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I N T R O D U C T I O N

The ability to form accurate predictions of economic and financial variables
is of paramount importance to government bodies, international organi-
sations, and financial institutions alike. From forecasting macroeconomic
variables that inform policy decisions to quantitative risk management, the
practice of forecasting is widespread. Therefore, it constitutes a crucial area
of econometrics, with a particular emphasis on (i) developing new forecast-
ing methods and (ii) evaluating their performance. This thesis contributes to
both these aspects of the forecasting literature.

The difficulty of identifying new forecasting models and selecting be-
tween them is exemplified by the challenging task of predicting foreign
exchange rates. Many structural models derived from macroeconomic the-
ory have been shown to be no more accurate than a random walk (Rossi,
2013). In other words, they have no predictive power. Numerous attempts
have been made to identify the underlying reasons for this, with one possi-
ble explanation being that the parameters in foreign exchange rate models
are time-varying [see, for example, Rossi (2006), Bekiros (2014), or Byrne
et al. (2018)]. Indeed, survey evidence of UK and US based foreign exchange
traders also indicates that their reliance on macroeconomic variables changes
over time (Cheung and Chinn, 2001; Cheung et al., 2004). The first chapter
of this thesis adds to this literature by analysing the unstable relationship
between exchange rates and macroeconomic fundamentals through the lens
of a factor model with time-varying loadings. Leveraging the findings of
Mikkelsen et al. (2019), we estimate a theoretical model in which macroeco-
nomic fundamentals are treated as latent factors. These factors are extracted
as principal components from a novel real-time database that we curated
for this chapter. The database encompasses 272 monthly datasets, each com-
prising over 100 variables from 15 countries. We have made this database
publicly available as a contribution of this chapter. To gauge the signifi-
cance of time-variation, we compare the out-of-sample performance of our
model to a factor model with constant loadings and a random walk. Our

1



introduction

results demonstrate that the time-varying model consistently outperforms
the constant loadings benchmark and even the random walk in multiple
instances.

Building on the out-of-sample evaluation conducted in the first chapter,
the second chapter introduces a new statistical test to evaluate forecasts. One
of the earliest tests for this purpose is proposed by Diebold and Mariano
(1995) and compares two primitive forecasts without considering the un-
derlying models that generated them. However, when employing a forecast
testing procedure for model selection, it is imperative to address potential
concerns such as estimation errors, nested models, and forecast step sizes.
In a seminal paper, Giacomini and White (2006) introduce the notion of
Conditional Predictive Ability and a testing framework that enables the
discrimination between various underlying forecasting methods. Since then,
a number of alternative testing procedures have been introduced [see Clark
and McCracken (2013) for a survey]. However, existing tests are mostly
univariate and only evaluate two competing forecasts at a time. This is
problematic because in many econometric applications dependence between
variables and forecasting models is the norm. This, in turn, introduces
dependencies between univariate test statistics and p-values, as shown in
chapter two of this thesis. In consequence, such tests cannot be evaluated
individually, which motivates the development of multivariate forecast tests
that account for dependence (Qu et al., 2021). The novel approach we in-
troduce in the second chapter combines univariate forecast accuracy tests,
without making any assumptions regarding the joint distribution of the test
statistics. Our approach builds upon recent advancements in the statistical
literature on the combination of dependent p-values (Vovk and Wang, 2020).
It allows for the implementation of whichever tests are most appropriate
in a given scenario and evaluates whether predictive ability holds in the
cross-section. We specify a global null hypothesis that is defined as the
intersection of all individual null hypotheses, while also accounting for false
discovery and dependence. We establish the statistical size properties of
the test in finite samples as well as asymptotically for large cross-sections,
and demonstrate its consistency in the asymptotic case. To examine the test
further, we report extensive Monte-Carlo simulation results and conduct an
empirical application using a large dataset of 84 daily exchange rates

Together, the first and second chapter have inspired the focus of the
third chapter. Although it is widely recognised that individual models,
such as predictive stock return regressions, exhibit predictive power only
during certain periods (Timmermann, 2008), very few tests consider the
possibility that the relative predictive ability of different models may also

2
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vary over time. The first test for time-varying predictive ability is proposed by
Giacomini and Rossi (2010) and can be viewed as a rolling t-test on the loss
differential between forecasts. More recently, Odendahl et al. (2022) introduce
a time-varying predictive ability test that accounts for state dependence.
We add to this literature by proposing two novel forecast evaluation tests
that consider the issue of time-variation in conjunction with dependencies
between forecasts. The first test is a time-varying analogue to the Conditional
Predictive Ability test proposed by Giacomini and White (2006), which
evaluates the null hypothesis conditional on information up to the previous
period. The second test, called Total Predictive Ability test, evaluates the null
hypothesis conditional on the full-sample information set. Both tests can
be applied in a univariate or multivariate framework, where dependencies
between forecasts are explicitly modelled. To assess the performance of
the tests, we conduct Monte-Carlo simulations and apply the tests in an
evaluation of intraday volatility forecasts.
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C H A P T E R 1

E X C H A N G E R AT E S A N D M A C R O E C O N O M I C
F U N D A M E N TA L S : E V I D E N C E O F I N S TA B I L I T I E S F R O M

T I M E - VA RY I N G FA C T O R L O A D I N G S

1.1 introduction

In this paper, we analyse the unstable relationship between exchange rates
and macroeconomic fundamentals. To this end, we apply the two-step
maximum likelihood approach proposed in Mikkelsen et al. (2019) that
enables the estimation of time-varying loadings (TVL) in factor models.

Two-step estimation in large factor models was proposed in Doz et al.
(2011) and Doz et al. (2012). These, together with the important result found
in Bates et al. (2013) that principal components are consistent estimators of
unobserved factors even in the presence of time-varying loadings, allowed
Mikkelsen et al. (2019) to propose the consistent estimation of time-varying
factor loadings in two-step maximum likelihood. Different approaches are
taken in Su and Wang (2017), who estimate smoothly changing time-varying
factor loadings using a local principal component estimator for latent factors,
and Barigozzi et al. (2021), who introduce a generalised dynamic factor
model in which factors are loaded with a time-varying filter.

Since Meese and Rogoff’s (1983) key finding that structural exchange rate
models perform no better than a random walk, arduous empirical work
has been invested into this disconnect puzzle (Obstfeld and Rogoff, 2001);
however, in many cases to no avail (Rossi, 2013). One possible solution for
the disconnect puzzle is to model the relationship between macroeconomic
fundamentals and exchange rates as time-varying. A theoretical explanation
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chapter 1

for the presence of time-variation is provided by the scapegoat theory
(Bacchetta and van Wincoop, 2004, 2013). An observed fundamental becomes
a scapegoat if it is correlated with an unobserved shock and investors
attribute exchange rate fluctuations to the fundamental instead of the actual
unobserved shock. This leads investors to update their expectation about
the effect fundamentals exert in a time-varying manner. Fratzscher et al.
(2015) are the first to present empirical support for this theory by examining
a survey of FX traders to obtain a measure of the scapegoat weights. In the
same vein, Pozzi and Sadaba (2020) construct parameter expectations from
survey data and use a Bayesian approach to determine the probability that
variables are scapegoats. The disconnect puzzle may, however, also be a
product of inaccurate model selection, as suggested by Sarno and Valente
(2009): models would have to be altered frequently to optimally capture
the information embedded in fundamentals and this implies a high degree
of time-variation in their parameters. Kouwenberg et al. (2017) develop a
dynamic model selection rule, which they find to produce better forecasts
than several benchmark models. The reason behind this lies, again, in the
rule’s ability to incorporate time-variation. Further evidence for parameter
instability in exchange rate regressions is provided by Rossi (2006), Bekiros
(2014), and Byrne et al. (2018).

