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Abstract

The recent advances in lightwave technology have revealed the need for the 
accurate modelling of a range of optoelectronic devices, via efficient computer 
algorithms. The characterization of optical waveguides, which are the key elements in 
integrated optics design, requires the accurate determination of the impact of various 
material parameters and fabrication tolerances, for example. During the early years of 
the development of the field, the estimation of loss and gain was not considered 
critical, since it was maintained at low levels, due to the simplicity of the structures and 
the properties of the materials. The loss and gain analysis is becoming of considerably 
greater importance nowadays, with the introduction of new laser technology and 
integrated optics design which has enabled the fabrication of complicated structures, 
where various metallic elements and active regions are combined in a large scale 
integration.

The finite element method, which is a very popular numerical approach for the 
solution of many engineering problems, is currently recognized as a very powerful tool 
for the analysis of several optical waveguide structures, particularly structures with 
arbitrary shapes, index profiles, nonlinearities and anisotropies. Most of the 
formulations used in the finite element method are restricted to structures without 
modal loss or gain. The Ht vector formulation, defined in terms of the transverse 
magnetic field components, which was recently introduced for such analysis though it 
is considered accurate, may result in an increase of the computing time, due to the 
involvement of complex matrices and the limitation of efficient solvers. Therefore, more 
efficient algorithms are required, especially in the cases where the optical waveguides 
suffer small loss or gain, which is common in most of the practical applications 
considered.

In this work, a finite element analysis employing the H-field formulation, with the 
aid of the perturbation technique, has been developed to calculate the modal loss or 
gain for several different types of optical waveguides. Further, a semi-analytical 
approach has also been developed and used to obtain the complex propagation 
constant of simple optical waveguides from the solution of the complex transcendental 
equation and the use of the effective index approach. The accuracy limit of the 
perturbation technique, which is limited to structures with low to medium loss or gain is 
also examined. An approximate approach for the calculation of the modal loss or gain, 
in terms of the mode confinement factor has also been employed for certain types of 
optical waveguides.

The above approaches are used for the solution of several planar optical 
waveguides and optical waveguides with two-dimensional mode confinement. The 
results obtained were compared with previous results for some of the structures 
examined, and found to be in good agreement. Finally, the finite element approach 
with the introduction of a perturbation technique has been used for the characterization 
and optimization of certain types of optical waveguides of practical interest, such as 
optical polarizers, electro-optic directional coupler modulators and metal clad fibers 
used in near-field scanning optical microscopy, which enhance surface-plasmon 
properties.
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Chapter 1 Introduction

Introduction

1.1 Historical Development of Lightwave Technology

The phenomenon of the guidance of light along transparent cylinders by 

multiple total internal reflections had been observed and used in the ancient world by 

Greek and later by Venetian glassblowers, in fabricating their decorative glassware. In 

fact, the basic techniques used then form an important aspect of present-day fiber 

optic technology. The earliest recorded scientific demonstration of light confinement, 

was given by John Tyndall at the Royal Society in England in 1870, where he used an 

illuminated vessel of water and showed that, when a stream of water was allowed to 

flow through a hole in the side of the vessel, light was conducted along the curved path 

of the stream (Kapany, 1967). Ten years later, in 1880, Alexander Graham Bell 

invented the “photophone”, a device that varied the intensity of sunlight incident upon it 

in response to the amplitude of speech vibrations. The light variations were 

reconverted into electrical signal and then into sound, at the receiver end, via a 

selenium detector. Although the photophone was impractical due to propagation 

losses, it provided the idea for transmission of signals over a specified distance by
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modulation of an optical wave: in other words, the concept of optical communication. 

This brought new ideas in the early years of this century, and in 1910 Hondros and 

Debye presented the first form of an optical waveguide, the dielectric circular rod, in an 

attempt to guide electromagnetic waves through a dielectric medium. The dielectric 

losses of the non-radiative modes propagating along the dielectric circular rod, were 

computed much later, by Elsasser (1949).

The development of glass fibers of high refractive index surrounded by air or 

glass of lower refractive index, in the mid-50s, led Kapany to first apply the term “fiber 

optic” , which he defined as the art of the active and passive guidance of light (rays and 

waveguide modes), in the ultraviolet, visible, and infrared regions of the spectrum, 

along transparent fibers through predetermined paths (Kapany, 1967). A few years 

later, Snitzer and Osterberg (1961) recorded dielectric waveguide modes in the visible 

region of the spectrum of various optical fibers and Kapany and Burke (1961) 

investigated the coupling phenomenon in adjacent optical fibers. These observations 

were followed by further work in the field, which established the use of optical fibers in 

long distance telecommunications (Kao and Hockham, 1966).

Along with the research for higher transmission capacity, larger bandwidth and 

lower losses in optical fibers, some other major developments were achieved in the 

1960s, which revolutionized lightwave technology and telecommunication industry. In 

1960, T.H. Maiman first demonstrated laser action in ruby, by applying Einstein’s ideas 

for stimulated emission, dated back to 1917. This invention had given birth to the laser 

technology, a science dealing with the generation of coherent light in small but 

powerful beams, which are extremely directional. Soon afterwards, some other groups 

(Hall et a i, 1962; Nathan et al., 1962; Holonyak and Bevacqua, 1962; Quist et at., 

1962), obtained laser action in GaAs p-n junctions. That development, which was then 

associated with the observation of a dielectric waveguide mode of light propagation in 

p-n junctions (Yariv and Leite, 1963; Bond et al., 1963), initiated new research activity 

for understanding the laser phenomenon, achieving it in new semiconductor materials, 

such as lnPxAs1.x (Alexander et al., 1964) and IV-VI compounds (Butler et al., 1964), 

and applying it in the design of various devices. These first lasers, which comprised a 

single semiconductor and are referred to as homostructure injection lasers (Casey and 

Panish, 1978), had a common discouraging feature, that the usual threshold current 

density was very high at room temperature. This diminished the interest in such work in 

the field by 1965, since considerable reduction of the threshold current density had not
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been achieved until then. The achievement of low-threshold room-temperature lasers 

(Hayashi et a!., 1969; Panish et al.} 1969), in a structure where a layer of 

semiconductor with a relatively narrow energy gap is sandwiched between two layers 

of a wider energy gap semiconductor, called a heterojunction, boosted the research 

interest. It was followed by the development of more interesting heterostructure laser 

structures, such as Double-Heterostructure (DH) lasers, in which continuous-wave 

(CW) lasing operation had been achieved at room temperature with much lower 

threshold current intensity (Alferov et at., 1970; Hayashi et at., 1970). The 

implementation of low-loss silica fibers (Miya et at., 1979), and the use of lasers as a 

CW coherent source of light at optical frequencies, in the range 1.3-1.55 pm, where 

such fibers exhibit minimum dispersion, had given a new dimension in the field of 

optical communication.

The invention of the laser gave an enormous stimulus to the entire field of 

optics. The requirement for more compact and more economical optical transmission 

systems, less vulnerable to environmental changes, in order to replace the existing 

laser beam transit in a system via mirrors and lenses, then emerged. These 

requirements stimulated the development of improved thin-film fabrication techniques 

and studies on new materials for both active and passive function (Osterberg and 

Smith, 1964; Shubert and Harris, 1968), and led eventually to the idea of integrated 

optics. As a concept, it was first visualized by Miller (1969), that the new art that would 

facilitate isolating the laser circuity assembly from thermal, mechanical, and acoustic 

ambient changes through small overall size, and would result in economy. Integrated 

optics is based on the guiding of electromagnetic energy at optical frequencies by thin 

films, which can be placed one next to the other on a single substrate, forming an 

optical system meeting the requirements mentioned above. Semiconductors had 

played an important role in the effort to develop monolithic integrated optical circuits 

(IOC), that would serve as miniature optical counterparts of microwave devices and 

networks. The pioneering days of integrated optics, in the early 1970s were 

characterized by successive efforts in developing devices that were compatible with 

the technology of integrated optics. The problem of coupling laser beams into planar 

guides was solved by Tien et al. (1969), by the prism-coupler, while active components 

in integrated optics had also been studied with developments in acousto-optic (Kuhn et 

al., 1971), magneto-optic (Tien et al., 1972) and electro-optic (Martin, 1973) 

techniques, and the invention of the distributed feedback laser (DFB) principle 

(Kogelnik and Shank, 1972).
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The period that followed Initiated new activities, which aimed as an ultimate 

goal for the replacement of the existing integrated electronic circuits (IEC) by 

integrated optical circuits (IOC), in order to benefit from the advantages of larger 

bandwidth and negligible sensitivity to interference by natural or man-made 

electromagnetic fields of lower frequencies, that optical communication systems can 

offer.

Recent advances in integrated optics demonstrated a rich variety of optical 

components and devices, such as directional couplers, Y-branches, waveguide 

crossings, Bragg gratings, transmission gratings, acousto optical filters, optical filters 

modulators, optical amplifiers and others (Tamir, 1979). Also, recent technological 

achievements such as laser copiers, laser printers, laser bar-code readers, CD players 

and other, have entered our households and have become part of everyday life.

The development of more sophisticated integrated optical communications 

systems requires a knowledge of the properties of the basic elements, such as the 

optical waveguides. This can more conveniently be achieved by the implementation of 

accurate analytical or numerical approaches for the determination of the propagation 

characteristics of such structures, via the solution of the Maxwell’s equations. In the 

present work, several approaches have been developed, for the determination of the 

propagation characteristics of different types of optical waveguides and optoelectronic 

devices, with a focus on their loss or gain properties. Throughout the work, uniform 

optical waveguide structure along the direction of propagation has been assumed.
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1.2 Optical waveguides

Optical waveguides are the structures used to trap the light locally and guide it 

in waveguides such as optical fibers or in optical integrated circuits, in other words, the 

“wires” which carry optical signals in the interconnections between various 

optoelectronic devices. They can be classified approximately into optical waveguides 

for optical integrated circuits and optical fibers (optical waveguides, with a circular 

cross-section), which are mostly used for optical communication.

The simplest type of optical waveguide, is the asymmetric planar slab 

waveguide, shown in Fig.1.1, where a thin film is loaded with dielectric material with 

higher refractive index, nf, than the substrate, ns, and the upper cladding, nc, which is 

usually air, having the lowest refractive index. Under these conditions, and depending 

on the angle of incidence, a light beam is confined by total internal reflection at the 

film-substrate and film-cladding interfaces, and therefore guidance is achieved in the z- 

direction.

Fig-1-1 Reflection and refraction of a light ray in a planar slab optical waveguide

A planar slab optical waveguide may support a finite number of guided modes, 

which is supplemented by an infinite continuum of unguided radiation modes. The 

solution for both the modes can be obtained via Maxwell’s equations, which are 

discussed in detail in Sections 2.2 and 3.2.1, where the problem is considered as a 

boundary value problem and the solution matches the boundary conditions at the film- 

substrate and film-cladding interfaces. The guided modes can also be considered from 

the geometrical (or ray) optics point of view, where the propagation of the light fields is 

described by defining rays as the lines that cross the surfaces of constant phase of the
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light field at right angles (Marcuse, 1991). For the planar slab optical waveguide it may 

be assumed that a light ray in a homogeneous medium follows a straight path.

By considering the cladding-film interface of the planar slab optical waveguide, 

and a light ray, A , incident at an angle 0O, between the light field normal and the normal 

to the interface, as shown in Fig. 1.1, Snell’s law of refraction can be expressed as 

(Tien, 1971):

sin0, nc

where, 0!, is the angle of the refracted light ray, B, with the normal to the interface. 

For the film-substrate interface, Snell’s law can then be expressed as:

s in02 nf

where 02, is the angle of the refracted in the substrate region, light ray C, with the 

normal to the interface.

Under the above conditions, since nf > nc, an incident light ray A, is refracted 

into the film region following the path of ray B as shown in Fig. 1.1. The route of the 

light ray B which is then incident by an angle 0t on the film-substrate interface, is 

determined by a critical angle, 0C, expressed as (Adams, 1981):

0C = sin -i
f  \n c

\ n f J

(1.3)

If 0! < 0C, then the light ray B is refracted at an angle 02, given by Snell’s law 

(1.2), following the ray path C, and radiation modes of the light wave are observed. 

When the incident angle 0! is greater than the critical angle 0C, then total reflection 

occurs and the light ray follows the path D, which in turn is either reflected or refracted, 

depending again on the analogous critical angle of incidence on the film-cladding 

interface. When continuous total reflections occur inside the film region between the 

two interfaces, the light is trapped in the film and propagates in a zig-zag path. This
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case corresponds to a guided mode of propagation of the light wave along the z- 

direction.

1.2.1 Guided modes in a planar slab optical waveguide

When guided modes occur in a planar slab optical waveguide, the light energy 

is trapped in the film as the wave is totally reflected back and forth between the two 

film boundaries. The zig-zag wave motion, shown in Fig. 1.1, can be described by a 

picture of two superimposed uniform plane waves with wave normals following the zig-

zag path. The light wave in the waveguide mode can be defined as TE or TM wave, 

depending whether the Electric or Magnetic field, respectively, is perpendicular to the 

plane of incidence. The two repeated (incident and reflected) wave vectors of the light 

wave can be decomposed into vertical and horizontal components, where the 

horizontal components determine the wave velocity parallel to the film and the vertical 

components determine the field distribution across the thickness of the film. The wave 

propagation constant, p, and the related phase velocity, op, of the light wave can be 

expressed as (Kogelnik, 1990):

P = —  = knf sin 0, (1.4)

where, co, k and 0-, are the angular frequency, the wavenumber and the reflection angle 

of the wave respectively.

The condition for all the multiple reflected waves to add in phase is that the 

total phase change experienced by the plane wave for it to travel one round trip, up 

and down across the film, should be equal to 2mn, where m is an integer. The phase 

change for the plane wave to cross the thickness, t, of the film twice (up and down) is 

then 2knf t cos0,. Additionally, the wave suffers phase shifts, due to total reflection, of

-20>c and -2 0 s at the upper film-cladding and lower film-substrate interfaces, 

respectively (Tien, 1971).

From the above relationships, the self-consistency condition for a guided mode 

in a planar slab optical waveguide can be expressed as:

2knf t cos 9, -  2 0 c -  2 0 s = 2mn (1.5)
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Equation (1.5) is also known as the eigenvalue or the transcendental equation 

and it is being analysed in the present work, in terms of Electromagnetic Theory, via 

Maxwell’s equations, described in detail in Section 3.2.2.

It should be noted that in a total reflection condition, the incident wave is related 

linearly to the reflected wave by a reflection coefficient R, which depends on the angle 

of incidence and the polarization of light, and can be defined in terms of the Fresnel 

formulas (Kogelnik, 1990). By considering the film-cladding interface the Fresnel 

formulas for each polarization can be expressed as:

Similar expressions can also be derived for the film-substrate interface, where the 

refractive index of the cladding nc is substituted by the refractive index of the substrate,

ns.

As long as the angle of incidence, 01t is less than the critical angle, 0C, partial 

reflection occurs and the reflection coefficient is real. As soon as the critical angle is 

exceeded, then |R|=1, and total reflection of the light occurs. The reflection coefficient 

becomes complex and can be expressed as (Kogelnik, 1990):

where 0  is the phase-shift imposed on the reflected light, defined in the total reflection 

condition (1.5). By considering again the film-cladding, by using Fresnel’s formulas for 

each polarization, the phase shift can be expressed as:

( 1.6)

(1.7)

R = exp(2y0) ( 1.8)

O (1.9)
C(7E) n, cos 0
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R TM ~ '
ntjn'f2 s in2 0. n:

n~cnf cos0,
( 1. 10)

Similar expressions can also be derived for the film-substrate interface, by 

substituting the refractive index of the cladding, nc, with the refractive index of the 

substrate, ns.

1.2.2 Guided modes for the 3-D optical waveguide

In the previous section, the guided modes for a planar slab optical waveguide 

were examined, they being purely TE or TM. In 3-D optical waveguides the guided 

modes can be described as hybrid modes, which are normally a combination of a TE 

(Ez=0) and a TM mode (Hz=0). Generally these are divided into the Epqx mode (in which 

the main components of the electromagnetic field are Ex and Hy) and the Epqy mode (in 

which the main components of the electromagnetic field are Ey and Hx), depending on 

whether the main component of the electric field is in the x direction or in the y 

direction. The subscripts p and q denote the total number of extrema that appear in the 

distribution of the dominant electric fields in the x and y directions respectively.
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1.3 Solutions to optical waveguide problems

The propagation characteristics of optical waveguides can be calculated by 

solving Maxwell’s equations, which is not an easy task. Some optical waveguides have 

complex structures, anisotropic or nonlinear optical materials, or materials with 

complex refractive index such as semiconductors and metals, or arbitrary refractive 

index distribution. The above problems can be solved with the development of various 

methods for the analysis of optical waveguides, which can be classified into analytical 

approximation solutions and numerical solutions using computers.

Analytical solutions can only be obtained for stepped 2-D optical waveguides 

and stepped optical fibers, where the refractive index changes gradually in the 

thickness and the radial direction respectively. Such solutions use the Ray 

Approximation Method (RAM) (Qiao and Wang, 1992), and the Wentzel, Kramers 

Brillouin (WKB) method (Srivastava ef a/., 1987).

For 3-D optical waveguides, which are widely used in optical integrated circuits 

(OIC), and non-axisymmetrical optical fibers, the above solutions do not satisfy the 

boundary conditions, even for homogeneous media, and therefore, hybrid-modes 

analysis is required. However, the analytical approximation solutions do not treat the 

above waveguides as hybrid modes, but more often as purely TE or TM modes. For 

the above reason, their accuracy deteriorates near the cut-off frequency.

The numerical solutions obtained can be classified into two groups. These are 

the domain solutions, also known as differential solutions, in which the whole domain 

of the optical waveguide is considered as the operational area, and the boundary 

solutions, also known as integral solutions, which include only the boundaries as the 

operational area. The Variational Method (VM), the Finite Element Method (FEM), the 

Finite Difference Method (FDM), and the Multilayer Approximation Method (MAM) are 

some of the most commonly used domain solutions, while, the Boundary Element 

Method (BEM), the Point Matching Method (PMM) and the Mode Matching Method 

(MMM), are typical boundary solutions (Koshiba,1992a).
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1.3.1 Analytical approximation solutions

Analytical approximation solutions are very widely used In many applications for 

the determination of the propagation characteristics of various types of optical 

waveguides, with relatively simple geometry. Such solutions are the Marcatili Method 

(MM), the Effective Index Method (EIM), and the Equivalent Network Method (ENM).

1.3.1.1 Marcatili’s Method

In the Marcatili’s method (MM), (Marcatili, 1969), the field in a rectangular 

dielectric waveguide (a dielectric rod with rectangular cross-section, surrounded by 

four different dielectrics of lower refractive indices), is approximated to the fields in two 

slab waveguides, obtained by extending the width and the height of the rectangular 

core to infinity. The rectangular dielectric waveguide is assumed to support a well- 

confined mode, therefore, only the regions on each side of the dielectric rod are 

considered to carry appreciable amount of field, and the problem is then decoupled in 

two slab waveguides, one at each transverse direction. The field in the centre region is 

assumed to vary sinusoidally, while that in the substrates is considered to decay 

exponentially. Transcendental equations (Tamir, 1990), shown in Section 3.2.2, are 

then derived for each transverse direction, each of them giving a transverse 

propagation constant. The axial propagation constant of the waveguide is then 

calculated from the transverse propagation constants, obtained by solving 

simultaneously the two transcendental equations. In a similar way, the MM can also be 

applied to the solution of the directional coupler problem. The above approach works 

well in the far-from cut-off region but gives poor results in the near-cut-off region 

(Chiang, 1994). Kumar et at. (1983) reported an exact scalar formulation for a 

rectangular-core structure, with similar modal fields as those used by Marcatili, and by 

using perturbation techniques, they obtained propagation characteristics of practical 

integrated-optical structures, with greater accuracy than Marcatili.

1.3.1.2 The effective index method

The Effective Index Method (EIM), is an improvement of the Marcatili’s method, 

proposed by Knox and Toulios (1970). In this approach, the core of a rectangular
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dielectric waveguide is replaced by a an equivalent slab with an effective index 

obtained from another slab. The dielectric core is decoupled into two slab waveguides, 

one at each transverse direction, and the transcendental equation is first solved in one 

direction, by applying the appropriate boundary conditions. The effective index 

calculated is then used as the refractive index of the centre region in the solution of the 

transcendental equation in the other transverse direction, which is obtained by applying 

boundary conditions in that direction. The new effective index obtained corresponds to 

the overall effective index of the waveguide. The EIM and the Complex EIM, which is 

applied to waveguides incorporating loss or gain, are discussed in detail, in Chapter 3.

The above approach does not give satisfactory results near the cut-off region, 

therefore, several techniques have been proposed to improve the accuracy of the 

method. Zhou and Itoh (1982) used the approach for a trapped image guide, where 

they replaced the original waveguide by an equivalent structure. Then they imposed 

the transverse resonance at the dielectric-air interface, to include the free-space 

regions of the guide and solved the problem in terms of the surface impedances in an 

approximate manner, with an improved accuracy at low frequencies. Chiang (1996) 

derived an expression for the error in the propagation constant of a rectangular 

waveguide, which occurs by using the conventional EIM, and proposed a new 

effective-index approach with a built-in perturbation correction of the above error, 

suitable for rectangular dielectric waveguides, channel waveguides, strip waveguides 

and arrays of such waveguide structures. Chiang et at. (1996), proposed a dual 

effective index approach, in which, by combining two solutions, corresponding to two 

different ways of applying the EIM to the waveguide, they achieved the elimination of 

the errors occurring by applying each solution separately.

1.3.2 Numerical approximation solutions

Most of the numerical solutions are concerned with methods of finding 

numerical solution to the Helmholtz’s wave equation which can be derived directly from 

Maxwell’s equations, and can be expressed as (Koshiba, 1990):

V 2C> + k 2<P = 0 (1.11)
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The above equation is valid over the cross section, Q, of an arbitrarily shaped 

optical waveguide, bounded by the closed curve, C, and is subject to the boundary 

conditions (described in detail in Section 2.2.2.1), which can be of Dirichlet type:

on C, or can even be the complex type, where O is the corresponding field (E or H), k 

is the wavenumber, and n is the normal unit vector.

The above had been a central problem in boundary-value theory for many 

years, but the possibility of a numerical solution had received attention only after the 

availability of fast computers with large memory capacity. It is a very practical problem 

in the microwave regime, which leads to the determination of the cut-off frequencies 

and field distribution of one or more waveguide modes. Like all the boundary problems, 

it is of the classic eigenvalue type, and most of the approaches yield standard forms of 

matrix-eigenvalue problems, which can be solved by using well established matrix 

algorithms (Davies, 1972).

1.3.2.1 Selection of the numerical method

The selection of the numerical technique, for the solution of a particular optical 

waveguide problem, should be made according to the requirements of the structure 

under investigation. Some factors that should be taken into consideration, based on 

reviews by Davies (1972), Ng (1974), Saad (1985) and Chiang (1994), are the 

following:

a) the shape of the cross section, Q, whether it is curved or polygonal or 

whether it is convex or non-convex.

b) whether the method can be realized as a computer program, suitable for the 

solution of a wide range of geometries or whether it has to be written specifically for 

each region.

0  =  0 ( 1. 12)

on C, or Neumann type:

(1.13)
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c) whether the dominant mode or the other higher order modes are required.

d) whether the field distribution is required as well as the cut-off frequency.

e) whether the method can deal with more than two homogeneous dielectric

layers

f) the accuracy of the method in modelling the dielectric boundaries and 

regions.

g) the accuracy of the method for specific frequency ranges, especially near 

cut-off frequencies.

h) whether the accuracy of the method is sufficient to distinguish optical modes 

which are very close together.

i) the ability of the method to identify and eliminate spurious solutions.

j) the limitations and assumptions of the approach, for particular cases.

k) the degree and understanding and involvement required from the user.

l) the computational efficiency and storage requirements of the method.

1.3.2.2 The Variational method

In the variational approach, a field solution of the optical waveguide problem, 

usually based on the wave equation (1.1) is assumed, where the unknown parameters 

are chosen to match the assumed field to the actual field solution. The above solution 

is then expressed in integral form, in terms of a functional satisfying the boundary 

conditions of the problem. By minimizing the expression, the stationarity of the 

functional about the correct solution, with respect to small variation of the field values, 

is achieved. Then by using trial functions to represent the field solutions, the integral 

equations are reduced to a set of linear equations which can be solved by standard 

numerical techniques. The accuracy of the results depends on the choice of the trial 

functions (Goyal et a!., 1993), which must be sufficiently differentiable and satisfy the 

boundary conditions (Wexler, 1969). Several types of trial functions have been 

proposed, such as Gaussian and Hermite-Gaussian functions (Austin, 1984; Erteza 

and Goodman, 1995), or Airy functions (Goyal et at., 1993). The variational method 

forms the basis of other fundamental numerical techniques, such as the Finite-Element 

and the Finite-Difference methods, which are discussed in the following sections. Mao 

and Huang (1992) have proposed an efficient scalar variational approach, with vector 

correction using the perturbation technique.
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1.3.2.3 The Finite Difference Method

The finite difference method (FDM) (Wexler, 1969), is one of the oldest and 

perhaps the most commonly used numerical techniques for the solution of boundary 

value problems. In the above approach, a finite cross-section is defined by enclosing 

the optical waveguide under investigation in a rectangular box, where the side walls 

may be either electric or magnetic walls, in order to include coupled structures. At the 

boundaries of the enclosing rectangular box, the fields are assumed to be negligibly 

small, therefore infinite elements with an associated decay factor can be introduced, to 

approximate the infinite exterior region. The cross-section of any non-homogeneous 

optical waveguide is implemented by a rectangular grid, where it is essential that all the 

dielectric boundaries must lie on points of the above grid. By considering any arbitrary 

nodal point of the rectangular grid, the corresponding nodal field value can be 

expressed in terms of the neighbouring nodes, in the two transverse directions, by the 

five-point formula (Davies, 1989) of finite differences, which is based on the Taylor 

series expansion. The Helmholtz wave equation, or a variational expression, can be 

arranged into a set of two coupled wave equations, one for each transverse direction 

Hx and Hy, which can be then discretized in the five-point finite difference form. By 

imposing the correct continuity conditions of the fields between the adjacent cells of 

the grid, an eigenvalue matrix equation, of the type Ax -  Xx = 0, can be formed, which 

can be solved by using sparse matrix techniques.

The solution of the wave equation, in terms of the longitudinal components, Ez- 

Hz, by the FDM, has also been demonstrated in the past (Hornsby and Gopinath, 

1969), but such solution yields non-physical spurious modes, because it does not 

satisfy Maxwell’s divergence condition. Therefore, solutions in terms of the transverse 

field components (Schweig and Bridges, 1984; Lusse et al., 1994), which automatically 

satisfy the above condition, are preferred nowadays.

In some cases, (Bierwirth et at., 1986) the FDM analysis includes modes which 

are below cut-off. These non-propagating modes can be modelled as complex waves 

(Clarricoats and Slinn, 1965) with an imaginary propagation constant (Strube and 

Arndt, 1985). The decay factor modelling of the exterior region of the waveguide, at the 

above frequency range, becomes difficult to apply, and therefore in such cases it is
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preferred to increase the size of the rectangular box, enclosing the structure, in order 

to reduce the influence of the above modes (Bierwirth et al., 1986).

Recently, Benson et al. (1994), extended the FDM to the study of structures 

with regions having optical loss or gain, like semiconductor lasers, by using 

perturbation techniques to evaluate the complex propagation constant and field 

profiles.

1.3.2.4 Point matching method

The point matching method (PMM) can be classified as a typical boundary 

solution of the optical waveguide problem, and as an approach in which the 

electromagnetic field is expanded in a series of orthonormal functions (basis 

functions). It was first proposed by Goell (1969) for the solution of the rectangular 

optical waveguide, where the radial variation of the longitudinal electromagnetic fields 

of the modes can be represented by a series of circular harmonics. In the above 

approach the electromagnetic fields inside the waveguide core are expressed by a 

sum of Bessel functions and their derivatives, with the fields outside the core by a sum 

of modified Bessel functions and their derivatives, both multiplied by trigonometric 

functions. Solutions can be obtained by imposing boundary conditions of the above 

fields at a finite number of points, named matching points, placed symmetrically along 

the boundary of the waveguide core. The matching of the tangential electromagnetic 

fields leads to continuity equations, arranged into matrix form, from which the 

eigenvalues and the expansion coefficients can be determined.

The above approach can be applied to dielectric waveguides having arbitrary 

cross sections, composite dielectric waveguides having multiple dielectric materials 

and coupled dielectric waveguides composed of multiple waveguides. The number of 

matching points lies only on the boundaries of the structures, and therefore, less 

computational time and memory capacity are required for the solution of the problem, 

compared to the use of other numerical approaches, such as the FEM and the FDM, 

where nodal points are required, not only for the boundaries, but for the whole 

waveguide cross section, as well. However, it is difficult to apply the method to 

structures with three-dimensional boundary surface, or to structures with an index
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distribution within the waveguides, such as graded index fibers (Yamashita and Atsuki, 

1990).

Cullen et at. (1971) improved the approach, by rotating the grid of equi- 

angularly-spaced matching points, in order to place matching points at the corner of a 

rectangular dielectric waveguide, to reduce the overall mismatch at the boundary. 

Bates et al. (1973), in a review of the method, examined the validity of the expansions 

in the approach, the accuracy and the convergence as the number of matching points 

increases.

1.3.2.5 The boundary element method

The boundary element method (BEM) (Morita, 1990) is a computer technique, 

where the basic equations are boundary integral equations, which are solved 

numerically, by dividing the integration domain into a set of elements. The approach 

has similar features with the FEM, but instead of taking unknown nodal field values 

throughout the waveguide region, as in the FEM, in the BEM the unknowns are taken 

only along the boundary.

The solution of the problem, is accomplished by first deriving integral equations 

with respect to unknowns taken on the boundaries. The integral equations are then 

discretized to linear equations, to obtain numerical solutions, which are again 

expressed in integral forms in order to represent the values of various physical 

quantities. Integral representations play a key role throughout the process, not only in 

the derivation of integral but also in the evaluation of the physical quantities. Various 

integral representations can be used, depending on the particular case, with the 

Green’s formula being the most popular for many applications.

The BEM offers the ability to deal with odd-shaped boundaries, as the FEM, but 

with far less number of unknowns, since unknown values are considered only along 

the boundary, while in the FEM, these are considered for the whole waveguide cross- 

section, less memory storage and less computational time are required. Unlike the 

FEM, the BEM incorporates automatically the boundary conditions at infinity and no 

infinite elements are required. Additionally, both approaches may have the same 

discretization schemes, thus enabling the FEM to be used for the each case. The BEM 

is limited though to homogeneous structures, while some unphysical solutions, known
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as resonant solutions, may be involved. Another drawback of the BEM is that it may 

require some analytical treatment and more programming, in some cases where the 

Green’s function has some singularities with respect to the integral equations. Also the 

BEM formulation yields to dense matrices, while in the FEM they remain sparse, 

therefore offering a more efficient matrix solution.

Zhu and Zhang (1988) reported a modified BEM for the solution of waveguide 

problems, named the eigenweighted boundary integral equation method, in which a 

fictitious boundary and a set of eigenfunctions satisfying the boundary conditions were 

introduced, but they reduced the weighting of eigenfunction in only one term, rather 

than an infinite series in modified Green’s functions, thus increasing the computational 

efficiency. Nallo et al. (1995) developed a BEM formulation, for cylindrical dielectric 

structures, by expressing the fields inside and outside the cylinder by means of free 

space dyadic Green’s functions, enabling a great flexibility in the choice of basis 

functions for the unknowns, thus enlarging significally the class of algorithms for the 

numerical solution of the integral equations.

1.3.2.6 The mode matching or equivalent network method

The mode matching method (MMM) (Pen and Oliner, 1981), which is also 

known as the equivalent network method (ENM), is an approximate analysis used for 

the determination of the propagation characteristics of an open dielectric waveguide. In 

the above approach, the open waveguide structure is considered artificially bounded, 

therefore the TE-TM coupling and the continuous spectrum distribution at the sides of 

the waveguide are neglected (Koshiba et al., 1982). The waveguide cross section is 

viewed in terms of its constituent parts or building blocks, which are usually portions of 

uniform dielectric layered structures interfaced by dielectric step discontinuities. The 

fields in the various regions are then expanded in terms of transverse modal 

expansions over each region, thus resulting in an microwave equivalent circuit 

representation of the waveguide. The uniform dielectric regions are then represented 

by uniform transmission lines with their characteristic impedances, and the various 

step discontinuities are modelled by a set of transformers, where equivalent network 

admittances take into account the effects of the outer region. Therefore, it is possible 

to model the whole spectrum of open waveguide structures as a cascade of uniform 

regions and step discontinuities. By applying boundary conditions to the above modes
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and a transverse-resonance condition, which requires that, for a particular mode, the 

total admittance seen at any of the ports is zero, the dispersion relation for the 

propagation constant can be obtained.

For more accurate analysis of open waveguide structures, which exhibit 

continuous and discrete modal spectra, the continuous spectrum should be discretised 

by suitable basis function expansions, rather than by artificially bounding the structure 

(Dagli and Fonstad, 1987). Additionally, the effects of TE-TM coupling at the sides of 

such structures, must be taken into account. Koshiba and Suzuki (1985) reported a 

vectorial wave analysis of optical waveguides with a rectangular structure by the ENM, 

where by taking into consideration the discrete-continuous spectrum coupling and the 

TE-TM coupling, they calculated the propagation characteristics. Dagli and Fonstand 

(1987) extended the ENM to GaAs Rib waveguides, directional and three guide 

couplers, by cascading the models of single waveguide structures.

1.3.2.7 The spectral index method

The spectral index method (SIM), is a relatively fast and accurate approach, in 

which the wave equation is expressed in terms of Fourier transforms and Fourier 

series. It has been applied in the solution of the simple semiconductor rib waveguide 

(Kendall et at., 1989; Stern et at., 1990) and the strip loaded directional coupler (Burke, 

1990). Recently, Pola et at. (1996) have extended the approach to multiple rib 

waveguides.

By considering a simple semiconductor rib waveguide, the SIM replaces the 

original rib structure by an effective structure, by displacing the actual physical 

dimensions to new ones on which the optical field is zero, in order to model the 

penetration of the optical field into the cladding. The method consists of expanding the 

fields in terms of local modes and matching the fields along the base of the rib. The E- 

or H-field (depending on the polarization) inside the rib region, is expressed in terms of 

trial functions, such as cosine and sine Fourier series, representing the symmetric and 

antisymmetric modes respectively. In the region below the rib, the wave equation is 

expressed in terms of its Fourier Transform and the problem is reduced to a 1-D slab 

problem, where the refractive indices of the layers below the rib are represented by 

their corresponding spectral indices. The equations for the two regions are then linked
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via a transfer relation and a transcendental equation is formed, which determines the 

propagation constant of the waveguide. In order to overcome the field discontinuities in 

the rib region, an effective width is introduced, while in the Fourier transform for the 

region below the rib, the evanescent regions are expressed by imaginary spectral 

indices.

