"j® , . . . ,  e 'j® ^ ]!’ 5 -7T<c0<7t.

4) Estimate the angular frequencies of the complex sinusoids in the time series {u(i)}
A

by locating the spectral peaks of SMUSJC(co)-

Table A.9.1: Summary of the MUSIC algorithm

Data 
Matrix A

Figure A.9.1: Block diagram of the MUSIC algorithm

Scanning 
vector s(co)
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Appendix A10

Singular value decomposition (SVD) and the 

generalised singular value decomposition 

(GSVD): basic theorems

The singular value decomposition (Autonne-Eckart-Young) theorem

For any real p x q matrix A, there exists a real factorisation

Ap,q = Up,p Ep,p VTp>q (for p < q), (A10.1)

in which the matrix U is orthogonal (U UT = UT U = Ip), the matrix V contains 

p orthonormal columns (V1 V = Ip) and SPjP is a real diagonal matrix with non-negative 

diagonal elements, called the singular values, a¡, of the matrix A [1].

The generalised singular value decomposition (GSVD)

Let A be a p x q and B  a p x k matrix (p < q and p < k) then there exist matrices 

Ua  (q x p) and Ub (k x p), both with p orthonormal columns, and a non-singular p x p  

matrix X such that

A = X“T D a  UaT and (A 10.2)

B  = X-T D e  Ubt , (A 10.3)

where D A = daig (ai, ..., a p) and D B = diag(Pi, ..., Pp), (cq, Pi > 0), are square diagonal 

p x p  matrices and ai/Pi > (X2/P2 > ... > a r/pr, r = rank ( B )  [1]. The elements of the set 

a( A, B )  = (a |/P i,...,ar/pr) are referred to as the generalised singular values of A and B .

References

[1] G. H. Golub, and A. H. Kahan, “Calculating the singular values and the pseudo-

inverse of a matrix,” J. of SIAM Numer. Anal. B., vol. 2, pp. 205-224, 1965.
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Appendix A11

Previously published papers based on SVD 

methods to extract the fetal ECG from cutaneous 

electrode signals [1]

Three methods making use of the singular value decomposition (SVD) of a 

measurement matrix to extract the fetal ECG from cutaneously recorded electrode 

signals were presented and compared [1].

In the first method, a set of six or more potential signals, p, is recorded from electrodes 

placed on the maternal skin [2]. After sampling, a p x q data matrix M is constructed, 

where each row of M  consists of the q samples of one signal. The SVD of the data 

matrix, given by M =  U E V1, provides under certain conditions of electrode placement, 

an efficient way to construct an MECG-free fetal electrocardiogram.

If the maternal ECG is sufficiently strongly present in the recordings, compared with 

the presence of the fetal ECG, then the singular spectrum 2 of M  can be partitioned into 

three groups

r "A2m 0 0
E = 0 2f 0

1° 0 Eoj

(A ll.l)

where EM contains rM singular values, associated with the maternal heart, EF contains rF 

singular values, associated with the fetal heart, and So contains ro = p -  Tm -  rF singular 

values, associated with other possible sources of bioelectric activity and noise. 

A number of orthonormal singular directions correspond to each group of singular 

values, to form a subspace of the p-dimensional column space of the data matrix M,
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spanned by the columns of U. This results in a maternal subspace (dimension t m), a fetal 

subspace (dimension rp) and a subspace for other sources of electrical activity 

(dimension rQ).

The advantages of this method are: (i) the resultant signals are optimal with respect to 

extremal oriented energy, and (ii) the resultant fetal signals are orthogonal and form a 

set of principal fetal signals, independent of the physical orientation of the fetal heart.

The disadvantages of this method are: (i) no general electrode placement strategy can be 

used, because for each subject the most ideal electrode positions have to be looked for, 

and (ii) this method is not suitable during labour.

