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CHAPTER 1 - INTRODUCTION

1.0 Background
This thesis describes research conducted at City University into the application of 

Artificial Neural Networks (ANNs). ANNs have been evaluated as candidate solutions 

to two common tasks: classification and forecasting. More specifically the ANN 

models considered were those that could be implemented as computer algorithms 

suitable for the application domains considered.

ANNs have emerged from a multi-disciplinary field of researchers attempting to 

understand and model biologically inspired neural systems on both the small and large 

scale. At the small end of the scale individual processing elements are studied in depth 

whilst in the large scale, networks containing many interconnected elements are 

simulated and behaviour analysed. The capabilities of the more mature ANN models 

have been explored in depth, with several being applied to domains, competing with 

established techniques such as machine learning, statistical methods and mathematical 

modelling. The relatively new field of ANN research is characterised by recent 

expansion in academic activity, rapid and widespread application of models and much 

debate over the benefits and performance of such models (not without controversy).

The motivation behind this study was to evaluate objectively the potential of ANN 

models in what can be termed ‘real world’ problems, as opposed to artificial tasks 

based on synthetic data. Real, rather than artificial data were used in the applications 

presented, since one of the perceived benefits of ANN models is the ability to cope 

with the noisy, complex and often high dimensional data sets found in many ‘real 

world’ problem domains.

1.1 Artificial Neural Networks
Artificial Neural Network research has grown exponentially since the mid 1980s and 

now stands at a level of research activity measured by at least 10 Journals and over 200
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abstracts per month (INSPEC, 1994). The origins of neural network research, however, 

date back much further with anthologies frequently citing seminal texts such as 

McCulloch and Pitts (1943) and Hebb (1949). A respected collection of edited papers 

(Anderson & Rosenfeld , 1988) includes a landmark text dating back as far as the 

nineteenth century (James, 1890).

The majority of ANN models are based around the functional building blocks found in 

the nervous system (predominantly the brain) of animals; neurons (synonymously 

neurones). A schematic of a generic neuron is given in Figure 1.1. Neurons vary in the 

number of dendrites (incoming connections), range of their axons (outputs) and 

number of axon to dendrite connections (synapses). The detail of neural systems 

reveals far more complexity than that described here. The basic component described, 

however, has been abstracted into the computational domain summarised here by the 

title ‘Artificial Neural Networks’.

Figure 1.1 - Schematic of a neuron with computational abstraction
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The recent expansion in ANN research activity is noteworthy. There are some primary 

causes for the resurgence:

• The breakthrough of backpropagation for training multi-layered networks 

Wide scientific interest in the field waned after the computational limitations of an 

early ANN model, the ‘perceptron’ (Rosenblatt, 1958), were exposed by Minsky and 

Papert (1969). Further development of models received little interest from the rest of 

the Artificial Intelligence (AI) community. ANNs attracted huge interest again with the 

popularisation of the ‘backpropagation’ learning algorithm (Rumelhart et al., 1986). 

The algorithm enabled learning to take place in complex multi-layer models, which, 

having increased computational capability, overcame the limitations highlighted by 

Minsky and Papert.

• The widespread availability of low cost computing power

Most Artificial Neural Network models are computationally expensive requiring 

powerful computers to facilitate experimentation and analysis. With the advent of the 

Personal Computer, the 1980s saw the start of a huge and rapid rise in cheap 

computational power giving more researchers the opportunity to simulate and 

experiment with ANN models. Early research, limited by the dearth of such 

computing power, was restricted to predominantly theoretical work. A good example 

of this is Hebb’s (1949) explicit statement of the physiological learning rule. It was not 

simulated on a computer until some 7 years later by Rochester et al. (1956).

• The ability of ANNs to learn input / output relationships

There is broad appeal for the use of automatic systems that are self learning and capable 

of generalising the relationships between data inputs and outputs, often in domains 

where a deterministic model of the system of interest does not exist. One of the 

difficulties of the rule based Artificial Intelligence (AI) approaches is the problem of 

generating rules from ‘real world’ raw data.
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• Non-linear modelling capability of ANNs

Many real world modelling problems exhibit non-linear characteristics. The non-linear 

modelling capability found in prominent ANN models can be successfully applied to 

such systems.

The recent resurgence of research activity has seen more model propositions and 

analyses from researchers having little or no biological background. The application 

and modification of models for specific problem domains is a norm. Despite a 

significant input from those with no biological interest, neural modelling is still a 

driving force for many researchers. Rumelhart and the Parallel Distributed Processing 

(PDP) group (Rumelhart, 1986) presented a collection of cognitive process models that 

have served as a reference text for researchers in the field since its publication.

Edelman (1992) has developed an evolutionary biological theory linking 

neurophysiology and the mind. Opponents and proponents of his views exist and this 

area of ‘true’ neural network research (from the biological perspective) is where 

academic debates rage, clouded by the long running philosophical arguments 

surrounding the ‘mind-body’ problem. Penrose (1989) has added fuel to the fire 

arguing that computer models of the human mind cannot come to fruition with current 

limitations in scientific theory.

Current ANN models are of a very small scale when compared to the human brain 

which contains of the order 1011 neurons connected by some 1014 interconnections 

(Anderson and Rosenfeld, 1988). One of the aims of modelling biological systems is to 

attempt to emulate desirable aspects of their behaviour such as learning. A paradox is 

that as the artificial models become larger, they rapidly become as difficult to analyse 

as their biological counterparts due to the high degree of interconnectedness.

1.2 Research Hypothesis
ANNs are self learning, potentially non-linear, data based models. They offer 

potential where symbolic Artificial Intelligence (AI) techniques, statistical methods or 

mathematical modelling have had little success. With the large (and growing) number 

of ANN models and algorithms to choose from, this study set out to investigate which
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models could be applied to real world problems and what performance they would 

yield. The hypothesis was :

• Artificial Neural Network models can be applied to a problem domain and offer a 

performance (by defined metrics) comparable to or better than established 

techniques commonly applied in that domain.

1.3 Research Aim
The principle aim of this study was to investigate the hypothesis by carrying out 

performance tests on ANNs in two very different problem domains. The performance 

differences between ANNs and existing techniques needed to be quantifiable thereby 

providing verifiable evidence either supporting or contradicting the hypothesis.

The performance of the ANNs combined with heuristic knowledge gained from 

applying models would lead to the conclusions as to the appropriateness of applying 

ANNs to the chosen problem domains. Given the range of ‘competing’ techniques it 

was valid to question the use ANNs.

1.4 Research Objectives
The research centres on two modelling problems that have already been tackled, with 

varying degrees of success, by a range of established techniques. The objective of the 

research is to devise a framework for selecting, applying and evaluating the 

performance of ANN models. The applicability of the framework will be demonstrated 

by application to two problem domains; forecasting and classification.

1.5 Application Areas
The modelling tasks used in this study are based on data sets from two domains, the 

first of which requires a classification solution, the second a forecasting solution.

The time series forecasting task uses foreign exchange data to evaluate the ability of a 

self learning Artificial Neural Network algorithm to predict future prices. There are 

immense volumes of data available in this domain, a factor making it appealing to the 

application of ANN models. The inherent difficulty of forecasting in such a domain 

places particular emphasis on a well defined metric of ‘successful’ forecasting.

5



The classification task is a complex problem based on a database of patient records 

from a London teaching hospital. The database contains details of over 5000 

septicaemic episodes recorded over several years by the Department of Microbiology at 

St Thomas’ hospital, London (Gransden et ah, 1990). The task is to classify, using an 

appropriate algorithm, the most likely infecting micro-organism of a previously unseen 

patient using only past patient observations. The historical database is the only source 

of information with which to construct the classifier. The classifier will therefore be 

objective and data based as opposed to a subjective, knowledge based type.

1.4 Thesis Structure
Chapter 2 gives a broad critical review of the literature documenting Neural Network 

research. The review gives some history and chronology to seminal papers but focuses 

on the most recent computational models. A conceptual model of the research domain 

is presented, facilitating an explanation of the variety of terminology in texts and 

differing research themes.

In Chapter 3 a novel experimental and analytical method is proposed for the application 

of ANNs to the two domains. The method defines the application process from data set 

description and analysis, to proposing potentially successful model solutions, 

experimentation and evaluation of the model solutions, and final application of the 

successful solution to the domain.

The forecasting task is described in Chapter 4. A critical review of forecasting 

methods is followed by a discussion of time series analysis techniques. These 

techniques can be used to identify criteria for selecting potentially successful 

forecasting methods. Studies where quantitative evaluation of forecasting algorithms 

has been carried out are discussed before the application domain (set within the 

currency exchange markets) is described in detail. Finally, the forecasting experiments 

and their results are described and analysed.

The classification task based on the selected medical application domain is covered in 

Chapter 5. The initial discussion details the classification process and reviews the
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methods by which it can be achieved. A review of methods and benchmarking studies 

forms a precursor to an overview of the diagnosis and treatment of septicaemia. The 

data set, experimental results and analysis are presented at the close of the chapter.

A discussion exploring the utility of the experimental framework is presented in 

Chapter 6. The forecasting and classification results are also discussed, pulling 

together the strands of insight gained from the experimental process. Key issues 

brought to light by the application of models to the domain data are explored.

Chapter 7 summarises the experimental work and draws final conclusions on the value 

of ANN models in the context of classification and forecasting. Areas of further 

research are highlighted.
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CHAPTER 2 - LITERATURE REVIEW

2.0 Introduction
Starting from the late 1980s a significant research momentum built up in the field of 

'neural networks'. Computational models, inspired by neural modelling and cognitive 

research, caught the imagination of researchers from many domains (assisted in some 

instances by considerable media hyperbole). Artificial Neural Networks (ANNs), it 

was claimed, did not have to be programmed to perform an operation, they instead 

learned by examples. From such a series of examples the networks could generalise 

(developing relationships between inputs and outputs) hence coping with unseen 

examples (new situations). Machine learning algorithms had been making some 

headway in this direction but suffered from the limitations of their symbolic operators 

(AND, OR, NOT etc.). Further, machine learning algorithms are often inadequate 

when dealing with non-linear problems to which they are sometimes applied. It is in 

the non-linear arena that neural networks and the parallel field of fuzzy logic showed 

promise.

Currently the field of ANNs attracts contributions from many academic disciplines - 

primarily those of neuroscience, physics, psychology, statistics, computer science 

and mathematics. The broad, and historically long running philosophical debate of 

‘Mind-Body’ (Figure 2.1) surrounds the more specialised contributions. Since the late 

1980s a vast number of researchers have applied computational Artificial Neural 

Networks to many problems and studied theoretical issues; consequently a vast number 

of publications documenting the varying degrees of success have been generated.

Some researchers are highly critical of the general quality of this material, sometimes 

forcefully put; “much is dross’’ (Ripley 1993; p.7).

The analysis within this chapter critically reviews the capabilities of ANNs using 

theoretical and experimental papers from the literature. The experimental papers often
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illustrate the practical problems encountered in trying to realise the theoretical 

capabilities of ANN models.

The analysis presented here covers knowledge contributed from the varied disciplines 

with an aim to providing a more structured method for selecting appropriate models for 

applications. A key problem in drawing together knowledge is finding a common 

language that can express concepts in each discipline. In a field where much 

inspiration for work comes from biological systems a huge chasm exists between the 

behaviour of systems on the micro (neuroscience) and the macro (cognitive) levels. 

Indeed it is still questioned by some whether the two are directly related or indeed if it 

is possible to relate them in a deterministic way (section 2.1). Mathematics, physics 

and biology may be useful to model the ‘low level’ physiology of the brain but the 

‘higher level’ cognitive properties of the brain are difficult to understand with these 

deterministic models. The physiological models are very difficult to scale to the size 

where higher level cognitive properties may manifest themselves.

Figure 2.1 - Disciplines contributing to and influencing computational ANN 
models

The foundation of this thesis was research into ANNs and their potential for application 

to two real world problems. The numerous ANN experiments found in the literature 

are often problems where existing modelling techniques could also have been applied. 

Many of the ANN models utilised in such problems have research origins based in 

natural systems such as the human brain. It is this crossover in application that causes 

some conflict in addressing the capabilities of such models. Since many ANN 

applications compete with methods in the statistical / mathematical realm, analysis
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using techniques from these disciplines is inevitable. Using models developed in one 

discipline and exposing them to analytical techniques from another produces a more 

robust theoretical base. This analytical approach has been used before to great effect in 

the case of an early ANN model. Rosenblatt, originally a psychologist, introduced a 

model named the ‘perceptron’ (Rosenblatt, 1958). The perceptron was greeted with 

enthusiasm but it did not live up to early expectations. A rigorous mathematical 

analysis by Minsky and Papert (1968) revealed limitations in the computational 

capabilities of perceptrons. Their authoritative arguments were valid and the resulting 

powerful negative influence was sufficient to cause funding and general interest in 

ANN research to evaporate.

Now firmly re-established with a multi-disciplinary research base, the field of ANNs is 

producing a wide number of models. The potential for ANN models to develop into 

sophisticated computational machines capable of exhibiting the characteristics of the 

human brain is still a subject of highly opinionated debate. Penrose (1989) has 

addressed the subject; he argues against the possibility of computers modelling human 

intelligence, qualifying his argument with a discourse including Turing machines, 

relativity theory and quantum physics. Edelman (1992) has developed a theory of the 

mind based on biological evolutionary principles - a so called ‘Neural Darwinism’. If 

the theory proves to be correct it would be the first comprehensive theory explaining 

and linking brain behaviour on the micro scale (neurological systems) and macro scale 

(higher cognitive processes and consciousness). These arguments represent what can 

be regarded as the higher aims of ANN research; to synthesise and understand 

intelligent systems using many processing elements, or groups of elements. The 

majority of research is, however, still concerned with the application and behaviour of 

small scale networks (frequently less than 100 nodes in a feedforward network). Figure 

2.2 shows a range of neural concepts at different resolutions ranging from atomic scale 

up to the level of the human organ (brain). The scales to which ANN models 

correspond to their biological counterparts are also shown. The primary disciplines 

involved with the investigation of neural systems are represented with an 

approximation of the scales at which they have a bearing. It shows that computational
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ANN models are on the scale of individual to small groups of cells and currently have a 

small scale correspondence with memory and cognition systems.

Neural
Resolution

Concepts

Computational
Models

___________________Increasing Scale______________________

Atomic Molecular Cell Cell Groups Brain

Learning 
Memory 

Cognition 
The Mind ?

Neuro
Transmitters

Synapse
Axon

Dendrites

Hippocampus
Cortex

ANN Models

Influential
Disciplines

Neurophysiology & Neuroanatomy Philosophy

Neuropsychology

Biology

Physics

Figure 2.2 - Breadth of models and academic disciplines for neural modelling

The hope of linking small ANN models to cognitive processes is beyond the scope and 

not the aim of the research presented in this thesis. Ultimately, it is hoped that an 

ambitious theory such as Edelman’s ‘Theory of Neuronal Group Selection’ (TNGS) 

will give insight (at least) into the dynamic neurological behaviour of the human brain 

and link this to the behaviour of the human mind. This possibility is tempered by many 

counter arguments like that of Penrose concluding that we cannot recreate human 

consciousness in Turing machines.

Edelman also realises that to reduce ‘behaviour to a theory of molecular interactions is 

simply silly’ (Edelman, 1992). This perspective is lucidly illustrated by Gleick when 

discussing the complexity of models ;

“Only the most naive scientist believes that the perfect model is the one that perfectly 

represents reality. Such a model would have the same drawbacks as a map as large 

and detailed as the city it represents, a map depicting every park, every street, every 

building, every tree, every pothole, every inhabitant, and every map

(Gleick, 1988; p.278)
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This review is primarily concerned with small (relative to human neural networks) 

computational ANN models. Large scale networks and the broad issue of the human 

mind are discussed briefly in section 2.1. The rest of the chapter discusses the ANN 

models available and notes their genesis and subsequent evolution (pointing out 

research disciplines motivating changes in models e.g. biology, statistics etc.) and 

including comparisons to competitive techniques (such as machine learning). Where 

parallels exist attempts are made to draw upon them. It will therefore be an attempt to 

bind some of the literature on network models and related techniques where currently 

few links seem to exist.

2.1 The history of the theory of mind
A primary motivation for creating biologically plausible computational neural models 

is that we would hope to recreate some of the learning, cognitive and intelligent 

characteristics displayed by humans. This does however work on the premise that the 

brain (and surrounding nervous system) is the organ responsible for such functions and 

is the habitat of the human mind. It is an assumption widely taken for granted but has 

been, and still is, an area of heated philosophical debate.

Gregory (1987; p.545) discusses the history of neuropsychology and illustrates the 

increasingly informed viewpoints of great thinkers through the millennia starting with 

the ancient Greeks. Hippocrates (fifth century BC) identified the brain as the organ of 

intellect whereas Empedocles located mental processes in the heart. Galen also 

favoured the brain as the source of intellect, arguably due his experience of dealing 

with gladiators (in his capacity as a physician). Aristotle (400 BC) discussed mental 

processes with great perception whilst mistakenly placing the mental function in the 

heart (the brain serving merely as a cooling device!). It was with René Descartes 1 and 

the beginnings of modem philosophy that the dualist position was proffered. Descartes 

viewed the mind as a special substance separate from matter. What was termed the 

‘Mind-Body’ problem has been a vibrant jousting arena for philosophers ever since and 

now has three discernible groups of theorists (though other classifications are possible);

12



mentalist, materialist and dualist. The mentalist theories view the mind as more 

definite than material objects whereas the materialists (or physicalists) view the mind as 

a phenomenon of physical processes, typically expressed as behaviourism 

(philosophical sense) or as the identity view. The dualist position holds that the mind 

and body are separate entities with numerous theories under this banner such as 

‘bundle’, ‘parallelist’, ‘interactionist’, ‘epiphenomalism’ (Hospers, 1988). A lively 

picture of the current state of philosophical debate is painted by Cornwell (1994) who 

describes the scene of ‘a dozen or so bitterly opposed factions, as well as some 

marauding lone rangers’. His text delves into the perceived motivations of many of the 

authors and puts forward the view that their work often carries a subtext. His 

observation of the personality cult in this area of research is an important one and can 

help explain (if not predict) the directions of research.

The present day debate includes participants from increasingly varied disciplines such 

as neurobiology, physics, computer science and philosophy. Of direct implication for 

the potential of computational ANN models and illustrative of the wider debate are the

positions of Edelman and Penrose^, both eminent scientists in their fields of 

neurobiology and physics respectively. They stand opposed in many of their views on 

the nature of the human mind. Edelman draws on his knowledge of biology and 

neuroanatomy to promote an as yet unproved Theory of Neuronal Group Selection 

(TNGS). This theory describes the activity of groups of neurons and links their 

development and interconnections with other groups to consciousness. Penrose 

wanders through intricate mathematical expositions of Turing machines, mathematical 

philosophy, classical and quantum physics and the limitations of scientific knowledge. 

The core argument is that a new theory (quantum gravity) to cope with the limits of 

quantum theory (dimensions <10"33 cm) could explain consciousness. The relevance of 

his arguments to understanding the brain are questionable on the grounds of appropriate 

resolution of models (see Figure 2.2). Edelman recognises the scholarship of Penrose’s 

discourse but dismisses his arguments;

French philosopher (1596-1650). Famous dictum ‘cogito, ergo sum’ (I think, therefore I am). His text 
The Discourse on Method caused a new ‘doubting’ philosophy to permeate scientific investigation with 
only the mind being trusted.

13



“Penrose’s account is a bit like that o f a schoolboy who, not knowing the formula of 

sulfuric acid asked for on an exam, gives instead a beautiful account o f his dog Spot”.

(Edelman, 1992; p.217)

Numerous other positions are taken in the literature. A varied sample of the many 

available are those of Crick (eminent biologist), Moravec (computer scientist) and 

Dennett (philosopher). A ‘strong AI’ position is taken by Moravec (1988) who presents 

the brain as being analogous to a digital computer (utterly at odds with Penrose). Crick 

(1994) takes a reductionist approach and in course has questioned Edelman’s theory 

(Crick, 1989). Dennett (1991), a modem philosopher, presents consciousness as an 

illusion and draws as many critics as supporters.

The debate will undoubtedly continue, but Edelman’s theory at least attempts to 

provide a framework linking neurophysiology to neuropsychology. More importantly 

the theorem’s validity can be investigated by scientific enquiry. Electronic discussion 

groups such as that moderated by Wilken (1994) continue to oversee debate about the 

philosophical issues but inevitably it will be an increase in neurophysiological 

knowledge and simulation that will yield scientific answers to the debate. From 

Aristotle, Hippocrates, Empedocles to Descartes and through to modem philosophers 

such as Dennett the argument over mind and matter has been primarily influenced by 

increasing scientific knowledge in physiology, biology, neuroscience and psychology. 

It is hoped that a broad theory, by necessity crossing the boundaries of these 

disciplines, will allow the testing of scientifically verifiable hypotheses on the links 

between matter and mind . Edelman has developed such a theory (TNGS) and has 

invited for it to be tested in such a scientific way (Edelman, 1992; p.97). It would 

appear a laudable step.

It is interesting to note that the current ANN debate still suffers from lack of access to 

knowledge from participating protagonists. Anderson and Rosenfeld (1988; p.43) 

noted that early researchers such as McCulloch and Hebb ‘really knew their 

neuroscience’. With the increasing spread of contributing disciplines it requires some

2Edelman received the Nobel Prize for Physiology or Medicine in 1972. Penrose shared with Stephen 
Hawking the Wolf Prize for physics for contributions to the understanding of the universe.
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degree of scholarship to understand the material available and a particularly clear 

exposition of new ideas to reach the widest possible audience. Edelman for example 

shows an impressive degree of scholarship in his work but his hypotheses have been 

criticised for lacking clarity.

2.2 Neural Networks, Parallelism, Connectionism...Some definitions
The thesis title defines the models of interest to be 'Artificial Neural Networks'. 

Frequently models in the surveyed literature will appear under the inaccurate synonym 

'Neural Networks'. The term artificial is used as a prefix to make clear that the models 

investigated are not biological neural models but computational abstractions that often 

draw inspiration from biological systems. They are, therefore, very much artificial.

Initial surveys of the literature uncovers evidence of an infant area of research lacking 

in clear definitions. There are still many terms that are used synonymously; 'Artificial 

Neural Networks', 'Neural Networks', 'Connectionist Paradigms', 'Parallel Distributed 

Processing'. A primary reason for this lack of definition is the number of established 

disciplines that are contributing research material, often written from their own 

perspective and in their own terminology (e.g. psychology, neuroscience, mathematics 

and physics).

Rumelhart et al. establish a general framework for their 'Parallel Distributed Processing' 

(PDP) models. They identify eight major assumptions that can be made about the 

components of a PDP model;

• “A set o f processing units

• A state o f activation

• An output function for each unit

• A pattern of connectivity among units

• A propagation rule for propagating patterns o f activities through the 

network o f connectivities
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• An activation rule for combining the inputs impinging on a unit with the 

current state o f that unit to produce a new level o f activation for the unit.

• A learning rule whereby patterns o f connectivity are modified by 

experience.

• An environment within which the system must operate ”

(Rumelhart et al., 1986; p.44-45) 

Another definition from Hecht-Nielsen can be considered:

“A neural network is a parallel, distributed information processing 

structure consisting o f processing elements (which can possess a local 

memory and carry out localised information processing operations) 

interconnected together with unidirectional signal channels called 

connections. Each processing element has a single output connection 

which branches (fans out) into as many collateral connections as desired 

(each carrying the same signal - the processing element output signal). The 

processing element output signal can be o f any mathematical type desired.

All o f the processing that goes on within each processing element must be 

completely local: i.e. must depend only upon the current values o f the input 

signals arriving at the processing element via impinging connections and 

upon values stored in the processing elements local memory. ’

Hecht-Nielsen (1989)

The Hecht-Nielsen definition does not give any insight to the learning characteristics of 

an ANN, merely how a network should operate. The definition from Rumelhart et al. is 

more appealing due to its broader scope and less specificity and is therefore the 

working definition of ANNs adopted for this study. It should be noted that some 

models widely published in ANN literature (such as LVQ) do not satisfy even this 

broader definition of an ANN. The definition will be used, therefore, to highlight 

models that do not fully fit the (biologically plausible) criteria rather than to exclude.

2.3 Critical Review
Structuring a critical review of the field of Artificial Neural Networks with a 

meaningful chronology is difficult. The field itself has only become a widely 

recognised within the past decade. For example, the first conference on Neural
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Information Processing Systems was held in 1988. Anthologies will, however, 

commonly trace the field back to McCulloch and Pitts (1943). Some go back further 

still to William James (1890). It can be argued that the starting point is somewhat 

meaningless when compared to the developments in the past decade.

This review is divided into three parts. The first part is focused on the history of ANN 

research, widely referred to as ‘Neural Networks’. It is a brief chronological account of 

the important research milestones and major issues. The second part discusses useful 

papers that have also analysed ANN models from a similar broad perspective to that 

presented here. Invariably the texts are written in a language or with a focus that 

reflects the academic discipline of the authors. There are a few notable anthologies and 

critical reviews and to repeat the information that can found within them would be 

unproductive. It is more meaningful to summarise such texts in terms of the content 

and audience to which they are addressed. Those familiar with the field will recognise 

the difficulty of wading through the plethora of texts available offering an interpretation 

of ANN models in the academic language of the authors. Scholarship in the ANN field 

is especially important (and difficult) due to the wide ranging contributing disciplines 

and the numerous publications available in which to present work. The third part 

presents important ANN models in current use and constitutes the bulk of the review

2.3.1 - Chronology of computational ANN research
From a computational perspective , the first explicit model is universally documented 

to be that of McCulloch and Pitts (1943). Their model neuron is an “all-or-none” 

binary device. This facilitated an analysis of its computational capability using 

mathematical logic. The result was a proof that any finite logical expression could be 

implemented using McCulloch-Pitts neurons. Although the “all-or-none” physiological 

assumption is incorrect the paper was a positive first step towards biologically plausible 

computational models.

Donald Hebb provided a description of a learning rule for the modification of synapses; 

“When an axion o f cell A is near enough to excite a cell B and repeatedly or 

persistently takes part in firing it, some growth process or metabolic
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change takes place in one or both cells such that A ’s efficiency, as one o f 

the cells firing B, is increased’. Donald Hebb (1949)

Although not a computational model it provided an explicit statement of how learning 

could take place in neural systems. Some simulation of this learning system was 

carried out by Rochester et al.(1956) but it was not until Rosenblatt’s ‘perceptron’ 

(1958) that a model generated wide scale interest. The model was well defined, open 

to analysis and simulation, and it could respond to unseen patterns that were similar to 

previous patterns, thereby displaying generalization. The perceptron caused 

excitement as the possibilities of an adaptive, learning machine appeared to have great 

potential. Other models emerged in the period following this publication, notably that 

of Widrow and Hoff (1960); the ‘ADALINE’. This ‘adaptive switching circuit’ 

model was similar to a perceptron but had a simple learning rule that modified the gains 

(analogous to weights) continuously so as to minimise the output error.

