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Abstract

The visual search process is required when locating an object in some region 

of space. To perform this search two capabilities must be available: the ability 

to recognise the object when it comes into view; and a way of selecting these 

views. Visual search is often complicated by object occlusion and low spatial 

resolutions of the object. Although the human visual system performs this task 

effortlessly, the mechanisms of it are not properly understood. Object colour 

and geometry, however do play an important role. This thesis develops an 

object search methodology which assumes that a computer vision system 

captures both wide-angle and zoomed images of the scene containing the 

object. Since most of the research has focused on object recognition using 

geometry, this system is purely colour-based. It is not expected that object 

colour will always give a definitive solution, however database pruning will 

often occur leading to reduced search times.

The thesis argues that because colour is salient and more resilient than 

geometry to decreases in spatial resolution, it is more appropriate for visual 

search when the object occupies a small spatial resolution in an image with a 

large field of view. It also demonstrates that colour can be used to recognise 

objects when they occupy most of the field of view; as well as discriminate 

between database models with similar colour proportions but different region 

topologies. These conclusions are supported by the results produced by three 

algorithms, two of which perform colour object search and one that performs 

colour object recognition.

The first object search algorithm uses image locations containing salient object 

colours as a method of selecting views. Each of these views are ranked 

indicating which view most likely contains the object. The second object 

search algorithm identifies image regions with similar colour and topology as 

the object. These results are produced in a best-first order. The object 

recognition algorithm uses an invariant based on region area to identify three



corresponding model and image regions. A transformation is calculated to 

bring the model and object into the same viewpoint where region matches are 

based on position and colour.

Each of these methods produced good results in complex indoor scenes with 

fluorescence and/or tungsten filament lighting; also the search speeds were 

impressive.
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Chapter 1

Using Colour in Object Search

1.1 Introduction

The visual search process is required when locating an object in some region 

of space. To perform this search two capabilities must be available: the ability 

to recognise the object when it comes into view; and a way of selecting these 

views. Visual search is often complicated by object occlusion and low spatial 

resolutions of the object. Although the human visual system performs this task 

effortlessly, the mechanisms of it are not properly understood. Object colour 

and geometry, however do play an important role. This thesis explores the 

problem of colour object search using a computer vision system and presents a 

colour object search/recognition methodology for efficient object search.

Although most of the research on object recognition uses object geometry 

(where the object occupies most of the field of view), object colour is better 

for object search —  when the object is at a reduced spatial resolution. Object 

colour, which is region-based, is both salient and resistant to reduced spatial 

resolutions, unlike geometric primitives (e.g. lines) which are not well-defined 

at these resolutions. Since object colour is region-based, the object being 

represented must be partitioned into regions of constant reflectance. These 

regions must be identifiable at the reduced spatial resolutions if object search 

is to be successful. Objects containing textured regions are often difficult to 

model especially when the texture is both regular and irregular. Often it is 

appropriate to represent the object with a few of its non-textured regions; these 

regions may be disjoint. This affects the object representation used, for 

example a model based on region adjacency could not be used.
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The most straightforward way to search for an object is to use linear search. In 

linear search all image regions are examined at high spatial resolution. If a 

geometric object recognition algorithm were used then it would have to search 

each view for the object. This process is computationally expensive. To reduce 

this search more efficient methods of selecting the views are required. In this 

work colour is used. Given an image containing an object at a reduced spatial 

resolution, image locations which contain salient object colours are identified 

(cues) — object localisation. Each of these cues is ranked in best-first order so 

that the view which most likely contains the object is examined first. This 

search strategy improves the overall search time. Two things must be ensured 

however: that the searcher does not produce a negative result when the object 

is actually in the image (false negative results); and that the number of times 

the searcher returns a positive result when the object is actually not present 

(false positive results) is kept to a minimum. What is also important is that 

these cues are generated quickly.

In recent years colour has become increasingly important in object 

recognition, object search and image retrieval. Although the colour of an 

object is often not unique, it can discriminate between objects of different 

colour [Swa90][SO95] — however geometric object recognition is required 

when the proportion and topology of the colour of objects under consideration 

are similar. Although colour is an attractive visual cue (it is both salient and 

stable), it was not exploited in object search and recognition until Wixson and 

Ballard [WB89] and Swain [Swa90], The main reason for the slow progress in 

colour research is the lack of adequate and practical colour constancy 

algorithms — which are required when models and images are viewed under 

different illuminants. Recently, however many researchers [SB90] [Sye92] 

[S095] [Sch94] [Mat96] [VM96a] [VM96b], have simply ignored the problem 

by assuming that model and images are viewed under the same (or similar) 

illuminants.
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The aim of this thesis is to develop a colour object search methodology which 

satisfies the following conditions:

1. The computational complexity of object search does not appreciably 

increase with an increase in the number of database models.

2. Object search is allowed in images where objects are (at most 50%) 

occluded.

3. Objects may be perspectively distorted (perspective, affine, shear, rotation, 

scale, translation).

4. Only indoor environments are considered with fluorescent and tungsten 

filament lighting.

5. Objects occupying low spatial resolutions are found accurately.

6. Both 2- and 3-dimensional objects are represented.

Currently, no object search algorithm (to the author’s knowledge) performs 

well in all six of these conditions. Most researchers, for example ignore 4 all 

together and assume that both models and images are viewed under the same 

illuminant (e.g. [Mat96]). Also, since most object search algorithms are 

model-based (the search complexity is proportional to the number of models in 

the database), 1 is often not satisfied either.

In the next section the use of colour as a visual cue is discussed. Section 1.3 

describes the object recognition problem and some common geometric 

solutions. Finally, Section 1.4 outlines the organisation of this thesis.

1.2 Colour and Object Search

Visual cues are features which draw attention to the object in a scene. For 

example locating a large table in a room requires only a detailed search of 

large objects. In this example size (a geometric cue) is being used as the visual 

cue. The cue which is of great importance to this thesis is colour, which is a 

fundamental property of objects and is useful in their identification [Hil86].



4

The use of colour as a visual cue is advocated by many researchers including 

Hilbert [Hil86], Healey and Binford [HB87] and Swain and Ballard [SB90]. 

Hilbert effectively captures the importance of colour in the object search 

process in the statement "Of the properties objects o f experience can appear to 

possess, color is the most salient. Everything we see is seen as having some 

color and the colors o f objects play an important role in our abilities to 

visually identify and discriminate them. "1 The colour of an object can be seen 

as having a number of additional properties which are also important, these 

are: the persistence of colour over time (important in colour object tracking), 

and the stability of colour [Hil86] [HB87]. Healey and Binford also argue that 

regions are more stable than geometric features (such as line segments) under 

reduced resolution and that the normalised colour of an object is more stable 

than image irradiance values [HB87].

Grimson [Gri86] describes the problem of object search and recognition as: "It 

is usually convenient to pose the problem (identification o f objects from 

sensory data) as one o f search/ that is, given a set o f known models, we 

identify and locate the particular object that we are sensing by searching a 

large space o f possible solutions until we find one (or all solutions) that 

matches the information available to us from the sensors." Typically, the 

number of possible solutions is enormous; therefore methods to reduce the 

search space are necessary. From this definition of object search and 

recognition and the arguments put forward by Hilbert, Healey and Binford, 

one would admit that colour could indeed be used to reduce the search space.

The effectiveness of colour as a visual cue is demonstrated in Figure 1.1. The 

aim of this exercise is to locate the Colgate Plax billboard in the real world 

scene illustrated in Figure 1.1(a). By considering only red regions, three 

regions in the scene are identified (c.f. Figure 1.1(c)). These are effectively 

areas of interest which must be explored at a higher resolution. Since these

' Hilbert, D., R., “Color and Color Perception: A Study in Anthropocentric Realism”, Center 
for the Study of Language and Information (CSL1), 1986, pp. 2.
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regions are spatially close then a single high resolution image is required (c.f. 

Figure 1.1(b)) on which recognition of the billboard is performed. In this 

example colour reduced the search space by approximately seven-eighths In 

the ideal case the number of areas of interest produced by a visual cue is one, 

however generally more than one might be produced, however, this does not 

reduce the usefulness of colour.

Figure 1.1: (a) A real world scene containing billboards, (b) The Colgate 
Plax billboard at high resolution resulting from a zooming process, (c) 
The red regions of (a) serve as areas of interest

Recently Syeda [Sye92], Hachimura [Hac96] and Swain [Swa90] have 

described object search algorithms based on colour saliency. Syeda defined two 

types of saliency, relative-saliency and self-saliency, relative saliency measures 

the distinctiveness of a region with respect to surrounding regions; while self- 

saliency determines the conspicuousness of a region by itself, assuming some 

intrinsic characteristic —  eg  colour and size. Conversely, Hachimura 

described the conspicuousness of colour regions as regions which
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have bright and brilliant colours, with large relative areas; the region shape is 

also included in this definition given that massive (large and compact) regions 

may be more conspicuous than elongated regions. On the other hand, Swain 

defined salient colours as those colours which are unique to an object thus 

distinguishing it from other objects in a database.

Both Swain’s and Hachimura’s definition of saliency (and conspicuousness) 

seem to be a subset of Syeda’s self-saliency. Syeda’s research however 

although much more general than Swain’s and Hachimura’s (Swain performed 

saliency experiments on white T-shirts with small coloured logos while 

Hachimura’s work was restricted to the recognition of paintings) utilises a 

complicated saliency cost function which makes its use unappealing. Syeda’s 

definitions, however are instructive.

1.3 Object Recognition

The goal of an object recognition system is to interpret sensory data in order to 

determine the location (and often orientation) of the object. No single 

recognition system is appropriate for all kinds of problems; therefore the 

complexity of the system is often proportional to the difficulty of the problem.

Object recognition is complicated by:

1. the number and complexity of the objects in the scene.

2. the number of objects in the database.

3. the amount of a priori information available about the scene.

4. the amount of object occlusion.

An object recognition algorithm should satisfy the following conditions:

1. gracefully degrade with increased noise.

2. identification should still take place in sparse data due to noise, occlusion

and sensor sparseness.
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3. should control the combinatoric explosion inherent in the search process.

A considerable amount of research has been done on object recognition, 

however geometric techniques have dominated. These techniques include the 

hough transform [Hou62], alignment [U1186] and geometric hashing [GG92] 

which are discussed; but also more recently: geometric invariance [MZ92], 

surface pattern matching [ED94] and interpretation trees [Gri90].

The hough transform, due to Hough [Hou62], is a method for detecting curves 

by exploiting the duality between the parameters of the curves and the points 

on the curve. The transform maps feature points (in the image space) into 

feature space where concentrations of points reveal potential features of 

interest. The hough transform has been generalised to detect arbitrary non- 

analytic shapes [BB82] [Bal81] and several methods have been proposed to 

improve its efficiency by reducing the size of the parameter space (e.g. 

[Tho92]).

The alignment technique, due to Ullman [U1186] searches the model and image 

for anchor points and calculates the viewpoint transformation to bring them 

into correspondence. By comparing the model and image in this canonical 

orientation the match is determined. Geometric hashing [GG92] [LW88] is a 

robust object recognition method which matches local features of objects. In 

geometric hashing, objects are represented by a set of points, called interest 

points, together with their geometric relation. The same interest points must be 

extracted from the scene which requires a search for a compatible 

transformation which maps the set of points representing the model into image 

points. Finding this transformation determines the position and pose of the 

object.

Many object recognition algorithms utilise a model-based, rather than a data- 

based object recognition philosophy. The difference between these 

philosophies is that model-based algorithms search the image for features that
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match the models under consideration, while data-based algorithms combines 

groups of image features (e.g. all pairs of regions, all triplets etc.) to determine 

the presence of database models. The computation expense of the model-based 

approach tends to be a function of the number of models in the database 

(typically, the number of models times the complexity of the algorithm for a 

single model). Alternatively, the data-based approach does not vary 

(significantly) with the number of models but is of exponential order in 

complexity. Any algorithm which is based on the data-based approach must 

utilise techniques which prevent this combinatoric explosion.

The discussion of colour object recognition algorithms is deferred to Chapter 

2. Most of these algorithms are model-based except (most notably) for Syeda 

[Sye92] who presents a colour saliency data-based object recognition 

algorithm. However, as described earlier the cost function used in that work is 

complicated, therefore difficult to apply to other scenarios.

1.4 Thesis Outline

In this section the organisation of subsequent chapters of this thesis is 

presented. In Chapter 2 several popular colour object recognition algorithms 

are reviewed. The algorithms discussed — which are colour histogram-based, 

statistical-based, and region-based — show the differences and limitations of 

the approaches. The colour histogram approach which is commonly used in 

image retrieval suffers from instabilities and is essentially 2-dimensional. The 

performance of algorithms based on the statistics of colour spaces (mean, 

variance, skewness and kurtosis) are also unstable in the presence of 

background clutter and are therefore inappropriate for object search. 

Conversely, region-based methods are much more suitable for modelling 3D 

objects. Also presented in Chapter 2 is the colour image segmentation and 

colour constancy problems and some common constrained solutions.

In Chapter 3 a colour object search algorithm which locates both 2- and 3- 

dimensional, planar, rigid objects which are affine distorted in the scene is
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presented. In this algorithm areas of interest are generated from salient model 

colours. Using region size information provided by the cue a minimum and 

maximum object size is determined. Each area of interest is then grown to the 

maximum object size (where possible) by including only those pixels with 

model colours, in regions spatially close to the cue. At different object sizes a 

match measure (a histogram intersection measure) is calculated. If any of the 

calculated match measures exceed a predefined threshold then a match is 

recorded at the cue.

In Chapter 4 an object recognition algorithm is described which utilises 

colour, object region geometry and a single geometric invariant to recognise 

objects in cluttered scenes. It is assumed that an object in a scene has only 

some of its regions occluded allowing a ratio of region areas invariant and 

region colour to be used to identify three corresponding model/image regions. 

A geometric transformation is calculated and the model and object are 

transformed into the same viewpoint for region matching using colour and 

position. The algorithm returns the position and pose of the object, as well as a 

match measure (based on the number of corresponding model and image 

regions found).

Chapter 5 describes a model-based object search algorithm which groups 

image regions based on their colour and topological relationships. For each 

database model a modified syntactic neural network is used to determine in 

best-first order the combination of image regions which satisfy the model’s 

region colour and topological relationships. The robustness of the network 

makes it extremely fast; however, large amounts of memory are typically 

required. Methods of reducing the memory required are discussed, as well as 

the modifications made to the syntactic neural network.

Finally in Chapter 6 the conclusions are discussed.



Chapter 2

Colour Constancy, Image Segmentation, 
and Object Recognition

2.1 Introduction

There are two important requirements for a general colour object search 

algorithm: colour constancy and colour image segmentation. These two 

processes are so important that they require a thorough discussion (which is 

provided at the beginning of this chapter) before reviewing some of the more 

common object recognition/search algorithms. If model and test images 

presented to an object recognition/search algorithm are sensed under different 

illuminations then colour constancy is required. However, the colour 

constancy problem is under-constrained thus restricting the type of images 

used by object recognition/search algorithms. The colour constancy problem is 

formalised in Section 2.2 where some of the common algorithms are 

presented, such as Land’s Retinex, Hung’s Spectral Adaptation, Forsyth’s 

CRULE and Finlayson’s Colour in Perspective.

The more flexible object models describe objects as sets of spatially related 

regions; therefore they require an image segmentation algorithm to partition 

the image into regions of uniform colour characteristics (constant reflectance). 

Numerous algorithms have been devised to perform this task and are typically 

based on clustering in colour space, region splitting, region growing or a 

combination of these techniques. Some of these algorithms will be discussed 

in Section 2.3.



In Section 2.4 some common object recognition (as well as object localisation 

and object search) algorithms are reviewed and their advantages and 

disadvantages discussed. Finally, in Section 2.5 the properties of object 

recognition algorithms which are not constrained are discussed in preparation 

for the object search algorithm presented in Chapter 3.

2.2 Colour Constancy

The ability of an observer (human or otherwise) to perceive the colours of a 

given surface in a consistent way, under illuminants of different spectral 

distribution, is known as colour constancy. This definition was extended by 

Brainard and Wandell [BW86] to include: the maintenance of the colour 

appearance despite variations in the colour of nearby objects. Despite the 

human visual system not maintaining perfect colour constancy, it is better than 

any man-made system currently available.

Colour constancy is not only confounded by the spectral power distribution 

(,SPD) of the ambient light and the object’s surface reflectance — most 

researchers only consider these two factors in the design of colour constancy 

algorithms — but also by specular highlights (or specularities which cause a 

saturation of the sensors) and mutual illumination (an object illuminated by the 

light reflected from another object). In general, a specular highlight removal 

stage should be incorporated into the colour constancy algorithms; however in 

many images highlights are present over only a small part of the image. 

Therefore, highlight removal is often not necessary in the case of 

inhomogeneous dielectrics (materials with the property that both surface 

reflection and colorant-layer scattering from the body of the material are 

important optical processes). It is important to note however that specular 

highlights do bias the results of colour constancy algorithms. On the other 

hand, mutual illumination complicates the recovery process and is generally 

ignored, however Funt et al. [FDH91] have studied the effects of mutual
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illumination and used it to determine the ambient illumination and discount 

variations in it.