The present paper uses the results of Mikkelsen et al. (2019) to estimate
a theoretical model in which the relationship between exchange rates and
macroeconomic fundamentals is unstable. We treat macroeconomic funda-
mentals as latent factors, which are extracted in real-time from 272 newly
compiled monthly vintage datasets. Specifically, we collate all real-time
vintages of the McCracken and Ng (2016) FRED-MD database from 1999:08

to 2022:02. In addition, we compile large vintage datasets from the OECD
statistical database for the same time periods, which we merge with the
FRED-MD data. This yields a novel real-time database with each series
starting in 1990:04 and ending one month prior to their release.1 Therefore,
rather than just relying on first releases, we include revisions made to past
data with each new release. That is, we accurately replicate the information
set available at each time step, which has been shown to improve forecasts
of financial variables (Coroneo and Caruso, 2022). The information inherent
in these series is extracted via principal components that serve as factor esti-
mates. The factors can be interpreted as real economy, housing market, and
interest rate factors. The model is tested for 14 different currencies vis-à-vis
the US dollar. To examine whether accounting for time variation improves

1That is, the 1999:08 vintage dataset starts in 1990:04 and ends in 1999:07. The 1999:09

vintage starts in 1990:04 and ends in 1999:08, and so on.
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1.2 theoretical model

exchange rate predictions, we compare the results to a factor model with
constant loadings. As constant factor models have been found to deliver
limited to no forecast improvements over a random walk (Engel et al., 2015;
Rossi, 2013), we also analyse whether incorporating time-variation increases
predictive ability relative to a random walk. The paper provides in-sample
evidence that accounting for time-variation improves the model fit consid-
erably as demonstrated by an R2 ranging from 27% up to 88%. It correctly
matches an appreciation and depreciation up to 89% of the time, whereas
the constant loadings model can only explain a very small part of exchange
rate variations, demonstrated by an R2 between 0% and 6%. We show
that taking the aforementioned instabilities into consideration improves the
out-of-sample forecast accuracy of the model across benchmarks and evalu-
ation procedures. First, the time-varying model displays better predictive
ability than the constant loadings model across different forecasting hori-
zons according to the conditional and unconditional Giacomini and White
(2006) test. The constant loadings model never outperforms the time-varying
model. Second, the time-varying model’s forecasts display greater direction
accuracy. Third, it performs better than the constant loadings model relative
to a random walk. It achieves a lower Root Mean Squared Error (RMSE)
than the random walk for up to 9 currencies and outperforms it statistically
in 2 cases. In line with Engel et al. (2015), we find that the constant model
can achieve a lower RMSE only at very long forecasting horizons. Fourth,
when comparing predictive ability locally using the Giacomini and Rossi
(2010) fluctuation test, we observe that the time-varying model improves
forecasts during crises and, for several exchange rates, performs well against
the random walk during periods in which the constant model displays poor
performance.

The paper is structured as follows: Section 1.2 presents the theoretical
model of structural instabilities between exchange rates and fundamentals.
In Section 1.3, the model is mapped into state space form, and the economet-
ric approach is described. Section 1.4 discusses the data, in Section 1.5 we
report the in-sample, and in Section 1.6 the out-of-sample results. Section
1.7 concludes.

1.2 theoretical model

This section derives a model with instabilities in the relationship between
exchange rates and macroeconomic fundamentals. The model belongs to
the same class as the ones examined by Engel and West (2005). That is,
it expresses the exchange rate as the discounted value of expected future

7



chapter 1

fundamentals and unobservable shocks (see equation (1) in Engel and West
(2005)). Specifically, the relation is:

∆st = Ft +
∞

∑
j=1

(
1
µ

)j
E[Ft+j | It]−

∞

∑
j=0

(
1
µ

)j+1

E[ϕt+j|It], (1.1)

where st is the log of the exchange rate measured as the domestic price per
unit of foreign currency, E[· | It] is the expectation of the representative
agent conditional on It, the information set available at time t, and µ ≥ 0.
The value of the exchange rate is determined by the present and expected
future macroeconomic fundamentals Ft. Finally, ϕt is the risk premium. The
above equation results from two conditions. The first is an uncovered interest
parity (UIP) condition:2

E[st+1|It]− st = it − i∗t + ϕt, (1.2)

where it is the nominal one-period interest rate. An asterisk denotes foreign
variables, and deviations from UIP are accounted for by the risk premium
ϕt. The expected change in the exchange rate is thus equal to the inter-
est rate differential between the domestic and the foreign country plus a
risk premium. The second condition relates the interest rate differential to
macroeconomic fundamentals:

it − i∗t = µ∆st − µFt. (1.3)

Engel and West (2005) discuss a range of models that lead to Equation (1.1)
and (1.3), for instance, a Taylor rule or monetary model, and it is also derived
in Bacchetta and van Wincoop (2013, equation 3).3 Combining equations
(1.2) and (1.3) results in

E[∆st+1|It] = µ∆st − µFt + ϕt

∆st =
1
µ
{E[∆st+1|It]− ϕt}+ Ft.

2See Engel (2014) for a survey of exchange rates and interest parity as well as the
existence of the risk premium term.

3Note that Bacchetta and van Wincoop (2013) specify their model in levels and dis-
tinguish between observed fundamentals (Ft) and unobserved fundamentals (bt). They
obtain it − i∗t = µst − µ(Ft + bt) which they show to be consistent with several established
exchange rate models, such as the monetary model. In an earlier version, they show that
this relationship also holds in first differences (Bacchetta and van Wincoop, 2009).
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1.2 theoretical model

Recursive substitution of ∆st, assuming no bubbles, yields equation (1.1),
which establishes the common result that the exchange rate equals the
present value of expected future macroeconomic fundamentals and the
foreign exchange risk premium. In their model, Bacchetta and van Wincoop
(2013) specify Ft = f ′t β as a linear combination of observable macroeconomic
fundamentals, where ft = ( f1,t, ..., fn,t)′ and β = (β1, ..., βn)′. We allow this
combination to be time-varying:

Ft = f ′t ξt = f ′t (β + κt).

That is, consistent with the theory in Bacchetta and van Wincoop (2013), β

describes a long-run equilibrium relationship between fundamentals and
exchange rates, but we allow for transitory, zero-mean deviations in form of
κt = (κ1,t, ..., κn,t)′. Consequently, the relative importance of fundamentals in
determining the exchange rate is time-varying and affected by κt. This speci-
fication nests the constant coefficients case if κt = 0 for all t. To derive the
effect of changes in observed fundamentals on the exchange rate, consider
for simplicity the case of a single fundamental and assume that ft, κt, and
ϕt follow AR(1) processes:

ft = ρ f ft−1 + vt, vt ∼ i.i.d.(0, σ2
f )

κt = ρκκt−1 + ut, ut ∼ i.i.d.(0, σ2
κ )

ϕt = ρϕϕt−1 + wt, wt ∼ i.i.d.(0, σ2
ϕ),

(1.4)

where |ρ f |, |ρκ|, |ρϕ| < 1. Clearly, E[ ft+j|It] = ρ
j
f ft and E[κt+j|It] = ρ

j
κκt.