These early models did not live up to the early expectations and it was the now 

infamous analysis performed by Minsky and Papert (1969) that precipitated the rapid 

demise in the research and application of such models. The text proved the limitations 

of the simple perceptron to solving defined logic tasks and the newer symbolic AI 

approaches became the focus of research.

Some researchers persevered with ANN models and Grossberg (1976) proposed several 

architectures with non-linear dynamics based on biological and psychological evidence. 

His mathematical approach was difficult to follow and broader interest in ANNs was 

not stimulated again until Hopfield (1982, 1984). Hopfield’s academic weight led to 

some credibility being bestowed on ANN research and his network model (a specific 

type of a more general Grossberg model) rekindled wider academic interest.

The PDP group later published their seminal text containing numerous models 

(Rumelhart et al., 1986) one of which being the now ubiquitous ‘backpropagation’ 

algorithm. The algorithm was a generalization of the Widrow-Hoff learning rule and 

allowed learning in multi-layered perceptrons to solve the famous X-OR problem
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highlighted by Minsky and Papert (1969). The field was once again in a strong position 

with high expectations.

Notably, relating ANN models to theorems in physics and statistics (e.g. the Hopfield 

ANN model being isomorphic with the Ising model) had led to more rigorous analysis 

and insight. The methods of statistics and physics can be useful tools for analysing 

complex systems with many components - ANNs would seem to lend themselves 

naturally open to this type of analysis. With such analyses the field has achieved some 

degree of (academic) credibility in the eyes of these established disciplines. With such 

methods, however, the already limited biological plausibility of models can easily be 

lost or forgotten. The issues of model purpose, methods for analysis and development 

direction are important and are reflected in the current diverse strands of research 

pulling existing models in numerous biased scholastic directions.

2.3.2 ANN Reviews
The interdisciplinary nature of the field has lead to a range of texts each with a 

particular bias reflecting the author’s academic discipline. The most broad ranging 

anthology is that of Anderson and Rosenfeld (1988). The text is an edited collection of 

43 original papers from diverse sources. This popular collection was followed by a 

second; Anderson et al. (1990) containing 41 articles with the unifying theme being 

‘research directions’, the aim being to map out the important directions that various 

researchers were taking ANN research (in 1990). The texts provide, therefore, a view 

back and a view forward of ANN research.

An example of a discipline specific review of the field can be found in Ripley (1991) 

who gives a very critical comparative assessment of some ANN models and statistical 

techniques. The paper is written from a statistical perspective and tackles an area of 

application where ANN models have been used extensively - classification. Geman et 

al.(1992) present a review of the learning capabilities of neural networks from a 

statistical view and the paper has important implications for the limitations of ANN 

models. Hertz et al.(1991) tackle the field from a theoretical angle and their exposition
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draws on their background as physicists. Not surprisingly, perhaps, the first network 

that they discuss is the Hopfield model (Hopfield being an eminent physicist).

A cognitive viewpoint can be found in the texts of Rumelhart et al.(1986) and 

McClelland et al.(1986) who can be credited with publicising the field and initiating the 

current resurgence in interest with the backpropagation algorithm. The books 

document the interdisciplinary work of the PDP group with cognitive psychologists 

mixing with researchers trained in physics, mathematics, neuroscience, molecular 

biology, and computing. The authors’ aim was that the text would ‘present PDP 

models to the community o f cognitive psychologists as alternatives to the models that 

have dominated cognitive psychology for the past decade or so ’.

Numerous reviews of varying depth exist in addition to those already mentioned. An 

engineering perspective is taken in the review of ANN models given by Hush and 

Horne (1993). Another review with an engineering orientation is that of Hunt et 

al.(1992) which analyses the ANN models using notation familiar to control engineers. 

Only a minority of texts present ANN’s from an interdiscplinary viewpoint. A sample 

of survey texts and their intended audience is given below in table 2.1.

Text Author Approach / 
Audience

Notes

Anderson & Rosenfeld 
(1988)

Various / General 43 Seminal Papers

Ripley (1993) Statistics / General Comparative Review [175 
refs.]

Michie et al.(1994) Statistics & Machine 
Learning 

/ Statistics & AI

Comprehensive 
comparative exercise;3 
year group project. [> 

260 refs.]
Hertz et al.(1991) Physics & Statistical 

Mechanics / General
Very comprehensive with 

abundant mathematical 
content. [431 refs. ]

Rumelhart et al.(l 986) Various / Cognitive 
Psychology

Multi-disciplinary 
Vol.l[193 refs], Vol.2[460 

refs]
Hunt et al.(1992) Control Systems / Control An attempt to unify 

ANN’s with existing 
control models[187 Refs]
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Text Author Approach / 
Audience

Notes

Flush and Flome (1993) Engineering(Signal 
Processing) / Engineering 

(General)

Summary of main models, 
[152 refs.]

Table 2.1 - A sample of AISN Survey texts

2.3.3 - Prominent models
This section details the ANN models developed and used most commonly in 

applications today. The total number of models in existence is difficult to quantify as 

there have been numerous new developments and variations of established models 

published in recent years. The ANN models presented here are widely accepted as 

significant developments. They are presented in their simplest form with references to 

later developments and advances. A discussion of each model’s computational 

capability, advantages, disadvantages and typical application (if applicable) is also 

given.

Table 2.2 is a chronological list of important ANN developments. The list contains key 

models and algorithms, primarily those that have widely accessible software 

implementations. Classifications are given, drawing together many found in the 

literature along with other less common, but useful distinctions

For each development a distinction is made as to its form; a model and/or learning 

algorithm. For example, much recent ANN research has been the development of 

algorithms for feedforward networks.

A classification of network type is given which includes the operating mode of the 

network; static or dynamic. A static network achieves an output from a given set of 

inputs by a single algorithmic pass, in the sense that there is no feedback of values in 

the processing. A dynamic network has some element of feedback during processing.

The common distinction of supervised/unsupervised is given for each development. 

Supervised networks require examples of expected output during the training phase 

whereas unsupervised networks create an output representation without examples.
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The ‘processing’ category indicates how values are processed internally by a network. 

The values are considered to be either binary or continuous valued. The ability to 

process continuous values may be important for some applications (such as 

forecasting).

The uncommon ‘Biological’ distinction is given to indicate any biological basis for a 

development. This has been added to make apparent how many of the later 

developments have little biological basis.

A final distinction is made between fixed and dynamic network topologies. Most 

ANNs require a fixed network topology which is determined before training. There are 

however, dynamically configured ANNs the topology of which changes during 

training. Topology, as will be discussed later in this chapter, is an important factor in 

the computational and learning capability of an ANN.

An important issue often omitted from many discussions of ANN models is the 

availability of reliable, portable and easy to use software implementations of ANN 

models. Easy availability of such software facilitates reliable experimentation and 

widespread use.

A good example of such software are those of Kohonen who has made public domain 

implementations of the Learning Vector Quantization (LVQ) and Self Organising Map 

(SOM) algorithms. This has resulted in widespread experimentation and use of the 

algorithms and the database of published texts relating to these models (also publicly 

available) contains in excess of 1200 references. A strong impression remains that 

many proposed variations of algorithms and indeed new algorithms suffer from lack of 

supporting software. In a field that is based on computer simulation and investigation it 

seems to be a major oversight of many authors. An important tenant of scientific 

research in all fields is that theoretical results should be reproducible. In the context of 

computational models this is greatly facilitated by access to documented and validated 

software.
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Name

Introduced

M
odel

A
lgorithm Network Type (Operation)

Supervised

Processing

Biological

Topology Notes References
MCL UHOcli & Pitts TV4T Y processing tsiement r Bin r nxea Neural Model ivicvuiiocn & P lt tS  ( 1 V4j)
Perceptron 1958 Y Y Feedforward,(Static) Y T5irT Y Fixed Neural Model,Classifier Rosenblatt (1958)
Widrow-Hoff ADALINE W Y"Feedforward,(Static) Y Bin Fixed Classifier Widrow & Hot! (1960)
Backpropagation T W Y Feedforward,(Static) Y Con Y Fixed General Learning Algorithm Rumelhart et al (1986)
Quickprop Y Feedforward,(Static) Y Con Fixed Quicker Version of BP
Simulated Annealing W Y“Feedforward,(Static) Y Con Fixed Physics analogy of cooling Makram-Fbeid et al (1989)
Probabilistic Neural Network T W Y Y~ Feedforward,(Static) Y Con Fixed Specht (1988)
Tiling Algorithm W Y Y Feedforward,(Static) Y Con Dyn. Mezard & Nadal (1989)
Upstart Algorithm T9 90 Y Y~ Feedforward,(Static) Y Con Dyn. Frean (1990)
Cascade Correlation T W Y~ Y Feedforward,(Static) Y Con Dyn. Fahlman & Lebiere (1990)
Hoptield T W YT Hoptield,(Dynamic) Y Bin Y Fixed Hopfield (1982)
Hoptield T W Y Hopfield, (Dynamic) Y Con Y Fixed Hopfield (1984)
ARTT 1987 Y~Y ART,(Dynamic) N "BirT Y Fixed Carpenter & Grossberg (1987a)
AKTT 1987 Y Y ART,(Dynamic) N Con Y Fixed Carpenter & Grossberg (1987b)
LVQ 1,2,3 &OLVQ1 T W Y~ Vector Matching,(Static) Y Con Y Fixed Classification Algorithms Kohonen (1990)
SOFM 1989 Y~Y~ Feature Mapping N Con Y Fixed Visualisation ot high dim. data Kohonen (1989)
Boltzmann T W Y~Y Recurrent Network, (Dynamic) Y Bin Fixed Hinton & Sejnowski (1983)
Peterson & Anderson 1987 Y Recurrent Network, (Dynamic) Y Con Fixed 10-30 x taster than Boltz. Peterson & Anderson (1987)
Recurrent Backpropagation T W Y~ Recurrent Network, (Dynamic) Y Con Fixed Pineda (1987), Almeida (1987)
Counterpropagation T W Y^Y “ Feature Mapping,(Hybrid) Both Con Fixed Hecht-Nielsen (1987)

Table 2.2 - Table of ANN network models
(i) The operation of a network is distinct from the training phase. A dynamic network in operation will normally achieve a stable output 
state (after some period of time) according to the dynamics of the network. A static network will generate the output in a predetermined 
algorithmic ‘single pass’.
(ii) The term ‘biological’ refers to networks that have a strong biological basis.
(iii) ‘Model’ and ‘Algorithm’ denote that the object is a model and /or a learning algorithm.
(iv) ‘Supervised’ networks require presentation of the expected network output with training samples.
(v) Processing denotes the data types supported (Binary or Continuous)
(vi) The network topology can be fixed or changed dynamically by the algorithm.
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2.3.3.1 Feedforward Networks
Feedforward network applications dominate the literature. They are still the most 

widely used ‘family’ of networks today. The origins of these networks can be traced 

back to the ‘perceptron’ introduced by Rosenblatt (1958). The simple perceptron 

shown in Figure 2.3 was the first network to be precisely defined in such a way that it 

could be studied mathematically and by computer simulation.

0  Input or Output 

Processing Element

Figure 2.3 - Simple & Two Layer^ Perceptron.

The models proposed by Rosenblatt use binary threshold processing elements. 

Subsequent developments yielded changes to allow continuous valued outputs and non-

linear transformations of the signal. To facilitate the analysis of feedforward networks 

it is instructive to consider them as containing a generic processing element of the form 

shown in Figure 2.4.

Figure 2.4 - Processing Element and example transfer functions

3Only layers containing processing elements are counted as layers. Many texts in the literature include 
non-processing input and output layers but the convention adopted here is becoming more widespread 
(Hertz et al, 1991; p.90).
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The key stages in processing are; (i) inputs are scaled by the weights and summed; (ii) 

the scaled and summed value is then passed via some form of transfer function to the 

output. The example transfer functions shown are a threshold/step function, non-linear 

sigmoidal function, non-linear gaussian function and a linear function.

Sigmoid or logistic transfer function : / (x) =
\ + e

1
-(*+0,)/*„ (2. 1)

The sigmoid function gives a smooth and differentiable response {-l<=f(x)<= +1) for 

the full input range oo<x< oo. The property of continuous valued response over the full 

input range has led to wide spread use of the sigmoid transfer function in applications. 

Gaussian activation function (an example of radial basis):

exp[(^-jUj)2 /2a]\
gj(£) =

Z*exp[(£-^)2/2a2*]
(2 .2)

In this example taken from Hertz et al.(1991; p.248) £is the input vector and each unit j 

gives a maximum response to input vectors close to py with size proportional to ay. By 

giving a maximum response at a given point in the input range, guassians give the 

processing element a localised response which can be a useful characteristic in certain 

applications.

Definition
A feedforward network contains one or more layers of processing elements that are 

interconnected via forward connections only (no feedback or intra-layer connections). 

This definition applies to the operating mode of the network rather than training where 

popular algorithms such as backpropagation feedback error values through the network.

Operating principles
The simple and multi-layer perceptron (MLP) shown in Figure 2.3 are excellent 

vehicles for illustrating the general operating principles of feedforward models. 

Feedforward models have two modes of operation: I)

I) The feedforward mode, where input signals are fed forward through the network to 

the output. The final output signal will be a function of the input signals which have
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been scaled (weights), summed and transformed (transfer functions) in many 

combinations. The complexity of the mapping of the output(s) to the inputs increases 

with the number of processing elements and number of layers.

ii) The learning mode, where the weights of the network are adjusted in some fashion 

so that the output of the network provides the desired range of output values. The 

weights are usually adjusted by what is termed a learning algorithm.

An ANN model with a feedforward architecture can be defined in the following terms. 

The ANN model will have a fixed^ topology with inputs and outputs connected by 

processing elements with weighted interconnections. The topology of an ANN is the 

arrangement of processing elements and the connections between them. Each 

processing element will have a defined transfer function. The only ANN parameters 

that are free to change are the weights. They are adjusted by a suitable learning 

algorithm that adjusts the weights to minimise a defined error function.

The number of terms italicised in the above summary is indicative of the number of 

parameters that a feedforward ANN model solution can contain. Although, with most 

learning algorithms, the only free parameters in the learning mode are network 

weights, the fixed topology requires the experimenter to determine the number of 

processing elements, layers, type of transfer functions, error function and learning 

algorithm. This somewhat bewildering array of properties leads conveniently into a 

discussion of the capabilities of feedforward networks.

Computational capability of feedforward networks
As with other techniques from machine learning to statistics, a knowledge of the 

limitations and capabilities is essential for appropriate use. It is not surprising to find 

that the aims of some of the research and development of feedforward networks can be 

categorised into two investigative directions:

i) Investigation of what feedforward ANNs can theoretically compute ?

26



ii) Given the theoretical computational ability of a given ANN to compute a problem, 

investigation of the topology, network properties and learning algorithm needed to 

reliably learn a solution for that problem.

Rosenblatt’s (1958) ‘perceptron’ introduced the first well defined computational ANN 

model. His analysis of its computational and learning capabilities was ‘sketchy’ 

(Anderson & Rosenfeld, 1988:91). It took another decade before a rigorous 

investigation documented the computational limits of these devices. Indeed it was 

Minsky and Papert’s (1969) text 'Perceptrons' drawing attention to the theoretical 

limitations of the simple perceptron and the now infamous ‘eXclusive-OR problem’

(the simplest case of the more general parity problem) that caused hopes (and funding) 

to be dashed. It was realised at the time that the multi-layer perceptron was capable of 

computing complex functions but a proven learning algorithm was not available. This 

led to great disappointment and minimal research activity for nearly 20 years.

The simple perceptron, having a threshold output and binary inputs, is a very basic 

model which facilitates analysis. The simple perceptron can separate input space with a 

hyper plane and can therefore only solve problems that are linearly separable. It can 

compute many logic functions quite successfully as Figure 2.5 demonstrates. The 

diagram shows the 16 (24) binary logic combinations possible for a 2 input, 1 output 

perceptron. Two of the logic functions are, however, not linearly separable; the X- 

OR function and its complement (both denoted by ‘?’ in Figure 2.5). The multi-layer 

perceptron can, however, compute this function since its division of weight space does 

not have to be linear. A solution to the X-OR problem is shown for a MLP with weight 

values set ‘by hand’ (Figure 2.6).

From the simple threshold function found in the perceptron, a range of non-linear, 

continuous transfer functions have been investigated. Several learning algorithms for 

networks of these types have also been proposed.

4This is not strictly the case. There are constructive ANN methods such as cascade correlation and the 
tiling algorithm which dynamically create a network topology in the learning mode. The result of the 
learning mode will, however, yield a fixed network topology.
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Figure 2.5 - Weight space separation for (arbitrary) solutions to perceptron logic 

functions

Since the developments of the mid-1980s there have been further extensions of the 

theoretical knowledge relating to the computational capabilities of networks (some 

drawn from existing theorems). A popular theorem from Kolmogorov (1957) proved 

that any continuous function g from [0,1 ]n— can be represented exactly by a three- 

layer network with inputs n connected to each of 2n+\ elements in the hidden layer. 

Unfortunately due to the unusual form of the summation and non-linear functions it 

would appear to be inapplicable to the current feedforward networks. Indeed Girosi & 

Poggio's (1989) paper draws attention to this forcefully. An applicable proof is that of 

Cybenko (1989) who uses the sigmoidal function to obtain results on the approximation
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of continuous multivariate functions. It was found that any continuous function can be 

approximated with a network containing one layer of processing elements. Cybenko 

(1988) also gives a proof that a set of functions that can be approximated with at most 

two layers of processing elements. Hecht-Nielsen (1989) also defined that for any 

square integrable function there is a two layer network that approximates it to within 

the mean square error. The activation function is not general, but selected for a given 

problem.

The proofs discussed do not specify the minimum size of a network (they use 

approximation error tending to zero as the number of hidden units tends to infinity). 

This means that theoretically we know that all continuous functions can be represented 

by a two layer network but the size of the network and the ability of the available 

learning algorithms to find a solution set of weights remains unknown. Indeed it may 

be possible to use fewer nodes in a solution by using more layers, but this remains 

indeterminate due to a lack of theory. It is interesting to note that the constructive 

methods used by Frean(1990), Fahlmann & Lebiere (1990) and Refenes (1992) are a 

practical approach attempting to overcome the selection of an appropriate network size 

for a given problem. Their algorithms construct the topology dynamically during 

learning, starting with a minimal network architecture and appending nodes iteratively 

to minimise the output error until a limit is achieved. The opposite to this approach is 

pruning (Sietsma and Dow, 1988) where processing elements are removed if they are 

judged to be ineffectual. Pruning has a drawback in that the network topology has to be 

defined before learning and is then pruned according to given criteria. Learning speed 

is obviously reduced if an extremely large network is specified.

The trade off between accuracy and number of network nodes is strongly related to the 

issues of generalization and overfitting. The concepts of generalization and overfitting 

are well known in statistics (Ripley, 1993; p.42) and are discussed in the ANN context 

by Hertz et al.(l991; p. 147-155). Generalization is a desirable feature in most ANN 

applications where there is noise in the data set; a trained network that can produce an 

appropriate output for a previously unseen (but similar) input is said to be able to 

generalise. If a network has a capability to learn all of its input-output associations
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exactly, it may well show a poor ability to generalise when presented with previously 

unseen input patterns. This is analogous to overfitting a curve from a noisy data set by 

using to high a degree polynomial fit.

The theory related to generalization and overfitting is limited. A theoretical framework 

described by Hertz et al.(1991; based on work by Schwartz et al., 1990) provides some 

interesting results. The average generalisation ability of a network is derived by 

projecting all possible ANN solutions to a given input-output mapping function into 

weight space. The weight space can be partitioned into volumes of weight values that 

yield solutions (within a defined error value) to different input-output problems. The 

concept of generalisation is that as the number of training samples increases, the 

volume of possible solutions will reduce. This allows an analysis of generalisation in 

terms of the probability of finding the correct volume of solutions in weight space. The 

framework is however, impractical for all but trivial problems as it requires the 

calculation of volumes mathematically. There is also an assumption made in the 

framework that as more training cases are included the volume of possible network 

weight solutions decreases. This assumption may not be valid with real data which is 

invariably noisy (which increases the variance). The issue of variance is discussed by 

Geman et al.(1992) in some depth.

Capabilities of feedforward learning algorithms
Rumelhart et al.(1986) led the resurgence of interest in feedforward ANNs with the 

backpropagation algorithm. It has been widely acknowledged that other researchers 

discovered this algorithm independently at various times (Bryson and Ho (1969), 

Werbos (1974) and Parker (1985)) but credit can be given to Rumelhart et al. for 

popularising this approach. Backpropagation, through iterative weight modification 

can adapt the weights of the multi-layer perceptron to yield a solution to the X-OR 

problem. It is important to note, however, that the backpropagation algorithm is not a 

general algorithm that can be applied to all learning tasks. Much of the existing 

research is aimed at discovering limitations to the algorithm and extensions that can 

overcome such limitations.
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As an illustration of the non-trivial problem of learning in feedforward networks it is 

instructive to consider the crude search technique shown below.

Simple Perceptron Two Layer Perceptron

1 Processing Element

2 Connection Weights

3 Processing Elements 
6 Connection Weights

Six Dimensional Weight Space

Figure 2.6 - Weight Space in Simple and Two Layer Perceptron.

Figure 2.6 demonstrates the increase in weight space dimensionality when moving from 

a simple two input perceptron to a two layer two input multi-layer perceptron (MLP). 

An output error function and test data set are defined for the network and the optimum 

solution set of weights is deemed to be the set yielding the lowest error for the test set. 

The search of weight space for a combination of weights yielding the minimum error 

rapidly becomes computationally expensive as a network increases in size. This 

computational effort is illustrated below using a crude search technique.

The search explores the possible combination of weights in the bounded weight space - 

10<WX<+10 (where x ranges from 1 to the number of connection weights) using a step 

size of 0.1. To search and calculate the error for all values of an individual weight 

would therefore require 200 iterations ((10—10)/0.1 ). This very crude search uses only 

a small amount of the total weight space (-co<Wx<+co) and has a fixed step size. Table 

2.3 illustrates how computational effort to explore weight space is exponentially related 

to the number of weights in a network.
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Connection Weights Combinations Iterations required for a 
complete, bounded search

2 2002 40,000
3 200^ 8,000,000
4 2004 1,600,000,000
5 2005 320,000,000,000
6 200b 64,000,000,000,000
Table 2.3 - Exponential computational requirement to explore weight space for 

solutions

The efficiency of algorithms searching the weight space of networks for the 

combination of weights yielding minimum error is a critical limiting factor in the 

successful application of feedforward ANNs to problems. A range of algorithms, with 

numerous extensions and variations, exist. Early ANN models such as the perceptron 

(Rosenblatt, 1958) and the AD ALINE (Widrow & Hoff, 1960) were accompanied by 

relatively simple learning algorithms compared to modem examples. The simple 

learning rule used for the perceptron and the variation of, due to Widrow and Hoff 

(1960), are guaranteed to learn for all cases that the perceptron is capable of computing 

(Block, 1962). The limitations of the architecture pointed out by Minsky and Papert 

(1969) forced the researchers to seek a similar general purpose learning rule for the 

more complex and computationally more versatile architectures containing hidden 

units.

The threshold transfer function used in the perceptron is a discontinuous function that 

cannot be differentiated (zero at all places except an infinite value at the threshold 

point). If we now consider network processing elements with differentiable transfer 

functions, the possibility of using more sophisticated learning algorithms is opened up. 

The linear transfer function is differentiable but a multi-layer feedforward network 

using such functions is exactly equivalent in computational capability to a one layer 

network (Hertz et a l., 1991:108). Rumelhart et al. (1986:318-362) considered the use 

of semi-linear functions of the sigmoid type that introduce non-linearities yet are 

continuous and differentiable. The use of non-linear, differentiable transfer functions 

in feedforward networks has been the basis of the backpropagation and other
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sophisticated learning algorithms developed to overcome the limitations of the 

perceptron.

Investigation of the advances made in learning algorithms for the more complex 

architectures is necessarily preceded by a definition of the network error (or cost) 

function, E[w], That is, the metric by which we judge how well a network is 

producing the correct output for given inputs. As the measure is of output error, the 

objective of any learning algorithm is to determine the set of weights yielding the 

minimum value of the function for a set of input/output examples (the training set).

The error function for all possible network weights is often described in the literature as 

the error surface, having a dimension of n+1, where n is the number of weights in the 

network.

An obvious, and widely chosen error function, is the square of the difference between 

the actual output and desired output. This returns a positive error value tending towards 

zero as the weights yield a more accurate solution. Using the notation of Rumelhart et 

al. (1986:323) the error function for a network output with input/output pattern p  can be 

defined as:

where there tpj is the target output value of the /th unit and Opj the output. The total 

error E=LEp. The gradient descent method can be employed to minimise the value of 

E[w] by changing the values of the weights in the network. We therefore need to 

rewrite error formula (2.3) in a functional form using weight values and by implication, 

including the transfer functions of processing elements. First we define the output of 

element j  as :

where the output of a processing element is defined by the differentiable and non-

decreasing function:

EP=E£jtp r 0Pi)2
j

(2.3)

(2.4)

°pj =f j  (netPj ) (2.5)
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The error function from (2.3) can be differentiated with respect the weights wjj by using 

the chain rule as follows:

Æ p Æp âietpj
â w ji d ie t  pj dw jj

(2 .6)

Following the computation of derivatives and using substitution, a formulation of the 

error for individual processing elements can be arrived at with (2.7) being the error for 

an output unit and (2.8) for hidden units. These modify the weights after being scaled 

by a learning rate value, r\. The general form being (2.9).

S Pi=(tp r ° n j ) f i ( netrj)

5P)=f'Metpf)Yj5p̂ *>
k

ApWji=ïiôpjOpi

(2.7)

(2 .8)

(2.9)

Equation (2.8) is of interest since it describes the error fed to a processing element that 

is not directly connected to the output of the network (e.g. hidden). The error is a 

summation of the error values fed to the nodes in the layer closer to the output scaled 

by the connection weights to that layer. A more mathematically rigorous derivation of 

the generalised delta rule has been made by Hecht-Nielsen (1989).