Although the method requires much less computational time than other 

numerical methods, such as the FDM and the FEM, in the presence of dielectric 

corners the electric field exhibits a singular behaviour produced by its transverse 

components. This makes the design of rapidly converging numerical algorithms for 

vector mode field computations difficult (Sudbo, 1992).

1.3.2.8 The method of lines

The method of lines (MOL) is a semi-analytical approach, suitable for the 

analysis of the hybrid modes of optical waveguide structures. The method was first 

applied to microwave devices by Schulz and Pregla (1981), for the analysis of the 

dispersion characteristics of isotropic planar waveguides and microstrips. Sherrill and 

Alexopoulos (1987), proposed a modified version of the method to treat cases having 

uniaxially anisotropic regions, such as finline/strip configurations on an anisotropic 

substrate. Rogge and Pregla (1991) applied the method for the analysis of strip-loaded 

film waveguides and rib waveguides, and Gerdes et al. (1991) to optimize broad-band 

electro-optic modulators with asymmetric co-planar strip electrodes. Also, Pregla 

(1993) used the approach for the analysis of multilayered gyrotropic waveguide 

structures, where a complex permittivity and susceptibility were considered for the 

magnetised gyromagnetic and gyroelectric media, respectively. Recently, Berini and 

Wu (1996) reported the application of the MOL, in modeling optical waveguides with 

lossy inhomogeneous anisotropic media.

In the MOL, the optical waveguide is enclosed in a rectangular box, with electric 

or magnetic walls at the sides, satisfying the boundary conditions of the required 

polarization. The waveguide cross section is then divided into a set of equidistant lines 

along the one transverse direction, resulting to the discretization of the electromagnetic 

fields, which are calculated on the lines along the other transverse direction. By 

substituting difference operators for the second derivatives of the electromagnetic
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wave equations, a system of coupled ordinary differential equations, for each dielectric 

layer, is obtained. By suitable matrix transformations, the above system is uncoupled 

and the equations can be solved analytically. Further application of boundary 

conditions at waveguide discontinuities leads to a matrix equation, from which the 

eigenvalues can be determined.

The above approach is related to a discrete Fourier transformation, therefore 

the calculation of the fields on the discretization lines is very accurate. Since the 

interface conditions on dielectric steps are included, discontinuous field curves can be 

described accurately (Pregla, 1993). Nevertheless, it is difficult to apply for waveguides 

with curved boundaries and the accuracy in the near cut-off region is limited to the 

finite size of the rectangular box, as in the finite-difference method (Chiang, 1994).

1.3.2.9 The finite element method

The finite element method (FEM), (Zienkiewich and Taylor, 1989; Silvester and 

Ferrari, 1991) is a relatively new and a very powerful numerical technique, in the 

analysis of optical waveguide problems, with a wide range of applications in other 

engineering areas as well. In the above approach, any optical waveguide cross-section 

can be divided in a patchwork of triangular elements, where the appropriated field 

components are approximated by polynomial expressions over these elements. Each 

element can have different dielectric material, which may be, anisotropic, non-linear or 

lossy. The FEM, which is based on the Ritz-Galerkin approach, converts a continuous 

system into a discretized model. By applying the variational principle (Davies, 1989) to 

the functional of the system, the problem reduces to a standard eigenvalue matrix 

equation, Ax -  XBx = 0, which can be solved by applying standard matrix algorithms.

For solutions near the cut-off region, where there field decays slowly and there 

might be an appreciable field component outside the guide region, infinite elements 

(Rahman and Davies, 1984a) can be introduced along the outer boundary of the 

structure, to extend the domain of explicit field representation to infinity. Some vector 

formulations yield non-physical spurious solutions, because the numerical solution 

does not automatically satisfy the Maxwell’s divergence condition. These spurious 

solutions can be reduced by the penalty function method (Rahman and Davies, 

1984b), or completely eliminated by using the H-field formulation in terms of the
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transverse magnetic field formulation, known as the H, formulation (Koshiba et al., 

1985a).

The FEM can be used effectively for the analysis of various optical waveguides, 

with any shape, including 2D and 3D optical waveguides, axisymmetrical and non- 

axisymmetrical optical fiber, and non-linear optical waveguides. A detailed description 

of the several variational formulations and the development of the H-field vector 

formulation is presented in the present work, in Chapter 2.

The FEM is based on the same principles as the FDM, therefore a comparison 

of the two methods can be attempted. Although in the FDM simpler matrix eigenvalue 

equations are formed, which are formulated with less computer programming, less 

computer memory storage and execution time, and the solution is free of spurious 

modes (Flx - Fly formulation), the above approach cannot be easily applied to structures 

with odd-shaped boundaries. The triangular elements used in the FEM can give a 

better fit to such structures and also the change of the density or the order of the 

elements, in regions where there is more rapid field variation, is performed more easily 

with the FEM. Additionally, in the FEM, the field is defined explicitly everywhere and 

this makes for easier manipulation, such as when evaluating spatial derivatives to give 

related fields (Davies, 1989).

1.3.2.10 The beam propagation method

The research on integrated optical circuits (IOC) and optical planar devices, 

has emerged from the necessity of calculating the propagation of a light wave in an 

optical circuit having an arbitrary refractive index distribution. This type of field 

propagation can be simulated numerically by the beam propagation method (BPM), an 

approach that was developed in underwater acoustics and seismology before it was 

adapted to optical waveguide problems by Feit and Fleck (1980). Since then, it has 

been widely used for analyzing the performance of a light beam propagated in an 

optical planar circuit that has a nearly stripelike waveguiding structure and in which the 

refractive index varies smoothly compared with the wavelength. The main features of 

the BPM are that the electromagnetic fields are Fourier transformed with respect to the 

direction normal to that of light propagation and that a stepwise method is used for
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successively calculating the electromagnetic field along the axial direction (Okoshi and 

Kitazawa, 1990).

In the BPM, the optical field is transported within one propagation step, from 

the transverse plane at the longitudinal coordinate z, to the transverse plane at z+Az. 

Calculations are performed, to relate the optical fields at the input and output planes, 

which are based on the assumption that the dielectric profile within one step, Az, 

remains unchanged (Marz, 1994). As the optical field propagates through a medium, it 

is subject to diffraction due to its wave nature, and the light rays of the wave 

experience a certain amount of phase shift, depending on their x,y positions. The 

above influences can be applied one at a time, provided that the space along the path 

is subdivided into very small sections, Az. By doing so, the continuous medium can 

then be realized as a series of lenses separated by short sections of homogeneous 

space, where the contribution of the lenses in the phase shift is expressed in the 

solution of the wave equation. For computational purposes, the wave between the 

lenses can be decomposed into its spectrum of plane waves by applying a Fast Fourier 

Transform (FFT) algorithm, and then it is reconstructed halfway, (Az/2), before the next 

lens, by applying the inverse FFT. The above process is repeated for each section 

along the whole propagation path. The propagation step size Az, which must be at 

most one wavelength of the light beam, must ensure that the contribution of 

evanescent waves, which are part of the plane wave, is negligible, and that the rays 

associated to the wave, travel parallel to the z-axis, with minimum phase shift 

(Marcuse, 1991).

The BPM is widely accepted as the most powerful method for the analysis of 

non-uniform structures but it is not as efficient as the methods specifically developed 

for the analysis of uniform structures, where discretizations in both the transverse and 

the longitudinal plane are required (Chiang, 1994). To handle the discretization in the 

transverse plane, two-dimensional methods can be employed, such as the FDM 

(Yevick and Hermansson, 1990) and the FEM (Buah et at., 1997). The latter can be 

used in many devices, such as directional couplers, optical fibers, bent optical 

waveguides, Bragg and diffraction gratings, tapered optical waveguides and optical Y- 

junctions. It can also be used in conjunction with other numerical techniques such as 

the Fresnel approximation (Yevick and Hermansson, 1989).
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1.4 Loss and gain in optical waveguides

Several methods for the analysis of optical waveguide problems were being 

discussed in the previous section, the majority of them dealing with loss-free 

structures. This has been the case in the early days of the development of integrated 

optics technology, where dielectric materials used in the fabrication of optical 

waveguides, regarded as loss-less at the optical frequencies. Recent advances in 

material science and fabrication technology introduced more complicated waveguide 

structures and several new integrated optic devices, such as power dividers, optical 

filters, optical sensors, optical switches, amplifiers, modulators etc. In order to establish 

a more realistic and accurate model of such devices, the effect of the loss and the gain 

in the optical waveguides due to the dielectric materials, which becomes more 

significant with the increase of the complexity of the structures, should be taken into 

consideration.

As it was mentioned in Section 1.2, an optical waveguide can support a finite 

number of guided wave modes, where each mode can propagate with a different 

propagation constant. If the optical waveguide under investigation incorporates lossy 

media, the wave motion is accompanied by certain attenuation, and can be 

represented by a complex propagation constant, y, which can be expressed as:

y = a  + y(3 (1.14)

where, p (rad/m) and a (Np/m) are the phase constant and the attenuation constant, 

per unit length, respectively.

Lossy media, such as metals or certain types of semiconductor materials (Deri 

and Kapon, 1991), can be expressed by complex refractive indices, where the 

imaginary part, n', which is negative and also termed as the extinction coefficient 

(Adams, 1981), represents the amount of loss in the above materials. There is a wide 

range of optical waveguide applications, where the loss estimation plays important role 

in the determination of the propagation characteristics, such as, metal-clad optical 

waveguides (Reisinger, 1973, Kaminow et al., 1974; Yamamoto et at, 1975), surface 

plasmon-polariton waves guided by thin metal films (Stegeman et al. 1983; Zervas, 

1991), metal-clad waveguide polarizers (Sun and Yip, 1994; Saini et al., 1995), TE/TM 

polarization splitters (Albrecht et al., 1990; Soldano et al. 1994), metal-clad optical
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fibers for near-field scanning optical microscopy (Novotny and Hafner, 1994), optical 

waveguides chemical or biological sensors (Qing et al., 1996) and other.

In certain applications, such as semiconductor lasers, optical waveguides 

incorporate active regions, exhibiting gain properties. These can be modelled by 

complex refractive indices with positive imaginary parts. When the above optical 

waveguides do not contain any lossy regions, a negative attenuation constant (-a) is 

obtained for the propagating modes, implying gain, therefore, the above negative 

attenuation constant can also be termed as the gain constant, g. In optical waveguide 

applications with purely gain properties, such as, semiconductor rib lasers (Benson et 

al., 1994), ridge waveguide laser amplifiers (Goano et al., 1992), quantum well lasers 

(Yariv, 1989; Hunziker et al., 1994), erbium doped waveguide amplifiers (Giles and 

Desurvire, 1991; Di Pasquale and Zoboli, 1993; Torres and Guzman, 1997), and other, 

the calculation of the gain constant is critical in the determination of the propagation 

characteristics.

In some optical waveguide applications such as, buried heterostructure laser 

diodes (Hayata et al., 1986a) and metal-clad ridge waveguide distributed feedback 

laser diodes (Borchert and Stegmuller, 1990; Wolf et al., 1990), the structures contain 

both active and lossy media. In the above types of optical waveguides, several design 

parameters must be taken into consideration, in order to achieve the required overall 

net gain, such as, the size and the contribution of each active or lossy region.

In the present work, several optical waveguide structures incorporating small 

loss or gain, as in the most practical applications, have been examined. The 

propagation and attenuation characteristics of such structures were calculated, by 

using the finite-element method in conjunction with the perturbation technique and 

other numerical or semi-analytical approaches described in Chapter 3.

1.5 Aims and objectives of the thesis

The information given so far has provided a background to the work reported in 

this thesis. The following presents the primary aims of the research undertaken in this 

field.
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1. To investigate established work on the several approaches for the solution of optical 

waveguide problems, and to justify the use of the finite element method, in the analysis 

of optical waveguide structures.

2. To investigate the accuracy of an existing finite element package, based on the 

vector H-field and the scalar approximation variational formulation, for the analysis of 

different types of loss-free optical waveguide structures. This has been carried out by 

applying the above program to the solution of lossless planar, dielectric and rib optical 

waveguides and comparing the obtained propagation characteristics with previous 

published work.

3. To develop an accurate and efficient approach for the analysis of optical 

waveguides incorporating small loss or gain, which are properties exhibited in the most 

practical applications. A perturbational approach, in conjunction with the scalar finite 

element method, was considered suitable to accomplish this task, for three main 

reasons. First, the propagation characteristics of an optical waveguide under the 

influence of small loss or gain, are a small perturbation of the propagation 

characteristics of a loss-free structure. Second, the above approach benefits from all 

the advantages of the finite element method, such as the ability to handle optical 

waveguides with any cross-section, anisotropy or non-linearity. Thirdly, the solution can 

be obtained, as it is shown in Chapter 3, by simple matrix multiplication, without solving 

any complex eigenvalue equation.

4. To extend the perturbation method, to be used with the H-field vector finite element 

program, in order to model more accurately, optical waveguides with 2-D confinement 

and to compare the obtained results with the scalar version of the approach and other 

previous published work.

5. To develop a semi-analytical approach for the analysis of optical waveguides with 

simple geometry, incorporating loss or gain, in order to investigate the accuracy and 

the limit of the perturbation method, for the above structures. A complex effective index 

approach was implemented, suitable for handling any value of the imaginary part of the 

refractive index, but applicable only to structures with simple geometry, such planar, 

rectangular and simple rib waveguides. The two approaches were compared in order 

to obtain the level of the gain or the attenuation constant, which is the value where
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their characteristics begin to diverge and which determines the limit of the perturbation 

technique.

6. To extend the approach based on finite element method and the perturbation 

technique, in order to investigate the propagation characteristics of various 

optoelectronic and integrated optics device applications, such as surface plasmon- 

polariton devices, semiconductor laser structures, optical polarizers, directional coupler 

modulators and metal-clad fibers for scanning microscopy.

1.6 Structure of the thesis

The thesis is comprised of work carried out by the author in the use of the finite 

element method in conjunction with the perturbation technique, and other approaches, 

such as the complex effective index and the confinement factor method, in the analysis 

of certain types of interesting optically guiding devices, incorporating loss or gain. The 

subsequent discussion gives an outline of the carefully structured thesis, beginning 

with an Introduction to the subject, which is presented in this first chapter.

In the Introduction a brief review of the historical development of the lightwave 

technology is presented, followed by a general description of the optical waveguide 

structure in terms of the ray optics theory, a review of the several semi-analytical and 

numerical approaches for the solution of optical waveguide problems, and a discussion 

on the importance of the loss and gain consideration in the modelling of certain 

optoelectronic devices.

In Chapter 2, the relevant theoretical background on the finite element method 

and its development as a powerful tool dealing with the solution of major engineering 

applications, are presented. The fundamental mathematical relations, derived from the 

Maxwell’s equations, for the application of the approach in the solution of optical 

waveguide problems are defined and several variational formulations of a finite 

element analysis, based on the variational principle, are examined. A detailed analysis 

of the vector H-field finite element variational formulation is attempted, where the use 

of triangular coordinates and shape functions to calculate the eigenvectors and the 

propagation constants, in uniform, isotropic optical waveguide structures, is 

considered. Finally, the various problems arising from the application of the approach 

in open waveguide structures and the generation of non-physical (spurious) solutions
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are encountered, and various techniques for the elimination of the above problems, 

such as the use of infinite elements and the penalty coefficient method, are suggested.

In Chapter 3, the development of various semi-analytical and numerical 

approaches, for the analysis of optical waveguide structures, incorporating loss or 

gain, is examined. Firstly, the lossy planar optical waveguide with one-dimensional 

mode confinement is considered, where, the solution in terms of the complex 

transcendental equation, arising from the scalar form of the Maxwell’s equations, is 

suggested. The extension of the above approach to the analysis of lossy optical 

waveguides with two-dimensional confinement, by means of the complex effective 

index method, is then considered. The development of the solution of multilayer planar 

structures with loss or gain, in terms of a generalized algorithm, which formulates the 

repeated application the boundary conditions at the interfaces of the various layers, is 

also presented. The several published numerical approaches, for the determination of 

loss or gain in optical waveguides are reviewed and the application of perturbation 

theory in the solution of optical waveguides incorporating small loss of gain is then 

examined.

The development of a numerical approach, where the accurate finite element 

results obtained from the solution of loss-free optical waveguide structures are utilised 

in the perturbation technique, to determine the characteristics of optical waveguides 

incorporating small amount of loss or gain, is analysed. The implementation of the 

above approach is presented, for both the H-field vector variational formulation and the 

scalar approximation of the finite element method. Further, an approximate numerical 

approach, based on the relation between the mode confinement and the loss or gain 

properties of the dielectric materials in an optical waveguide, for the determination of 

the complex propagation characteristics, is also examined.

Chapters 4, 5 and 6 are devoted to the use of the finite element method and 

the perturbation technique, along with the other approaches described in Chapter 3, in 

the solution of certain types of optical waveguides and other optoelectronic device 

applications, incorporating loss or gain. The limit of the perturbational approach, is also 

investigated, by comparing the calculated attenuation or gain characteristics, with the 

results obtained from the solution of the transcendental equation and the complex 

effective index method, for planar waveguides and simple optical waveguide structures 

with two-dimensional mode confinement, respectively.
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In Chapter 4 certain types of planar waveguide structures, such as the three 

layer non-metal slab, the metal-clad, the graded-index metal clad optical waveguides, 

are examined. In some of the above structures, which exhibit loss due to the metal-

cladding, the propagation and attenuation characteristics are determined, by using the 

scalar approximation of the finite element method in conjunction with the perturbation 

technique and by solving the complex transcendental equation. The limit of the 

perturbation technique is then defined from the value of the attenuation constant, 

where the two approaches are diverging. Planar structures composed of thin metal 

layers, which exhibit surface plasmon modes and loss properties due to interaction of 

the metal/dielectric interfaces are then considered and their attenuation characteristics 

are calculated and compared with previously published results for the same structures. 

Finally, the propagation and the attenuation characteristics of a multilayer metal-clad 

planar optical waveguide with a low-index dielectric buffer, which has some important 

features used in the design of an absorption modulator, are presented.

Optical waveguides with two-dimensional mode confinement, such as the 

rectangular dielectric and certain types of the rib optical waveguide, are analysed in 

Chapter 5. First, a rectangular dielectric waveguide, used for the modelling of buried 

heterostructure diode lasers is examined. The gain characteristics of the above 

structure are calculated, by the H-field vector and the scalar approximation variational 

formulation of the finite element method in conjunction with the perturbation technique, 

and compared with those obtained by the confinement factor method and the Ht 

formulation. A comparison with the results obtained by the complex effective index 

method is also attempted, in order to determine the limit of the perturbational 

approach. An air-clad GaAs/GaAIAs simple rib waveguide, in which small loss was 

introduced, in order to determine the attenuation characteristics by the H-field vector 

and the scalar approximation variational formulation of the finite element method in 

conjunction with the perturbation technique, is then examined. The complex effective 

index method is then employed for the above structure, in order to investigate the limit 

of the perturbational approach. Next, an integrated laser rib waveguide, exhibiting gain 

due to the active region, is considered, and the calculated propagation characteristics 

are presented and compared with published results obtained by other approaches, 

such as the finite difference method and the spectral index method. The effect on the 

overall gain of the waveguide, by introducing a small amount of loss in the cladding 

regions, is then examined. Further, the gain characteristics of the above optical
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waveguide, by introducing an active region with a varying imaginary part of the 

refractive index according to the carrier concentration, are also presented. Next the 

gain characteristics of a multiple quantum well rib waveguide, where the effect on the 

overall gain, by increasing the number of quantum layers, are investigated. The effect 

in the gain properties, of the increase of the quantum layers’ thickness beyond typical 

values, is then examined and the accuracy of the approximate confinement factor 

method for different number of quantum layers, is also presented. Finally, the last 

section of this chapter is devoted to the study of the effect of the lossy metal 

electrodes on the optical properties of a T i:LiNb03 directional coupler modulator.

Chapter 6 is devoted to the application of the finite element method and the 

perturbation technique to optical waveguide structures, with two-dimensional 

confinement, incorporating metallic elements, and therefore exhibiting surface plasmon 

and attenuation properties. A composite coupled structure, consisting of an aluminum 

surface plasmon guide and an InGaAs rectangular dielectric waveguide, both 

surrounded by InP substrate, is first examined. The field distributions, and the 

propagation and attenuation characteristics of the above structure, are presented and 

the coupling length for the phase-matching of the two coupled supermodes, is 

determined. A two parallel rib structure with metal-cladding on the top of the one rib, 

suitable for TE-TM mode polarisation splitter design, is then investigated. The 

attenuation characteristics of the two TE and TM polarizations, with the variation of 

certain dimensions of the structure, and the field distributions, are then presented. The 

importance of the above calculations and the various other parameters, determining 

the design of an optical polarizer, are also discussed. Sub-micron metal-clad optical 

fibers, suitable for near-field optical scanning microscopy, are then considered in the 

last section of this section. The above structures are analysed by the perturbational 

finite-element approach and their fundamental TE and TM modes are classified and 

their attenuation characteristics are determined. The applicability in optical scanning 

microscopy, of some of the above modes, is also discussed.

Finally, general conclusions arising from the work carried out in this research 

are summarised and explored in Chapter 7. Possible extension of the present work, to 

suit the future needs of the fast advancing technology in this area, is also suggested. 

The work ends with a list of all references to relevant published work, cited throughout 

the thesis.
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The Finite Element Method

2.1 Introduction

Typical Engineering problems involve the derivation of differential equations, 

relating the variables of interest, which are based on physics and engineering 

principles. The principles used to describe the behaviour of the engineering problem 

are seen in the concepts of equilibrium, a state defined in Newton’s ideas regarding 

force acting on a mass, in potential energy, in strain energy, in thermodynamics, in 

conservation of total energy, in Maxwell’s equations and in many other application 

areas. Solution of the differential equations (sometimes non-linear), arising from the 

formulation of a problem based on the above principles, is only possible for simple 

geometry problems, with the most simple boundary conditions. In the finite-element 

method (FEM), the differential equations defining a system under consideration, can 

be replaced by variational expressions to which a variational principle (Davies, 1989) is 

applied, and the region of interest is divided into discrete elements. Thus, an 

equivalent discretized model for each element is constructed and all the elemental 

contributions to the system may be assembled. In other words, the FEM is an 

approximation of a continuous system by a discretized model, where, as the number of

31



Chapter 2 The Finite Element Method

the discrete variables increases, the solution approaches the true continuum solution 

(Zienkiewicz and Taylor, 1989). Therefore, in the FEM, a differential equation approach 

is transformed into an algebraic problem, where the building blocks, or finite elements 

have all the complex equations solved for their simple shape (say triangle, rod, beam, 

etc.).

From historical point of view, the idea originated, in the last part of the 19th 

century, where Lord Rayleigh applied Castigliano’s energy principles and the theory of 

equilibrium in structural mechanics, to solve many practical problems by assuming a 

shape of, say, the lateral displacement of a column or a shaft and then obtaining 

answers, through minimization of the energy, by using a function. Great skill was 

required to select the function in order to satisfy the boundary conditions and real 

problems emerged when the geometrical shape of many members, made them 

impossible to handle. In 1909, Ritz extended Rayleigh’s principles by using multiple 

independent functions allowing more than one frequency of a shaft to be computed. 

The disadvantage of that approach was the need to solve an increasingly large 

number of simultaneous algebraic equations. Three decades later, Courant (1943) 

extended Ritz’s method by using different geometric regions (triangles), establishing 

separate approximate functions and then linking them together. Courant’s idea had to 

wait for few more decades to be implemented, until modern digital computers could 

handle the large number of algebraic equations. The method was first established by 

Turner et al. (1956) at the Boeing Aircraft Company, where it was used to calculate the 

stress-strain relations for complicated aircraft structures. In 1960, Clough introduced 

the term “finite-elements” to describe the new technique for plane stress analysis, and 

since then the name was kept and the approach found wider applicability in areas like 

structural and fluid mechanics, heat transfer, electromagnetic theory, acoustics and 

biomedical engineering.

Mathematically, the FEM is a numerical technique for obtaining approximate 

solutions to boundary-value problems, and it is the extension of two classical methods, 

the Raleigh-Ritz variational method, and the Galerkin method of weighted residuals. A 

boundary value problem can be defined by a governing differential equation in a 

domain, together with the boundary conditions on the boundary that encloses the 

domain. In the variational approach the boundary-problem is formulated in terms of 

variational expressions, referred to as functionals, whose minimum corresponds to the 

governing differential equation. The approximate solution is obtained by minimising the

32



Chapter 2 The Finite Element Method

functional with respect to its variables (Jin, 1993). The Galerkin method is based on 

the method of weighted residuals (Davies, 1989), in which the domain of the 

differential equation is discretized, and the solution is approximated by the summation 

of the unknown solutions for each subdomain weighted by known functions, relating 

them to the domain. The overall solution is obtained by minimising the error residual of 

the differential equation.

Research on the application of the FEM to electromagnetic-wave engineering 

began during the last years of the 1960’s and since then, with the availability of larger 

and faster computers, it has been established as a very powerful tool dealing with the 

analysis of optical waveguides, particularly structures with arbitrary shapes, index 

profiles nonlinearities and anisotropies.

A cross section of an arbitrarily shaped optical waveguide, Q, in the x-y 

transverse plane, as shown in Fig.2.1, is considered, divided into a number of sub- 

domains, called elements, being composed of several different materials, each of 

which can be described by arbitrary permittivity and permeability tensors, e (x,y) and 

|i(x,y) respectively. A uniform shape of the waveguide along the longitudinal z-axis, is 

assumed and time and axial dependencies are given by exp(jcof) and exp(-yz), where, 

co is the angular frequency and the complex propagation constant, y, given by:

y=a+ jp  (2.1)

where a (Np/m) is the attenuation constant and (3 (rad/m) is the phase constant.
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Fig.2.1 Arbitrarily shaped optical waveguide, divided into arbitrary sub-domains, each having 

different type of material.

For the loss-free case the propagation constant is considered to be equal to the 

phase constant, y'p. The electric, E(x,y,z,t), and the magnetic, H(x,y,z,f) fields over the 

region of the waveguide can be expressed by:

E(x,y,z,f)=E(x,y) [exp/(©f-pz)] (2.2)

H(x,y,z,f)=H(x,y) [expy(cof-pz)] (2.3)

where H(x,y) and E(x,y), are the spatial time-independent electric and magnetic fields 

respectively.

2.2. Basic equations

For the application of the FEM in the analysis of optical waveguide problems, 

some fundamental electromagnetic field equations should be considered, such as the 

Maxwell’s equations, the boundary conditions and the Flelmholtz’s wave equations.
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2.2.1 Maxwell’s Equations

Maxwell’s equations comprise a set of four electromagnetic field vectors, which 

represent the governing laws of the electromagnetic wave phenomena. The four 

vectors are: the electric field intensity E (Volts/meter), the magnetic field intensity H 

(Amperes/meter), the electric flux density D (Coulomb/meter2) and the magnetic flux 

density B (Tesla). For source-free, time dependent fields they can be written in 

differential or integral form. Since, the FEM is a boundary-value problem which is 

defined by differential equations, Maxwell’s equations are presented in differential form 

as follows:

V x E + —  = 0 
dt

(Faraday’s law) (2.4)

Vx H -  —  = 0 
dt

(Maxwell-Ampere law) (2.5)

V • D = p (Gauss’s law) (2.6)

< DO II o (Gauss’s law-magnetic) (2.7)

where p, is the (scalar) electric charge density (Coulomb/meter3).

The associated constitutive equations for the medium can be written as:

D=sE (2.8)

B=pH (2.9)

where s, is the permittivity and p the permeability of the medium and can be defined

8 —8oSr ( 2 . 1 0 )

P = P 0 P r ( 2 .1 1 )
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where e0, sr, p0, Mr are the permittivity of the vacuum (8.854 x10'12 Farad/meter) , the 

relative permittivity of the medium, the permeability of the vacuum (An x 1CT7 

Henry/meter) and the relative permeability of the medium respectively.

Additionally, the flow of energy carried by an electromagnetic field, is expressed 

by the Poynting vector S (W/m2) and can be expressed by:

S = E x H (2.12)

2.2.2 Boundary Conditions

Boundary conditions are conditions that must be met at the boundary surface 

when two different media 1 and 2 come into contact. If the unit normal vector n , is 

directed from medium 1 to medium 2, as shown in Fig.2.2., in the absence of any 

surface currents (J=0) and surface charges (p=0), the following boundary conditions 

apply:

1) The tangential component of the electric field must be continuous

n x (E-i - E2)=0 (2.13)

2) The tangential component of the magnetic field must be continuous

n x ( H i - H 2)=0 (2.14)

3) The normal component of the electric flux must be continuous

#7. (Di - D2)=0 (2.15)

4) The normal component of the magnetic flux density must be continuous

n . (Bi - B2)=0 (2.16)
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*. n

Fig.2.2 Boundary between two media of refractive indices n i and n2, where n, is the unit vector 

normal to the interface.

In certain cases, one of the two media can be considered, either as a perfect 

electric conductor or a perfect magnetic conductor. When one of the two media 

becomes a perfect electric conductor, an electric wall boundary condition is imposed 

as:

nxE=0 or n.H=0 (2.17)

Such condition ensures the continuity of the normal component of the electric 

field vector, E, and vanishes the magnetic field vector, H, at the boundary. When one 

of the two media becomes a perfect magnetic conductor, a magnetic wall boundary 

condition is imposed as:

nxH=0 or n.E=0 (2.18)

The above condition, vanishes the electric field vector, E, and ensures the 

continuity of the normal component of the magnetic field at the boundary.

2.2.2.1 Natural and Forced Boundary Conditions

In the case of a closed surface, such as the boundary of an optical waveguide, 

additional boundary conditions are considered. These boundary conditions can be 

natural, in cases where the field decays at the boundary, therefore they can be left 

free. In some other cases they can be forced, in order to take advantage of the 

symmetry of a waveguide, to reduce the number of elements in FEM (and the order of 

the matrices), or to impose complementary symmetry to the waveguide, in order to
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achieve the required polarization. The above boundary conditions can be classified as 

follows (Davies, 1989):

(p=0 (Homogeneous Dirichlet) (2.19)

9 =k (Inhomogeneous Dirichlet) (2.20)

where cp can be the Electric (E), or Magnetic (H) field, and k is a prescribed constant 

value.

5(p/3n=0 (Homogeneous Neumann) (2.21)

where n is the unit vector normal to the surface.

The Neumann boundary conditions represents the rate of change of the field 

when is directed out of the surface, and it can be used in the FEM to impose the field 

decay along finite-elements, adjacent to the boundary elements of a waveguide 

structure.

2.2.3 Wave equations

In an isotropic lossless medium with no wave source (J=0, p=0), with uniform 

permeability p=|_i0, and uniform and constant permittivity, by eliminating the magnetic 

flux density in and the electric flux density components from Maxwell’s equations, (2.4) 

and (2.5) respectively, these can be written as (Koshiba, 1990):

V2 E + k 2 E -  0 (2.22)

V 2 H + k 2 H = 0 (2.23)

where the wavenumber, k (rad/m) is 

k= (2.24)
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If e=80, then the wavenumber k0, is called free space wavenumber and is 

defined by:

ko = (OyjeQ\ i0 (2.25)

Equations (2.22) and (2.23) are known as vector Helmholtz wave equations 

(Marz, 1994) for homogeneous media, and in addition to the physical solutions, they 

also support non-physical, spurious solutions, since the condition V.H=0, is not 

satisfied.

In a rectangular coordinate system, if only one component of the electric or 

magnetic field is considered, suppose EXl vector Helmholtz wave equation can lead to 

the scalar Helmholtz wave equation as (Koshiba, 1990):

V2Ex + tfEyr 0 (2.26)

2.3 Variational Formulations

As it was discussed in section 2.1, the finite-element formulation is based on 

the variational or Raleigh-Ritz approach, therefore, several variational formulations 

have been proposed for the analysis of the optical waveguide problem. These can be 

in a scalar form (Mabaya et at., 1981), where the Electric or Magnetic field is 

expressed only in terms of one component, according to the predominant field 

component, or, can be in vector form, where the Electric or Magnetic field is expressed 

in terms of at least two of the constituent field components.

It should be noted that most of the formulations applied in the finite element 

method, yield to a standard eigenvalue problem (Rahman and Davies, 1984a):

[A ]{x } -M B ]{x }  = 0 (2.27)

where A and B are real symmetric sparse matrices, and B is also positive definite. The 

eigenvalue X, can be chosen as p2 or k2, depending on the formulation, and the
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eigenvalues represent the nodal field values of the finite-elements. It is desirable for 

the above matrix equation to be of this canonical form, to allow an efficient solution. 

Details of the constituent components of the eigenvalue equation and solution methods 

are discussed in Section 2.7.

2.3.1 The scalar approximation

The scalar approximation can be applied in situations where the field can be 

described as predominantly TE or TM and it can be expressed in terms of the 

longitudinal components of the above modes. It has been used for the solution of 

homogeneous waveguide problems (Daly, 1984), open boundary problems (Wu and 

Chen 1986), and for the analysis of anisotropic waveguides (Koshiba et at., 1984).

For the quasi-TE modes over a region Q, where the dominant field component 

is Ex, the formulation can be written as (Mabaya et al. 1981):

where, p is the propagation constant and n is the refractive index.

For the quasi-TM modes, where Hx is the dominant field component, the 

formulation can be written as (Mabaya et al., 1981):

2.3.2 Vector formulations

The scalar formulation is inadequate to handle general anisotropic or 

inhomogeneous problems and it can be used only as an approximation in such cases. 

For a more accurate representation of general waveguide fields, a vector formulation, 

with at least two components is essential. Several vector formulations dealing with 

optical waveguide problems have been proposed by many authors. However, some of

(2.28)
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them are affected by non-physical spurious solutions, which appear mixed with the 

correct ones in the computations, and therefore several methods have also been 

proposed to overcome such problems.

The Ez-Hz formulation which is one of the first formulations used in finite- 

element analysis (Csendes and Silvester, 1970; Mabaya et al. 1981; Yeh et at. 1975; 

Yeh et al., 1979), cannot treat general anisotropic problems without destroying the 

canonical form of the eigenvalue equation (2.27), and also some problems arise in 

enforcing boundary conditions for a waveguide with an arbitrary dielectric distribution. 

Additionally, this approach is based on the axial field components which are the least 

important of the E and H fields.

A vector E-field formulation (English and Young, 1971; Hano, 1984; Koshiba et 

al. 1985b), which can handle general anisotropy, but loss-less problems, has also been 

applied to the solution of several types of optical waveguides. For such a formulation, 

the natural boundary conditions correspond to a magnetic wall, and therefore it is 

essential to enforce the electric wall (nxE=0) as a boundary condition, which is difficult 

to implement for irregular shaped structures.

The vector H-field formulation is more suitable for dielectric waveguide 

problems, because the magnetic field is continuous everywhere, and the natural 

boundary conditions correspond to those of the electric wall, therefore no forced 

boundary conditions at the boundaries are required.

This formulation can be written as (Berk, 1956; Rahman and Davies, 1984a):

where to, is the natural frequency, is the waveguide cross-section and ê and p are 

the permittivity and permeability tensors respectively.