Assuming ft and κt are uncorrelated, equation (1.1) becomes:

∆st =
∞

∑
j=0

(
1
µ

)j
ρ

j
f ftβ +

∞

∑
j=0

(
1
µ

)j
ρ

j
κ ftκt −

1
µ

∞

∑
j=0

(
1
µ

)j
ρ

j
ϕϕt

= ft

(
µ

µ − ρ f
β +

µ

µ − ρκ
κt

)
− 1

µ − ρϕ
ϕt.

(1.5)

The derivative of the exchange rate with respect to the fundamentals is:

∂∆st

∂ ft
=

(
µ

µ − ρ f
β +

µ

µ − ρκ
κt

)
. (1.6)

That is, the effect of variations in macroeconomic fundamentals on the
exchange rate corresponds to a constant part, µ

µ−ρ f
β, and a time-varying
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chapter 1

part, µ
µ−ρκ

κt. Based on existing studies, one can expect that µ is close to
one (Engel and West, 2005). In that case, if the transitory shocks are highly
persistent relative to the fundamentals, the relationship between the latter
and exchange rates is characterised by a greater degree of instability.

1.2.1 Relation to the Scapegoat Theory

The model relates to Bacchetta and van Wincoop’s (2013) scapegoat theory
in the sense that they also consider a model based on a single stochastic dif-
ference equation. In their framework, fundamentals, too, display temporary
changes in their weights. In contrast to our model, however, this is the result
of investors being unable to pin down the value of the structural parameters
in β. If parameters were known, their model simply implies ∂st

∂ fi,t
= βi. If

parameters are unknown, on the other hand, agents form their expectations
of β over time by updating their beliefs about the impact of fundamentals
which takes the form f ′t β + bt. Here, bt are unobserved shocks that coincide
with changes in fundamentals and thus introduce time-variation. Investors
can observe a large value of the signal f ′t β + bt but are unable to distinguish
whether this is due to β being greater than expected or a result of changes
in the unobservables bt. It becomes rational for agents to attribute at least
some weight to a larger β, thereby raising their expectations of the structural
parameters. Consequently, the relationship between fundamentals and the
exchange rate becomes time-varying, in spite of the structural parameters
being constant. This manifests itself in the derivative of the exchange rate
with respect to fundamentals:

∂st

∂ fi,t
= θβi + (1 − θ)E[βi|It] + (1 − θ) f ′t

∂E[β|It]

∂ fi,t
,

where the first two terms on the right-hand side are a weighted average
of the true structural parameters and their expectations. The time-varying
last term reflects the gradual learning about β. In Bacchetta and van Win-
coop (2013), unobserved fundamentals can i.a. reflect macroeconomic news.4

However, while trying to explain the arising fluctuations rationally, het-
erogeneously informed investors attribute these shocks to an observable
fundamental which temporarily receives an excessive weight as a result.
Therefore, the Bacchetta and van Wincoop (2013) model leads to similar

4Newly released information often coincides with other events that can obfuscate the
origin of a shock.
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1.3 modelling parameter instability

relationship between fundamentals and the exchange rate as the model in
this paper.

1.3 modelling parameter instability

1.3.1 State Space Formulation

This subsection demonstrates how the theoretical model can be mapped into
state space form. Focus on the single factor case for illustrative purposes and
combine equation (1.5) with the autoregressive processes for the transitory
shocks to obtain the system:

κt = ρκκt−1 + ut,

∆st = ft

(
µ

µ − ρ f
β +

µ

µ − ρκ
κt

)
− 1

µ − ρϕ
ϕt.

(1.7)

To estimate the relation of exchange rates to fundamentals, µ
µ−ρ f

β + µ
µ−ρκ

κt,
write the system in the following state space representation:

λt − λ̄ = b(λt−1 − λ̄) + ηt, ηt ∼ i.i.d.(0, σ2
η),

∆st = f ′t λt + ϵt, εt ∼ i.i.d.(0, σ2
ε ),

(1.8)

where the measurement error εt is an estimate of the risk premium,5 and the
state vector λt estimates the relation between macroeconomic fundamentals
ft and the exchange rate st. By comparing equations (1.7) and (1.8), it can
be seen that λt =

µ
µ−ρ f

β + µ
µ−ρκ

κt; hence, the parameters of the state space
representation (1.8) can be mapped to the parameters in equation (1.7):

λ̄ = E[λt] = E

[
µ

µ − ρ f
β +

µ

µ − ρκ
κt

]
=

µ

µ − ρ f
β,

σ2
η

1 − b2 = V[λt] = V

[
µ

µ − ρ f
β +

µ

µ − ρκ
κt

]
= ω2 σ2

κ

1 − ρ2
κ

,

where ω = µ
µ−ρκ

and V denotes the variance. The autocorrelation parameter
ρκ of κt corresponds to the autocorrelation parameter b of λt. Therefore,
estimating state space system (1.8) will give estimates of the parameter
vector µ

µ−ρ f
β and estimates of the transitory shock process scaled by ω. The

5Specifically, we have ε = − 1
µ−ρϕ

ϕt and σ2
ε =

σ2
ϕ

(µ−ρϕ)2(1−ρ2
ϕ)

.
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state space representation (1.8) can easily be generalised to the multivariate
case with r observed fundamentals ft = ( f1t, ..., frt)′ and state vector λt =

(λ1t, ..., λrt)′:

B(L)(λt − λ̄) = ηt, ηt ∼ i.i.d.(0, Q),

∆st = f ′t λt + εt, εt ∼ i.i.d.(0, σ2
ε ),

(1.9)

where B(L) = I − B0
t,1L − · · · − B0

t,qLq is a qth-order lag polynomial with
roots outside the unit circle. The covariance matrix of the state innovation,
ηt, is E[ηtη

′
t] = Q.

1.3.2 A Factor Model with Time-Varying Loadings

To estimate the system (1.9) empirically, we specify a factor model with
time-varying loadings. We use a large panel of macroeconomic data series
Xt = (X1t, ..., XNt)

′, t = 1, ..., T, whereby we assume that Xit has a factor
structure:

Xit = α′it ft + ϵit,

where ft is an r × 1 vector of common factors, αit are the corresponding time-
varying factor loadings, and ϵit are idiosyncratic errors. In our application
below, N and T are of the same order of magnitude, which renders one-step
maximum likelihood estimation of the model infeasible due to the number
of parameters to be estimated (Shumway and Stoffer, 1982; Bai, 2003).

Progress towards estimability of factor models by maximum likelihood
has been made in Doz et al. (2011) and Doz et al. (2012), who established
a two-step procedure that first uses principal components to estimate the
factors. To identify the effect of fundamentals on the exchange rate in the
presence of structural instabilities in this paper, we employ two important
theoretical results: (i) the principal component estimator gives consistent
factor estimates even in the presence of time-varying loadings (Bates et al.,
2013). (ii) Maximising the likelihood of a factor model with principal com-
ponents as estimators of the unobservable factors gives consistent estimates
of stationary time-varying loadings (Mikkelsen et al., 2019). We refer to the
latter paper for details on how the estimation error from the first step is
controlled and consistency is established.