A momentum term is normally used in addition to the basic equation (2.9) to reduce 

possible oscillations during training when using high learning rates. This is shown 

formally in equation (2.10) where the momentum term, a, scales the previous weight 

change.

A p wji {n+\)=rjSpj opi +aAwji («) (2.10)

The setting of the learning and momentum parameters (p,a) is open to experimentation 

but a heuristic given by Rumelhart et al. (1986:328) is r|<0.25. The generalised delta 

rule is a gradient descent technique and can be prone to local minima as was noted by 

Rumelhart et al. (1986:331). Local minima are a critical issue in the backpropagation 

algorithm as they can cause network learning to stop with a less than optimal error 

value.
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Other algorithms have been proposed to overcome some of the difficulties experienced 

with the gradient descent approach (such as long descent time and local minima). A 

noise term can be added to the delta rule which is analogous to the annealing of solids 

in physics terms. The motivation for the approach is that by adding random noise, a 

descent that has become stuck in a local minima may be ‘nudged out’ by the noise. 

There are obvious problems of how large the noise should be and also if it should be a 

constant value. An entirely different approach is that of using Genetic Algorithm (GA) 

techniques to search the weight space for the minimum error value. The GA techniques 

are a method for searching the whole of weight space but are computationally 

expensive. The key advantage of Genetic Algorithms is that they should not suffer 

from local minima problems.

2.3.3.2 The Hopfield Model
In the respected collection of seminal papers edited by Anderson and Rosenfeld (1988) 

they comment on the impact of the Hopfield (1982) paper;

‘As far as public visibility goes, the modern era in neural networks dates from the 

publication o f this paper.... John Hopfield is a distinguished physicist. When he talks 

people listen. Neural Networks became instantly legitimate, whereas before, most 

developments in networks had been the province o f somewhat suspect psychologists 

and neurobiologists, or by those removed from the hot centres o f scientific activity. ’

Anderson and Rosenfeld (1988:457) 

The model was conceived by the physicist, inspired by neuroanatomy. The purpose of 

the model was to explore the emergent properties of a system of simple interacting 

neurons. The Hopfield network is a dynamic network in the sense that during its 

operating phase it oscillates through a series of states until it becomes stable. The 

network is single layered and fully interconnected (see Figure 2.7). It can operate in 

continuous or discrete time, allowing implementation in hardware or software. The 

update of processing elements is asynchronous and takes place randomly in time with 

each element having the same update attempt rate.
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Figure 2.7 - A small Hopfield network with four processing elements

The processing elements are joined by connections with strength T\j indicating a 

connection from element j  to i. // is the input to a processing element from external (to 

the network) inputs. For each processing element i there is a fixed threshold U\. The 

processing element updates its output according to the rule:

Vi =1 if Y/ijVj+Ii>Ui and (2.11)
j* i

Vi=0 <u, (2.12)
j* i

Hopfield also defined an energy term

<2-13)
j* i

which results in any algorithm altering the output of the network nodes, AVj (such as 

the stochastic update of nodes), decreasing the overall energy, E.

A£ - - - A V ^ V j  (2.14)
j* i

The equations above relate to the threshold network first proposed by Hopfield (1982). 

He extended this to the continuous valued output network not long after this (Hopfield, 

1984) which he considered to be more biologically plausible. The so called ‘graded 

response’ elements of this second type of network use a sigmoid transfer function:
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f \
where 0<F/<1 and f(x) is a sigmoid type function. (2.15)Vi= f

\j*i

A very instructive state space schematic found in Hertz et al.(1991; p. 13) is abridged 

below for a network with five stored patterns which form attractors (labelled 1-5). In 

operation, with the input values ‘clamped’, the network state will move in state space, 

attracted to one of the five stable states and eventually settle in one. The final stable 

state can then be taken as the output.

Figure 2.8 - Schematic of Hopfield Network State Space (Attractors labelled 1-5)

An important proof given the dynamic nature of the Hopfield model is that of stability. 

With the potentially large range of states and inputs in a Hopfield model it is necessary 

to ensure that a stable state will occur for a range of possible inputs. The proof of 

stability is derived for the network where the processing element connections are 

symmetric and the energy term is based on a summation of output values scaled by 

weights. The energy function monotonically decreases with time as modification of 

the weights takes place during learning. The system is isomorphic with the Ising model 

(spin glass) in physics. This similarity enables the weight of theory associated with the 

Ising model to be applied.
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The learning algorithm for the Hopfield network is relatively simple in concept and 

consists of a Hebb (1949) type rule whereby the weights are adjusted for the patterns to 

be stored according to

ATUr, (0 ^ (0 ] (2.16)
J L J J average

The maximum number of patterns, pmax> that can be stored in a Hopfield network is 

related to the number of elements in the network N, by p max=0.138N. A detailed 

exposition of this result can be found in Hertz et al.(1991; p.17-20).

The Hopfield network is not as widespread in application as the feedforward network.

A probable reason for this is its mathematical complexity and demand for 

computational power. Hopfield specifically addressed methods of implementing his 

network in hardware (Hopfield, 1982) and this theme was rapidly taken up by engineers 

leading to the development of custom Integrated Circuits (ICs). A primary application 

of such networks is in image recognition and, by using an autoassociative approach, 

image reconstruction.

In summary, the Hopfield network benefits from the wealth of statistical mechanics 

theory that has been applied to it. In contrast to many other ANN models there are 

mature theorems detailing the capacity and stability of Hopfield models.

2.3.3.3 Recurrent Networks
Recurrent networks refers here to a class of networks with connections permitted in 

both directions between processing elements and even self connections (to a processing 

element). They are not necessarily symmetric and hence the special (Ising model) 

proof of stability used for the Hopfield network cannot be applied in all cases. Two 

important models are discussed in this section; the Boltzmann machine which can be 

treated as an extension of the Hopfield network and recurrent backpropagation which is 

an extension to the popular backpropagation algorithm.

Boltzmann machines
The term ‘Boltzmann’ is applied to a class of networks capable of using the learning 

rule defined by Ackley et al.(l 985). The probability of the system states is defined by a
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Boltzmann distribution (from statistical mechanics), hence the name. One of the 

criteria for such a network is that it must have symmetric connections between 

processing elements. It is therefore similar to the Hopfield network but hidden units are 

permitted, as shown schematically in Figure 2.9.

Figure 2.9 - An arbitrarily connected Boltzmann model

The network has an associated energy function which consists of a quadratic expression 

based on state values, weights and a threshold term:

E=-'ZaWlJSlSJ+Zj0tSi
i<j i

(2.17)

where w is the connection strength in the direction indicated. ,v is 1 if the processing 

element is in the on state and 0 is a threshold. It is by the minimization of this global 

energy function (with input values clamped) that the network finds a stable, lower 

energy state. The output values of the processing elements in the stable state are the 

response to the initial input.

The model performs in a very similar way to the Hopfield model but with the inclusion 

of a probabilistic term to simulate annealing. Annealing is an analogy drawn from 

physical systems whereby a substance has its temperature raised (the error function is 

regarded as the temperature in these models) and the subsequent slow cooling should 

result in a minimum energy configuration (overcoming local minima). In operation the 

temperature value is reduced gradually until it becomes 0 and the network has the same
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dynamics as a Hopfield type network. The Boltzmann network stochastic processing 

elements (PEs) are binary with output values o f+1 and -1 with a probability of

PE0Ut= +1 being — and (2.18)
1+e T

PE0Ut= -l being 1---- (2.19)
1+e 7

where h is the sum of the inputs to the processing element and T is the temperature.

A motivation for using the Boltzmann machine is that the simulated annealing process 

should yield an optimum solution for a given network with time. The problem is that 

this is computationally expensive on serial computers. Peterson and Anderson (1987) 

proposed a process of ‘mean field annealing’ which yields a speed increase of 10 - 30 

times. This is discussed in greater detail by Hertz et al.(1991; p. 171-172).

Recurrent Backpropagation
Extending the popular backpropagation learning algorithm to a broader range of 

network architectures (where feedback and self connections are permitted) led to the 

development of what is termed recurrent backpropagation. Pineda (1987) explained 

how backpropagation could be applied to recurrent network architectures provided that 

learning converged to a stable state.

The learning algorithm is relatively simple (matrix inversion is not required) since it 

can be shown that an error propagation network of the same topology as the network 

can be used to update the weights. Pineda (1989) further shows that the calculation is 

much more efficient than matrix inversion methods for N  fully connected units since 

calculation time is proportional to N^ rather than for matrix inversion.

The advantage of recurrent backpropagation is that it allows greater flexibility in 

creating the architecture of an ANNs (nodes can be arbitrarily connected). Almeida 

(1987) demonstrated improvements in performance compared to normal feedforward 

networks in a selection of cases.
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2.3.3.4 Learning Vector Quantization (LVQ)
Kohonen introduced Learning Vector Quantization in 1986 (Kohonen, 1986). More 

accessible accounts and extensions to the algorithm followed (Kohonen, 1988a, 1988b, 

1988c, 1990). The algorithm performs a classification of input data and has been 

applied most notably in the area of speech recognition (Kohonen, 1990). The basic 

algorithm, LVQ1, has variants and complementary algorithms named LVQ2, LVQ2.1, 

LVQ3 and OLVQ1 which have evolved to enhance the original algorithm or overcome 

instability problems in training. The three principle phases in the application of LVQ 

are:

a) Selection of ‘codebook’ vectors to represent each class

b) Training of ‘codebook’ vectors using the LVQ algorithms so that the decision 

boundaries separating the classes are optimal (also dependent on the number of 

codebook vectors per class).

c) Classification uses the 1-Nearest Neighbour algorithm to find the nearest class 

representative ‘codebook’ vector to the input vector awaiting classification.

The algorithms are fully documented in Kohonen et al.(1992). During training, the 

codebook vectors are moved in feature space according to the following set of 

optimised-learning-rate-LVQl rules (OLVQ1): 

mc represents a codebook vector of class c. 

ac is the learning rate of the codebook vector. 

x(t) is the training vector.

Rule 1: If x(t) is classified correctly move the codebook vector closer using

mc (t+\)=mc {t)+ac{t)[x{t)-mc (/)] (2.20)

Rule 2:If x(t) is classified incorrectly move the codebook vector away using

mc (t+\)=mc (t ) - a c (t)[x(t)-mc (/)] (2.21)

Rule 3: If i*c then do not modify the codebook vector

rrij (i+l)=w/ (/) (2.22)

The learning rate changes with time according to the following formula:

aA0=- ac(t~ 1) (2.23)
l+i(i)«6(i-l)

where s(t)=+l for correct classification and -1 for when the vector is misclassified.
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The training and classification phases are illustrated in a computer generated simulation 

(Figure 2.10) with the (synthetic) training data set shown for reference. The two feature 

training set contains three classes of vector denoted by data points labelled A, B and C 

with each class having 10 cases in each. Before training the class representative (or 

‘codebook’) vectors (labelled 1,2 and 3) are placed randomly in feature space. The 

OLVQ1 algorithm then adjusts the codebook vectors until a set number of training 

iterations is reached.

The classification phase requires selection of the nearest codebook vector (by the 

Euclidean metric) with the class it represents being the output decision. This example 

illustrates how the less complex decision surface formed by the class representative 

vectors is a reasonable generalisation of the decision surface formed by the original data 

points.
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Proof that the codebook vectors will converge to stable positions in feature space is 

important with the LVQ family of algorithms. The convergence of vectors trained by 

the basic LVQ1 algorithm is proved by Baras and LaVigna (1990). They note, 

however, that the algorithm can lead to divergence of the codebook vectors if, upon 

initialisation, they do not lie close to a locally asymptotic stable equilibrium. The 

initialisation of vectors is therefore important as convergence can only be guaranteed 

with vectors that lie close to the stable equilibrium points.

LVQ is included in the ‘Neural Network’ literature but it does not comply with the 

working definition of an ANN used in this thesis. It fails in that it is not a connectionist 

model having no set of processing units. The algorithm does appear to have great 

potential and is included in this review of notable algorithms due to its wide application 

in classification problems.

2.3.3.5 Unsupervised Networks
The discussion so far has centred on supervised learning networks. Another group of 

networks exists where the output of the network for a given set of inputs is not 

specified. The network is free to make its own representations. It is therefore not 

supervised in the response it makes to input data.

The problem domains presented in this thesis require known outputs for given inputs 

and are, therefore, supervised learning problems. Unsupervised learning is mentioned 

here, however, since it can be incorporated into a supervised learning model as a sub 

component or pre-processing of data.

A network that is permitted to generate outputs for various input patterns with no 

indication given to it as to the validity of those outputs would, at first sight, appear to 

be of little use. Indeed as Hertz et al.(l 991:198) emphasize, ‘unsupervised learning 

can only do anything useful when there is redundancy in the input data ’. This is more 

common in high dimensional problems (many inputs) where some unsupervised 

learning algorithms offer the possibility of reducing the redundancy by mapping the
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input space onto another representation (usually of a lower dimension). Given that they 

may aid in reducing redundancy and/or identifying features, to be of practical use they 

still need to be incorporated into a supervised learning architecture.

Since the networks make their own representations of the inputs, they are either used as 

an input pre-processing layer for a hybrid supervised network or as a separate pre-

processing of the data before presenting to a supervised network. The number of 

layers, connectivity and learning rules in unsupervised networks are varied.

Simple one layer feedforward networks having N  inputs and P outputs (P<N) with a 

modified Hebbian learning rule can be implemented to detect the P principle 

components of the inputs (Oja, 1989). Knowing the principle components of the data 

set allows a potentially successful reduction its dimension from N  to P . The reduced 

dimension data set is then presented to a P input supervised network. It is important to 

note that although the network is unsupervised, its learning rule in this case means that 

it will attempt to learn the principle components of the data set presented to it.

Feature detection is another important use of unsupervised networks. In this instance, 

it is also possible to use unsupervised learning networks to effect clustering or feature 

mapping.

Notable models of this type are; Adaptive Resonance Theory (ART), Self Organising 

Feature Maps (SOFM), Willshaw and von der Marlsberg’s Model and counter 

propagation.

Unsupervised models are not discussed in further detail as they are not to used in any 

experiments presented in thesis. The possible improvement of results by using 

unsupervised learning as part of a hybrid model or in pre-processing of data remains 

untested but is recognised as a potential enhancement to ANN experiments.

44



2.4 Summary
Artificial Neural Networks have been shown to be the result of interdisciplinary 

research, the vast majority of which has taken place in the past ten years. The models 

offer an alternative approach to classical AI methods in that they are objective, self-

learning data based systems rather than subjective and knowledge based. They also 

offer the theoretical capability of universal computation although the trade off is all too 

often the interpretability of the resulting model. There are strong links between ANN 

models and existing methods, particularly in statistics and mathematics.

It has been shown that the current range of Artificial Neural Networks have potentially 

powerful computational capabilities. Feedforward ANNs in particular have well 

documented capabilities. It has also been shown that the theoretical computational 

capabilities can be difficult to achieve in practice due to the non-trivial problems of 

learning the correct weights and difficulties in setting model learning parameters and 

training issues (local minima, overfitting/generalization, speed of training). There are 

therefore two key issues pertinent to current ANN models and their application to 

problems; their theoretical computational capabilities and their practical learning 

capabilities. The latter issue is nebulous and far from well defined for most models. 

Using the feedforward ANN as an example model, Figure 2.11 illustrates the number 

of parameters that have to be defined for a solution to any given problem. These 

parameters are both architectural and algorithmic (parameters are shown in darker 

shading boxes). Hybrid networks introduce yet more parameters and algorithms into a 

single ANN model.
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Object Hiererachy for a Feedforward ANN model

Figure 2.11 - Hierarchy of objects in a feedforward ANN model

An observation of algorithm and architecture development is that many of the 

parameters are becoming either better defined or set by algorithms automatically. A 

good example are the constructive learning algorithms such as cascade correlation.

This algorithm removes the need to specify the number of nodes in a hidden layer by 

automatically adding nodes until the desired accuracy is reached (if possible). This 

should make the algorithm more consistent in application and easier to apply (given 

that such an algorithm has the theoretical capability to reach an optimum solution).

Other ANN models such as Kohonen’s LVQ offer more transparent solutions with 

fewer parameters. The piecewise linear decision boundaries created by such models 

may yield solutions that are similar in accuracy to non-linear feedforward networks, 

but such comparative studies are difficult to find. The feedforward network remains the 

most broadly applicable type of model.

The knowledge of theoretical computational capabilities and learning capabilities will 

be applied to the problem domains of septicaemia and time series forecasting. The 

framework for analysis and experimentation in these domains is presented in chapter 3.
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CHAPTER 3 - ANALYTICAL AND EXPERIMENTAL METHOD

3.0 Introduction

The novel analytical and experimental method developed for the research is discussed 

in this chapter. The method is generic and was applied to both domains of interest; 

classification and forecasting. The need for such a method arose from the findings of 

the literature review in chapter 2. The review drew a broad picture of the information 

and empirical evidence available; there were numerous texts that could be of use for 

any given application domain or model. The literature was characterised by:

• Large number of texts from a variety of academic disciplines

• A growing number of ANN models

• A wide variety of application oriented texts with associated results

In chapter 2 the prominent ANN models were presented alongside some of their 

associated theoretical capabilities. To select an appropriate model for a specific 

application and develop it successfully requires further empirical information about the 

model’s performance. As was discussed in chapter 2, the theoretical results relating to 

ANNs give little indication of how well a model will perform in practice. The method 

presented in this chapter encompasses the whole application procedure and is structured 

to facilitate an objective, data based approach to model selection and performance 

evaluation.

The premise is that objective evaluation of the potential of ANNs requires measurement 

of performance using established metrics. Further to this, algorithms should be 

selected that are appropriate for a given task using objective metrics to aid the decision 

making wherever possible. It is therefore very important that the experimental process 

uses well defined metrics so that results can then be used to provide benchmarking that 

builds upon or facilitates comparison with that available in the literature.
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The method is structured around the following process:

• The data set and model are characterised and performance metrics defined.

• The most appropriate ANN models are selected for the given task. Appropriate 

established algorithms are selected for comparison. Selection of all algorithms 

should be data based and objective where data and knowledge base information 

allows.

• The algorithms are applied to the domain data and the experimental results recorded.

• The performance of the ANN and established algorithms are measured using defined 

metrics.

• The performance results are assessed and if satisfactory the model can be applied to 

the domain problem.

The process is discussed in detail in the following sections.

3.1 Proposed Experimental Method

Figure 3.1 shows a conceptual model of an ‘ideal’ ANN model selection process in 

which inputs are taken from an ANN theory database, the problem domain and 

information on established techniques used in the domain.

Figure 3.1 - Schematic of research activity and theory

The schema shows contributions from the varying research disciplines to the 

knowledge bases. The ANN knowledge base is structured to facilitate appropriate
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model selection for a given problem domain; forecasting or classification in this thesis. 

The established techniques (e.g. statistics, machine learning) knowledge base is also 

shown in the schema to illustrate how, together with knowledge of the problem 

domain, models are selected based on structured information.

Given that nearly all the published information on ANN’s does not fit into an ideal 

framework pictured in Figure 3.1, a practical framework had to be proposed.

Figure 3.2 - Generic method for classification and forecasting applications

Figure 3.2 illustrates the novel structured method for ANN application development 

using a graphical representation of the experiment process. The prerequisite 

information required for the method are data set characteristics, model characteristics 

and performance metrics. These information are derived from the problem domain and 

are used in conjunction with the knowledge base to select suitable models for 

experiment. Models are tested and their performance measured using the metrics 

specified before the experiments begin.

Performance metrics are selected in the first stage to ensure that all models 

subsequently selected can be assessed using the specified metrics (a model would not 

be selected if its performance could not be evaluated against the metric(s)). If, after 

testing, the most successful model is satisfactory it can be applied to the domain. If no 

model is successful the process can be re-iterated with the performance of the tested 

models adding to the knowledge base.
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In the period (‘91-’93) when experiments were conducted for this research no texts 

were discovered that followed a comparative framework generating a knowledge base 

like that proposed above.

Since then Michie et al.(1994) published the results of large scale experiments which 

had been conducted in the classification domain using various algorithms with a range 

of ‘real’ data sets (with measured characteristics). With these data they were able to 

construct a basic rule based system for predicting the best classifier algorithms for a 

new data set using only the data set characteristics in a similar way to that proposed 

here.

The Statlog library data sets and algorithm results have not grown since the end of the 

research programme in 1994. Of the few papers trying to extend the concepts of such 

benchmarking, Ripley (1995) presented a set of statistical measures for selecting ANN 

models. Prechelt (1996), however, carried out a quantitative survey of some 400 ANN 

journal articles and concluded that research practice still exhibited poor benchmarking 

of solutions.

A more recent (and growing) benchmark collection has been introduced by the DELVE 

development group Rasmussen et al (1996). The group maintains an archive of data 

sets (including separate sets for developing and subsequent testing of algorithms) and 

software for statistically analysing the performance of algorithms. Importantly there is 

also a procedure for collecting benchmarking results from new learning methods to 

create a growing database of performance results.

3.1.1 Model Selection Knowledge base - form and function

The quality and breadth of the knowledge base information will dictate to what extent 

an objective selection of potentially successful models can be made. Knowledge bases 

for the experiments had to be built from the heuristic and quantitative results that could 

be gleaned from the literature. Where possible simple rules would be constructed from 

information available in the literature.
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3.1.2 Data set characteristics - purpose and form

The distinction between ‘real’ and ‘synthetic’ data sets is important. Real data is 

defined to be that which is collected from monitored variables of a system whereas the 

term synthetic refers to simulated or computer generated data. The data sets used in 

this thesis are, therefore, real as the variables are from actual systems (medical and 

financial). Creating synthetic data sets enables the experimenter to test and define what 

characteristics data sets have (e.g. clustered, normally distributed, linear etc.). With a 

library of synthetic data sets each having differing characteristics it is possible to 

evaluate the performance of algorithms against these control data sets. By using the 

information gathered from the control experiments, a ‘real’ data set can be 

characterised and an algorithm selected which is known to perform well with data sets 

of similar character.

There will inevitably be complexity when attempting to characterise a real world data 

set. It would be surprising to see real world data readily exhibit, for example, a 

perfectly normal distribution. Typically, one would expect the data set to exhibit a 

degree of a given characteristic. The task is therefore to select characteristic measures 

that maximise the discrimination between data sets. The method can be viewed as a 

mapping process relating sets of data sets to sets of suitable algorithms. Two possible 

mapping schemes are illustrated in Figures 3.3 and 3.4.

Figure 3.3 - Simple characteristics-algorithms mapping
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In both examples there are seven data sets (dl ,.d7) which are characterised by five 

measures (Cl ..C5). The data sets are subsets of the set of all possible data sets. There 

are seven algorithms available (al..a7) in this example, each mapped to a data set by 

either one or several combinations of characteristics.

Figure 3.3 shows a simple mapping for each characteristic measure to the best 

algorithm for this measure. This may prove acceptable for a limited range of 

algorithms where the characteristic measures readily discriminate between data sets. A 

more sophisticated approach is illustrated in Figure 3.4 where all of the characteristic 

measures are used to provide a mapping. Figure 3.4 is a more likely scenario for real 

data where it is expected that data sets will exhibit varying degrees of most 

characteristics. This allows many more mappings for the same number of characteristic 

measures using an appropriate degree of complexity in combining the characteristic 

measures. Michie et al.(1994), for example, use a rules based approach for the 

combination of characteristics.

3.2 Example of method using synthetic data sets

To illustrate the use of the method, a simple example with models to fit time series 

data is described. Two synthetic, one dimensional data sets, dl (a line) and d2 (a 

sinusoid), are shown in Figure 3.5. Only one data set characteristic measure, Cl, is 

used in the example. Cl is a mean absolute deviation from the mean of the first 

derivative;
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(3.1)— X \

where x; are the differentials of the n+1 points in the data series with mean difference 

x . This result is easily interpreted since, for a straight line C1=0 and for any non-

linear series C1>0. The characteristic measure is therefore a simple discriminant 

between the two data series. The results for the time series shown below are C ldl=0 

and C ld2=0.057. In both series n=31.

Figure 3.5 Time series data; dl (line) and d2 (sinusoid)

In this example two algorithms are available; al being linear regression and a2 Box 

Jenkins. Model al is appropriate to linear data sets (capable of fitting a line without 

error) and a2 is widely used to model cyclical time series. A crude mapping rule can be 

constructed to relate the characteristic measure Cl to the algorithms al and a2. This is 

shown in Figure3.6.

The mapping rule is indeed crude since only an exact line will generate a characteristic 

measure of C 1=0. If a third data set, d3, is introduced (Figure 3.7 - a line with added
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noise) we can see that the characteristic measure is now greater than 0 (Cl=0.036), and 

the decision rule will select, in this case, an inappropriate algorithm (the Box Jenkins 

algorithm being suited to cyclical data).

Figure 3.7 Time series d3 - (line with noise)

In this instance there are two options; modify the decision rule or introduce a new 

characteristic measure that is a better discriminant. By modifying the rule to ‘I f  

C1<0.04 then select al else select a2 ’, the rule will function correctly for the control 

data sets.

3.3 Expected benefits and drawbacks of a structured method

There are some foreseeable problems as well as benefits to be gained by using a 

structured, objective analytical and experimental method. This section briefly 

discusses the issues which will be re-addressed in chapter 6 in light of the experimental 

results.

[1] Selection and maintenance of data set characteristic measures - The characteristic 

measures must be sufficiently discriminating between data sets to enable model 

selection for new data sets to be accurate. As new data sets and algorithms are added it 

may be necessary to add further measures and/or modify existing mapping rules.

[2] Number of data sets - As the number of discemibly different (by characteristic 

measures) data sets tested against all the models increases, the greater the applicability 

of the approach. If only a few data sets have been used, the amount of empirical 

evidence for selecting an appropriate algorithm may be insufficient to make a selection
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decision with any degree of confidence. For some models, theoretical results may be 

applicable and can be translated directly into mapping rules.

[3] Computational overhead - Some data set measures may prove to be more 

computationally expensive than many of the ANN algorithms. This would lead to a 

situation where it would take less time to run the experiments than to calculate the 

characteristic measures used to determine the most likely experiment to succeed. For 

example, the calculation of joint entropy values for variables that have a wide range of 

vales can be computationally expensive (see appendix C for formulae). Joint entropy 

values have in this instance been reserved for calculations with binary variables only.

[4] Experimental Data - Each algorithm will have to be evaluated against each data set 

for a given performance metric. As new data sets or algorithms are added to the 

database, the mapping rules must be re-evaluated.