However, the above formulation (as well as the E-field), yields spurious 

solutions, because the divergence condition, V.H=0 is not satisfied, therefore 

alternative approaches, such as the penalty coefficient method (Rahman and Davies,

(2.30)
JlHTp.HdQ
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1984b; Koshiba et at., 1985a) have been proposed to eliminate those non-physical 

solutions. This method will be discussed in a later section.

Most recently a variational formulation in terms of the transverse E-field or H- 

field components has been proposed for the solution of optical waveguide problems 

(Hayata et al., 1986b; Lu and Fernandez 1993a; Silveira and Gopinath, 1995). In this 

approach the minimum number of field components (two) are used, and the 

divergence condition, V.H=0, is satisfied. It can handle accurately lossy structures (Lu 

and Fernandez, 1993b; Cheung et al., 1995), but it can lead to large sparse, complex, 

non-symmetric matrices in the eigenvalue equation, which increase computation time, 

therefore effort has been made to develop efficient sparse matrix solvers (Fernandez 

et al., 1991) in order to solve such problems.
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2.4 Finite Element Method formulation

In order to explain the application of the variational principle in the FEM, based 

on the Ritz-Galerkin approach, a cross section of an arbitrarily shaped waveguide, as 

shown in Fig.2.3, divided into a patchwork of elements, is considered, where Q, is the 

cross-sectional area of the waveguide and r ,  is the boundary that encloses Q. The 

boundary, T, can consist of an electric wall, Te, where the tangential electric field is 0, 

and a magnetic wall, r m, where the tangential magnetic field is also 0. By assuming 

that the core and cladding of the above structure consist of random anisotropic media, 

the wave equation for the magnetic H-field (2.23), based on Maxwell’s equations, (2.4- 

2.7), can be represented as (Koshiba, 1992b):

V x ([sr ]" ' V x  H) -  k02H = 0 (2.31)

where [er], is the relative permittivity tensor.

Fig. 2.3 Arbitrary cross section of an optical waveguide (shaded core region), Q, enclosed by 

boundary r.

In the Rayleigh-Ritz method, the boundary value problem, defined by the 

differential wave equation and the boundary conditions, can be expressed in terms of a 

scalar quantity, referred as the functional, F. This functional, F, can be defined by an 

integral form, where the differential equation and the boundary conditions are 

represented. In the case of the optical waveguide, the functional, F, of the wave 

equation (2.31) can be expressed as (Koshiba, 1992b):
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F = I I  (V x  H) ' ( le'  ] ' v  x n ) ®  “  | | h ' Hc/n (2.32)

In the above equation, the unknown function is the magnetic field, H, and the 

solution of the problem is a function H, which makes the functional, F, stationary with 

respect to small changes, SH. This can be expressed by the Euler’s equation (Koshiba, 

1990) as:

SF = 0 (2.33)

By taking the first variation SF (Davies, 1989) and applying Gauss’ divergence 

theorem, Euler’s equation (2.33) can be expressed as (Koshiba, 1992a):

5 F = V x ([er] ' Vxh l ) -  k02H d Q - j r &H* ■ n x ^ f ' V x H ) 5r (2.34)

where, n is the unit normal vector to boundary T and the expression, n x  ^[er ] ' V x  h |, 

corresponds to the tangential electric field on the boundary r .

It can be seen from the above equation (2.34), that by applying the variational 

principle to equation (2.32), Euler’s equation (2.33) coincides with the wave equation 

(2.31). The integral JJ should be satisfied in the cross-section, Q, and the integral

Jr along the boundary, T. Since the boundary condition n x  ([er] ' V x Hj, is

automatically satisfied along the boundary Te, it can be considered as the natural 

boundary condition. Equation (2.34) does not satisfy the boundary condition on the 

magnetic wall boundary, Tm, and therefore a forced boundary condition, n x H  = 0, 

should be imposed, if necessary.

By subdividing the cross section Q, into a number of elements, e, the solution 

H, for each element can be approximated by:

H = $ > / " /  (2.35)
/ =  !
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where, m is the number of nodes, Hi is the nodal H-field for each node of the elements, 

and Nj is a set of known basis functions (Davies, 1989), named shape functions, which 

will be discussed in Section 2.6.

Equation (2.35) can be also expressed in matrix notation as:

H = [H]T {H}e (2.36)

where, T denotes transpose and [N]J and {H}e are the matrix of the shape functions 

and the column vector of the nodal field values for each element respectively.

The expression for H in (2.36) can be then substituted in eqn. (2.32) and by 

applying the variational principle, Euler’s equation (2.33) can be obtained. By using the 

term related to the cross-section, Q, from the Euler’s equation, the solution to the 

optical waveguide problem can be obtained from:

\ \n ( Vx [N ]T{ H } ; [ e r ]~ 'Vx[N]T{H}e -  k02[N]T{H}ea[N]T{H}e)dn = 0 (2.37)

Since the problem is discretized into a finite number of elements, the integral 

can be evaluated by summating over the whole region, Q. By rearranging equation 

(2.36) and transforming it into a matrix form, the problem can be formulated as a 

standard eigenvalue problem as (Rahman and Davies, 1984a; Koshiba, 1992b):

[ A ] { H } - k 02[B]{H} = 0 (2.38)

where, k02 is the eigenvalue and {hi} the eigenvector for each eigenvalue. Matrix A is a 

complex Hermitian, which can be reduced to a real symmetric, for the loss-less case, 

and matrix B is real symmetric and positive definite. Both matrices are discussed in 

Section 2.7.

2.5 Elements and nodal values

Different types of elements can be used in the discretization of a continuum 

problem, such as triangles, rectangles, etc. Triangular elements are often preferred
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due to the simplicity of their shape and their ability to represent more complicated 

structures. Such elements can be also of first or second order, as shown in Fig.2.4, or 

even higher order, depending on the number of nodes, or nodal points assigned on 

their vertices and their sides. All the elements in a discretized cross-section of an 

optical waveguide are considered to be interconnected at a discrete number of nodal 

points on their boundaries, 

y

(a)

1

F¡g-2.4 a) First-order and b) second-order triangular elements

In the finite-element approach different expansions are used over each 

element, such as polynomials or sinusoids, which must have the same form over all 

the elements, but different coefficients. These functions must satisfy some conditions 

between elements, such as continuity. Throughout this work, first-order triangular 

elements have been used, which are assigned three nodal points, one at each vertex, 

as shown in Fig.2.4.a. For each of the above elements a first-degree polynomial 

(a+bx+cy) can be used, which is continuous across adjacent triangles. Therefore, if the 

H or E field, in the case of the optical waveguide, is interpreted like a third dimension, it 

can be viewed as a surface with many triangular facets.

The electromagnetic field for each first-order element can be expressed in 

terms of first-order polynomials as:

<t>e(x >y) = ae + b ex +cey (2.39)

where <|>e(x,y), is the electric, E, or magnetic, H, field, and ae, be, and ce are the 

coefficients of the polynomial expression, over each element respectively.
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The overall field for each element can also be defined in terms of the 

components, (jm §2, <t>3, which are known (Davies, 1989) as the nodal field values, and 

correspond to the unknown but wanted E or H field values at the element vertices.

These can be expressed in matrix notation as:
I

_
x

1--------------- ---
---

---
---

---
1

CD

__
__

__
_
1

02 .  = 1 x 2
y 2 b e

03

X

______1 i 1 O
CD 1___

__
_

(2.40)

By rearranging eqn.(2.40) as:

a e ' l *1
- i

0 I 1

b e = 1 x 2 y 2 * 02

Ce_ 1 x 3 y 3 . .03

and substituting the coefficients ae , be and ce in eqn. (2.39), this can be transformed 

to:

< M *.y ) = [N\ N2 n 3]

<t>i

0 2

03

(2.42)

where, Nu N2l /V3 are known as the shape functions, and can be defined by:

A /,(x,y) = { (x 2y 3 - x 3y 2) + ( y 2 - y 3)x + (x3 - x 2) y } / d e t  (2.43)

where, det, is the determinant of the 3x3 matrix in eqn. (2.40) and the other two shape 

functions, and N2 and N3, are obtained by cyclic exchange of 1-»2-»3 in eqn. (2.43).

2.6 Shape functions

The expressions Nu N2 and N3 in eqn. (2.42) and (2.43), defined in the previous 

sections as the shape functions, are a set of interpolation functions, in terms of 

complete polynomials which are normalized over each triangle. They are chosen

47



Chapter 2 The Finite Element Method

uniquely to define the field within each finite element under consideration and they are 

linearly dependent on the values of fields assigned to the vertices of the element. Each 

of them has a value 1 on the vertex defined by its subscript and 0 value on the other 

vertices. Shape functions can be normalized further, in terms of x and y coordinates 

and by doing so, the same function can be applied to any triangular element. This can 

be achieved by introducing local (or area) coordinates (Davies, 1989) which can 

normalize all triangles to one prototype. Primarily, a first-order triangular element is 

considered, as shown in Fig.2.5, where 1, 2 and 3 are the three nodal, one at each 

vertex, (xi ,yi), (x2, y2), (x3, y3) are the coordinates of each vertex and point P is any 

arbitrarily chosen point at the surface of the triangle.

1 (xi,yi)

Fig. 2.5 Coordinates and node numbers of a first-order triangular element.

Local coordinate E  can be expressed by the ratio (Davies, 1989):

area of triangle (P - 2 - 3) 
area of triangle ( 1 -2 -3 )

(2.44)

where (P-2-3) denotes the triangle with vertices, the nodes defined as P, 2 and 3.

E,  is proportional to the perpendicular distance of P from side (2-3) and can 

also be defined into matrix form as:

E =

I X y
I x2 y2
I *3 y2
I *1 y.
I x2 y2
I *3 y3

x 2 y 2 

*3 y 3
+ (y2 -y.3)* + (*3 - * 2)y

2/L

a, + a 2x + a3y

2 A,
(2.45)
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where the notation, | |, denotes determinant, and Ae, is the area of the triangular 

element.

From Fig.2.4, it is obvious that Lu takes the value 1 at vertex 1 and the value 0 

at any other vertex and therefore it is the unique interpolating first degree polynomial 

for node 1. The other local coordinates, L2 and L3 can be expressed by cyclic 

exchange of 1-»2->3 in the x, and y, coordinates, in eqn. (2.45). These can be then 

expressed as:

, a 4 + a5x + a 6y 
2 A.

, a7 + a 8x + a 9y 

2 A,
(2.46)

From the area definition, it can also be seen that:

L1+ L 2+ L 3='\ (2.47)

For the first order triangular elements the three shape functions Nh N2, A/3, 

correspond to the three local coordinates, defined in (2.45) and (2.46) and as:

A/1=Z_1 A/2=L2 N3=U  (2.48)

The above definition of the shape functions for the first-order triangular element 

coincides also with equation (2.43).

In order to generalize to higher order elements, the shape functions have to be 

calculated in terms of higher order-interpolation polynomials, depending on the degree 

of the finite-elements used, and the local coordinates of the triangle. For a second 

order triangular element, shown in Fig.2.4.b, the shape functions can be defined as 

(Koshiba, 1992a):

A/1=Z_1(2Z_1-1) A/2=Z_2(2Z_2-1 ) A/3=/L3(2Z_3-1 )

A/4=4L i L2 N5=4L2L3 A/6=4Z_3Z_1 (2.49)
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2.7 Assembly of element matrices

As was mentioned in Section 2.4, the solution of the optical waveguide problem 

by the FEM can be transformed to a standard eigenvalue problem as in eqn. (2.38). 

Matrices A and B in (2.38), are known as global matrices and consist of the summation 

of the element matrices for each triangular element of the discretised cross-section of 

the optical waveguide. In this section, the assembly of the element matrices is shown, 

with respect to the shape functions and the nodal field values of each triangular 

element, based on the variational formulation. Throughout the procedure, the full H- 

field formulation in terms of the three axial components is assumed and first-order 

triangular elements are being used.

By considering eqn. (2.36) where the magnetic field vector, H, is expressed in 

terms of the shape functions, the nodal magnetic field vector {H}e over the cross 

section of a triangular element can be defined with respect to its axial components as:

{H}e = [ {H x}e {Hy}e {Hz}ef  (2.50)

where {Hx}, {Hy}, {Hz} are the nodal field vectors along each axis.

Also, the shape function matrix, [N]J, can be analysed as:

[N] t

{N} {0} {0}

{0} {A/} {0}

{0} {0} m

(2.51)

where {A/} is the shape function vector:

{N} = [Ni N2 N3] t  (2.52)

and {0}, is the null vector. The term j  arises, as for lossless cases Hz component is 90° 

out of phase with the transverse components.

Equation (2.36) can then be re-written as:
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H X 2

h x3
A/, N2 N3 0 0 0 0 0 0 Hyi

0 0 0 n 2 N3 0 0 0 « " y l
0 0 0 0 0 0 JN2 JN 3 . Hyi

Hzi

(2.53)

Similarly, the expression (V x  H)e, within the element can be defined as:

(V x  H)e = [Vx][A/]r {H}e

0 -3  / 3z

d I dz 0 

-d  / dy d I dx

d / dy 

-d  / dx 
0

[N]T{H}e (2.54)

which can also be written as:

(V x  H)e = [Q]T{H}e (2.55)

where, the matrix [Q] is defined by:

[Q] =

{0}
J i m

jd{N} / dy

- j m
{0}

- jd{N) i dx

-d {N } / dy 

d{N} / dx 

{0}

(2.56)

and by using the shape functions coefficients in (2.45) and (2.46): 

d { N } ! d x - [ a 2 a5 a8] (2.57)

d{N) I dy = [a, a6 a9] (2.58)

It has been shown in Section 2.4, that the solution to the optical waveguide 

problem can be obtained from Euler’s equation, which can be transformed to a 

discretized form as in eqn. (2.37). By assuming isotropic media ([er]=er) and 

substituting equation (2.55) in (2.37), the resulting element equation will become:
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—  \ l ( { H } J [ Q ] [ Q ] T{H}e) d n - k 02\ l ( { H } J [ N ] [ N ] T{H}e) = 0 (2.59)

By summating all the elements over the cross-section of the guide, the above equation 

can be expressed in matrix form as:

[A] { H } - k 02[B]{H} = 0 (2.60)

where,

M  = 5 > ] e = X j j e—  [O U Q fdxdy  (2.61)
e e

[B] = J J[B]e = J j \ \e[N ][N]Tdxdy (2.62)

[/A] and [B] are the global matrices of the eigenvalue equation, —  is the relative
ee

dielectric permitivity of the element, and [/4]e and [B]e are the element matrices which 

may be evaluated as follows:

For matrix [A]e:

W .-7 -J J .

{0} ;ß(A/} —9{A/} / 9y (0) Vß{W}7 jd{N}T 19 y

{0} 9{A/}/9x - M N } t (0) - ß {N }T / 9x

-jd{N] / 9y jd{N} / 9x {0} -9{A/}r / 9y 9{/V}f / 9x {0}

dxdy =
(2.63)

P mmT*
9{A/} d{N}T

9y 9 y
d{N} d{N}T 

9 y 9x

m d{N}'

9x

9{A/} 9{A/}
B{A/}

dy dx

B{A/}
dx dX

9{A/} 9{A/}r

9y 9y 9y

3{N}T
9x

d{N}T
dy

9x 9x

dxdy

The resulting matrix is a 9x9 real symmetric matrix and by using the shape function 

coefficients and the relation for a triangular element (Davies, 1989):

II, N[ N ‘2 N*dxdy
/! j \ k \

(/ + j  + k + 2) !
■ (2 x Area) (2.64)
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the various terms can be determined.

For the element matrix [B]e:

[ B ] e JJe[A /]W d x c /y  = jX

"{A/} {0} {0} ' {N}T {0}7 {0}7 '

{0} {A/} {0} {0}7 {A/}7 {0}7

.{0} {0} {0}7 {0}7 j {N }T

dxdy -

{N}{N} t

{0} {0}7

{ 0} {0}7

{0}{0}r

{N}{N} t

{0}{0}r

{0}{0}r

{ 0} {0}7

{N}{N} t

dxdy

(2.65)

where the various terms can be evaluated by using again (2.64).

Typical calculations for the evaluation of several terms of both the element 

matrices [A]e and [B]e, are shown in detail in Appendix A.
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2.8 Global matrices and sparsity

The eigenvalue problem (2.60) can be solved by constructing the global 

matrices [/A] and [6] from the summation of the element matrices, [A]e and [B]e 

respectively, and using the appropriate matrix solver to obtain the eigenvalues and 

eigenvectors of the equation.

1 2

Fig.2.6 Simple structure discretized in four, first-order triangular elements.

The assembly of the global matrix is performed with respect to the nodal points 

of the structure and attention should be given when some nodes are common to two or 

more elements. In such a case, the contribution of each adjacent element should be 

added to the global matrix when a common node is calculated.

A simple structure consisting of four first-order triangular elements (A-D), is 

considered, as shown in Fig.2.6. The node numbers 1- 6 , are the global numbers for 

the structure, referring to the global matrices and the nodal points inside each triangle 

1 , 2 , 3, are the local node numbers for each element. In the above structure the global 

matrix, G, is formed by addition of the element matrices A, B, C and D.

As it has been shown in the previous section, for every element in the 

discretized variational formulation there is an expression of the form:
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{H}[L]{H}T = { H ] • • • H9}

*-1,1 L l ,9 ' » X
•  • •

•  •  • •

•  • •

*-9.1 *-9 ,9

(2 .66)

Each term in the matrix, Lt J, relates two nodal field values, where the indices / and j, 

correspond to the nodal field values of vectors {H} and {/-/}T, respectively, according to 

the local numbering an element. By considering scalar formulation, where only one 

field component is considered, say HXt the expression can be reduced to:

{H x, Hx2 H x3]
" * - 1.1 *-1.2 _r

—
U

»
__

__
1

H x \

} *"2,1 *-2 ,2 *-2 ,3

. L 3,1 *-3,2 *-3 ,3 . Hx 3.

(2.67)

where Hxi, denotes the nodal field of node /', according to the local numbering.

For the particular structure, shown in Fig.2.6, the global matrix Gpq, may be 

defined as:

Gi,i

G = (2.68)

The size of the above global matrix is of the order NPxNP, where NP is the total 

number of the nodal points of the structure. The terms of the global matrix, Gp (7, denote 

the (global) field contribution of two nodes, p and q, according to the global numbering. 

Each term of the global matrix GAq, consists of a (local) contribution from only one 

element, unless the nodes lie on a boundary shared by other elements. For example, 

the terms of the global matrix, G u , for node 1 with respect to itself, is defined by:

Gr i = L \ ,  (2.69)

where LÂ U is the term of the element matrix, for the element A.
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In the same way, the terms of the global matrix, for some other nodes which do not lie 

on a shared boundary, can be given by: G1i2= L \ 3, G2,4=Lb3:2i G3i5=Lc1i2, etc. When the 

nodes are shared by more than one element, then the contributions from each element 

are added as shown below:

G2 2 -L  3,3+L 3,3 , G3,4=/-S1,2+LC1.3» G3,3=La2,2+LBi j +Lc  1,1 (2.70)

One of the most important features of the global matrix is that a term will have 

zero value when the corresponding nodes are not connected. For example:

G1|4-G4i1-G1i6-G6|1-G52-G2 i5-0 (2.71)

The above feature of the global matrix, known as sparsity, is a very crucial 

aspect of finite elements and leads to the use of special algorithms for the matrix 

solution, which reduce computational time and matrix size. Special storage schemes 

are used, and sometimes elements are recalculated whenever needed, rather than 

being stored, to allow for the solution of very large order matrices (Davies, 1989).

In this project, a very efficient matrix solver has been used, which exploits the 

sparsity (number of zero elements) of the matrices and uses a one-dimensional 

storage scheme for the global matrix. The above matrix, G(k), is generated as a one-

dimensional array, where the subscript k, denotes the index of two other one-

dimensional arrays, Ro(k), Co(k) which hold the row and column number of an nxn 

matrix, respectively.
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2.9 Infinite Elements

One common problem of the open-type optical waveguide is that finite field 

value exists in the region outside the guide and sometimes its decay extends to infinity. 

The modelling of such structures, may cause problem for solutions near cut-off, where 

the field decays slowly and the region of significant field value can be arbitrarily large. 

In the orthodox finite-element discretization the cross-section of the waveguide cannot 

be extended to infinity. Rahman and Davies (1984a), have developed an approach in 

which infinite elements are added along the outer boundary of the orthodox finite 

elements, as shown in Fig.2.7, where for a typical rectangular dielectric waveguide 

problem, a quarter of the structure is discretized into orthodox and infinite elements, by 

assuming two fold symmetry. These infinite elements extend the domain of explicit 

field representation to infinity, without increasing the matrix order, so that the 

computational time is virtually unchanged.

y

Fig. 2.7 Node representation of a rectangular dielectric waveguide, discretized into finite and 

infinite elements (two-fold symmetry assumed).

The shape functions of the infinite elements, which substitute the shape 

functions of the outer boundary of the orthodox elements, should decay exponentially 

in the direction where the field extends to infinity. For an infinite element extending 

towards infinity in the x-direction, an exponential decay in x and a conventional shape
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function dependence in the y-direction can be assumed, given as (Rahman and 

Davies, 1984a):

Nj (x, y) = fj (y) exp(-x  / L) (2.72)

where f{y) is a function of y depending on the dimensions of the infinite element and L 

is the decay length.

In a similar way shape functions can be obtained for infinite elements that 

extend to infinity along the y or both the x and y  directions. The decay length depends 

on the structure under consideration and it can only be assumed any reasonable value 

during the first iteration. When a first solution to the problem is obtained, the decay 

parameters along each direction are calculated, and the values obtained are 

substituted in the shape function during the next iteration, in order to achieve the field 

decay along the required boundary of the structure.

2.10 Boundary conditions

It has been shown in Section 2.4 that the H-field variational formulation (2.31) 

automatically satisfies the boundary conditions along the electric wall, Te, but forced 

boundary conditions, of the type n x H  = 0, can be imposed along any magnetic wall, 

Tm, particularly to exploit any symmetry.

Fig.2.8 Representation of the Hx11 mode across a rectangular dielectric waveguide.
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In the analysis of the optical waveguide problem, it is often convenient to take 

advantage of the symmetry of the structure, and therefore different boundary 

conditions must be applied. In the case of the rectangular dielectric waveguide, shown 

in Fig.2.7, where symmetry along the x and y-axis is assumed, different types of 

boundary conditions are considered, in order to achieve either a TE or TM solution. By 

considering a TM solution, the Hx11 mode, shown in Fig.2.8, must be continuous along 

the axis of symmetry. The continuity of the Hx11 mode along the y-axis is established by 

imposing a magnetic wall boundary condition (2.18), n x H  = 0, to eliminate only the 

transverse components, Hy and Hz, along that boundary. On the other hand, the 

electric wall boundary condition (2.17), n - 1-1 = 0, should be imposed along the x-axis, 

to eliminate only the Hy component along that boundary, therefore to allow the 

continuity of the Hx and Hz components of the magnetic field. In a similar way, 

boundary conditions can be applied for the TE modes and further boundary conditions 

can also be applied when even or odd modes are required.

In the FEM analysis of the above problem, boundary conditions are imposed, 

by setting the boundary nodal field values as either know or unknown quantity. When 

the nodal field values along a boundary are set to zero (known via the boundary 

condition), then automatically the size of the global matrices reduces by a row or a 

column, thus, reducing storage requirements and computational time.

2.11 Spurious modes

The use of vector formulations, for the analysis of optical waveguides, results in 

the presence of some non-physical, spurious solutions along with the physical 

solutions of the system. The reason of the appearance of such spurious modes has 

not been fully resolved, but it could be due to various factors, such as enforcement of 

boundary conditions, or due to the nonzero divergence of the trial fields (Rahman and 

Davies, 1984a). In the H-field formulation, the associated Euler equation is consistent 

with the two curl Maxwell’s equations (2.4, 2.5), but does not imply the V -B  = 0, 

relation (2.7), which may be the cause of the spurious modes.

The identification of the spurious modes amongst the physical modes can be 

difficult, when a set of eigenmodes is computed. Sometimes spurious modes can be
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spotted, from their dispersion curves, or by their eigenvectors, where the field varies in 

an unreasonable, sometimes in a random way along the cross section of the 

waveguide. Rahman and Davies (1984a) have developed a procedure which gives a 

reasonable identification of the spurious modes. In the above approach, the 

divergence of the magnetic field, V H , is calculated for each eigenvector, and when 

the value obtained is high, it is assumed that the eigenmode does not satisfy the 

divergence condition, and therefore it is a spurious mode.

Several approaches have been used, most of them aiming to force the 

condition V H = 0, which is considered the main cause of spurious modes. Rahman 

and Davies (1984b) have developed a penalty function method, in which an integral is 

added the H-field formulation, so that the resulting Euler equation is the Helmholtz 

equation, plus the V B  = 0 condition. The variational formulation then becomes as 

(Rahman and Davies, 1984b):

where, a is the penalty coefficient.

The value of the penalty coefficient, a , can be estimated to be around 1/eg, 

where eg is the dielectric constant of the core of the optical waveguide. By introducing a 

higher penalty coefficient, further reduction of the spurious modes is achieved, but this 

results in the slight deterioration of the effective index of the optical waveguide, and 

therefore trade off should be considered in order to obtain the best solution. The 

method can be used more effectively, in conjunction with the infinite elements, 

resulting in the reduction of some unwanted field values along the boundaries by using 

appropriate decay parameters.

Another approach for the complete elimination of spurious modes is the use of 

the H-field formulation in terms of the transverse field components, known as the Ht 

formulation (Hayata et al., 1986b; Lu and Fernandez, 1993b). In this method, the 

magnetic field along the direction of propagation, Hz, is represented in terms of the 

other two transverse components of the magnetic field, Hx and Hy as:

(O (2.73)
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H, =■
yß

dHv dHy A

dx dy
(2.74)

Equation (2.74) corresponds to V H  = 0, therefore the divergence condition is 

automatically satisfied in the variational formulation and no further action dealing with 

the spurious modes is required.

2.12 Summary

In this chapter, the application of the Finite Element Method, based on the 

variational principle, in the solution of the optical waveguide problem, has been 

examined. The properties of the various formulations have been presented and the 

development of the approach, by using the vector H-field formulation has been 

analysed. Various aspects of the use of the method, such as boundary conditions, 

shape functions and infinite elements for open-boundary waveguides, have also been 

considered. Common problems, such as the existence of spurious modes and 

methods of eliminating them have been presented.

This chapter forms the basis for the work described in the subsequent 

Chapters, where the application of the Finite Element Method in conjunction with the 

perturbation technique is considered for the gain/loss analysis of several different 

types of optical waveguide.
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Loss/Gain Analysis and Perturbation 

Technique

3.1 Introduction

Many optoelectronic devices, such as semiconductor lasers, optical amplifiers, 

and metal-clad TE-TM mode splitters, for example, contain materials with complex 

refractive indices, introducing modal gain or loss. As lightwave technology continues to 

advance, integrated optical circuits are becoming more complicated, the number of 

metal layers and the line-to-line spacing increases, mutual inductances and coupling 

capacitances are becoming more important, and therefore the effective modelling of 

loss and gain in such devices is considered critical (Lee, 1994). The design of metal 

clad TE-TM mode splitters (Soldano et al., 1994), which are required in many optical 

communications applications, such as polarization shift keying and polarization 

diversity multiplexing, is based on the control of the absorption performance of the 

device. Laser gain in semiconductor integrated optics devices, in contrast with the loss 

due to absorption, scattering or leakage, of the semiconductors materials (Deri et ai, 

1991), is another area where gain and loss investigation is important. Also, the 

development of high gain Er+ doped fiber amplifiers (Giles and Desurvire, 1991), which 

has increased the efficiency and capacity of optical telecommunication systems, is
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another factor that emerged wider investigation of the gain properties of optoelectronic 

devices.

All the above advances in lightwave technology during the last decade have 

encouraged the development of various techniques, dealing with the solution of gain 

and loss problems encountered in the modelling of optoelectronic devices. The typical 

lossy waveguide problem can be solved, as in the lossless case, by two different 

approaches. For simple structures, like the planar waveguide, analytical or semi- 

analytical methods can be used, but when the geometry of the optical waveguide 

becomes more complicated, numerical techniques are preferred. In this Chapter, the 

various approaches for the solution of optical waveguide problems, by using both 

analytical and numerical techniques, are discussed, with the main focus given to the 

finite-element approach in conjunction with the perturbation technique, which has been 

widely used in this work for many applications.

3.2 Analytical solutions

Dielectric slabs, which are three-layer planar waveguides, are considered as 

the most basic optical waveguide structures, and their propagation characteristics can 

be described by simple mathematical expressions, which can be solved by an 

analytical approach. Guided waves propagating in such structures are considered only 

in one dimension and can be represented by the transcendental equation (Reisinger, 

1973), where the propagation constant has to be evaluated. By introducing a metallic 

element for one or two of their layers of the above structures, metal-clad planar 

waveguides are formed and the transcendental equation becomes complex, due to the 

lossy nature of the metal layer, which is represented by a complex dielectric constant 

with negative real part.

Multilayer planar waveguides are employed in many applications, such as the 

use of buffer layers to separate electrodes from a guide, and the use of metal layers in 

TE/TM polarization splitters and in semiconductor lasers to achieve separate 

confinement for the charge carriers and the photons (Tamir, 1990). The solution of the 

above waveguides can be obtained by considering the wave equations of the dominant 

electromagnetic fields of each layer, for TE or TM polarizations and by applying 

repeatedly boundary conditions for each layer interface. For the loss analysis of the
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above structures complex refractive indices for the lossy elements are considered, and 

therefore all the equations become complex.

3.2.1 Maxwell’s equations for the planar waveguide

In planar optical waveguides, the light is confined in one dimension only, 

therefore, Maxwell’s equations (2.4-2.7) can be simplified into their scalar form for the 

determination of the guided TE or TM modes in the above structures.

By choosing the light confinement to be in the y-direction, the partial derivative 

along the x-direction can be assumed to be dldx-0. For the TE modes, where there is 

no longitudinal component of the electric field (Ez=0), by using the Maxwell’s curl 

equations (2.4 and 2.5) the only non-vanishing fields obtained are Hy, Hz and Ex, which 

can be defined as:

where p is the phase constant, co is the angular frequency and p and e are the 

permeability and permittivity, respectively.

For the TM modes, where there is no magnetic field along the direction of 

propagation (Hz =0), by using again Maxwell’s curl equations (2.4 and 2.5) the only non 

vanishing fields obtained are Ey, Ez and Hx, which can be expressed as:

(3.1)

7 ycop dy
(3.2)

i ah z

ycoe dy
(3.3)

Ey X (3.4)
toe

(3.5)

cop y ycop dy
(3.6)
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3.2.2 The transcendental equation

By combining the equations (3.1-3.3) and (3.4-3.6) defined in the previous 

section, for each of the TE and TM modes, the scalar wave equation for the isotropic, 

three-layer, planar optical waveguide can be obtained, which can be expressed as 

(Koshiba, 1992a):

^ i  + (/c0V  - P 2W = 0 (3.7)
9y

where, k0 is the wavenumber and <j> is the dominant field component for each 

polarization i.e. Ex for the TE mode and Hx for the TM mode.

y nc

cladding
0 -------------------

nf

film
t

ns

substrate

Fig-3.1 Three-layer planar optical waveguide.

In a three-layer planar optical waveguide, shown in Fig.3.1, provided that 

nf>ns>A?c a guided mode satisfies the condition, k0ns< p < k0nf, where nf, ns and nc are 

the refractive indices of the core, the substrate and the cladding of the guide, 

respectively. Then the solution to the wave equation can be expressed as (Koshiba, 

1992a):

0  = <

Ac e x p (-a cy)

Af cos(kf y) + Bf sin(/cf y) 

/ \s exp[as(y + t)]

0 < y

- t  < y <0 

y < - t

(3.8)

where, Ac, Af, As and Bf are arbitrary constants and ac, as and kft can be defined by:
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a c = VP2 ~ kl nl (3.9)

= a/p 2 - k 20n 2s (3.10)

kf = ^ k ] n 2f - p 2 (3.11)

By applying the boundary conditions for continuity of the tangential components 

of the electric and magnetic fields (2.13 and 2.14), which are Ex and Hz for the TE 

mode and Ey and Ez for the TM mode, the phase shift relations can be obtained, which 

may be expressed as (Koshiba, 1992a):

<DS = ta n ''(m sa s / mf kf ) (3.12)

<£c = ta n " '(m ca c / m f kf ) (3.13)

where mc, ms and mf can be defined by (Koshiba, 1992a):

mc=ms=mf= 1 (3.14)

for the TE mode and,

mc=Mnc, ms=Mns, mj=Mnf (3.15) 

for the TM mode.

Then, the condition for the existence of a guided mode is the total phase shift in 

the y  direction during one cycle and it must be an integral multiple of 2n. This can be 

expressed by the transcendental, or eigenvalue equation as (Koshiba 1992a; Tamir 

1990):

kf t - ®c - d>s - qn = 0 (3.16)

where, q = 0,1,2,...
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3.2.3 Solution of the complex transcendental equation

In the case of a planar optical waveguide incorporating loss or gain, the 

refractive indices of the layers with loss or gain are considered complex, and therefore, 

the transcendental equation becomes complex. This can be achieved by substituting 

the complex refractive indices and by replacing the phase constant p, by the complex 

propagation constant, y, which is defined by:

y = a  + yp (3.17)

where a is the attenuation constant.

The solution of the complex transcendental equation can be obtained by using 

an incremental search method, as shown schematically in the flow chart diagram in 

Fig.3.2. In the above approach, the dominant parameter, the phase constant, p, is 

firstly calculated as for a loss-less case by neglecting the imaginary part of the 

complex refractive indices. The attenuation constant, a, is then estimated by using the 

loss-free phase constant and the imaginary part of the refractive index. Further, the 

two constants are iterated until the solutions become stable and converge to their final 

values.
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Start

>i

Iterate

Y = « + jP

f(a,[3): Transcendental 
equation
y: Complex propagation 
constant
Pstart- P Starting value 
Sp: phase constant 
increment
astart: a Starting value 
8a:attenuation constant 
increment 
TOL: Tolerance

Fig-3.2 Flow-chart diagram for the solution of the complex transcendental equation.
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3.2.4 The Effective Index Method

In 1969 Marcatili introduced a simple method for the solution of optical 

waveguides, in which a rectangular dielectric waveguide was approximated by two slab 

waveguides, one in each transverse direction, and the wave equations for the two 

directions were solved simultaneously. In 1970, Knox and Toulios introduced the 

effective index method (EIM), an improvement of the Marcatili’s method, by 

incorporating an effective dielectric constant which served to couple the two slab 

guides and applied it to the solution of the dielectric image guide and directional 

coupler. The method is based on the assumption that the modes are far from cut-off, 

resulting in the confinement of the field exclusively in the core region, thus leaving little 

field energy carried by the surrounding media (Marcuse, 1991).

w

ns

nf d

ns

b) Slab waveguide with 
confinement in the y-direction

a) Configuration of the rectangular 
dielectric waveguide w

ns

<-------- ►

nem ns

c) Slab waveguide with 
confinement in the x-direction

Fig-3.3 Solution of the rectangular dielectric waveguide by the Effective Index Method.