The SPD of the ambient light and reflectance function of the surface can not 

be separated for all possible viewing conditions. For example no algorithm can 

correctly determine the surface reflectance of a single unknown object 

illuminated by an unknown illuminant. Therefore, colour constancy algorithms 

in general require several different objects in the scene. Typically, colour 

constancy algorithms are developed in the simplified Mondrian world which 

consists of planar, overlapping matte patches. In this world, surface descriptors 

can be determined from the ambient light which is assumed to be locally 

constant. The light reflected from a Mondrian patch falls on a sensor array at 

location x where there are s distinct sensor classes. The response Rk (A)

registered by the Ath sensor p xk is:

(2 .1)
cÛ

given that C x (A) is the colour signal at jc which is given by:

C(A) = E(A)S(A) (2 .2)

where E(A) : is the spectral distribution of the illumination

S(A) : the surface reflectance function

The integral is taken over the visible spectrum co (Ar ..A2).

unknown
illum inant

Canonical
illuminant

* *7
Recovery
A lgorithm

input image under 
unknown illuminant

input image under 
canonical illum inant

Figure 2.1: The Colour Constancy Problem
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Figure 2.1 illustrates the colour constancy problem where an input image is 

illuminated by an unknown source (illumination dependent observations) and 

is transformed by a recovery algorithm into a known illuminant (illumination 

independent descriptors).

There are three basic linear image models used by typical recovery algorithms, 

these are trivial, coefficient and general [Fin95], In the trivial (Eqn. (2.3)) case, 

a single coefficient (a) is used to map the observations (r,g ,b) to descriptors 

(r' ,g' ,b') . This, in effect, is a global intensity scaling of the sensor channels. 

Conversely, in the coefficient model (Eqn. (2.4)) each sensor channel is scaled 

with a separate coefficient (a,/3 ,% ). This was first proposed as a model for 

human vision by Von Kries [Kri78] who formulated the coefficient rule (This 

model is only valid however if narrow band filters are used). Conversely, in 

the general model (Eqn. 2.5) each descriptor value is a weighted sum of the 

observation responses (in Eqn. (2.5) nine coefficients are required).

V" r

§' = a 8
b' b

(2.3)

/ a 0 o’ r

g' = 0 p 0 8
b' _0 0 x_ b

(2.5)

2.2.1 The Retinex Theory

In [LM71], Edwin Land (and McCann) described a set of experiments which 

showed that humans are capable of perceiving the reflectance of a scene in a 

way that is largely independent of illumination (the illumination may be non-
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uniform or unknown for that matter). He subsequently coined the term Retinex 

which was intended to describe the function of the retina and cerebral cortex 

during the processing of fluxes.

The set of experiments described involved the illumination of a set of 

Mondrians of different shapes using three independent sources of long, middle 

and short wavelength light. By using a telescopic photometer, the amount of 

radiation reflected from the surface of any Mondrian (which effectively 

measures the flux reaching the eye) could be measured. The test concluded 

that although the intensities of the incident illumination were changed, the 

colour of the Mondrians remained the same. Thus, the sensation of colour is 

not simply related to the product of the illumination and reflectance.

Land’s Retinex algorithm ([LM71] and its modifications [Lan77] [Lan86] 

[BW86]) determine the surface colour without knowledge of the illuminant by 

using the coefficient rule" and a contrast process; however, the contrast 

process is poorly understood. Also, since comprehensive results have not been 

published, it is difficult to determine the effectiveness of the algorithm.

2.2.2 Forsyth’s CRULE Algorithm

Forsyth’s CRULE algorithm is intended to solve the colour constancy problem 

for 2D objects under constant illumination with a small number of total 

distinct colours. Forsyth models (using the coefficient model described earlier) 

the effects of an illuminant on a scene by mapping the colour descriptor 

(receptor responses under a canonical illuminant) of a patch to the observed 

receptor responses under the given illuminant and discusses the conditions 

under which this mapping is invertible.

The algorithm proceeds by:

" Von Kries [Kri78] coefficient rule requires a coefficient to be calculated for each class of 
receptor; the colour descriptor is then the output of each receptor multiplied by its coefficient.
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1. Constructing the gamut under the canonical illuminant by imaging a large 

number of receptor responses of the illuminant which results in a bounded 

gamut. (The canonical gamut is defined as the convex set of rgb response 

vectors obtained by imaging a maximal set of reflectances, which are 

representative of all surfaces under a canonical illuminant).

2. Constructing the set of feasible mappings (the feasibility set) for any patch 

imaged under a constant illuminant.

3. Determining, using an estimator, the map most likely to correspond to the 

illuminant.

4. Applying the chosen map to obtain the colour descriptor.

In the experiments presented, the canonical hull (the convex hull of the gamut 

under the canonical illuminant) was formed by imaging 180 out of 202 

coloured papers under white light. Colour constancy was then performed on 60 

different papers in a Mondrian under six different illuminants with good 

results.

Forsyth’s Crule algorithm however suffers from several restrictions including:

1. the requirement that all surfaces must be flat which is often not the case in 

real scenes.

2. no specularites can be present in the scene, however most surfaces often 

have a specular component.

3. the illumination power must be everywhere uniform.

4. the image must contain a diverse set of colours otherwise a large number 

of maps will result.

2.2.3 Hung’s Spectral Adaptation

Hung [HE95] incorporates the coefficient model with a spectral adaptation 

process to achieve colour constancy. The adaptation process requires the 

selection of a set of reference colours — in a canonical colour space — which 

are used to describe the colour space. By assuming that a prominent image



16

colour is equivalent to a reference colour, the parameters for a hypothesis 

transformation are calculated. This hypothesis transformation is used to 

transform all the image colours into the canonical space and the distance (a 

Mahalanobis distance measure is used) between the transformed colours and 

the closest reference colour is determined. This distance is summed for all 

image/reference colour pairs. This process is repeated by assuming that the 

same prominent image colour is equivalent to another reference colour, until it 

is matched with all the reference colours. This entire process is repeated for all 

the reference colours. The hypothesis transformation which yields the smallest 

summed distance (in a least-square sense) is assumed to be the best 

transformation and is used to produce the colour constant image.

Some of the assumptions that are inherent within the algorithm are:

1. The spectral distribution of the illumination is everywhere constant.

2. The image surface patches are lambertian as in the Mondrian world (a 3- 

dimensional illuminant, and a 2-dimensional surface reflectance —  the 3-2 

case described in [Fin95]).

As with the other colour constancy algorithms described there are problems 

with this approach including:

1. The process of generating and matching hypothesis transformations is 

exhaustive (0(nm2) for n database colours and m image colours)."

2. No checks are made for channel saturation in the transformed (colour 

constant) image; i.e., no ranking of the best hypothesis transformations is 

performed, which is necessary since the real solution may not have the 

smallest least square distance.

3. It is not clear how the choice of reference colours affect the algorithm’s 

performance. In one sense, the smaller the number of reference colours the 

faster the algorithm, but this might produce a poor result —  what is the 

number of reference colours threshold for an optimal solution?

" Take out one image colour and map that in turn to each database colour, computing the 
transformation and applying it to all remaining image colours. Repeat this for all image 
colours [HE95],
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2.2.4 Finlayson’s Colour-in-Perspective Algorithm

Finlayson [Fin95] proposed a new colour constancy algorithm which extended 

Forsyth’s CRULE algorithm by placing simple constraints on the set of 

possible reflectances and illuminants. Forsyth’s algorithm is based on two 

constraints:

1. surface colours under a canonical illuminant all fall within an established 

convex gamut of possible colours.

2. a diagonal matrix accurately maps colours between illuminants.

These restrictions force strong constraints on the scene (as described earlier). 

Finlayson however shows that these restrictions were only necessary because 

Forsyth attempted to recover the intensity of descriptors. Instead, Finlayson 

maps 3-dimensional (r,g,b) co-ordinates to a 2-dimensional chromaticity space 

r/b, g/b. It is in this diagonal chromaticity space that Forsyth’s CRULE 

algorithm is applied and the 3D descriptor orientations derived. Finlayson 

subsequently extends the algorithm by placing a maximal gamut constraint on 

the set of illuminants (which is analogous to a gamut constraint on surface 

colours). The results show good colour constancy.

One consequence of the perspective transformation of the sensor data 

(mapping from 3D to 2D space) is that the calculated feasibility maps are also 

distorted. Finlayson [FH97] however later addresses this problem by removing 

the distortion prior to the map selection process. This colour constancy 

algorithm appears to be the most general to date.

2.3 Colour Image Segmentation

Colour image segmentation algorithms can assume two forms: Form 1, the 

identification of image regions of a known colour, and Form 2, the partitioning 

of images into regions of uniform colour characteristics. Generally, solutions 

fall into one of three classes: characteristic feature thresholding or clustering,



18

edge detection and region extraction. However some segmentation algorithms 

combine these methods to achieve more robust segmentation, e.g. [MK95],

Many of the colour image segmentation algorithms described in the literature 

are based on clustering (or thresholding) in colour space. These include Sarabi 

et al. [SA81], Andreadis et al. [ABS90], Gong et al. [GS95], Celenk [Cel90] 

and Khotanzad et al. [KB90], Sarabi et al. [SA81] describes both a Form 1 and 

a Form 2 segmentation algorithm. In the Form 1 algorithm decision surfaces, 

defined interactively using straight lines, parabolas, and ellipses, are used to 

model the chromatic distributions. The results of the segmentation are the 

pixels of the given image which fall within the chosen decision surfaces. In the 

Form 2 algorithm, clusters are detected in the normalised colour space and 

their boundaries used as decision surfaces. Khotanzad et al. [KB90] also uses 

mode analysis of multidimensional histograms to effect a Form 2 

segmentation with good results. Andreadis et al. [ABS90] used decision 

surfaces characterised by the mean and standard deviation of the colour in a 

normalised colour space to effect Form 1 segmentation. This algorithm was 

capable of accurately discriminating 1000 colours. Finally, Gong et al. [GS95] 

described pixels of a given colour using a second-order basis functions in the 

HVC (Hue/Value/Chroma) colour space and Celenk [Cel90] detected clusters 

in the 1976 CIE (L*, a*, b*) colour space using circular-cylindrical decision 

elements (for a Form 2 segmentation).

Colour space clustering however does not guarantee spatial coherence of the 

pixels from the cluster. If measurements overlap in colour space then the 

results may be poor and noisy. Alternatively, region growing methods (and 

sequential labelling [SHB93]) stress spatial coherence.

Tominaga [Tom90] utilised cluster-based and region merging techniques in 

the creation of a Form 2 segmentation algorithm. The input image is mapped 

into a uniform perceptual colour space where spectral cluster detection is 

performed. Discrimination between spectral clusters is achieved through
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principal component analysis of the colour data. Image regions are extracted 

from these spectral clusters until no clusters are left. A post-processing process 

is used to merge smaller regions with larger ones based on a colour distance. 

Finally, all clusters classified earlier are reclassified, resulting in the merging 

of spectrally close clusters.

Matas et al. [MK95] described an image segmentation algorithm based on both 

spatial and feature space clustering (called FSD). The method proceeds by 

identifying unimodal clusters in the histogram of the image (in the case of a 

colour image, a colour histogram) and backprojecting the pixels contributing 

to the bins in the largest unimodal cluster to identify the connected 

components. The unimodal cluster of the largest connected component serves 

as a model which is used to statistically test for connected components with 

the same (feature space) characteristics. Each accepted connected component 

is grown to include pixels which are close in both the spatial and feature space 

domains. The pixels contributing to the accepted components are subtracted 

from the image histogram and the process repeated. The results presented 

demonstrate both the power and flexibility of this algorithm over traditional 

cluster-based methods.

The colour segmentation algorithms presented here are only a subset of the 

available algorithms. Other algorithms are due to Flealey [Hea89] [Hea89b] 

[Hea92] [HDMN96] and Ohta et al. [OKS80],

2.4 Object Recognition Algorithms

Numerous colour object recognition algorithms have been described in the 

literature to-date; however, several of them are based on techniques such as 

histogram intersection and histogram backprojection. In this section a cross- 

section of these algorithms are presented which will include histogram 

intersection and backprojection as well as statistical and region-based 

techniques.
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2.4.1 Histogram Intersection Based Algorithms

Swain and Ballard [SB90] [Swa90] first proposed the use of colour histograms 

and a process called histogram intersection to determine the identity of an 

object when its location is known. Histogram intersection matches the n bins 

of a model M  and image I  histogram using an L, metric:
It

Y,m in(Ij,M j)
H(I,M) = —  ------------  (2.6)

j=i

However, Strieker et al. [S095] concluded that colour histograms are the 

major source of instability when used in similarity metrics induced by the L, 

[SB90] and L2-related norms [NB93]. This instability occurs when there are 

deformations in the shape of the colour histogram which are due to changes in 

the SPD of the illumination (and illumination intensity), position of the light 

source, changes in viewpoint, and changes in the acquisition chain. Swain 

[Swa90] suggests that a small number of histograms are sufficient to describe 

a 3D object; however, as Matas [Mat96] shows the process of selecting 

representative viewpoints is non-trivial. Since similarity metrics are based on 

histogram bin counts, these conditions cause drastic changes in the metrics. 

Also, colour histograms are essentially 2-dimensional and only affine (shear, 

rotation, scale and translation) invariant. Alternatively, similarity functions 

based on modes (local maxima) in colour histograms are much more stable 

[Mat96], Wixson et al. [WB89] demonstrates this for models comprising 

everyday household objects (cereal boxes, detergent containers, books and 

magazines) using an invariant based on the ratios of histogram mode 

populations.

Schettini [Sch94] presents a 2D algorithm for object recognition based on 

shape matching and colour distribution verification. A polygonal type 

approximation is used to describe the object boundary and a 3D colour 

histogram (of size 4x4x4) in CIELUV space is used for colour match 

verification. Since the boundary descriptor utilises angles and length ratios of
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Vinod et al. [VM96a] describes an object localisation algorithm based on 

Swain and Ballard’s histogram backprojection (BP) or focused colour 

intersection (FCI) [VM96b] and focused discrete cosine transform (FDCT)

(the discrete cosine transform (DCT) is used by image compression algorithms 

[PTVF88]). The algorithm uses BP (or FCI) to localise regions in the image 

with high match confidence then applies the DCT to the cued local image 

regions.

Although this algorithm appears to work well it suffers from several problems:

1. BP + FDCT (or FCI + FDCT) still suffers from the problems of 

histogram intersection and backprojection.

2. The technique is not viewpoint invariant.

Ennesser et al. [EM95] describes an object localisation algorithm based on 

matching local histograms using a weighted histogram intersection measure. It 

is shown that in the worst case this algorithm degenerates to Swain et al.’s 

histogram backprojection. The test set are digitised pictures from the “Where 

is Waldo” books. The scale of the model is determined by gradually increasing 

the size of the local region (under consideration) until there is no change in the 

confidence (the histogram intersection measure) value. To tolerate colour 

variations a co-occurrence histogram was formulated which modelled the 

colour of each pixel and its neighbours. However, this increased the 

complexity of the algorithm, as well as reduced invariance to simple 

transformations (e.g. scale and rotation).

2.4.3 Wixson et al.’s Localisation Algorithm

Wixson et al. [WB89] described an active vision system used in the real time 

detection of multicoloured objects. The technique assumed that a colour 

histogram of an image, containing a model object, contains a spectral signature 

which is invariant over a large number of conditions. By successively 

adjusting the gaze of a camera mounted on a robot arm in the middle of a 16’ x
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24’ room and rotating 360° in 15° increments, (with pitch angles to allow the 

examination of the upper and lower walls) a set of significant gazes were 

determined — using a confidence measure. The confidence measure used was 

based on the ratio of the populations of the modes in the colour histogram, 

which forms an invariant. Wixson [Wix94] subsequently reduces the number 

of gazes examined through the use of a priori knowledge of the scene. By 

associating each object with some larger, intermediate object and recording the 

spatial relationship, the object search problem was reduced to searching for the 

larger object, which is less difficult computationally. For indoor scenes 

Wixson reported an up to eight-fold improvement in search time when 

intermediate objects were used.

2.4.4 The Colour Region Adjacency Graph

Syeda-Mahmood [Sye92], Matas et al. [Mat96] [MMK95] and Olatunbosun et 

al. [ODE96] have presented colour localisation/recognition algorithms based 

on the colour region adjacency graph (CRAG). In the CRAG each region is a 

node in the graph and the line connecting two nodes a graph edge. The CRAG 

algorithm presented by Syeda-Mahmood [Sye92] was computationally 

restrictive due to the complexity of the sub-graph search process (when 

attempting to locate a model CRAG within an image CRAG). As a result 

Matas et al. [Mat96] [MMK95] improved its performance by augmenting the 

CRAG with a Colour Adjacency Graph (CAG) — to simplify the graph search 

process —  whose nodes represent a single image colour and edges the 

reflectance ratio (a photometric invariant). The localisation is then reduced to 

locating the model CAG in the image CAG and backprojecting it into the 

image CRAG. Olatunbosun et al. [ODE96] augments the CRAG with 

geometry invariants (Euclidean invariants) such as the ratio of distances 

between region triplets and the angle between any two graph edges. The 

quality of match between a model and image is determined by the maximal 

clique —  the maximum number of matching graph edge pairs.
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Although the CRAG model is extremely powerful it has some important 

limitations:

1. It does not implicitly model non-adjacent regions.

2. At low spatial resolutions the graph size becomes large and more difficult 

to search.