The second method is an on-line approach to the technique in [3]. It composes a matrix 

Mm as a sequence of several (5 -1 0 ) maternal QRS intervals, selected from the data 

matrix M. Some of these intervals may contain a P-wave, while others also contain a 

T-wave, such that the subspace associated with the maternal heart is described much 

better than before, when only one maternal QRS-complex was selected [1]. Then the 

SVD of Mm is computed and the left singular matrix UM is partitioned into

t m  p - r M

UM = (U, U2)p, (A11.2)

with t m the estimated dimension of the maternal subspace.

Instead of selecting a fetal QRS interval, the whole data matrix M is projected onto U2, 

the complement of the maternal subspace.

(p-rM),q u 2t m (A11.3)

This matrix A then contains no MECG contribution any more.

The disadvantages of this method include: (i) it relies on the fetal signals being 

sufficiently strong (relative to all other unwanted signals present in the recordings) so 

that the direction of maximum orientation energy of A, found in uAi, provides the 

MECG-free linear combination of the p -  rM signals of A, (ii) there is a more
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complicated initialisation of the on-line procedure than that of the first method, and 

(iii) concerning the signal-to-noise ratio, it is expected that this method is suboptimal in 

the same way as [3]. This method is useful when only a fetal trigger is required, as the 

signal obtained is not a complete FECG [4].

A third method is proposed based on the generalised singular value decomposition 

(GSVD) and interpreted with the new concept of oriented signal-to-signal ratio [1], 

From Appendix A10, we know that the GSVD of the pair (A, B) looks for 

non-orthogonal directions, denoted x¡, of extremal oriented signal-to-signal ratio. Let 

a¡ / (3i be the generalised singular values of A and B, arranged in non-increasing order. 

Then, the column x¡ of X, which is a non-singular p x p  matrix, in the GSVD of (A, B) 

(see Eqs. A. 10.2 and A. 10.3) is a vector for which the oriented energy of matrix A is 

ctj / Pi times larger than the oriented energy of matrix B (cf. concepts of signal-to-signal 

ratio, [6]).

Therefore, arrange the p recorded potential signals in a p x q data matrix M  and 

compose a matrix B as a sequence of several maternal QRS intervals, not coinciding 

with fetal complexes. This means that the matrix B only contains contributions from the 

unwanted signal, the MECG. The GSVD of the matrix pair (M, B) can then be written 

as

M =  X_T Dm UmT (A 11.4)

B = X t Db UbT (A11.5)

All columns of X provide, after normalisation, a linear combination of the p recorded 

potential signals, in which the oriented signal (in M)- to-signal (in B)-ratio is extremal. 

Only some of them contain an MECG-free fetal heart signal. Concerning the 

computation of the X matrix in the GSVD of a matrix pair (A, B), a very important 

observation is stated in the following theorem [7].

Theorem and proof: Four-step method for GSVD computation: The computation of 

the X matrix in the GSVD of a matrix pair (A, B) can be performed by the following 

four-step method [7]:

Step 1: Compute the SVD of B
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B = UB S b VbT (Al 1.6)

Step 2: Define a transformation Q = Sb ' Ub F on the matrix A such that

QA = A’ = Sb_1 UbT A. (A 11.7)

Step 3: Compute the SVD of A*

A* = ( V a )  (Sa*) (Va*)T (A11.8)

Step 4: Compute the X matrix in the GSVD of (A, B) as

X = Qt  Ua* = Ub Sb‘‘ Ua *. (A 11.9)

Proof. Suppose that the GSVD of a matrix pair (A, B) is 

then

given by Eqs. (A10.2-A10.3),

A AT = X“T Da2 X 1 (A ll.10)

B BT = X T Db2 X 1 (A ll.11)

In other words, the p x p  matrix X diagonalises both A A1 and B B 1. The corresponding 

generalised symmetric eigenvalue problem then has the following formulation:

A A1 Xj = X\ B B1 Xj (A ll.12)

with f  the ith generalised eigenvalue. In the first step of the procedure the SVD of B is 

computed, such that

BB t  = Ub Sb2 Ubt  = Q “'Q  T (A ll.13)

Substitution into Eq. (A 11.12) then gives

A At  Xi = ki Q 1 Q T Xj (A ll.14)
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This can also be written as