The EIM can be applied to the solution of the rectangular dielectric waveguide, 

as shown in Fig.3.3. The cross section of the structure can be divided into different
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dielectric regions, as shown in Fig.3.3.a, where nf and ns, are the refractive indices of 

the core and the substrate respectively. For a well-confined mode, the field intensity in 

the shaded areas of the above structure is assumed negligible, and therefore these 

regions are not considered in the solution. The waveguide can then be approximated 

by two planar slabs, where the light is confined in either the y- or the x-direction, as 

shown in Fig.3.3.b and Fig.3.3.c, respectively. Firstly, the effective index of the first 

slab, shown in Fig.3.3b, is calculated by solving the transcendental equation (3.16) for 

a planar optical waveguide along the y-direction, and the value obtained is then used 

as the refractive index of the core of the second slab, as shown in Fig.3.3.c. The 

effective index, which is then calculated by solving the transcendental equation along 

the x-direction, approximates the effective index of the original rectangular dielectric 

waveguide. The rectangular dielectric optical waveguide can support either the TE or 

TM modes, and therefore, the type of solution of the transcendental equation along 

each direction depends on the mode requirements.

For the TE guided mode of the rectangular dielectric optical waveguide, the Hy 

and Ex are the dominant field components. After imposing the tangential field continuity 

boundary conditions along the y-direction, for the planar slab shown in Fig.3.3.b, the Ex 

field component can be obtained, via a TE solution of the transcendental equation, 

along that direction. Then by considering the second planar slab, shown in Fig.3.3.c, 

the Hy field component can be obtained by applying a TM solution to the 

transcendental equation, along the x-direction.

In the same way, for the TM guided mode of the rectangular waveguide, where 

the Hx and Ey are the dominant field components, a TM and a TE solution of the 

transcendental equation can be applied along the y- and the x-direction, respectively 

for the above two planar waveguides.

When one or more layers incorporates loss or gain, the corresponding 

refractive indices becomes complex, therefore, all the equations are transformed into 

complex by introducing the complex propagation constant, y, and the solution for each 

polarization is obtained by the approach described in the previous section.
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3.2.5 Multilayer planar waveguides

As the number of layers in a planar optical waveguide increases, the 

transcendental equation become more complicated, therefore, a more generalized 

algorithm is necessary for the solution of multilayer structures, which can be applied for 

any number of dielectric layers. The analysis of the above waveguides is based on the 

same principles used in the analysis of simple three-layer planar structures, with the 

only difference being the repeated application of boundary conditions at each layer 

interface. In this approach, the various coefficients of the solutions of the wave 

equations for each interface are assembled in a matrix form and the propagation 

characteristics of the waveguide are determined by the evaluation of the determinant 

of the above matrix.

Ln

x ______________y=h3

L3 r>3 |  c/3
------------------------—  y=h2

1-2 ^2 J d2
---------------------------- y=hi =0

Li rh

Fig.3.4 Multilayer planar waveguide

A multilayer planar optical waveguide is being considered, with N number of 

layers, as shown in Fig.3.4., where nk and dk denote the refractive index and the 

thickness of the kth inner layer, Lk, respectively, and hkl, the height of each interface 

with respect to the x-axis. It should be noted that the thickness of the two semi-infinite 

cover layers are not required. In the analysis a TE solution is being considered and 

complex refractive indices are being introduced in order to handle optical waveguides 

with loss or gain. By using the complex propagation constant, y, the wave equation

(3.7) for the Ex component of the electric field for the kth layer, Lki can be expressed 

as:

nN

nN-i |  dN-i

y=hN-i

M-1
y=hN -2
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(3.18)

where EXik and nk are the Ex component of the electric field and the complex refractive 

index for layer the /cth layer, Lk, respectively.

The general solution of the above differential equation is given by (Schlereth 

and Tacke, 1990):

Ex,k = Ak exp(pk(y -  hk)) + Bk exp( -Pk( y - h k)) (3.19)

where Ak and Bk are arbitrary constants for the kth layer and pk is defined by:

Also, from Maxwell’s equations for the TE modes of a planar optical waveguide 

(3.2), the Hz component of the magnetic field at the kth layer can be expressed as

By applying boundary conditions (2.13 and 2.14), at the interface, y=hk, 

between the layers Lk and Lk+h the continuity of the transverse components of the 

electromagnetic field {Ex and Hz for TE mode) for each layer, with respect to the 

boundary of the top layer, hk̂ ,  can be established by:

(3.20)

Hzk = —  (Ak exp (pk (y - h k))~ Bk exp ( - p k (y -  hk )))
m a

(3.21)

E x , k ( ^ k + 1) E x,k+] ( h k+ \ )  — 0 ( 3 .22)

HZJ' (hk+}) - H zMi(hk+l) = 0 (3.23)

By using (3.19) and (3.21) the above equations can be evaluated as:

Ak exp(5 ,)  + Bk e x p (-5 ,) -  Ak+] -  Bk+] = 0 (3.24)

AkPk exp (5 ,) -  BkPk e x p (-5 ,) -  Ak+]p k+i + Bk+]Pk+l = 0 (3.25)ik+ \* J k+\ k + \ fJ  k+\
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where

hk = Pkdk (3.26)

By applying similar boundary conditions for each interface, a set of 2x(N-1) 

homogeneous algebraic equations, corresponding to the N-1 interfaces, is obtained, 

which can be arranged in a matrix form as:

[D ] [A  S, A  B2 ... An Bn] T = [0] (3.27)

where [D] is a 2(N-1)x2N complex matrix of band-diagonal form and contains the 

coefficients of the constants Ak and Bk, which can be evaluated in terms of the complex 

refractive indices, nk, and thickness, dk, for each layer and the complex propagation 

constant, y.

It should be noted that the bottom layer axial distance (y) is assumed zero, and 

therefore equations (3.24) and (3.25) at the first interface, are converted to:

A] + B i - A 2 - B 2 = 0 (3.28)

p , / \ , + p , B , - p 2/\2 + p 2B2 = 0 (3.29)

As it is well known, a homogeneous system admits a non-zero solution if and 

only if the determinant of the system is zero. Therefore, the value of the complex 

propagation constant, y, that makes the determinant of matrix D equal to zero, is the 

solution to the multilayer planar optical waveguide problem. To obtain the above 

solution, the incremental search method, described in section 3.2.3 by the flowchart in 

Fig.3.2, has been used. For the three-layer planar optical waveguide the 

transcendental equation is evaluated in terms of the real and imaginary part of the 

complex propagation constant, y. In the multilayer planar structure, the attenuation 

constant, a, and the phase constant, p, are substituted in matrix D for each increment, 

until the determinant becomes zero and the required tolerance is achieved. Detailed 

calculations for a typical example of a four-layer planar optical waveguide are shown in 

Appendix B.
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For the analysis of the TM modes, similar analysis has been performed, but 

with Hx and Ez being the components of the electromagnetic field for which the 

continuity conditions were enforced.

3.3 Numerical solutions for gain/loss analysis

Analytical or semi-analytical approximations can be useful in the analysis of 2D, 

planar optical waveguides, or some simple 3D structures, such as the rectangular 

dielectric and the simple rib waveguide. As the shapes of the structures are becoming 

more complicated, the order and the complexity of the equations increases, therefore 

numerical techniques are preferable for the solution of optical waveguides with 

complex geometry.

The Finite Element Method (FEM), which is one of the most powerful numerical 

techniques in the analysis of optical waveguides with an arbitrary cross section, has 

been mainly focussed on a loss-free system. From the recent advances in lightwave 

technology emerged the development of various techniques which may be used in 

conjunction with the FEM or other numerical approaches, capable of handling 

optoelectronic devices incorporating loss or gain.

Among the several methods, a FEM formulation in terms of the longitudinal 

components, Ez-Hz has been applied on waveguides containing dissipative materials 

(McAulay, 1977) and on microstrip lines (Aubourg et al., 1983). The main drawback of 

the above approach is the appearance of non-physical, spurious solutions, which 

couple with the physical solutions and make the distinction a difficult task, besides the 

Ez-Hz formulation is not suitable for optical waveguides.

A complex full-vector FEM formulation has also been used in the analysis of 

lossy microstrip lines (Lee, 1994) and for computing electromagnetic fields inside lossy 

dielectric objects (Paulsen et at., 1988), with application to hypethermia research. 

Apart from the presence of spurious solutions in the above approach, which can be 

treated partially by the use of the penalty method (Rahman and Davies, 1984b) and 

other techniques, the main disadvantage of such a complex full-vector approach, is the 

generation of large size complex matrices, which require the availability of efficient 

solvers and computers with fast processors and large memory.
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One of the most accurate methods for the solution of optical waveguides with 

loss or gain is a FEM approach based on the transverse magnetic field components 

(Hayata et at., 1988; Lu and Fernandez, 1993a; Cheung et at., 1995), known also as 

the Ht formulation. In this approach the divergence condition, V.H=0, is expressed in 

terms of Hz as:

1
Hz = -

7

8HV dHv

dx
+ ■

5y
(3.30)

By using the above equation for the Hz component, in the vectorial wave equation 

(2.30), the magnetic field is expressed in only two-components, and therefore the size 

of the matrices is reduced by two-thirds. Additionally, since the divergence condition is 

satisfied all the spurious solutions are eliminated. In most of the formulations based on 

the Ht approach, the generated global matrices are in a dense form, and require dense 

complex matrix solvers which are inefficient. Recently Lu and Fernandez (1993b), 

developed an Ht formulation, which yields sparse matrices and used an efficient 

complex sparse matrix solver for the solution of lossy dielectric waveguides, which 

improved the computational time required for such problems. Further, Cheung et at. 

(1995), developed an Ht formulation based on the Finite Difference Method and 

applied that approach in the analysis of rib semiconductor laser waveguides and 

multiple quantum well structures.

Other techniques developed for loss/gain analysis are based on the scalar 

approximation of the FEM, which is free of spurious solutions and has less 

computational time and memory requirements. Such an approach has been used in 

conjunction with the perturbation technique, for the TE solution of Buried 

Heterostruture diode lasers (Hayata et at., 1986a) and for the quasi-TEM analysis of 

microwave transmission lines, where the conductor and dielectric losses were 

estimated (Pantic and Mittra, 1986).

In the present work, scalar and vector formulations of the FEM element 

method, in conjunction with the perturbation technique have been developed and used 

extensively for the estimation of the complex propagation characteristics of several 

types of optical waveguides, incorporating small amounts of loss or gain, a feature that 

most practical optoelectronic devices possess.
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3.4 The perturbation technique

Perturbation theory is a widely used powerful technique that gives an 

(approximate) answer to a problem that is a small perturbation from some other 

problem to which a solution is available. For example, fibers that are slightly 

anisotropic or absorptive are perturbations of the circular loss-less fiber with an 

isotropic refractive-index profile. By taking advantage of the smallness of the 

perturbation, approximation techniques can be used to derive satisfactory expressions 

for the modes of the perturbed fiber, in terms of the known modes of the unperturbed 

fiber (Snyder and Love, 1991).

Perturbation formulaes can be derived:

a) by approximating the answer with a series expansion, like Taylor series, in 

terms of the small perturbation parameter.

or b) directly from the variational expression. If there exists a variational 

expression this is quicker and is a more powerful approach.

A perturbation formula will automatically emerge if the known solution to the 

unperturbed problem is substituted as a trial function into a variational expression valid 

for the perturbed problem. The known solution must be an admissible function, and 

either it is an essential boundary condition, or the natural boundary conditions 

corresponds to the physical problem (Davies, 1989).

Perturbation theory can be applied in the gain and loss analysis of the optical 

waveguide problem, by approximating the perturbed phase constant, j3, and field 

profiles H and E due to loss or gain, with the unperturbed values p , E and H, which 

are the solutions to the loss-free optical waveguide problem. The above approximation 

is valid for optical waveguides with small amounts of loss or gain. In the present work, 

the term small, which cannot be easily defined, is being investigated by calculating the 

amount of loss or gain in the dielectric material, at which the perturbation method fails. 

This is being achieved by comparing the results obtained in the analysis of simple 

optical waveguide structures with similar results calculated by using analytical 

approximation methods. The loss or gain of a dielectric material is defined by the 

imaginary part, n’ of the complex refractive index, ñ , and therefore the value of ri, at 

which the solution obtained by the perturbation approach diverges from the analytical
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approximation can be considered as the limit of the perturbation technique. The loss or 

gain of the optical waveguide cannot be characterised as small, for values of the 

imaginary part of the refractive index, beyond the above limit.

In a dielectric medium, the attenuation constant, a, due to dielectric losses, can 

be expressed as (Pantic and Mittra, 1986):

where Pdt, is the power dissipation in the dielectric material and P0, is the time- 

averaged power flow.

By considering a cross section, Q, of a dielectric optical waveguide, with any 

number of subregions, Clk, incorporating loss or gain, expressed as a complex 

dielectric constant, I k, for each subregion, the perturbation method can be applied by 

evaluating the attenuation constant for the whole guide, in terms of the 

electromagnetic field as (Pantic and Mittra, 1986; Mirshekar-Syahkal and Davies, 

1982):

“ X e* tanS*Jn |E0|"dQ
a = — ----- r----------- ------------  (3.32)

2ReJn(E0 xH 0).zcK2

where co, is the angular frequency, z is the unit vector along the z-axis, E0 and H0 are 

the unperturbed electric and magnetic field vectors for the loss-less condition 

respectively and tanS* is the loss tangent of each subregion defined by:

tan 5^ = —  (3.33)

where e'k and ek is the imaginary and real part respectively, for the complex refractive 

index of each subregion, and the summation is carried out over all subregions.

The perturbation equation (3.32), is based on the assumption that the 

unperturbed electric, E0, and magnetic, H0, field components remain unchanged in the 

presence of loss and that the value of the loss tangent is very small, i.e. e, «  er. It can 

be extended to any optical waveguide structure which has a number of subregions that
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incorporate loss or gain. Throughout this work, the sign of the attenuation constant 

defines whether an optical waveguide has loss or gain. A negative sign of a indicates 

loss, while a positive denotes gain. In some cases, where the optical waveguide 

exhibits gain, the attenuation constant is referred as the gain constant, g.

3.4.1 Finite Element Method with Perturbation

The perturbation method, described in the previous section, can be used in 

conjunction with the FEM, to determine the loss/gain characteristics of an optical 

waveguide. As was shown in Section 2.4, a loss-free optical waveguide problem can 

be formulated to a standard eigenvalue problem (2.38), where the eigenvalue 

corresponds to the square of the free space wavenumber, k02, and the eigenvectors to 

the magnetic field H. By assuming that the above eigenvalue of the discretised model 

of the loss-free optical waveguide is perturbed by a small amount in the presence of a 

small loss, this can be directly substituted in a discretized form of the perturbation 

equation (3.32) in order to estimate the attenuation constant.

In the present work, discretized perturbation equations have been developed, 

based on the scalar formulation for the TE and TM modes and the full vector H-field 

formulation, to determine the attenuation characteristics of the optical waveguide 

problem.
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3.4.1.1 Scalar formulation for the TE and TM modes

In the scalar approximation of the FEM, where the field is predominantly TE or 

TM, variational formulations can be expressed in terms of the dominant transverse 

component of the above modes, for the general 3D optical waveguide structure.

By considering Ex as the dominant field component in the TE mode analysis 

(Ez=0) of a loss-free isotropic optical waveguide, £y can be assumed negligible, and 

therefore, the scalar wave equation obtained from the Maxwell’s equations (2.4-2.6) 

can be expressed as (Mabaya et al., 1981):

^ r r  + ~ T -  kW El  + P2£x = 0 (3.34)dx dy

By applying the FEM approach described in Section 2.4, the above equation 

can be expressed in integral form as:

' dE'x dEx 
dx dx

I d E x d E x

dy dy
+(P2 -/ c0V ) e ;e x d n  =  o

/
(3.35)

By discretizing the waveguide region in triangular elements, Ex can be 

expressed in terms of the shape functions as:

E „ = [N ] r {E ,}  (3.36)

Then, the waveguide problem can be formulated in a matrix form to a standard 

eigenvalue problem as (Flayata et al., 1986a):

[A]{Ex } - V 2[B]{Ex} = {  0} (3.37)

where matrices A and B are defined by:

k20n2{N}T{N}
d{N}T d{N} 

dx dx
d{N}T d{N} ' 

dy dy
dxdy (3.38)
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[B} = J J\ \A{N}T{N}dxdy (3.39)
e

In the above equations, ^  stands for the summation over all the elements
e

and is the integration over each triangle.

By using a similar approach, for the TM modes (Hz=0), where Hx is considered 

to be the dominant field component and Hy is assumed negligible {Hy- 0), the scalar 

wave equation can be expressed as:

1 d2Hx 
n2 dx2

1 d2Hx 
+ n2 dy2

+ - ■Hi K H 2 = 0 (3.40)

By applying the FEM approach, similar as for the TE modes, the problem can 

be expressed in matrix form as:

[A']{Hx } - V 2[B']{Hx} = {0} (3.41)

where for this case matrices [/A1] and [S'] are defined by

k2n2{N}T{N}
d{N}T d{N} d{N}T d{N} 

dx dx dy dy
dxdy (3.42)

is 'i= X il - L { N}T{N)dxdy (3.43)

The global matrices of the above eigenvalue equations (3.37) and (3.41) can 

be assembled in a one-dimensional storage scheme, as described in Section 2.8, in 

order to take advantage of the available efficient, real symmetric sparse solver, which 

exploits the sparsity (number of zero elements) of the matrices. The eigenvalue 

obtained by the solver of the FEM package, for the above equations, is (32, in contrast 

to the scalar formulation, presented by Mabaya et at. (1981), where the eigenvalue is 

k02. For the solution with a p2 eigenvalue, the input parameters are, k0, and a trial 

solution for p which is an approximation to the phase constant of the required optical

80



Chapter 3 Loss/Gain...

mode. The eigenvalue and the associated eigenvector obtained, correspond to the 

phase constant, p, and the nodal field values of the required optical mode respectively. 

If the solutions for more than one optical modes are required, the eigenvalues are then 

calculated in ascending order, the last being the solution of the lowest order mode 

having a phase constant, p, closer to the trial input solution. Although the solution 

obtained by using the above formulation is not different from that obtained by the 

Mabaya et at. (1981) formulation, where the eigenvalue obtained is k02, the 

convergence of the latter approach is slower, because the trial solution has to be a 

very close approximation to the required phase constant, p, otherwise iterations are 

needed until convergence is achieved. It should be also noted that when more than 

one optical mode is needed, the solutions obtained by using the Mabaya et at. 

formulation are the eigenvalues which are closer to the trial input solution in the k02 

spectrum, and they appear in a descending order.

For a waveguide with a complex refractive index, n , the eigenvalue equations 

(3.37) and (3.41) become complex and their solutions can be obtained by using a 

complex solver. This solver needs double the memory space within the computer and 

the available complex routines may be based on inefficient dense matrix algorithms 

with slow execution times. Moreover, in those formulations where the eigenvalue is 

related to the wavenumber, k0, rather than p, then complicated iteration techniques 

need to be used to find the real wavenumber by varying the complex eigenvalue of p. 

On the other hand, if the loss-free situation is considered initially, then the real 

eigenvalue equations (3.37) or (3.41) can be solved by using an efficient, real 

symmetric sparse solver, and the perturbation technique can be applied directly as 

soon as the unperturbed nodal field and phase constant values for the loss-free case 

are obtained.

3.4.1.2 Scalar FEM with perturbation

The scalar FEM formulation described in the previous section has been used in 

the present work, in conjunction with perturbation technique for the TE or TM solution 

of optical waveguide problems, with small-loss or gain. By assuming that the loss 

tangent (3.33) is small, the perturbed fields E and H were approximated by the fields 

obtained by solving (3.37) and (3.41), depending whether the field is TE or TM, using 

only the real part of the complex dielectric constant. The attenuation constant was then
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calculated by using the perturbation formula, by performing simple matrix 

multiplication, directly from the results obtained for the loss-free system.

For the quasi-TE modes of an optical waveguide, the perturbation equation 

(3.32) has been expanded in terms of £*, which is the dominant field component of the 

electric field for the above mode as:

(3.44)

By using the finite element discretization in terms of the shape functions to 

implement the integrations, equation (3.44) can then be expressed as:

1 {Ex }T [K' ]{EX} 

2(3 {Ex } r [B]{Ex }

where the matrix [B] is the same as in (3.39) and [K] is defined by 

[K '] = I > o 2e'e \ \ s{N}T{N}dxdy (3.46)
e

It can be observed that equation (3.45) in this work is similar to equation (9) in 

the work of Hayata et al. (1986a), except that those authors had an additional term, k0l 

in their equation. It can be shown that [K] has the same value as that of lm[A] when a 

complex s is considered and then on both sides of equation (3.45) the units are equal. 

Comparison of the results obtained by both the equations are discussed in section 5.2.

Detailed calculations for the derivation of equation (3.45) are shown in 

Appendix C.

For the quasi-TM modes, the perturbation equation (3.32) can be evaluated in 

terms of Hx which is the dominant magnetic field component, by using Maxwell's 

equations, as:
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a  =

H x \ 2 d P l

(3.47)

By using again the finite element discretization in terms of the shape 

functions to implement the integrations, equation (3.44) can then be expressed as:

a = _ 1  {H x} r [L]{Hx} 
2 {Hx } t [B' ]{Hx}

where

[L] = ((3[/W] + ~[Q])

m  = J J\ \ A~ { N } T{N}dxdy
&

e £ e

{Ny}
dy

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)

Detailed calculations for the derivation of the above equations are also shown 

in Appendix C.
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3.4.1.3 Full vector FEM with perturbation

The use of the scalar approximation of the FEM with the perturbation technique 

provides a quite accurate and time efficient computational tool for the determination of 

the propagation characteristics, in simple optical waveguide structures where the 

optical fields can be described as predominantly TE or TM. For a more accurate 

representation of the electromagnetic field, in optical waveguides a vector formulation 

is required, where all the field components are taken into account. Therefore, a 

perturbation formula has been developed, which has been used in conjunction with the 

full vector H-field formulation (2.30), for the estimation of the gain/loss properties of 

several optical waveguide structures, with small gain or loss. In the above approach, 

the contribution of all the three magnetic field components is considered in the 

calculation of the attenuation constant, a. By using Maxwell’s equations to express the 

electric field, E, in terms of the magnetic field components, Hx, Hy and Hz, the 

perturbation formula (3.32) can be written as:

( m -
_dHz '

7 ¿ y  J
2 f  dHz Y  f  dHx

+  v V - P H ,  +  j  x -
V  dx J { dy

M y T
dxdy

- I(0 e ¿ » . i

dH dH
^ HyHy + ^HxHx -  ^ H y - dxdy

The components of the H-field for each element can be defined in terms of the 

shape function matrix (2.51) as:

Hx { H x } e

M y • = [N]T ' { H y ) e

N

3;

(3.54)

As it is shown in Appendix D, by using the above transformation, the 

components can be arranged in a matrix form, and the perturbation formula can be 

expressed as:
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a =

£ Se2'{H> /[C ]{H }e
e £ e___________________

2 ^  1 {H }/[D ]{H t}e
e

(3.55)

where the full {H}e and transverse {Ht}e element field vectors are

(h ) =
{Hx}e

{Hx}e

{Hz}e

{Ht}e =
{Hx}e

{ H y ) e
(3.56)

Here, ne and ne' are the real and imaginary parts of the refractive indices in each 

element.

The element matrix [C] is given by

[C] = [Q][Q]t  (3.57)

where

{0} - m j{Ny}

m {0} - j {N x} dxdy (3.58)

-{A/y } {Nx} {0}

Similarly, the element matrix [D] is given by:

P[G]
[0 ]

- IX ]

[0]

P[G]
-[V ]

dxdy (3.59)

where

[G] = {N}{N} t  (3.60)

[X] -  {Nx }{N} t  (3.61)
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[Y\={Ny}{N}T (3.62)

where

{A U  = ^  (3.63)
dx

A detailed derivation and evaluation of the perturbation formula (3.55) is also 

shown in Appendix D.

3.5 Field Confinement Method

It can be shown that the modal gain, gm, of a well-confined mode, in a simple 

optical waveguide structure incorporating an active region, can be approximated by:

gm ~n’ k0T (3.64)

where n’ is the imaginary part of the refractive index in the active region, k0 is the 

wavenumber, and r  is the power confinement factor given by:

r  — / ’active layer I P  guide (3.65)

and P is the power in a given region, Q  defined by:

P = Re J(E0 x  H0 *).zc/Q (3.66)
12

where E0, H0* and Q, are the electric and the conjugate of the magnetic field and the 

cross-section of the guide region, respectively.

Equation (3.64) provides a relatively easy way of estimating the gain/loss properties of 

a waveguide, in terms of the confinement factor. It can also be extended to structures 

with many active or lossy regions, each having a different imaginary part of the 

refractive index, as follows:
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S m ' V E ' V  H 0-67)
(=1

where, L is the number of active and lossy layers, is the imaginary part of the 

refractive index, which can take positive or negative values depending on whether 

there is gain or loss and T| is the confinement factor of each layer.

3.6 Summary

In this chapter the several analytical and numerical approaches for the analysis 

of loss and gain in optical waveguides have been examined. An incremental search 

algorithm has been implemented for the solution of the complex transcendental 

equation, in planar optical waveguides, incorporating loss or gain. The above approach 

has been extended to the solution of simple optical waveguide structures with 2D 

mode confinement and loss/gain properties, via a complex effective index approach. A 

generalized algorithm for the solution of multilayer planar structures, with layers 

exhibiting loss/gain characteristics, has also been proposed. Further, a vector and a 

scalar finite element approach in conjunction with the perturbation approach has been 

developed, for the determination of the complex propagation characteristics of the 

arbitrarily shaped optical waveguide with dielectric regions incorporating small to 

medium loss or gain. Finally, an approximate approach for the loss/gain estimation in 

optical waveguides, in terms of the mode confinement factor, is suggested.

The above approaches are used in the subsequent chapters for the solution of 

several types of optical waveguides with loss/gain properties, and the details of the 

implementation described therein.
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Gain/Loss analysis of planar 
waveguides

4.1 Introduction

The dielectric slab planar waveguide, shown in Fig.4.1, where a planar film of 

refractive index n, is sandwiched between a substrate and a cladding material of lower 

refractive indices ns and nc respectively, is the simplest optical waveguide. By loading 

the film with a higher refractive index than either the substrate or the upper cladding on 

the substrate surface, the light can be trapped inside this film and as the thickness of 

the film increases, the effective refractive index sensed by the light increases. 

Therefore, the light is confined in the central area inside the thin film, resulting in the 

propagation of the light in the z direction. If nc=ns, then the slab waveguide is 

considered symmetric, otherwise it is asymmetric.
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Fig-4.1 The dielectric slab or planar waveguide

The study of slab waveguides and their properties is very useful in 

understanding the basic concepts and waveguiding properties of more complicated 

dielectric waveguides, since, due to their simple geometry, guided and radiation modes 

can be described by simple mathematical expressions. However, slab waveguides are 

not only useful as models for more general types of optical waveguides, they are 

actually employed for light guidance in integrated optical circuits.

4.1.1 Surface plasmon polaritons

An electromagnetic wave travelling through a polarizable medium is modified by 

the polarization it induces and becomes coupled to it. This coupled mode of excitation 

is called a polariton and if the polarizable medium is identified, then the polariton is 

qualified. In the case of an electron plasma, the coupled modes are often called 

plasmon-polaritons (Boardman, 1982). Bulk polaritons propagate in an unbounded 

medium, while surface polaritons can be defined as the coupling of electromagnetic 

radiation to surface dipole excitation, which propagates in a wave-like manner along 

the interface between the two media. Surface plasmons exist in the boundary of a solid 

metal or semiconductor whose electrons behave like those of a quasi-free electron 

gas. These plasmons represent the quanta of the oscillations of surface charges, 

which are produced by exterior electric fields in the boundary (Raether, 1977). The 

Electromagnetic fields of the surface polariton can be either evanescent away from the 

interface (non-radiative surface polariton) or they can be oscillatory fields away from 

the interface (radiative surface polariton). In the first case, the amplitude of the field is 

maximum at the interface and decays exponentially away from it in a non-oscillatory
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manner in a direction perpendicular to the propagation, while in the second, the field 

modes are unbound but maintained by balancing the energy radiating away from the 

surface with energy radiating to the surface. The surface plasmon-polaritons or surface 

plasma waves occur at the interface of a dielectric with a positive dielectric constant 

and a metal with a negative real part of the dielectric constant. In 1941 Fano pointed 

out that for non-magnetic media evanescent surface waves could exist for TM 

polarization only (Kovacs, 1982).

The properties of these waves are based on the solution of Maxwell’s equations 

for an interface between two semi-infinite and isotropic dielectric media. They can be 

classified in four categories according to their dielectric function, s(co), which are the 

‘Fano’, ‘Brewster’, ‘Evanescent’ and the ‘Zenneck modes’. The ‘Fano modes’ are the 

only surface normal modes since the existence of the other three modes depends in 

an essential way of damping and they are usually associated with e(co)<0 (Halevi, 

1982). In this project surface plasmon modes have been examined for different types 

of optical waveguide structures, like planar metal-clad waveguides, two-dimensional 

metal-clad waveguides, TE-TM optical polarizers and metal-clad optical fibers.

4.2 Single metal-dielectric interface

Firstly, a single metal-dielectric interface, which is the most basic structure that 

can support a guided wave, was examined. The waveguide consisted of an aluminum 

layer with a complex dielectric constant em, attached to a dielectric layer with a 

refractive index, ng, at an operating wavelength 2=1.3p.m. By solving the problem using 

the scalar approximation of the Finite Element Method (FEM) with perturbation, only 

the lowest TM mode, (TM0), could propagate along the interface. This is mode, which 

can be classified as a non-radiative surface plasmon mode and has a maximum 

amplitude at the interface and decays away from it. All the TE and the higher TM 

modes, were unbounded, i.e. they did not decay in the dielectric material region.
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Hx (a.u.)

Fig. 4.2 Variation of the normalized field profile, for the TM0 mode with the transverse direction 

for several values of the refractive index of the dielectric.

Fig. 4.2. shows the normalized magnetic field profile in the transverse direction 

to the propagation, (y), of the TM0 optical mode, for different values of the refractive 

index of the dielectric material. In the metal region the field decays very rapidly, while 

in the dielectric region the decay depends on the value of the refractive index, ng, of 

the dielectric material. As the refractive index, ng, increases, the mode becomes more 

confined, with a faster decay of the field in the dielectric region, while the rapid decay 

in the metal region remains unchanged.
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ne a /k 0

Fig. 4.3 Variation of the effective index and normalized attenuation constant with the refractive 

index of the dielectric material.

The propagation characteristics of the simple metal/dielectric optical waveguide 

have also been examined and the variation of the effective index, ne, and the 

normalized attenuation constant a lk0, with the variation of the refractive index of the 

dielectric material are presented in Fig.4.3. The TM0 mode propagates with an effective 

index, (3lk0, very close to the refractive index of the dielectric material, ng, so therefore, 

any increase of the refractive index, ng, is followed by a linear increase of the effective 

index of the mode.

The optical field of the TM0 mode is concentrated at the metal/dielectric 

interface, where the proportion of the optical power in the lossy metal region gives rise 

to the attenuation characteristics. As the refractive index of the dielectric material 

increases, the mode becomes more confined and the maximum field is higher at the 

metal/dielectric interface, so therefore, the proportion of the optical power in the metal 

region increases, resulting in an increase of the modal loss. The normalized 

attenuation constant, alk0, of the TM0 optical mode increases with the increase of the
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refractive index, ng, of the dielectric material, in a square law manner, because it is 

more dependent on the power confinement in the region than the refractive index 

variation.

4.3 Three layer planar waveguides

The propagation characteristics and field profiles, for different types of three 

layer planar waveguides are examined in this section, for TE and TM polarized modes. 

The interaction of metallic films with dielectric materials in order to accommodate 

guided optical waves is also examined, since, such structures play an important role in 

many optoelectronic applications. Practical metallic elements are not perfect 

conductors, but suffer a small amount of loss, and therefore, in the analysis of optical 

waveguides incorporating metal films, the attenuation characteristics should be taken 

into consideration. In optical waveguide analysis metallic elements are represented by 

a complex dielectric constant, sm„  with a negative real part.

4.3.1 Non-metal planar waveguides

These structures, which were described in Section 4.1, have been extensively 

analyzed during the last decades and their study is fundamental in understanding the 

basic concepts of optical waveguides. In the majority of the cases examined, these 

types of waveguides are considered lossless, but in this work a small amount of loss 

was introduced in order to compare the various approaches developed for the 

gain/loss analysis of optical waveguides.

93



Chapter 4 Planar waveguides...

(3//c0 a (dB/cm) s

Fig-4.4 Variation of the normalized phase and attenuation constants with the imaginary part of 

the film refractive index, (n\) of a slab waveguide, using the analytical approach (AM) and the 

Finite Element Method (FEM).

A planar optical waveguide has been examined, as shown in Fig.4.4, with 

refractive indices n0=1.0, n-^3.44 +jn1’, n2=3.4 and film thickness D=1.0pm. The 

variation of the normalized propagation constant, \Mk0 is shown for the TE0 mode for 

the operating wavelength X= 1.15p.m. The analytical result (AM), obtained from the 

solution of the complex transcendental equation, is compared with that from the scalar 

FEM with perturbation for different values of the imaginary part (n-i’) of the refractive 

index of n-\. The finite element results (FEM) show good agreement with the analytical 

results, except when is quite high. The attenuation constant, a, for the two methods 

is in excellent agreement for n-t’ being as large as 0.01. Flowever, it can be noted that 

for most of the passive or active optical waveguides with significant loss or gain values, 

their modal loss/gain values are still lower than the limit of the perturbation approach, 

and in this example, for /V=0.01, the modal loss is about 4000 dB/cm and the 

difference between the analytical and finite element solutions is only about 0.72%. As 

n-\ ’ increases, the normalized phase constant (j3/k0) for the FEM solution does not vary
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much compared to that obtained from the analytical solution (AM), where a rapid 

decrease is observed when n-{ is more than 0.01. This results, as does the FEM 

solution in the imaginary part of the propagation constant being based on a loss-free 

waveguide, where the effect of the imaginary part of the refractive index is quite small 

on the real part of the dielectric constant, sr.

(3/ k o oc / k o

Iteration — >

Fig.4.5 Convergence of the normalized phase and attenuation constants by analytical approach, 

for two different values of the imaginary part of the film refractive index {n\) for a slab 

waveguide.