2.4.5 Statistical Based Algorithms

Keller et al. [KCUU86], Mehtre et al. [MKNM95] (extended in [KMW96]) 

and Strieker and Orengo [S095] utilise statistical shape descriptors of 1- 

dimensional colour space components to describe images. [KCUU86] 

produced the first of these algorithms which used the mean, standard 

deviation, skewness and kurtosis of the 1 -D components of the RGB space to 

describe the degree of doneness in beefsteak. Strieker and Orengo [S095] used 

a remarkably similar set of shape descriptors (mean, standard deviation and 

skewness) in the HSV colour space to describe colour images for an image 

retrieval application. Similarly, Mehtre et al. used the mean of the 1- 

dimensional components of the RGB colour space to describe images. Each of 

these techniques suffer from similar problems, that of background clutter. If 

there is a lot of background clutter then the statistics returned by these 

algorithms are incorrect (in the case of [KCUU86] segmentation would be 

complicated by background clutter). Also, higher order shape descriptors 

(moments) are unstable. Illumination changes also affects these algorithms 

significantly although hue (in the HSV colour space) is more invariant to these 

changes than the RGB colour components. One major advantage of these 

algorithms however is that an image is described by only a few floating point 

numbers (nine in the case of [S095], three in [MKNM95]).

2.4.6 Other Localisation/Recognition Algorithms

Several other localisation/recognition algorithms currently exist. An earlier 

algorithm [Ber87] utilised nine features (the 1-dimensional components of the 

normalised colour space and the hue and saturation values from a variety of
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other colour spaces) to describe the colour of spray can caps under different 

illuminants. Weill and Yair [WN90] produced an Orange fruit recognition 

algorithm based on colour segmentation, using 1-dimensional components of 

the RGB colour space, and a hough transform for circle detection.

Strachan [Str93] describes an algorithm for fish recognition using shape and 

colour features. As a result the algorithm is invariant to fish bending and 

deformations. Finlay son et al. [FCF96] describes images by their three inter-

band angles allowing images to be represented by just six numbers. This 

technique produced good recognition rates.

Gevers et al. [GS96] describes a photometric colour invariant based on hue- 

hue edges. Using a similarity function the algorithm is then applied to the 

image retrieval problem. Matas et al. [MMK93] models the illuminant of a 

given environment in order to recognise objects present in it. And finally, 

[HS94] describes a histogram descriptor which is invariant to changes in 

intensity and the SPD of the illumination.

2.5 Discussion

In this chapter the colour constancy problem was discussed and common 

constrained solutions presented including Land’s Retinex, Forsyth’s Crule, 

Hung’s Spectral Adaptation, and Finlayson’s Colour-in-Perspective 

algorithms. The performance of Hung’s algorithm was accessed (since it was 

available in-house) for an indoor environment (tungsten and fluorescent 

lighting) and was shown to improve the image colour marginally (c.f. 

Appendix 2). It is expected that algorithms such as Finlayson’s Colour-in- 

Perspective would further improve the performance of the colour matching 

measure used throughout this thesis. However, it is beyond the scope of this 

thesis to provide empirical data for any other colour constancy algorithm.
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Also discussed in this chapter were several image segmentation algorithms 

which varied in performance and complexity. There has always been a debate 

in the vision community as to which image segmentation should be used in a 

particular application (since no generic image segmentation algorithms have 

been developed). However, little progress has been made in this debate. 

Therefore a relatively simple (low computational complexity) colour image 

segmentation algorithm was used throughout this thesis. This method, which is 

based on Khotanzad et al. [KB90] technique, is similar to Matas’ FSD 

clustering algorithm. This algorithm is detailed in Chapter 3.

The choice of object recognition algorithm is dependent on the application. If 

objects can be represented by a set of regions then a CRAG model would be 

invariant to many more conditions (e.g. viewpoint and moderate occlusion) 

than say a colour histogram-based technique. However, if objects are highly 

textured then colour histogram methods or statistical based methods might be 

more attractive. If the size of the model representation (i.e. the number of 

floating point numbers required to represent the model) is crucial then a 

statistical-based method is better since an entire image can be represented by a 

few numbers. The problem with statistical-based methods, however is that 

they are highly sensitive to background clutter and illumination changes.

There is a general lack of generic colour object search algorithms (invariant to 

conditions such as: moderate occlusion, illumination changes, image clutter 

etc.). Algorithms based on Swain’s histogram backprojection can only 

represent 2-dimensional objects and typically require that the object size is 

known a priori to search. Wixson [Wix94], on the other hand exploits the 

intermediate objects philosophy and effectively reduces the object search 

space; however his emphasis was more on the defining of the relationship 

between the immediate and actual object rather than the modelling and 

recognition of the object being searched.
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There is a need for an object search algorithm capable of representing both 2 

and 3-dimensional objects (which may be perspectively deformed) that can 

perform searches in complex, cluttered environments with moderate object 

occlusion; this thesis will present such an algorithm.

In Chapter 3 the first of two object search algorithms is presented. Although 

this algorithm is only capable of modelling 2-dimensional or 3-dimensional 

planar objects that are affine distorted, it is able to perform searches in 

complex cluttered scenes. A more general search algorithm will be presented 

in Chapter 5.



Chapter 3

A Colour-Based Object Search Algorithm

3.1 Introduction

Some researchers treat the task of object search as a one step process; that is 

given the identity of a model, the entire image is searched until the model is 

found. However, if the object search task is decomposed into object 

localisation followed by object recognition, cueing mechanisms can be fully 

utilised thus reducing the search space; this in turn simplifies the search 

process. It is important to note that the object localisation algorithm should 

have a lower order of complexity than the object recognition algorithm if this 

two step process is to improve search times.

Assume that a model database of n objects exists and it is required to 

determine if these models are present in a given image. For argument sake, let 

it further be assumed that the order of complexity of the object localisation 

algorithm is 0(X) and for the object recognition algorithm O(Y) where 

0(X )«0(Y ). Now, the n models are used by the localisation algorithm giving 

a complexity of O(nX). However, the localisation algorithm effectively prunes 

the model database (for example if the localisation algorithm is based on 

object colour without considering the spatial relationships of object regions, 

then models whose colours are not in the image are not present) resulting in n, 

(.n, < n) models that might be in the image. The resulting order of complexity 

of the two step object search process is 0(nX  + n,Y), as opposed to O(nY). 

Just to give an idea of the time savings, assume that the object recognition 

algorithm is twice as expensive computationally as the object localisation 

algorithm and that the localisation process prunes the database by half. 

Therefore, Y=2X and n,=n/2. The resulting orders are the same 0(2nX). 

Therefore, provided that the localisation algorithm prunes the model database
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(by at least half) and the order of complexity of the localisation is at most one 

half of the recognition algorithm, then the two step object search process is 

faster than the one step approach. In general however 0(X )«0(Y ).

In this chapter an algorithm for colour object search is described. For each 

model in an object database, image regions with colours that are similar to the 

salient model colours are identified. These image regions serve as areas of 

interest. A match measure is calculated for each cue location and if it exceeds 

a predefined threshold then an occurrence of the model is assumed to be at that 

location. The conditions under which this algorithm is invariant are:

1. 2- or 3- dimensional planar object representations.

2. affine object distortions.

3. Changes due to illumination intensity and spectral power distribution (for 

fluorescent and tungsten filament lighting).

4. absence of colour regions due to moderate occlusion (up to 50% occlusion 

is allowed).

The organisation of the remaining sections in this Chapter are as follows: 

Section 3.2 describes the properties of some popular colour spaces and 

identifies the colour space used by this algorithm. Section 3.3 describes the 

components of the object localisation algorithm which include the colour 

image segmentation technique, model creation, cue generation and model 

match determination. The results of this algorithm applied to real world 

images using models with different poses, scale, illumination and moderate 

occlusion are presented in Section 3.4 and finally in Section 3.5 this technique 

is discussed and compared with other object search algorithms.

3.2 Colour Spaces

The choice of colour space used by researchers is quite often ad hoc. because 

so many colour spaces exist with similar or drastically different properties. 

Many researchers simply determine the colour space to use after performing
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experiments on many colour spaces or examining the literature. To list 

exhaustively the known colour spaces and their properties would be time 

consuming and pointless (to this thesis), rather a selected few will be 

discussed. These are RGB, opponent colour, IHS (Intensity/Hue/Saturation) 

and the normalised colour space.

The RGB Colour Space

Most colour cameras are designed to sense three primary wave lengths 410nm 

(Red), 530nm (Green) and 650nm (Blue) i.e. RGB (which copies the human 

visual system). However, although the RGB basis is good for image 

acquisition it is not particularly good for colour perception because it encodes 

both colour and intensity information [BB82], For this reason other non-RGB 

bases are used such as: Opponent process, Normalised colour and 

Intensity/Hue/Saturation (IHS).

The Opponent Colour Space

The basis transformation from RGB to opponent colour is given by:

r g = R - G (3.1)
by = -R  -  G + 2B (3.2)
wb = R + G + B (3.3)

The properties of the opponent colour space are:

1. The basis transformation is linear, transforming RGB measurements into 

two colour (rg and by) and one intensity channel (wb).

2. Since the transformation is linear, changes in illumination, changes in 

viewing geometry or changes in acquisition equipment, which can be 

modelled by a scaling factor k, result in a shift of the wb, rg and by values 

[Mat96].The colour space is therefore not invariant to these conditions.

The Normalised Colour Space

The basis transformation from RGB to the L1 normalised colour space is given

by:
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R
(3.4)

' ~ R + G + B

G
8 R + G + B

(3.5)

There are some important properties of the normalised colour space worthy of 

note:

1. It has been suggested that two points on the same surface, where one of the 

points is in a shadow, will have the same chromaticity co-ordinates. This is 

only true if the points were illuminated by the same spectral power 

distribution which is often not the case in shadows.

2. The L1 normalised colour space is independent of scene geometry.

3. There is a non-removable singularity at zero signal (r = g = b = 0) in sensor 

space and is highly unstable near this point.

A more complete description of the properties of the normalised colour space 

can be found in [Hea92] [Hea89] [Ken76].

The IHS Colour Space

The intensity in this basis is computed as:

int ensity = R + G + B (3.6)

The lack of whiteness in a colour is measured by saturation. Colours such as 

“fire engine” red are saturated while pinks and pale blues are desaturated. 

Saturation can be computed by:

3- min(R,G,B)
saturation = 1 (3.7)

int ensity

Hue is approximately proportional to the average wavelength of the colour. 

Based on the Torrance-Sparrow reflection model (the reflection from 

composite material is approximated by the sum of the body reflection and 

surface reflection components) and white illumination, hue is independent of 

viewpoint, surface orientation, illumination direction and intensity and 

highlights [GS96], However, in general scenes the white light assumption is 

not valid. One of the many basis transformations can be defined by the 

program fragment:
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hue = cos
1 / 2 \ ( R - G )  + ( R - B ) ]  

j ( R - G ) 2 + ( R - B ) ( G - B )
(3.8)

If B > G then hue = 2n - hue

where R, G and B are the RGB colour space co-ordinates. This definition of 

hue has an essential singularity at R = G = B. Many authors including Gevers 

et al. [GS96] utilise hue as a partial illumination invariant; however, in this 

thesis the normalised colour space is used (because of its independence of 

scene geometry).

3.3 The Algorithm

Before the object search algorithm can be presented the model building 

process must be described. During model building, the image of the model is 

partitioned into regions of constant colour (using a histogram backprojection 

process called the software colour filter (SCF) developed in earlier work 

[WE95] —  this approach was also used by Matas and Kittler [MK95] in their 

Feature and Spatial Domain Clustering (FSD) algorithm) and the colour 

(colour processing is performed in the normalised colour space) and area of 

each region determined (c.f. Figure 3.3 and Table 3.1). These parameters are 

determined for all the database models. To localise a given model in an image, 

image regions with matching model colours are identified and treated as seed 

co-ordinates for a growing process. Growing starts at the given seed point and 

includes neighbouring image pixels with colours which are similar to model 

colours. A match measure is calculated for different object sizes and the object 

size with the largest match measure is assumed to be an occurrence of the 

model if the match measure is above a given threshold. This process is 

repeated for all of the image regions (which match model colours) identified 

earlier.

The SCF uses graph-theoretical clustering (a feature-based clustering 

algorithm) [KNF76][KB90] to identify clusters in colour space then 

backprojects image pixels into these clusters and identifies the spatial regions
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associated with the clusters. The SCF process therefore partially segments the 

image into regions of uniform colour characteristics.

3.3.1 Graph-theoretical Clustering

Graph-theoretical clustering is a feature-based image segmentation algorithm 

(Algorithm 3.1) which identifies unimodal clusters in the colour histogram of 

the image. This non-iterative peak-climbing clustering algorithm was first 

introduced by Koontz et al. [KNF76] and was subsequently extended by 

Khotanzad et al. [KB90] who determined the optimal histogram size (based on 

cluster density) for a given image for good segmentation. This segmentation 

technique was chosen because of its low computational expense and good 

segmentation results (in the experiments performed); also, no prior cluster 

distribution model was required to perform the segmentation.

Figure 3.1: A colour test image used to generate the colour histogram 
illustrated m Figure 3 .2.

An example 16x16 chromaticity histogram (created by quantising the r and g 

channels of the normalised colour space) of the image illustrated in Figure 3.1 

is clustered using Algorithm 3.1. The histogram bins with similar shading 

represent identified unimodal clusters (c.f. Figure 3.2). The cell with the 

maximum value in each unimodal cluster is a peak cell.
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Algorithm 3.1: Graph-theoretical clustering

1. Generate a chromaticity histogram of the image maintaining a list of the 

pixels contributing to each bin.

2. For each bin determine the bin with the maximal count in a given 

neighbourhood (an 8-neighbourhood was used, however a 4- 

neighbourhood yields similar results [Mat96]). Store a link to this bin.

3. At the end of the link assignment, peaks are cells with the largest count in 

the neighbourhood and all other cells connected to this peak form 

unimodal clusters.

g/r 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

contains the percentage of image pixels with that colour) of the image in 
Figure 3.1. Histogram bins with the same shading belong to the same 
unimodal cluster. Eleven unimodal clusters have been found in this 
histogram (the peak cells are underlined). The horizontal axis is the r 
chromaticity co-ordinate while the vertical axis the g co-ordinate.
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It is assumed that Hung’s [HE95] colour constancy algorithm is applied to all 

images prior to processing.

3.3.2 The Software Colour Filter

The software colour filter [WE95][Wal96] was designed to partially segment 

colour images using colour space-based clustering followed by spatial 

clustering. The SCF when applied to model (or test) images identifies regions 

of constant reflectance. The SCF is described in Algorithm 3.2.

Algorithm 3.2: The software colour filter

1. Generate a chromaticity histogram of the model image (in our earlier work 

we used opponent colour histograms [Wal96]. The advantages of the 

normalised color space have been discussed earlier).

2. Perform graph-theoretical clustering and assign unique labels to each 

unimodal cluster found.

3. Backproject the pixels belonging to each unimodal cluster into the image, 

associating the label of the unimodal cluster with the pixel.

4. Perform spatial clustering (connected component analysis) of the labelled 

image grouping pixels with the same label into regions.

5. Extract the parameters (area and colour) from each resulting region.

3.3.3 Model Creation and Object Search

During model creation, the model image is segmented, regions with small area 

discarded (because these are often noisy regions) and the colour (represented 

by its mean r and g normalised co-ordinates) and area of each region recorded. 

Each model is subsequently defined by five parameters for each model colour. 

These parameters are the r and g normalised co-ordinates, the minimum and 

maximum region area percentages for the given colour (i.e. the number of 

pixels in the region divided by the total number of object pixels), and the sum
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of the region area percentages for the given colour. The model parameter 

generation process is described in Algorithm 3.3.

Figure 3.3: A database model.

r g Percentage
coverage

Percentage 
coverage of 

smallest region

Percentage 
coverage of 

largest region
0.48 0.49 88.4 16.4 72.0
0.14 0.24 11.6 2.0 9.6
Table 3.1: The parameters for the model in Figure 3.3.

An example of these parameters for the model in Figure 3.3 is presented in 

Table 3.1. Four representative regions were selected from the model, two of 

them yellow and two blue. The largest region (which is on the right) is yellow 

and occupies 72% of the total model area. The smallest yellow region (on the 

far left) occupies 16% of the total model area. Similarly, the largest and 

smallest blue regions occupy 10% and 2% of the total model area, respectively. 

The total percentage coverage for yellow is 88% and blue 12% (c.f. Table 3.1).

Algorithm 3 3: Model Parameter Generation_________________________

1 Segment the model image and discard regions with small areas.

2. Determine the regions, found in Step 1 with similar colour and calculate the 

total area of these regions.

3 For each model colour store in the model database: the chromaticity co-

ordinates (r,g) of the model colour, the percentage of the total model area 

(percentage coverage) with the given model colour, and the percentage
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coverage of the smallest and largest image regions with the given model 

colour.

4. Repeat Steps 1-3 for each database model.

The model parameters generated in Algorithm 3.3 are stored in the model 

database. Given an image which has been pre-processed by Hung’s colour 

constancy algorithm [HE95], object localisation is achieved by applying 

Algorithm 3.4.

Algorithm 3.4: Colour Object Search

1. Segment the image and discard any regions with area greater than 50% of 

the image area (if this is not a background region the algorithm will still 

detect the object correctly by identifying other regions of this object and 

growing).

2. Repeat Steps 3 - 7 for each database model:

3. Cue generation: Determine all image regions with colours that are similar 

to model colours. The locations of these regions serve as cues. Region and

I ' 2 ' 2model colours match if C = J ( p r -  p r ) + (Mg ~ Mg) < cthreshold

where ( p r ,/Ug) and ( p r ,jUg) are the chromaticity co-ordinates of the

model and image colours respectively.