The expected benefits of this approach are :

[1] Appropriate algorithm selection - New problem data sets can be characterised and 

the most appropriate algorithms selected for experimentation. This utilises previous 

(quantitative) experimental results with algorithms that are most likely to succeed being 

selected.

[2] Improved algorithm selection rules - As experimental data increases the model 

selection rules can be refined.

[3] Objective comparison of algorithms - New algorithms can be tested over the range 

of data sets to evaluate performance in comparison to existing algorithms.

[4] Redundancy or significant overlap between algorithms can be identified - In the 

review by Michie et al. (1994) one algorithm consistently performed poorly compared 

to similar methods over a variety of data sets.
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3.4 Summary

An analytical and experimental method has been presented that will support the 

research objective and test the hypotheses. The method is intended to avoid making 

subjective decisions wherever there is sufficient data to make an objective decision. 

Performance, data set and model characteristics are defined before a model is selected 

and are used to evaluate the experimental results. As the number of experiments and 

results sets increase it is expected that the utility of the algorithm selection process will 

increase.
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CHAPTER 4 - FORECASTING

Forecasting is like driving down a winding mountain road, blindfold, with 

someone looking out o f the rear window giving directions - Unattributed

4.0 Introduction
Forecasting events is a frequent human activity. Forecasting the behaviour of one or 

several variables is a common function carried out by everybody whether it be applied 

to a business problem, the weather, or judging the best time to beat the rush hour 

traffic. The ability to forecast is usually based on knowledge of the history of the 

variable(s) of interest and related factors.

If the history of a variable (time series) or the history of related factors is analysed we 

may find patterns, trends, cycles or other recognisable features. In the London rush 

hour traffic, for example, one would expect to see predictable peaks in the morning 

and evening when people arrive and depart from work. If such patterns are evident then 

it is possible to forecast with some confidence based on the history of the variable 

alone.

Some systems may not be so readily forecastable. Accurate prediction of weather 

behaviour requires radar, satellite and weather station information which are input to 

complex models requiring mainframe computing power. Despite the use of such 

sophisticated technology, prediction can still be dramatically erroneous as the violent 

storms that hit the south of England ‘without warning’ in October 1987 demonstrated.

A key factor in forecasting is that of unforeseen changes to the system of interest which 

seriously affect the forecastability of the variable. Rush hour traffic, for example, will 

be severely affected by a major traffic accident. In forecasting terms this is known as a 

shock factor. Such shock factors are often seen in financial markets and medicine.

Weigend and Gershenfeld (1993; p.2) describe three aspects of time series analysis; 

forecasting, modelling and characterisation. If a time series is modelled accurately then
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its behaviour can be described and predicted in the long term. Forecasting in contrast 

attempts to provide accurate descriptions of the short term behaviour. Characterisation 

of the time series yields properties such as degrees of freedom or randomness. An 

important distinction can be made:

“forecasting and modelling are not necessarily identical: finding governing 

equations with proper long-term properties may not be the most reliable 

way to determine parameters for good short-term forecasts and a model 

that is useful for short-term forecasts may have incorrect long-term 

properties

(Weigend and Gershenfeld, 1993)

The analysis carried out in this chapter is concerned with time series forecasting; 

specifically discrete time series of fixed time intervals. ANN models are an attractive 

paradigm for forecasting since they offer good function approximation properties (see 

chapter 2) which appear suitable for time series modelling.

The forecasting process is described below, followed by methods for characterising 

time series data sets. A critical review of forecasting methods and ANNs for 

forecasting then follows. Benchmarking studies are introduced to enable some 

performance comparisons of the various techniques. Finally the application domain 

and data set are outlined and experimental results given.

4.1 The forecasting process
The generic experimental and analytical method outlined in chapter 3 is applied here for 

the forecasting process. Before any models are selected for evaluation, the data set, 

performance metrics and potential algorithms are characterised or defined. The process 

is shown below in Figure 4.1 and can be compared to Figure 3.2; a simple application 

specific (forecasting) overlay of terms has been employed.
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Figure 4.1 - The forecasting process

To facilitate the discussion within this chapter it is useful to define an artificial time 

series data set and associated notation that can be used for exposition. Figure 4.2 shows 

a synthetic discrete time series with points in a chronological series xpjg  to xp A 

hypothetical prediction and the actual time series are shown as pt+1 to pt+5 and xp+1 

to X/+J respectively. This notation will be used throughout the remainder of this 

chapter.

time

Figure 4.2 - Hypothetical time series and prediction

4.1.1 Data set characteristics
An elementary technique for characterising a time series data set is by visual inspection. 

Trends and cycles, for example, are often easy to identify simply by looking at the 

series. Quantitative and visual methods for describing and inspecting data exist, and a 

summary of those of potential use is presented in table 4.1 below. The measures and 

investigative techniques described here are appropriate for discrete data sets. The 

measures may be appropriate for model selection, analysis or both and are indicated as
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such in table 4.1 by the following notation: [A] - Analysis, [S] - model Selection, [A/S] 

- both Analysis and model Selection.

Measure/T echnique Symbol Description
Standard Deviation 
[S]

a A measure of the spread of values around the 
mean of a time series.

Mean [S] X Average of time series values.

Stationarity [S] x and a 2 
over t

If the mean and variance of a time series do not 
change with time the underling process is said to 
be stationary.

Autocorrelation 
Function [A/S]

ACF({xtxt_
,})

A measure of how correlated a time series is with 
its past. For example it may be found that the 
autocorrelation value is high when t  is small but 
decays rapidly as t  increases.

Histogram [A/S ] Visual Tool Shows the distribution and frequency of data 
values.

Phase diagram [A/S 
]

Plot
(x,dx/dt) 
Visual Tool

A transformation of the time series into a phase 
space where recognisable features may emerge

Embedding diagram 
[A/S ]

Plot (xt, xt
x )

Visual Tool

A transformation of the time series into a lagged 
two dimensional plot.

Table 4.1 - Data set characteristic measures and visual tools

The measures and visual tools described above can be used as indicators of data set 

characteristics only when combined with other results (e.g. standard deviation and 

variance used together to investigate stationarity). There are no quantitative tools 

presented here that can be used unilaterally to characterise a data set and confidently 

select an appropriate prediction algorithm. An investigation using all available 

techniques gives some ‘feel’ for the underlying dynamics of a system and hence 

possibilities of selecting appropriate models for prediction. Some of the techniques are 

computationally intensive.

The visual tools described above offer insights into the time series by transforming the 

data into another state space. Phase diagrams and embedding diagrams are visual tools 

associated with the investigation of dynamical systems. They can be useful for 

detecting the existence of chaos in what, at first inspection, may appear to be a random 

series. The histogram is a simple yet useful visual tool for ascertaining the distribution
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of the time series variable. The autocorrelation function can be displayed graphically 

by plotting its value for a series of time lags.

The interpretation of a solitary visual tool is inadvisable but using several may give 

sufficient insight into a system to allow the selection of potentially successful models.

In addition, functions such as autocorrelation and embedding diagrams may indicate the 

number of tapped delay line inputs that will be potentially useful in a forecasting 

model. A detailed account of the measures and visual tools described above is given in 

Appendix A.

4.1.2 Forecasting performance metrics
Performance metrics can be very varied. One of the simplest metrics is to evaluate how 

accurately a model will predict a time series {x(} for n time intervals into the future 

from a point t in time. The accuracy of predictions can then be measured according to 

an error function operating on the set {xf,pt} where {piJ is the predicted series. A cost 

function may be added to the error term (e.g. to penalise low forecasts more than high 

or to emphasise the accurate forecasting of turning points). Common error metrics and 

associated methods are detailed below. The error measure for a prediction can be 

defined as:

V  ( x , - p , ) 2
E=—=1=---------where the notation is taken from Figure 4.2.

2 > >
(4.1)

The error measure, E, takes values 0 < E with optimal prediction as E—»0. E will be 

used as the standard error measurement.

A useful reference error measure for forecasting can be made if the series is assumed to 

have the random walk property. With such a series the best prediction that can be made 

is the last observation. The forecast provided by a model can be compared to this 

measure by using a ratio such as that defined below (Weigend and Gershenfeld, 1993; 

P-40):

Random Walk Ratio= X /a  _a )2 
5 > , - * m )2

(4.2)
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If the predictor under evaluation is more accurate than predicting no change (random 

walk), the ratio will yield a value less than 1.0. Values greater than this indicate that 

the predictor is worse than predicting no change. The measure is easily calculated and 

offers a simple way of gauging the prediction adequacy of a model under test.

A final, and for financial applications, very important measure is what will be termed 

here the ‘Direction Correct’ (DC) value. The value indicates the percentage of 

predictions that correctly gave the direction of movement (irrespective of magnitude). 

Formally the metric is defined as follows:
n

^ IIF(SIGN(p, -x ,  )=SIGN(x, - x M ),1,0)

Direction Correct = —--------------------------------------------------xlOO (4.3)
n

Optimum prediction is reached when DC = 100 and a prediction rate that is the same as 

chance would be DC=50.

4.1.3 Forecasting algorithm characteristics
For any given application domain there may be constraints on the type of solution that 

is acceptable. Such constraints can be the speed of operation of the forecasting method, 

the degree of explanation provided by an algorithm or implementation issues such as 

the memory requirements. Such qualitative constraints are grouped under the algorithm 

characteristics.

4.2 Forecasting methods - A critical review
Since forecasting is so widely applied (in domains such as business, finance, medicine 

etc.) there are numerous computational methods in existence. The techniques discussed 

here are restricted to the case of univariate forecasting and are split between what are 

termed here ‘established techniques’ and ‘ANN models’.

Time series problems frequently use a representation technique known in engineering 

terms as a ‘tapped delay line’ (Weigend et al., 1992; p.397). It is simply a way of 

sampling the time series at set points which can then be used by a model to predict a 

future value. Using the notation associated with Figure 4.2, a tapped delay line of five 

consecutive points from xj.j would be the set Xf.2...X(.j}. This technique is also
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known as ‘state space reconstruction’ in physics and, ‘embedding’ in the dynamical 

systems literature. It is also possible to ‘compress’ the previous values of the time 

series using averaging techniques or to differentiate the time series to remove trends. 

Some of these methods will be discussed in this section.

4.2.1 Established forecasting techniques
The techniques discussed here are split into linear and non-linear forms. The term 

linear refers to the linear combination of parameters in which there are no second or 

higher order terms within the models. The non-linear models can be regarded as 

pseudo linear or piece-wise linear. They yield non-linear solutions by combining 

multiple local linear models.

4.2.1.1 Linear time series models
The two main families of linear time series models are moving average (MA) and auto 

regressive (AR) models. In moving average models a sample of the previous N  points 

from a time series (a tapped delay line) are scaled linearly and combined to predict the 

next point in time. The model is therefore appropriate for trending a time series. Finite 

Impulse Response (FIR) filter is the term often attached to this model since an impulse 

in a time series is guaranteed to decay to zero after N  time steps. Tapped delay line 

approaches require that the time series is stationary (Weigend et al., 1992; p.398). 

Formally using the notation given in example 4.2 we have for a MA(N) model:

;=o

MA(N) models are widely used in currency markets. Pairs of MA(N) models (short 

and long lag) are used as buy and sell indicators. As the trend changes the shorter lag 

MA (with smaller N) will change direction more quickly, resulting in a crossing of the 

two functions which signals a buy/sell situation dependent on the direction of the 

movement.

N

(3)
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Auto Regressive models use the previous predictions of the model to predict the next 

point. Another additive term is included to allow the input of data. Again, using the 

notation associated with Figure 4.2 we obtain:
N

p,+i=YjaiP>-i+x' (4)
/=1

This model will not necessarily decay to a zero output after an impulse input (e.g. 

setting term xf= 1 for one iteration). The model is therefore often referred to as an 

infinite impulse response (HR) filter. This model has internal memory whereas the 

moving average model has external memory in the form of the N tapped delay line 

points.

Fitting a linear model to a given time series requires the appropriate evaluation of the 

model parameters (a/ coefficients in each of the models described above). Box and 

Jenkins (1976) describe methods for calculating the coefficients of MA and AR models. 

Implementations of the algorithms are widely available in statistical packages such as 

MINITAB.

4.2.1.2 Non-linear time series models
Non-linear time series models described in texts are frequently composed of numerous 

localised linear models, thereby giving a global non-linear behaviour. The text by 

Weigend and Gershenfeld (1993) presents the best1 modelling solutions to a range of 

time series problems and discusses the approaches available. The discussion of non-

linear models is restricted to only those using multiple localised linear models such as 

the threshold autoregressive model (TAR) suggested by Tong and Lim (1980).

The Multivariate Adaptive Regression Splines (MARS) model introduced by Friedman 

(1991), can be adapted for univariate time series modelling and has strong links to the 

Classification and Regression Tree (CART) technique used in classification problems. 

It reflects a representation of the forecasting problem as a classification problem. The 

univariate time series with a tapped delay line of n points and a predictor value of p  can *

‘The best models emerged from an open competition where competitors were given six data sets and the 
freedom to apply the forecasting approach of their choice.

64



be formulated as an n dimensional feature space in which values of p  can be categorised 

by thresholding. The CART system would yield discontinuities which may be 

unacceptable in forecasting and these issues are addressed by the MARS methodology 

which allows overlapping of regions. The ASTAR models use the MARS approach for 

a univariate series with a tapped delay line (Lewis and Stevens, 1991) and have in one 

study offered a performance comparable to an ANN approach (Weigend et al., 1992).

Non-linear systems theory and specifically ‘chaos’ (Gleick, 1987) have recently 

exerted much influence on forecasting. Currently the paradigm offers insights into non-

linear systems using tools such as phase diagrams, embedding diagrams and fractal 

dimension measures. Constructing non-linear, deterministic models of real world 

systems is , however, notoriously difficult and invariably impractical for systems where 

the degrees of freedom are large (e.g. greater than 3 can be regarded as a pragmatic 

limit in finance, Economist, 1993; p.17).

4.2.2 ANNs for forecasting
There are numerous papers documenting the application of ANN models to a wide 

variety of predictive tasks using time series data. White (1988) outlines a stock price 

predictor of time series which was found to be better than linear regression but no better 

than chance on everything but the training set. Friesleben (1992) describes stock 

market prediction (the German FAZ-Index) using variants of the backpropagation 

model with multivariate data.

The tapped delay line approach is widely used but it is not the only technique available 

for building a memory capability into a network. Two notable approaches are 

exponential trace memory and gamma memory described by Mozer (Weigend and 

Gershenfeld, 1993).

The most widely applied model is the feedforward network using a tapped delay line 

approach. It has been used by White (1988) to attempt to predict share prices and has 

been proposed in a variety of forecasting applications before and since(e.g. Kimoto et 

al., 1990; Freisleben, 1992). The recurrent neural network model has emerged in recent
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years as an alternative approach to embedding time series memory into a network. The 

recurrent form can be represented by a large feedforward model (Pineda, 1987). Mozer 

(Weigend and Gershenfeld, 1993:256) draws attention to research indicating that the 

standard recurrent architecture is inadequate for some relatively simple temporal 

processing and forecasting tasks.

A constructive learning approach has been proposed by Refenes (1991) which yields a 

feedforward network solution by starting with a minimal configuration and increasing 

the number of processing elements until a specified output accuracy is achieved.

4.3 Benchmarking studies
The literature is littered with papers describing the performance of old, modified and 

novel algorithms on various data sets. There are however few studies that utilise a 

structured comparative method advocated in chapter 3; contrasting the performance of 

forecasting methods across a range of data sets.

Weigend and Gershenfeld (1993) describe the results of a forecasting competition based 

around six time series data sets. In each of the six cases, the algorithm performing best 

of those submitted is described. A breakdown of solutions is offered, investigating 

prediction and characterisation of the data sets. The competition was open to all and 

was carried out blind (the continuation of the time series were released after the 

competition closed). All but one of the data sets were ‘real world’, taken from finance, 

medicine, physics, astronomy and music. The most successful technique for predicting 

the currency exchange data set was a neural network model, although its ‘success’ was 

modest.

4.4 The Forecasting problem
The forecasting problem used in this study is taken from the domain of financial 

markets; specifically the currency exchange markets. The foreign exchange market 

trades money in huge quantities (frequently referred to as ‘volume’). A central bank 

survey in 1989 estimated that the daily net turnover was $650 billion. A more recent
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estimate valued daily foreign exchange turnover (including derivatives) at about $900 

billion (Economist, 1992a) which at the time was a mere $50 billion short of the total 

reserves of all IMF members. The quantity traded daily is now so large that the central 

banks, even working in unison, do not have the reserves to maintain a currency value 

against prevailing market forces. This was dramatically illustrated during a recent 

exchange rate crisis when European banks attempted to maintain the British pound at a 

value against market forces. One (in)famous speculator (George Soros) is estimated to 

have made $1 billion from the attempt by central banks to prevent the slide of the 

pound.

4.4.1 Foreign Exchange Markets
A vast number of time series are generated from currency markets and many 

forecasting studies have been made. The markets and their participants, the 

motivations for forecasting and the data available are discussed in this section. There 

are three readily identifiable groups that buy and sell currencies; exporters/importers, 

foreign investors and speculators (Copeland, 1989; p.10).

4.4.1.1 Exporters, importers and foreign investors
Individuals or companies wishing to buy or sell goods in a foreign country will

invariably require foreign currency for the transaction. Similarly foreign investment 

also normally requires foreign currency. Currency for these transactions will normally 

be purchased from a bank. Some of the larger international companies have found it 

viable to operate their own foreign exchange dealing operation (e.g. British Petroleum, 

Allied Lyons). The time scale and quantity of currency conversions vary, with a range 

of currency exchange instruments existing to support business needs. It is possible, for 

example, to hedge exchange risk by purchasing options to buy a currency at a future 

date at an agreed price.

4.4.1.2 Speculators
Speculators are by far the largest group of traders in foreign currency and they attempt 

to make money from the process of buying and selling foreign currencies. Included in 

this definition of speculative trading is the capital movement by such entities as
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pension-funds. Estimates vary as to the speculative percentage of the total foreign 

exchange volume traded, but all estimates are consistently over 90% (Economist, 

1992a). The speculative aspect of trading and its financial reward often draws criticism 

but is widely considered a necessary feature to ensure that the markets are as ‘efficient’ 

and ‘fluid’ as possible. It is the speculative group of traders that is of interest in this 

thesis.

4.4.1.3 The market mechanisms and driving forces
The motivation for forecasting foreign exchange is enormous. For speculative traders 

successful prediction of currency movements will allow profitable ‘positions’ to be 

taken. A position is taken when a dealer buys or sells enough currency so that his net 

balance will be positive or negative, respectively, in a given currency. If a dealer 

starts in a position of holding no Yen, for example, buying ten million US dollars 

worth of Yen would be taking a ‘long’ position in Yen. Similarly selling ten million 

dollars worth of Yen would be termed a ‘short’ position. Dealers taking such positions 

are relying on their predictions of a future upward or downward currency movement 

(relative to another currency) to make a profit in the price difference. It is possible to 

consider exchanges between multiple currencies but this study is restricted to currency 

pairs.

The operating principles of the traders described above apply to the relatively simple 

‘spot’ currency market where the transaction is effectively completed at the time of the 

trade. More complex derivative financial instruments such as ‘options’ and ‘futures’ 

are available which allow the transaction time to be spread or delayed and therefore 

require more complex pricing strategies and analysis. There are numerous other 

exchanges that deal in a myriad of instruments but the underlying principle of all is that 

participants exchange objects for other objects in some ratio. The objects can be can 

be, for example, currency, coffee, gold or pork belly, and the ratio is usually called a 

price. The economic concepts determining pricing in these markets is ‘supply and 

demand’ (Begg et al., 1984; p.44). The variation in the supply of, and demand for, 

objects causes a change in the equilibrium ratio (price) for which they are exchanged. 

Another concept from economics, the efficient markets hypothesis (EMH) (Begg et al., 

1984;p.313) also has important implications for the prediction of prices in these
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markets. If the market is efficient, the hypothesis states that the price of objects will 

reflect all ‘currently available’ information. Only unforeseen information will yield a 

change in the price. If this theory holds, then the market price should follow a ‘random 

walk’; tomorrow’s price change cannot be predicted by today’s (or previous day’s) 

price. The basic hypothesis comes in further forms known as the ‘weak’, ‘semi-strong’ 

and ‘strong’ hypotheses, which attempt to categorise the degree to which information 

is available to participants in a market contrasting with the simplistic assumption of the 

basic hypothesis that information is open to all. Empirical evidence alluding to the 

nature of currency markets is conflicting (Economist, 1993;p.6). If a market is assumed 

to be efficient, the hypothesis can be used to provide a simple measure of accuracy of 

any forecast by using the random walk prediction as a base line measure (see 

performance metrics - 4.1.2).

One factor that all forms of the EMH ignore is the time taken for information 

dissemination to market participants. In a heavily traded spot currency pair such as the 

dollar-deutshemark, price updates can frequently be received at 8 times per second. A 

reasonable hypothesis is that some market participants will have fast and efficient 

mechanisms to receive information and act upon it more quickly than others.

Increasing speed of information processing and decision making therefore remains a 

way in which to ‘beat’ the market. The investment in computer networks, real time 

news feeds and analysis/charting software made by treasury dealing rooms is evidence 

to support this assertion.

Currently three routes exist that enable currency dealers to ‘spot’ exchange; direct 

transactions, electronic exchanges and broking services (Figure 4.3). Direct dealing is 

common between large merchant banks, where one dealer contacts a counterpart 

directly by telephone. The predominant electronic exchange system used in the London 

market is operated by Reuters (‘Dealing 2000/2’). Numerous broking houses also offer 

a currency exchange facility (along with additional services). It is difficult to estimate 

the quantity of direct interbank trading but it is believed to be larger than the other 

mechanisms. Of the other two mechanisms, at present larger volumes are traded via 

broking services but the quantities traded electronically are increasing. Brokers and
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electronic exchange providers earn money for each currency transaction they make 

whereas speculative dealers earn (or lose) money by taking many currency positions 

(over time) in a market with a moving exchange rate. A ‘flat’ market (little or no 

change in exchange rates) lacks money making opportunities for speculative traders 

whereas fluctuating market conditions bring opportunities for taking speculative 

positions.

The currency flow through the market is shown in Figure 4.3. The diagram shows the 

core market participants who are required to make the exchange of currency possible 

with the dealers who ‘drive’ the currency movements. A currency exchange between 

two dealers takes place, facilitated by the market. The market is the nebulous grouping 

of mechanisms that allow the transactions to take place and is constantly evolving, 

driven by technology and business needs. The pricing mechanism, which is of prime 

importance is discussed next.

Figure 4.3 - A Simple Currency Exchange Market Model

The mechanics for pricing currencies is also based on the mechanism for transactions, 

but is slightly more complicated. There are several data feeds that provide price 

information but only the transaction records between the trader/broker or 

trader/exchange provide a history of the actual price that currencies are exchanged at. 

There are, however, indicative values of currency price available which are those 

supplied by news providers such as Reuters or Telerate. The time series values
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obtained from these systems are in turn obtained from frequent sampling of dealers in 

the market. The indicative rates are a method by which the dealers can advertise their 

prices but the actual price at which a trade is completed will be arranged by telephone 

and known only to the participants. The indicative rates will, therefore, lag the market 

slightly. It is important to note that it is the time series of indicative rates that are 

recorded and are available for forecasting, not the actual transaction rates.

4.4.1.4 Potential for forecasting
The currency markets are often described as ‘efficient’. The economic theory of 

efficient markets states that in such markets the price will reflect all the information 

available. As was discussed earlier, however, the speed of information flow and 

volume of data in the currency spot markets means that the necessary prompt analysis 

of information is heavily reliant on the use of information technology. It therefore 

seems reasonable to attempt to forecast in the very short term where the information 

‘overload’ may yield unused information. As the time available to traders for analysis 

increases, it is more likely that market participants will spot patterns and trends. In the 

spot market, traders have very short investment horizons, conduct many trades, and 

hence have little time for complex or detailed analysis. A survey conducted by Taylor 

and Allen (1992) looked at the use of technical analysis and fundamental approaches to 

forecasting over varied time frames in the foreign exchange markets. They concluded 

that there was a skew in reliance on technical analysis tools for shorter investment 

horizons, adding that many respondents viewed them as ‘self-fulfilling’. This suggests 

that market participants view technical tools as potentially worthwhile in the short term 

and given the wide belief of self-fulfilment, potential may well exists for an adaptive 

ANN approach to identify patterns.

The success of technical or computer based trading tools remains an unanswered 

question. As Lequarre (Weigend and Gershenfeld, 1993; p.137) points out, 

successful algorithms in the financial environment are kept secret, making research 

frustrating especially for ‘the ones who come from academia Claims have been made 

about computer forecasting systems yielding impressive returns on capital (Economist
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1993 ;p. 19; Economist, 1992b ; Refenes, 1991) but without independent analysis and 

verification, that is how they remain - claims.

The data sets shown in Figure 4.4 are five daily closing prices for currencies quoted 

against the US dollar. The time series cover a four year period and illustrate the very 

different characteristics of currencies. The two European currencies exhibit roughly 

similar behaviour. The Italian Lira was within the European exchange rate mechanism 

(ERM) for some of this period and the Finnish markka was outside. This mechanism 

attempted to fix member country exchange rates to within a well defined bandwidth. 

The Japanese Yen exhibits very different characteristics. The three currencies 

discussed so far exhibit very small, incremental changes in exchange rate, whereas the 

less fluid Chinese and Argentinean rates show pronounced, larger movements.

The scale of currency movements and the long term behaviour of currency pairs are 

typically very different if the exchange rates are free floating. If the exchange rates are 

fixed or floating within limits then the currencies will be correlated to a higher degree.
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Figure 4.4 Five currency exchange rates against the US dollar between 6/90 and 
6/94 with 1307 data points in each series2.

2The price shown (y axis) is the quantity of the currency that can be purchased for one US dollar. Time 
(x axis) is not shown for clarity but has the same range (6/90—>6/94) and interval (1 day) for each series.
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4.5 ANN forecasting experiments
Two foreign exchange time series of different sampling frequencies were used for the 

forecasting experiments; the Lira daily closing price (1307 prices) and the Lira five- 

minute closing price series (2223 prices). Both time series are of the Lira - US dollar 

exchange rate.

Pursuing the analytical framework established in chapter 3 and using some of the 

analytical techniques described earlier in section 4.2, the information described in the 

following section was collected as a precursor to experimentation. In addition, three 

artificial time series were generated to help with the interpretation of the visual and 

quantitative analytic techniques used to characterise the data sets (appendices A and B 

contain function details and graphs of the data).