The convergence of the complex slab solution is shown in Fig.4.5. for two 

different values of nP, the imaginary part of n^ It can be noted that both the imaginary 

((3) and real (a) parts of the complex propagation constants vary with the iteration, but 

settle quickly to constant values. When np increases from 0.03 to 0.06, the normalized 

final value of a  also increases nearly two times whereas the normalized value of p is 

slightly decreased. As n’•) increases, the solution for both the normalised phase and 

attenuation constants requires further iterations to converge and the difference 

between the initial and final values also increases.
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4.3.2 Metal-clad planar waveguides

Metal-clad planar optical waveguides are suitable for electrooptic or 

magnetooptic devices because the metal cladding can be used for a component of 

electric circuits (Yamamoto et at., 1975). One of their most important feature is that the 

mode attenuation is larger for the TM mode than that for the TE mode, and therefore 

they are also useful for mode filtering and the knowledge of their propagation and 

attenuation characteristics is essential. In this section, the scalar approximation of the 

finite element method with perturbation was used to calculate the attenuation 

characteristics of three layer metal-clad optical waveguides, for the TE and TM optical 

modes.

a (mm'1)

> b (pm)
Fig. 4.6 Variation of modal loss with guide thickness

The above formulation has been tested for a metal-clad asymmetrical optical 

waveguide consisting of AI/GaAs/AIGaAs, for both the TE and TM modes. In this
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example, the refractive indices of the aluminium, GaAs, AIGaAs are 1.75-j8.5, 3.48 and 

3.42 respectively at the operating wavelength of 1.06 pm. Figure 4.6. shows the 

variation of loss with waveguide height for different modes by using the finite element 

method and an approximate analytical method. Our results agree well with these 

results obtained by using the approximate equations (22) and (24) of Ma and Liu 

(1988).

a/kg

♦ k 0d

Fig-4.7 Variation of normalized loss with normalized film thickness for TE and TM modes.

An asymmetric metal-clad optical waveguide with air/polymer/silver layers has also 

been examined including the surface plasmon modes. In this type of waveguide, most 

of the energy for the TMo mode is concentrated at the metal-dielectric boundary and 

modes with such behaviour are described as surface plasma waves. The relative 

permittivities of the air, polymer and silver layers are 1, 2.523 and -16.32-jO.5414
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respectively. The results obtained are compared with those for a normalized 

attenuation constant, as discussed by Kaminow et al. (1974) for the TE and TM 

modes. Figure 4.7 shows the variation of the normalized attenuation constant, alko’ 

with the normalized film thickness, kQd, and good agreement can be seen when 

compared with the results also reproduced from Kaminow et al. (1974). It can be 

observed that the two results disagree at a very low values of the attenuation, and this 

may be either due to the matrix evaluation error for modes with very high confinement 

or due to the approximation of the analytical procedure when many modes are present.

4.3.2.1 Graded-index metal-clad planar waveguides

Graded-index metal-clad planar optical waveguides serve as models of more 

complicated two-dimensional diffused waveguides. It is important to investigate the 

influence of the metallic films on their propagation and attenuation characteristics, 

since these features are useful in some applications, such as mode and polarization 

filtering.

A three-layer graded-index metal-clad optical waveguide has been examined, 

with a metal cladding of dielectric constant, sm, that occupies the region x<0. For x>0 

the index profile is represented by the function n2(x), which extends from x=0 to x=a, 

where a is the length of the graded-index film, and to the substrate. Fig.4.8. shows the 

index variation in the graded-index film and the substrate for a linear and an 

exponential index profile.
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Fig-4.8 Variation of the refractive index profile in a graded-index metal-clad planar optical 

waveguide.

The refractive index profiles along the x-direction are given by (Lee and Wang,

1995):

a) Linear profile

n \ x )

n21

Re(n m) n2 (x) n2 (x)

-*■ x (pm)

linear

exponential

n2 2

n 2{x) = nf 2A
^ x ^  

va yj
0 < x < a

= n,2[ l - 2 A ]  = n 22 x > a

(4.1)

b) Exponential profile

n 2(x) = n,2[ l -  2A (exp (-x  / a)] x > 0  (4.2)

where A is the normalized dielectric constant difference between the boundaries of the 

graded index film.
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By using the scalar approximation of the FEM with perturbation, the 

propagation constant, p, and the attenuation constant, a, of the waveguide were 

calculated, for the TE and TM modes. The results obtained for the two low-order TE 

modes, TE0 and TE t , for both the index profiles, were compared with the results 

obtained by Lee and Wang (1995) and found to be in very good agreement, as shown 

in Table 4.1.

a=5 pm P -ja*1(T

Mode profile FEM [Lee] FEM [Lee]

H m o linear 14.97295 14.9729 0.03404 0.03421

TE, linear 14.91859 14.9181 0.03275 0.03336

oLUI- exponential 14.98196 14.982 0.02395 0.02449

TE-i exponential 14.94587 14.9459 0.01721 0.0176

Table 4.1 Comparison of the complex propagation constant for the TE0 and TE-, modes, for 

graded-index planar optical waveguide with graded-index film length a=5pm.

Further, the propagation characteristics for the TE and TM modes, with the 

variation of the length, a, of the graded index film, for this type of optical waveguide, 

were calculated, for both the linear and the exponential index profiles.
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Fig-4.9 Variation of the effective index, ne, with the variation of the length, a, of the graded-index 

film with linear index profile, for TE and TM modes.

Figure 4.9 shows the variation of the effective index of the waveguide with the 

variation of the graded-index film length, a, for a linear index profile for the two lower 

TE and TM modes. As the length of the film increases, the effective index increases for 

all the modes. The lower order TE0 and TM0 modes have a higher refractive index than 

those of the higher order and in both cases the TE mode is always slightly higher than 

the TM modes. It is well known that for all metal-clad planar waveguides, the metal 

cladding has no effect on the TE optical mode, whereas for the TM mode there is a 

change of sign of the field profile at the metal/dielectric interface, but the field intensity 

is not too high at the interface. For this reason, the TE mode is more confined in the 

dielectric film centre region, therefore the refractive index is higher than that of the TM 

mode.
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* a (|iim)
Fig.4.10 Variation of the attenuation constant, a, with the variation of the length, a, of the 

graded-index film with linear index profile, for the TE and TM modes.

The attenuation characteristics of the above case, for the TE and TM modes, were 

also calculated and presented in Fig. 4.10. From the curves obtained, it can be seen 

that the attenuation constant, a, decreases as the length of the film increases. The 

reason for this is that as the waveguide becomes larger, the mode becomes more 

confined in the graded-index film region. Thus the field intensity in the metal-cladding, 

which is the lossy area, becomes weaker, and therefore, the attenuation of the 

waveguide decreases. One of the most important features of the attenuation 

characteristics is that the attenuation constant for the TM modes is about ten times 

larger than that for the TE modes. This is due to the property of the TE mode to remain 

unaffected by the metal-cladding which is the lossy area of the waveguide. Since there 

is no appreciable field intensity in this region, the attenuation in the waveguide is less 

for this type of mode. The consideration of the attenuation constant difference between 

the TE and TM modes in this type of optical waveguide is an important design 

parameter in mode filtering applications.
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* x  ( um)
Fig.4.11 Propagation characteristics for the exponential index profile

Next, the variation of the effective index, ne, with the variation of the film thickness, a, 

for an exponential index profile, was calculated for the TE and TM modes, as shown in 

Fig.4.11. The features are similar those of the linear index profile for all the modes 

considered, but in this case the effective index values are higher. This can be 

explained from the index profile curves in Fig.4.8, where the exponential index profile is 

higher than the linear profile for the whole region of the graded-index film and the 

substrate.
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o*1 O'3 (|im'1)

Fig.4.12 Attenuation characteristics for the exponential index profile

Additionally, the attenuation characteristics for the exponential index profile were 

obtained, as shown in Fig.4.12. Again, similar features are obtained to those of the 

linear index profile with the only difference the fact that the attenuation constant is 

lower for all the modes than that of the linear index profile. The reason for this is the 

higher refractive index in the graded-index film region which produces more field 

confinement confinement in this area and less in the lossy metal-cladding, and 

therefore the attenuation of the waveguide reduces.
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4.3.3 Surface-plasmon modes in planar waveguides

Surface-plasmon waves are TM-polarized, guided electromagnetic waves 

supported by a single or multiple metal/dielectric interface, where the refractive index 

of the metal film is considered to have an almost purely imaginary part at the operating 

wavelength, thus giving a high negative dielectric constant. Surface-plasmon mode 

properties are used in a wide range of device applications, such as in optical polarizers 

or highly sensitive evanescent optical sensors.

In this section, two different types of planar structures that support surface plasmon 

modes are examined. These are firstly, when a thin film is sandwiched between two 

dielectric materials, and secondly, when metallic films are deposited on each side of a 

normal dielectric. As was shown in Section 4.2, a single metal/dielectric interface can 

support only one TM-polarized mode, which is a surface-plasmon mode, where the 

field intensity is high at the interface and it decays exponentially away from it. When 

two such interfaces are placed together to form a composite structure, the two surface 

waves are coupled to form supermodes. These types of waveguides can support two 

fundamental guided modes, an even-like and an odd-like supermode and their 

properties depend on the arrangement of the dielectric and metallic films and the 

separation between the two metal/dielectric interfaces.

Since metallic films are lossy materials, an investigation of the attenuation 

characteristics is important. A scalar approximation of the FEM has been used in 

conjunction with the perturbation technique to calculate the complex propagation 

constant of the above structures and in some cases the complex solution of the 

transcendental equation has been employed to compare the results.

4.3.3.1 Thin metal film surrounded by dielectrics

The 3-layer structure under consideration consists of a thin metal film with a dielectric 

constant em =er+jei, bounded at y= 0 and y=/, by two semi-infinite lossless dielectric 

materials, with refractive indices, ni for y> t and n3 for y<0 . The first example 

considered is a symmetrical waveguide with n-\=n3, and r?m=-1.2-j12, representing a 

thin aluminum film at wavelength A = 1.3pm. Figure 4.13 shows the effective index 

variations with the metal thickness (t) and with inset modal field profiles, for different
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values of the cladding refractive index. Two bounded modes are examined, the first 

corresponding to the anti-symmetrical (odd) mode (Ab) and the second to the 

symmetrical (even) mode (Sb).

ne

t (pm)

Fig.4.13 Variation of the effective indices for a symmetric surface plasmon structure.

Both the modes have a higher effective index than the common cladding refractive 

index (n=n^=n3) of the two (top and bottom) cladding regions. The effective index of the 

symmetrical mode reduces and approaches the cladding refractive index value, as the 

metal thickness decreases and the mode becomes more weakly bounded. As the film 

thickness increases, the effective index, (Plk0), increases and the symmetrical mode 

becomes more confined, showing a larger central dip as the two metal/dielectric 

interfaces move apart, (shown as second lower insert of Figure 4.13). However, as the 

film thickness increases, the anti-symmetrical mode becomes less confined, since the 

effective index decreases and the field spreads further into the cladding, (shown as 

second upper insert of the Figure 4.13). When the film thickness becomes wide 

enough, the two supermodes behave like two weakly coupled surface modes, one at 

each metal/dielectric interface, propagating with almost identical propagation 

constants. As the metal thickness, t, increases further, the two effective indices tend to
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reach the effective index of the mode supported by a single metal dielectric interface. 

As the (identical) refractive index of both the cladding regions is increased, the 

effective index of each mode is shifted upwards by an amount equal to that increase. 

The finite element results agree very well (the curves would be visually 

indistinguishable) with the analytical solution which has been also obtained by solving 

the transcendental equation, and this structure has also been studied by Johnstone et 

al. (1988).

In most of the practical guiding structures incorporating a thin metal layer, the guides 

may not be symmetrical and in that case the mode properties are quite different from 

those of the symmetrical structures. Here, a non-symmetrical structure is examined, 

where this time the refractive index of the upper cladding is kept constant at n.,=1.447, 

while the refractive index of the lower one (substrate) is varied from /73=1.442 to 

/73=1.457. The variation of the propagation characteristics, the effective index and the 

normalized attenuation constant are investigated, with the metal thickness, for different 

lower cladding indices.

Hx (a.u.)

Fig.4.14 Hx field profile for the Odd-like Supermode (Ab), for f=0.03pm.
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Hx (a.u.)

Fig.4.15 Hx field profile for the Even-like Supermode (Sb), for f=0.03pm.

Figure 4.14 to 4.17 show the field profiles for two values of the metal thickness, 

t, with n3=1.452. When the metal film thickness f=0.03 pm, the first supermode (Ab), 

the odd-like mode, is no longer antisymmetric. The field is more concentrated in the 

substrate region, as shown in Fig.4.14, which has a higher refractive index value. The 

first supermode has a higher effective index than the second supermode and so this 

mode is confined more in the region with the higher refractive index. Exactly the 

opposite phenomenon is observed for the second supermode, which is even-like. The 

even-like supermode, Sb, is also no longer symmetric and in this case the field is more 

concentrated in the top cladding region which has a lower refractive index value. It can 

also be noted that the field decreases very slowly in the substrate region as the modal 

effective index is very close to the substrate refractive index (n3).

Hx (a.u.)
1

x (pm)

Fig.4.16 Hx field profile for the Odd-like Supermode (Ab), for f=0.08pm.
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Fig.4.17 Hx field profile for the Even-like Supermode (Sb), for f=0.08pm.

When the metal thickness, t, is increased, the asymmetry increases further and 

most of the power is confined either in the cladding or in the substrate region, as is 

seen in Figures 4.16 and 4.17, for the odd-like (Ab) and the even-like (Sb) modes 

respectively. This can be explained, as at a larger separation distance (t) between the 

two dielectric/metal interfaces, the two surface modes are weakly coupled with very 

small modal field overlaps, and each of them can be approximated by only one of the 

two individual surface modes at the two nonidentical metal/dielectric interfaces. The 

asymmetry is also prominent when the difference between the two boundary refractive 

indices {n3-n1) increases. These types of behaviour can be studied in more detail as a 

nonsynchronous directional coupler problem.
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Fig.4.18 Effective index versus metal thickness for each of the first two supermodes of non- 

symmetrical structures for different values of the lower-cladding refractive index.

Figure 4.18 shows the variation of the effective index with the metal thickness, 

(f), for different nr.n3 combinations. The effective index of the first supermode (odd-

like) converges to that of the mode supported by the metal and the higher dielectric of 

the two bounding sides, when the metal thickness, (t), increases. The effective index of 

the second supermode (the even-like), converges to that of the mode supported by the 

metal and lower valued bounding dielectric when t is increased. As the metal 

thickness, (t) decreases, the effective index increases monotonically for the first odd-

like mode. However as the metal thickness, (f) decreases, the effective index for the 

second even-like supermode approaches n3 or nu depending on which is higher, until it 

reaches a cut-off thickness.
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Fig.4.19 Variation of normalized modal loss coefficient versus metal thickness for the first two 

supermodes for different values of the lower-cladding refractive index.

Next, attenuation constants for such structures are also calculated by using the 

scalar approximation of the FEM with perturbation. In Figure 4.19, the solid lines 

represent the attenuation curves for the symmetrical and antisymmetrical modes in the 

symmetrical structure, which very much resemble the effective index curves shown 

earlier in Fig.4.13, where r?1=n3=1.447. The attenuation constant decreases 

monotonically for the antisymmetric bound mode, with the metal thickness, whereas for 

the even mode, it increases. Broken lines represent the attenuation curves for the 

even-like and odd-like modes when the structure is not symmetrical. The modal loss 

for the even or even-like modes is less than for the odd or odd-like modes, which are 

also known as long range modes. Similarly the odd or the odd-like supermodes are 

known as short range modes. The attenuation constant values reach that of the 

surface mode supported by a single metal/dielectric interface when t is large. Modal 

losses for the odd-like and even-like modes are nearly independent of the individual 

refractive index values.
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The FEM results for the attenuation characteristics, of the above structures 

were compared with analytical results obtained by the solution of the complex 

transcendental equation and found to be in very good agreement. Since previously 

published results were not available for these cases some other structures were 

examined for which attenuation characteristics, obtained by different approaches, were 

presented in other publications.

n e

¥ f(nm )
Fig.4.20 Comparison of the variation of the effective index with the metal thickness, for the first 

supermodes, of nonsymmetrical structure, by different approaches.

Results were obtained for both the propagation and attenuation constants, for a 

nonsymmetrical structure described by Stegeman et al. (1983), by using the scalar 

FEM with perturbation and the Analytical Method (AM), which involves the solution of 

the complex transcendental equation. The planar waveguide consists of a metal film 

with a dielectric constant, sm=-19-/0.53, a top cladding, 8 ^4 , and a lower substrate, 

s2=3.61 at an operating wavelength X=0.633pm. A comparison of the two methods the 

results obtained by Stegeman et al., for the variation of the effective index with the 

metal thickness, is shown in Fig.4.20 and are in a very good agreement.
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a /k 0

----------------► t (pm)
Fig.4.21 Comparison of the attenuation characteristics versus the metal thickness for the first 

two supermodes, by various approaches.

The attenuation characteristics, shown in Fig.4.21, for the above structure, 

compare the results obtained by various approaches and show very fine agreement, 

where in the case between the AM and the FEM, any differences are not 

distinguishable. The variation of the normalized attenuation constant with the metal 

thickness, is similar to the variation of the effective index, as in the previous cases of 

nonsymmetrical structures. For large metal thickness, each mode converges to the 

normalized attenuation constant of the single metal/dielectric interface where the field 

intensity is high.
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ne. log(a lkQ)

Fig.4.22 Comparison of the variation of the propagation characteristics with metal thickness for 

non symmetrical planar structure.

Finally, another nonsymmetrical structure was examined, for both the effective 

index and the attenuation constant and the results are compared with the work of 

Zervas (1991). In this case, the refractive indices of the 3 layers are /ii=1.462, em=- 

29.8-j11.6 and n3=1.3 at a wavelength A=0.633pm. In this type of nonsymmetrical 

structure, the refractive indices of the two bounding layers have a greater difference 

than in the previous cases studied. The dominant mode, the odd-like surface mode, is 

confined at the interface with the high refractive index. For this reason only the odd-like 

bound mode is examined and the results are compared with those obtained by Zervas 

(1991), as shown in Fig.4.22. It should be noted that curves given by Zervas have 

some strange features, when compared with the previously published work for similar 

structures. For low film thickness, their effective index curve increases very sharply, 

while our curve varies more smoothly, in a similar way to all other cases previously 

examined. Their attenuation characteristics, again for the same range, indicate a small 

deflection, which, to the best of our knowledge, has not been reported before and 

disagrees with the results obtained by the finite element method. These differences 

could be have been caused by the dispersion relation they used, which shows some 

minor alterations when compared with similar relations used for this particular 

structure.
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4.3.3.2 Dielectric medium surrounded by thin metal films

Apart from the structure discussed in the previous section, where a thin metal 

film was embedded between two normal dielectrics, surface-plasmon waves can also 

propagate in waveguides with opposite arrangement, i.e. where a normal planar 

dielectric medium is sandwiched between two thin metallic films. In both cases the 

optical guided modes propagate along the metal/dielectric interfaces, where the field 

intensity is high and decays exponentially away from them. These modes are coupled 

to form a supermode and the coupling depends on the thickness of the dielectric film. 

Since metal layers are lossy materials and the modes suffer from small attenuation, 

this loss analysis is important, and therefore the scalar approximation of the FEM with 

perturbation was used again, for this type of structure, in order to calculate the 

propagation and attenuation characteristics.

ne

k0a ----------------►

Fig.4.23 Variation of the effective index with the dielectric film thickness for a symmetrical 

surface plasmon structure.

The first structure under consideration is a symmetrical 3-layer planar 

waveguide, where a normal dielectric film of dielectric constant eg=2.12285, is bounded
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by two identical metal films of dielectric constant em=-4 -y'0.5414, at an operating 

wavelength A=0.6328pm.

Firstly, the variation of the effective index with the normalized dielectric film 

thickness was examined, for the first two bounded supermodes and results obtained 

are presented in Fig.4.23. As it can be seen from the graph, the supermode with the 

highest effective index is an even-like mode whereas in Section 4.3.3.1, for the 

opposite structure, the first supermode was an odd-like one. For small dielectric film 

thickness, 2a, the effective index, ne, is very high, but as the film thickness increases, 

the effective index, ne, reduces to the value ne=2.1289. The second supermode in this 

type of structure is an odd-like mode, whereas in the opposite case, in the Section 

4.3.3.1, it was an even-like mode. For small values of the dielectric film thickness, 2a, 

the mode is in the cut-off region and as the film thickness increases, the effective index 

increases to a value very close to that encountered for the first supermode, which in 

this case is ne- 2.1252.

Hx normalized (a.u)

Fig.4.24 Normalized field profile for the even supermode of a symmetrical structure, for a 

normalized film thickness, k0a=0.7.
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Hx normalized (a.u)

Fig.4.25 Normalized field profile for the even supermode of a symmetrical structure, for a 

normalized dielectric thickness, k0a-2A.

The propagation characteristics shown in Fig.4.23 can be explained from the 

observation of the field profiles of the first two supermodes, for different values of the 

dielectric thickness. The normalized field profile of the even supermode, for a small 

normalized film thickness, k0a=0.7, is shown in Fig. 4.24, where it can be seen that the 

field intensity is equally high at the two metal/dielectric interfaces and quite strong in 

the center of the dielectric film as well. The supermode behaves like two strongly 

coupled surface plasmon modes which propagate at the two metal/dielectric interfaces. 

For a larger film thickness, k0a=2A, the field intensity at the centre of the even 

supermode reduces, as shown in Fig.4.25. As the two metal/dielectric interfaces are 

moved apart, the supermode decouples into two independent surface modes. These 

modes then propagate with an identical effective index, due to symmetry. This effective 

index corresponds to the effective index of a single metal dielectric interface, which 

was calculated, ne=2.12695. This value corresponds to the value at which the effective 

index of the supermode converges, at a large film thickness, as shown in Fig.4.23.
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Hx normalized (a.u)

Fig.4.26 Normalized field profile for the odd supermode of a symmetrical structure, for a 

normalized dielectric thickness, k0a=0.7.

Hxnormalized (a.u)

Fig.4.27 Normalized field profile for the odd supermode of a symmetrical structure, for a 

normalized dielectric thickness, k0a=2A.

Similar features can also be observed from the normalized field profiles of the 

odd-like supermode, for different values of dielectric thickness, 2a. For a small 

normalized dielectric thickness, k0a=0.7, as shown in Fig.4.26, there is an appreciable 

amount of field intensity in the dielectric region and the transition of the field intensity 

from positive to negative, from the two opposite peaks at the metal/dielectric 

interfaces, or vice versa, is nearly linear. For a larger normalized film thickness, 

Ar0a=2.4, as shown in Fig.4.27., the supermode is more confined at each of the two 

interfaces, and the field intensity in the core of the waveguide flattens. The supermode 

decouples to two surface plasmon modes, which propagate at each metal/dielectric 

interface, but at opposite polarity, with an effective index equal to that of a single 

metal/dielectric interface, ne=2.12695. The effective indices of the odd and the even
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supermodes, converge to that value, as shown in Fig.4.23, one from below and the 

other from above, respectively.

a /k 0

k0a ----------------►

Fig.4.28. Attenuation characteristics of a symmetrical metal-clad surface plasmon structure.

Next, the attenuation characteristics of the first two supermodes, shown in 

Fig.4.28, are considered. Both the attenuation constants for the two supermodes 

decrease as the normalized film thickness, k0a, increases, unlike the opposite structure 

in the previous section, where the attenuation constant was seen to be increasing for 

the even-like mode and decreasing for the odd-like one. In this type of structure the 

thickness of the two metal-claddings, which are the lossy regions, does not change, 

and therefore the attenuation constants depend mostly on the optical field intensity at 

the metal/dielectric interfaces. For the first supermode, the even supermode, the 

attenuation constant is lower than that for the second, the odd supermode. As the 

dielectric film thickness increases, the two normalized attenuation constants converge 

to a certain value which corresponds to the attenuation constant of a single 

metal/dielectric interface, as in the propagation characteristics, and this was calculated 

as a/k0=O.16281. This can be explained, again, from the field profiles of the two 

supermodes, which are decoupled to two independent surface plasmon modes, which 

propagate at the two interfaces, for large dielectric film thickness.
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Next, a similar but a non-symmetrical structure was examined, where a normal 

dielectric film, eg=2.25, is bounded by two thin metal film claddings and the dielectric 

constant of the top cladding, em1=-4-j0.5414, is higher than that of the lower, 

sm2=-3.24-jO.5414, at an operating wavelength, A=0.6328pm.

n e

k0a

Fig.4.29 Variation of the effective index with the dielectric film thickness for a non-symmetrical 

surface plasmon structure.

From propagation characteristics, shown in Fig.4.29, it can be seen that the 

effective index variation, with the metal thickness, for the first two bound supermodes, 

has similar shape with that of the symmetrical structure. The only difference in this 

case is the value at which the two supermodes converge at a large metal thickness. 

The effective index of the even supermode, which decreases with the increase of the 

metal thickness, is again higher than that of the odd supermode and also converges at 

a higher value, ne=2.71458, than that of the odd supermode, ne=2.2672.
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0  0.2 0.4 0.6  0.8 1

------- ► x/L

Fig.4.30 Normalized field profile for the even-like supermode of a non-symmetrical structure, for 

a normalized film thickness, k0a=0.7.

Hx normalized (a.u)

♦ x/L

Fig.4.31 Normalized field profile for the even-like supermode of a non-symmetrical structure, for 

a normalized film thickness, k0a =1.6.

From the normalized field profile of the even supermode, for a dielectric film 

thickness k0a=0.7, shown in Fig.4.30, it can be seen that there is higher field intensity 

in the right interface, which corresponds to the interface between the dielectric and the 

metal with the lower dielectric constant, em2=-3.24. When the normalized film thickness 

is increased to k0a=1.6, as shown in Fig.4.31, the field intensity at the left interface 

becomes negligible and the supermode propagates almost entirely at the interface 

between the dielectric film and the metal with the lower dielectric constant. The 

coupled supermode then becomes a single surface plasmon mode and the overall 

effective index for such large film thickness converges to the effective index of a single 

metal/dielectric interface, which was calculated as ne=2.714.
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0  0.2 0,4 0.6 0.8 1

------- ► x/L

Fig.4.32 Normalized field profile for the odd-like supermode of a non-symmetrical structure, for a 

normalized film thickness, k0a=0.7.

Hx normalized (a.u)

Fig.4.33 Normalized field profile for the odd-like supermode of a non-symmetrical structure, for a 

normalized film thickness, k0a= 1.6.

Figure 4.32, shows the normalized field profile of the odd supermode, for a 

normalized film thickness, k0a=0.7, where the most of the field is concentrated at the 

left metal/dielectric interface, which is the interface of the metal with the higher 

dielectric constant sm1=-4. When the film thickness is increased further to k0a= 1.6, as 

shown in Fig.4.33, the supermode propagates almost entirely so as to be confined 

near to that interface, and the effective index converges to the effective index of a 

single metal/dielectric interface, which for this case was calculated to be ne=2.2679.
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a /k 0

k0a (pm)

Fig.4.34 Variation of the normalized attenuation constant with the dielectric film thickness for a 

non-symmetrical surface plasmon structure.

Next, the attenuation characteristics, for the non-symmetrical waveguide, 

shown in Fig.4.34 were examined for the first two supermodes. From the two curves it 

can be seen that the normalized attenuation constant, a lk0, for the even supermode, 

increases with the increase of the normalized dielectric film thickness, k0a, and 

converges to a limiting value. As was observed before, for large film thickness, the 

supermode propagates only at the interface between the dielectric and the metal with 

the lower dielectric constant, and therefore, the limiting value of the normalized 

attenuation constant approaches the normalized attenuation constant of a single 

metal/dielectric interface, which was calculated as a//c0=0.51597. Since the odd 

supermode, for large film thickness, propagates mainly at the interface of the dielectric 

and the metal with the higher dielectric constant, the normalized attenuation constant 

of that supermode converges to the value of the normalized attenuation constant of a 

single interface, consisting of the above two materials only, which was calculated to be 

a/k0=0.19738.
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The two metal claddings in the non-symmetrical structure above have the same 

imaginary part of the dielectric constant, so, the most lossy material can be considered 

to be the material with the lowest real part of the dielectric constant, which in this case 

is em1. Therefore, as the film thickness increases, the attenuation constant of the even 

superrnode is higher than that of the odd, because the mode propagates mostly at the 

interface with the metal which has the lower real part of the dielectric constant, i.e., the 

most lossy one. The odd mode has lower attenuation constant, for a large film 

thickness, because it propagates mostly at the interface with the less lossy metal film, 

that with the higher dielectric constant.
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4.4 Multilayer metal-clad planar optical waveguides

The multilayer metal-clad planar optical waveguide, with a low-index dielectric 

buffer (shown as an insert in Fig.4.35), has some very important features, which are 

used in the design of many integrated optics circuit applications. In this type of 

structure, the attenuation constant of the TM mode is much larger than that of the TE, 

therefore it can be used as an integrated optics polarizer. This property can also be 

used in the design of a mode filter, where it is desirable to achieve high extinction ratio 

(« t m/c it e), without introducing significant loss to the transmitted light (Yamamoto et a!., 

1975). Polky and Mitchel (1974), showed that in such structure, the TM guided modes 

exhibit an absorption peak, which is caused by the resonant coupling to the lossy 

surface mode and can be controlled by the thickness of the low-index buffer layer. This 

feature, combined with the steep slope of the TM loss curve, is desirable in the design 

of an absorption modulator. This structure was also proposed by Reisinger (1973), in 

order to reduce ohmic losses, which are caused by the build up of electromagnetic 

energy at the metal/dielectric boundaries in the TM guided modes, due to surface 

plasmon waves. Reisinger also claimed that as the buffer thickness increases, a TM0 

mode goes under continuous transformation to become the next TMn+1, higher order 

mode.

A four layer metal-clad planar optical waveguide has been examined, in order 

to investigate the above properties, which consists of an aluminum metal-cladding with 

a complex refractive index. nm=1.2-j7, a glass buffer layer, A72=1.544, a core Al20 3 core, 

n3= 1.758, and a S i0 2 substrate, n4=1.457, at an operating wavelength of 7=0.633pm.

The complex propagation characteristics of the above structure were calculated 

by using the scalar FEM with the perturbation technique, and the attenuation 

characteristics were compared with those obtained by Yamamoto et at. (1975), for the 

same structure, as shown in Fig.4.35. From the comparison of the variation of the 

normalized attenuation constant, 2aa, with the core normalized thickness, 2a IX, for a 

fixed buffer layer thickness, 5=0.1 pm, the attenuation curves presented are found to 

be in good agreement, for both the TE and TM modes.
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2 act.

*  2 a/X

Fig.4.35. Attenuation characteristics for the metal-clad planar optical waveguide, for lower-index 

buffer layer thickness, £>=0.1 pm

From the attenuation characteristics in Fig.4.35, it can also be seen that the 

normalized attenuation constant, 2aa, for all the TM modes, is about 10 times larger 

than that of the corresponding TE mode, thus giving a high extinction ratio (oct m/o it e). 

suitable for the design of a mode filter, at certain attenuation levels. When the 

normalized film thickness, 2a/A,, increases the normalized attenuation constants for all 

the modes decreases, because the mode becomes more confined in the film region 

and there is not much field intensity in the metal-clad region, which is the lossy region 

of the waveguide.
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P

* b (jurri)

Fig.4.36 Variation of the phase constant (p), with the buffer layer thickness, of the TE and TM 

modes, for a multilayer metal-clad planar optical waveguide.

Further, the attenuation properties of the guide, with the variation of the low- 

index buffer layer thickness, b, were examined, for a fixed normalized core thickness, 

2a/7=4. From the propagation characteristics, shown in Fig.4.36, it can be seen that 

initially the phase constant, p, decreases quickly for all the TM modes, as the buffer 

layer thickness increases, and then remains almost constant with a slight increase for 

the TE modes. The TM0 mode has the highest phase constant for small buffer 

thickness and as the thickness increases, the phase constant reduces rapidly and after 

a buffer thickness of about ¿>=0.053 pm, it remains almost constant and the mode 

propagates with a phase constant close to that of the TE0 mode. The TM-i mode which 

has a much smaller phase constant exhibits similar behaviour, and as the buffer 

thickness increases, it settles to a value close to that of the TE-i mode.
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2 a a

♦ b ( | im )

Fig.4.37 Variation of the normalized attenuation constant, with the buffer layer thickness, for the 

TE and TM modes, of a multilayer metal-clad planar optical waveguide.

Next, the effect of the variation of the buffer layer thickness on the modal loss 

of the above structure, is studied. From the attenuation characteristics, shown in Fig. 

4.37, it can be seen that the TM modes have a higher normalized attenuation constant 

than their counterpart TE modes, particularly the lower order TM0 having a magnitude 

about 3 orders greater than that of the TE0 mode, for a small buffer layer thickness, b. 

These curves agree well with those obtained by Yamamoto et al. (1975), for the same 

structure. As the buffer layer thickness increases, the attenuation constant of the TM0 

mode decreases, while for the other higher order TM modes it increases, reaching a 

peak value. This point was defined by Polky and Mitchel (1974) as the absorption 

peak, for the TM! mode, but here it is shown that this peak value occurs for all the 

other higher order modes, and additionally, that as the mode order is higher the 

corresponding peak value of the attenuation constant, for each mode, is higher. The 

attenuation constants of all the TM modes intersect, at a buffer thickness of about 

b -0.053 pm, just before the absorption peak of the higher order modes, and after that 

they all decrease rapidly. The attenuation constant for the TE modes is much lower
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than that of the TM modes and remains constant for small buffer layer thickness 

values. When the thickness reaches the point where the TM modes have an 

absorption peak, the attenuation constants for all the TE modes decrease rapidly like 

the TM modes.

0 0.5 1 1.5 2 2.5 3

----------► x  (pun)

(b)
Fig. 4.38 Hx field distribution for the TM0 and TMt modes for a buffer layer thickness, a) 

b=0.001|um, b) ft=0.1 nm.
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In order to examine the loss mechanism of the above structure it is essential to 

observe the field profiles of the various modes for the different values of the buffer 

layer thickness. Figure 4.38 shows the Hx field profile for the TM0 and TM t modes for 

two different values of the buffer layer thickness, 6, where the subscripts of the modes 

used, denote the zero crossings of the field distribution. For 6=0.001 pm, the TM0 mode 

is a pure surface plasmon mode, located at the boundary of the metal and the low 

index layer (shown as a vertical axis-line at x=0.15pm), and the TIVh mode is a normal 

(fiber) guided mode, with some minor interference at the metal/dielectric interface. On 

the other hand, for a large value of the buffer thickness, 6=0.1pm, the TM0 mode 

undergoes transformation from a surface plasmon mode to a guided film mode and the 

TMi mode to a higher order (odd) guided mode. For small buffer thickness, the TM0 

mode has higher attenuation constant, because there is a high field intensity in the 

metal layer which is the lossy material.
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Hx

0 0.5 1 1.5 2 2.5 3

----------► x  (|im)
(b)

Fig. 4.39 Hx field distribution for the TM2 and TM3 modes for a buffer layer thickness: a) 

£>=0.001 nm, b) b=0.1|um.

Figure 4.39, shows the field profiles for the TM2 and TM3, higher order modes 

for the same values of the buffer layer thickness as in Fig.4.38. As the buffer layer 

thickness increases, the TM2 mode is transformed, approximately, to the TM3 mode 

and the TM3 mode into a higher order mode, while in both the modes there is a finite
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amount of field intensity in the metal-cladding region, keeping the attenuation constant 

high.

Hy

Fig.4.40 Hy field distribution for the TE0 and TE-i mode, for a buffer layer thickness, b=0.053pm.

By observing the field profiles of the TE0 and TE-i modes, for a buffer layer 

thickness, b=0.053, shown in Fig.4.40, it can be seen that the field intensity in the 

metal-cladding region is negligible, therefore the attenuation constant is very small for 

all the TE modes, since they are not affected by the metal-cladding and they are purely 

guided modes.