4. Repeat Steps 5 - 7 for each cue:

5. Object size determination: By assuming that the cue region is part of the 

model and not more than half of it is occluded, a minimum (m insize) and 

maximum (m axsize) object size bound can be calculated:

number _ of _ pixels _ in_ cue_ region
min size = PCLMR

100 (3.9)

max size
number _ of _ pixels _ in_ cue_ region 

PCS MR
100(3.10)

where PCSMR is the percentage coverage of the smallest model region 

with a similar colour as the cue region; and PCLMR the percentage 

coverage of the largest model region with a similar colour as the cue

region.
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6. Region Growing: Divide the image into TV windows each of size n x m  —  

so that the model can be localised down to a set of windows rather than a 

set of regions (which might span much of the image). In each window use 

the segmentation information from Step 1 and the colour matching measure 

of Step 3 to determine the number of pixels in each window with model 

colours. Given that k  is the object size increment then:

for { o b je c ts iz e  =  m in_size; o b je c ts i z e  <= m ax_size\

o b je c ts i z e  += k ) {

(a) no o b jec t_ p ix e ls  =  0;

(b) Determine the window corresponding to the centroid of the cue 

region.

(c) Grow into a neighbouring window (8-neighbourhood) if the 

colours in that window increases H(I,M) , equation (3.11).

(d) if H(I,M) increases then no o b jec t_ p ix e ls  += no of pixels in 

window with model colours.

(e) Repeat Step (c) until: no o b jec t_ p ix e ls  >= o b jec t s iz e , or there 

are no more neighbouring windows containing model colours; 

or H(I,M) is maximised.

}

7. Match measure determination: The maximum H(I,M) for all object

sizes is assumed to be the match measure. If this value exceeds 

m atch  th re sh o ld  then the model is assumed to exist at this cue location.
n

H ( I , M )  = S  m i n ( I . , M . )
7=1 J J

(3.11)

where Mj  =
n u m b er_  o f  _  m o d  e l_  p ix e ls _  w ith _  c o lo u r_ j

m o d  e l s ize

and I j  =
n u m b er_  o f  _  o b je c t_  p ix e ls _  w ith _  c o lo u r_ j

o b jec t s ize
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The object size calculation in Step 5 of Algorithm 3.4 is based on the 

assumption that the cue region is part of the object and not more than half of it 

is occluded. For example, consider a model with three regions, two red 

occupying 25% and 50% of the total object area and one green (occupying the 

remaining 25%). If a red region containing 20 pixels is found in the image

20
then the minimum object size is m insize  = — ■ 100 = 40 pixels. Similarly,

20 . ,
the maximum object size max_size = 2 • — • 100 = 160 pixels.

As a result of Step 7 of Algorithm 3.4 it is possible that several model 

candidates may result. It is assumed that the best candidate is the one with the

smallest colour error E whereE = ^ E ,  an^ = yj(r ~ r') + ( S~ S ' ) 2 

where (r,g)  is the chromaticity co-ordinates of the candidate pixel and 

(r' ,g') the chromaticity co-ordinates of the model colour closest to (r,g) .

3.4 Results

To determine the performance of the object search algorithm under changes in 

illumination, spatial resolution, affine object distortion, object occlusion and 

image clutter an image set of six images was selected. These images were 

captured in an indoor environment and were illuminated by either fluorescent 

or tungsten filament lighting (or a combination of both). It was believed that 

these images provided a sufficiently rigorous test of the algorithm. It was 

expected that the algorithm would find all the models correctly (no false 

negatives) with a small number of false positives.

The model database (which contains 25 models) used in these experiments is 

illustrated in Figure 3.4. The database contains books, cereal boxes, playing 

cards and a Christmas card box. Several of these models have similar 

geometry, for example models 1, 2, 4, 5, 6, 7 and 15; models 12, 13 and 14; 

models 20, 21, 22, 23, 24 and 25; and models 9, 10 and 11. The playing card
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models (9, 10 and 11) have only two colours, white and red and in the case of 

models 10 and 11 have similar colour proportions. Models 13 and 14 have 

practically the same representative colour regions —  the text printed on the 

covers ‘Debugger’ and ‘Assembler’ is the only major difference in the models. 

Models 2 and 6 also have, for the most part, the same representative colours.

mode!7 moaUr

0

Figure 3.4: The model database.

The test images used in these experiments are illustrated in Figure 3.5. Because 

the model and images were captured under different illuminants, Hung’s 

[HE95] colour constancy algorithm was applied to all images before 

processing.
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(a) (b)

(c) (d)

(e) (f)
Figure 3.5: The images used in the object search experiments.

Figure 3.5 (a) contains an occluded model 6 and 14; Figure 3.5 (b) also 

contains model 14. Figure 3.5 (c), (d), (e) and (f) contain model 1 and 2; model 

9 and 10 (both occluded), model 2; and model 5, 7, and 12, respectively.
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Table 3.2 presents a summary of the results of applying Algorithm 3.4 to the 

six images of Figure 3.5. The first column of this table contains the image 

identifier (Figure 3.5 (a) - (f)), the second column contains the number of 

database models that are present in the given image. The third column contains 

the placement of each match, that is whether the cue with the best match value 

( lsl) represents the object, or is the second best (2nd), or the third (3rd) best or 

greater than that. The fourth column contains the total number of false 

positives that have occurred, and the fifth, the total number of false negatives. 

Finally column six gives the percentage reduction in the search space (which is 

defined as the number of image windows containing the localised model over 

the total number of image windows).

Im a g e N u m b er

o f
m odels  

in  im age

C o rrec t M atch  
P la cem en t

F a lse
p o s itiv e s

P ercen ta g e  
red u c tio n  in  
search  sp a ce

r 2nd 3rd >3rd
(a) 2 2 9 80.7
(b) 1 1 9 78.7
(c) 2 1 1 11 58.3
(d) 2 2 5 0.0
(e) 1 1 9 60.1
(f> 3 1 1 1 8 41.6

Table 3.2: A summary of the results of applying Algorithm 3.4 to the 
images of Figure 3.5.

In image (a) (Figure 3.5 (a)) models 6 and 14 had the second best rank at their 

correct image location, however there were 9 false positives. The percentage 

reduction in the search space was 80.7% and the percentage reduction of the 

models present in image (a) is 44% (11/25). The remainder of the table is 

interpreted in the same way. It is important to note however that there was no 

appreciable reduction in the search space for Figure 3.2 (d).
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Cue location (248,451)
30

Match 20 
Percent

0
0 2 4 6 8 10

Object Size increments

Cue location (291,442)
30 
20

Match 
Percent

0
0 2 4 6 8 10
Object Size increments

(e) (f)
Figure 3.6: The match percentages for increasing object size 
increments at the cue locations indicated when searching for modeló in 
image Figure 3.5(a). In this example the location (506,412) which yields 
a match percentage of 93%, (a) contains modeló.

To illustrate the search process, consider the search for modeló in Figure 

3.5(a). The parameters used in all the experiments were: window size 10x10 

pixels, minimum object match percentage 88.0% and 11 object sizes were 

selected between minsize and maxsize (all equally spaced) for each region 

cue found. In Step 2 of Algorithm 3.4, six cue regions were identified with 

centroids at the (x,y) co-ordinates: (506,412), (301,156), (193,184), (555,168), 

(248,451), and (291,442). At each cue, the growing process was performed for 

each of the 11 object sizes (c.f. Figure 3.7) and the match measure calculated.
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S t

(a) (b)

*

(c) (d)

iipil , jar JjSM at
iH  5

(e) (f)
Figure 3.7: The six cue regions.

The only cue which generated a match percentage greater than the 88.0% 

minimum match percentage is at co-ordinates (506,412) (c.f. Figure 3.6(a) and 

3.7(a)) where a match percentage of 93% was calculated for object size 

increment 0 (i.e. min size)-, therefore this is the solution. Note that 93% is the 

largest match percentage for all object sizes at the cue location.
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3.5 Discussion

The algorithm presented in this chapter has several advantages over existing 

colour histogram and Backprojection-based methods. These advantages 

include:

1. This algorithm is capable of modelling both 2- and 3-dimensional planar 

objects. This is not the case with histogram based techniques. Consider 

two adjacent sides of a cube with two different colours. At different 

viewing angles different proportions of the colours exist. Representing 

such an object using a colour histogram based method is non-trivial.

2. The object size is not required a priori. This algorithm makes the 

assumption that the cue region is at most 50% occluded and calculates an 

object size range.

3. Although this algorithm uses a colour histogram intersection metric, it is 

more stable than Swain’s metric because colour bins are based on mean 

region colour rather than histogram bin counts which are unstable under 

lighting changes [Mat96].

The results, presented in Table 3.2, show that the object search experiments 

were successful with 45% of the models being found with a rank of 1, 45% 

with a rank of 2 and the remaining 10% with a rank of 3. No false negatives 

where recorded but overall a total of 51 false positives, an average of 8 per 

experiment. The average reduction in the model database was 68% and the 

average reduction in search space 53%. These are significant savings using 

colour information alone especially since many of the database objects had 

similar colour proportions fc.f. Figure 3.4).

The performance of this algorithm is far better than histogram backprojection 

methods (c.f. Chapter 2); however, this model can not represent as many 

objects as Matas’ [Mat96] Colour Adjacency Graph. To compare these two 

methods three criteria are used: object representation, search speed and 

accuracy. Matas’ method can represent 3-dimensional, non-rigid objects which 

are perspectively distorted; this algorithm can only represent 3-dimensional
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planar objects which are affine distorted. Matas recorded a 93% (2 false 

negatives) accuracy while this method gave 100% (no false negatives); 

however, Matas only had one false positive result while this method had 51. It 

is dangerous to judge the performance of the algorithms on this data because 

the datasets were different and the database used in these experiments 

contained many objects with similar colours; Matas’ however used a model 

database containing objects with dissimilar colours. In terms of search speed 

this algorithm performs better because its order of complexity is linear (Matas’ 

is approximately 0(N3)). One final point should be made, this algorithm would 

perform better than Matas’ if the object has a low spatial resolution and only 

one region (for example) could be accurately segmented from the background; 

since the adopted method only requires a single region for object size 

calculations while Matas’ method requires that more than one of the object 

regions be identified correctly.

The experiments presented in this Chapter show that colour can be used 

successfully as a cue when the object is at a low spatial resolution. However, 

the experiments also show that a more effective object recognition algorithm is 

required to determine the presence of objects at cued locations. The main 

failure of this method is that the object recognition algorithm is based on 

colour proportion; and the model database selected for these experiments 

contains several objects with similar colour proportions, resulting in a high 

false positive rate. To alleviate this problem an object recognition algorithm 

which is not based on colour proportions is required.

An alternative object recognition algorithm is one which models the colour 

and position of the regions in the object. Such an algorithm is presented in 

Chapter 4. This algorithm first determines corresponding model and image 

regions using a region area invariant then calculates the transformation needed 

to bring the model and image into the same viewpoint (where region matching 

is performed). One of the important properties of this algorithm is the ability 

to model disjoint regions — Matas’ Colour Adjacency graph method is only



47

capable of modelling objects with adjacent regions. The object search problem 

will be revisited in Chapter 5 where a powerful search method based on the 

Syntactic Neural Network [Luc96] is presented.



Chapter 4

Object Recognition Using Region Colour 
and Area Ratio Indexing

4.1 Introduction

In Chapter 3, the object recognition part of the object search algorithm 

recognised objects using the proportion of colours on the object’s surface. In 

this Chapter, however a colour object recognition algorithm is described which 

instead of using colour proportions, exploits colour region geometry. This 

algorithm provides greater object discrimination because many objects may 

have similar colour proportions, but different object region geometry; also, 

this model can describe objects that can only be represented by a set of 

disjoint regions.

The proposed algorithm is similar to geometric hashing [GG92][LW88] and 

the Colour Landmark Model (CLM) [WE96][Wal96] (our earlier work), in 

that it identifies three anchor (or landmark) points in the model and image, 

calculates a geometric transformation and transforms the model and image into 

the image viewpoint for matching. The CLM improved upon the geometric 

hashing search mechanism by introducing colour and shape constraints on 

landmark region selection. As a result, a smaller number of affine parameter 

calculations needed to be performed; also, there was a reduction in the number 

of model candidates. The problem with the CLM, however is that the moment 

shape descriptor used increased the computational complexity of the algorithm 

and was not robust to changes in spatial resolution. Therefore, to improve the 

speed of the search process, while maintaining the characteristic of constrained 

landmark selection, a new method called area ratio indexing is proposed; this 

method utilises both region colour and an area ratio invariant, which is
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invariant to affine distortions, to constrain the selection of corresponding 

model/image region triplets.

The objective of these searches is to determine the occurrences of database 

models in the image; in this algorithm objects appear affine distorted in the 

image, e.g. in Figure 4.1 a six region model (with centroids m0-m5) is 

transformed by the affine (shear, rotation, translation and scale) transformation 

T (a 270° clockwise rotation). In order to calculate T, three corresponding 

model/image region points — called model region triplets and image region 

triplets, respectively (e.g. {m0, m,, m2} and (I0,1,, I2} in Figure 4.1) —  must 

be identified so that the model can be transformed into the same viewpoint as 

the image for region matching. To determine the corresponding model/image 

region triplets affine invariant area ratios are employed.

T

*
Figure 4.1: A six region model with centroids m()-m5 transformed by
T (a 270° clockwise rotation) with new region centroids Iq-15■

Given an image all possible region triplets are identified and the region areas 

of each triplet used to calculate two affine invariant indices. These indices are 

used to access a table (called the area ratio table) entry which contains all 

model region triplets with similar area invariants. Only those model region 

triplets with similar colour to the image region triplet are considered. To 

determine if the model and image region triplets correspond, an affine 

transformation is calculated to bring the model and object into the same 

viewpoint where region position and colour determine possible region 

matches. Transformations are calculated for all the model region triplets (with 

matching colour) in the table entry. The model which produces the best object 

match is assumed to be present in the image. This process is repeated for all 

image region triplets.
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The remainder of this Chapter is organised as follows; in Section 4.2 the area 

ratio table is described, while in Section 4.3 the geometric transformation and 

model/image region matching are discussed. Section 4.4 presents the 

algorithm; in Section 4.5 the results and finally in Section 4.6 the discussion.

4.2 The Area Ratio Table

The most difficult part of the recognition problem is determining the 

corresponding image and model region triplets. In this algorithm, the search is 

constrained using colour and area ratio indexing. Firstly, an n x n area ratio 

table is defined and initialised — this table will contain, in each table entry, 

model region triplets with similar area ratios (equation 4.1 - 4.4). Before object 

recognition can take place this table must be filled with the representative 

model region triplets for each model. These were manually selected. 

Typically, the user must determine how much occlusion is to be allowed and 

select the model region triplets appropriately — the fewer chosen for each 

model the quicker the search process, but robustness to occlusion is decreased.

Model No. of 
model 
regions

Allowed region 
occlusion

Percentage 
occlusion of 
model area

No. of
representative

triplets
0 5 0 < 10% 4
1 5 1 < 10% 4
2 4 0 < 10% 4
3 10 4 <30% 12
4 8 3 < 20% 14
5 4 0 < 10% 4
6 4 0 < 10% 4
7 4 0 < 10% 4
8 5 0 < 30% 4
9 5 0 < 40% 4
10 8 3 < 25% 8
11 13 6 <38% 26
12 8 3 < 25% 8

Table 4.1: The number of regions in each model, the allowed amount 
of region occlusion, the maximum percentage of the model area that can 
be occluded and the number of region triplets used to describe each 
model.
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In Table 4.1, the number of model region triplets used to define each database 

model (illustrated in Figure 4.2) is presented; as well as the number of regions 

in each model, the maximum number of regions that can be occluded for each 

model and the maximum percentage of the model area that can be occluded 

(these are approximated for each model)..

To add a model region triplet (I„ /,, I3) to the area ratio table the region areas 

are used to calculate the index ( i j , ̂  ) to the table using equations 4.3 and 4.4

(the regions in the triplet are selected so that region I, has the biggest area and 

I3 the smallest).

rl =

r2 =

fl =

*2 =

In equations 4.3 and 4.4, n is the dimension of the n x n area ratio table. At 

table entry (i ,̂i2),  a record (containing the attributes: model number, and the 

model region labels for the regions of the triplet) is added. To allow for 

possible errors in the area ratio index, records are added to all table entries 

within a chessboard distance of e (e=2 was selected for these experiments).

Given an image containing an occurrence of a database model, the image must 

first be partitioned into regions of constant reflectance. This is achieved using 

the software colour filter algorithm described in Chapter 3. The following 

process must be repeated for all the image region triplets (all combinations of 

three regions in the image): The index to the area ratio table is determined 

using the region areas as described earlier. The model region triplets in this 

table entry with colours that are similar to the image region triplets are 

considered as possible corresponding regions. The transformation T is 

calculated from the centroids of corresponding model and image region pairs

area(I\ )~ area(12 )
area( I \ )  + area( / 9 ) 

a r e a ( a r e a ( l - ^ )
area( I j )  + area( I^ )

Int eger( r^*n) 

int eger( * n)

(4.1)

(4.2)

(4.3)

(4.4)
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and the model transformed into the same viewpoint as the image. 

Model/image region matches are recorded if there are image regions close to a 

transformed model region with the same colour. The number of matches is 

used to calculate a match measure and if above a predefined threshold an 

occurrence of the model is assumed to exist at the given image location.