The discussion covers the daily and five minute time series in turn. For each series, an 

analysis of the characteristics is presented before consideration of the ANN algorithm 

and architecture selected for evaluation.

4.5.1 Daily time series: characteristics
Dynamics

The time series did not appear to have any discernible structure in the underlying 

dynamics (evidenced by investigation of phase and embedding plots) and appears to be 

non-linear as evidenced by the complex phase diagrams (Figures 4.5 and 4.6).

Figure 4.5 - Phase diagram of Italian Lira (x vs dv/dt)
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Figure 4.6 - Phase plot of Italian Lira (dx/dt vs. d^/df2)

Stationarity

The series is non-stationary (mean and variance vary with time) as can be seen from the 

time series plot (trends) and from the autocorrelation functions showing a linear 

decrease with time.

Distribution

The time series does not have a normal distribution, (evidenced by the histogram plot; 

Figure 4.7).

Italian Llra-US$ (x=Daily Close Price)

Figure 4.7 - Histogram of daily Lira closing prices.

Autocorrelation

The autocorrelation functions (ACFs) for the three artificial time and Lira series are 

shown in Figures 4.8 and 4.9. Calculations were made in the MINITAB statistical
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package with each ACF series covering 150 time lags. The Lira has a very similar ACF 

to the artificial generated ’line’ time series, indicating that there is a strong trend 

component in the data. If an ACF of the Lira’s first differential is taken, however, then 

a very different series is evident (Figure 4.9). This indicates that the price movement 

(the variable of interest) is very similar to the random time series. Using the differential 

‘uncovers’ the day to day dynamics, which in the case of the Lira, are dwarfed by the 

absolute price value. An absolute price value used as an input to an ANN would vary 

very little (0-5%) therefore providing minimal chance for the learning algorithm to 

associate changes in input with output. The differential value has a full value range (0- 

100%) thereby increasing the chances of learning through weight modification.

Figure 4.8 ACF functions for synthetic time series

__________ _ __________________ ________________ _____
Figure 4.9 ACF functions for Daily Lira and first differential
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The ANN and learning algorithm selected for forecasting the daily time series are the 

feedforward architecture and backpropagation rule. The problem is presented to the 

ANN as a tapped delay line with the difference between successive prices as inputs and 

a price difference as the forecast value. The interpolative properties of the feedforward 

network architecture would seem appropriate to the form of prediction required.

The (absolute) daily price time series and the first differential are both non-stationary in 

character. The series therefore offer little chance of successful forecasting using 

ARMA methods. ARMA requires that the time series to be modelled has a constant 

mean and deviation. To verify this conclusion, an attempt to predict was made using 

the Box-Jenkins ARMA model implemented in MINITAB but all models failed to fit, 

as expected.

To investigate the performance of the ANN model two error measures are taken. As 

the data set is difficult to characterise and appears to offer little hope for accurate 

forecasting, the random walk ratio is adopted as the primary measure of success. If 

models yield a performance error ratio lower than 1.0 it would indicate that the model 

under evaluation offers a prediction better than chance. A measure of the correct 

prediction of price movement (e.g. up, down or none) is also given. From a trading 

perspective this is probably the most significant measure of performance.

A computational model to predict daily prices is not constrained by the operational 

performance requirements needed for minute by minute prediction. It is likely, 

however, that there will be retraining of the model on a regular basis (perhaps daily). 

There is therefore an emphasis on training time being as short as possible. It would be 

useful for a model to provide an explanation of prediction or some form of reasoning, 

but this is not necessary since its utility will be measured by its accuracy alone. If the 

system were to be implemented it would be in an ‘advisory’ role leaving traders with 

the option to act upon its predictions.

4.5.2 Daily time series : experiments and results
The experimental data is drawn from two data series of 1307 closing prices for each 

currency (Lira and Yen). The Yen series was readily available and is included for
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comparison purposes only. Tapped delay lines are used to provide a six dimensional 

state space problem representation to the ANN for each currency. The selection of six 

values is somewhat arbitrary as no indication of the underlying dimension of the series 

could be ascertained from the embedding or phase diagrams (see Figures 4.5 & 4.6). 

Training is carried out with 1,200 data samples from the available 1307, leaving 100 or 

99 cases for testing, depending on the representation made to the ANN. In instances 

where price differences are used, the 6 input tapped delay line uses the 7 previous data 

points. In all experiments the random walk ratio is used to test that the performance of

the ANN forecasting model is better than chance.

Currency Configuration Format Training Testing Error Function
Lira Price,Price,n=6 6,1 N=1200 2 O o Rnd. Wlk. Ratio
Lira Diff,Price,n=6 7,1 N=1200 N=99 Rnd. Wlk. Ratio
Lira Diff,Diff,n=6 6,1 N=1200 N=99 Rnd. Wlk. Ratio
Yen Price,Price,n=6 6,1 N=1200 N=100 Rnd. Wlk. Ratio
Yen Diff,Price,n=6 7,1 N=1200 N=99 Rnd. Wlk. Ratio
Yen Diff,Diff,n=6 6,1 N=1200 N=99 Rnd. Wlk. Ratio
Table 4.2 Configurations for Lira and Yen (dlaily) experiments

Three different data presentations were attempted for each currency; (i) previous prices 

input and next price output (ii) previous price differences with last price as input with 

next price output and (iii) previous price differences input and next price difference as 

output.

All of the experiments (for both currencies) proved unsuccessful with the 

backpropagation learning algorithm using the NeuralWorks Professional II package 

running on a SUN Sparc 2 workstation. There were no indications of convergence 

(reduction in output error), despite training runs in excess of one million iterations and 

using numerous variations of the algorithm parameters and network topologies. 

Learning parameter settings were varied for different run lengths and momentum terms 

were included in an attempt to attain convergence. It was concluded that 

backpropagation could not be trained for these daily data sets.

4.5.3 Five-minute time series: characteristics
Dynamics

Due to the non-contiguous nature of the data sets, selected examples from the 26 

continuous time series are viewed using phase and embedding diagrams. The plots
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have no discernible structure evidencing no identifiable low order in the underlying 

dynamics. In the absence of any indication of dynamic order, the selection and number 

of tapped delay line points remains open to experiment.

Stationarity

As with the daily lira prices, the time series are non-stationary as can be seen from the 

trends in the time series and standard deviation plots (Figure 4.10). The lack of 

stationarity indicates that an ARMA model would be unsuccessful in predicting in this 

instance.

Distribution

The time series selected for example have exhibited reasonably normal distributions. 

The overall time series resulting from joining the contiguous data sets is, however, not 

normally distributed.

Autocorrelation

Autocorrelations were calculated for selected series and found to be similar to the 

random series (e.g. serially uncorrelated). This indicates that there is little evidence of 

periodicity in the data.
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4.5.4 Five-minute time series: experiments and results
The eventual database of cases for training and testing, following the processing

described in appendix B, contained 2223 records. All experiments adopted the train- 

and-test method of data sampling. The first two experiments used training and test 

samples that were contiguous. Experiments 3 through to 6 used interspersed training 

and test samples. Test data sets contained no cases that were used to train the networks. 

The experimental results are presented in tabular form in Table 4.3.

Feedforward ANNs with varying numbers of hidden layers were applied. The ‘model’ 

column in table 4.3 indicates how many inputs (6 in all cases), hidden nodes & layers 

(varied) and outputs (1 in all cases) were used in each experiment. The networks were 

all trained using the backpropagation learning algorithm encoded in the Neural Works 

Professional II software package and running on a SPARC 2 workstation.
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Exp. Random 
Walk Ratio

Direction 
Correct (%)

Model Training
Iterations

Training Set / 
Test Set

El 0.92 55.6 (±0.21) 6,10,6,1 121,307 1779/444
E2 0.91 57.0 (±0.21) 6,10,6,1 304,544 1779/444
E3 0.91 55.6 (±0.24) 6,10,1 100,907 1803 /420
E4 0.89 58.6 (±0.24) 6,10,1 102,245 1803 /420
E5 0.89 59.3 (±0.24) 6,10,1 140,592 1803 /420
E6 0.89 59.5 (±0.24) 6,10,1 1,029,285 1803 /420
Table 4.3 - Experimental results for 5 minute lira data.

Note: The Random Walk Ratio (equation 4.2) is calculated using the difference time 

series and not the actual price time series. This yields a more sensitive error measure 

compared to a calculation based on absolute price.

4.6 Discussion of results
The experimental method developed in chapter 3 is used as a template to summarise the 

experimental work presented in this chapter.

C h a r a c t e r i s t i c  M e a s u r e s

Cl=Number of Cases (examples)
C2=Mean
C3=Standard Deviation 
C4=Histogram Distribution 
C5=ACF Distribution 
C6=Phase Diagram Interpretation 
C7=Embedding Diagram Interpretation 
C8=Contiguous series

M o d e l  C h a r a c t e r i s t i c s  P e r f o r m a n c e  M e t r i c s
Ml=Forecasting Speed Pl=Direction Correct
M2=Training Time P2=Random Walk ratio
M3=Reasoning Capability

M o d e l s / A l g o r i t h m s

al=Linear Regression 
a2=ARMA
a3=Artificial Neural Network (ANN)

D a t a  S e t s

dl=DailyLira (dx/dt) 
d2=5-minute Lira (dx/dt) 
d3=Random 
d4=Line 
d5=Sine Wave

Figure 4.11 - Summary of experimental method : forecasting

The mapping rules and heuristics for algorithm selection were gained from relevant 

published proofs and texts documenting algorithm performance. The mapping rules are 

an important component to the experimental method. As is evident from the algorithm 

review presented in this chapter, no rules were evident that applied to the data set

81



characteristics. For the methodology to be of value, development of mapping rules is 

necessary. For the heuristic rules used to be of value, they will need to be validated by 

larger quantities of empirical evidence.

The time scale of prediction is a very important consideration in the modelling process. 

ARMA models appear to offer a longer term prediction capability than is required for 

the experiments discussed here. The parametric methods (al, a2) do not perform as 

well in this short term prediction study (1 time step ahead) as the ANN (a3) method.

The selection of an appropriate tapped delay line length for optimum model 

performance was difficult to judge. Models al, a2 and a3 all require a definition of 

such inputs for the problem representation adopted in this study. The number and 

spacing of delay line ‘taps’ was set heuristically. Since the currency time series (dl 

and d2) showed no underlying order in the phase and embedding plots and had ACF’s 

similar to a random series, characteristic measures Cl to C8 shed no light on the 

problem of selecting delay line length. An instructive characteristic measure indicating 

potentially successful configurations would be of great benefit to the modelling process. 

Refenes et al.(l 992) discusses the use of such windows but at the time of writing there 

are no clear guidelines or rules to select appropriate sizes.

The number of cases in the data sets (Daily, 1307; 5-minute, 2223) are sufficiently large 

for all the models considered in this evaluation. For a generally applicable method, 

however, rules would have to be developed for specifying minimum (and possibly 

maximum) data set sizes for each of the models under consideration. Such rules may 

well be dependent on other factors such as number of delay line taps, variance of the 

data etc.

The selection of data sets for training/testing may have a strong influence on the 

accuracy of model prediction. In the latter 5-minute data experiments (Table 4.3; E3 to 

E6) it was noted that the prediction performance improved as the sample and test data 

became interspersed. It would be instructive to use a cross validation technique to 

investigate the bias of forecasts due to different sampling sets.

82



This study is restricted to univariate time series forecasting. A logical extension to the 

method is to include other variables of interest; the multivariate case. For daily data it 

is likely that additional factors such as interest rates would assist in forecasting. The 

very short term 5 minute data is, however, characterised more by short term ‘market 

behaviour’ and is more suited to the univariate case.

The results for the ANN prediction of 5-minute data are encouraging when considered 

in terms of the metrics chosen. In particular the higher DC values obtained (59%) are 

better than chance. Caution is required, however, since a true evaluation of the 

forecasting capability in this particular case would require the application of a trading 

strategy which included the cost of transactions. The ultimate outcome would be the 

system’s ability to be consistently profitable over time. An appropriate cost function 

would have to be developed to simulate trading rules and discount the cost of 

transactions.

The analytical method has proved of value in the analysis of forecasting by defining the 

process as a series of identifiable components. Many issues have been raised and some 

have been discussed in this section. The potential for producing a focused (considering 

only univariate time series with tapped delay line sampling) forecasting method based 

on empirical analysis is the natural progression for this systematic approach. The 

framework supports the expansion of characteristic measures and new algorithms which 

are evaluated using a range of data sets to yield refined or extended algorithm selection 

rules. A natural habitat for an evolving system of inter linked measures, rules and 

models is computer software. To facilitate the research, numerous programs were 

developed, primarily to integrate the various characteristic measures. A frustrating 

observation is that, to perform many of the measures requires the use of various 

software packages. Application and research will benefit from more focused 

algorithms (e.g. for short term, univariate forecasting ) that integrate the stages involved 

applying rule based selection (or advice) for selecting algorithms.
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CHAPTER 5 - CLASSIFICATION

5.0 Introduction
Classification is a process carried out in many domains from finance to medicine. 

Whether it be a human physiological system or a currency market, attempts are made to 

classify based upon observations. An expert such as a doctor in medicine or market 

maker in financial markets is adept at making such classifications. They do this based 

on either rules, experience or a combination of both. The rules based approach is 

appropriate if the observed variables can be readily analysed to form a rules base. In 

reality few ‘real world’ systems are so readily deterministic and we therefore have a 

seemingly complex classification process. Further complexity is added to the situation 

by the often large number (increasingly so) of variables open to observation. It is 

within this context of data rich environments that this chapter explores the potential of 

data based approaches to classification. This is in contrast to the knowledge based 

approach.

There already exist a number of machine learning and statistical algorithms to tackle 

data based classification problems. Artificial Neural Networks have recently joined the 

ranks of such algorithms.

In this chapter the classification procedure ‘will be applied to a continuing sequence of 

cases, in which each new case must be assigned to one of a set of pre-defined classes 

on the basis of observed attributes or features'. (Michie et al., 1994; p.l). The term 

‘feature space’ is used to denote the ‘input’ or ‘sample’ space found in other texts. The 

dimension of feature space will be n with the feature vector A having components 

[xi,x2,...xj.

A generic outline of the classification process is presented first. This is followed by a 

critical review of the literature covering established techniques and Artificial Neural 

Networks (ANNs). Studies that have attempted to compare classifier performance are 

then reviewed before the data set is introduced.
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5.0.1 Hypothesis
Artificial Neural Network models are capable of solving data based classification 

problems with comparable performance (by defined metrics) to established statistical 

techniques.

5.1 The classification process
The analytical and experimental method described in chapter 3 is applied here. 

Appropriate performance metrics, data set characteristic measures and classifier 

models are discussed and defined in this section.

Figure 5.1 - The classification process

5.1.1 Data set characteristic measures
Perhaps the most important component of any classification task is the data set. It is 

proposed in the method presented here that by analysing the data before any attempts 

are made to classify can lead to a better solution. Performing characteristic measures 

has an added benefit in the classification domain; it can lead to data set reduction.

High dimensionality is a problem in classification (Hand, 1981) and it is beneficial to 

reduce the number of features if the resulting information loss is minimal. It is a 

measure of the information contained in feature variables and more specifically their 

discriminating ability between classes that is of particular value in the initial analysis of 

data sets.

The second purpose of the measures is to facilitate the selection of an appropriate 

algorithm for classification. The criteria for selecting measures here is more difficult to 

define. The table below describe the measures reviewed and their purpose (A-Analysis 

of data, S-Selection of algorithms).
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Measure Symbol Description

Sample Size - [S/A] n Total Sample size

Features - [S/A] f The total number of features in the feature vector

Binary Features - 
[S/A]

fb The number of binary features in the feature vector

Ordinal Features - 
[S/A]

fo Ranked Features in the feature vector

Classes - [S/A] c The number of classes

Entropy - [A] m b ) For binary features a measure of the information 
content

Joint Entropy - [A] H(fb, c) Joint information measure for binary features and 
classes

Av. J. Entropy - [S] H ( f b ’C) Average of joint entropy across all classes and 
binary features

Table 5.1 - Classification data set characteristic measures.

A detailed description of the measures in table 5.1, covering formulae, ranges and 

qualitative meaning of the measure values can be found in Appendix C.

5.1.2 Classifier performance metrics
To measure the performance of a classifier it is necessary to define the accuracy or error 

metric and how the data available can be sampled to compute such a metric. Potential 

metrics and data sampling are described in the following text.

5.1.2.1 Data Sampling
Three readily identifiable methods are available for the sampling of data to enable 

training and testing of classifiers; cross validation, train-and-test and bootstrapping.

The three techniques are discussed below and summarised in table 5.2.

Cross validation is a widely used technique where the data available is divided into n 

samples and each sample is tested against the classifier created (trained) with the 

remaining n-1 samples. At its extreme (rc=sample size) it becomes the leave-out-one 

method which is only practically possible with small data sets. The method is 

computationally intensive as each cycle requires retraining of the classifier. The 

method is therefore suited to classifier algorithms where training time is short.
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The train-and-test technique selects two random samples from the database of available 

cases. One sample is used to construct a classifier and the other is used to test its 

performance. This is suited only to large test sets where leaving out training samples 

will not yield too small a training set.

The Bootstrap procedure is more involved than the two techniques detailed above. In 

bootstrapping, the database of cases is replicated many times by random sampling 

with replication. The generated sample is used as a training set and cases not selected 

from the database are used as the test set.

Technique Data set size Advantages/Disadvantages

«-fold Cross validation Medium, Large Requires n training cycles (-) 

Reduces biasing in samples (+)

Train-and-test Large Only one training cycle (+) 

Requires large data sets (-) 

May yield biased samples (-)

Bootstrap Small Technique least likely to be biased (+) 

Computationally intensive (-)

Table 5.2 - Data sampling techniques

A more detailed and referenced discussion of these methods can be found in Michie et 

al. (1994, p.108).
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5.1.2.2 Accuracy / Error measures
To evaluate or compare the performance of classifiers it is necessary to define 

appropriate metrics to measure the accuracy or error rate in testing. Potential functions 

are discussed below.

One of the simplest measures of accuracy is what will be termed here the true positive 

(TP) function which can be calculated for each class and can be averaged to provide a 

measure of classification accuracy over all classes. The formula for this measure is:

^  Correctly Classifed ; 

y  Class x
y 100 where the summation is made over all cases. (5.1)

The measure described above indicates the number of correct classifications. It does 

not indicate, however, the cases that are incorrectly classified as Class x. A measure 

providing this information is known as the false positive (FP) function. In a two class 

problem (x,y) one measure can be simply calculated from the other (FPx-y=100-TPx). In 

problems with more than two categories they must be calculated explicitly. The false 

positive function is defined as:

FPx y

y  Class x incorrectly classified y  

y  Class x
y.100 (5.2)

These functions can be broken down for categories and displayed in matrix form. The 

matrix for a four class problem is shown in table 5.3. It is instructive to view the 

accuracy in this way as it helps identify classes which the classifier has difficulty in 

separating.

Class A B C D

A TPa f p ab FPac FPad

B FPba TPb FPbc FPbd

C FPCa FPcb TPC FPcd

D FPda FPdb f p dc TPd

Table 5.3 - A true and1 false positive matrix
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5.1.3 Classifier model characteristics
There are some characteristics of classifier solutions that are not entirely quantitative 

but need to be included in the selection process. These are discussed below.

The speed of solutions can often be a critical limiting factor. Some classification 

algorithms require much computation. The computational demand of algorithms can be 

subdivided into two types; training (or learning) demand and operational demand. 

Backpropagation ANN models, for example, frequently demand intensive computing 

power in the training phase but are relatively simple and therefore less demanding in 

operation. In a continuous operating environment such a on-line patient monitoring in 

medicine, or feedback control in engineering the operation time of a model will have a 

limit whereas training time is not critical.

The model may be required to attain a certain accuracy (average) in operation. This 

value can be used with the accuracy metrics (section 5.1.1) to establish a minimum 

performance level by which any proposed model can be judged to be adequate.

An analysable model or evidence o f ‘reasoning is in many situations a desirable if not 

necessary aspect of any solution. In medical diagnostic systems and safety critical 

control systems there are obvious legal implications for users of model. A significant 

drawback of ANN models is that they are frequently difficult to analyse.

Henery (in Michie et al., 1994; p.7) defines four considerations in the evaluation of 

classifier performance; accuracy, speed of classification, comprehensibility of 

classifier and the leaming/training time of the classifier. These issues can in turn, 

however, be subdivided; accuracy requires the use of some metric and there are many 

parameters involved from the selection of data for learning and testing to the error 

measure function. The scope of the comparisons possible in this thesis must be 

therefore limited to that which supports the hypothesis. Informative texts that expose 

more detail are referenced where appropriate.

5.2 Methods of classification
It is difficult due to the overlap of techniques to create useful subdivisions of the 

number of classification algorithms available. The groupings used here are nominal 

and may differ to other texts. The groups are :

• Statistical Methods
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• Rule Structured Classifiers (a branch of Machine Learning)

• Artificial Neural Network Models

This section discusses the prominent classification algorithms available. It is against 

such algorithms that the Artificial Neural Network models must stand for comparison. 

To facilitate the description and comparison of these techniques a simple (synthetic) 

classification problem is used. The diagram below shows the two category data 

distributed in its two dimensional feature space. The feature variables are continuous 

with upper and lower bounds.

Figure 5.2 - Synthetic 2-D data set

5.2.1 Statistical Methods

Linear, Quadratic and Logistic Discriminant Functions
The Linear Discriminant Function (LDF) developed by Fisher (1936) is cited by Hand

(1982) as the first method to be developed and most widely used in practice for 

discriminant analysis. The parametric technique results in a hyperplanar surface (a line 

in a 2 dimensional feature space) that separates the classes optimally according to an 

error metric (a function of estimated class means and covariance matrices). This 

method is effectively maximising the F-test value.
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Fisher attempts to maximise the ratio of the difference between the means to the 

standard deviations of the two classes (Iris species) with a linear combination function 

of the form:

n
f(X )= Y jr t  where X; are the coefficients of the n dimensional feature vector

7=1

components x j ,.xn. A limitation of this parametric approach is that the division of 

feature space will always be linear and with many problems this may prove to be 

unrealistic. A non-linear approach is to use the quadratic discriminant function which 

has a curved quadratic surface to partition feature space. Logistic regression separates 

the classes with a hyperplane (of the same type as the linear) but the error measure is of 

a different form. Fishers quadratic cost function is replaced with the maximisation of a 

conditional likelihood.

All three methods are analogous to regression analysis. Ripley (1992) gives a formal 

exposition of this link.

Bayes Rule (Non-Parametric)
A probabilistic approach can be taken using Bayesian methods. This requires that the 

Probability Density functions for the classes are known. For class probability density 

functions (pdf s)that can be defined by a continuous mathematical function a so called 

‘Bayes optimal ‘ classifier can predict the theoretical limit to optimal classification 

accuracies. This approach was used by Kohonen et al. (1988) for a benchmarking 

study of different classifiers. An advantage of Bayesian approaches is that a priori 

probabilities and cost functions can be included.

With ‘real world’ data sets it is often impractical to obtain mathematically precise 

functions for pdf s and some method of estimation is required. Techniques for such 

estimation are covered in the following section on Density Estimation.

The components included in a bayesian classifier are class likelihood functions, the a 

priori probability of the classes and the cost of misclassifying a class. For a two class 

problem Specht (1989) clearly shows the simplicity of the classification process 

provided that the above components are known.

Class A is selected if hA lA fA (X ) > \  4 Ib (^0

91



Class B is selected if ^ lA f  (X ) < ^ fB (X )

where h is the class prior probability, l is the cost of misclassification and / (Jf) is the 

class likelihood function. X is the feature vector of the case to be classified.

Using a simple line graph (Figure 5.2) it is easy to demonstrate the classification 

process in one dimensional feature space. The class probability density functions are 

both normally distributed with xA =6, 3% =14 and uA =<t b =3. The decision surface is 

where the two curves intersect (x=10).

Figure 5.3 Class likelihood functions for classes A and B

A shift in the decision surface (a point) can be seen when class probabilities of h^=0.2 

and /7£=0.8 are included, modifying the probability distributions (Figure 5.4). The cost 

functions for both classes are equal ( ) •  As can be seen the decision surface is now 

at approx. x=8.5.
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Figure 5.4 - Class A and B posteriori probability density functions

A Bayesian rules classifier is optimal, theoretically giving the lowest error rate. In 

practice it is usually impossible to obtain such a classifier without using synthetic data 

sets. The problem is that the probability density functions seen in Figure 5.2 require 

complete knowledge about the data distributions. With real world data sets, accurately 

obtaining these distributions in «-dimensional feature space for each class would be 

computationally impractical if not impossible. The alternative is therefore to estimate 

the density functions.

Multivariate Density Estimation
There are many algorithms that are associated with density estimation. An informative 

breakdown however, is to split the approaches into local density estimates and global 

density estimates. Roughly translated a local density estimator will use only points in 

feature space that are close to the new feature vector to be classified. Kernel and 

nearest neighbour methods are of this type. A global density estimator will use all the 

data points to classify the unknown vector. Hand (1982) presents an authoritative and 

well referenced account of kernel estimators. The earliest kernel methods traced by 

Hand; Fix and Hodges (1951), Rosenblatt (1956) and Parzen (1962) are recent due to 

‘their fundamental intractability compared to the parametric forms’. The ever rising 

computational power of modem computers has eroded this problem.
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Many analogous problems encountered in ANN experiments such as convergence and 

choice of activation function have been studied in detail by statisticians working on 

kernel estimation. Hand also covers the concepts of bias and variance that are used in 

the argument put forward by Geman et al. (1992) that small bias and variance are the 

key to good classifier solutions. They argue that this in turn is a function of the data set 

and for practical artificially intelligent systems the data sets do not contain enough 

examples to learn the complexity within them. This must be ‘hard wired’.

Multivariate Density Estimation allows construction of pdfs required for Bayesian 

classification. The kernel based approach allows construction of the overall pdf from 

multiple kernel functions in feature space. Parzen (1962) demonstrates a univariate 

approach to density estimation building up from kernel functions such as gaussians.

His work was further extended by Coucallous (1966) to the multivariate case and his 

extension is used by Specht (1989) in a ‘Probabilistic Neural Network’ which 

approximates the Bayes optimal decision boundaries.