By considering again the propagation characteristics, shown in Fig.4.36, after 

the field profiles have been examined, it can be concluded that as the buffer layer 

thickness increases, every TM mode transforms to the one of next higher order. This 

was also claimed by Reisinger (1973), but shown only for the TM0 mode. The above 

conclusion can be drawn, not only from the propagation characteristics, but from the 

field profiles as well. The phase constant of the TM0 mode at large buffer thickness, b, 

approaches that of the TM t mode for small buffer thickness, the corresponding one of 

the TM-i, that of TM2 and so on. This can also be seen from the field profiles, where, in 

Fig.4.38.b, TM0 (for £>=0.1 pm) has similar field distribution to that of the TM t mode in 

Fig.4.38.a, (for £>=0.001 pm), except that the field intensity in the metal-cladding has the 

opposite polarity. Additionally, the TIVp field profile for £>=0.1 pm, shown in Fig.4.38.b, 

approaches that of the TM2, for 6=0.001 pm, shown in Fig.4.39.a, again with the field 

intensity in the metal-cladding in reverse polarity, and so on.
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Further, from the propagation characteristics, shown in Fig.4.38, it can be seen 

that as the buffer layer thickness, b, increases, the phase constant of the TM0 mode 

approaches that of the TE0 mode and the phase constant of the TM t mode that of the 

TE-i mode. This can also be seen from the field profiles of the corresponding TM and 

TE modes. The TM0 and TIVh modes, for £>=0.1pm, shown in Fig.4.38, have similar 

profiles to that of the TE0 and TE  ̂ modes respectively, shown in Fig.4.40, apart from 

the field intensity in the metal-cladding interface, which is still appreciable. As the 

buffer layer thickness increases to beyond 0.1 pm, the field intensity in the metal-

cladding weakens and becomes negligible, because the mode gets more confined in 

the dielectric region, thus leaving the TM modes with an almost identical field profile 

with their counterpart TE modes. Therefore it can be safely claimed that as the buffer 

layer increases, the TM modes are transformed to their counterpart TE modes, and 

propagate with almost the same phase constant, p.

Hx

----------*> x (|um)
Fig.4.41 Hx field profile for the TM modes for the multilayer metal-clad planar waveguide for 

buffer layer thickness, b=0.053pm.

Additionally, for the propagation characteristics, shown in Fig.4.36, it can be 

seen that for a buffer layer thickness larger than £>=0.053pm, the phase constant for all 

the TM modes reduces in a smooth step-like way to a lower value. For about the same 

buffer thickness, the attenuation characteristics for the TM modes, shown in Fig.4.37.
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intersect just before their absorption peak. For this buffer layer thickness, the TM 

modes, shown in Fig.4.41, appear to be strongly coupled composite modes, consisting 

of a surface plasmon mode due to the metal/dielectric interface, and a normal guide 

mode due to the high refractive index dielectric film. At the above buffer layer 

thickness, the field intensity is almost equally high, both at the metal/dielectric interface 

(at x=1.5pm) and the dielectric region, for all the TM modes, and therefore the wave 

attenuation reaches a maximum and an absorption peak is observed. This is the case 

of a phase-match condition, where a resonant absorption peak is achieved and can be 

controlled by the buffer layer thickness, which is a very important feature in integrated 

optics applications.

4.5 Summary

In this Chapter, the complex propagation characteristics of certain types of 

planar optical waveguides incorporating loss or gain were investigated, by using the 

scalar H-field FEM with perturbation and by solving the complex transcendental 

equation, and the limit of the perturbation technique was determined by comparing the 

two approaches. Planar structures incorporating metal films, which exhibit loss and 

surface plasmon properties, were also analyzed, and finally multilayer structures with 

metal layers suitable for mode filter applications were also examined.

The analysis of the several planar optical waveguides examined, which are the 

basic elements of integrated optical circuits, forms the basis for the characterization of 

more complicated optical waveguide structures, exhibiting similar properties.
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Two-dimensional modal gain/loss 

analysis of optical waveguides

5.1 Introduction

In the previous chapter, the analysis of planar waveguides was based on the 

assumption that the light was confined only in one direction. In most practical 

applications though, more complicated structures are used, and the modal solution of 

the optical waveguides confined in both the transverse directions is required. The most 

common types of optical waveguides used in integrated optics are rectangular strips of 

dielectric material embedded in other dielectrics, such as the rectangular dielectric and 

the channel waveguide, or some more complicated structures as the rib waveguide, as 

shown in Fig.5.1. An analytical solution of such structures is not possible, and 

therefore, approximate analytical solutions are used, such as are obtained with the 

Effective index method (Knox and Toulios, 1970), or numerical solutions are obtained 

such as with the use of the FEM.
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Fig-5.1 Three types of practical optical waveguides

In this chapter, a two-dimensional modal gain/loss analysis was performed for 

some typical types of optical waveguides, by using the FEM with perturbation and 

other techniques. Additionally, the gain and attenuation properties of such waveguides 

were examined in conjunction with some applications in integrated optics and other 

optical devices.

5.2. The Rectangular dielectric waveguide

The rectangular dielectric waveguide, where a dielectric material is embedded 

in another dielectric, is one of the most common types of optical waveguides. 

Depending on the material properties, it can be used in many applications in integrated 

optic devices and optical communications systems, and because of its simple 

geometry, it can be analysed by the use of several different approaches.

The shape of the rectangular dielectric waveguide, is such that can be used for 

the modal analysis of buried heterostructure diode lasers, as proposed by Hayata et at. 

(1986a), which are of great interest, since their emitting wavelength covers the low- 

loss, low-dispersion region of silica-fused fibers. This type of structure, having active 

regions, composed of GalnAsP with a stripe geometry, and embedded in InP crystal, 

have been extensively studied because of their low threshold current.
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g / k 0

*  k 0d

Fig-5.2 Variation of modal gain with the normalized dimension for the TEn mode of an 

embedded channel waveguide

The modal gain for the simplified representation of a GalnAsP/lnP buried 

heterostructure diode laser structure was calculated, by using the scalar approximation 

of the FEM with the aid of the perturbation technique. In this type of structure the width 

of the active region, w, is five times greater than the height of the active layer, d. The 

imaginary part of the refractive index in the active region is considered to be +j 10 3 

representing the modal gain in this region. Figure 5.2 shows the variation of the modal 

gain for the E*u mode with the normalized height, k0d, for different negative imaginary 

values (with loss) of the cladding refractive index. As the normalized thickness of the 

core, k0d, increases, the normalized gain constant increases, for all the values of the 

imaginary part of the cladding refractive index. The reason is that as the normalized 

core thickness, k0d, increases, the mode becomes more confined in the core region 

whereas in the cladding there is no appreciable optical power, and therefore the 

attenuation constant is eventually determined only by the imaginary part of the 

refractive index of the core. When the imaginary part of the cladding refractive index, 

n2, is equal to zero, indicating a lossless cladding, the normalized gain constant is 

higher than that for the other cases, where there is finite amount of loss in the 

cladding. As the imaginary part of the cladding refractive index increases, the
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normalized gain constant decreases and when r i'2= 102, there is a larger decrease in 

the gain than the other cases, because the imaginary part of the cladding index is 

higher than the imaginary part of the core index. For the above value of the cladding 

imaginary part, in the range examined, the structure does not become lossy, because 

the mode is very well confined in the core region which shows gain and there is not 

much field intensity in the lossy cladding. If the normalized thickness were decreased 

further than the range shown, there would be a decrease of the core area, and the 

mode would be more spread into the cladding, which would cause the gain constant to 

become negative, therefore becoming an attenuation constant.

There is an excellent agreement between results calculated in this work using 

the FEM and those of Flayata et at. (1986) at k^^i, when both the perturbation 

equations are identical. Results using the perturbation equation are dependent only on 

the product k0d, but independent of the values of k0 and d individually, whereas results 

using equation (9) in the work of Flayata et al. vary with k0, even when the product, k0d, 

is constant.

g / k 0

■} k 0d

Fig 5.3 Variation of the normalized modal gain (glk0) with the normalized dimension for the Hy^ 

mode of an embedded-channel waveguide, using the complex Effective Index Method (EIM) and 

the scalar and vector Finite Element Method.
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Next the complex EIM and scalar and vector FEM approaches are compared 

for different waveguide dimensions and loss parameters of the above GalnAsP/lnP 

embedded channel waveguide. Variations of the normalized modal gain (g/k0) with the 

normalized waveguide dimension (k0d) are shown in Fig.5.3, for the fundamental Hy■M 

(quasi-TE) mode. Results obtained using the vector finite element method (VFEM) 

agree very well (with a mean difference of about 2.4%) with those of the complex 

effective index method (EIM). These results also compare favourably with those using 

the scalar FEM with perturbation. It can be observed that with the normalized modal 

gain for r?”2=10'3, using the scalar Finite Element Method (SFEM) and the effective 

index method (EIM), although they agree very well, both of these methods slightly 

over-estimate the modal gain as compared to the results obtained using the vector 

Finite Element Method (VFEM). For simplicity only the vector Finite Element Method 

(VFEM) and the results of the Effective Index Method (EIM) are shown for ri'2=0 and 

10'4 and they also are seen to compare favourably.

The validity of the scalar and vector FEM approaches with respect to the Ht formulation 

and the Complex Effective Index Method (EIM), has also been tested for the above 

GalnAsP/lnP embedded rectangular channel waveguide. The variation of the effective 

indices and modal gain (or loss) for the fundamental quasi TE (/-/yn) mode with the 

total element number is shown in Fig.5.4, for various numerical approaches used in 

this work. In the Ht approach, Maxwell’s equations are solved in terms of the 

transverse field components, yielding no spurious solutions, with the use of an efficient 

complex sparse matrix solver. In the Vector H-field (H) and the Scalar (S) approaches, 

the solutions obtained, with the aid of an efficient sparse, real matrix solver, for the 

lossless case, are used in conjunction with the perturbation technique (P) to calculate 

the modal gain (or loss) properties. In the Effective Index Method (EIM), the solution of 

the complex transcendental equation is obtained iteratively, to calculate the complex 

propagation constant.
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h>e o/kd
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Fig-5.4 Variation of the effective index (ne) and the normalized attenuation constant (a/ko) with 

the mesh division of an embedded channel waveguide, using the Ht, the vector H-field with 

perturbation (V+P) and the scalar /-/-field with perturbation (S+P) finite element formulations and 

the complex effective index method (EIM).

It can be observed that as the number of elements is increased, the modal 

solution is seen to converge. When the number of elements is 1800, the effective 

index values (ne) obtained by the Ht and the vector (V+P) approaches agree well. For 

the above mesh representation, the Scalar approach (S+P) and the EIM, which is 

analytical and does not depend on the mesh size, overestimate the effective index, ne, 

by about 0.001, compared to the more accurate Ht and the vector (V+P) approaches. 

The modal gain characteristics, also shown in Fig.5.4, demonstrate similar behaviour 

for the above methods. In this case, at 1800 elements, the EIM and the scalar (S+P) 

methods overestimate the factor a lk0, by 0.005 (about 434 dB/cm), compared to the 

use of the Ht and the vector (V+P) approaches.

It can be noted that, for 1800 elements, the cpu time is about 25 seconds on a Sun 

Classic Sparcstation, for the vector (V+P) solution. The Ht program was executed on a 

different workstation and appears to require a longer cpu time.
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Fig-5.5 Variation of the effective index and the attenuation constant with the imaginary part of 

the refractive index of the core of an embedded channel optical waveguide (Hayata et at., 1986), 

using the H,-formulation, the vector H (V+P) with formulation with perturbation and the Complex 

Effective index Method (EIM).

In subsequent work, the modal loss is varied by changing the imaginary part of 

the index to check the limit of the perturbation technique, with n ”2=0. Figure 5.5 shows 

the comparison of the EIM, the vector H method with perturbation (V+P) and the Ht 

method, for the variation of the imaginary part of the refractive index, n ”, as far as the 

effective index and the modal gain are concerned. In this particular case 1800 first 

order elements were used to represent the waveguide structure. The attenuation 

constant, a/k0 curves, agree well for the V+P and Ht approach and slowly diverge only 

when the value of a/k0 is larger than 10000 dB/cm. The EIM fails to converge for 

values of n / ’ above 0.06 and the numerical procedure becomes unstable. The vector H 

method and the Ht method begin to diverge, for both the effective index and modal 

gain, at a value of n / ’=0.1.
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H y

Fig-5.6 Hy, field distribution along the y-axis for different values of the imaginary part of the 

refractive index of the core (nT) of an embedded channel optical waveguide, using the H vector 

formulation with perturbation and the Ht formulation.

Next, the variation of the normalized Hy field profile, along the y-axis, is shown 

in Fig.5.6 for different values of the imaginary part of the refractive index, n / ’ (0.01 and 

0.3), for the H-field method with perturbation and the Ht method. As discussed in 

Section 3.4, in the H-field formulation, the field profile is calculated without considering 

the imaginary part of n, and therefore it remains unchanged by definition, since the 

perturbation is based on this assumption. However in the Ht formulation, the complex 

H-field is calculated, which depends on the complex n values. Here the field profiles 

and their change due to the change of n ” are compared. As the value of n "  increases, 

it can be observed that the mode becomes slightly more confined, but the change is 

not very significant for lower values of n/'. This illustrates the fact that the use of the 

finite-element approach, incorporating the perturbation technique for such small-to- 

medium gain/loss values of the refractive index is satisfactory to obtain modal
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solutions, both for the complex effective index and the field profile, and this approach is 

used in the subsequent examples.

Accuracy (%)

Fig.5.7 Accuracy of the approximate method using the field confinement factor, comparison of 

the scalar FEM with perturbation with the variation of the confinement factor r , for an embedded 

channel waveguide.

Next, the modal gain of the GalnAsP/lnP embedded rectangular channel 

waveguide was calculated with respect to the field confinement in the guide and the 

imaginary part of the refractive index, by using the approximate Confinement Factor 

Method, and the results are compared with those obtained from the FEM with 

perturbation. The imaginary part of the core refractive index is /V -0 .001 , representing 

gain in this region and the imaginary part of the substrate, n2”, is taken as negative, 

indicating a loss in this region, which varies from n2"=0 to n2"=-0.005. The overall 

modal gain is calculated by using both approaches and the accuracy of the 

approximate method as compared to the more accurate V+P is shown in Fig.5.7. It can 

be observed that as the mode confinement in the core increases, the accuracy of the 

approximate method also improves. When the mode in the core is well confined, all the 

plots converge towards 100% accuracy, since the field in the substrate is very small 

and the loss does not much affect the overall modal gain. Additionally, as the

143



Chapter 5 Two-dimensional...

imaginary part of the refractive index in the substrate (n2”) increases, the overall modal 

gain will reduce due to the increased loss in the substrate and the results obtained 

from the approximate method deteriorate further from those calculated using the FEM 

approach with perturbation. The confinement in the core does not reach 100%, 

because there is always a small amount of field in the substrate and top cladding 

regions. It can be noted that when both local gain and loss values are significant (as 

when n2”=-0.005 and A7/-0.001), the overall modal gain obtained is due to the 

difference between the local gain and loss values, and the approximate method can 

yield a large error for the overall modal gain calculation, even when the confinement 

factor is as large as 90%.

5.3 The Rib Waveguide

The Rib waveguide, shown in Fig.5.1.c, has received considerable attention for 

several optoelectronics applications, because of the simplicity of its fabrication using 

semiconductor materials. Advanced growth and etching techniques allow excellent 

control over the experimental refractive index profiles, and therefore great interest has 

been shown in the theoretical analysis of such structures (Benson et at., 1992). 

Various methods have been proposed for the analysis of this type of waveguide, 

amongst them the Finite Element Method (FEM), the Finite Difference Method (FDM) 

and the Effective index Method (EIM). The FEM with the aid of the perturbation 

technique and the complex EIM have been used in order to determine the gain/loss 

properties of such structures. For more complicated types of the rib waveguide, such 

as the semiconductor laser rib, where an active region is involved, the FEM with 

perturbation is used to calculate the modal gain.
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5.3.1 The simple Rib waveguide

The simple rib waveguide (shown as insert in Fig.5.8), was proposed by Goel 

(1973), as an alternative approach to reduce the scattering loss in optical waveguide 

bends and directional couplers, for integrated optical circuits. The guidance of the 

energy is achieved if the thickness, D and the refractive indices n0, nu n2, are chosen 

so that the slab region of index n2t surrounding the rib is beyond the cut-off.

Fig. 5.8 Variation of the normalized propagation constant characteristics for a GaAIAs/GaAs rib 

waveguide with D, by the Effective index method (EIM) and the scalar (SFEM) and vector 

(VFEM) Finite Element Method.

Firstly, a loss-less air-clad GaAs/GaAIAs simple rib waveguide is considered 

with refractive index values n0=1.0, ^=3.44, r?2=3.4, a rib width W=3pm and 

wavelength A=1.15pm. The normalized propagation constant, for the Hyu mode is 

estimated using the Effective Index Method (EIM), the scalar FEM and the vector FEM, 

as shown in Fig.5.8. In the finite element approach, 7200 first order triangular 

elements are used to obtain accurate results. For this mesh refinement, the matrix 

order was 11102 and it required about 4 minutes of computational time on the Sun
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Sparcstation 2. The scalar finite element procedure (SFEM) over-estimates the 

effective index parameter as compared to using the accurate vector finite element 

(VFEM) solutions. However, it can be observed that when the slab height, D, is below 

0.55|um, the effective index method fails to provide solution, because no solution can 

be found for the transcendental equation for the outer slab region when D<0.55pm. It 

can also be observed that, even when the EIM provides a solution, the results are of 

poor quality considering the small range of the effective index variation that is possible 

for this structure. All three methods converge when D=1.0pim since in this case, the 

structure is essentially a three layer planar (as H= 0) guide where scalar and effective 

index solutions are also valid and accurate.

p//c0 a  (dB/cm)

*  n \
Fig-5.9 Variation of the normalized phase ((3lk0) and the attenuation (a) constants with the 

imaginary part of the refractive index (n'-,).

Next, the situation where there is a lossy waveguide is considered by 

introducing an imaginary part to the refractive index, n-1, and keeping all other 

parameters the same as for the rib waveguide discussed above is studied. The results 

for the complex EIM and the vector FEM with perturbation are compared for D=0.9p,m.
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Fig.5.9 shows the variation of the real and imaginary parts of the propagation constant 

with the imaginary part, n\. In a similar way to the loss-less case, the EIM over-

estimates the effective index (Plk0), for a small value of n \. However, the plk0 

decrease is very small when n \ increases, for the vector FEM solutions, compared to 

the EIM results. The normalized attenuation constant agrees very well for both of the 

methods up to 3000 dB/cm, and beyond that value the FEM somewhat underestimates 

the modal loss value by comparison to the use of the EIM which is probably more 

accurate for large values of n\.

5.3.2 The Integrated laser Rib Waveguide

Next an integrated laser rib waveguide, as shown in Fig.5.10, is examined. The 

operating wavelength is 7=1.5pm and the active layer thickness, 7=0.15pm, where 

n0=1.0, n 1=3.38+y'0.001 and n2=3.17. The variation of the normalized gain, (-cUk0), for 

the A/ 11 mode is shown here with the thickness of the top confinement layer, H. The 

modal gain reaches its maximum value when H«0.55 pm. It can be observed that the 

vector and scalar finite element results agree very well with the results using the 

complex Ht formulation (Lu and Fernandez, 1994). However, it can also be observed 

that the Spectral Index Method (SIM) (Burke et al., 1993) over-estimates the modal 

gain for this structure, although In the work of Burke et al., a higher rib height was 

considered to facilitate their simulations. It should also be noted that the results for the 

other two methods were obtained from a transfer of data from published graphs and 

may thus be subject to a small degree of error.
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H { |im) ----------- >

Fig.5.10 Variation of the normalized gain constant with top confinement layer thickness, H, for 

the Hyn mode of a semiconductor laser rib waveguide, by the vector, scalar and the Ht 
formulations in the Finite Element Method and the Spectral Index Method.

Further, to compare with another alternative approach, the rib waveguide, 

shown in Fig.5.10 here is re-examined, but the active layer thickness, 7, increased to 

0.2pm. Figure 5.11 shows the variation of the normalized phase constant, (p//c0), for 

the dominant Hyu  mode with the thickness of the top confinement layer, H. In a similar 

way to that seen in the earlier examples, the Scalar Finite Element results (SFEM) 

over-estimate the modal effective index consistently, as compared to those of the 

Vector Finite Element (VFEM). Flowever, the results given by Benson et al. (1994) are 

significally lower than those obtained using the finite element method. For the limiting 

value for H -» o o ,  which is equivalent to a three layer slab, the accurate normalized 

propagation constant, (p/k0), is 3.20966, which is also shown. It can be clearly 

identified that finite element solutions will attain this limiting value, whereas the FDM 

results definitely will not.
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(3//c0

Fig.5.11 Variation of the effective index with the top confinement layer thickness, H, for the Hyu 

mode, of a semiconductor laser rib waveguide by the scalar and the vector Finite Element 

Method and the Finite Difference Method (FDM).

Figure 5.12 shows the variation of the normalized modal gain, (-a//c0), for the 

dominant Hy11 mode with the thickness of the top confinement layer, H. Results 

obtained using the scalar (SFEM) and vector (VFEM) finite element approaches agree 

well with each other. Here, the modal gain is not as sensitive to the variation of H, 

compared to the earlier example with 7=0.15pm (shown in Fig.5.10), since the mode is 

better confined. It can be noted that the modal gain obtained by Benson et al. (1994) 

using the Finite Difference Method (FDM) is significantly lower than the finite element 

results show. For the limiting case H-»co,  the accurate normalized modal gain of the 

three layer equivalent structure has been calculated to be equal to 3.45x1 O'4. This 

value again compares favourably with the FEM results and the FDM result would 

appear to be fairly inaccurate.
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Fig.5.12 Variation of the normalized modal gain with H, for the Hyu mode, of a semiconductor 

laser rib, by the scalar and the vector FEM with the perturbation technique and the FDM.

Figure 5.13 shows the modal gain/loss characteristics for the same rib 

waveguide, for 7=0.2pm, when a negative imaginary part is added to the refractive 

index, n2, to represent loss in the cladding regions. The value of /V, responsible for the 

local gain in the active region, is kept constant at 0.001. When there was no loss in the 

confinement regions, that is n'2=0, the maximum normalized modal gain, ( -a //c 0), was 

about 3.5x10"4 when H«0.5pm. However, the maximum normalised modal gain 

reduces to 2.85x10‘4 when loss is incurred in both the confinement regions due to the 

negative value of /?’2=-10'4. Furthermore, when the confinement region becomes very 

lossy (/?’2=-10'3) the mode suffers an overall loss and this overall modal loss is 

minimum when H«0.5pm. For a further increase of n2’, the overall loss is expected to 

show a greater increase due to local loss in the confinement regions of the rib 

waveguide.
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a /k o  ( * 1 0 ‘4)
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Fig.5.13 Variation of the normalized modal gain with H, for the Hyu mode, by the Vector Finite 

Element Method

Additionally, the attenuation characteristics of the above laser rib waveguide 

were calculated, by using Field Confinement method, which was applied earlier to the 

embedded channel waveguide as shown in Fig.5.7. An amount of loss was introduced 

in the two cladding regions by adding an imaginary part n2’ in the refractive index n2, 

while the imaginary part of the refractive index of the active layer was considered to be 

n-i-0.001. The scalar FEM results with perturbation, for different values of the 

imaginary part of the refractive index of the cladding, n'2, were compared with the 

results obtained by the Field Confinement Method, as shown in Fig.5.14. By comparing 

the results obtained for the laser Rib waveguide with those obtained for the embedded 

channel, shown in Fig.5.7, it can be seen that the results for the laser Rib structure 

have similar features, but show a slightly higher accuracy. For example, for ^ ’=0.001 

and n2'-0  for 0.5 confinement factor, r ,  the accuracy obtained is about 88% for the 

embedded channel waveguide and about 91% for the laser rib waveguide.
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Accuracy (%)

Fig.5.14 Comparison of the scalar FEM with perturbation and the approximate method using the 

field confinement, with the confinement factor, r , for different values of the imaginary part of the 

refractive index of the substrate of a rib waveguide, n2\  for constant imaginary part of the 

refractive index of the active layer ^ -0.001.

5.3.3 Dependence of refractive index, of active layer, on carrier 

concentration

The device material properties are fundamental to modelling semiconductor 

optoelectronic components. The measured data for the device material, in 

semiconductor lasers and laser amplifiers, such as the gain, carrier lifetime and 

refractive index and their dependence on the injected carrier density, are very 

important in predicting the laser properties. The carrier concentration profile N(x,y), in 

a laser material, which is dependent on the injected current, determines the change of 

the complex refractive index profile, n(x,y).
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InGaAsP laser materials exhibit minimum loss in silica-based optical 

communication systems, at an operating wavelength of 2=1.55pm. A rib waveguide 

with an active layer of InGaAsP laser material, at the above operating wavelength, has 

been examined in order to calculate the gain properties of the structure. Since the 

small loss condition is examined, the effect of the carrier concentration on the real part 

of the refractive index has been neglected. The variation of the imaginary part of the 

refractive index, n”, along the transverse direction (x) is related to the carrier variation 

(N(x)) and given by:

n”(x)=(dn/dN)*N(x) (5.1)

where dn/dN is the rate of change of the refractive index with carrier concentration, 

and N(x) the carrier concentration profile, given by Westbrook (1986):

N(x) = ‘
N r

r  cosh ( x / Z ) A

V exp ( s i  L)
x < s

/ 0 sinh(s / L) e x p (-x  / L) x > s

(5.2)

where N0 is the carrier concentration at threshold, 5 is the half rib width and L the 

diffusion length.

The average carrier concentration within the active layer, which can be 

approximated by averaging the carrier profile along the x-axis, can be shown as:

Nav=(s/w)N0 (5.3)

where w is the half-guide width, which is assumed large compared to the half-rib width, 

s, as shown in Fig.5.15.
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Fig.5.15 Rib waveguide structure where the imaginary part of the refractive index in the active 

layer varies according to the carrier profile.

An integrated laser rib waveguide, with an InGaAsP active layer, at an 

operating wavelength of 2=1.5pm, is examined, as shown in Fig.5.15. The imaginary 

part of the refractive index in the active region is assumed to vary according to the 

carrier concentration profile, along the x-axis (Eq.5.2). The carrier concentration at 

threshold is assumed A/0=1.0*1018 cm'3, and dn/dA/=-2.8*10'20 cm3 (Westbrook, 1986). 

For this example, the rib width is considered to be 5pm and the existing one-fold 

symmetry has been exploited in the numerical simulation. From the above data, the 

carrier distribution in the active layer is plotted in Fig.5.16, for two different diffusion 

lengths, L=1.2pm and L=1.7pm. For the smaller diffusion length, L=1.2pm, the carrier 

concentration is higher in the centre rib region, and lower outside, and for both 

distributions the carrier values are identical at the end of the rib. The average carrier 

distribution, Nav, (Eq.5.3) is plotted in the same figure, and it has a value of about 25% 

of the maximum carrier concentration (1018 cm'3). This value corresponds to the ratio of 

the rib half width (s=2.5pm) to the guide half width (w=20pm), as defined by (Eq.5.3).
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Fig.5.16 Carrier profile along the x-axis in the active layer of the rib semiconductor laser optical 

waveguide, for different values of the diffusion length L, of the carrier.

In addition, the modal gain for the two diffusion lengths is shown in Fig.5.17, 

with respect to the threshold carrier concentration, N0. As N0 increases, the modal gain 

is seen to increase. For a smaller diffusion length the modal gain is higher than that of 

larger diffusion length, since in the former case, the carrier is more concentrated near 

the guide centre, where the optical field intensity is also higher. The modal gain for the 

average carrier concentration is lower, and is independent of the diffusion length.

L= 1,2pm

L=1.7pm

Rib region \

\  s

N=Nav
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Fig.5.17 Variation of the modal gain constant for the rib semiconductor laser waveguide with the 

carrier concentration at threshold, N0, of the active layer for different values of the diffusion 

length of the carrier.
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5.3.4 Multiple Quantum Well Rib waveguide

Quantum Well (QW) lasers differ from the normal double heterostructure (DH) 

lasers (Casey and Panish, 1978), like the GaAs/Ga^AIxAs pair, mainly due to the very 

thin active region they incorporate. By considering the energy level distribution of 

semiconductor materials, in the conventional semiconductor lasers the electrons in the 

conduction band are spread over a relatively wide energy range with quite small 

density at the band edges. By thinning the active region, as in QW structures, the 

electrons are spread at a smaller energy range with a relatively high densities at the 

band edge. This makes population inversion easier than in the conventional diode 

lasers and results in the increase of the modal gain, therefore great reduction of the 

threshold current. One major drawback of single QW lasers is the poor optical 

confinement, due to the narrowness of the active region, which leads to the spread of 

the optical field in the lossy surrounding material and tends to diminish the advantage 

of the low threshold current. This problem can be overcome by the addition of more 

QW to form a Multiple Quantum Well structure, which allows a higher optical 

confinement factor (Wilson and Hawkes, 1989).

Additionally, the modal gain of a single quantum well structure is limited by the 

step-like density of states, therefore, by increasing the number of quantum wells, to a 

MQW structure, the modal gain of each quantum well adds up to the total modal gain 

of the structure (Arakawa and Yariv, 1985). In such devices, the optimum number of 

quantum wells and their thickness are major parameters, in order to achieve minimum 

threshold current, therefore higher efficiency. For most practical applications, the 

thickness of the active layers in MQW structures lie between 0.005-0.01 pm (Yariv, 

1989).
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Fig.5.18 Multiple Quantum Well (MQW) Rib waveguide (Al% is given).

A rib waveguide which incorporates a Multiple Quantum Well (MQW) active 

region, as shown in Fig.5.18, has been examined, where the MQW region consists of 

GaAs thin active layers with dielectric constant, 3.06+j0.1869 and thickness t, 

sandwiched by AIGaAs (20% Al) barriers, with dielectric constant s2=11.985. The 

substrate of the MQW structure consists of AIGaAs (45%) material, with a dielectric 

constant ss=11.05, at an operating wavelength, X=0.855p.m. Due to the symmetry of 

the structure, a half symmetry along the y-axis was used in the analysis.
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Fig.5.19 Variation of the normalized gain constant with the quantum well thickness for a single, 

two and three quantum well rib waveguide.

The variation of the normalized gain constant, g//c0, with the quantum well 

thickness, f, for one, two and three Quantum Wells was calculated, by using the scalar 

FEM with perturbation, as shown in Fig.5.19. For the thickness value, t, up to 100nm, 

and for all the three values of the QWs, the modal gain of the waveguide increases 

linearly with the layer thicknes, t. For each QW added to the structure, the overall 

normalized gain constant increases by one above that of the normalised gain constant 

of the single QW structure, and therefore, by adding N number of QWs the overall 

modal gain will be N times greater than the modal gain of the single QW structure. In 

practical applications, the optimum number of QWs required for a particular structure, 

is determined by the threshold current of the device, in order to achieve optimum 

efficiency. The normalized gain constant obtained for a thickness of t=100nm, was 

compared with the value obtained by Cheung et al. (1995) and found to be in a very 

good agreement. Additionally a result for the same thickness, was obtained by using 

the Field Confinement Method and a comparison shows that this was 93.1% of the 

previous value, although In this case the field confinement in the active region Is much
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lower (7.5%) than In other types of structures examined in Sections 5.2 and 5.3.2, for 

the rectangular dielectric and rib laser waveguides respectively, by using the same 

approach.

0.8 0.85 0.9 0.95 1

------------------ ► normalized Hx

Fig. 5.20 Normalized Hx field profile, along the y-axis of symmetry for a single Quantum Well 

(QW) structure, for the active layer thickness, f=0.005pm

Further, the normalized Hx field profile of the single QW structure for an active 

layer thickness, f=0.005pm, along the symmetry y-axis, has been examined, as shown 

in Fig.5.20. For this type of structure, the maximum field intensity is located at the 

middle of the active region and the value at the boundary of the substrate layer, e2, is 

about 94% of the maximum field intensity. This structure, at the above thickness, has a 

very low confinement factor (about 1%), therefore most of the field is outside the active 

region, which results in a reduction of the modal gain.
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Fig. 5.21 Normalized Hx field profile, along the y-axls of symmetry for a Two Quantum Well 

(QW) structure, for each QW active layer thickness, f=0.005pm

Further, the Hx field profile for a Two QW structure has also been examined for 

the same active layer thickness, t=0.005pm, as shown in Fig.5.21. In this type of 

structure the maximum field intensity is located at the centre of the separation layer 

between the two active layers and the mode is more confined than in the single QW 

structure. The confinement factor for the above thickness was calculated about 2%, 

which is again, quite low. It can also be noticed field intensity at the boundary of the 

substrate region has decreased to 92% of the maximum value.

y(pm)

0.7 0.75 0.8 0.85 0.9 0.95

------------------ ► normalized Hx

(a)
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(b)
Fig. 5.22 Normalized Hx field profile, along the y-axis of symmetry for a three Quantum Well 

(QW) structure, for each QW active layer thickness, a) f=0.005pm, b) f=0.01prm

Next, the Hx field profile of a three Quantum Well Structure has been examined 

for two different thickness, f, of the active layers, as shown in Fig. 5.22. In this type of 

waveguide the maximum field intensity is at the centre of the middle active layer and 

as the thickness, t, of the active layers increases, the optical mode becomes more 

confined. The confinement factor was calculated at 3.3% and 7.5% for active layer 

thickness t=0.005pm, and f=0.01pm respectively. By considering the confinement 

factors for the three structures, it can be seen that as the number of quantum wells 

increases there is an increase by approximately the amount of the field confinement in 

the active region. This is an analogous situation with the increase of the modal gain 

observed earlier with the increase of the number of quantum layers. Additionally, in the 

three quantum well structure, when the thickness of the active layers was doubled, the 

confinement factor increased by about two times.
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Fig.5.23 Variation of the normalized gain constant with the thickness of the active layer, t, for 

one, two and three active layers in a rib waveguide structure.

Further, the thickness of the active layers was increased beyond the typical 

ranges for MQWs, in order to examine the effect of such an increase in the gain 

properties of the MQW region and the rib waveguide structure as a whole. The 

variation of the normalized gain constant with the variation of the thickness of the 

active layers, for the three types of structures is shown in Fig.5.23. As the thickness 

increases above, f=0.1pm, there is a rapid rise of the normalized gain constant, where 

for the two and three layer structure the rate of increase is higher. At about t=0.3pm all 

the modal gains begin to saturate and converging to a value of 0.025, with the 

normalized gain constant of the single layer structure converging more slowly. The 

increase of the normalized gain constant can be related to the increase of the 

confinement factor, which at very large thickness is almost 100%, therefore saturation 

of the gain occurs. Of course, when the thickness of the active layers is increased very 

much, the waveguide does no longer exhibit the properties of the MQW structure, and 

mainly the low threshold current, therefore the structure becomes inefficient, since 

large amount of injection current is required to produce stimulated emission.
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Accuracy (%)

Fig.5.24 Comparison of the scalar FEM with perturbation and the Field Confinement method, 

with the variation of the active layer thickness for a one, two and three active layer system in a 

rib waveguide.