4.3 Region Transformations and Match Function

For each image region triplet the co-ordinates of the bin in the area ratio table 

are calculated. If there is an entry (record) in the bin then each model 

associated with the entry might be present in the image. To determine whether 

a model is present or not, it is necessary to compute the affine transformation 

parameters using the corresponding pairs of model/image regions. All model 

region centroids are transformed by these parameters and if an image region 

with a similar colour exists near (within a Euclidean threshold) the co-

ordinates of the transformed model region then a model/image region match is 

recorded. The total number of these matches determines the object match 

measure.

Given the centroids of the image region triplet (Xt, Y) and the corresponding 

model region triplet (X*, Y ’), the affine transformation parameters a, b are 

estimated using (4.5):

a = A~lX , b = A~XY (4.5)

where:

x T = [xvx2,x3i, y t  = / yv y2, y3/ , 

aT =[a0, a , , a j ,  bT = fb0,b̂ ,b2J and

A =
1 X1 Y1
1 x 'l Y'l
1 x 'l

t

YI
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Model region centroids (x \y ’) are transformed from model space to image 

space co-ordinates (x,y) using the equations x = Aja and y  = A,b, where A, =

A model/image match is recorded if the transformed model centroid is close 

(in a Euclidean sense) to an image region with the same colour. The match 

function used should reflect that the greater the number of matches the more 

likely the object is a model occurrence. A linear function is therefore not 

adequate. Rather, a match function was selected which gave high match values 

if most of the model/object regions were matched correctly. This match 

function was given by:

where n is the total number of model regions and n ’ the total number of 

model/image matches (plus the three landmark points). Any match function 

with these properties can be used.

4.4 The Algorithm

Given a model database, model parameters are generated using Algorithm 4.1 

and the object recognition algorithm described in Algorithm 4.2.

Algorithm 4.1: Model Creation

1. Apply Hung’s [HE95] colour constancy algorithm to the model image.

2. Segment the model image into regions of uniform colour (using the 

software colour filter algorithm described in Chapter 3) and calculate and 

store for each region, the region label (id.), its centroid, the number of 

region pixels and colour (the mean r and g chromaticity co-ordinates).

(4.6)
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3. Initialise an n x n area ratio table.

4. Select (manually) a set of representative model region triplets which 

adequately represent the model under moderate occlusion; for each of 

these region triplets calculate the index ( i , j )  in the area ratio table (using 

the procedure described in Section 4.2) and add a record entry containing 

the attributes: model number, and the model region labels for the regions 

of the triplet.

5. Add the same record entry to all indices within a chessboard distance of e 

(e = 2 was used) from ( i , j ) —  to allow for errors in calculated bin co-

ordinates.

6. Repeat Steps 1-5 for each database model.

The process of recognising an occurrence of a model in an image is described

in Algorithm 4.2.

Algorithm 4.2: Object Recognition

1. Apply Hung’s [HE95] colour constancy algorithm to the image.

2. Segment the image into regions of uniform colour (c.f. Chapter 3) and 

calculate the centroid, the number of region pixels and colour (the mean r 

and g chromaticity co-ordinates) for each region.

3. For each image region triplet (.A,B and C):

(a) Calculate the index ( i , j )  in the area ratio table (described in 

Section 4.2).

(b) For each entry in the table ( i , j ) ,  assume that the model region 

labels are A ’,B’,C’\ there are six possible correspondences between 

A, B, C and A B \ C \ these are {ABC. A ,B'C\ A ’C’B \  B ’A ’C ’, 

B ’C’A ’, C’A ’B ’,C ’B ’A ’}.

(c) A region triplet pairing is valid if the colours of the model/image 

region pairs match. For example for A ,C,B \  if the colour of region 

A ’ is similar to A, C ’ similar to B and B ’ similar to C then the 

pairing is valid.
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(d) If (r, g) and (r’,g’) are the chromaticity co-ordinates of an image 

and model region respectively, then a colour match is recorded if 

the Euclidean(r, g, r ’, g ’) < colour threshold.

(e) For each valid region triplet pair compute affine transformation 

parameters and transform all other model regions into image space. 

A region match is recorded if an image region with the expected 

colour exists close to (in a Euclidean sense) the computed co-

ordinates.

(f) Determine the object match measure from the total number of 

model/image region matches and equation (4.2).

(g) Repeat step 3.

4.5 Results

In this section, results for the images used in the experiments are presented. 

These results demonstrate the algorithm’s performance under a variety of 

conditions including: affine object deformity, object occlusion of up to 25% of 

the model area, and image clutter due to other objects in the scene. It is 

believed that the experiments presented sufficiently test the algorithm and that 

most of the model occurrences would be identified correctly. It was assumed 

that only one occurrence of a given database model may exist in a scene; 

however, multiple database models may have been present.

The model database used in these experiments, illustrated in Figure 4.2, 

contains books, playing cards, cereal packages, floor mats and a sun-face 

model. This is a difficult database because many objects have only four 

regions, therefore only one region (after selecting the region triplet) would be 

available for match verification. Notice that although modeló and model7 are 

represented by the same coloured regions and topology, they are actually two 

different objects. These types of objects require more expensive geometric 

techniques (such as surface pattern matching [ED94]) in order to differentiate 

them.
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Figure 4.2: The model database.

The 20x20 area ratio table used in these experiments was generated from 

representative model region triplets (the table could have been generated from 

all possible model triplets, but this would have made the table much larger, thus 

increasing object search times). For each model region triplet, record entries 

were not only added to the calculated bin co-ordinate, but also to all 

neighbouring bins within a chessboard distance of 2. In so doing, a mismatch of 

up to 25% was allowed for the image area ratios. Other applications might 

require a smaller area ratio error which would simply mean a change in table 

size and the number of bins that region triplets are added. The frequency of the 

entries in the area ratio table is illustrated in Figure 4.3.
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i\j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0 38 38 38 5 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 41 41 41 7 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 47 47 47 10 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 23 23 24 14 4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
4 20 20 21 14 4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
5 19 21 22 15 6 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0
6 16 18 19 13 5 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0
7 10 12 13 10 5 4 2 1 1 1 0 0 0 0 0 0 0 0 0 0
8 6 8 8 6 4 3 1 1 2 2 1 1 1 0 0 0 0 0 0 0
9 7 9 9 5 4 3 1 1 3 4 3 3 3 1 0 0 0 0 0 0
10 2 2 2 0 0 1 1 1 3 6 6 6 6 4 1 0 0 0 0 0
11 3 3 3 0 0 1 1 2 4 8 9 9 8 6 2 0 0 0 0 0
12 3 4 4 3 3 3 2 3 4 9 11 11 10 7 2 0 0 0 0 0
13 4 5 6 5 4 4 3 3 5 10 12 12 12 10 5 3 3 2 0 0
14 2 3 4 5 4 4 3 3 4 8 10 10 10 9 5 3 3 2 0 0
15 2 3 4 5 4 4 3 3 5 9 10 11 12 10 6 5 4 2 0 0
16 1 3 5 8 7 7 5 3 4 7 7 9 13 12 9 9 7 3 0 0
17 1 2 4 5 4 4 3 1 3 5 5 7 11 11 9 9 7 3 0 0
18 0 1 2 3 3 3 2 1 1 3 3 5 8 8 6 6 4 1 0 0
19 0 1 2 3 3 3 2 1 1 3 3 5 8 8 6 6 4 1 0 0

gure *1.3: Tìe fequency of bin entries in the 20x20 area ratio tab
used in these experiments.

In Table 4.1 the number of regions used to represent each object is presented. 

In the case of model8 and model9, these regions (c.f. Figure 4.7(e) and 4.7(f)) 

are selected from the non-textured object regions (which are more resilient to 

noise and changes in resolution). Region triplets were selected (manually) by 

occluding different parts of the object and selecting one (or more) triplet from 

the non-occluded object regions. The number of triplets used for each model is 

also presented in Table 4.1.

In the case of the models with 4 regions (for example models 2, 5 and 6) no 

regions were allowed to be absent. This did not mean that object regions could 

not be partially occluded, rather if regions were occluded then their centroid 

had to be close to the true region centroid.

The selection and sensitivity of parameters is always an issue in complex 

image processing algorithms. For this reason a short discussion of these 

parameters will be included here. There were five important thresholds used, 

these are:



58

1. The size of the neighbourhood to use in the area ratio table where model 

region triplets are added (the parameter e described in Algorithm 4.4, Step 

5).

2. The Euclidean distance threshold between transformed region centroids and 

image regions.

3. The size of the area ratio table.

4. The threshold used for colour matching.

5. The minimum region size.

The size of the neighbourhood to add model region triplets to is dependent on 

the application and whether a priori information is available as to the errors in 

area ratios. In these experiments an error of about 25% was allowed in the area 

ratios. Selecting the second parameter is difficult because a small value may 

prevent a valid match from being recorded. This may result from the occlusion 

of an object region which shifts the region centroid. Conversely, a large value 

will increase the number of false positives. The size of the area ratio table is 

also based on the area ratio errors (the discussion of the first parameter is also 

relevant here). The threshold for colour matching is based on whether models 

and images are viewed under the same illuminant. If they are then these 

thresholds can be small. Alternatively, if they are not and a colour constancy 

algorithm is used then the thresholds selected are based on the quality of 

match produced by the colour constancy algorithm (which is determined 

through experimentation). This aspect of the colour constancy algorithm used 

[HE95] is discussed in Appendix A.2 and Chapter 2. Finally the minimum 

region size is based on the size of the smallest expected region. Although 

region areas tend to be fairly robust at reduced resolutions, image noise and 

sensor errors tend to cause area errors at very low resolutions. For this reason 

the lowest resolution allowed was restricted.
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(a) (b)

Figure 4.4: (a) A test image containing database modelQ in the presence 
of distracters. (b) The labelled image resulting from colour image 
segmentation using the SC F (c.f. Chapter 3).

Figure 4.5: The result of applying Algorithm 4.2 to Figure 4.4(a). The 
regions with a white border are the object regions which have been 
correctly matched. The solid white squares are the centroids of the anchor 
(landmark) points used (c.f. Table 4.4) to calculate the affine 
transformation parameters. Notice that all five object regions have been 
identified correctly despite segmentation errors.

The first test image, illustrated in Figure 4.4(a), contains database modelO at 

high resolution and affine deformed in a scene with distracters. Figure 4.4(b) 

illustrates the results of the SCF [WE96] partial image segmentation algorithm 

(using a colour histogram size of 25x25 — which is used for all the images 

presented) using a minimum region size of 400 pixels (this choice was 

arbitrary). There were 27 regions resulting from the segmentation.
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Region
Label

Centroid
( W c )

# of Region 
Pixels

g r

0 (225,234) 108569 0.13 0.71
1 (444,194) 29487 0.28 0.14
2 (505,160) 17563 0.40 0.36
3 (544,68) 12589 0.13 0.73

Table 4.2: The region parameters for database modelO. The parameters 
r and g are the mean chromaticity co-ordinates of the region.

The region parameters for modelO and the segmented image are presented in 

Table 4.2 and Table 4.3, respectively. These image parameters are passed to 

Step 3 of Algorithm 4.2. As seen in Table 4.1 there were four representative 

triplets for this model (modelO); these triplets are (region labels): {0,1,2}, 

{0,1,3}, {0,2,3} and {0,1,4}.

Region Label (xc,yc) Region
Area

g r

0 (416,118) 3387 0.41 0.39
1 (38,148) 1549 0.56 0.23
2 (351,222) 1923 0.49 0.19
3 (359,210) 1696 0.55 0.20
4 (196,266) 32353 0.13 0.72
5 (412,215) 3405 0.13 0.72
6 (150,246) 856 0.21 0.45
7 (108,282) 522 0.30 0.36
8 (470,175) 93455 0.38 0.50
9 (172,384) 11773 0.22 0.74
10 (328,273) 9567 0.26 0.14
11 (388,346) 723 0.55 0.20
12 (523,380) 3201 0.22 0.74
13 (525,339) 3617 0.13 0.72
14 (184,256) 421 0.13 0.72
15 (144,189) 511 0.31 0.36
16 (340,233) 634 0.37 0.12
17 (51,327) 16950 0.38 0.53
18 (156,156) 529 0.31 0.36
19 (169,121) 526 0.31 0.36
20 (275,107) 1323 0.45 0.36
21 (206,96) 424 0.56 0.22
22 (93,66) 14441 0.48 0.21
23 (249,77) 3229 0.25 0.14
24 (89,56) 3781 0.45 0.36
25 (33,15) 1473 0.56 0.22
26 (199,12) 1364 0.45 0.36

Table 4.3: The region parameters for the 27 regions segmented from
the image of Figure 4.4(a).
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A correct match for modelO, with a match measure of 1.0 (c.f. Figure 4.5), was 

recorded when Algorithm 4.2 was applied to Figure 4.4(a).

The co-ordinates of the model/image region triplets used to calculate the affine 

transformation parameters, the transformed model centroids and the distance 

errors between transformed model and image centroids are presented in Table 

4.4. The computed affine parameters are a = {95.74, 0.58, -0.13} and b = 

{38.78, 0.18,0.80}.

Model Image Transformed Distance
Error

Landmark

(225,234) (196,266) Yes
(444,194) (328,273) Yes
(458,92) (359,210) (349,193) 20.55 No
(544,68) (412,215) (402,190) 27.71 No

(562,259) (388,346) Yes
Table 4.4: The parameters for the solution of the first recognition 
experiment. The “transformed” column represents the co-ordinates of 
the transformed model region centroids (into image space) using the 
affine parameters calculated from the model/image region triplet match. 
The “distance error” column is the Euclidean distance between the 
transformed model centroid and the closest image region.

The computational expense of this search when compared with a method 

based on exhaustive testing of the model and image region triplets is an 

important consideration when rating the performance of the method. For the 

image in Figure 4.4(a), affine transformation parameters were calculated 70 

times and region centroids transformed 272 times. This compares with 

1,442,350 and 10,000,900 respectively required by the exhaustive method. The 

only overheads of this method are the image area ratio and colour matching 

calculations.

The second experiment used the image in Figure 4.6(a) which contains an 

affine deformed and occluded model 12. The model was identified correctly 

with a match measure of 0.97 as illustrated in Figure 4.7(a). Model 12 was 

also identified correctly in Figure 4.6(b) with a match measure of 1.0 (c.f. 

Figure 4.7(b) and Table 4.5).
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Figure 4.6: The images used in the recognition experiments, (a) 
Contains an affine deformed and occluded model 12 in a cluttered scene, 
(b) Contams an affine deformed and occluded model 12 in a cluttered 
scene, (c) Contains an occluded model8 and non-occluded model9. (d) 
Contains a non-occluded model8. (e) Contains an occluded model3 and 
model4.
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(a) (b)
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(c) (d)

(g)
Figure 4.7: The results for the images illustrated in Figure 4.6. (a) the 
larger white squares indicate the position of the expected region
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(C) (d)

Figure 4.8: The results for the images presented in Figure 4.6.

Model8 and model9 contain both textured and non-textured regions making 

them more difficult to represent. However, as illustrated in the results (c.f. 

Figure 4.7 and 4.8) these types of models can be adequately represented by 

some of their non-textured regions. Figure 4.6(c) contains a non-occluded 

model9 and an approximately 25% occluded model8. Both model8 (Figure 

4.7(f)) and model9 (Figure 4.7(e)) were identified correctly, however there 

were two mismatches, model5 (Figure 4.7(d)) and modeló (Figure 4.7(c)). 

Figure 4.6(d) contains a non-occluded model8 which was correctly identified 

(c.f. Figure 4.8(a)), however there was a mismatch for model2 (c.f. Figure 

4.7(g) and Table 4.5).

Quite often there is more than one candidate solution for a given model from 

which the best candidate must be chosen. This selection process considers both 

the match measure, as well as the distance errors of each non-landmark point.
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If two candidates have different match measures then the candidate with the 

highest match measure is assumed to be the best. Alternatively, if both match 

measures are the same then the candidate with the smaller distance errors is 

assumed to be the best choice

Finally, matches for modeB and model4 were reported for Figure 4.6(e), 

however two of these three results are mismatches, one for model3 (Figure 

4.8(d)) and one for modeM (Figure 4.8(c)). Model4 was too occluded to be 

recognised since only a maximum of three regions could be occluded at a time. 

On the other hand, the best candidate for modeB (Figure 4 8(d)) has a match 

measure of 0.95, however the correct match (Figure 4.8(b)) only had a match 

measure of 0.91.

Image # of image Model Match Correct

regions found measure match

Figure 4.6(a) 38 model 12 0.97 yes

Figure 4.6(b) 34 model 12 1.00 yes

Figure 4.6(c) 61 modeló 1.00 no

model5 1.00 no

model9 1.00 yes

model8 1.00 yes

Figure 4.6(d) 45 model2 1.00 no

model 8 1.00 yes

Figure 4.6(e) 19 modeD 0.91 yes

model4 0.97 no

modeB 0.95 no

Table 4.5: The results for the recognition experiments using the images 
in Figure 4.6.

The seemingly high match values for the incorrect matches of model 5 and 

modeló in Figure 4.6(c) and model2 in Figure 4.6(d) result from the fact that 

each of these regions are only represented by 4 regions. That means that only 

one region was used for match verification. This increased the likelihood of 

false positive matches.
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4.6 Discussion

In this chapter a method of representing objects using the colour and area 

ratios of regions was described. It was shown that by introducing these 

constraints significant computational savings, over an exhaustive method, can 

be realised. Only one false negative result was recorded and 5 false positive 

results; a maximum of approximately 25% occlusion was allowed. Even more 

significant is that objects with a combination of textured and non-textured 

regions (that could not be easily represented by models such as the region 

adjacency graph [Mat96]) can also be represented by this model. This has 

implications for image retrieval and retrieval using hand drawn picture 

applications. In the case of image retrieval, complicated (textured etc.) objects 

can be represented by this model and retrieved quickly. Also, unlike many 

image retrieval systems, the algorithm works well in the presence of cluttered 

scenes and varying resolutions. In the case of retrieval using hand drawn 

pictures or even by natural language descriptions, this method also seems 

appropriate. Images may be naturally described not only by their colour 

content, but also by approximate size ratios of regions and distances, e.g. “The 

image contains four (salient) regions, one green, one blue one yellow and one 

black. The green region is the same size as the blue and black one, but twice as 

large as the yellow one.” These types of descriptions, although detailed, are 

quite natural.