(Q A At  Qt ) (Q -t  x.) = k, (Q-'r Xj) (A11.15)

and this is nothing more than a normal symmetric eigenvalue problem. Diagonalisation 

with an orthonormal matrix U A* of the symmetric matrix Q A A1 QT and comparison 

with Eq. (A 11.10) results in

X = Qt U a * = U b £ b~ 1 u  a * (A11.16)

As already mentioned, experiments showed that the transfer for the signals coming from 

the maternal heart is nearly time-invariant, such that the B matrix has to be constructed 

and decomposed only once as a kind of initialisation. The rest of the method can again 

be performed, using the on-line adaptive strategy, but now with an initial projection 

matrix equal to Ub £b \  which is now a non-orthogonal matrix.

The disadvantages of this method include: (i) a rather complicated initialisation of the 

on-line procedure (visual selection of data intervals) is required, and (ii) no principal 

signals are obtained, because the signals are not orthogonal.
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APPENDIX A12

The concepts of oriented energy and 
signal-to-signal ratio*

This Appendix describes the concepts of oriented energy and oriented signal-to-signal 

ratio of a vector sequence and shows their relations with SVD and GSVD.

A12.1 D e fin ition  1: O riented energy:

Consider a sequence of p-vectors {a^}, k = 1, ..., q, and arrange them as the columns of 

a p x q matrix, A. Then Ee[A], the energy of the vector set in the direction of unit vector 

e e  tff, is defined as

a

Ee[A] = Z (eT ak)2 = || eT A ||2 (A12.1)
K.— 1

There exists a relationship between the singular values and vectors of the matrix A and 

its directions of extremal oriented energy as follows:

E„j[A] = || u,T A ||2 = a,2 (A12.2)

where Uj is a column vector of U in the SVD of A and Oj is the corresponding singular 

value of A. For proof see [2-3]. Moreover, we know from linear algebra that each Uj 

contains the coefficients of a linear combination of the rows of A, such that

* The material presented here is based on the works by:

1- B. De Moor, J. Vanderwalle, and J. Staar, Oriented energy and oriented signal-lo signal ratio

concepts in the analysis o f vector sequences and time series, In SVD and signal processing: 

algorithms, applications, and architectures. E. Deprettere, (Ed.) North Holland, pp. 209-232, 1987.

2- B. De Moor, Mathematical concepts and techniques for modelling o f static and dynamic systems,

PhD. Thesis, Dept, of Electrical Engineering, Katholieke Universiteit, Leuven, Belgium, June 1988.

3- J. Vanderwalle, D. Callaerts, “Singular value decomposition: a powerful concept and tool in signal 

processing,” Proc. Conf. On Mathematics in Signal Processing, Warwick, 1988.
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|| Uj1 A A 1 Uj || = || u ,1 A ||2 reaches extremal value, which equals cr¡2. In other words, the 

columns Uj, of the U-matrix in the SVD of A provide directions in the column space of 

A for which the oriented energy is extremal. Therefore, the SVD of a matrix A finds 

rA = rank (A) orthonormal directions of extremal oriented energy.

A12.2 D e fin ition  2: O riented s igna l-to -s igna l ra tio

The oriented signal-to-signal ratio, Rc [A, B], of two sets of p-vectors {ak} and {b^}, 

(k = 1, ..., q), in the direction of unit vector e c  <if, is defined as

Re [A, B] = Ee[A] / Ee[B] = II eT A ||2 / || eT B ||2 (A12.3)

In analogy with the oriented energy-SVD relationship, a relationship between the 

oriented signal-to-signal ratio concept and the GSVD exists. If the GSVD of matrices A 

and B is given as in the GSVD theorem of Appendix A ll; then

Re [A, B] = (cq / PO2 fore = x1/ | |x i || (A12.4)

For proof see [1-3], Applied to the signal separation problem, this can be interpreted as 

follows: assume that A contains p signals that are all mixed with an unwanted signal, 

while B contains only contributions from the unwanted signal. The GSVD of the matrix 

pair (A, B) then looks for directions in the column space of A and B for which the 

oriented ratio of wanted signal to unwanted signal is extremal. This was illustrated for 

the FECG-MECG separation problem.
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APPENDIX A13