The factor model allows the idiosyncratic errors to have limited cross-
sectional correlation. The number of factors, r, is considerably smaller than
the number of series, N, such that the information in the large number of

12



1.3 modelling parameter instability

macroeconomic variables is condensed into the r-dimensional factors. That
is, by extracting the first r principal components of Xt, one can construct a
set of macroeconomic factors that represents the information contained in
the observable fundamentals. The principal components estimator treats the
loadings as being constant over time, i.e. αit ≡ αi, and solves the minimisa-
tion problem:

( f̃ , α̃i) = min
f ,αi

(NT)−1
N

∑
i=1

T

∑
t=1

(Xit − α′i ft)
2,

where f̃ is a T × r matrix of common factors, and α̃ is an r × 1 vector of
factor loadings. By concentrating out αi and imposing the normalisation
constraint f ′ f /T = Ir, the minimisation problem becomes equivalent to
maximising tr( f ′(X′X) f ), where X is the T × N matrix of observations. The
resulting factor matrix is given by

√
T times the eigenvectors corresponding

to the r largest eigenvalues of the T × T matrix XX′. It follows from Bates
et al.’s (2013) main result that the fundamentals in equation (1.9) can be
represented through the r principal component estimates, f̃t, in spite of the
structural instability underlying the state vector λt.
Having obtained the principal component estimates, we estimate the param-
eters of the state space model (1.9) by forming the likelihood function:

LT(∆s| f̃ ; θ) = −1
2

log(2π)− 1
2T

log |Σ|− 1
2T

(∆s − E[∆s])′ Σ−1 (∆s − E[∆s]) ,

where ∆s = (∆s1, ..., ∆sT)
′ with mean E[∆s] = f λ̄ and variance matrix

V[∆s] = Σ. The parameter vector θ = (B(L), λ̄, Q, σ2
ε ) is estimated as:

θ̃ = arg max
θ

LT(∆s| f̃ ; θ).

The likelihood can be computed efficiently with the Kalman filter as (1.9)
is a linear state space system. Mikkelsen et al. (2019) show that under
standard assumptions and provided T/N2 → 0, the maximum likelihood
estimator is consistent for the parameters of the time-varying factor loadings
λt, i.e. θ̃

p−→ θ. Once θ̃ is obtained, the estimates of the factor loadings λ̃t

for t = 1..., T are computed with the state smoother. As emphasised in
Mikkelsen et al. (2019), these estimates are consistent even under missing
factors. In addition to the time-varying model, we estimate a constant
loadings (CL) benchmark in order to assess the relative contribution of
time-varying loadings in explaining exchange rate fluctuations. In that case,
equation (1.7) reduces to ∆st = ft

µ
µ−ρ f

β − 1
µ−ρκ

ϕt, i.e. a present value model
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for exchange rates with constant parameters. Therefore, the reduced form
relation between fundamentals and exchange rates, µ

µ−ρ f
, can simply be

estimated via OLS by regressing ∆st on the factors f̃t. We denote µ
µ−ρ f

β by

λ̃CL. Comparing the in- and out-of sample fit of the two models determines
if, indeed, the TVL model fares better at explaining the relationship of
exchange rates and fundamentals.

1.4 data

1.4.1 Exchange Rate Data

Table 1.1: Summary Statistics Exchange Rates

Currency Mean Std.Dev. Min. Max. ρ̂(1) ρ̂(12) ρ̂(24) QBP

AUD -0.000 0.026 -0.180 0.073 0.342 -0.084 -0.076 0.000

CAD -0.000 0.017 -0.109 0.062 0.307 -0.091 -0.040 0.000

DKK 0.000 0.023 -0.078 0.062 0.309 -0.093 -0.005 0.000

JPY 0.001 0.025 -0.080 0.103 0.292 -0.035 -0.013 0.000

MXN -0.005 0.033 -0.321 0.088 0.265 -0.085 0.005 0.000

NZD 0.001 0.026 -0.106 0.074 0.310 0.002 -0.029 0.000

NOK -0.001 0.026 -0.131 0.057 0.371 -0.107 0.027 0.000

SEK -0.001 0.026 -0.109 0.071 0.402 -0.104 -0.047 0.000

CHF 0.001 0.025 -0.112 0.081 0.214 -0.063 0.042 0.001

GBP -0.000 0.022 -0.110 0.059 0.290 -0.036 -0.096 0.000

BRL -0.033 0.085 -0.368 0.113 0.851 0.486 0.326 0.000

INR -0.004 0.020 -0.194 0.061 0.200 -0.081 0.019 0.001

ZAR -0.005 0.035 -0.190 0.152 0.290 -0.078 -0.053 0.000

EUR -0.000 0.023 -0.079 0.062 0.319 -0.081 -0.021 0.000

Note: Sample Period: 1990:05 - 2021:09. ρ̂(m) denotes the autocorrelation at month m.
QBP denotes the p-value of the Box-Pierce QBP test. The currency abbreviations stand
for Australian Dollar (AUD), Brazilian Real (BRL), Canadian Dollar (CAD), Danish
Krone (DKK), Indian Rupee (INR), Mexican Peso (MXN), New Zealand Dollar (NZD),
Norwegian Krone (NOK), South African Rand (ZAR), Swedish Krona (SEK), Swiss
Franc (CHF), British Pound (GBP), and Euro (EUR).

We use monthly averages of the US dollar exchange rate vis-à-vis 14

currencies between 1990:05 and 2021:09. The considered exchange rates are:
the Australian Dollar (AUD), the Brazilian Real (BRL), the Canadian Dollar
(CAD), the Danish Krone (DKK), the Indian Rupee (INR), the Mexican Peso
(MXN), the New Zealand Dollar (NZD), the Norwegian Krone (NOK), the
South African Rand (ZAR), the Swedish Krona (SEK), the Swiss Franc (CHF),
the British Pound (GBP), and the Euro (EUR). The data are compiled from the
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1.4 data

OECD database.6 Table 1.1 reports summary statistics for the first difference
of the 14 log exchange rates. Looking at the mean percentage changes, they
are all either zero or very close to zero with standard deviations ranging
from 1.7% to 8.5%. In terms of fluctuations, the Brazilian Real displays
the largest downward movement with -36.8%, whereas the South African
Rand appreciated the most over one month with 15.2%. All currencies are
positively autocorrelated at one month and with two exceptions negatively
correlated at 12 and 24 months. The Box-Pierce test implies that, across
currencies, the first three autocorrelations are all statistically significant.

1.4.2 Macroeconomic Data

The factors are extracted from a large set of real-time macroeconomic fun-
damentals. To this end, we combine two different databases. First, we use
McCracken and Ng’s (2016) FRED-MD database which contains 128 monthly
time series of the US economy, categorised into: (1) Output & Income, (2)
Labour Market, (3) Housing, (4) Orders & Inventories, (5) Money & Credit,
(6) Interest Rates, (7) Prices, and (8) Stock Markets. Following McCracken
and Ng (2016), 5 time-series are removed to balance the panel; in addition,
we remove the exchange rates in the dataset to exclude them from the
factors. In order to ensure stationarity of all variables, we use the same
transformations as McCracken and Ng (2016) and refer to their paper for a
detailed description. We collate all real-time vintage releases of the FRED-
MD database, starting in 1999:08 and ending in 2022:02. For each vintage
of the database, observations are available up to the month that precedes
its release date. We remove all time series whose latest observation lags the
release date by two months or more. For instance, all time-series ending
before 2019:12 are removed from the 2020:01 vintage. As the time lag with
which each variable is released changes over time, the number of macro
series in the dataset lies between 100 and 128 for each release.