When compared to methods such as colour histogram intersection-based, 

statistical-based and colour region adjacent graph methods (c.f. Chapter 2 for 

an overview of these methods) several points can be made. Firstly, colour 

histogram-based methods can represent both textured and non-textured objects 

easily. The adopted method requires that the objects be partitioned into regions 

which limit those objects it can represent. However, the adopted algorithm 

works well in the presence of image clutter (colour histogram-based 

algorithms do not). Statistical-based methods have a distinct advantage over 

all these methods in that they represent images with a few floating point 

numbers. The adopted method requires that five parameters be stored for each
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model region — the area ratio histogram must be stored as well. The range of 

conditions that this algorithm will work in is less than Matas’ colour adjacency 

graph which is capable of representing 3-dimensional deformable objects 

which are perspectively distorted. The algorithm adopted here is limited to 3- 

dimensional planar and rigid objects which are affine distorted. However, this 

algorithm can model objects which can only be represented by a set of disjoint 

regions, a significant advantage over Matas’ colour adjacency graph which is 

based on region adjacency.

The area ratio invariant described in this chapter is merely one of the 

invariants that could be used in the creation of an invariant table. Other useful 

invariants include: the ratio of distances between a region triplet, which is a 

Euclidean invariant; and the cross ratio which is perspective invariant. The 

formulation of the table would be the same as the area ratio table where the 

invariant serves as the index into the table.



Chapter 5

Colour Object Search Using a Modified 
Syntactic Neural Network

5.1 Introduction

So far in this thesis two colour-based algorithms have been presented, one for 

object search and the other for object recognition. In the object search 

algorithm, the topology of the object regions was not really considered 

(remember however that the search was made for object regions that were 

spatially close, so in a loose sense adjacent). In the object recognition 

algorithm, the geometry of the object regions was modelled using a rigid 

object model which was limited to planar non-deformable models. In none of 

these methods has the topology of object regions been exploited. Topological 

relationships such as adjacency, enclosure, in between, and near, share the 

property of invariance to perspective transformations, which was not achieved 

with the other models (only affine invariance). Another important point about 

the algorithms presented so far is that they do not produce solutions in a best- 

first order therefore search time is increased. This Chapter addresses these 

issues and presents an object search algorithm which is capable of searching 

unconstrained indoor environments with good success.

In this Chapter, an object search algorithm is presented which exploits region 

colour and topology and produces solutions in a best-first order. This 

algorithm accepts as input an image partitioned into regions of uniform colour 

characteristics; it then produces an image region relationship table (image 

RRT) which contains the relationships between the image regions. The region 

relationships considered are: adjacency, enclosure and disjoint (not enclosed 

and not adjacent). Each model in the model database is described by the colour
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of its regions (chromaticity co-ordinates are used as described in the previous 

algorithms) and a model region relationship table (model RRI). Several 

methods could have been used to search for valid region combinations, for 

example the interpretation tree [Gri90] or hash tables; however, a modified 

syntactic neural network (SNN) [Luc96] was used because results were 

produced quickly and in a best-first order — although one disadvantage of the 

SNN is that it normally requires large amounts of memory.

The remainder of this Chapter is organised as follows: in Section 5.2, Lucas’ 

SNN is described and in Section 5.3 the modifications required by the adopted 

object search algorithm are discussed. In Section 5.4 the object search 

algorithm is described, Section 5.5 the results from the experiments performed 

are described and finally, in Section 5.6 the method is discussed.

5.2 The Syntactic Neural Network

Lucas [Luc96] described a neural architecture based on context-free grammars 

called syntactic neural networks which concatenates symbols (e.g. A and B 

concatenated is AB) to form larger strings. Simple grammar fragments (e.g. 

AC or BD) are parsed by Local Inference Machines (Lints) which perform a 

lazy best-first evaluation of the Cartesian product of two ranked lists. For 

example given two lists {A,B} and {C,D} the Cartesian product is the list 

{AC, AD, BC, BD}. Retrieving these pairs in a best-first ranked order would 

normally require the probability (or rank) of each of AC, AD, BC, BD to be 

determined (the probability of each pair is assumed to be the product of the 

individual symbol probabilities) and the list sorted in decreasing order of 

probability. In the SNN, however a lazy evaluation method is used which 

identifies the next best symbol without computing all the probabilities and 

sorting. This process is performed by the Lints.

Figure 5.1 illustrates a typical SNN with four inputs —the number of inputs 

determines the number of Lints in the Network. At each input bin a classifier 

assigns a rank (or probability) to each symbol based on some symbol feature.
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The symbols at each input are then sorted, placing the symbol with the highest 

rank at the top of the list (e.g. A has the highest rank in the leftmost input bin 

of Figure 5.1). Each Lim outputs strings of concatenated symbols in best-first 

order. This process is effected at each level of the SNN until the final string is 

output from the Root Lim. The strings expected to be output from the SNN in 

Figure 5.1 are {ACE, ADE, BCE, BDE, ACF, ADF, BCF, BDF }where their 

order is dictated by the probabilities of the symbols.

Figure 5.1: The Structure of the Syntactic Neural Network

In order to describe the lazy evaluation process used by the Lims, assume that 

the probabilities assigned to the symbols in Figure 5.1 are A (0.9), B (0.6), C 

(0.8), D (0.7), E (0.8) and F  (0.5); and consider Figure 5.2.

C D

(0.8) (0.7)
A

0.72 0.63
(0.9)

B
0.48 0.42

(0.6)
Figure 5.2: The Lazy Evaluation Process

The purpose of the lazy evaluation is to return the symbol strings in best-first 

order without calculating the product of each set of symbols and sorting. Lucas 

[Luc96] devised a set of rules to accomplish this. Considering the table in 

Figure 5.2 — where the rows and columns of the table are labelled with the 

symbols input to the Lim — the top left-hand table entry and the bottom right- 

hand table entry contain the symbol strings with the largest (AC) and smallest 

(.BD) probabilities, respectively. Subsequently, Lucas identified the table
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entries from which the next best symbol string must come (see [Luc96] for 

details). As a result products only need to be calculated for these table entries 

and the symbol string with the largest probability selected. This process is 

continued until all symbol strings are retrieved.' The order that the symbol 

strings are retrieved from this Lim are AC (0.72), AD (0.54), BC (0.48) and 

BD (0.42).

There are two output strings from the rightmost Lim, these are E (and NULL) 

and F (and NULL). The evaluation and order of output of the symbol strings 

from the root Lim is illustrated in Figure 5.3. Note that initially the table is 

empty, then when a request is made to output a symbol string from the root 

Lim it gets the next best symbol string from the lower left and right Lints (c.f. 

Figure 5.3 (a)).

AC

(0.72)

Figure 5.3 (a): The ro o t L im , illustrating the evaluation process for the 
retrieval of the first symbol string A C E  (0.58).

Figure 5.3 (a) illustrates an important point, that is all symbols are not needed 

at higher level Lims to produce the next valid symbol string. To retrieve the 

next best symbol string another symbol string must be retrieved from the left 

and right lower level Lims, these are AD and F. Using Lucas’ rule [Luc96] the 

next best symbol string must be either ADE (0.43) or ACF (0.36). Figure 5.3 

(b) illustrates the evaluation and retrieval of the second symbol string ADE 

(0.43).

E

(0 .8)

0.58

' In the experiments performed in this work, the rules used in lazy evaluation [Luc96] were 
found to be reliable.
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E F

AC

(0.72)
AD

(0.54)

Figure 5.3 (b): The root Lim, illustrating the evaluation process for the 
retrieval of the second symbol string ADE (0.43).

The next best symbol string must be either BCE (0.38) or ACF (0.36). Two 

points are worthy of note here, the first being that only the next best symbol 

string BC (0.48) from the leftmost lower Lim must be retrieved and the 

probability for^C Fhas already been calculated (c.f. Figure 5.3 (c)).

AC

(0.72)
AD

(0.54)
BC

(0.48)

Figure 5.3 (c): The root Lim, illustrating the evaluation process for the 
retrieval of the third symbol string BCE (0.38).

The order of retrieval of the remaining symbol strings are BDE, ACF, ADF, 

BCF and BDF.

5.3 The Modified Syntactic Neural Network

To adapt Lucas’ SNN to the colour object search problem, a number of 

modifications had to be made including: the addition of symbol (region)

E F

(0.8) (0.5)

0.58

0.43

0.38

(0.8) (0.5)

0.58

0.43
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relationship constraints at the Lim level, region connectivity constraints at the 

SNN output and limiting the number of regions in each input list.

5.3.1 The SN N  Input Requirements

When a search is being performed for database models in an image, a SNN is 

generated for each database model. Each symbol represents an image region 

and the number of Lims in the SNN is dictated by the number of model 

regions. In an attempt to keep the SNN balanced, the number of inputs must be 

equal to 2L where L, an integer, is the number of levels in the SNN structure. 

For each model, L must be selected so that the number of model regions < 2L. 

For example, a model with five regions would use an eight input SNN and 

assign NULLs to the three unused inputs. To each input a model region is 

assigned. Image regions are then associated with one or more SNN inputs if 

their rank is less than a predefined threshold, equation (5.1) where: (r,g ) is 

the chromaticity co-ordinates of the model region assigned to the SNN input 

and (r' ,g') the chromaticity co-ordinates of the image region. This rank also 

determines the position of the region in the list (the region with the highest 

rank is placed at the top of the list, and the smallest at the bottom). To limit the 

size of the resulting SNN a limit is placed on the number of image regions per 

list.

rank =
Euclidean( r, g, r',g' )

V2
(5.1)

The upper and lower bound for rank are 0 < rank < 1. (Note that yfl is the 

maximum Euclidean distance between two points in the chromaticity colour 

space — at opposite ends of the hypotenuse of the chromaticity triangle.)

Quite often some object regions are absent due to occlusion or image noise, 

therefore the SNN design must facilitate object search in these conditions. The 

method employed is to add to the bottom of each input list a blank label. For 

example if we add blank labels to the four inputs in Figure 5.1 then outputs 

such as A [BLANK] [BLANK] [BLANK] (A) or A[BLANK]F[BLANK] (AF),
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which represent occluded objects, are possible. By adding blanks to the inputs, 

the string [BLANK] [BLANK] [BLANK] [BLANK] will also be returned by the 

network and is ignored. The choice of the rank of the blank symbol is 

arbitrary. A high rank value means that strings representing occluded objects 

will be output first. A small rank value means that these strings will be output 

last. In this algorithm, a small rank is chosen for the blank symbol.

At the input level of the SNN where image regions are being paired it is 

important, where possible, to assign pairs of model regions with a non-disjoint 

relationship to each Lim. This is justified because in an image more region 

pairs are expected to be disjoint than say adjacent (a non-disjoint relationship) 

and therefore less pairs will proceed to the next level of the SNN. This means 

that the size of the next SNN level can be smaller than the size defined by 

Lucas (this is important when considering the memory required by the SNN).

5.3.2 Lim Restrictions

At the Lim level of the SNN, regions are combined and returned in best-first 

order; however, a symbol string validation step is introduced. Consider two 

symbols A and B input from the left and right input list of a given Lim; the 

symbol pair AB is only valid if AB has the same topological relationship as the 

topological relationship of the model region pair assigned to the Lim inputs. 

This reduces the number of symbol combinations and thus the complexity of 

the search. In addition, all symbol strings output from a given Lim must 

contain only one occurrence of each symbol — it is possible for multiple 

symbol occurrences because the same symbol can be in more than one list.

5.3.3 SN N  Output Restrictions

There are four restrictions placed on the output of the SNN:

1. A symbol string output from the SNN is only valid if it contains at least 

three regions. Three regions were selected because it was observed that in
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images there are often multiple occurrences of valid region pairs (valid in 

terms of colour and topology), but valid region triplets occur less often, 

thus are more likely the object.

2. The vote assigned to each SNN output, which is based on the number of 

valid region relationships found in the object (discussed in detail in Section 

5.3.4), must exceed a predefined threshold.

3. A connectivity constraint is placed on output regions. This constraint 

ensures that the regions in each SNN output are connected either explicitly 

or implicitly (e.g. object ABC is accepted if A adjacent B, B adjacent C and 

A disjoint C, but not if A adjacent B, B disjoint C and ,4 disjoint C).

4. Finally, a limit is placed on the number of outputs considered (which 

satisfy conditions 1-3). From the set of valid outputs the one with the 

highest vote is assumed to be an object occurrence. If it is assumed that the 

object can occur more than once then all outputs with high votes are 

considered an occurrence of the object.

As a result of point 1 only objects with three regions or more are represented.

Note however that by simply removing this restriction, objects with any

number of regions can be represented by this method.

5.3.4 Voting Scheme

To determine a rank for the objects output from the SNN, a voting scheme was 

devised. In this scheme each topological relationship used in the model RRT is 

assigned a vote. The value of this vote is dependent on the importance of the 

relationship. In Table 5.1 the votes assigned to the topological relations used 

(adjacency, enclosure and disjoint) are presented.

Topological Relationship Vote
Disjoint 1

Enclosure 20
Adjacency 20

Table 5.1: The votes assigned to each of the topological relationships 
disjoint, enclosure and adjacency.
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As presented in Table 5.1, the disjoint relationship has the smallest vote (i.e. 

1), because disjoint regions do not help to discriminate between objects as 

much as adjacent or enclosed ones. Although a vote of 1 (rather than say 5) 

seems small, it is significant when objects have several disjoint region pairs. In 

the experiments performed the votes for adjacency and enclosure were the 

same, but this does have to be the case in other applications.

The criteria used to determine if a region group output from the SNN was 

valid was based on the vote exceeding a predefined threshold. Since a 

minimum of three regions (c.f. Section 5.3.3) were allowed then a minimum 

vote value of 40 was selected, i.e. at least two non-disjoint region relationships 

must exist. This vote however does not have to be fixed across the database 

(although that was done in these experiments), rather it could be dependent on 

the model. As a result, different amounts of occlusion would be allowed for 

each model.

5.3.5 Memory Considerations

If some simple calculations are performed it is realised how large the memory 

requirements are for the SNN. For example, an 8 input SNN which allows a 

maximum of 10 symbols at each input will require, for the input level Lints 

100 probabilities (floating point numbers) per Lim, therefore a total of 400 

probabilities. At the next level 100*100 = 10000 floating point numbers (per 

Lim) and the root Lim 10000 * 10000 = 100 million floating point numbers. 

Considering that a floating point number is four bytes long, the SNN will 

require of the order of 400MB! This memory requirement is further increased 

when the number of inputs grow.

In the modified SNN, not all symbol pairs (groups of two, four, eight etc.) 

proceed to the next SNN level; therefore the size of higher levels need not be 

as large as described above. For example, if an 8 input SNN was considered
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with a maximum of 40 inputs, then the four input level Lims will require of the 

order of 26K. If all the other Lims are assumed to be the same size, say 

1000x1000 then the remaining three Lims would require of the order of 3 MB! 

This is much less than the 400MB required by Lucas’ SNN. It is up to the user 

to select an appropriate node size for his application.

The memory requirements could be further reduced by replacing the floating 

point numbers with integers (0-65535) or characters (0-255) and assigning 

integer ranks to the symbols rather than probabilities. This would reduce the 

memory requirement by half or a quarter An alternative to these schemes is a 

dynamic node size which changes as the need requires. This however would 

make the .SWA more difficult to program. Considering the price of RAM today, 

the cost of storing the modified SNN is quite low.

5.4 The Algorithm

Before object search can be performed, a model database must be created. For 

each model, the colour of each region must be stored, as well as a model RRT 

To generate the set of representative regions the model image is segmented and 

regions greater than a minimum size selected. The model in Figure 5.4 contains 

the French Universal Dictionary model which is described by four regions, two 

yellow and two blue.

Figure 5.4: A database model.

Table 5.2 presents the region labels and colours for each of these regions. The 

yellow region on the far left has a label 2; the blue region adjacent to it a label
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3; the large yellow region, a label 0 and the enclosed region (the blue ‘L’) a 

label 1. It is useful to compare this model representation with the one in 

Chapter 3, which stores parameters (five floating point numbers, therefore 20 

bytes) for each model colour rather than model region. For the same model 

(Figure 5.4) the representation in Chapter 3 requires 40 bytes (since there are 

two colours), while this representation requires only 38 bytes (eight floating 

point numbers for the region colours (32 bytes) and 6 bytes for the RRT).

Label r g
0 0.48 0.46
1 0.14 0.24
2 0.47 0.46
3 0.14 0.24

T ab le  5.2: The parameters for the model in Figure 5.4.

The RRT for this model is illustrated in Figure 5.5. The contents of the table is 

read “region <table row> is related to region <table column>”; for example, 

region 3 is enclosed by region 0. A total of six bytes is used to store this table 

since only the lower triangular part is required and each of the four 

relationships is encoded into the bits of a byte (Adjacent: bit 1; Disjoint: bit 2; 

Encloses: bit 3; and Enclosedby: bit 4).