Finally, the normalized gain constant for the above structures was calculated by 

using the approximate Field Confinement approach at a range where the thickness of 

the active layer had confinement factors higher than in the typical ranges, in order to 

compare the results with those obtained by using the FEM with perturbation. As it can 

be seen from the comparison, shown in Fig.5.24, the accuracy of the approximate 

method, i.e. by using the confinement factor is quite satisfactory. In this type of 

structure, the confinement in the active layers is small (in the order of 10%) as 

compared with the previous structure examined. However, as the number of the layers 

and the modal confinement decreases, the agreement between the two methods 

seems to deteriorate. Further, in a practical lasing structure, with optical absorption in 

other regions, the accuracy of the approximate method will deteriorate even further.
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5.4 Electro-optic directional coupler modulator

Although dielectric crystal materials, such as lithium niobate (LiNb03), cannot 

be integrated with semiconductors, as there is no possibility of crystal growth on the 

semiconductor substrate, they can still be used as stand-alone devices in electro-optic 

waveguides applications, because of their low transmission loss, large electro-optical, 

piezo-electrical and elasto-optical coefficients (Fouchet et al., 1987), low chirp and high 

bandwidth. Directional couplers, which are the basis of several guided wave devices, 

mainly used for optical switching networks, can also be used as intensity modulators. 

An example of a Ap coupler modulator is also given in this section, operating on the 

principle that the applied modulating field changes the refractive index in the two 

guides, such that the change is antisymmetric, and this then affects the light wave 

propagation in the two guides (hence the name Ap modulator), the coupling length and 

the phase matching between them, which also affects the power coupling efficiency.

The development of an accurate numerical model for optimizing a T i:LiNb03 

directional coupler structure requires the consideration of several fabrication 

parameters. The effect of the lossy metal electrodes on the optical properties of the 

above structure, for Aluminum (Al) and Gold (Au) materials, is examined in this 

section. The metal electrode design is an important issue in order to maximize the 

overlap between the optical and electric fields, which can be optimized by varying 

certain parameters, such as the electrode placement and the buffer layer thickness.

A Ti-diffused directional coupler modulator with guide width, w, of 9pm, where 

the separation between the guides, s, is 7.5pm and the electrode separation, h, is 

5pm, and shown as an insert in Fig.5.25, is considered, where y-axis symmetry is 

assumed for greater accuracy. The S i02 buffer layer has a thickness, d, the 

extraordinary and ordinary refractive indices for LiNb03 are taken to be ne=2.14 and 

n0=2.16 at an operating wavelength ?i=1.56pm, and the maximum change in the 

refractive index due to the Ti indiffusion was considered 0.01 and 0.005 for the 

extraordinary and the ordinary indices respectively.
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a (dB/cm)

♦ d (pm)

Fig.5.25 Attenuation characteristics for a directional coupler modulator with the variation of the 

Si02 buffer thickness, d, for aluminum and gold metal electrodes.

The modal loss of the TM-polarized mode, for Al and Au metal electrodes of 

thickness f=0.15jum, with complex refractive indices r?m=1.44-j16 and nm=1.55-j11.5 

respectively, with the variation of the buffer layer thickness, d, has been investigated. 

From the attenuation curves, shown in Fig.5.25, it can be seen that the modal loss 

decreases rapidly at first, as the buffer layer thickness (d) increases, but it gradually 

reaches a steady value at a buffer layer thickness between 0.16-0.17pm, which can be 

considered ideal for the modulator design. The aluminum electrode has always shown 

a higher attenuation than the gold electrode, for the whole range examined, which is to 

be expected. The modal loss for the TE-polarized mode, not shown here, is much 

lower than that of the TM mode, as in all the other structures examined earlier, and 

therefore, the effect on the optical properties is not considered critical.
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5.5 Summary

In this chapter several optical waveguide structures with two-dimensional field 

mode confinement have been analyzed and the complex propagation characteristics 

were determined, by using the H-field FEM with the perturbation technique, the 

complex effective index method and the approximate confinement factor method. The 

normalized gain constant for a simplified representation of a buried heterostructure 

diode laser structure was calculated, by using the above approaches and the results 

were in fine agreement, for certain ranges. The accuracy was quite satisfactory, for a 

low to medium gain level and for a well confined mode by using the FEM with 

perturbation and the approximate Confinement factor approach respectively. Some of 

the H-field FEM results were also compared with those of the FEM in terms of the Ht 

variational formulation, and the agreement was found to be sufficiently accurate. 

Further, the H-field FEM with perturbation approach was used for the solution of a 

simple rib and an integrated laser rib waveguide structure, and the results obtained for 

the complex propagation constant were compared with some of the approaches 

mentioned above and found in fine agreement. Next, a multiple quantum well rib 

structure was analyzed by using the FEM with perturbation and the variation of the field 

distribution and the normalized attenuation constant with the thickness and the number 

of the quantum layers, has been examined. Finally, the effect of the lossy metal 

electrodes on the optical properties a T i:L iNb03 electro-optic directional coupler 

modulator structure has been studied.

In the next chapter, the FEM with perturbation is used to analyze several other 

practical device applications with two-dimensional mode confinement, which exhibit 

surface plasmon properties.
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Surface plasmon modes in 2-D gain/loss 

analysis of optical waveguides

6.1 Introduction

As has been demonstrated in Chapter 4, surface plasmon modes can be 

supported by a single interface between a metal and a dielectric layer. These modes 

can be coupled to normal dielectric waveguide guided modes, in planar structures, 

where a thin metal film is attached to a dielectric slab waveguide (as in the multilayer 

metal-clad waveguide), to form coupled supermodes. Due to the lossy nature of the 

metal film, a loss analysis of such waveguides is required, to determine the 

propagation and attenuation characteristics. The Finite Element Method (FEM), in 

conjunction with the perturbation technique has been applied in several types of planar 

waveguides, which involved surface plasmon modes and proved to be a very accurate 

approach, in dealing with low loss devices, for the determination of their gain/loss 

properties. Surface-plasmon-mode properties are also used in a wide range of device 

applications, where, 3-D optical waveguide structures are considered, therefore 2-D 

modal analysis is required, such as in optical polarizers, highly sensitive evanescent 

optical sensors, or to enhance nonlinear effects in optical devices. In this chapter, the 

FEM approach with the aid of the perturbation technique is extended to some 3-D
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optical waveguides incorporating thin metallic regions, were surface plasmon modes 

are present, in order to determine their propagation and attenuation characteristics.

6.2 Composite coupled structure

Firstly, the FEM approach with the aid of the perturbation technique was used 

to determine the complex propagation characteristics of the surface plasmon modes of 

the structure shown in Fig.6.1.

Fig. 6.1 Composite waveguiding structure incorporating a dielectric structure with a metal strip 

coupled with a dielectric waveguide surrounded by dielectric material

This composite coupled structure consists of an aluminum surface plasmon 

guide with of finite strip width and an InGaAsP rectangular dielectric waveguide, both 

surrounded by an InP substrate. In this example, the refractive indices of the lattice 

matched lni_xGaxAsyP i.y rectangular dielectric waveguide, the InP substrate, and the 

aluminium strip are ^=3.37621, n2=3.20483 and r?m=1.2-j12, respectively, for y=0.399, 

at the operating wavelength, A=1.3pm (Broberg and Lindgren, 1984). The dimensions 

of the rectangular guide are cM.Opm, where w=5d and the separation from the metal 

strip, (s), is 1pm. The effective index, ((3//c0), the normalized attenuation constant
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(a//c0), and the field profiles are examined for the first two supermodes, with the 

variation of the metal strip thickness, t.

p//Co

♦  t {  f i r m )

Fig-6.2 Variation of the effective index with metal-strip thickness, t, for the first two supermodes 

of the coupled structure.

Figure 6.2 shows the variation of the effective indices for the two supermodes 

with the metal strip thickness, t. The effective index of the first supermode is always 

higher than that of the second supermode and they never intersect. Near t =54nm, the 

directional coupler is ‘synchronous’ as the difference between the propagation constant 

of the two supermodes is a minimum. The first supermode, for t lower than the 

synchronous (or phase matched) condition, is similar to the odd-type surface plasmon 

mode and the field concentrates mostly at the two metal/dielectric interfaces. The 

modal field profile varies in both the transverse directions, but for simplicity the field 

profile along the y-axis is presented, as shown in Fig.6.3.a, for f=0.05 pm. The 

effective index of this supermode reduces with t, similar to odd-type surface plasmon 

mode (as shown in Section 4.3) but for f>0.054 pm the mode becomes essentially a 

waveguide mode. In this region most of the power is confined in the dielectric 

waveguide. For f=0.06pm, the modal field profile along the y-axis is shown in Fig.6.3.c.
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In this region, the dielectric waveguide mode is hardly affected by the metal strip 

above, so its effective index is essentially unchanged with the metal strip thickness, t.

Hx
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Hx

Fig-6.3 Hx field profile along symmetry y-axis for the first supermode, for metal film thickness a) 

f=0.05 pm b) f=0.054 pm, c) f=0.06 pm.

For f<0.054 pm, the second mode is again essentially a dielectric waveguide 

mode and its effective index changes very little with the metal strip thickness, t. The 

field profile along the y-axis for this mode for t= 0.05 pm is shown in Fig.6.4.a. 

Flowever, for f>0.054 pm, the second supermode is almost like the odd-type surface 

plasmon mode and its effective index decreases with the metal thickness. For f=0.06 

pm most of the field is confined at the metal/dielectric interfaces as shown in Fig.6.4.c.

0 1 2 3 4 5

♦ X (urn) 

(a)
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Hx

(b)

Hx

(c)
Fig-6.4 Hx field profile along symmetry y-axis for the second supermode, for metal film thickness 

a) t=0.05 pm b) f=0.054 pm, c) t= 0.06 pm.

173



Chapter 6 Surface-plasmon...

When the two isolated surface plasmon and dielectric waveguide modes are 

phase matched, the two supermodes carry equal power in both the waveguiding 

regions. The field profiles along the y-axis are shown in Fig.6.3.b and Fig.6.4.b, for the 

first and the second supermodes respectively. The field distribution of the first 

supermode, for f=0.054 pm, can also be seen in Fig.6.5, for half-symmetry along the y- 

axis. The field is maximum at the centre of the rectangular waveguide and one positive 

and one negative peak values can also be observed at the two metal/dielectric 

interfaces. It can also be observed that the field reduces monotonically along the x- 

direction, for both of the waveguides.

Fig-6.5 Hx field distribution for the first supermode for metal-strip thickness f=0.054 pm (only half 

the structure is shown because of one-fold symmetry along the y-axis).

The phase matching information is critical in the design of polarizers or sensors 

as appreciable power transfer between the dielectric waveguide and the surface 

plasmon modes is only possible when they are phase matched. To our knowledge, this 

is the first time, that an analysis of surface plasmon modes with two-dimensional 

confinement has been presented.
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a/ko

♦ f( | ilT l)

Fig .6.6 Variation of the normalized loss coefficient with metal strip thickness, t, for the coupled 

structure.

Next, the attenuation characteristics are examined, for the same range of metal strip 

thickness, as shown in Fig.6 .6 . For thicknesses below f=0.054pm, the loss of the first 

supermode is high, since the field is concentrated in the lossy metal region (mode 

profile shown in Fig.6.4.a), while for a metal strip thickness above that value the loss is 

negligible since most of the field is confined in the loss-less rectangular dielectric guide 

region (mode profile shown in Fig.6 .4.c). The opposite occurs for the second 

supermode, where the loss is negligible for lower value of t, since the mode is more 

fibre-like (shown in Fig.6 .5.a). However, the loss is high for a higher value of f, since in 

this case the mode is almost surface-plasmon type (mode profile is shown in 

Fig.6 .5.c). For t £0.054 pm, where the two modes are approximately phase matched, 

both the supermodes suffer appreciable attenuation. This information is useful in 

designing optical polarizers where TM-like modes from the dielectric waveguide can be 

coupled to the surface plasmon mode and will be attenuated, whereas the TE-like 

modes will propagate in the dielectric waveguide since this type of mode does not have 

its equivalent in the thin metal strip.
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Lc (f im )

+ t (M-m)

Fig-6.7 Variation of the coupling length with the metal-strip thickness, t, for various aspect ratios 

(wld) of the rectangular dielectric waveguide

The effect of varying the width, w, of the guide was then examined in terms of 

the coupling length, Lc, as shown in Fig.6 .7, where Lc is defined by:

Z_c = 7 t / A|3 (6.1)

where, Ap, is the phase constant difference between the two supermodes.

It can be observed that the coupling length, LCl is a maximum when the surface 

plasmon guide is phase matched with the rectangular dielectric waveguide. The 

maximum coupling length at phase match depends on the separation between the two 

guides, s, the metal thickness, t, and the aspect ratio wld. In the above example the 

guide separation, s, was kept constant (s=1 pm) and only the thickness, t, was varied 

for different values of the aspect ratio.
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tp (urn)

♦ wld

Fig-6.8 Variation of the metal-strip thickness at phase matching, tp, with the (wld) aspect ratio. 

The planar solution for w/d=oo is shown by the dashed line.

Fig.6.8 shows the variation of the surface plasmon layer thickness, tp, at phase 

matching with respect to the aspect ratio (w/d) of the rectangular dielectric waveguide. 

This value of tp increases monotonically with (wld) however, with ever decreasing 

incremental rates. For very high values of (wld), which is equivalent to the slab 

solution, the planar solution converges towards the two-dimensional solution for any 

given mesh refinement. In this case only 60 mesh divisions were used, in the in-

direction for both the planar and two-dimensional solutions, due to limited computer 

resources, but the solution accuracy could be increased by using finer mesh divisions if 

required.

The above numerical approach can be used to optimize optical polarizer 

design, where the device parameters can be varied to achieve phase matching 

between the guides. The separation between the guides, s, can also be varied so that 

the length of the active coupling section can be made equal to the coupling length of 

the system.
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6.3 TE/TM Polarization mode splitters

TE/TM Polarization mode splitters are required in many systems in optical 

communications in order effectively to separate the TE and TM polarizations of the 

optical wave. A cross section of a TE/TM mode splitter, based on two parallel rib 

waveguides, with a metal cladding on one of the ribs, is shown in Fig.6 .9. When a 

composite TE/TM optical wave is launched at the input of the non-metal rib, there is 

power transfer to the metallized rib, due to the coupling. As was shown in Chapter 4, in 

planar structures with metal-cladding, the metallic film affects only slightly the 

propagation characteristics of the TE mode, which propagates almost as in normal 

dielectric waveguides. Since the two rib regions in the mode splitter structure, apart 

from the the presence of a metal-cladding on one of them, have identical refractive 

indices, in the case of the TE mode the device can operate as a synchronous 

directional coupler (Marcuse, 1991), because the isolated mode has approximately the 

same propagation constant in each guide core region. Therefore, by adjusting the 

length of the device, the TE mode launched at the non-metal rib can be fully coupled to 

the metallized rib waveguide. On the other hand, for the TM polarization the two 

waveguides are not identical due to the presence of gold cladding on one of them. 

The propagation constants for the TM-polarized light in the two isolated guides are 

unequal. The TM mode launched in the non-metal rib is not fully coupled to the lossy 

metallized rib, because of the phase-matching, so it propagates mostly along the non- 

metal rib, and therefore the two modes are decoupled at the output of the structure. 

Albrecht et at., (1990) demonstrated that such a structure shown above, can operate in 

two distinct modes depending on the degree of lateral confinement of optical rib 

waveguide before metallization. They showed that for strong confinement, metallization 

generates an asymmetrical coupler, and that for weak confinement, the metallized 

waveguide is guiding for the TE but non-guiding for the TM polarization.
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2 pm
4---------------►

Fig-6.9 Cross section of the TE/TM mode polarization splitter.

The mode polarization splitter (cross-section shown in Fig.6 .9), consists of two 

parallel rib waveguides, with an InGaAsP active region and an InP substrate with 

refractive indices ng=3.38 and ns=3.17 respectively, and an Au metal-cladding on top of 

the one with a complex refractive index nm=0.18-j10.2, at an operating wavelength, 

>.=1.55pm. A modal analysis of the above cross section, using the scalar FEM with 

perturbation was performed, in order to calculate the propagation and attenuation 

characteristics, which can be used in determining the various design parameters of the 

mode polarization splitter.
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n e

Fig. 6.10 Effective index variation of TE and TM modes, with the variation of the rib height, for a 

metal-clad rib optical waveguide.

Firstly, the single metal-clad rib waveguide was considered (Left-hand Rib, Ru 

in Fig.6 .9), and the variation of the effective index with the increase of the rib height, d 

was calculated, for the TE0, TM0 and TMi modes. From the dispersion curves shown in 

Fig.6 .10, it can be seen that as the rib height, d, increases the effective index of the 

TM0, which is much higher than that of the other modes decreases, while the effective 

indices of the TM! and TE0 modes, which are predominantly guided by the rib, 

increase.
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Fig.6.11 Field profiles along the y-axis of symmetry, for the TE and TM modes of a metal-clad 

rib waveguide, for rib height a) d=0.5pm and b) cMym.

The propagation characteristics can be explained in more detail, from the field 

profiles of the lower order TE and TM modes, for different values of the rib height, 

shown in Fig.6.11. When the rib height is small, thus when the metal-cladding is close 

to the guide, the lower order TM0 mode is mainly a surface plasmon mode coupled to a 

weak normal guided dielectric mode, therefore it propagates with higher effective index 

than the normal dielectric guided modes. As the rib height is increased TM0 mode 

becomes a pure surface-plasmon mode and propagates only at the metal dielectric

181



Chapter 6 Surface ptasmon...

interface. For small rib height, the TMi mode has some field intensity at the 

metal/dielectric interface and more in the InGaAsP region, but as the rib height 

increases, it becomes almost pure guided dielectric mode, concentrated mostly in the 

InGaAsP region. The TE mode, which is a dielectric guided mode, is not affected at all 

by the presence of the metal cladding, therefore it has higher effective index than the 

TM t mode, but that value never exceeds the value of the refractive index of the 

InGaAsP layer. When the rib height is increased, the TE0 mode becomes more 

confined in the rib core region, giving a small increase in the effective index.

a  ( d B / c m )

Fig.6.12 Variation of the attenuation constant, with the increase of the rib height, for the TE and 

TM modes, of the metal-clad rib waveguide.

The attenuation characteristics of the metal-clad rib waveguide, for the TM and 

TE modes, were also examined and presented in Fig.6.12. As can be seen from the 

attenuation curves, the TM0 mode which is a surface plasmon mode, has very high 

attenuation constant, since it propagates mainly at the metal/dielectric interface, i.e., 

near the lossy region of the waveguide. The TMi mode, which has lower attenuation 

constant than the TM0 mode, has some interesting features, at about d=0.4pm, where 

an absorption peak is observed. This situation, which was also demonstrated in section
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4.4, and reported by several authors (Polky and Mitchel, 1974; Sun and Yip, 1994), is 

caused by the strong coupling between the normal guided wave and the surface 

plasmon wave. The TE0, has the lowest attenuation characteristics, since there is only 

a negligible amount of field intensity in the metal region. As the rib height increases the 

TE0 mode becomes more confined in the InGaAsP region and the attenuation constant 

decreases rapidly.

The rib height, in this type of structure is a major parameter in the adjustment 

of the attenuation level of the waveguide and acts in a similar way as the low-index 

dielectric buffer, in the multilayer planar structure, in section 4.4.

ne

Fig.6.13 Variation of the effective index, with the increase of the rib height, for the TE and TM 

modes, of the polarization mode splitter, for different separations between the two ribs.
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Next, the whole cross-section of the mode splitter, shown in Fig.6 .9, was 

considered, and the properties of the fundamental TE mode and the two low-order TM 

modes were examined, for different values of separation, s, between the two ribs. 

From the propagation characteristics, shown in Fig.6.13, it can be seen that the TEeven, 

or TE0o mode (where m and n in TEmn, denote the zero crossings along the x and y 

axes respectively), has the highest effective index which does not change significantly 

with the increase of the rib height (cf), but decreases slightly when the separation is 

increased. As the separation between the two ribs (s) increases, the effective index of 

the TMeven, decreases while that of the TModd increases. The effective index of the 

TMeven, or TM0i mode is higher than that of the TModd, or TMn mode, and both indices 

increase with the increase of the rib height. It should be noted that there exists a TM 

mode with a higher effective index than those presented, but this was not considered 

for the coupled structure because it is a pure surface plasmon mode located at the 

metal/dielectric interface and does not interact with the guided dielectric mode of the 

active region, and therefore was not suitable in optical polarizing applications.

Fig.6.14 Hy field distribution of the TE00 mode for d=0.8pm and s=0.7pm, of the mode 

polarization splitter

From the field distribution of the TE00 mode, for s=0.7pm and d=0 .8pm, shown 

in Fig.6.14, it can be seen that the TE00 has high field intensity in the middle of the 

active region, with peak values below the two ribs, and there is no field variation in the 

metal region. The TE00 mode is a coupled supermode of two guided dielectric modes 

located at the centre of the active region below each rib.
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Hy (a.u)

Fig.6.15 Hy field profile, for the TE mode, along the x-axis, In the centre of the InGaAsP 

dielectric region for different values of the rib height.

The field profile of the TE00 mode, along the x-axis at the centre of the InGaAsP 

dielectric region, shown in Fig.6.15, is more or less symmetrical. Although the TE00 

mode is not affected much by the metal-cladding, there is still some effect visible. 

When the rib height is varied from 0.6 to 1pm, the symmetry of the field intensity at 

each rib slightly changes. As the rib height is increased, the field intensity at the metal- 

rib, which is lower than that of the non-metal rib increases, and becomes higher than 

the other. When the rib height is adjusted at a certain height the two peaks become 

more balanced. This is the situation, where the two coupled modes have the same 

propagation constant, and the device operates like a symmetrical directional coupler. 

By adjusting the length of the device, the power can be fully transferred from the one 

side to the other, which is a desirable condition in the design of an optical polariser.

185



Chapter 6 Surface plasmon...

Fig.6.16 Hx field distribution of the TM01 mode of the mode polarization splitter, for d=0.8pm and

s=0.7pm.

From the field distribution of the TM0i mode, shown in Fig.6.16, it can be seen 

that the above mode is asymmetric, with respect to the x-axis variation, and it changes 

polarity along the y-axis, at the metal-rib side. Although there is a considerable amount 

of field intensity in the metallic region, the field is stronger in the dielectric region.

H x (a.u)

Fig.6.17 Hx field profile, for the TM0i mode, along the x-axis, in the centre of the InGaAsP 

region, for different values of the rib height, at a separation, s=0.7pm.
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Figure 6.17, shows the Hx field profile along the x-axis, in the centre of the 

InGaAsP region, for different values of the rib height. As the rib height increases, the 

field intensity at the side of the metal-rib, which is lower than that of the non-metal, 

increases, since the metal-cladding is moved away from the dielectric region of the 

guide. On the other hand, when the rib height is increased, the field intensity at the 

side of the non-metal rib, decreases, with the tendency to reach the height of the field 

intensity at the other side. Therefore at large values of rib height, the coupled TM0i 

mode tends to approach the shape of the TE00 mode.

In the design of the mode polarization splitter, the optimum device length should be an 

integer odd or even multiple of the coupling length, for the TE and the TM modes. This 

can be achieved by finding the optimum separation (s) between the two ribs and the 

metal-clad rib height (d), but also taking into account the modal loss of the structure, 

which is an important factor in the overall power transfer performance of the device.

Fig.6.18 Hx field distribution of the TM,, mode of the mode polarization splitter, for d=0.8pm and 

s=0.7|urm,

The TModd mode, or TMn, shown in Fig.6.18, has similar behaviour with the 

TM0i mode, with only difference the opposite polarity of the field intensity at the side 

with the metal-rib and the lower propagation characteristics.
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------------ ► d  ( |im )
Fig.6.19 Variation of the attenuation constant for the TM modes, of the polarization mode 

splitter, with the increase of the rib height for different values of the separation, s.

Finally, the variation of the attenuation characteristics of the TE and TM modes, 

for the polarization mode splitter, with the increase of the rib height, for two different 

values of the separation, s, was considered and is presented in Fig.6.19. At low rib 

height, the T M even increases until it reaches an absorption peak, and then it starts 

decreasing rapidly. For a smaller rib height, where the metal layer is nearer to the 

guide core, the TModd mode suffers more attenuation, because the optical power is 

more confined in the metal-clad rib. The TModd mode, which is more confined in the 

metal-clad waveguide side, has a higher attenuation constant than the TMeven mode 

and decreases monotonically as the rib height increases, not showing an attenuation 

peak over the range examined. For a large rib height (d), the effect of the metal 

cladding is less, and therefore the modal loss is low, and the two isolated guides are 

nearly phase matched. The TE mode has the lowest attenuation constant, it being 

about 1000  times lower than that of the TMeven mode, and decreases as the rib height 

increases in a similar way to that of the TM modes.
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6.4 Sub-Micron Metal-Clad Optical Fibers

Metal-clad optical fibers of sub-micron dimensions find an important application 

in near-field optical scanning microscopy, a technique rapidly developing in the recent 

years, providing high-resolution imaging in the semiconductor industry and the 

biological sciences. Single-mode optical fibers are widely used in long-distance 

telecommunications, and are well developed, providing low loss and very high 

bandwidth transmission media. However, metal-clad optical fibers with sub-micron 

diameter are currently being used in near-field scanning optical microscopy (NFSOM) 

(Durig et at., 1986; Betzig et at., 1987), a technique in which light is transmitted 

through a metal-coated tapered fiber with a submicron aperture at the end, used as 

light emitting probe. A subwavelength sized spot is formed on an opaque screen, 

which is scanned over an object to generate a super-resolution image. The resolution 

is closer to that of a scanning electron microscope (SEM) than of a conventional 

microscope, and it has many advantages, since it can operate in air, is not limited to 

conductive materials and provides information on optical rather than electrical 

properties.

Fig.6.20 Schematic representation of the cross section of a metal-clad optical fiber with core 

radius rco. The dielectric core medium with dielectric constant 6C0=2.16 is surrounded by an 

infinite metal medium (shaded area) with complex dielectric constant Ed= -3 4 .5 + j8 .5 .
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Since the optical resolution in NFSOM is determined by the aperture size rather 

than the wavelength of radiation (Roberts, 1991), a knowledge of the light propagation 

characteristics in metal-clad optical fibers and near-zone fields produced is required. 

For optical frequencies, these structures can be represented by a waveguide with a 

circular dielectric core, normally of glass material, and an infinite metal cladding with a 

negative dielectric constant, as shown in Fig.6 .20. The negative permittivity of the 

cladding leads to surface plasmon modes (Boardman, 1982), which mainly propagate 

along the metal-dielectric interface. If the permittivity of the metal coating is purely real 

(and negative), then surface plasmon modes will not suffer attenuation. However, for 

the most of the metal, the permittivity value is complex and its imaginary part is 

responsible for the attenuation of light waves. The degree of attenuation suffered by 

these modes, can be represented by the imaginary part of the propagation constant of 

the optical modes, and therefore a complex solution is required.

6.4.1 Classification of propagating modes in metal-clad optical 

fibers

The classification of the propagating optical modes in metal-clad optical fibers 

is not an easy task, because in the above structures, as in all optical fibers, apart from 

the presence of pure TE or TM modes, hybrid modes also exist. These types of modes 

do not have vanishing longitudinal field components and their classification, which 

depends on the dominance of either the electric, Ez, or the magnetic, Hz, longitudinal 

field component, can sometimes be misleading. In the present work, the pure TE and 

TM modes of metal-clad optical fibers have been analysed, in order to identify the 

suitable modes for NFSOM applications.

The FEM solution in terms of the vector H-field formulation for such structures 

can be cumbersome, due to the presence hybrid modes, where the application of the 

boundary conditions requires great attention. Additionally, spurious solutions are also 

present in the above solution, and the application of the penalty coefficient can be 

tricky, due to the metal-cladding with negative refractive index. Therefore, a scalar 

approximation of the H-field formulation has been used in the present analysis, where 

the hybrid modes and the spurious solutions are eliminated, leaving distinguishable 

only the pure TE and TM modes. The perturbation technique has also been used in
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conjunction with the FEM, for the determination of the attenuation characteristics of the 

above structures, due to the lossy metal-cladding.

The solution of optical fiber problems with the finite element method, in general, 

was achieved by the use of ring elements, polar coordinates and Bessel functions in 

earlier approaches (Koshiba, 1992b). In the approach presented here, the problem is 

solved in Cartesian coordinates, more commonly used for a wide range of waveguides, 

and the optical fiber is approximated by a circular dielectric waveguide. Two fold 

symmetry is exploited to achieve greater accuracy for a given level of computer 

resources. A combination of electric and magnetic wall boundary conditions are 

applied to obtain the odd and even type TE and TM polarized waves. Although 

isoparametric elements can be used to represent the curved edges of the fiber core 

more effectively: however, in this case a general purpose finite element program has 

been used where the problem of the triangular elements around the circumference of 

the core of the fiber is overcome by the use of a very fine mesh which diminishes the 

effect of those boundary elements. The scalar formulation also enabled the use of finer 

mesh analysis, with less computational time and memory requirement than a vector 

formulation, for better representation of the boundary elements.

In order to distinguish the geometry of the various modes, the standard notation 

TEmn, and TMmn for the optical waveguides was used for the quasi-TE and TM modes 

respectively. In a guide with circular symmetry, the index m indicates the angular 

dependence of the mode (counts 2m ‘zeros’ of the mode for a full circle), and the index 

n denotes the radial dependence (counts the number of ‘zeros’ along the radial axis).

6.4.2 TM mode analysis

As an illustrative example, in this paper a metal-clad optical fiber, as shown in 

Fig.6 .20 is examined, which has a dielectric core of glass material with dielectric 

constant sco=2.16 and aluminum coating with complex dielectric constant 

eCi=-34.5+j8.5, at an operating wavelength X=0.488pm.
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Fig.6.21 Variation of the effective indices with the dielectric core radius of the metal-clad optical 

fiber for the TM polarized modes.

Figure 6.21 shows the variation of the effective-index, ne, (ne=p//c0), of the 

fundamental and the higher order guided optical quasi-TM modes, with the core radius, 

rco. Here p is the propagation constant and k0 is the wavenumber. As the core radius is 

increased, the influence of the metal cladding becomes negligible for the higher order 

optical modes, and their effective indices tend to reach the refractive index of the core, 

nco, (nco=1.4697). As the core radius is decreased the effective indices of all the higher 

order modes decrease and approach the cut-off region, while the effective index of the 

fundamental T M 0o mode is increased.
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Fig.6.22 Optical field distribution and axial field profile (insert) for the fundamental TM0o optical 

mode of the metal-clad optical fiber, rco=0.12 pm.

The above behavior of the fundamental T M 0o optical mode can be explained 

from its field distribution shown in Fig.6 .22 (where the axial field profile is also shown 

as an insert). The T M 0o optical mode is a surface plasmon mode, where the field 

intensity is the highest at the metal/dielectric interface, symmetrically along the 

circumference of the optical fiber, which reduces to a slightly lower value at the centre 

region of the dielectric core. As the core radius, rco, increases, the effective index of the 

T M o o  mode, decreases, and its limiting value for very large radius, (rco->co), can be 

approximated with the value of the effective index of a two-layer planar waveguide, np/, 

consisting of a single metal/dielectric interface. It is well known that a surface plasmon 

mode can be supported by a single metal/dielectric interface and its effective index is 

also higher than the refractive index of the dielectric layer. The effective index of such 

a planar waveguide, np/, as described in Section 4.2, with refractive indices of the 

dielectric-metal layers similar to those of the core/radius regions of the metal-clad fiber 

respectively, was calculated to be np,=1.51853.

It is also well known that the field is maximum at the metal/dielectric interface 

and decays exponentially in both the boundary regions. The metal-clad fiber can be 

considered as a folded-back metal/dielectric interface. The field in the outer metal layer
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decays quickly, whereas the slowly decaying field in the dielectric region couples to a 

similar decaying field at the diametrically opposite side, to form a dip at the centre.

Fig.6.23 Variation of the ratio of the dielectric core to dielectric/metal interface field intensity for 

the TM oo optical mode and the ratio of the dielectric/metal Interface to dielectric core field 

intensity of the T M 0i optical mode, with the core radius, rco.

The variation of the ratio of the core/interface field intensity, \J^N2, for the T M 00 

optical mode, with the core radius, rCOl is shown in Fig.6.23. The field intensity at the 

metal/dielectric interface along the circumference is always higher than in the centre 

dielectric core region and as the radius is increased, the ratio decreases, since the 

field intensity in the core is reduced as this process decouples further two surface 

plasmon modes at the diametrically opposite ends. When the core radius is decreased, 

the core field intensity is increased and the optical mode gets flatter at the centre, 

which is highly desirable for use in NFSOM applications. Since the core region is very 

small, the effective index of the optical mode is similar in value to the high refractive 

index experienced with the surface mode at the metal/dielectric interface and its 

dispersion behaves differently from those of the other higher order optical modes. All 

the higher order modes are predominantly the fiber modes, perturbed only at the 

core/cladding dielectric/metal interface.
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Fig.6.24 Optical field distribution and axial field profile (insert) for the higher order TM0i optical 

mode of the metal-clad optical fiber.

Figure 6.24 shows the field distribution (and the axial field profile in the insert) 

of the TM0i optical mode, which has some desirable features used in NFSOM 

applications. The field intensity of this optical mode, which is again symmetrical along 

the circumference, is of higher amplitude in the dielectric core region than at the 

metal/dielectric interface and it changes sign in the core region near to the 

metal/dielectric interface. The ratio of the field intensity at interface/core regions, 

-V3/V4, shown in Fig.6.23, increases as the radius of the core, rco, is decreased. The 

ratio curve seems to be flattening for very small values of radius, as it approaches the 

cut-off, however, never exceeding 40%, indicating no significant change of the ratio at 

a small radius. Although the field in the dielectric core region reduces as the radius is 

decreased, it is always higher than the field at the metal/dielectric interface.

The above two optical modes examined, TM00 and TM01, which are both symmetric, 

are used in NFSOM depending on the optical field requirements, whether a strong 

optical field is required in the centre of the probe, or at the rim of its aperture.
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Fig.6.25 Variation of the normalized attenuation constants for the TM polarized modes for the 

metal-clad optical fiber.

However, these modes also suffer from attenuation, and the normalized 

attenuation curves for the fundamental and the other higher order TM polarized modes 

are shown in Fig.6.25. The TM00 has the highest normalized attenuation constant for a 

small radius of the metal-clad optical waveguide, because at this range the optical field 

is higher at the dielectric/metal interface, and therefore there is more optical field 

confined in the lossy material, which is the metal-cladding. The total power 

confinement in the fiber core is also smaller as the core dimension is reduced. All the 

normalized attenuation curves decrease as the core radius increases since the area of 

the dielectric core becomes larger than that of the metal-clad area with appreciable 

field and the optical field in the latter is reducing.