Second, we compile large vintage datasets for the 14 remaining countries
from the OECD statistical database. To increase the number of available
variables, we collect data for the 3 largest Euro area economies, Germany,
France, and Italy, instead of an aggregate measure. Specifically, for each
country, we compile a maximum of 9 macro variables, 32 survey indicators,
and 3- as well as 10-year yields on Government bonds. We collect real-

6Prior to 1999, the exchange rate for the ECU is used in place of the Euro, i.e. an weighted
average of the Austrian Schilling, Belgian and Luxembourg Francs, Finnish Markka, French
Franc, German Mark, Irish Pound, Italian Lira, Netherlands Guilder, Portuguese Escudo,
and Spanish Peseta.
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time vintages of this dataset from the OECD’s Revision Analysis Database,
starting with the first set of vintages released between 1999:02 and 2022:02.
As with the FRED-MD data, we remove all variables whose latest observation
predates the publication date by more than one month. In many countries,
data are published less timely or consistently than in the US. For example,
suppose industrial production data for Mexico are published with a time-
lag of two months in 2000:08, i.e. the latest available observation for the
respective vintage dataset is 2000:06. Then this particular time series will be
dropped from the 2000:08 vintage for Mexico to ensure the panel is balanced
over time. The first observation in each vintage is recorded in 1990:04. For
instance, suppose India only started publishing retail sales data in 1995:05,
then no vintage will include this particular variable for India. Therefore,
upon removal, the number of macro series available in each vintage version
of the dataset lies between 61 and 100, that is, the datasets are balanced across
time but unbalanced across countries. We obtain a total of 272 real-time
datasets for all countries, the first of which contains T = 105 observations per
variable, and the last T = 382 observations per variable. In each vintage, we
group the variables according to the categories in McCracken and Ng (2016).
Consistent with McCracken and Ng (2016), the variables are transformed
either by taking first log differences or first differences to ensure stationarity.
Tables A.1 to A.6 summarise which variables are available for each country
and how they are categorised in terms of McCracken and Ng’s (2016)
classifications.7 We merge each real-time dataset with the corresponding
vintage of the FRED-MD database, yielding 272 real-time vintages with a
total number of variables between N = 168 and N = 209. We use all of these
datasets in our out-of-sample estimation, as they replicate the information
set available to investors during each month. Thereby, rather than simply
using the first release of each observation, we take into account that investors
have knowledge of revisions to published data prior to the current month,
which could potentially impact their decisions. Coroneo and Caruso (2022)
show that this improves forecasts of financial variables relative to just relying
on first releases.

For our in-sample exercise, we use the 2022:02 vintage of the FRED-MD
and OECD dataset and remove all variables with missing observations be-
fore 2021:09. Thus, the time dimension corresponds to T = 380. As several
variables are released with a lag of more than 1 month, this increases the
number of available macro series to N = 224. Not every series is available
for all countries, hence the in-sample dataset is also balanced across time

7A complete description of all vintages in the dataset can be found in the Supplementary
Material.
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but unbalanced across countries.
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Figure 1.1: Marginal R2 Between Factors and Macro Series

Note: R2 from regression of each series on first, second, and third factor. Series categorised
as (1) Output & Income, (2) Labour Market, (3) Housing, (4) Orders & Inventories, (5)
Money & Credit, (6) Interest Rates, (7) Prices, and (8) Stock Market.

In practice, the optimal number of factors describing Xit = α′it ft + ϵit is
not apparent, and multiple factor selection criteria for models where N and
T are large exist. Let V(k) = (NT)−1 ∑N

i=1 ∑T
t=1(Xit − α̃k

i
′ f̃ k

t )
2. While setting

the number of factors in the model, k, equal to N minimises V(k), it does not
imply N corresponds to the optimal number of factors r. Bai and Ng (2002)
propose information criteria with a penalty function g(N, T) such that:
r = arg min0≤k≤kmax

IC(k) = arg min0≤k≤kmax
log(V(k)) + kg(N, T), where

kmax ∈ N is a maximum number of factors chosen by the researcher (here:
kmax = 9). Due to the penalty term, r ≪ N. Choi and Jeong (2019) com-
pare the performance of different approaches and suggest using several
criteria in combination. We follow their recommendation and first eval-
uate Bai and Ng’s (2002) ICp2 and BIC3 which both pick r = 9 factors.
Subsequently, we consider several criteria with improved robustness to
miss-specification that are found to perform well in Choi and Jeong (2019).
Alessi et al. (2010) propose modifications of the penalty functions in Bai
and Ng (2002) based around an arbitrary constant, c, as in Hallin and Liška
(2007). We set c ∈ (0, 10] which leads to the conclusion that the optimal
number of factors is 1. Kapetanios (2010) suggests a criterion with improved
robustness to cross-sectional dependence. When applying the Alessi et al.
(2010) modification to this criterion, the optimal number of factors is again
found to be 1. In accordance with the advice in Choi and Jeong (2019),
we also considered the eigenvalue-based approaches in Ahn and Horen-
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stein (2013). Both the ER and GR test imply r = 5, suggesting that a low
number of factors is indeed a plausible choice. Therefore, 1 and 3 factors
are deemed an appropriate choice for the empirical estimation in this paper.8

In Figure 1.1, we depict the squared correlation of the factors with each
macro variable, categorised as described in the figure caption. The displayed
correlations are based on the in-sample dataset between 1990:04 and 2021:09.
The first factor exhibits strong correlations with measures of output, labour
market indicators, and to a lesser extent with manufacturing orders and
capacity utilisation. Therefore, we interpret the first factor as an indicator
of real economic activity. The second factor correlates mainly with housing
data, wherefore we interpret it as a housing factor. Regarding the third
factor, it displays strong correlations with interest rates and we interpret it
as an interest rate factor.9
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Figure 1.2: Principal Components

Note: The Figure displays the time-series of the first three principal components extracted
from the macro-dataset.

In Figure 1.2, the individual factors are plotted. For the first factor, the
drop in economic activity during the great recession is clearly visible and
so is the COVID-19 crisis towards the end of the sample. The second factor
exhibits a structural change after the subprime crisis and large short-dated
fluctuations around the COVID-19 crisis. The factor loadings are not sign
identified, hence, both the first and second factors are inversely related to the

8Appendix C also reports the results for 5 factors.
9We provide an animation of how the correlations change over time for the vintages

used in our out-of-sample exercise in the Supplementary Material.
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real economy and housing markets. Looking at the third factor, it displays
less extreme fluctuations, with an overall minimum in 2020.