0 1 2 3

0 disj adj end

1 disj adj disj

2 adj adj disj

3 encby disj disj

F ig u re  5.5: The region relationship table for the mode illustrated in 
Figure 5.4. The symbols “adj”, “end”, “encby” and disjoint represent 
the adjacent, encloses, enclosedby and disjoint relationships, 
respectively.

Although, the model in Figure 5.4 is 2-dimensional the same method is used to 

represent three dimensional objects, that is extract the object regions, 

determine their colour, then create a model RRT. An example of a search for 

two 3-dimensional models is presented in Experiment 3.
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The object search algorithm which utilises the modified SNN is described in 

Algorithm 5.1.

Algorithm 5.1: Colour object search using the modified SNN

1. Apply Hung’s [HE95] colour constancy algorithm to the input image.

2. Partition the image into regions of constant reflectance (using the SCF in 

Chapter 3).

3. For each model create an SNN. Assign each image region to the SNN 

input (or inputs) where the colour rank (equation (5.1)) is greater than 

colour threshold. The colour rank also determines the position of the 

region in the list.

4. Retrieve the next combination of regions from the SNN and calculate its 

vote.

5. If this combination of symbols satisfies the output requirements (Section 

5.3.3) then add to the results set and repeat Step 4 until the required 

number of solutions are found.

6. Repeat Steps 3-5 for all database models.

5.5 Results

Three object search experiments were performed using the search mechanism 

described in this Chapter. The first experiment demonstrated the performance 

of the method over a six image test set. These images varied in model 

occurrences, viewpoint, illumination, amount of occlusion and spatial 

resolution. In this experiment it was expected that most of the objects would 

be located correctly despite the complexity of the scenes.

The second experiment used a single image to assess the robustness of the 

method to changes in the colour threshold used at the SNN inputs, the 

maximum number of SNN inputs and the minimum region area. These



80

parameters were modified and the number of false positives and correct 

matches recorded. It was expected that the number of false positives and 

matches would remain constant throughout these parameter variations.

The final experiment was used as an “acid” test, that is the search for two 3- 

dimensional objects in a real (and natural) environment. It is important to note 

here that although all the images used in these experiments were from real 

environments, the placement and selection of objects was not necessarily 

natural. In this experiment, both the placement and selection of the objects 

being sought in the room were natural. Also, these objects occupied low 

spatial resolutions. This was therefore considered the definitive test which if 

passed would satisfy most of the requirements for the object search algorithm 

presented in Chapter 1.

Each of these experiments were performed using images of size 634x478 and 

766x574 captured with an NTSC camcorder and PAL colour camera, 

respectively. The algorithm was run on a 100MHz Pentium with only 16MB 

RAM running LINUX. It is important to note that about 12MB of RAM was 

used by the operating system and other software that was running on the 

machine, therefore only about 4MB of RAM was being used. A 16MB swap 

was being used throughout the running of the algorithm. The approximate 

speeds recorded in the results are based on this machine, therefore much faster 

performance can be expected from a better machine with more RAM. Today, 

Pentiums running at speeds of over 200MHz with at least 32MB of RAM are 

commonplace.

5.5.1 Parameter Selection and Sensitivity

Before discussing the three object search experiments it would be useful to 

discuss the parameters used in the algorithm, how they were selected and their 

sensitivity. A select list of important parameters, their values and a description
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of their sensitivity are presented in Table 5.3. In Experiment 2 the effects of 

varying three of these parameters was illustrated.

Parameter Value Sensitivity Discussion
Min. model region area Model

based
Larger regions tend to be more resilient to 
changes in spatial resolution.

Min. image region area 100-
400

pixels

Most object regions must be greater than this 
threshold otherwise the search will fail.

Max. no. of SNN inputs 10-40 Smaller values are better provided that the 
object regions are present in the appropriate 
input lists. Larger values mean more memory 
is required for the SNN. With poor colour 
matching, longer input list will help to ensure 
that object regions are in the list, resulting in 
successful object searches.

Size of SNN Lims 650 Small values can lead to the SNN running out 
of memory; can occur especially when the 
image contains a large number of false 
positives or when colour matching is poor. 
Larger values means that more computer 
memory is required.

Min. output vote 40 Increasing this value reduces the amount of 
allowed region occlusion; decreasing it 
results in more false positives.

Max. no of SNN outputs 
(the rules in Section 
5.3.3 are applied to these 
outputs)

200 Setting this value too small may cause the 
correct result to be missed; especially when 
correct regions are far down in the input list. 
Larger values mean that the termination point 
when the object is not present is delayed.

Colour rank threshold 
(Eqn. 5.1)

0.16-
0.48

If too small correct regions may not be 
included in the input lists and the search may 
fail. If too large then the number of regions 
per list increases and the number of false 
positives may be higher.

Table 5.3: A select list of parameters for the object search algorithm, 
their values and a description of their sensitivity.

5.5.2 Experiment 1

In this experiment a search was made for 13 database models in five images. 

The model database used contained 2-dimensional objects such as books, parts 

of a floor mat and a Christmas card box as illustrated in Figure 5.6.
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Figure 5.6: The 13 model database used in the object search experiments 
(the top left-hand model is modelO — the model number mcreases from 
left to right, top to bottom — and the last model is model 12).

The first search was performed on Figure 5.7 which contains an occluded 

model 11 and a non-occluded model 12 in the presence of image clutter. The 

first step in the search process was to partition Figure 5.7 into regions of 

constant reflectance (the SCF with a colour histogram size of 24 x 24 was 

used) and to maintain a list of regions with areas greater than 100 pixels. A 

total of 58 regions were found, 48 of which are displayed in Figure 5.8.

Figure 5.7: An image containing an occluded model 11 and non-occluded 
model 12 in the presence of image clutter.
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Figure 5.8: The results of partitioning the image in Figure 5.7.
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The next step in the algorithm was to generate an SNN for each model and 

retrieve the set of valid outputs. For example, since model 11 was represented 

by 8 regions it required an 8-input SNN. The model regions were then 

assigned to the SNN inputs.

As described in Section 5.3.1 special care was required when selecting the 

model regions to assign to each input. To limit the number of pairs passing to 

the next level of the SNN, model regions which have non-disjoint 

relationships should be paired at the input (when possible). The region pairs 

(Table 5.4) selected for model 11 illustrate this point — notice that region 1 is 

assigned to the SNN input on the far left and region 8 to the input on the far 

right. Regions 1 and 2 are inputs to the same input Lim therefore their 

relationship should be non-disjoint, which it is since it is an enclosure 

relationship. Only a few region pairs that enter this list will have enclosure 

relationships so not many pairs will pass to the next level.

Region 
No ./SNN 

input Region
1 Z
2 _____?____1
3 M
4 M
5 T
6 T
7 E
8 E

Table 5.4: The region number assignments for model 11. Regions 1, 3, 
5 and 7 are the larger regions which enclose 2, 4, 6 and 8, respectively.

The next part of the algorithm requires that image regions be assigned to the 

inputs of the SNN. The image regions (and their ranks) assigned to the SNN 

inputs for model 11 are presented in Table 5.5. The maximum number of SNN 

inputs allowed here were 11 (including the blank label which is represented by

“A”).
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1 2 3 4 5 6 7 8
21

(0.61)
51

(0.76)
51

(0.76)
16

(0.92)
33

(0.91)
23

(0.69)
23

(0.70)
32

(0.71)
18

(0.60)
4

(0.65)
4

(0.65)
33

(0.90)
16

(0.90)
19

(0.68)
19

(0.70)
31

(0.70)
32

(0.60)
12

(0.65)
12

(0.64)
11

(0.89)
11

(0.90)
6

(0.68)
6

(0.70)
25

(0.64)
5

(0.59)
41

(0.57)
41

(0.58)
5

(0.85)
5

(0.86)
50

(0.66)
34

(0.66)
8

(0.64)
31

(0.57)
56

(0.57)
47

(0.58)
18

(0.83)
18

(0.85)
52

(0.66)
36

(0.66)
37

(0.63)
11

(0.57)
47

(0.57)
43

(0.57)
21

(0.81)
21

(0.83)
53

(0.66)
53

(0.66)
49

(0.62)
33

(0.57)
43

(0.57)
20

(0.57)
32

(0.51)
32

(0.52)
36

(0.66)
52

(0.66)
22

(0.60)
16

(0.54)
20

(0.57)
56

(0.57)
54

(0.51)
54

(0.52)
34

(0.66)
50

(0.66)
45

(0.60)
25

(0.54)
17

(0.57)
17

(0.57)
2

(0.51)
45

(0.52)
A 10

(0.58)
46

(0.59)
8

(0.54)
7

(0.56)
7

(0.57)
45

(0.51)
2

(0.52)
A 54

(0.58)
A A A A A A

Table 5.5: The symbols (image regions) assigned to the inputs (1-8) of 
the SNN for model 11. The regions with the best colour rank are at the 
top of each list. These ranks are displayed in brackets.

The first three outputs of this SNN are illustrated in Figure 5.9. Notice that the 

first output correctly finds the occurrence of model 11 in the image. Seven of 

the eight regions were found — one of the regions was completely occluded. 

The image regions that matched each of the model regions 1-8 are: 18, 

occluded, 4, 16, 5, 23, 10 and 31. Notice the position of these regions in the 

ranked input list of Table 5.5.

Associated with each output is a vote (c.f. Section 5.3.4); the votes for the 

three outputs are: 135, 110 and 110. This is out of a maximum score of 161 for 

modelll. Modell2 and model4 also produced results for this image; modell2 

was a correct match while model4 was a false positive result. The first three 

outputs for each of these models are illustrated in Figure 5.10. For model4 all 

three outputs had votes of 41 (out of a maximum vote of 63), while for 

model 12 the votes were: 110, 86 and 86 (out of a maximum of 110).
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(a) (b) (c)
Figure 5.9: The first three SNN outputs for modelt 1. (a) Output 1. (b) 
Output 2. (c) Output 3.

(a) (b)

(c) (d)

(e) (f)
Figure 5.10: (a)-(c) The first three outputs of the SNN for model4 when 
applied to Figure 5.7. (d)-(f) The first three outputs of the SNN for 
modell2 when applied to Figure 5.7.
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In this image the search for the 13 models in the database was performed in 

approximately 8 seconds.

The results for five other images (illustrated in Figure 5.11) are summarised in 

Table 5.6 and Figure 5.12.

(c) (d)
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In Figure 5.12 (a) and (b) models 11 and 12 were found accurately (for the 

search in Figure 5.11(a)) both with a vote of 110; this is out of a maximum of 

161 and 110, respectively. A perfect match was therefore recorded for model 

12. The other results are interpreted in a similar way using Table 5.6 and 

Figure 5.12."

Image False
Positive

Model Vote Max.
Vote

Object
Found

5.11(a) y model4 63 63
n model 11 110 161 5.12(a)
n model 12 110 110 5.12(b)

5.11(b) n model! 1 135 161 5.12(c)
n model 12 86 110 5.12(d)

5.11(c) n model 1 63 63 5.12(e)
y model3 63 67
y model5 41 41
y model9 60 82

5.11(d) y model 1 41 63
n model3 82 67 5.12(f)
y model4 41 63
y modeló 41 41
n model7 41 41 5.12(g)
y model9 41 82

5.11(e) n m odelll 135 161 5.12(h)
n model 12 86 110 5.12(1)

able 5.6: A summary of the results o: search for mode objects in th
five images in Figure 5.11.

The overall recognition rate for the six images in this experiment is 100% with 

no false negatives and 8 false positives. The false positive results with high 

votes, for example model4 in Figure 5.11(a) result from image regions with 

the same colour and region topology as database models. In these cases colour 

alone is unable to distinguish between these objects, therefore geometric 

features would have to be used.

" A 100MHz Pentium with 16MB RAM, running the LINUX operating system, was used in 
these experiments.
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Figure 5.12: The objects that were accurately found in the object search 
experiment performed on the images in Figure 5.11.
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5.5.3 Experiment 2

To determine the effects of varying the number of SNN inputs, the minimum 

image region resolution and the SNN input colour threshold, eight different 

variations of these parameters were used to search the image in Figure 5.11(e). 

The results of this experiment are presented in Table 5.7.

No. Min.
Area

Colour
Threshold

Max. 
no. of 
inputs

Matches SNN
Output
No.

Vote False
Positives

1 400 0.16 30 model 11 1 161
model 12 2 86

1 63 model4
2 400 0.16 20 model 11 1 161

model 12 2 86
63 model4

3 400 0.16 10 modell 1 1 161
model 12 2 86

1 41 mode 14
4 400 0.32 10 modell 1 1 161

model 12 2 86
1 41 model3
1 41 model4
1 41 model9

5 400 0.48 10 modell 1 1 161
model 12 2 86

1 41 model3
1 41 model4
1 41 model9

6 100 0.16 10 model 11 1 135
model 12 1 86

7 200 0.16 10 modell 1 1 161
model 12 1 86

8 300 0.16 10 modell 1 1 161
model 12 2 86

1 41
Table 5.7: The results of varying three parameters in the object search 
using Figure 5.11(e).

Three observations were made in these experiments. Firstly, the number of 

matches (and false positives) remained constant when the maximum number 

of inputs was varied from 10 through 30. This is seen in experiments number 

1-3 where model 11 and model 12 were correct matches and model4 a false
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positive. The second observation was that changing the minimum image 

region area did not affect the results significantly. This is highlighted in 

experiments 3, 6, 7 and 8 where the minimum area was changed from 400 

pixels down to 100 pixels. Interestingly enough, in experiments 7 and 8 there 

were no false positive results. And finally, the colour threshold parameter was 

varied from 0.16 to 0.48 in experiments 3, 4 and 5. As expected the results got 

worse with an increase in false positives. This point which was highlighted in 

Table 5.3 is a result of introducing region groups with the correct topology but 

incorrect colour matches.

This experiment demonstrates that the only parameter which significantly 

affects the outcome of the experiments is the colour threshold. With good 

colour constancy this threshold can be kept small thus producing less false 

positive results.

5.5.4 Experiment 3

In this experiment a search was performed for two simple 3-dimensional 

models in the Computer Vision Lab; these objects were a garbage can 

(represented by two orange regions and one black) and a bag (represented by 

two pink regions and one blue). The lighting in that part of the Lab is provided 

by four sets of roof mounted fluorescent lights at different locations —  no 

other/special lighting was used. As illustrated in Figure 5.13 , both objects 

were at a low spatial resolution and 50% occluded. The maximum number of 

SNN inputs allowed was 31 (including the blank symbol), and a Lim size of 

650. After image segmentation only 43 regions had an area greater than 100 

pixels. Both objects were described by three regions. The algorithm was able 

to successfully locate both objects in less than one second, both returning the 

vote of 41 which was the maximum obtainable for both objects. The results of 

this experiment are presented in Figure 5.13.
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(i)

Figure 5.12 Contd.: The objects that were accurately found in the object 
search experiments performed on the images in Figure 5.11.

(a)

Figure 5.13: (a) original image (b) The 50% occluded bag was found 
accurately (c) The 50% occluded garbage can was found accurately.
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5.6 Discussion

In this chapter a model-based object search algorithm was presented which 

used a modified syntactic neural network to combine image regions and output 

possible model occurrences. The system was used to represent both 2- and 3- 

dimensional objects that were perspectively distorted in the scene and at most 

50% of their total area was occluded; these objects could be at high or low 

spatial resolutions. The recognition rate recorded in the experiments was 100% 

with 8 false positives. These false positives were due to region groups existing 

in the image with the same region topologies as models in the database. In 

these circumstances colour alone is unable to differentiate between these 

objects. The speed of search was less than one second per model.

When compared to existing object search/recognition algorithms this 

algorithm compares favourably or outperforms them in all areas of 

comparison. The criteria selected for comparison are: the size of the model 

representation, the type of objects that can be represented, the amount of 

allowed occlusion, the recognition rate and the speed of search. The 

algorithms used for comparison are: colour-histogram based, colour 

backprojection-based methods, statistical-based methods and the colour 

adjacency graph (c.f. Chapter 2).

Statistical-based methods are probably the most efficient in terms of the size of 

model representations since they can describe images in as few as nine floating 

point numbers. In the modified SNN method, however the colours of each 

region (2 floating point numbers) had to be stored for each region, as well as 

the region relationship table for all the regions. For models with a small 

number of regions the sizes of both of these representations are similar. For 

example in Section 5.4 a model was represented by 38 bytes compared with 36 

bytes required by the statistical model which uses 9 floating point numbers.

The modified SNN method can represent both 2- and 3-dimensional models 

which are perspectively deformed which Matas’ colour adjacency graph is also
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capable of representing. Colour histogram intersection methods are capable of 

performing correct recognition with as much as 4/9ths of the original object 

area occluded. The experiments performed in this Chapter have shown that the 

modified SNN is capable of representing objects that are 50% occluded (the 

allowed amount of occlusion depends on the minimum number of region 

relationships).

The recognition rate of Matas’ colour adjacency graph (an object search 

algorithm which is capable of searching for similar objects) was 93% with one 

false negative and two false positives. This method had a recognition rate of 

100% with 8 false positives and no false negatives. These algorithms therefore 

compare favourably in terms of recognition rate. Finally, Swain was able to 

search for objects in real time; however, his objects were 2-dimensional and 

not robust to false positives. On the other hand, Matas performed a search for a 

single object in just over 5 seconds (see Matas [Mat96]). The modified SNN 

method was able to find all 13 database object in approximately 8 seconds. 

This is a remarkable improvement in search speed.