The maximum normalized attenuation constant for the TM modes, in the 

ranges examined, is that of the TM00, for a core radius r=0.14pm, which is about 0.07 

(w78000dB/cm). Such a level of attenuation can be considered high, but, according to
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Fig.5.9, in Section 5.3.1, where the limit of the perturbation technique is examined, for 

such attenuation, the accuracy of the approach is not deteriorated by appreciable 

amount, therefore the results can be considered relatively accurate. On the other hand, 

the main scope of the analysis of such types of structures, was not the high accuracy 

of the propagation characteristics, but the classification of the propagting modes and 

the identification of those modes suitable for NFSOM applications, along with the effect 

of surface plasmon waves in the above waveguides.

(a)
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Fig.6.26 Hx field distribution for the a)TMi0 and b)TM20 modes for the metal-clad optical fiber.

The TM 10 and TM2o modes, shown in Fig.6.26, have similar characteristics with the 

normal higher-order fiber modes, with the only difference the sharp field decay, at the 

exterior of the core circumference, due to the metal/ dielectric boundaries. They have 

the same field profile along the radial radial direction as the TM00 mode: however, they 

have an azimuthal variation and the variation of their attenuation constant is similar to 

that of the TM0i mode. The TM0i optical mode has the lowest attenuation 

characteristics because, as discussed earlier, the field is more confined in the lossless 

dielectric core area.
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Fig.6.27 Variation of the effective indices of the two TM polarized modes with the mesh 

refinement for core radius, rco=0.2pm.

One of the features of the finite-element method is the potential improvement of 

the accuracy of the solution by refining the mesh of the cross-sectional area of the 

waveguide. Mesh refinement tests are always essential in order to investigate the 

accuracy of the results obtained and to test the convergence of the solution. The 

variation of the effective index and the normalized attenuation constant, with the 

increase of the number of finite-elements used, was calculated in this work for the two 

lower order TM optical modes of the metal-clad optical fiber, at a core radius, rCOl of 

0 .2 pm. From the variation of the effective index of the TM0o and TM 10 optical modes 

with the mesh refinement, shown in Fig.6.27, it can be seen that both curves tend to 

converge at the very fine mesh of 16200 finite-elements and the difference from the 

values obtained for the coarse mesh of 1800 finite-elements is about 3.5% and 5% for 

the TM00 and TM 10 optical modes respectively. In this work, a mesh of 5000 finite- 

elements was used for most of the results obtained, which is accurate enough, since 

the difference from the result obtained with finer mesh, of 16200 finite-elements, is 

about only about 1%. Solutions obtained with less than 1800 finite-elements are very 

unstable and the error increases exponentially as the number of finite-elements 

decreases. On the other hand, as the mesh refinement increases over a certain limit,
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the solution may become unstable due to rounding-off errors, but apart from this 

(which rarely occurs), the only limitations for further mesh refinement are only cpu 

execution time and the memory capacity of the computer. Typical cpu time required for 

medium mesh refinement of 5000 elements is about 25 sec, on SUN Classic 

Workstation.

a / k o

Fig.6.28 Variation of the normalized attenuation constants of the two TM polarized modes with 

the mesh refinement, for core radius, rco=0.2 |jm.

Additionally, Figure 6.28 shows the variation of the normalized attenuation 

constants with the mesh refinement for the two lower order TM optical modes. Again, 

these curves converge at the very fine mesh of 16200 elements and the difference 

from the solutions calculated with the coarse mesh of 1800 is about 30% and 51% for 

the TM00 and TM0i mode. Use of finer mesh division is more important for the loss 

analysis of such structures than the estimate of the purely real propagation constants.
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6.4.3 TE mode analysis

Next, the variation of the effective index with the metal-clad fiber radius, rco, for 

the fundamental and the higher order TE optical modes is also calculated, and 

presented in Fig.6.29. It can be seen that the effective indices decrease as the core 

radius is reduced and all the modes reach a cut-off region after a certain value. It is 

well known that the TE modes are not much affected by the metal layers and their 

modal properties are similar to those of other TE modes in dielectric optical 

waveguides. The fundamental TE00 optical mode has a larger effective index and 

reaches cut-off at a very small core radius, compared to the other higher order TE- 

polarized modes.

ne

Fig.6.29 Variation of the effective index with the core radius, rco, for the TE polarized modes of 

the metal-clad optical fiber.
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Fig.6.30 Optical field distribution and axial field profile (insert) for the fundamental TE00 optical 

mode of the metal-clad optical fiber.

From the field distribution of the above optical mode, shown in Fig.6.30, and 

the axial optical field profile (insert), it can be seen that the TE00 has characteristics 

similar to those seen in a standard optical fiber. The field profile is similar to a very well 

confined fundamental mode in a dielectric waveguide with negligible field in the 

cladding region. There is a high field intensity at the centre of the dielectric core and 

the optical field decreases along the radial direction, without any sharp field variations 

at the metal/dielectric interface. On the other hand, unlike the TM00 mode which has a 

more uniform field profile in the core region with a sharper field decay in the cladding, 

the TEoo does not have a similar feature. The TE00 is suitable for use in scanning 

microscopy, when the scanned object is at the centre of the mode, while the TM00 

mode is preferable as the object moves at sides, where the field intensity of the above 

mode is higher.
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Fig.6.31 Optical field distribution and axial field profile (insert) for the higher order TE0i optical 

mode of the metal-clad optical fiber.

Additionally, the higher order TE0i optical mode, which is shown in Fig.6.31 

(with the axial optical field profile in the insert), has some interesting features which 

may be desirable for NFSOM applications, due to their symmetrical shape along the 

circumference. This mode shows some similarities to the TM0i mode illustrated in 

Fig.6 .22, since both the modes have a high field intensity in the centre of the metal- 

clad optical fiber and an appreciable field at the metal/dielectric boundaries along the 

circumference. The main difference between them, which can be seen from the axial 

field profiles in the inserts of the two figures, is the field intensity at the dielectric metal 

interface. For the TM0i mode there is a very sharp change of the field intensity at the 

interface, while for the TE0i optical mode, which is a normal guided fiber mode, since 

there is no field variation in the metal-cladding, that change is rather smooth.
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a / k 0

Fig.6.32 Variation of the attenuation constants for the TM polarized modes for the metal-clad 

optical fiber.

Finally, normalized attenuation curves are plotted for the TE polarized modes, 

as shown in Fig.6.32. The normalized attenuation constant (cdk0) decreases for all the 

TE polarized modes at the similar rate as the core radius increases. The fundamental 

TEoo optical mode has the lowest attenuation characteristics, since there is no 

appreciable field intensity in the lossy metal-cladding. However the TE0i mode has a 

higher normalized attenuation constant, since there is a finite field intensity at the 

dielectric/metal interface and inside the metal-cladding.
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(b)
Fig.6.33 Hy optical field distribution for the a) TE10 and b) TE20 modes for the metal-clad optical 

fiber.
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The T E 10 and T E 20 mode profiles, shown in Fig.6 .33, are normal higher-order 

guided fiber modes, since the metal-cladding does not affect their field distributions 

and they have a similar field profile along the radial direction as the T E 0o mode. 

However, their field profiles vary azimuthally and the variation of their attenuation 

constants are similar to that of the T E 0o and T E 0i modes. It can also be noted that the 

fundamental T E  polarized mode, T E 00, suffers much lower attenuation than the 

fundamental T M  polarized, T M 00, mode, because for the first mode, there is not an 

appreciable level of field in the lossy metal-cladding.

6.5 Summary

In this chapter the FEM, in conjunction with the perturbation technique, have 

been used in the analysis of some practical optical waveguides, which exhibit surface 

plasmon modes due to the metallic elements in their structure. First a composite 

coupled structure, consisting of an aluminum layer and an InGaAsP rectangular 

dielectric waveguide, both surrounded by a InP substrate, was studied. The complex 

propagation characteristics of the first two supermodes of the structures were 

calculated and the phase matching condition of the above modes has been 

investigated. Then a TE/TM polarization splitter, based on two parallel rib waveguides, 

with metal cladding on one of the ribs, was analysed, and the various parameters for 

the design of an optical polarizer were investigated. Finally, the TM and TE polarized 

modes of metal-clad optical fiber have been classified and presented and results for 

propagation and attenuation characteristics have been obtained, by using the finite- 

element method in conjunction with the perturbation technique. In this approach, the 

metal-clad optical fibre was solved in Cartesian coordinates with a very fine mesh in 

order to overcome the problem of representing the curved section along the boundary. 

With the appropriate boundary conditions, to distinguish the several modes, the 

problem was solved successfully by using two-fold symmetry in order to achieve a 

higher accuracy than otherwise. In the above analysis, suitable mode profiles for 

NFSOM applications were identified and attenuation for the modes was estimated.
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Discussion and Suggestions 

for further work

7.1 General conclusions

A general evaluation of the work carried out during the course of this study, in 

terms of the methodology used and the validity of the results presented, is attempted in 

the following discussion, which eventually leads to the conclusion that the objectives 

set out at the beginning of this research were essentially achieved.

An efficient finite element approach, based on the vector and the scalar 

approximation H-field variational formulation in conjunction with the perturbation 

technique, was developed, for the analysis of optical waveguide exhibiting small loss or 

gain properties. The propagation and attenuation or gain properties of typical optical 

waveguide structures, incorporating small loss or gain, were investigated by using the 

above approach and the results presented were compared and found to be in fine 

agreement with published results for the same structures, obtained by other numerical 

approaches or experimental work, thus verifying the accuracy of our method. The 

development of the above numerical algorithm and the establishment of its accuracy, 

were the prime objective of this work.
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An incremental search algorithm was implemented to achieve the solution of 

the complex transcendental equation, for several types of planar structures, exhibiting 

loss or gain. The above algorithm was extended to optical waveguides with two- 

dimensional mode confinement, by developing a complex effective index method 

(CEIM), where the complex transcendental equation was solved for each transverse 

direction and polarization respectively. Although the complex effective index method is 

limited in applications and accuracy when dealing with complicated structures, it can 

handle any value of loss or gain of optical waveguides with simple geometry. The 

above feature was utilized to define the limit of the perturbational finite element 

approach, thus achieving another important objective of this work. The application of 

the perturbation theory in the solution of optical waveguide problems, is based on the 

assumption that the propagation constant and the field distribution of a loss-free optical 

waveguide are perturbed by a small amount, in the presence of small loss or gain. One 

of the aims of this study was to investigate the term ‘small’ in the above assumption, by 

assigning an upper limit to the perturbation technique, which would determine the 

maximum overall loss or gain of an optical waveguide, for which the calculations can 

be considered accurate. This has been achieved by employing the semi-analytical 

approaches mentioned above, to study the gain and attenuation properties of optical 

waveguide structures with simple geometry, with the variation of the loss or gain 

properties of their materials, expressed by the imaginary parts of their refractive 

indices. The solution of the complex transcendental and the CEIM were used in the 

analysis of planar optical waveguides and optical waveguides with 2 -dimensional 

confinement, such as rectangular and simple rib waveguides, respectively. The gain 

and attenuation characteristics of each of the above structures obtained by the semi- 

analytical method, were plotted and compared with those calculated by the finite 

element approach with perturbation. The limit of the perturbation technique was then 

defined as the value of the modal loss or gain at which the two curves diverge. The 

accuracy of the finite element approach with perturbation for all the structures 

examined, was shown to deteriorate only when the modal loss or gain was more than 

1000 to 10000 dB/cm. Modal loss/gain values below the above range, for which the 

finite element approach with perturbation has been proved suitable, are typical for the 

most practical optical waveguide applications.

The gain/attenuation constant for several guided wave devices with elements 

that exhibit loss or gain in their material properties has also been calculated by an 

approximate approach developed, which uses the imaginary part of the refractive index
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in these regions and the field confinement factor. The results obtained by the above 

approach were compared with those calculated by using the finite element method with 

perturbation, for different types of optical waveguide structures. The accuracy of the 

approximate method was found quite satisfactory in cases where the field is well 

confined in the area where either gain or loss properties exist, and the gain/attenuation 

properties can be calculated without applying perturbation or solving directly the 

complex eigenvalue equation. However, when the confinement factor is smaller or gain 

and loss exist simultaneously in different regions of the structure, care should be taken 

in the use of the approximate method.

The accurate modelling of optical waveguides for certain industrial applications, 

in order to determine the fabrication tolerances in the various dimensions, requires 

efficient numerical techniques, because analytical approaches are inadequate to deal 

with the complex geometry and the variation of the dielectric parameters of such 

structures. The study of the several numerical approaches available for the solution of 

optical waveguide problems, in order to determine the most suitable approach for such 

analysis, was one of the objectives of the present work. The earlier work in the field, 

has shown that the finite element method is a very powerful and accurate numerical 

approach, capable of handling a wide range of optical waveguide problems, such as 

the arbitrary cross-section waveguide, including open and odd-shaped boundaries, the 

arbitrary refractive index profile and the use of anisotropic materials. The vector H-field 

variational formulation of the approach, is more preferable than other variational 

formulations, since the magnetic field H is naturally continuous across the dielectric 

interfaces and the associated natural boundary condition is that of an electric wall, 

which is also convenient to consider in most practical applications. The appearance of 

non-physical solutions by the application of the H-field formulation, can be easily 

treated by the use of the penalty coefficient technique, in which the constraint V.H=0 is 

imposed to eliminate effectively the spurious modes.

In the present work, a finite element approach based on the H-field variational 

formulation was implemented, for the solution of the several types of loss-free optical 

waveguides, in order to obtain the propagation constant and nodal field values of the 

unperturbed guided optical modes. A numerical technique based on the perturbation 

theory was then implemented, in which the calculated unperturbed parameters of the 

loss-free waveguides and the perturbed dielectric properties of their materials due to 

loss or gain were taken into consideration, in order to calculate the overall
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attenuation/gain modal characteristics of the above structures, in the presence of loss 

or gain media. The finite element approach in conjunction with the perturbation 

technique provides an integrated, accurate and efficient CAD package for the analysis 

of several types of optical waveguide structures. The above approach combines the 

ability of the finite element method to analyze accurately optical waveguides with any 

shape, refractive index profile and anisotropy, and the simplicity and efficiency of the 

perturbation technique in the determination of the loss and gain characteristics of such 

structures.

Among the limited methods that can handle optical waveguides exhibiting loss 

or gain properties, probably one of the most accurate numerical approaches is the 

finite element approach based on the variational formulation in terms of the transverse 

components of the magnetic field, also known as the Ht formulation. The above 

formulation can solve directly the complex eigenvalue problem with reduced number of 

field components, it is free of spurious modes, since the V.H=0 constraint is 

automatically imposed, and can calculate the loss/gain characteristics of optical 

waveguides with any amount of loss or gain in the dielectric materials. However, the 

majority of the available complex solvers, which are required for the solution of the 

complex eigenvalue equation in the above approach, are based on dense matrix 

algorithms, which are inefficient in terms of computational time and memory 

requirements. Even with the use of efficient sparse matrix solvers, the presence of 

complex matrices, requires a great number of iterations to achieve convergence of 

both the real and imaginary parts, which is time consuming. By contrast, the finite 

element approach, based on the H-field formulation, offers a more efficient alternative 

approach for the solution of optical waveguides with loss/gain characteristics. The two 

approaches were compared, in terms of accuracy, computational time memory 

requirements and applicability, for different types of optical waveguides, with two- 

dimensional field confinement. The results calculated by the H-field formulation with 

perturbation, were compared with those obtained by the Ht formulation and found in 

fine agreement, therefore the accuracy of the H-field formulation can be considered 

satisfactory. The efficient sparse real matrix solver required less computational time 

than the analogous complex matrix solver, for the same number of elements, because 

the latter needed more iterations to achieve convergence of the solution, which also 

resulted to more memory space to perform the calculations. The spurious modes 

observed in the H-field formulation, can also be eliminated quite easily, by the penalty 

coefficient technique, and the loss/gain ranges, for which the H-field formulation with
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perturbation is applicable, are the typical loss/gain levels for practical optical 

waveguide applications.

A finite element approach based on the scalar approximation of the vector 

H-field formulation and the perturbation technique has also been developed in this 

work. In general, the scalar approximation is a very popular approach, suitable for 

weakly guiding structures, where the refractive index difference between the guiding 

region and the substrate or cladding is small, which is the case for the most of the 

practical optical waveguides. In the present work, the scalar approximation with the 

perturbation technique has been extensively used for the determination of the 

gain/attenuation properties of all the types of optical waveguides considered. It has 

been shown that the above approach was highly accurate in the analysis of simple 

optical waveguide structures, when compared with the full-vector formulation and other 

numerical methods. Even in the analysis of structures with complicated geometry, the 

accuracy of the scalar approach did not deteriorate by a considerable amount. The 

high efficiency in terms of computational time and memory requirements, and the 

accuracy, which can be increased further with more mesh refinement without 

appreciable cost in time and memory space, makes the scalar approximation 

preferable in certain applications. In some industrial applications, where high accuracy 

is required in the determination of the fabrication tolerances in the device dimensions, 

the full vector formulation is certainly more suitable, while in cases where only the 

characterization of the basic propagation and attenuation/gain properties of the 

structure is aimed, the scalar formulation is adequate. The choice of the most 

appropriate approach, depends on the trade off between the high efficiency, in terms 

of computational time and memory requirements and the high accuracy, and the type 

of the application.

The knowledge gained from the determination of the fundamental properties of 

the simple optical waveguide structures, which are the basic elements of the several 

integrated optics applications, enabled the extension of the analysis to optical 

waveguides with more complex geometry, whose solutions are of significant practical 

interest in the optoelectronics industry, thus achieving the final objective of this work. 

The surface plasmon and attenuation properties of the several planar optical 

waveguides with metallic elements were thoroughly investigated, and utilized to 

characterize optical waveguides with two-dimensional confinement which exhibit such 

properties and have a wide applicability in practical optoelectronic devices. The modal
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analysis of certain types of composite coupled structures, where surface plasmon 

modes and attenuation characteristics take place due to the interaction of metal and 

dielectric elements, was carried out by using the finite element approach with the 

perturbation technique. The optimization of certain parameters of such structures that 

contribute to the phase matching between the guides, is very important in optical 

polarizer design. The modal and attenuation characteristics, of sub-micron metal-clad 

fibers were also determined, by using the perturbation approach, and certain optical 

modes, suitable for near-field scanning microscopy (NFSOM), were identified. NFSOM 

is one of the recent advances of the lightwave technology, with a wide range of 

applications in bio-medical science, exhibiting higher efficiency and resolution than 

other conventional microscopy techniques. Further, the gain and attenuation properties 

of several semiconductor laser waveguides, which form the basis of integrated optics 

applications, have been determined. The effect of the variation of the carrier density in 

the active layers of the above structures, which is very important in the optical 

properties of semiconductor lasers, has also been investigated. Finally, the effect of 

the lossy metal electrodes on the optical properties of an electro-optic directional 

coupler modulator has been examined.

The development, testing and verification of an accurate and efficient numerical 

algorithm for the modelling of different types of optical waveguides is a very important 

task and a major part of this work is devoted in achieving that objective, by developing 

several approaches dealing with the solution of optical waveguides incorporating loss 

or gain. Apart from the development of a tool for solving certain optical waveguide 

problems, the application of the approach to practical optical devices is equally 

important, and therefore a great part of the present work has been focused in utilizing 

the developed methods for the characterization of several practical optical waveguide 

structures, like those mentioned above. Such applications, not only enrich the 

knowledge on practical problems that may arise during the optimization of the several 

devices, but also boosts up the interest of the optoelectronics industry, in using the 

package for the determination of the several fabrication tolerances in similar devices.

7.2 Suggestions for future work

It has been shown that the finite element method developed, based on the 

vector H-field variational formulation, and the perturbation technique, is a highly
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Chapter 7 Discussion...

efficient and accurate numerical modal analysis approach for the determination of the 

propagation and attenuation/gain properties of several types of practical optical 

waveguides. A further application of the present work could be the extension of the 

approach to the characterization of some more recent advances in integrated optics 

technology, such as surface-plasmon devices and erbium doped fibers. This work has 

moved towards that direction, by analyzing certain types of integrated laser structures, 

optical polarizers, modulators and metal-clad fibers, but apart from the modal analysis, 

some applications require efficient propagation algorithms, which was not the task of 

the present research.

A further improvement, in terms of computational method, could be the 

implementation of an Ht formulation, for the analysis of loss-free structures, which can 

utilize the existing real symmetric sparse solver, and the application of the perturbation 

approach to the obtained unperturbed solutions, to extend the approach to optical 

waveguides with loss or gain. Such an approach could be efficient, and free of 

spurious solutions, but certain problems could arise in the development of the 

formulation in terms of compatibility with the existing solver.

Some other modern computer languages and packages, which offer better 

graphical representation, can also be considered in the future for the modelling of 

optical waveguides, instead of the FORTRAN language. Of course, that would require 

additional research in the mathematical field for the development of new solvers to 

perform the calculations. The development of CAD-type user friendly package would 

also assist research workers in the area of optoelectronics.
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Evaluation of the element matrices

The elements of the matrices [A]e and [B]e in equations (2.63) and (2.65) can be 

evaluated by expressing the derivatives of the shape function vectors in terms of the 

shape function coefficients, as determined in (2.57) and (2.58), and by performing the 

integration of the shape functions with the aid of equation (2.64).

The 9x9 real symmetric [7\]e element matrix (2.63) can be analyzed into nine, 

3x3 sub-matrices, formed by the operations between the shape function vectors and 

their derivatives as:

I I

[A]„

d y  d y  

d {N }  d {N }T

d x d y

II
IL

d y  dx 

d { N } T
P {A /}

dx

d x d y

d x d y

I I

II.

II.

d {N )  d {N } r
d x d y

dy dx

, „ t  . d {N }  d {N }T

1 dx dx

d {N }T

dx

B {N }T

d x d y

P {A /}
3 {N ) T

dy
d x d y

II.[e<w>
d x d y  J jo p {A /}

d { N } d { N } T 3 { N ) d { N } 1

dy

(A.1)

d x d y

II. d y  d y  d x  dx
d x d y

Some typical calculations for the various sub-matrices are shown below
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fi p  H u m
d{N} d{Nÿ  
dy dy

dxdy =

Ji
A/,
n 2 •{A/, N2 N3}+<

a3

a6 •{a3 a6 a9}

N i . a9.

dxdy

-J i

a /,/v 2 a /,a/3 a3 a3a6 a3a9

P2 n 2n , n 22 n 2n 3 + a6a3 a 6 a6a9
n 3n , n 2n 2 N 2 ^9^3 ^9^6 ^9

dxdy =

(0
(02 16 + aJ) (p

/ 1 2  + a6a3) (0
2  /12 + a,aA j  (p2 /12 + a,a,

/ 1 2 + a 9a3i  ^P / 1 2  + aQa

3 " 6

2
6

9  “ 6

3 9

2 16 + al  j  (p2 / 1 2  + a,a6 ° 9

2 ') (p2 / 6  + a92)

x /Area

(A.2)

11-
d{N} d{N}T
dy dx

V
— <a6 •{a2 a 5 a g } dxdy = -

a9.

x Area (A.3)

JTP{/V} a{A/)r
dy

dxdy =

A/,
A/2

A/,
a, a9} dxdy = p <Area (A.4)

All the other elements of the matrix [A]e are determined by different 

combinations of the above calculations.

There is only one type of non zero 3x3 sub-matrix in the element matrix [B]e 

(2.65), which can be evaluated as:

[SL = JJ[{A/}{A/}r]dxc/y = JJ

A/,2 m a /,a /3 ' 1 / 6 1 /1 2 1 /1 2 '

A/2A/, n 22 m dxdy = 1 / 1 2 1 / 6 1 / 12

m a /3a /2 N 2 1 / 1 2 1 / 12 1 / 6

x A re a (A.5)
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The shape function coefficients in all of the above calculations are determined 

in terms of the coordinates of the triangular elements, by cyclic exchange of the 

subscripts in (2.43).
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Calculations for a four-layer planar 
optical waveguide

L4

y t  u

--------- ►
X 1-2

Li

Fig.B.1 Four-layer planar waveguide

n4

n3

-  y=h3

d3

n2
-  y=h2

d2

■ * -  y=hi =0

ni

A four-layer planar optical waveguide, as shown in Fig.B.1, is being considered, 

where n: to n4l to hA and d  ̂ to d2, are the refractive indices the heights and the 

thickness of the various layers respectively. By considering TE analysis, where the 

non-vanishing fields are Ex, Hy and Hz, and by applying boundary conditions (3.22) and 

(3.23) for the transverse components, Ex and Hz, the following expressions are derived:

a) For y -  ĥ  = 0,
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A, + 6 , - A 2 - B 2 = 0 (B.1)

A]p ] + B]p ] -  A2p 2 + B2p 2 = 0 (B.2)

b) For y=h2,

A2 exp(p2d2 ) + B2 exp( - p 2d2 ) -  A3 -  B3 = 0 (B.3)

A2p 2 exp(p2d2) - B 2p 2 exp( - p 2d2) - A 3p 3 + B 3p 3 = 0 (B.4)

c) For y=/?3,

A3 exp(p3d3) + B3 exp(~p3d3)~  Aa -  B4 = 0 (B.5)

A3p 3 exp(p3d3) -  B3p 3 e xp (-p 3d3) -  A4p4 + S 4p 4 = 0  (B.6)

The above equations can be expressed in matrix form as:

[D ][A  B, A  B2 / l3 S3 ¿ 4 B4] r = [0 ] (B.7)

where [D] is the matrix containing the coefficients of the constants (A t to A4 and to 

B4) and can be evaluated as:

' 1 1 -1 -1 0 0 0 0

Pi -p, -P i Pi 0 0 0 0

0 0 exp(p2d2) exp(-p2d2) -1 -1 0 0

0 0 p2 exp(p,d2) -p 2 exp(-p2d2) -Pi Pi 0 0

0 0 0 0 exp (p3d3) exp (-p 3d3) -1 -1

0 0 0 0 p3exp(p3d3) -p 3exp(-p3d3) -P 4 P4
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Calculations for the scalar FEM with 

perturbation

By discretizing the cross section of an arbitrarily shaped optical waveguide into 

first order triangular elements, and expressing the field vectors H0 and E0 in terms of 

their components along each direction, the perturbation formula (3.32) can be written

as:

®2>', Ji(Ei * El  + E])dxdy
V , f 7 ---------------------7---------  (C.1)2S iI(E*Hy +EyH* )dxdy

e

For the TE modes, Ey= Ez = Hx= 0, therefore, by using Maxwell’s equations for 

the planar optical waveguide (3.1-3.2) to express the magnetic field components, the 

perturbation formula can be written in terms of Ex, which is the dominant field 

component as:

ko T e'e H ( E* )dxdy
a = -----?-----yy~.---- 7---------- (C.2)

2PZJ1 { E \ ) dxdy
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Ex can be expressed, in terms of the shape function vector, {N} (2.52), for each 

triangular element as:

Ex = {N}J{Ex}e (C.3)

By re-arranging the matrices, the perturbation formula can then be written as:

K ! 2 > 'e f  l( { £ ,> :m N } r { £ . ), )dxdy
a = ----- 5--------------------------------------------------- =

2P Z  \ i ( { E , ) lm N } T{E'}.)dxdy
e

(C.4)

{EXV
1

2 >o2e'e
e

^ { N } { N } Tdxdy {Ex}

2P X J I  m N f d x d y
e

{Ex}

where {Ex} is the nodal field vector for Ex.

Equation (C.4) can then be expressed in matrix form as:

^  1 {Ex} r [K' ]{Ex}

2P {EX}T [B]{EX}
(C.5)

By using (2.64), matrices [B] and [K] can be defined as:

A /r a/.a /2 n >n 3

r a d i l i n 2n , n 22 n 2n 3 dxdy = £
e

a /3a /, n , n 2 a /32
e

/ 6 1 / 1 2 1 / 1 2

/ 12 1 / 6 1 / 1 2 x /\reae (C.6)

/ 1 2 1 / 1 2 1 / 6

A/,2 a/,/v2 /v ,/v3 “ 1/6 1/12 1/12“

[K'] = IiJ > o V e /V2/V. a/22 a/2/v3 d xd y  = 1/12 1/6 1/12
e a/3a/, a/3a/2 /V32 e 1/12 1/12 1/6

For the TM modes, Hy = Hz = Ex = 0, therefore, by using Maxwell’s equations 

(3.4 and 3 .5 ) to express the electric field components, the perturbation formula can be 

written in terms of the Hx dominant field component as:
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r j  j iphj
a =

r dHx V

K d y  j

dxdy

2pE J 1 ‘
(C.8)

e ° e

The Hx field component, for a triangular element, can be exressed in terms of the 

shape function vector {A/} as:

Hx = {N }T{Hx} t (C.9)

By using the above transformation, the perturbation formula can be expressed

as:

r ; il M + dl^ }T { „ } ,  5{" ) r
dy dy

a =

2PS i l  } e{N }T {H,

<c 10)

By re-arranging the matrices, (C.10) can be written as:

I?  J!
a

e ° e

m m '  + a<N> s(f
dy dy

{Hx}< dxdy

i l ( { H x}T, m m TI.H,}e)dxdy
(C.11)

Then, the perturbation formula can be formulated in matrix notation as:

a = -
1  {Hx } t [L]{Hx}

2 {HX}J[B']{HX}
(C.12)

[L] = ( ftM] + ^[Q]) (C.13)

[M] = X  {N}{N}T dxdy (C.14)
JA p

e ° e
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iQi = U l £f K } K } dxdy <c/l5)JA  p  
e

{Nv} =
d{N}_
dy

(C.16)

where {Hx} is the nodal field vector for Hx.

By using (2.64) for the estimation of the surface integrals and, (2.57) and (2.58) 

for the coefficients of the derivatives of the shape function vectors, matrices [L] and [6 ] 

in the perturbation formula (C.1 2 ) can be evaluated as:

P 1 2 P I  P I+ - a :  —  + - a , a 6 —  + - a 3a9
3 -  -  12 p6 p

i -  + i
12 p

i -  + i
12 p

P- + i
12 p

6 p
1
12 p

- a 6a3

h— a9a3 —  + — a9a6

—  + —a6a9i +i
12 p

5  + 2 .
6 p

x Areaa (C.17)

[ S ’ ] =  Z - a6a3

a9a3

a3a6

a9a6

a3a9
a6a9 x /4rea0 (C.18)
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Calculations for the full H-field vector 
FEM with perturbation

In the perturbation formula (3.32), the Electric field, E0 can be analyzed in terms 

of its components along each direction as:

E0 = xEx + y E y -  jzEz (D.1)

where Ex, Ey, and Ez are the Electric field components, and x , y  and z , the normal 

unit vectors in each direction respectively.

Then, the square of the magnitude of the electric field, |E0| , is defined by:

|E012 -  E 2X + Ey + E2z (D.2)

By using the Maxwell's equations, the Electric field components can be expressed in 

terms of the magnetic field components in the perturbation formula, as it has been 

shown in equation (3.53). By expressing the magnetic field in terms of the shape 

function vectors, by using (3.54), and expanding the square terms, the numerator of 

the perturbation formula (3.53) can then be expressed as:
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[N}{N}T{Hy} + {H z) l {Ny}{N y}T [H z} e -  {Hy}Te2 m { N y}T{Hz}e + 

+{Hz}/ {NX}{NX)T{H2}e + [Hx}Tep2[N}{N}T{Hx}e -  [Hx}Te2fi{N}{Nx}T {Hz}e + 

~{H, } .T{Ny }{Ny}T{Hx}e - {H y } Te{Nx}{Nx}T{Hy}e + {Hx}Te2{Ny}{Nx}T{Hy}e

d x d y
(D.3)

where {A/}, is the shape function vector (2.52), and {Nx} and {Ny} are defined by:

{ N x } =
d{N]
dx

{Nv} =
d{N}
dy

(D.4)

By considering common terms and re-arranging, (D.3) can be written as:

{Hx}l[V2m N } T - { N y}{Ny}T]{Hx}e + {Hy}Te[v2{N}{N}T - { N x}{Nx}T]{Hy}

+{Hz}Te[{Ny}{Ny}T + {Nx){Nx}T]{Hz}e - { H x}Te2 m { N x}T{Hz}e

+

>dxdy

- { Hy }e 2P(A/}(A/y }t {Hz }e + {Hx )Te 2{Ny }{NX }T{Hy }e

(D.5)

Alternatively, the square of the magnitude of the electric field, E0|2, in the 

perturbation formula (3.32), can be expressed as:

|E I2 = E E (D.6)Pol t 0t-0 ' '

where E0 can be written in matrix notation as:

1
X

Uj

1

0 P
. d

~ J Y
. d

H x '

UJ

coe
-P 0 H  y

1 ni N . d  

1 d y

. d

- ] Y x
0 r ' i H z .

By discretising the waveguide cross-section into triangular and expressing the 

magnetic field components for each element in terms of the shape function vector {N}, 

equation (D.7) can be written as:
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N  =  —

" { o } 7 m T - { N y V { « . }

- m T { o } 7 { N x y
coe

j { N y V - j { N x V {O }7 . H i .

By using the above equation (D.8), the numerator of the perturbation formula 

(3.32) can be expressed as:

1
(0 e

H I
T

' {0} - m  j{Ny} " {0}7 m T - { N y f Hi
ZJHI1Hi m {0} ~j{Nx} - m T (0}r iNXY ■Hi

e  b e Hi, ~{Ny} {Nx} {0} j{NyY R N X}T {0}7 Ihl j
H I

T
- [GFX ] [DYDX] [GNDX] Hi

Hi [DXDY] [GFY] [GNDY] Hi
e  b e [{"4. [GDXN] [GDYN] [GFZ]

1
CO

e

(D.9)

where,

[GFX] = [p 2 {N}T {N} -  {Ny } T {Ny }] (D.10)

[GFY] = [p 2 {N} 7 {A/} -  {A/x } 7 {Nx}] (D.11)

[GFZ] = [{A/y } 7 {A/y } + {NX} T{Nx}] (D.12)

[GNDX] = [-p{A /}r {A/x }] (D.13)

[GNDY] = [—J3{A/}r {A/y }] (D.14)

[DYDX] = [{A/y } 7 {A/x }] (D.15)

[GDXN] = [GNDX]1 (D.16)

[GDYN] = [GNDY]1 (D.17)

[DXDY] = [DYDX]1  (D.18)
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The denominator of the perturbation formula (3.32) can be expressed as:

Eft
x

Ex
H v

y z

Ey m N

Hy Hz.

7y - EyH

ZcfQ =

(D.15)

By expressing the Electric field in terms of the Magnetic field, via Maxwell’s 

equations the denominator of the perturbation formula (3.53) can be expressed in a 

discretized form, in terms of the shape function vector {N}, as:

2

co

{HyVem { N } T{Hy }e - { H z}Te{N}{Ny} T{Hy}e + 

~(Hz} Te{N}{Nx}T{Hx}e + {Hx }g fi{N}{N}T {H x } e
>dxdy (D.16)

By formulating into matrix notation, the numerator of the perturbation formula 

(3.54) can be then written as:

2X  —  (D.17)

where, the element matrix [D] is given by:

ID] = ( [

P[G]

[0]
- [X ]

[ 0 ]

m

- [ V ]

dxdy (D.18))

where

[G] = {N}{N} t  (D.19)

[X ] = {Nx }{N} t  (D.20)
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[■Y]={Nym T (D.21)

The surface integrals in both the numerator and the denominator, involving 

shape function vectors can be evaluated by using (2.64), (2.57) and (2.58) in a similar 

way as it has been done in Appendix C, for the scalar case.
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