1.5 in-sample results

This section presents the empirical results of estimating the state space
model in equation (1.9) by comparing the constant and the time-varying
loadings model in-sample. The discussion focuses on the GBP and the EUR
while covering the remaining exchange rates more succinctly. To conduct a
comparison of the two models, we use the squared correlation, R2, between
the exchange rate and the in-sample predictions. Furthermore, we report
the hit rate (HR) of each model, i.e. the percentage of times the model
matched the signs of the exchange rate changes. The hit rate indicates how
often a model correctly predicts a depreciation or appreciation. The two
criteria are shown in Table 1.2. In addition, the table reports the p-values of
a likelihood-ratio test with a null hypothesis of no significant differences in
the likelihoods of the two models.

Consider first the estimates for one factor, the real economy factor. The top
panel of Figure 1.3 shows the results for the GBP and the EUR: the common
component obtained from the TVL model (blue), the CL model (red), and the
actual exchange rate changes (black). Particularly during the great recession,
the time-varying model can capture the fluctuations in the exchange rate
better. This is reflected in the R2, according to which the model can explain
35% (23%) of the variation in the EUR (GBP). It assigns accurate directional
changes in 73.7% of the cases for the EUR and 60.5% for the GBP. In contrast,
the CL model only has an R2 of 1% and 3%, respectively, i.e. it has almost
no explanatory power. With 47.5%, the hit rate of the CL model for the EUR
is as good as random, the same holds for the GBP with 52.3%. It should
be noted that the CL results for the GBP are among the highest out of the
14 exchange rates. The lowest are the ones for CHF and JPY where 0% of
the fluctuations are explained. Looking at the time-varying model, it has
the highest explanatory power for the MXN with an R2 of 54%, and the
lowest R2 for the INR (1%). In case of the latter, the TVL model and the
CL model have the same R2 which suggests the real economy factor offers
no explanatory power for the INR. Nevertheless, the time-varying 1-factor
model adds substantial explanatory power over the model with constant
coefficients for all other currencies, as it consistently outperforms the CL
model according to the two metrics. This conclusion is supported by the
likelihood ratio tests. With three exceptions in case of the 1-factor model
(INR, CHF, and JPY), the test always finds that the likelihood of the CL
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Table 1.2: In-Sample Performance

Currency
1 Factor 3 Factors

R2 Hit Rate LR R2 Hit Rate LR

TVL CL TVL CL
p-

val.
TVL CL TVL CL

p-
val.

AUD 0.44 0.01 74.54 49.60 0.00 0.53 0.04 75.86 56.76 0.00

CAD 0.32 0.02 70.29 52.52 0.00 0.36 0.04 68.70 53.32 0.00

DKK 0.33 0.01 70.29 47.21 0.00 0.61 0.01 79.58 54.91 0.00

JPY 0.09 0.00 57.03 52.25 0.19 0.41 0.00 67.90 53.58 0.01

MXN 0.54 0.01 71.35 54.38 0.00 0.55 0.02 68.44 50.40 0.00

NZD 0.27 0.02 70.03 49.34 0.00 0.51 0.05 78.78 57.56 0.00

NOK 0.28 0.02 74.01 46.95 0.00 0.41 0.03 75.07 52.79 0.00

SEK 0.23 0.03 74.27 50.66 0.00 0.48 0.04 76.66 54.91 0.00

CHF 0.37 0.00 69.50 44.83 0.07 0.64 0.01 82.76 52.79 0.06

GBP 0.23 0.03 60.48 52.25 0.00 0.27 0.04 65.52 57.29 0.01

BRL 0.50 0.01 72.94 53.58 0.00 0.86 0.01 86.47 55.70 0.00

INR 0.01 0.01 50.13 50.13 1.00 0.88 0.01 89.39 52.25 0.00

ZAR 0.39 0.03 69.76 50.40 0.00 0.48 0.06 76.13 55.44 0.00

EUR 0.35 0.01 73.74 47.48 0.00 0.61 0.01 81.70 53.85 0.00

Mean 0.31 0.01 68.45 50.11 0.54 0.03 76.64 54.40

Median 0.32 0.01 70.29 50.27 0.52 0.02 76.39 54.38

Note: The table reports measures of in-sample fit to compare the TVL model in equation
(1.9) and the CL model. Namely, both the squared correlations between changes in the
exchange rate and the in-sample prediction of the TVL & CL model as well as the hit
rate in %. The latter is the fraction of times the sign of the fitted values corresponded to
the sign of the realised values. In addition, the table reports the p-values of a likelihood
ratio test (LR) between the two models. The currency abbreviations stand for Australian
Dollar (AUD), Brazilian Real (BRL), Canadian Dollar (CAD), Danish Krone (DKK),
Indian Rupee (INR), Mexican Peso (MXN), New Zealand Dollar (NZD), Norwegian
Krone (NOK), South African Rand (ZAR), Swedish Krona (SEK), Swiss Franc (CHF),
British Pound (GBP), and Euro (EUR).
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(c) 3 Factors: GBP
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(d) 3 Factors: EUR
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Figure 1.3: In-Sample Fit

Note: The figure displays the in-sample fit for the Euro (EUR) and the British Pound
(GBP) of a model with 1 and 3 factors. The black line is the FX change, the blue line is
the TVL model fit, and the red line is the CL model fit. CC-TVL stands for the Common
Component of the State Space model, CC-CL for the Common Component of the CL
model.
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model is significantly smaller. In a next step, we also include the interest

(a) 1 Factor: INR
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(b) 1 Factor: BRL
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(c) 3 Factors: INR
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(d) 3 Factors: BRL
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Figure 1.4: In-Sample Fit – BRL and INR

Note: The figure displays the results for the Brazilian Real (BRL) and the Indian Rupee
(INR) of a model estimated with 1 and 3-factors. The black line is the FX change, the
blue line is the TVL model fit, and the red line is the CL model fit. CC-TVL stands for
the Common Component of the State Space model, CC-CL for the Common Component
of the CL model.

rate and the housing factor into the model. The actual and fitted values for
the GBP and the EUR are presented in the bottom panel of Figure 1.3. In
particular for the EUR, the fit of the time-varying model improves visibly –
the model tracks the depreciation during the Euro-crises in 2010, 2012, and
2015 remarkably well. The same holds true for the early 2000s. The fit for the
GBP also appears to have improved, even though to a lesser extend. Note
that, as before, the GBP exhibits the worst fit of all time-varying regressions
with an R2 of 27% followed by the CAD with 36%. Still, it manages to predict
whether the exchange rate appreciates or depreciates in 65.5% of all cases.
Regarding the EUR, the explanatory power of the time-varying model has
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1.5 in-sample results

jumped to an R2 of 61%, and the hit rate corresponds to 81%. On the other
hand, the CL model still only manages to explain 1% of the variations in
the EUR and 4% in the GBP. Overall, the time-varying model of the INR
has now the highest R2 and hit rate with 88% and 89.4%, respectively –
having displayed the worst fit in the 1-factor model. This implies that only
the second and third factors offer predictive ability for this currency. The
INR is followed by BRL, CHF, EUR, and DKK for which the explanatory
power always exceeds 60%. Generally, we see an improvement in the R2

across exchange rates – the hit rate declines slightly for the MXN in the time-
varying framework but is close to 80% in most cases; however, looking at the
CL fit, it is still only slightly better than 50% and never above 58%. After the
INR, the BRL exhibits the greatest improvement with the R2 increasing to
86% from 50%. We graph the differences between the 1 and 3-factor model in
Figure 1.4. Both INR and BRL were hit by a currency crisis at the beginning
of the sample period. Regardless of whether 1- or 3-factors are used, the
CL model can map neither fluctuations in INR nor BRL. In contrast, the
TVL model with 3 factors is able to capture both currency crises as well as
subsequent variations. For the remaining series, the 1-factor model is also
able to capture exchange rate fluctuations better around the financial crisis
(see Figure A.1). As is the case with the EUR, GBP, INR, and BRL, the 3-factor
model substantiates the ability of the time-varying model to outperform the
constant loadings framework. We further underpin the robustness of the
in-sample findings by re-estimating the model using 5 factors and report
the results in Appendix A.4.1. While the R2 for the CL model improves
somewhat to a maximum 7%, it remains considerably lower than the one
of the TVL model across all currencies. The same holds true for the hit-rate
which ranges between 66% and 90% for the time-varying and 50% to 68%
for the CL model.