Possible improvements to the modified SNN method include the inclusion of 

other region relations such as near (which better defines those regions which 

do not quite satisfy the adjacency criteria in terms of common border length) 

and partially enclosed. It is also worth examining how model region relations 

vary with reduced resolution and modelling these changes. A given pair of 

regions might then have several relationships instead of one, for example 

“near” at one resolution and “adjacent” at the next. This information could 

then be encoded into the model RRT relationship byte (by setting multiple 

bits).



Chapter 6

Conclusions

The object search process requires two capabilities: the ability to recognise an 

object when it comes into view (which is performed by object recognition 

algorithms); and a mechanism that brings the object into view. If a searcher 

has only the first capability then all possible regions in the search space would 

have to be examined at a high spatial resolution. This process, known as linear 

search, is extremely slow. The need for the second capability should therefore 

be clear. A feature which seems quite appropriate for this task (and is used by 

the human visual system) is object colour. Colour is both salient and resistant 

to changes in spatial resolution — quite unlike geometric features which are 

more difficult to detect at lower spatial resolutions. Using colour, however 

does mean that a colour constancy algorithm (which allows the colour of a 

surface to be seen as the same under different illuminants) must be available if 

models and images are to be captured under different illuminants. Also, there 

must be a relatively consistent way of partitioning images into regions of 

constant reflectance.

The goal of this thesis was to develop a machine vision system which was 

capable of performing colour object search. It was assumed that a camera 

system was available allowing scenes to be imaged at both high and low 

spatial resolutions (through zoom and wide-angled lenses). The requirements 

of the object search algorithm (described in Chapter 1) were that: the 

computation complexity of the search would not appreciably increase with an 

increase in the number of models; a maximum of 50% of the total object area 

could be occluded; objects may appear with perspective distortion in the 

scene; only indoor lighting (tungsten and fluorescent) was allowed; and 

objects could be 2- or 3-dimensional.
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This system has been successfully developed. The methodology adopted 

accepts images of scenes containing objects at high or low spatial resolution. If 

the object is at a low spatial resolution, the system returns a set of ranked cues 

(possible object locations) which can be imaged at a higher spatial resolution 

for more accurate recognition. If the object was at a high spatial resolution 

then the identity of the object was determined. Colour was used at both high 

and low spatial resolutions for object localisation and recognition. (It should 

be clear that geometric techniques could be applied afterwards for further 

object discrimination.)

The modified syntactic neural network algorithm (c.f. Chapter 5) satisfied all 

of the requirements of the required search system; while the object search 

algorithm described in Chapter 3 and the colour and area ratio indexing 

algorithm (c.f. Chapter 4) only partially fulfilled the requirements. The 

properties, performance and possible improvements of these methods will be 

discussed and compared with each other and other colour object 

search/recognition algorithms in the literature.

In the thesis three algorithms were presented, two performed colour object 

search and the third colour object recognition. The first object search 

algorithm determined the salient colours of a model and identified locations in 

the scene with these colours. Each of these locations served as a cue. A match 

measure (based on colour proportions) was used to determine if the object was 

present at a given cue location. The second object search algorithm used a 

syntactic neural network (SNN) to combine image regions with the same 

colour and topological relationships as the model. A SNN was generated for 

each model and a model region assigned to each SNN input. Image regions 

with similar colour to the model regions at the inputs were added to the SNN 

input list. These regions were then combined by the SNN and groups of 

regions output in best-first order. These groups represented possible object 

occurrences. The object recognition algorithm presented, which was based on
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colour and area ratio indexing, determined for each model, image regions with 

similar area ratios and colour. If three model/image region correspondences 

were found then a transformation was determined which transformed the 

model into image space for region matching (based on region colour and 

position). The quality of match was determined from the number of matching 

transformed model and image regions.

The prerequisite to each of these algorithm was a colour constancy and image 

segmentation algorithm. Since model and images were viewed under different 

indoor illuminants, colour constancy was required. The colour constancy 

algorithm used (because it was developed in-house) only provided a marginal 

improvement in colour, however any improvement would increase the 

robustness of the adopted methods to changes in illumination. If a better 

colour constancy algorithm were available in-house (such as Finlayson’s 

colour in perspective, c.f. Chapter 2) then potentially further improvement in 

the results would be achieved. A simple, yet effective colour image 

segmentation was adopted. This algorithm was based on clustering a colour 

histogram of the image and backprojecting the pixel in each identified cluster. 

However, as with most image processing algorithms an improvement in the 

image segmentation algorithm would have also improved the results.

The first object search algorithm (c.f. Chapter 3) were capable of locating both 

2- and 3- dimensional planar objects with, at most, 50% of their surface areas 

occluded. As presented in the results, the affine distorted objects being 

identified were illuminated by a combination of tungsten filament and 

fluorescent lighting in an indoor environment. There was a 100% recognition 

rate with 51 false positives. Overall, 45% of the objects being searched for 

were found with rank 1, 45% with rank 2 and 10% with rank 3 (therefore all 

objects being searched for were found within the three cues with the best 

ranks).



98

The modified SNN algorithm (c.f. Chapter 5) was also capable of representing 

both 2- and 3-dimensional objects (but they were not restricted to be planar or 

rigid) with up to 50% of their areas occluded. The lighting used was the same 

as the first algorithm, tungsten and fluorescent. There was a recognition 

accuracy of 100% with only five false positive results.

The object recognition algorithm was able to recognise both 2- and 3- 

dimensional planar (and rigid) objects containing at least four regions and 

affine distorted. The lighting conditions were the same as the other algorithms 

described in this thesis. There was one false negative result and 5 false 

positives. An important feature of the algorithm was its ability to represent 

objects with disjoint regions. The order of complexity of this algorithm is 

lower than the exhaustive search method, the CLM model (because it has a 

shape computation overhead) and geometric hashing (which uses more point 

triplets). In terms of the size of the model representation it is greater than 

statistical and colour histogram-based methods since for each model region 

five parameters must be stored, as well as the area ratio table. The two main 

advantages of the algorithm are that it can represent 3-dimensional planar 

objects (statistical and colour histogram-based methods can not), and it can 

recognise objects in complex, cluttered environments (c.f. Chapter 4); the 

other two methods are simply not able to do that. Finally, this recognition 

algorithm has one advantage over Matas’ colour adjacency graph method, 

because it is able to represent objects which are described by a set of disjoint 

regions (e.g. a textured object). However, Matas’ algorithm is more general 

since it can describe 3-dimensional objects which are perspectively distorted.

When comparing the two object search algorithms presented in this thesis, it is 

important to realise that the modified SNN algorithm operates under a wider 

range of conditions; notably perspective distortion and non-planar/non-rigid 

object representations. Also since the modified SNN method uses region 

topology in its descriptions it can more accurately represent objects with 

similar colour proportions. Three criteria will be used to compare these
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algorithms: available computer memory, the size of the model database, and 

the reliability of the image segmentation algorithm. Firstly, if the size of the 

computer’s memory that the algorithm is running on (say a mobile robot) is 

limited then the first algorithm (not the SNN based algorithm) would be more 

appropriate since it uses significantly less memory (c.f. Chapter 3 and 5). 

Secondly, the computation complexity of the SNN based algorithm only 

increases by a small amount with the addition of new models to the database; 

this is not the case with the other algorithm. Finally, the SNN method relies 

heavily on the accuracy of image segmentation to define topological 

relationships; however the other search algorithm only requires one object 

region to be identified accurately in order to locate it.

The performance of the colour-based object search algorithm described in 

Chapter 3 is better than Swain’s histogram backprojection technique because it 

not only identifies object cues but ranks them as well. Histogram 

backprojection methods in general are restricted to representing 2-dimensional 

objects; while this algorithm can represent 2- or 3-dimensional planar objects. 

Also, this algorithm performs well in complex, cluttered environments and 

requires no a priori knowledge of the size of the object. All the colour 

histogram-based methods require the colour histogram of the object to be 

stored, which might require 64, or 256 floating point numbers for 8x8 and 

16x16 colour histograms, respectively. The adopted method, however only 

requires that 5 floating point numbers be stored for each model colour. This 

algorithm, however does not perform as well as Matas’ [Mat96] colour 

adjacency graph method in many areas. To compare these two methods three 

criteria are used: object representation, search speed and accuracy. Matas’ 

method can represent 3-dimensional, non-rigid objects which are perspectively 

distorted; this algorithm can only represent 3-dimensional planar objects 

which are affine distorted. Matas recorded a 93% (2 false negatives) accuracy 

while this method 100% (no false negatives), however Matas only had one 

false positive result while this method had 51. This high false positive rate was 

expected because several of the database models used in these experiments had
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similar colours; this was not the case with Matas’ database. Finally, in terms of 

search speed this algorithm performs better because its order of complexity is 

linear (Matas’ is approximately 0(N3)). One finally point should be made, this 

algorithm would perform better than Matas’ if the object has a low spatial 

resolution and could not be accurately segmented from the background —  thus 

returning invalid region adjacency relationships.

When compared to existing object search/recognition algorithms the modified 

SNN algorithm compares favourably or outperforms them in all areas of 

comparison. The criteria selected for comparison are: the size of the model 

representation, the type of objects that can be represented, the amount of 

allowed occlusion, the recognition rate and the speed of search. Statistical- 

based methods represent images in as little as nine floating point numbers, 

however the modified SNN method, must store the colours of each region (2 

floating point numbers) and the region relationship table. For models with a 

small number of regions the sizes of both of these representations are similar 

(c.f. Chapter 5). Both the modified SNN method and Matas’ colour adjacency 

graph can represent 2- or 3-dimensional objects which are perspectively 

deformed. Colour histogram intersection methods are capable of performing 

correct recognition when as much as 4/9ths of the original object area is 

occluded. The experiments performed in Chapter 5 show that the modified 

SNN is finding objects that are 50% occluded, however the allowed amount of 

occlusion depends on the minimum number of region relationships that are 

required. The recognition rate of Matas’ colour adjacency graph was 93% with 

two false negatives and one false positives. This method had a recognition rate 

of 100% with 8 false positives. Finally, Swain was able to search for objects in 

real time, however these objects were 2-dimensional and not robust to false 

positives. On the other hand, Matas [Mat96] performed a search for a single 

object in just over 5 seconds. The modified SNN method was able to search 

through the entire database of 13 objects in appropriately 8 seconds.
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There are several improvements that could be made to the three algorithms 

presented in this thesis. In terms of the colour and area indexing recognition 

algorithm different invariants could be used to extend the type of objects that 

can be represented. One example is to use the cross ratio invariant [MZ92] 

which would allow the algorithm to be invariant to perspective distortions. For 

the object search algorithm presented in Chapter 3 the object size 

determination method could be improved by assuming that one object region 

is not occluded in the scene; that way the quality of match could be determined 

more accurately, thus improving recognition. Finally, additional relationships 

could be included in the modified SNN method. These include “near” and 

“partially enclosed.” With the help of these (fuzzy-type) relationships the 

effects of reducing spatial resolutions or occlusion can be more accurately 

modelled. For example, a region may normally enclose another region but is 

occluded in the scene; by allowing fuzzy relationships, enclosure can 

deteriorate to partial enclosure, and partial enclosure to adjacency. Also, at one 

spatial resolution two objects might be adjacent, but at another near. These 

modifications would improve the overall robustness of the algorithm to object 

occlusion and changes in spatial resolution.

In conclusion, colour represents a valuable but under-used property in 

Computer Vision, especially in the areas of object search and recognition. This 

thesis has demonstrated that colour can be used successfully both as a cueing 

mechanism and to discriminate between objects of dissimilar colour. Colour is 

especially useful when the object has a low spatial resolution because it is 

region-based, thus resistant to changes in spatial resolution (unlike geometric 

features which are less well defined at lower spatial resolutions). In images 

with a large field of view colour can be used to generate a set of cue locations 

which can be examined at a high spatial resolution. This improves the speed of 

search because the entire search space does not need to be examined at this 

high spatial resolution.



Glossary

CCA

CFG

CLM

CRAG

FSD

HVC

RRT

SCF

SNN

SPD

Colour constancy algorithm 

Context-free grammar

The colour landmark model which utilises object region 

colour, shape and region topology to describe an object 

[Wal96],

The colour region adjacency graph.

Feature and Spatial Domain clustering: an image 

segmentation algorithm [Mat96].

Hue/Value/Chroma colour space. Hue. describes the type 

of colour; Value: describes the total amount of light; 

Chroma: describes the purity of the colour, i.e. the amount 

of white light mixed with the colour.

The region relationship table (stores the relationships 

between regions)..

The Software colour filter which backprojects salient 

colours onto the image and identifies spatially close colour 

groups. This technique is used in an object search 

algorithm but is also a partial image segmentation 

algorithm [WE96],

The Syntactic Neural Network [Luc96] is a neural network 

which combines symbols using a set of rules and provides 

fast retrieval of these symbols.

The spectral power distribution of a given light source.
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Appendices

A.l A Statistical Shape Descriptor

Recently, several affine invariant shape descriptors have been described in the 

literature [FS93][CV95] most of which could have been used here, however in 

the CLM [WE96][Wal96] a statistical (moments based) shape descriptor was 

used. This shape descriptor was calculated for filled object regions rather than 

for object region boundaries. It is expected that a region-based shape 

descriptor would be more expensive computationally than one based on the 

boundary alone. However, a region-based descriptor should be more robust 

than a boundary descriptor to occlusion and boundary distortions.

Given the discrete form of the (p+q) order moment of a binary image function 

f(x,y), the general moment mpv and the central moment jupq can be defined as:

(A 1.1)
x  y

Vpq = E Z ( * - *c)/’(T -T c ) i /(*,.V) (A1-2)

, "ho , »01where xc = ----  and y c = -----.
»00 »00

Flusser et al. [FS93] defined a second order affine invariant moment I,:

h  = (A20A02 A 11)

A
(A1.3)

00

The computational expensive of I, can be reduced through the use of the 

following formulae:

A oo — » 0 0  

Ao2 = » 0 2  T c  » 0 1

A ,, =  » 1 1  -  T c » io

A 20 =  » 2 0  -  * c » 1 0

(A 1.4) 

(A1.5) 

(A1.6) 

(A 1.7)
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The moment I1 is less sensitive to digitalisation errors, minor shape 

deformations, camera non-linearity and non-ideal camera positions and less 

expensive computationally than higher order moments.
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A.2 Performance of Hung’s Colour Constancy 

Algorithm

To recognise the colour of a surface as the same when viewed under different 

illuminants requires a colour constancy algorithm. Most of these algorithms 

make strong assumptions about the nature of the world, for example many 

assume a Mondrian world with constant illumination, no inter-reflection and a 

single light source. For these reasons it is important to determine whether a 

given colour constancy algorithm will help to correct image colours before 

using it. Hung’s colour constancy algorithm [HE95] makes the above 

assumptions and therefore theoretically is constrained to a Mondrian world; 

however what is of interest here is its performance under indoor lighting 

(fluorescent and tungsten lighting).

An experiment was formulated to determine how well Hung’s algorithm 

brings into correspondence the colours of two images of the same scene — 

one viewed under tungsten lighting and the other under fluorescent — 

compared with not using colour constancy at all. To determine this the colour 

difference (the Euclidean distance between the chromaticity co-ordinates of 

the two regions) was calculated using the colours of the same region viewed 

under tungsten lighting and fluorescent lighting. The colour difference was 

calculated before and after colour constancy and the values compared. This 

was repeated for all image regions and a mean colour difference calculated. If 

the colour constancy algorithm worked then the mean colour difference after 

constancy should be better than before constancy. This experiment is detailed 

in Experiment A2.1.

Experiment A2.1 ; Colour Constancy Experiment

1. Capture two images of the same scene, one under tungsten and the other 

under fluorescent lighting. Label these images IT and IF, respectively.
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2. Apply Hung’s colour constancy algorithm to both images and label the 

colour constant images ITC (colour constancy applied to IT) and IFC.

3. Partition and of the images into regions of constant reflectance and 

determine for each image the mean chromaticity co-ordinates (r,g)  of 

each image region.

4. For the same region in each image compute the colour distance Ei (the 

Euclidean distance between the mean chromaticity co-ordinates) for image 

pairs ITC and IFC and Ix and IF. Repeat this for all regions.

5. Sum the colour differences for all the regions for each image pair.

In Figure A2.3 a graph of the region colour differences versus image regions, 

with and without colour constancy, for the scene in Figure A2.1 is illustrated 

—  Figure A2.1 was partitioned into 55 regions (c.f. Figure A2.2) which were 

used in the calculation of the colour differences. The 55 regions are labelled 0- 

54 on the horizontal axis; the areas of these regions are in ascending order, 

therefore region 0 is larger than region 1 and so on.

The mean colour difference calculated in the experiment was 0.069 with 

colour constancy applied to the images and 0.075 without. This indicates a 

marginal improvement of the colour when colour constancy is used. If Figure 

A2.3 is examined more closely then it is realised that some of the smaller 

regions have large colour errors; this is expected because as described in 

Chapter 2 the prominent colours are used to calculate the transformation.

Although the improvement in colour in this experiment is only marginal it is 

an improvement, therefore Hung’s algorithm is used throughout this work. 

Also, it is expected that this algorithm will perform better in more diverse 

lighting conditions.
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Figure A2.1: The scene used in the colour constancy experiment which 
contains a multicoloured toy, parts of a floor mat and a computer 
keyboard.

Figure A2.2: The results of segmenting Figure A2.1 — 55 regions result.

Region nos.

Figure A2.3: The region colour differences with and without colour constancy.