Kernel estimators require the selection of a kernel and a smoothing parameter. It is 

claimed that the smoothing parameter is more important than the actual kernel (Michie 

et al., 1994; p.31) and this is discussed in more detail by Specht (1990). Hand (1982) 

provides a detailed account and discusses the choice of kernel with respect to 

continuous and categorical variables in the feature vector.

k-Nearest Neighbour
The ^-nearest neighbour (&-NN) algorithm is a simple yet often highly accurate 

classifier method (see performance comparisons in Michie et al. (1994), Ripley (1992)). 

Indeed the k-NN technique outperformed all statistical, machine learning and Artificial 

Neural Network techniques for satellite image classification in the comprehensive 

review described by Michie et al. (1994, p.143-45). The parameter k denotes the 

closest number of vectors from the data set that are used to classify the unknown vector 

(case) of interest. In the simplest case, where A=T, the class of the nearest vector to the 

unknown vector is the output of the classifier. The nearest neighbour decision rule has 

been examined in detail by Cover and Hart (1967). A review linking nearest neighbour 

techniques with other classifiers is given by Hand (1981).
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The decision regions for 1 and 3 Nearest Neighbour algorithms using the synthetic data 

set example is shown in Figure 5.4. The software simulation uses a 150x150 resolution 

plot of the class regions and is sufficient to demonstrate the decision surface which is 

highly non-linear. The decision surface can be constructed from Voronoi tessellations 

and is piecewise linear. The nearest neighbour method can also be viewed as a kernel 

density estimation method with the smoothing parameter tending to zero. Specht 

(1990) discusses this and illustrates it graphically with different smoothing parameter 

values.

Figure 5.5 1-Nearest Neighbour (1-NN) & 3-Nearest Neighbour (3-NN)

5.2.2 Rule Structured Classifiers (Machine Learning)
The learning systems discussed here are symbolic learning systems. The solutions

found by the algorithms are logical combinations of features. In the example below 

two dimensional feature space of age and work category is partitioned according to the 

following propositions:

class 1 if age>25 and work e { clerical, operator } 

class 2 if age>25 and work = manual 

class 3 if age<25

The partitioning defined by these propositions is rectangular and in stark contrast to 

(non-linear) decision boundaries generated by the nearest neighbour algorithm for 

example. The benefit is that they can be read.
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Decision Trees
Decision trees partition feature space recursively into smaller and smaller rectangles 

with the desired outcome that the rectangle contains only cases from one class. A 

criticism is that they can be difficult to interpret as they become ‘bushy’. They are, 

however, usually very fast in operation.

CART (Classification And Regression Tree)
CART (Breiman et al., 1984) is a binary decision tree algorithm which always yields 

two branches at each internal node. CART has an interesting index for evaluating the 

best way of partitioning the data at a node. The GINI index which defines a metric for 

the impurity of the subgroups chosen by a potential split (the ratio of correct 

classifications to incorrect). All possible splits are evaluated and the one of lowest 

impurity selected.

Following the construction of the tree CART performs a sophisticated pruning process 

which balances the two issues of obtaining the right size tree and getting accurate 

estimates of the probabilities of misclassification.

5.2.3 Artificial Neural Networks
A broad range of ANN models have been discussed in the literature review (Chapter 2) 

and selected models are expanded here in the context of classification only. The 

feedforward class of ANNs has been widely applied to classification problems, 

however, the less commonly applied LVQ class of models are also capable of 

performing well on classification tasks. Feedforward and LVQ models have been 

selected as they are very different in architecture yet have had documented success in 

tackling classification problems.

Feedforward Network
The Multi-Layer Perceptron (MLP) has been a widely used ANN model in 

classification tasks (Gorman & Sejnowski, 1988; Shu et al., 1991; Le Cun et al., 

1990). The computational capabilities of the feedforward class of ANNs have been 

well documented (see chapter 2). In the context of classification problems is known 

that a feedforward ANN of appropriate size and architecture can theoretically compute 

complex decision surfaces to the desired accuracy. A key problem with implementing

96



the Feedforward architecture remains the selection of an appropriate network topology 

and setting of learning rule parameters. Some learning algorithms have attempted to 

overcome these problems, notably in the setting of the network topology dynamically 

during learning. The successful application of models is, however, very dependent on 

skill of the experimentor.

Learning Vector Quantization (LVQ)
The LVQ algorithm introduced in Chapter 2 is a relatively simple ANN model. It has, 

however, had proven success in the field of classification (Kohonen 1988c). In a 

broader comparative study of classification algorithms (Michie et al., 1994) it was 

found that LVQ performed strongly on data sets containing large numbers of cases with 

a high proportion of binary attributes.

5.3 Benchmarking studies
This benchmarking review attempts to address the problem of classifier performance 

and in particular a means for quantitatively assessing the capabilities of a range of 

classifiers on deterministically different data sets. It was Minsky and Papert (1969) 

using a methodological approach that led to the infamous ‘x-or problem’. The literature 

review therefore centres around texts that applied various classifier techniques to data 

set problems and distinguishes between synthetic and real life problems.

A structured experimental approach is that taken by Thrun et al.(1991) in comparing the 

accuracy of 25 classifier algorithms on three synthetic data sets (the third data set being 

a noisy data set). Advocates of each technique were asked to apply their chosen 

algorithm on the data sets; further increasing the chance of obtaining a credible 

comparison of techniques. The classifiers were the AQ learning algorithms 

(constructive induction), Assistant Professional (Inductive learning of decision tree), 

mFOIL (inductive logic program generator), ID5R,IDL,ID5R-hat & TDIDT (Decision 

Tree algorithms), ID3, ID5R,AQR,CN2 & CLASSWEB 0.1-0.20 (Inductive Learning 

Programs), Prism (Inductive Learning Algorithm), ECOBWEB (Unsupervised 

clustering algorithm), Backpropagation & Cascade Correlation (Artificial Neural 

Network technique). A problem with the design of the experiment from an application 

perspective is that the data sets are too artificial to be useful examples outside of the 

academic exercise.
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The data sets themselves were six parameter logic problems with the following number 

of categories per parameter xj ..xg : [ 3,3,2,3,4,2] yielding 432 possible combinations. 

The test sets were created with one of the disjunctive normal form supposedly easily 

learnable by all symbolic learning algorithms’’ (Thrun et ah, 1991 :p2) and the second a 

parity type problem. From a connectionists viewpoint the results are particularly 

encouraging in that both the ANN techniques achieved 100% accuracy on all but the 

noisy data set (97.2%). A strong point for many of the alternative techniques is that 

they produce comprehensible rules for classification from the data. The ANN 

techniques do not generate any interpretable rules.

Ripley (1991) also compares a variety of techniques and performs a similar survey of 

the literature as to that conducted here. His experimental data is based upon tsetse fly 

distributions and is therefore a ‘real life’ data set rather than synthetic. The data set has 

14 parameters that can be used to classify the presence or absence of tsetse flies. This 

does however yield the problem that the comparison of techniques cannot be evaluated 

from known rules or distributions (although canonical variate plots were used to view 

the data for discriminating clusters). Ripley uses a simple two variable plot for the 

well known iris problem to show how the structure of the data allows a simple classifier 

to perform well. This is exactly the kind of insight that is lost in higher dimensional 

problems where visualisation is impossible. The point of analysing data before applying 

algorithms is quite pertinently made.

Michie et al. (1994) document the most comprehensive comparative study found in the 

literature. The text is a summary of 3 years work from the ‘StatLog’ project funded 

under the EC ESPRIT programme. The study uses 21 data sets grouped under the 

headings ‘Images’, ‘Datasets with costs’, and ‘other datasets’ and evaluates the 

performance of a similarly large number of classifiers (22) under the groupings of 

‘Statistical Techniques’, ‘Machine Learning Rules and Trees’ and ‘Neural Networks’.

In addition to the comprehensive range of techniques and data sets there are well 

defined metrics for evaluating the performance of the algorithms. The comparative 

trials are carried out using Cross-Validation and Train-and-Test.
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An important aspect of this work is the analysis of the relationship between dataset 

types and algorithm performance. If this relationship can be established then it should 

be possible to develop selection criteria and predict the optimal algorithm.

5.4 The classification problem
The data set used in the classification experiments is taken from a large database of 

Septicaemia episodes that has been compiled by the Department of Microbiology, St. 

Thomas Hospital, London. The database contains in excess of 5000 episodes spanning 

over 50 categories of infecting micro-organism (Gransden et al., 1990). Each episode 

(case) contains information on the patient (observed features) and the clinically 

detected micro-organism(s) (classes) causing the infection. The source database for 

experimental work detailed here contained only cases of single organism infection.

5.4.1 Septicaemia
Septicaemia (‘sepsis of the blood') is the clinically significant occurrence of micro-

organisms in the blood stream. The patient shows characteristic evidence of the sepsis 

which include fever, rigors, mental confusion, tachycardia and hypotension. The 

disease is severe with considerable morbidity and mortality. There are two forms of 

Septicaemia as defined in Sleigh and Timbury (1990, p.267), with the second form 

being more common:

‘a) A basic feature o f some generalised or ‘septicaemic ’ infectious disease, e.g. 

brucellosis, enteric fever.

b) A complication o f more localised infections, e.g. pneumonia. The organisms spread 

from the focus o f the infection into the blood stream. ’

Prompt treatment of septicaemia is vital. Patients evidencing septicaemia require the 

administration of an appropriate antibiotic therapy immediately. The chances of 

survival depend on the age of the patient, the underlying condition and the treatment 

given. The overall mortality rate for septicaemia varies between 15 and 35 %. 

(Shanson, 1989). To plan and administer an appropriate therapy the following 

information is required:

99



a) Identification of infecting organism(s).

b) The antibiotic susceptibility of the micro-organism(s)

c) The focus of the localised infection that has lead to septicaemia.

With this information the clinician and microbiologist can design an appropriate 

therapy for the patient. All of this information is not available, however, in the critical 

first 24 hours after the clinician has identified the condition of Septicaemia and 

requested blood and other relevant cultures. It will take 18 hours incubation time 

(typically) in the laboratory for detection of bacteria in the blood sample. In this period 

the clinician must ‘best guess’ at an appropriate therapy. This can mean using a 

‘blanket cover’ of antibiotics which increases cost and the chances of toxicity (the 

antibiotics can have strong side effects). In 94-95% of cases of septicaemia the 

infection is caused by a single organism (Sleigh and Timbury, 1990; Shanson, 1989).

It can take a further 24 hours from the initial bacterial detection before comprehensive 

results on antimicrobial sensitivities are available and a final therapy chosen.

The purpose of using a data based classifier is to improve the ‘best guess’ made by the 

clinician. The objective, data based approach is in contrast to the subjective, rules 

based approach that has been tried in MYCIN (Shortliffe, 1976). Any increase in the 

prediction accuracy of micro-organism in this critical time period will be beneficial to 

the patient outcome (death or survival).

5.4.2 Data Set Features
The training and test data sets each contained 1664 cases randomly sampled from the 

database. There are 51 features for each case as follows:

• Year of the episode (Interval Scale, Continuous)

• Age of the patient (Interval Scale, Continuous)

• Sex of the patient (Binary)

• Whether the infection was acquired in the hospital (Binary)
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With binary encoded variables as follows

• e) Whether the patient is already on antibiotics (Binary)

• f) Medical speciality of the ward (Binary)

• g) The underlying diseases (if any) (Binary)

• h) The anatomical site of the infection (Binary)

5.5 Experiments
The experiments followed the classifier selection process detailed in section 5.2. 

Analysis of the data set follows:

5.5.1 Septicaemia data set: characteristics
The data set was investigated using the measures detailed in appendix C. Detailed

calculations on which these findings are based can be found in appendix D.

Measure Value Description
Sample Size - [S/A] 1664 Total Sample size
Features - [S/A] 51 The total number of features in the feature vector
Binary Features - 
[S/A]

49 The number of binary features in the feature vector

Ordinal Features - 
[S/A]

2 Ranked Features in the feature vector

Classes - [S/A] 4 The number of classes
Entropy - [A] App.

D
For binary features a measure of the information 
content

Joint Entropy - [A] App.
D

Joint information measure for binary features and 
classes

Av. J. Entropy - [S] App.
D

Average of joint entropy across all classes and binary 
features

Table 5.4 - Characterisl:ic measures for classification

The number of micro-organism classes in the data set were deemed to be too numerous 

for experimentation and analysis purposes. To reduce the number of classes the 

database was pre-processed to yield four categories from the over fifty available; (i) 

Escherichia coli, (ii) Staphylococcus aureus, (iii) Streptococcus pneumoniae and (iv) 

the remaining cases grouped as ‘Other’ micro-organisms. There are, therefore, four 

categories to be classified.

Only data records with complete feature vectors were selected (no missing values). The 

feature vectors contained 51 variables; two being continuous interval valued and the
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rest binary. The number of cases for the training and test sets was 1664, both being 

randomly selected from the database.

A range of measures were taken to characterise the data and are presented below in 

table 5.2. From these measurements it is possible make a more informed selection of 

potentially successfully algorithms.

Since the domain is that of medical decision making, the system should offer as much 

insight to the classification process as possible. This issue has been raised by Hart and 

Wyatt (1990) where they conclude that ‘black box systems appear more likely to attract 

strict product liability, which would be applied no matter how much care was taken in 

development and testing...Onepossible role, therefore, for such systems is as indicators 

o f the maximum attainable classification accuracy, to encourage those developing more 

transparent systems ’. Lipscombe (1989) surveyed the small number of AI systems that 

have actually progressed to the point of clinical usage and proffered that the way 

forward is for ‘human-directed “decision support” systems'.

5.5.2 Algorithms selected for experiment

The literature review uncovered the following two potentially successful ANN 

classifiers: Learning Vector Quantization (LVQ) and Feedforward Networks. The k- 

nearest neighbour (&-NN) algorithm has proved to be successful in many classification 

tests and is selected here as a representative statistical technique for comparison. 

Several characteristics of the septicaemia problem are included in the algorithm 

selection process; the large data set (N=1664), the high dimensionality of feature space 

(f=51), a fast classification speed required and some comprehensibility of the 

classification process.

The train-and-test data sampling method is adopted for training and evaluation of 

resulting classifiers.
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5.5.3 Feedforward Networks: experiment results
Experiments with the feedforward architectures prove unsuccessful. There is no

evidence of weight values within the networks converging to useful values despite 

using several training algorithms (backpropagation and variants) and numerous 

topologies. It may be possible to uncover successful feedforward architectures using a 

more exhaustive search of the available parameters (network topology etc.). A viable 

method for achieving this would be to use Genetic Algorithms to generate the 

architectural variations.

5.5.4 Learning Vector Quantization (LVQ): experiment results
Details of the LVQ experiments can be found in Appendix F and a summary of the

experiments comparing LVQ to k-NN can be found in Worthy et al. (1993). It was 

found that the accuracy of LVQ solutions varied for classes and the optimum solution 

yielded a balanced accuracy rate for all classes. It was particularly easy to obtain an 

unbalanced solution with the largest class having 100% accuracy and other classes with 

0%. Figure 5.6 illustrates some of the better LVQ solutions and the ‘trade off between 

class accuracies. The twenty experiments are presented with class accuracies shown 

relative to the 1-NN accuracy rates (i.e. solutions showing better performance than the 

1-NN algorithm have all four class accuracies greater than 0 on the vertical axis). The 

accuracy rates are calculated for the test data set..

LVQ 1 True Positive Accuracy vs 1-NN

Class 
accuracy 
relative 
to 1-NN

Figure 5.6 -Variation in class classification accuracy for LVQ solutions
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Class Others Escherichia
Coli

Streptococcus
Pneumoniae

Staphylococcus
Aureus

Std. Avg.

1-NN 66.90 55.87 44.77 73.30 62.20 60.21
Best
LVQ

73.45 85.92 66.19 46.03 69.53 67.90

Table 5.5 Class and average accuracies for Best LVQ solution and 1-NN.

Class Others Escherichia
Coli

Streptococcus
Pneumoniae

Staphylococcus
Aureus

Others 582 141 114 45
Escherichia Coli 142 195 10 3
Streptococcus
Pneumoniae

100 11 107 7

Staphylococcus
Aureus

46 2 8 151

Table 5.6 True and False positives for 1-N> solution.

The best result for LVQ yields an accuracy over 7% higher than 1-NN (Table 5.5). In 

some experiments it is found that certain classes can be around 30% higher than the 1- 

NN accuracy although there is always a ‘trade-off in this result by a reduction in the 

remaining class accuracies. This highlights the need to achieve a balanced result where 

the overall accuracy is achieved with no low individual class accuracies.

Table 5.6 shows the True/False positive matrix that was obtained for the 1-NN solution. 

The data to generate such a matrix was not obtained from the software implementation 

of the LVQ algorithm used in the experiments.

In classification mode the trained LVQ codebook vectors are used in exactly the same 

way as the 1-NN algorithm. The LVQ codebook vectors used for classification 

represent a data set reduction of 99.76% (1664 data set cases to 4 representative 

vectors) thereby drastically reducing computation and storage requirements of the 

classifier.

Repeatability of experimental results is difficult due to the numerous algorithm 

parameters and the stochastic methods used in training and codebook initialisation. It is

104



possible to achieve different accuracy rates from the same initial conditions. Successful 

application of the algorithm therefore requires a degree of experimentation.
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5.6 Summary
The classification experiments are represented in Figure 5.7 using the framework

introduced in Chapter 3.

C l a s s i f i c a t i o n  C h a r a c t e r i s t i c  M e a s u r e s D a t a  S e ts M o d e l s / A l g o r i t h m s

D a t a  set
Cl=Sample Size 
C2=Number of Features 
C3=% Binary Features 
C4=% Ordinal Features 
C5=Number of Classes 
C5=Entropy 
C6=Joint Entropy

M o d e l
Ml=Fast operation speed 
M2=Descriptive as possible/Reasoning 
M3=Training Time as low as possible

P e r f o r m a n c e  M e t r i c s
Pl=Balanced class accuracies 
P2=High Accuracy

dl=Septicaemia al=k-Nearest Neighbour 
a2=LVQ
a3=FeedForward ANN

Figure 5.7 Summary of experimental method: Classification

In contrast to the forecasting experiments in chapter 5 there is only one data set used in 

the septicaemia experiments. As a result no conclusions can be drawn as to the 

effectiveness of the data set characteristic measures in distinguishing between data sets.

The feedforward model failed to converge when presented with both a full featured and 

reduced featured data set. A range of topologies and learning parameters were used 

with no satisfactory evidence of learning in any case. This may be due to a limitation in 

the backpropagation algorithm on this particular data set or insufficient skill in applying 

the feedforward model.

The successful LVQ approach was found to be very sensitive to training parameters and 

could rapidly lead to an unbalanced solution where some classes were predicted with 

zero accuracy and others with 100%. The sensitivity of this technique makes the 

repeatability of results dependent on comprehensive knowledge of the technique. It 

was observed following the extensive series of experiments performed using LVQ that 

it can achieve impressive accuracy rates but the method cannot be applied without 

careful experimentation to achieve a balanced and accurate result.
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ANN solutions would face significant ethical problems in being applied to automate 

medical decision making. There would, however, be a role for it as an advisory or 

decision support tool. Lipscombe (1989) asserts that there is a fundamental difference 

between expert systems (using a strong AI approach) and the application of formal 

knowledge by humans. The human possesses what he terms “interpretative skills ” 

which modify the way in which knowledge is applied. The role of assistant is probably 

the best a machine can hope for in the medical environment where it is usually deprived 

of some of the factors and much of the complex knowledge required to make accurate 

diagnoses.
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CHAPTER 6 - DISCUSSION

6.0 Precepts

In this chapter, the utility of the experimental and analytical method (chapter 3) is 

explored in light of the experimental results detailed in Chapters 4 and 5. The 

analytical method presented in chapter 3 provides a framework for conducting 

experiments and, importantly, comparing the performance of ANNs with established 

techniques. The experimental process has been defined as a sequence of stages with 

requisite attributes and methods in each. For example, the selection of the algorithm 

for experiment is one such component in the experimental process which requires 

characteristic measures of the data set and defined performance metrics before a 

selection can be made.

The choice of ANN algorithm used for experiment is based upon three sets of criteria; 

algorithm performance metrics, model characteristics and data set characteristics. 

Theoretical and heuristic knowledge are needed to select the most appropriate 

algorithm based on the defined criteria. The outcome of the experiment, however, is 

dependent on the following; (i) the quality of model selection criteria, (ii) the quality of 

knowledge base and (iii) the experimenters skill in applying the chosen model(s).

Since these factors are dependent upon many variables it rapidly becomes apparent that 

reasons for the success or failure of an experiment can be difficult to identify and may 

well result from a combination of multiple variables, rather than a single, readily 

identifiable case. It can occur when applying ANNs, for example, that the 

experimenter will not see any convergence of weight values during training. The 

experimenter may conclude that the ANN is incapable of learning in this instance, but 

in reality his choice of learning parameters or initialisation of the network weights may 

be inappropriate. The application of the ANN has failed due to the lack of skill (or 

knowledge) of the experimentor with the particular algorithm.

Many documented ANN experiments choose not to justify the seemingly widely 

adopted premise “ANNs are the most appropriate class o f models for a given problem”.
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Although ANN techniques have purposefully been applied to the forecasting and 

classification domains in this thesis, a selection procedure and comparison to existing 

techniques are always performed to verify the appropriateness of algorithms chosen for 

experiment. The generic framework for applying learning algorithms to forecasting and 

classification tasks is based upon a meta-method. An algorithm is not selected until an 

analysis of the data set has been performed. The rules for selecting an algorithm will 

often be heuristic but the approach provides the structure for rules to incorporate 

quantitative measures. Quantitative selection of an algorithm is an objective data based 

approach as opposed to a subjective heuristic approach. An advantage of an objective 

approach is that decisions are based on data from previous experimental results. As the 

database of cases becomes more substantial through experiment, it should support a 

richer set of selection rules based on a growing number of measures.

6.1 Research Objectives

The driving force for this thesis is to test the hypothesis presented in Chapter 1 (section 

1.2). Two research objectives emerged from the hypothesis. The results from the 

forecasting experiments presented in Chapter 4 meet the first research objective put 

forward in Chapter 1;

‘To evaluate... the performance o f ANN Models compared to other potentially 

successful techniques in a forecasting problem '.

Foreign exchange data was used to investigate the learning ability of forecasting 

algorithms. The ANN selected for foreign exchange forecasting was a feedforward 

network trained by the classic backpropagation algorithm, which has been used so 

widely in the past decade. A better than chance forecast was achieved when the data 

was presented to the ANN using a differential rather than absolute price value. The 

most successful ANN solution gave a correct indication of the next price movement in 

over 59% of cases. The statistical techniques tested for comparison (ARMA & 

regression) could not model the data and the random walk model had to be used for 

comparison of performance. The forecasting problem is a notoriously difficult one
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since the foreign exchange markets have been noted as being one of the most efficient 

of the financial markets (and therefore practically impossible to predict).

The second research objective;

‘To evaluate... the performance o f ANN models compared to other potentially

successful techniques in a classification problem ’

is met by the classification experiment results presented in Chapter 5.

The septicaemia classification problem was of a high dimensional, predominantly 

binary character. The high dimensionality of the data set proved to be too demanding 

for most ANN techniques, resulting in only one algorithm, LVQ, performing 

adequately. The prominent, established technique chosen for comparison was the 

statistical k-NN algorithm. The best performing LVQ solution yielded a 7% greater 

accuracy than k-NN with the added advantage of faster operational performance from a 

99% reduction in data set size and computational requirements. Although the best 

LVQ result offers an improvement over the k-NN performance it did require a 

significant number of experiments to achieve this result.

The results from both tasks evolved from a series of experiments following initial 

analysis of the data sets (pursuing the method described in chapter 3). This gives 

credence to those who claim that successful application of ANNs (and other methods) 

follows from careful analysis of the data before any experiments are carried out 

(Ripley, 1993).

The method of experimentation requires that the performance of any solutions attained 

be measured and compared to those of existing techniques. The method provides a 

framework which facilitates additional experimental data to improve the knowledge 

base. Further forecasting or classification problems can be tackled using the improved 

knowledge.

The performance of ANNs in the forecasting and classification experiments compares 

favourably with the performance of the established methods considered. The
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conclusion reached from this research is that ANNs are flexible self learning models 

that may be appropriate for a range of forecasting and classification tasks. A caveat 

remains, however, that well defined metrics and solution requirements should be 

specified before any pathway to a solution is explored.

The meta-method for algorithm selection is a crucial component to successfully 

applying any model to a given problem. The method described in chapter 3 is 

structured which, in the context of applying ANN models, could be criticised for being 

excessively rigid. ANNs have been lauded as powerful tools for discovering the hidden 

relationships in complex data, hence the structured method for selecting algorithms 

would appear to contradict the claimed ability of these techniques.

However, if ANNs are simply applied to a problem with no comparison to previous 

results or with no characterisation of the problem data set, it becomes apparent from 

the number of factors involved, that the reasons for the success or failure of the 

algorithm will be difficult to evaluate. It is very important that the performance of 

ANNs is compared to that of existing techniques in the chosen application domain. The 

success of any technique is relative.

6.2 Limits to ANN learning capabilities

Cullen Schaffer (1994) clearly and succinctly expounded the theoretical limitations of 

learning algorithms. Schaffer’s Law states that there is no universal learning method 

capable of learning any concept. The tests performed in the process of researching this 

thesis (considering only ANN models) support the premise that there is no generic 

model applicable to all types of problem. This conclusion is further evidenced by the 

numerous studies comparing algorithm performance on differing problem types where a 

range of algorithms have shown superior performance. Considering a broader range of 

learning methods, evidence from large comparative studies such as those described in 

Michie et al.(1994) and Thrun et al.( 1991) also provide evidence to support Schaffers 

Law. In these studies, some algorithms showed performance advantages with certain 

data sets or problem types but there was no algorithm that performed better than all
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over the whole range of problems. The ANN results presented in Michie et al. clearly 

indicate that ANNs have merit for some problems.

In the light of these findings it would seem appropriate that an experimental method, 

such as that adopted in this thesis, facilitates model selection for a given problem using 

defined metrics and performance measures enabling comparison to existing techniques. 

The knowledge used in model selection is derived from theoretical and experimental 

results which can be used objectively with data from the model selection metrics.

In tasks such as forecasting and classification, where a range of tools are available, it 

requires a meta-method to select a tool most appropriate to the task.

Assuming that the non-trivial task of model selection has been completed, a range of 

issues related to ANN learning remain. The limits to an ANNs learning capability can 

be viewed as a function of a) the architecture of the model and b) the learning 

algorithm. It is has been found in the experiments conducted for this thesis that it is 

rare to isolate either factor as the one limiting a successful solution.