An alternative projection method: The composite 

transabdominal ECG signal (TECG = MECG + FECG + 

the uterine contraction signal (UCS) + noise) is 

Gram-Schmidt orthogonalised with the UCS

In order to facilitate partial or total elimination of the uterine contraction signal (UCS) 

from the composite transabdominal ECG signal ( T E C G ) ,  the two signals with noise 

must first be linearised. This helps to get rid of higher-order trends and may render the 

signals linear and non-Gaussian. Then the latter composite signal is Gram-Schmidt (GS) 

orthogonalised with the former (the unwanted signal) and projected onto it. Both signals 

can be measured. However, the UCS still contains low levels of the T E C G  signal, e.g., 

T- and u-waves. Essentially, the T E C G  signal occupies the whole cardiac cycle.

Figure A 13.1 illustrates the segmentation of the composite transabdominal ECG 

( T E C G )  signals into four segments. Figure A 13.2 illustrates how the composite 

transabdominal ECG signal ( T E C G  = MECG + FECG + the uterine contraction signal 

(UCS) + noise) is represented by the vector OA, and Gram-Schmidt (GS) 

orthogonalised with the UCS represented by the vector OB. The signal OE is 

perpendicular to the UCS signal, which is free from any component that might 

correspond to the UCS.

In order to find the projection of a 250 msec T E C G  segment represented by the vector 

OA onto the UCS vector OB and then subtract it from the segment itself, we perform 

Gram-Schmidt (GS) orthogonalisation [1-3] between these two signals.

1) Let u = OB / ||OB|| be the unit vector along the UCS axis.

2) The projection OC of a typical 250 msec transabdominal ECG segment on the 

UCS axis is the following inner product:

OC = OB . u
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Figure A13.1: Superimposed and synchronised maternal transabdominal and fetal scalp 

electrode ECG signals with maternal R-wave to fetal R-wave separation of 23 msec. The 

maternal cardiac cycle begins 50 msec before the R-wave and ends 50 msec before the 

next R-wave. The subject is at the first stage of labour, 40 weeks gestation. The maternal 

cycle has 500 samples or more at a rate of 0.5 KHz. (Code: 12). Segment I: maternal 

QRS-complex, segment II: the first fetal heartbeat with maternal contribution, segment III: 
QRS-free ECG, and segment IV: the second fetal heartbeat with maternal contribution.

of the 
TECG
segment 
onto the 
UCS

Figure A13.2: The composite transabdominal ECG signal (TECG = MECG + FECG + the 
uterine contraction signal (UCS) + noise) is represented by the vector OA, and Gram-Schmidt 

(GS) orthogonalised with the UCS represented by the vector OB. The signal OE is 

perpendicular to the UCS signal, which is free from any component that might correspond to the 

UCS.
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3) The orthogonal vector to the UCS vector is then given by the following formula:

OE = OA -  u ( OA . u )

= OA OB
OB

OA. OB
OB

(A 13.2)

or more explicitly,

OE(n) = OA(n) -  u(n) ¿O A (i)u(i) ,
i=l

n = 1,2, ..., N, (A13.3)

where

u(n)= H° B(n) , n = 1,2, .... N. (A13.4)
Z O B ( j )!
j= l

Each segment of the transabdominal ECG signal ( T E C G  = MECG + FECG + the 

uterine contraction signal (UCS) + noise) contains either the P-wave, the QRS-complex, 

or both, (segments I, III, IV as shown in Figure A 13.1) will be orthogonalised with the 

remaining uterine contraction signal (UCS) known to be free from the P-waves and 

the QRS- complexes (segment II in Figure A13.1).

The algorithm thus measures from a given 250 msec T E C G  segment the amount of the 

uterine contraction signal (UCS) and subtracts it from the transabdominal ECG ( T E C G )  

data during acquisition and storage.
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