1.5.1 Instabilities in Factor Loadings

This subsection considers the role of parameter instability in greater detail.
First, we revisit the GBP and the EUR and discuss the time-varying loadings
on the real economy factor, depicted in the left panel of Figure 1.5.

The dashed red lines correspond to the confidence intervals of the constant
loadings estimates. For both currencies, we observe a high degree of variation
in the time-varying loadings, especially in 2008-9. In the GBP model, the
loadings decline first and then rise sharply; therefore, they are considerably
outside the CL confidence interval during the financial crisis. This is a
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(c) 1 Factor: EUR
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Figure 1.5: Loadings – GBP & EUR

Note: The left panel of the figure displays the loadings on the real economy factor. The
black line is the time-varying loading (TVL), the red line the constant loadings (CL)
estimate, and the dashed lines are the CL confidence intervals. The right panel displays
the loadings of the 3-factor model. The black line is the loadings on the real economy
factor, the blue line the loadings on the housing factor, and the red line the loadings on
the interest rate factor.
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1.5 in-sample results

consistent theme across exchange rates.10 The loading in the EUR model
crosses the CL confidence bands more often, displaying large fluctuations
throughout the sample period. However, the EUR CL estimate itself is
insignificant. Contrary to the GBP, the loadings exhibit large positive spikes
in the early 2000s, consistent with the EUR depreciation vis-à-vis the dollar
during that period. Although the loadings are not sign identified, Figure
1.5 shows that the loadings display frequent sign changes, in the sense that
they fluctuate significantly above and below the OLS confidence bands. This
points to significant instabilities in the factor loadings that the CL model
cannot capture. The right panel of Figure 1.5 plots the loadings on the
first three factors. It can be seen that the explanatory power of the second
factor differs across the two currencies with the magnitude of the loadings
being much greater for the EUR. What is more, as Mikkelsen et al.’s (2019)
methodology is robust to missing factors, the first loadings in the 3-factor
model are always identical to the loadings in the 1-factor model.

1.5.2 Instabilities in Factor Structures
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(c) MXN Loadings
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Figure 1.6: Loadings – Unstable Factor Structure

Note: The figure displays the loadings of the 3-factor model. The black line are the
loadings on the real economy factor, the blue line the loadings on the housing factor,
and the red line the loadings on the interest rate factor.

Changes in factor structures occur if either (i) the number of factors
changes, (ii) related to this, some factors disappear and others appear, or
(ii) the direction of the influence of a factor changes. Time-varying loadings

10The plots of the first factor loadings for the remaining 12 currencies are reported in
Appendix B.
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capture a reduction in the number of factors, since loadings can be (close
to) zero for periods. They also capture changes in the direction of influence,
since the sign of the loadings can change. The right panel of Figure 1.5 shows
that in case of the GBP, the second loadings are always close to zero apart
from few deviations. For both currencies, the third loadings are constant and
only marginally above zero, meaning only the first and second factors affect
these currencies. Next, we look at three emerging market currencies that
were subject to crises at the beginning of the sample period. Therefore, they
display greater instabilities in both loadings and factor structure. Figure 1.6
plots the loadings on the first three factors for INR, BRL, and MXN. Several
insights emerge from the figure. First, the dominant loadings differ from
currency to currency. While the first loadings are virtually zero for the INR,
the second loadings exhibit large swings and the third loadings show only
temporal deviations from zero. With respect to the latter, the same is true for
the BRL. However, both the second and third factors load heavily onto the
BRL during the early 1990s, while fluctuating less drastically in the 2000s
where the loadings are close to zero in some months. This contrasts with the
MXN, for which only the first loadings are markedly different from zero,
with large spikes during the Peso crisis and the financial crisis.

Unlike the CL model, the TVL framework can account for such changes in
the importance of certain factors. It is therefore able to model instabilities in
both loadings and factor structures which explains the superior fit discussed
above.

1.6 out-of-sample results

This section compares the performance of the two models, CL and TVL
out-of-sample using the 3-factor model. First, we elaborate on the chosen
forecast evaluation methods; and second, assess the forecasting results.
Specifically, we compare (i) the relative predictive ability of the two models,
(ii) their direction accuracy, i.e. how well they forecast an appreciation or
depreciation, and (ii) their relative performance over time. For the out-of-
sample estimation, we use the large vintage datasets described above.

1.6.1 Forecast Setup and Evaluation

To forecast ∆st+h, where h is the forecast horizon, we divide the sample
into in-sample and out-of-sample portions. We denote the total number
of observations by T, the number of in-sample observations by R, and the
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1.6 out-of-sample results

number of out-of-sample predictions by P, so T = R+ P+ h+ 1. We generate
direct h-step ahead forecasts according to the following specification:11

∆st+h|t = f ′t−1+h|tλt+h|t + et+h|t

where t = R, ..., T − h and et+h|t is the forecast error. Note that although
the factors, ft−1+h|t, are extracted from data one date prior to the observed
returns, the estimates are nonetheless conditional on the time-t information
set. This is due to the fact that data are released with a lag, as, for example,
inflation figures for March are published in April. Our setup ensures the
model is truly real-time by accounting for the fact that exchange rates can
react to data only upon release. As our dataset includes over 20 survey
indicators, we also incorporate the impact of expectations that anticipate
some of this response. We set h = {1, 6, 12} and use a rolling window to
compute P predictions. Forecasts for the loadings, λ̂t+h|t, are easily obtained
as the one-step-ahead predictions of the Kalman filter. The Kalman filter gen-
erates optimal forecasts as it, by construction, minimises the Mean Squared
Error (MSE) between predictions and observations. For the constant loadings
benchmark, λ does not need to be forecast as it simply corresponds to the
CL estimates at each iteration. Regarding the factors, we recompute the prin-
cipal components for each of the 272 real-time datasets. To generate h-step
ahead forecasts of the factors, we fit a VAR(1) to the real-time estimates at
each of the P forecasting steps and use the coefficients to forecast f̂t−1+h|t.
One then obtains the out-of-sample estimates as ∆̂st+h|t = f̂ ′t−1+h|tλ̂t+h|t and

∆̃st+h|t = f̂ ′t−1+h|tλ̂CL. Both forecasts are only based on the actual informa-
tion set available in real-time at each period. To assess whether time-varying
loadings also improve the out-of-sample fit of the factor model, we compare
the TVL and CL forecasts using several tests. In addition we compare both
models to a Random Walk (RW) for the level of the log exchange rate, i.e.
E[st+h|t − st] = 0.