The forecasting experiments in chapter 4 found the feedforward ANN model capable of 

learning some relationship between previous currency movements and the next. The 

representation of the problem, in this instance, was the most important factor affecting 

performance (see section 6.3). With the problem representation defined, however, it 

was found that by introducing an architecture constraint (limiting the size and layers in 

the ANN), improved prediction accuracy was obtained.

In chapter 5, the classification experiments resulted in a completely different ANN 

architecture being selected. In a parallel fashion, LVQ, performance was also found to 

be optimal when a restriction was made on the architecture. Namely, the number of 

class representative vectors was limited to one per class. With increasing numbers of 

class representative vectors the complexity of the decision surfaces separating 

categories can grow. The generalisation of the network is, therefore, at its highest 

with low numbers of class representative nodes.
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Geman and Bienenstock (1992) explored the related issues of bias1 and variance and 

concluded that “the fundamental challenges in neural modelling are about 

representation rather than learning per s e They argue that the more bias put into a 

solution, the better the performance at the expense of generalisation. Conversely, the 

more variance, the better the generalisation. The bias, they argue, is introduced by 

using data representation and architecture constraints. Le Cun (1989) focused on 

feedforward networks and found that by constraining the network architecture, 

significantly better performance was achieved on an image recognition task. Bias was 

introduced into the design of the network by building feature extraction layers. As Le 

Cun notes, the ability to add bias into designs for a given problem “is more easily said 

than done

Some ANN models have been described as being “non-parametric” (Geman et al.,

1992) in the sense that they do not require the user to specify an order of fit as would be 

required in a polynomial curve fitting solution, for example. In practical terms, 

however, the absence of parameters in the same sense of those required for curve 

fitting does not mean that the implementation of an ANN is parameter free.

Returning to the feedforward network for illustration, before a training run can be 

started the experimenter must select a host of attributes for both the network and the 

learning algorithm. The network must have the number of layers, nodes, transfer 

functions and initial weights selected. Even a basic learning algorithm will require the 

selection of parameters such as learning coefficient and momentum terms. All of these 

attributes and parameters can have an effect on performance as they change the learning 

capability of the network.

6.3 Problem representation and reasoning
It was observed whilst experimenting with two different types of problems, forecasting 

and classification, that in some instances the problems presented are very similar, if
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not interchangeable. Taking the foreign exchange forecasting problem as an example, 

the forecast required is that of a price or alternatively a direction of price movement. If 

a discrete rather than continuous valued range is used for the output, the problem can 

be represented as a classification task. Figure 6.1 illustrates the change in problem 

representation where a continuous valued range is converted to a discrete range having 

only three values; “up”, “down” and “no change”. More resolution can be introduced 

by breaking down the ranges still further. An example would be to subdivide the “up” 

range into “small up” and “large up”. Value ranges can now be interpreted as discrete 

categories. The change in representation opens up a broader range of problem solving 

methods than would have been available if considering only forecasting algorithms.

There is therefore, the issue of problem representation to be considered. Taking the 

forecasting example given, there will be other issues to consider such as the minimum 

resolution of the forecast variable. A trader may require a more informative indication 

of forecast value than a simple “up”, “down” or “no move”. If that is the case then a 

greater number of subcategories will be needed to increase the resolution.

Price movement Price movement

Up

No
movement

Down

Figure 6.1 - Forecasting problem representation

Appropriate problem representation is noted as the key in achieving a good solution 

when using conventional Artificial Intelligence (AI) approaches (Winston, 1992). 

Representation is a factor not investigated in depth in the research work for this thesis, 1

1 ‘Bias’ is not to be confused with the term used in control theory. Geman and Bienenstock use the term 
in the context of the ‘bias \ variance dilemma’ in model based or non-model based estimators. The 
dilemma is faced, for example, when attempting to fit polynomial functions to a curve with added noise.
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but is likely to be of significant effect when applying ANN (or other) models to a given 

problem.

The ANN models developed and discussed in this thesis can be classified as sub- 

symbolic. The ANNs, in operation, do not provide any symbolic explanation of how 

they generate results. Analysis of the models does not yield any meaningful set of 

rules or relationships between output and inputs. This places ANNs at a definite 

disadvantage when compared to the deductive and explanatory capabilities of classic 

rules based AI systems.

The need to understand the internal representations of ANNs creates a paradox. Most 

ANNs are comprehensible only on the small scale when they have few layers and 

processing elements. Their computational capability is essentially proportional to their 

size. Increasingly complex computational tasks having a reasonable numbers of inputs 

and outputs will require networks that rapidly become analytically opaque. Symbolic 

processing systems are more scaleable from an understanding viewpoint in that they 

can provide an interpretable explanation of their ‘reasoning’.

6.4 The utility of a meta-method
The process of applying ANNs in this thesis can be viewed as a framework or meta-

method. The application of an ANN model is encompassed by the meta-method which 

provides mechanisms for algorithm selection and performance evaluation. This is 

analogous to the use of meta-languages which are used to discuss other languages or 

systems.

The benefit of a meta-method is that it adds understanding to the application of ANNs 

by allowing the problem data set, choice of ANN model and the eventual performance 

of the chosen ANN, to be described in terms of the metrics. As the number of 

experiments increases, sufficient quantitative and theoretical results can be amassed to 

create application rules based around the metrics.
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The concept is illustrated below for a classification problem using a small set of 

metrics, algorithms and rules. In AI the meta-method would be termed a Frame Based 

(Winston, 1992:180) approach to gathering knowledge about the problem.

Metrics Algorithms Available

[Al:k-NN]

[A2:LVQ]

[A3:Feedforward network using BP learning algorithm]

[Cl:No. classes]=4 

[C2:No. cases]=1000 

[C3:No. Features]=10

[C4:% Binary Features]=25

[Ml :Fast Training Time Necessary]=True

Rules

Each of the rules have either a heuristic (Hn) or theoretical (Tn) basis.

[HI] If ([No. cases] / [No. classes] > 10) and ([No. cases] / [No. Features] >10) then 

sample size is large enough to train and test an ANN.

Use [Al], [A2] or [A3]

[H2] If [Fast Training Time Necessary] and [N. classes]*[No. Features]>15 then do not 

use Feedforward model.

Do not use [A3]

[H3] If [% Binary Features]>80% then use LVQ or k-NN (It was found by Michie et al. 

(1994) that these two algorithms performed better than feedforward nets on data sets 

containing predominantly binary feature data).

Use [Al] and [A2] in preference to [A3]

A further useful extension to rules would be to include those that apply to specific ANN 

models. Again the rules would be a mix of heuristic and theoretical which is often not 

made explicit in the ANN literature. Typically, successful experiments are dependent 

upon the skill and knowledge of the experimenter.

It becomes obvious that some rules may require modification or further metrics as the 

number of algorithms is considered. Using rule H2 as an example, “Fast training time” 

has meaning in the context of the limited number of models available as it has been 

found that the feedforward model takes much longer during training than LVQ. If the
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number of models is increased a better rule would be to use a more meaningful metric. 

In this instance it would be more appropriate to use a maximum number of 

mathematical calculations allowed (measured in a unit such as FLOPs2) rather than the 

somewhat imprecise “Fast training time”.

A principal drawback of a meta-method is that it adds another layer of complexity to 

what may already be a complex problem. For knowledgeable researchers this may be 

regarded as unnecessary and in certain cases a hindrance. This research set out to 

review ANNs from an applied perspective where the emphasis was to explore the 

capability of ANNs compared to other methods and on real data. The utility of the 

meta-method in this context lies in a) the capacity to add previous experimental and 

theoretical knowledge into the process in a structured way and b) the capability of 

selecting ANNs and assessing the performance in a more objective way.

2FLoating point Operations (FLOPs) is a measure of the number of floating point calculations required 
by an algorithm on a serial computer. The power of serial computers is often described by the number of 
FLOPs they can process in a second. Typically the unit is the Mega-FLOP (MFLOP). The measure 
would be inappropriate if the algorithm is implemented on a parallel computing machine.
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CHAPTER 7 - CONCLUSIONS

7.0 The objectives
A research objective was put forward in the introduction derived from the 

hypothesis and research aims. This last chapter draws conclusions on the 

objective, what contribution to knowledge has been made and areas of further 

work.

The objective was to devise a framework for selecting, applying and evaluating the 

performance of ANN models. The applicability of the framework was to be tested 

by applying it to two problem domains. The experiments followed the meta-

method put forward in Chapter 3 which provided an objective framework for 

selecting and evaluating the performance of models on a given data set. As 

discussed in Chapter 6 the framework enabled the performance results of the ANN 

models in both problem domains to be compared objectively with established 

techniques. The framework also facilitated objective selection of algorithms for 

experiment as the development of rules from results demonstrated.

It can be concluded that the framework provides an objective meta-method for 

experiments and resulting performance results show that for the problem domains 

chosen, ANN models were indeed appropriate solutions. Further to this, given 

that established techniques were outperformed (on the chosen metrics) by the ANN 

models it can be concluded that ANN models in these cases were the best solution 

from the algorithms selected.

The hypothesis put forward at the start of this thesis is supported by the 

experimental results. There are, however, a number of issues that have been 

discussed in Chapter 6 that prevent firm conclusions being drawn;

(i) The clear definition of metrics before selecting models is key to evaluating the 

performance of ANNs applied to a given problem domain. In the absence of such
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metrics it is very difficult to consider the performance of an ANN (or other 

technique) objectively. Different performance metrics might yield different results 

and conclusions.

(ii) As important, characterisation of the domain data set enhances the evaluation 

of performance by giving insight into the properties of the data set which may 

make some models more disposed to successful application than others. A model 

can be selected where it’s bias is suited to the data set.

(iii) The choice of the problem representation was found to significantly affect the 

results in one of the problem domains. Careful consideration of the solution 

requirements and how they and the data set can be represented will affect the 

overall choice and performance of algorithms. The meta-method used in this thesis 

has utility in comparing models applied using a similar problem representation, 

but does not provide any insight into how an optimum problem representation 

should appear.

The research illuminated important issues relevant to ANNs considered for general 

application to problem domains;

(i) The lack of transparency in ANN solutions compared to other classes of models 

(e.g. fuzzy systems and rules based systems) can be a problem in some domains. 

The financial application did not require explanation of the predictions made by a 

model which is in contrast to the ethical \ legal implications of using such a model 

in the medical domain.

(ii) Skill is required to apply the models successfully. Although only two types of 

ANN model were eventually applied to the problem domains, it was found that 

numerous learning and architecture parameters had to be set. None of the models 

used were self configuring and the knowledge needed to set parameters is achieved 

through experience.
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Further research is required to confidently choose the most appropriate ANN (or 

other class) model for a given application.

This thesis makes a contribution to the application process in its provision of a 

generic meta-method for applying models to problem domains. Emphasis is on 

performance measures which facilitate objective comparison of models across 

classes. The work of Michie et al.(l994) was the only text that came to light at the 

end of the research where a similar method had been employed for classification 

algorithms.

7.1 Future work
Pursuing the benefits of the meta-method put forward in Chapter 3 and discussed 

in Chapter 6, future research could improve its utility. For each domain 

(classification and forecasting) in which the framework has been used as the 

knowledge building method;

(i) The number of models and classes of model applied to the data sets need to be 

increased and new performances figures calculated with the data already gathered.

(ii) The number of data sets should similarly be increased. The range of possible 

data sets an algorithm could be applied to is infinite but a wide range of library 

data sets will enable new data sets to be characterised and appropriate algorithms 

selected with increasing confidence.

(iii) Refine and develop the characteristic measures so that the meta-method has 

suitably rich and distinguishing terms with which to construct rules.

(iv) Where data or theory provides evidence, develop and extend the heuristic and 

theoretically based rules using the characteristic measures as inputs to those rules.
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(v) The role of data manipulation prior to experiment (pre-processing) should be 

explicitly defined in the framework. This is closely related to the issue of problem 

representation discussed earlier and the use of data set characteristic metrics.

Outside of the scope of the framework, developments discussed in Chapter 6 that 

have an impact on the application of ANN models in real world problems should 

be explored in more detail;

(i) The creation of models with hybrid architectures. This can be pursued in both a 

modular (distinct functional components) and integrated fashion (merged models). 

The modular approach has already made an appearance on the commercial scene 

with products such as “Clementine”1, a data mining tool. Clementine allows 

developers to analyse large databases by mixing machine learning and ANN 

modules for processing the data. Modular hybrid architectures use the most 

appropriate components for given functions within the architecture.

The integration approach has been pursued both within the ANN paradigm and in 

combining ANNs with other classes of models such as fuzzy systems and genetic 

algorithms. The strategy behind this design method is that the characteristics of 

different models can sometimes be combined if their architectures are merged into 

one functional unit. The result of the process is a new form of model.

A key advantage of fuzzy logic approaches compared to ANNs is the 

interpretability of the rules that determine the relationship between inputs and 

output(s) in the system of interest. ANNs, however, have an advantage over 

fuzzy systems as their learning algorithms enable them to develop a model of the 

system of interest through data based training as opposed to rules derived by a 

(human) expert.

1 Clementine a data mining tool with ANN and rule induction components. It is produced by 
Integral Solutions Limited, Basingstoke, UK.
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If ANN learning algorithms can be applied to architectures containing fuzzy 

representations then more comprehensible models may evolve. Attempts have 

been made to this end, producing fuzzy rule sets that provide a degree of reasoning 

(Kosko, 1991). The relative performance of such models compared to ANN 

models needs to be explored further.

(ii) AI or fuzzy rules to provide more complex reasoning than the simple rules 

constructed so far in the meta-method. This will require a larger database of model 

performance results on characteristically different data sets.

(iii) The development of reliable, modular code for models to facilitate easier 

experimentation. A frustration arising from the variety of ways in which 

algorithms are implemented is that much of the available code is stand-alone and 

difficult to integrate. The adoption of C as the de facto language in academic 

circles has helped but there is still some way to go before new models can be tested 

reliably in a simple ‘modular’ fashion. If this undoubtedly useful technology is to 

penetrate the world outside of academia then this will be a particularly important 

factor. The development of an application framework into which algorithm 

modules can be assembled would be of enormous benefit to experimenters. The 

situation is analogous to computer construction where integrated circuits (ICs) 

from different manufacturers can be combined to create solutions of choice. This 

capability is a direct result of IC manufacturers exposing the often complex 

functionality of their devices in standard component form. Although research into 

hybrid architectures where the functionality of differing models is combined would 

not benefit from this approach, it would be very productive for experimenters and 

application developers who build, test and evaluate the performance of ANN 

models.
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APPENDIX A - Characteristic measures of data sets for
forecasting

The characteristic measures for forecasting are defined in chapter 4, Table 4.1. This 

appendix details the equations, algorithms and implementation for these measures. 

Following the detailed definitions the results for the data sets investigated are 

displayed.

A.1 Standard deviation (SD) - a
The standard deviation is calculated for a moving window along the time series. The 

result is a series of values which may be graphed. The graph allows analysis of the 

change in SD of the time series with time. The SD calculation and graphing are 

automated in a software utility developed and implemented in Visual Basic. The SD is 

calculated for a window size of l+INT(0.1*(Time Series Length)). The SD graph 

therefore lags the time series plot by this number of time steps. Formally, SD is 

calculated as:

where n is the window size. ( 1)

A.2 Mean - x
The means for a time series is calculated using the same recursive procedure outlined 

for the standard deviation. Formally, the mean is calculated as:

1 "M ean=~y\, where
¿=1

n is the window size. (2)

A.3 Stationarity
Stationarity is an important characteristic of that is necessary for many time series 

models. A series is said to be stationary if its mean and standard deviation remain 

constant with time. The graphs of these measures are therefore used to judge the 

degree of stationarity.



A.4 Autocorrelation Function (ACF)
The autocorrelation function measures how correlated a time series is with itself 

through time. This is calculated by lagging the time series (t-r) and performing a 

standard correlation against the unlagged series (/). By using a series of lag values a 

graph can be plotted of the autocorrelation. The ACFs in this study are calculated by 

the MINITAB statistical package. Formally, the ACF is calculated as:

ACF=Cov(x;, X (-T) / [Var(x/)*Var(x _̂r)]1/2

where Var() is the square of the standard deviation defined above and Cov() is the 

covariance which formally is calculated as:

1 "
Co\(X(, Xf^t) ^ \ x , +i —xt )(xl+i_T —Xl+i_T )

n M

A.5 Histogram
The histogram is a very simple analysis tool but gives invaluable insight into the 

frequency distribution of the data. It will for example show if the data is normally 

distributed which is an assumption made for many statistical measures (such as 

correlation coefficients).

A.6 Phase Diagram
The phase diagram is a graphical representation of the phase space of the time series 

under investigation. The series can be regarded as the output of a dynamical system 

where the amplitude of the signal X( and subsequent differentials of the amplitude 

(velocity, acceleration and so on) represent the dynamics.

The two dimensional graph consists of a series of points where the co-ordinates are 

defined by X( and Axf (e.g. the amplitude and velocity). This tool has been used to 

great effect in the investigation of chaotic systems (Gleick, 1988; p. 134; Feigenbaum, 

1983; p.34; Denton et al., 1990) and is a useful tool for investigating underlying order
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in seemingly random systems. The plots in this thesis are created using spreadsheet 

software.

A.7 Embedding Diagram
The embedding diagrams are two dimensional Cartesian plots of the delay space of a 

time series. A purpose designed software tool is used to display plots of Xf against Xf.T 

where t>0, and is the delay in units of time steps.

A.8 Synthetic data sets
Three synthetic data sets were generated for assisting time series analysis; a line, a sine 

wave and a series of random numbers. All three series contain 1306 data points so that 

they match the daily price currency data sets in length. The series are shown 

graphically below in Figure Al.

Figure Al- Sinusoidal, linear and random time series
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The sine wave series is generated from a function with a period of 100 time steps. The 

linear time series is of the form y=t where 1 < t < 1306. The random series was 

generated by a computer based random number function.
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Appendix B - Analysis of forecasting data
Two data bases of time series samples were selected for analysis and experimentation; 

the Lira closing price every five minutes (intra-day) and the Lira closing price at the 

end of daily trading (inter-day). The analysis and transformation of these data bases 

uses the tools described in appendices A and E.

B.1 - The five minute closing price data
The complete data set of closing prices for the lira (five minute data) is shown in Figure 

B1. The series is not a time series as there are some discontinuities in sampling where 

no trading takes place (such as overnight and weekends). The representation is useful 

however for inspection purposes. The variance and mean are also displayed, although 

they will be affected by the discontinuities.

Figure B1 - Lira five minute closing price database (not a time series)

This data set is too discontinuous for both analysis and training purposes. The data is 

therefore split into multiple distinct series containing the consecutive trades found 

during trading days. The time series resulting from this breakdown are shown in Figure 

B2.
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With the database split into shorter series of continuous data, it is possible to attempt 

an analysis of the data for forecasting. The first transformation performed was to use 

the first differential of the series rather than the price values. The transformation yields

the series shown in Figure B3.

The series are now distributed around means that are close to zero and the differentials 

(i.e. the movements between successive prices) are now the large feature of the series. 

Investigations of three of the longer series are given in Figures B4.
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figure B4 - Three sample series with mean and a scaled SD (x5)

The plots show that the nature of the standard deviations of the series can vary with 

time (varying volatility) with the mean now reasonably constant. The differentiation 

has, to a great extent, de-trended the time series. The series are still non-stationary. 

The histograms for the three series shown in Figure B.4 are displayed below in Figures 

B.5, B.6 and B.7.
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Figure B.5 - Histogram for series LR3_DIFF.
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Figure B.6 - Histogram for series LR5 DIFF.
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Figure B.7 Histogram for series LR11_DIF
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B.2 - The daily closing price data
The daily closing price time series for the Lira is shown in Figure B8. The graph also 

shows the windowed mean (moving average) and an offset and scaled standard 

deviation (SD). The results of these basic measures can be compared to those for the 

artificial series shown in Figure B9.

Figure B.9 - Time series, mean and SD plots (win=131, SD scaling x20)

The lira time series clearly shows that the data is highly non-stationary having large 

variations in the SD and mean with time. The data set was transformed to use the



difference between successive values (the first differential). The time series plot for 

this transformation is shown in Figure B.10 with the phase plane plots in Figures B.l 1 

and B.12.
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Figure B.10 - Differential of Italian Lira daily closing prices

Figure B .ll - Phase diagram of Italian Lira (.x vs dx/df)
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Figure B.12 - Phase plot of Italian Lira (dx/dt vs. dlxr/dt2)
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Figure B.13 - Histogram of daily Lira closing prices.

The distribution of prices for the Lira (Figure B.10) is clearly not a normal distribution.



B.3 Prediction Results (five minute data)
The following graphs show the prediction of two time series models on test data 

following training. The first graph is for experiment 1 and the second graph experiment 

5 where improved prediction results were obtained (by both performance metrics; 

‘random walk ratio’ and ‘direction correct’).

Figure B.14 Experiment 1 prediction (RWR=0.92, DC=55.63%)

Figure B.15 Experiment 5 prediction (RWR=0.89,1)C=59.29%)
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APPENDIX C - Characteristic measures of data sets for classifiers

Table 5.1 lists the characteristic measures used for classification experiments. This 

appendix details the calculations necessary to arrive at these measures and the related 

Appendix D details the characteristic values of the experimental data.

C.1 Sample Size
The sample size, n, is the integer number of data samples without missing values that 

are available for experiment. Many evaluations will split the n available cases into two 

or more groups so that some examples are used for training and some are retained for 

testing the performance of algorithms.

C.2 Features
Features, f  is an integer measure of the number of features in each case of the sample 

data set of n cases. The sample set therefore contains n.f data elements.

C.3 Binary Features
The integer value, fjj, is a measure of the number of binary features there are, from the 

total number of features f. There will be nfb binary data elements in the data set.

C.4 Ordinal Features
The integer value, f 0, is a measure of the number of ordinal features, from the total 

number of features f.

C.5 Classes
The number of classes, c, is an integer measure of the total number of classifications 

that exist in the data set. A data set for human gender classification, for example, 

would have two classes (male and female).

C.6 Entropy of a feature
Entropy is a measure normally applied to physical systems. It is used here in the 

information theoretic sense, where it provides a measure of the probability of a value 

occurring for a given feature. Formally the calculation of entropy for a feature is 

//(/>=-;>> >og2 a  (c .i)
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for the range of values, i, that the feature takes.

For binary features, the entropy value is easier to calculate (than continuous valued 

features) since it only requires totalling the occurrences of 0 and 1 (to and 17 

respectively) in the data set of n values, and using the formula:

H(fb)=-—\log2f — 1log2f — | (C.2)
n \ n J n  \ n  J

A binary feature with little information content will have a low (close to zero) entropy 

value. If the feature has a continuous value of 1 or 0 then the entropy value will be 0. 

The highest entropy value is obtained when there is equal probability of 1 or 0 

occurring, yielding:

WequeaD = 0.5log2(0.5)+0.5 log2(0.5)=1.0

The entropy value of a feature does not give much insight as to how useful the feature 

may be in aiding prediction of given class. To do this requires the calculation of joint 

‘feature-class’ entropy values.

C.7 Joint Entropy of features and classes
Joint entropy provides a measure of the information content in combinations of features 

and classes. If the joint entropy of a combination of a feature and a class are high, it is 

an indicator that the feature may prove to be useful in a classifier. The calculation of 

joint entropy follows logically from the univariate case;

H(fh, c ) = - Y p , M Pll (C.3)
ij

where probability py  is for the occurrence of the z-th value of feature/in class Cj.

High joint Entropy values will again occur when the distribution of probabilities of 

feature and class combinations is equal. Taking a combination of one class and one 

feature, both having binary values and with equal probability of all four combinations 

occurring yields the following entropy value:

H(fcequal)=-0.25log2(0.25)-0.25log2(0.25)-0.25log2(0.25)-0.25log2(0.25)

H(fc equal) ~2- 0
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APPENDIX D - Analysis of classification data

The tables below show the entropy values and rankings of features and classes for the 
classification data.

D1. Analysis of feature Entropy H(f)
The analysis of feature entropies (Table D2) exposes which features contain high levels 
of information. Any features that are low in value are likely to be poor in aiding 
classifier methods to distinguish between classes. The following features are high in 
entropy;
Sex
Ha
Onab
Spec4
Uldl5
Focus 14

D2 Analysis of class-feature entropy H(c,f)
The analysis of joint class-feature entropies reveals which combinations are high in 
information and therefore potentially useful in classifiers. The following table lists the 
features that score highly for each class.
ClassF Class2 Class3 Clas|4
SEX FOCUS 14 HA FOCUS 10
HA HA SEX SPEC4
ONAB SEX FOCUS6 SEX
ULD15 SPEC4 SPEC4 ULD4
SPEC4 ONAB ULD15 ULD2
FOCUS 14 ULD15 SPEC3 ULD15
SPEC14 ULD6 ONAB SPEC3
SPEC3 ULD5 FOCUS 13 HA
Table D1 - Features with highest joint entropy ranked by class and magnitude

D.3 Entropy values for test classification data set
Field Name Lo

w

Hig

h

Bin. Entrop

y m

Joint Entropy H(c,j)

1 YR 69 89 0 - Not calculated

2 AGE 0 99 0 - Not calculated

3 SEX 0 1 1 0.9919 0.9507 0.5553 0.4799 0.4271

4 HA 0 1 1 0.9946 0.9599 0.5681 0.4915 0.3877

5 ONAB 0 1 1 0.8455 0.8397 0.5336 0.4495 0.3836

6 SPEC1 0 1 1 0.1603 0.5592 0.4722 0.4229 0.0000
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7 SPEC2 0 1 1 0.2730 0.5861 0.4877 0.4262 0.3786

8 SPEC3 0 1 1 0.5968 0.6936 0.4962 0.4503 0.3911

9 SPEC4 0 1 1 0.9535 0.8177 0.5553 0.4550 0.4320

10 SPEC5 0 1 1 0.0782 0.5093 0.4807 0.4175 0.0000

11 SPEC6 0 1 1 0.2182 0.5481 0.4924 0.4192 0.3824

12 SPEC7 0 1 1 0.0345 0.5011 0.4734 0.4175 0.0000

13 SPEC8 0 1 1 0.1302 0.5423 0.4746 0.4175 0.3806

14 SPEC9 0 1 1 0.2935 0.5627 0.4932 0.4355 0.3778

15 SPEC10 0 1 1 0.1505 0.5609 0.4746 0.4175 0.3778

16 SPECI1 0 1 1 0.1232 0.5191 0.4722 0.4287 0.0000

17 SPEC12 0 1 1 0.1916 0.5537 0.4746 0.4208 0.3857

18 SPEC 13 0 1 1 0.0345 0.5093 0.4722 0.0000 0.0000

19 SPEC14 0 1 1 0.5519 0.7077 0.5104 0.4311 0.3786

20 SPEC15 0 1 1 0.4429 0.6548 0.5078 0.4249 0.3786

21 SPEC16 0 1 1 0.0190 0.5039 0.0000 0.0000 0.0000

22 ULD1 0 1 1 0.1946 0.5384 0.4976 0.4175 0.0000

23 ULD2 0 1 1 0.3254 0.5764 0.4860 0.4243 0.3950

24 ULD3 0 1 1 0.3603 0.5861 0.4969 0.4396 0.3786

25 ULD4 0 1 1 0.2884 0.5555 0.4788 0.4184 0.4003

26 ULD5 0 1 1 0.5469 0.6598 0.5116 0.4430 0.3867

27 ULD6 0 1 1 0.4166 0.5986 0.5153 0.4305 0.3830

28 ULD7 0 1 1 0.0939 0.5167 0.0000 0.4236 0.3786

29 ULD8 0 1 1 0.3134 0.5893 0.4877 0.4256 0.3872

30 ULD9 0 1 1 0.0244 0.5011 0.4722 0.0000 0.3778

31 ULD10 0 1 1 0.5124 0.6858 0.5110 0.4275 0.3799

32 ULD11 0 1 1 0.1916 0.5384 0.4852 0.4281 0.0000

33 ULD12 0 1 1 0.0782 0.5039 0.4788 0.4166 0.3806

34 ULD13 0 1 1 0.0244 0.4979 0.0000 0.4184 0.0000

35 ULD14 0 1 1 0.1405 0.5403 0.4807 0.4200 0.0000

36 ULD15 0 1 1 0.8404 0.8286 0.5283 0.4516 0.3911

37 FOCUS 1 0 1 1 0.2544 0.5696 0.5018 0.0000 0.0000
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38 FOCUS2 0 1 1 0.2239 0.5258 0.4778 0.4416 0.0000

39 FOCUS3 0 1 1 0.0295 0.5093 0.0000 0.0000 0.0000

40 FOCUS4 0 1 1 0.1916 0.5797 0.4768 0.4175 0.3778

41 FOCUS5 0 1 1 0.3847 0.6523 0.0000 0.4350 0.3799

42 FOCUS6 0 1 1 0.5368 0.6846 0.0000 0.4602 0.0000

43 FOCUS7 0 1 1 0.3955 0.6671 0.4947 0.0000 0.0000

44 FOCUS8 0 1 1 0.2095 0.5696 0.4768 0.0000 0.3862

45 FOCUS9 0 0 1 0.0000 0.0000 0.0000 0.0000 0.0000

46 FOCUS 10 0 1 1 0.6223 0.6204 0.4746 0.4229 0.4388

47 FOCUS 11 0 1 1 0.1052 0.5363 0.0000 0.0000 0.3812

48 FOCUS12 0 1 1 0.2677 0.5955 0.4722 0.4311 0.3786

49 FOCUS 13 0 1 1 0.3847 0.6162 0.4825 0.4445 0.3778

50 FOCUS 14 0 1 1 0.8480 0.7623 0.5966 0.4256 0.0000

51 FOCUS 15 0 1 1 0.1161 0.5280 0.4757 0.4208 0.3793

52 ECOLIONLY 0 1 1 0.7364 0.0000 0.6233 0.0000 0.0000

53 STREPAONLY 0 1 1 0.6194 0.0000 0.0000 0.5107 0.0000

54 STREPBONLY 0 1 1 0.5469 0.0000 0.0000 0.0000 0.4459

55 OTHERCLASS 0 1 1 0.9995 1.0066 0.0000 0.0000 0.0000

Table )2 - Entropy values for :eatures and classes
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APPENDIX E - Software developed to support research

Software was developed to investigate data sets and simulate algorithms. The programs 

developed are discussed in this appendix. All of the software was developed using 

Microsoft Visual Basic 3.0 (Professional). Visual Basic facilitates rapid development 

of Windows compatible programs having highly graphical output. Most of the software 

developed and described here was for visualisation of data or algorithm behaviour, 

hence an important requirement was for a good graphical interface.

E.1 LVQ simulation
The LVQ family of algorithms (used in Chapter 5 for classification problems) was 

investigated using a software simulation program. The software is flexible in that it 

allows user defined data sets to be configured (having two features) with up to 5 

categories. Vectors (and data points) can then be initialised for each category and can 

be repositioned using the cursor. This is an important feature since it has been found 

that the initial positioning of the class representative vectors strongly affects the results 

of training. The vectors are trained with LVQ or OLVQ1 (algorithms written into the 

software) using the equations presented in chapter 2 (section 2.3.3.4). During training 

the vectors can be monitored as they move in the 2D feature space and a trace of their 

paths is drawn. An example is shown is Figure E3.

The software also has the capability to generate 1-Nearest Neighbour or 3-Nearest 

Neighbour decision surfaces for the original data set and the class representative 

vectors. This capability is very useful as it shows how well a set of class representative 

vectors will model the original decision surface.
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Figure E2

Figure E3 Figure E4

Figures El- E4 Screen displays from LVQ simulation software. (El) Synthetic 
four class data set with 1-NN class boundaries (E2) Data set with initial class 
representative vector positions (E3) vector movement during training with 
OLVQ1 with alpha=0.01 (E4) 1-NN class boundaries for trained vectors.

The stability of the OLVQ1 and LVQ algorithms is dependent on the initial placement 

of the class representative vectors. As Figure E3 illustrates, the vectors rapidly migrate 

to suitable positions in feature space if they are initially placed in a region majority 

populated by data points of the vectors class.

Figure E5 and E6 illustrate what happens when a vector is initially placed in a region 

populated mostly by data points of another class. As can be seen, the class B 

representative vector (labelled 2) is pushed away from the region by data point from the 

closest dominant class (which is class C). Similarly, the class C representative node is
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initially forced away but comes sufficiently close to the class C again so that it migrates 

towards a suitable position in feature space.

Figure E5 Figure E6



E.2 Classification analysis
Following the method proposed in chapter 3, data sets for classification problems 

require characteristic measures to be taken so that appropriate algorithms can be 

selected. A software program was developed to calculate the data characteristics 

described in Chapter 5 (the Septicaemia problem).

Figure E7 - Software to calculate entropy values of classification data

The software calculates, for each feature, the highest and lowest value, whether the 

feature is binary, and for cases where the feature is binary; its entropy and joint class 

entropy with each class. The equations used for entropy calculations are those given in 

appendix C, sections C.6 and C.7.
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E.3 Time series analysis
Chapter 4 describes a series of time series characteristics that help in identifying 

appropriate forecasting algorithms. A further piece of software was developed to help 

analyse time series data sets and calculate or display some of these characteristics.

Figure E8 - Software to calculate time series characteristics

The software shown in Figure E8 calculates for each data series;

(1) The highest and lowest value

(2) Time series plot shown alongside the mean and variance (to investigate 

stationarity)

(3) Histogram (to investigate data distribution)

The mean and variance are calculated using a variable time window of length /; 

l=l+0.1*n

where n is the number of data points in the data series. The time window the mean and 

variance to be calculated and charted along the data series thereby showing any change
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with time. A condition of stationarity is that the mean and variance of a time series do 

not alter with time.

A histogram can also be displayed for a given series. An example is shown in Figure 

E9 below.

400 T

Figure E9 - Histogram of 5 minute lira time series

The time series range is divided into a sequence of 30 equal width ‘bins’ for which 

totals are generated and the histogram generated. The shape of the distribution is far 

from normal.

Figure E10 - Embedding plots of lira time series (5 minute sample)

An embedding diagram plots the relationship between lagged time points. The two 

plots in Figure E l0 are from the same time series (Italian Lira 5 minute samples) each 

plot having X( along the x axis and X[+n along the y axis (where n=l and 5
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respectively). Embedding plots can be useful in identifying how many points are 

needed for a tapped delay line.
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E.4 Chaos identification and simulation
Some useful concepts from chaos work have been incorporated into a software program 

to identify and compare the characteristics of chaotic and predictable systems. Screen 

shots of the software are shown below to illustrate its functionality.

The software will display the following for a given time series;

(1) A time series plot of data points and a linearly interpolated plot

(2) A phase diagram or phase portrait

A phase plane plot is a representation of the state space of a system. Commonly, the x- 

axis will be the value of the variable (amplitude) and the y axis will be the first 

differential of the variable (velocity). Formally for a variable vf,

*  axis t

_dv
yaxis~~di

In systems that have cycles there will be repeating trajectories or orbits. In chaotic 

systems, the orbit will typically show trajectories close together at one point and 

further apart at others (Denton, 1990:1429;) with some form of attractor present.
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The phase plane plot can be extended to any number of dimensions (more than 3 are 

hard to visualise) with each dimension allowing one more degree of freedom of the 

system being investigated to be plotted. Gleick discusses phase plane plots in two 

dimensions (Gleick, 1988:50).
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APPENDIX F -  LVQ Experiments

F.1 Software
This appendix documents the LVQ classification experiments. Two pieces of software 
were used:

1) Neural Works Professional (LVQ algorithm), version 4.03.
This is a commercial package offering a range of neural network paradigms with a 
Graphical User Interface to assist in creation of models. Graphical tools are available to 
monitor training in real time. The experiments conducted ran the software on a UNIX 
platform (Sun Sparc 2).

2) The 'Learning Vector Quantization Program Package', version 2.1 (LVQ team).
This software is freely available by anonymous ftp from the LVQ research team in 
Helsinki. The experiments conducted ran the software on a IBM PC platform (486DX 
processor running at 33MHz).

F.2 Data files
The training and test data files each have a random (mutually exclusive) population 
sample of 1664 episodes from the larger database of over 5000 episodes. Each episode 
has a normalised feature vector of 51 elements (mostly binary) to represent the 
following :

Variable Type
Year Discrete
Age Discrete
Sex Binary(l) M/F
Whether the infection was acquired in hospital Binary(l) Y/N
Whether the patient is already on antibiotics Binary(l) Y/N
Medical speciality of the ward Binary()
Underlying Disease (If any) Binary()
Anatomical Site of infection BinaryQ

Within the database there are episodes with approximately 55 different types of micro-
organism causing the septecaemic condition. To reduce the complexity of the 
classification, the data set has been reduced to three common (statistically) 
microorganisms with the other microorganisms being grouped as a large category 
named 'others'. The test file population sizes of these categories is given below:

TEST FILE microorganism population sizes:
Micro-organism (Episodes)
B - Escherichia coli (349)
C - Streptococcus Pneumoniae (239)
D - Staphylococcus Aureus (206)
A - OTHERS (870)
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Filenames
TRAINING FILE : 'norm.csv'
TEST FILE : 'normtest.csv'

F.3 Results
The results are presented using the metrics chosen (average and standard error) for 
ranking. The results are compared to the nearest neighbour technique.

Results Summary for 1 CODEBOOK VECTOR PER CLASS :

CODEBOOK A B C D Standard Average
lvq_vect.cod 71.84 64.76 36.82 83.58 66.78 64.25
normr.cod 93.22 0.00 12.55 84.47 61.00 47.56
Hybrid 1.cod 57.93 64.18 11.72 82.53 55.65 54.09
Hybrid2.cod 48.74 77.94 52.30 82.04 59.50 65.26
Hybrid2a.cod 92.64 0.00 17.15 83.98 61.30 48.44
Hybrid2b.cod 90.00 43.55 9.21 78.16 67.18 55.23
Hybrid2c.cod 94.25 27.79 0.84 78.64 64.96 50.38
Hybrid3.cod 0.69 84.81 89.54 0.00 31.01 43.76
Hybrid3a.cod 88.62 53.87 5.02 76.70 67.85 56.05
Hybrid3b.cod 80.46 62.18 25.94 76.21 68.27 61.20
Hybrid3c.cod 5.86 89.40 87.87 4.85 35.04 47.00
Hybrid3d.cod 81.38 59.03 16.32 83.01 67.55 59.94
Hybrid3e.cod 78.74 61.32 30.54 77.67 68.03 62.07
Hybrid3f.cod 86.67 51.00 13.39 79.13 67.73 57.55
Hybrid3g.cod 82.76 55.30 27.62 76.21 68.27 60.47
Hybrid3h.cod 80.00 61.03 34.73 78.00 69.29 63.48
Hybrid3i.cod 75.40 84.95 64.18 45.61 69.95 67.54
Hybrid3j.cod 79.08 65.62 33.89 81.07 70.01 64.92
hybrid3k.cod 78.28 79.13 65.62 40.17 70.25 65.80
hybrid31.cod 73.45 85.92 66.19 46.03 69.53 67.90

1-NN 66.90 55.87 44.77 73.30 62.20 60.21
3-NN 66.81 66.07
5-NN 68.12 67.02

Results summary for VARYING CODEBOOK VECTORS PER CLASS

LVQ 1/Class 69.53 67.90 hybrid31.cod
LVQ 2/Class(even) 70.73 66.22 2c_e6.cod
LVQ 2/Class(proportional) 71.27 67.54 2c_p8.cod
LVQ 3/Class(even) 71.21 67.85 3c_el0.cod
LVQ 3/Class(proportional) 70.43 67.36 3c_p3.cod
LVQ 4/Class(even) 70.19 67.04 4c_e5.cod
LVQ 4/Class(proportional) 69.77 67.53 4c_p5.cod
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F.4 Experimental Data

• Experiment 1

Description
This network uses the 51 input vector and was trained on the Neural Ware software. 
For validation the generated code book vectors were transferred across to the Kohonen 
Software and the classification run again. The slight discrepancy in % classification 
rates (equivalent to 1 episode) is probably due to rounding errors during code book 
transfer (file was limited to 2 decimal places). The confusion matrix was generated 
using the Neural Ware test output file and a routine written in FOXPROW.

Software Commands
TRAINING FILE : 'norm.csv', TEST FILE : 'normtest.csv'
Command L in e»  accuracy -din normtest.csv -cin lvq_vect.cod

Results

Confusion matrix :
B C D A

B 226 8 0 131
C 7 87 1 62
D 1 6 172 53
A 115 138 33 624

Classification accuracy:
Accuracy A^ Accuracy B^

B 64.76% 64.76%
C 36.82% 36.83%
D 83.58% 83.49%
A 71.84% 71.72%

Overall 66.78% 66.72% (Standard)
Overall 64.25% 64.20% (Average)

CODE BOOK FILE GENERATED : Ivq veci, cod

• Experiment 2 

Description
LVQ-1 codebook per class Network generated by the Kohonen software. Again it uses 
the 51 input vector with 4 classifications. The code book vectors were generated using

'Classification accuracy A is calculated from the codebook vectors using the Kohonen software 
'accuracy.exe' with the file 'lvq_vect.cod' as the vector file and the test set 'normtest.csv'.

"Accuracy B is from the Neural Ware output file, from which the confusion matrix was also generated.
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the Kohonen 'eveninit.exe' utility. Training took place with ’olvql.exe' using the 
following parameters :
-rlen 30000, -ein norm.cod (generated by 'eveninit.exe'), -din norm.csv -cout normr.csv 

Software Commands
TRAINING FILE : 'norm.csv', TEST FILE : 'normtest.csv'
Command lin e »  accuracy -din norm.csv -ein normr.cod

Results
A (870) 93.22%
D (206) 84.47%
B (349) 0.00%
C (239) 12.55%
Overall 61.00% (Standard calculation)

GENERATED CODEBOOK FILE : 'normr.cod'

•Experiment 3 

Description
This codebook vector file is the result of merging vectors A,C & D from 'normr.cod' 
and B from 'lvq_vect.cod'.

Software Commands
TRAINING FILE : N/A , TEST FILE : 'normtest.csv'
No training

Results
A (870) 57.93%
D (206) 82.53%
B (349) 64.18%
C (239) 11.72%

GENERATED CODEBOOK FILE : hybridl.cod

•Experiment 4 

Description
This codebook vector file is the result of merging vectors A & D from 'normr.cod' and 
B & C from 'lvq_vect.cod'.

TRAINING FILE : N/A , TEST FILE : ’normtest.csv'

Results
A (870) 48.74%
D (206) 82.04%
B (349) 77.94%
C (239) 52.30%
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Overall 59.50% (Standard) 
65.26% (Average)

GENERATED CODEBOOK FILE : Hybrid2.cod

•Experiment 5 

Description
This vector file was generated by using olvql on the hybrid2.cod file from experiment 
4. The command line detailing parameters is given below :

Software Commands
TRAINING FILE : 'norm.csv' , TEST FILE 'normtest.csv'
Command Line >olvql -cin hybrid2.cod -cout hybrid2a.cod -din norm.csv -rlen 1664

Results
A (870) 92.64%
D (206) 83.98%
B (349) 0.00%
C (239) 17.15%
Overall 61.30% (Standard) 

48.44% (Average)

GENERATED CODEBOOK FILE : Hybrid2a.cod

•Experiment 6

Description
This solution was generated from the 'hybrid2.cod' file being further adapted by the 
lvq2 algorithm.

Software Commands
TRAINING FILE : 'norm.csv' , TEST FILE 'normtest.csv'
>lvq2 -din norm.csv -rlen 1664 -cin hybrid2.cod -cout hybrid2b.cod -alpha 0.05 -win 
0.3

Results
A (870) 90.00%
D (206) 78.16%
B (349) 43.55%
C (239) 9.21%
Overall 67.19% (Standard)

55.23% (Average)

GENERATED CODEBOOK FILE : hybrid2b.cod

•Experiment 7
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Description
This solution again uses lvq2 but for another 1664 iterations.

Software Commands
TRAINING FILE : 'norm.csv' , TEST FILE 'normtest.csv'
>lvq2 -din norm.csv -rlen 1664 -ein hybrid2b.cod -cout hybrid2c.cod -alpha 0.05 -
win0.3

Results
A (870) 94.25%
D (206) 78.64%
B (349) 27.79%
C (239) 0.84%
Overall (Standard)

50.38% (Average)

GENERATED CODEBOOK FILE : hybrid2c.cod

•Experiment 8 

Description
This solution is from combination of vectors A & D from 'hybrid2b.cod' 
and B & C from 'hybrid2.cod'.

TRAINING FILE : N/A , TEST FILE : 'normtest.csv'

Results
A (870) 0.69%
D (206) 0.00%
B (349) 84.81%
C (239) 89.54%
Overall 31.01%

43.76%
(Standard)
(Average)

GENERATED CODEBOOK FILE : hybrid3.cod

•Experiment 9 

Description
This solution uses 'hybrid3.cod' with lvq2 for 500 iterations.

Software Commands
TRAINING FILE : 'norm.csv' , TEST FILE : 'normtest.csv'
>lvq2 -din norm.csv -rlen 250 -cin hybrid3.cod -cout hybrid3b.cod -alpha 0.05 -win0.3 

Results
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A (870) 88.62%
D (206) 76.70%
B (349) 53.87%
C (239) 5.02%
Overall 67.85% (Standard)

56.05% (Average)

GENERATED CODEBOOK FILE : hybricBa.cod

•Experiment 10

Description
This solution uses 'hybrid3.cod' with lvq2 for 250 iterations.

Software Commands
TRAINING FILE : 'norm.csv' , TEST FILE : 'normtest.csv'
>lvq2 -din norm.csv -rlen 150 -ein hybrid3.cod -cout hybrid3b.cod -alpha 0.05 -win 0.3 

Results
A (870) 80.46%
D (206) 76.21%
B (349) 62.18%
C (239) 25.94%
Overall 68.27% (Standard)

61.20% (Average)

GENERATED CODEBOOK FILE : hybrid3b.cod

•Experiment 11

Description
This solution is based on 'hybrid3.cod' for 50 iterations of lvq2.

Software Commands
TRAINING FILE : 'norm.csv' , TEST FILE : 'normtest.csv'
>lvq2 -din norm.csv -rlen 50 -ein hybrid3.cod -cout hybrid3c.cod -alpha 0.05 -win 0.3 

Results
A (870) 5.86%
D (206) 4.85%
B (349) 89.40%
C (239) 87.87%
Overall 35.04% (Standard)

47.00% (Average)

GENERATED CODEBOOK FILE : hybrid3c.cod

•Experiment 12
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Description
This solution is based on 'hybrid3.cod' for 1000 iterations of LVQ2 and 
a smaller window value.

Software Commands
TRAINING FILE : 'norm.csv' , TEST FILE : 'normtest.csv’
>lvq2 -din norm.csv -rlen 1000 -cin hybrid3.cod -cout hybrid3d.cod -alpha 0.05 -win
0.2

Results
A (870) 81.38%
D (206) 83.01%
B (349) 59.03%
C (239) 16.32%
Overall 67.55% (Standard) 

59.94% (Average)

GENERATED CODEBOOK FILE : hybrid3d.cod

•Experiment 13 

Description
This code book vector set is based on ’hybrid3.cod' with training using 
lvq2 (2000 iter.) and small window size.

Software Commands
TRAINING FILE : 'norm.csv' , TEST FILE : 'normtest.csv'
>lvq2 -din norm.csv -rlen 2000 -cin hybrid3.cod -cout hybrid3e.cod -alpha 0.05 -win
0.2

Results
A (870) 78.74%
D (206) 77.67%
B (349) 61.32%
C (239) 30.54%
Overall 68.03% (Standard) 

62.07% (Average)

GENERATED CODEBOOK FILE : hybrid3e.cod

• PHASE 2 EXPERIMENTS

•Experiment 14
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Description
This code book vector set is based on the hybrid3.cod set and trained with 
the lvq2 for 3000 iterations.

Software Commands
TRAINING FILE : 'norm.csv' , TEST FILE : 'normtest.csv'
>lvq2 -din norm.csv -rlen 3000 -cin hybrid3.cod -cout hybrid3f.cod -alpha 0.05 -win
0.2

Results
A (870) 86.67%
D (206) 79.13%
B (349) 51.00%
C (239) 13.39%
Overall 67.73% (Standard) 

57.55% (Average)

GENERATED CODEBOOK FILE : hybrid3f.cod

•Experiment 15 

Description
This code book vector set is based on the hybrid3e.cod set and trained with 
the lvq2 for 1000 iterations with a much smaller 'window' of w=0.1.

Software Commands
TRAINING FILE : 'norm.csv' , TEST FILE : 'normtest.csv'
>lvq2 -din norm.csv -rlen 1000 -cin hybrid3e.cod -cout hybrid3g.cod -alpha 0.05 -win 
0.1

Results
A (870) 82.76%
D (206) 76.21%
B (349) 55.30%
C (239) 27.62%
Overall 68.27%

60.47%

GENERATED CODEBOOK FILE : hybrid3g.cod

(Standard)
(Average)

•Experiment 16 

Description
This code book vector set is based on the hybridb.cod set and trained with 
the lvq2 for 100 iterations with w=0.1

Software Commands
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TRAINING FILE : 'norm.csv' , TEST FILE : 'normtest.csv'
>lvq2 -din norm.csv -rlen 100 -ein hybrid3b.cod -cout hybrid3h.cod -alpha 0.05 -win 
0.1

Results
A (870) 80.00%
D (206) 78.00%
B (349) 61.03%
C (239) 34.73%
Overall 69.29% (Standard)

63.48% (Average)

GENERATED CODEBOOK FILE : hybrid3h.cod

•Experiment 17 

Description
This code book vector set is based on the hybrid3b.cod set and trained with 
the lvq2 for 30000 iterations with a very low w=0.02.

Software Commands
TRAINING FILE : ’norm.csv’ , TEST FILE : 'normtest.csv'
>lvq2 -din norm.csv -rlen 30000 -cin hybrid3b.cod -cout hybrid3i.cod -alpha 0.05 -win
0.02

Results
A (870) 75.40%
D (206) 84.95%
B (349) 64.18%
C (239) 45.61%
Overall 69.95% (Standard) 

67.54% (Average)

GENERATED CODEBOOK FILE : hybrid3i.cod

•Experiment 18 

Description
This code book vector set is based on the hybrid3b.cod set and trained with 
the lvq2 for 30000 iterations with a very low w=0.02 and alpha=0.04.

Software Commands
TRAINING FILE : 'norm.csv' , TEST FILE : 'normtest.csv’
>lvq2 -din norm.csv -rlen 30000 -cin hybrid3b.cod -cout hybrid3j.cod -alpha 0.04 -win
0.02

Results
A (870) 79.08%
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D (206) 81.07%
B (349) 65.62%
C (239) 33.89%
Overall 70.01% (Standard)

64.92% (Average)

GENERATED CODEBOOK FILE : hybrid3j.cod

•Experiment 19

Description
This code book vector set is based on the hybrid3b.cod set and trained with 
the lvq2 for 30000 iterations with a low w=0.03 and w=0.02.

Software Commands
TRAINING FILE : 'norm.csv' , TEST FILE : 'normtest.csv'
>lvq2 -din norm.csv -rlen 30000 -cin hybrid3b.cod -cout hybrid3k.cod -alpha 0.03 -win
0.02

Results
A (870) 78.28%
D (206) 79.13%
B (349) 65.62%
C (239) 40.17%
Overall 70.25% (Standard) 

65.80% (Average)

GENERATED CODEBOOK FILE : hybrid3k.cod

•Experiment 20

Description
This code book vector set is based on the hybrid3b.cod set and trained with 
the lvq2 for 300 iterations with a very low alpha=0.01 and w=0.02.

Software Commands
TRAINING FILE : 'norm.csv' , TEST FILE : 'normtest.csv’
>lvq2 -din norm.csv -rlen 30000 -cin hybrid3i.cod -cout hybrid31.cod -alpha 0.01 -win
0.02

Results
A (870) 73.45%
D (206) 85.92%
B (349) 66.19%
C (239) 46.03%
Overall 69.53% (Standard) 

67.90% (Average)
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GENERATED CODEBOOK FILE : hybrid31.cod

•Experiment 21

The training set was used as the derivation set for the 1 -NN algorithm using software 
written for the purpose (written in CLIPPER - a database language). The software 
generated a confusion matrix of the classification categories by iterating through the
test set. (There are therefore 2,768,896 (1664-2) euclidean distance measurements to be 
made). This algorithm is computationally expensive.

CONFUSION MATRIX

A B C D
A 582 141 114 45
B 142 195 10 3
C 100 11 107 7
D 46 2 8 151

Results
A (870) 66.90%
D (206) 73.30%
B (349) 55.87%
C (239) 44.77%
Overall 60.21%

62.20%
(Average)
(Standard)
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