Selecting adequate tests of predictive ability is of paramount importance
in out-of-sample evaluation. The properties of tests for nested models are
different because their forecast errors converge asymptotically (Clark and
McCracken, 2001). Furthermore, window choice is an important determi-
nant in forecast evaluation. A large P provides more forecast information,
while a large R improves parameter accuracy. In fact, Mikkelsen et al. (2019)
show through Monte-Carlo simulations that in order for the bias in the

11See Boivin and Ng (2005) for a comparison of different approaches to generating
factor-based forecasts.
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autoregressive parameters of the loadings to be below 10%, the estimation
sample should be R ≥ 200. However, a litmus test for every exchange rate
forecast is the financial crisis. To put the model to this test, the forecasts
need to be evaluated using a criterion that is robust to in-sample estima-
tion errors, as one would have R < 200 for a prediction window starting
prior to the crisis. Giacomini and White (2006) propose a test of Condi-
tional Predictive Ability (CPA) that introduces estimation error under the
null hypothesis. Define the forecast loss differential between TVL and CL
as {∆Lt( f̂ ′t−1λ̂t, f̂ ′t−1λ̂CL)}T

t=R+h = {L(∆st, f̂ ′t−1λ̂t)−L(∆st, f̂ ′t−1λ̂CL)}T
t=R+h,

where L(·) is a forecast loss function. The null hypothesis of the CPA test is

H0 : E
[
∆Lt( f̂ ′t−1λ̂t, f̂ ′t−1λ̂CL) | Ft

]
= 0

and Ft is the time-t information set available to the forecaster. For the
implementation of the test, we condition on lagged values of the loss differ-
ential. In addition, we also use Giacomini and White’s (2006) Unconditional
Predictive Ability (UPA) test.12 As both tests are valid for nested as well
as for non-nested models and their asymptotic properties are derived for
R < P → ∞, they are well-suited in this application. We choose P = 238
and R = 142 as the baseline configuration and report additional forecasts in
Appendix C.

Leitch and Tanner (1991) argue that, while one model may produce a
smaller forecasting error than another model, it can still perform worse
when it comes to predicting sign changes. In the case of exchange rates,
a desirable feature of a model is its ability to forecast an appreciation or
depreciation. To assess this statistically, we use Pesaran and Timmermann’s
(1992) nonparametric test of predictive performance. The test compares the
signs of the predicted and realised values and, in doing so, uses no addi-
tional information. Thus, it does not require knowledge of the underlying
probability distribution of the forecast. Although the test does not put two
models in relation to one another, it indicates which model is able to identify
a higher number of predictable relationships.

Given the structural instabilities in the exchange rate regression, it may
well be the case that the relative forecasting performance of the models is
itself unstable. Indeed, Rossi (2013) finds that the forecasting power of many
exchange rate models breaks down over time. Notably, however, parameter
instability itself does not necessarily engender unstable relative forecast

12The UPA test is identical to the popular Diebold and Mariano (1995) test, but derived
under different assumptions that render it valid for our purposes.
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performance.13 While the Giacomini and White (2006) test selects the best
global model, Giacomini and Rossi (2010) propose a fluctuation test that
compares the performance of two competing models at each point in time
and allows for nested models by adopting the same asymptotic framework
as Giacomini and White (2006). The test statistic is computed over a rolling
window and equal to:

GRt,m = σ̂−1m−1/2
t+m/2−1

∑
j=t−m/2

∆Lj( f̂ ′j−1,Rλ̂j,R, f̂ ′j−1,Rλ̂CL)

where t = R + h + m/2, ..., T − m/2 + 1, σ̂ is the HAC estimator of the
variance of the loss differential, and m is the size of the rolling window over
which it is computed.

1.6.2 Forecast Results

Focusing foremost on GBP and EUR, we now discuss the forecasting results.
Figure 1.7 depicts the TVL and CL forecasts for the two currencies as well
as the realised values. At first glance, it appears the time-varying model
performs slightly better for the GBP during the financial crisis – and for the
EUR also during the subsequent years. Figure 1.8 plots the forecasts of the
remaining series which paint a similar picture; in particular, the INR (Figure
1.8 (f)) is forecast remarkably well.

We report statistical forecast accuracy tests in Table 1.3. Panel A presents
the results for one-step-ahead predictions. Columns 2 and 3 of the table
report the Root Mean Square Error (RMSE) of the forecasts relative to the
RMSE of a random walk forecast. That is, if the value in columns 2 and 3

is smaller than one, the respective model has a lower RMSE smaller than
a random walk. The TVL model achieves an RMSE that is between 4.4%
and 0.3% smaller than a random walk for 8 exchange rates, and between
0.2% and 2.7% greater for 4 exchange rates. In contrast, the RMSE of the CL
model is always between 0.2% and 2.9% larger. We proceed by comparing
the TVL and CL models directly. Columns 4 and 5 contain the p-values of
the CPA and UPA test, computed for a quadratic loss differential. At the
5% level, the former rejects 4 times in favour of the TVL model, and the
latter 6 times. We conduct the same tests using an absolute loss differential
(Columns 6 and 7) for which they reject 4 and 3 times, respectively, always in
favour of the TVL model. In Columns 8 and 9, we report the p-values of the
direction accuracy test, which rejects the null hypothesis of no directional

13For a detailed discussion of forecasting under instabilities, see Rossi (2021).
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Table 1.3: Forecast Statistics
TVL vs. CL TVL vs. RW CL vs. RW

RMSE Quad. Abs. DA Quad. Abs. Quad. Abs.

TVL CL CPA UPA CPA UPA TVL CL CPA UPA CPA UPA CPA UPA CPA UPA

Panel A: 3 Factors, h = 1

AUD 0.972 1.012 0.075 0.024 0.117 0.086 0.029 0.717 0.252 0.119 0.237 0.104 0.502 0.281 0.717 0.931

CAD 0.985 1.004 0.177 0.065 0.329 0.136 0.017 0.187 0.133 0.225 0.340 0.226 0.545 0.752 0.991 0.907

DKK 1.002 1.015 0.445 0.431 0.238 0.110 0.020 0.685 0.698 0.940 0.380 0.566 0.148 0.114 0.240 0.176

JPY 1.027 1.029 0.507 0.908 0.849 0.819 0.323 0.712 0.168 0.088 0.374 0.151 0.042 0.011 0.262 0.096

MXN 1.004 1.019 0.411 0.398 0.053 0.051 0.006 0.429 0.169 0.775 0.203 0.285 0.413 0.202 0.478 0.290

NZD 0.966 1.025 0.029 0.011 0.049 0.055 0.036 0.378 0.217 0.123 0.278 0.173 0.234 0.108 0.369 0.494

NOK 0.976 1.009 0.047 0.033 0.037 0.029 0.003 0.680 0.266 0.166 0.545 0.343 0.090 0.220 0.146 0.074

SEK 0.956 1.014 0.005 0.009 0.003 0.010 0.001 0.099 0.008 0.034 0.023 0.082 0.262 0.283 0.293 0.252

CHF 1.004 1.009 0.673 0.691 0.746 0.949 0.914 0.830 0.938 0.775 0.676 0.409 0.022 0.276 0.180 0.209

GBP 0.985 1.023 0.258 0.136 0.538 0.511 0.178 0.454 0.722 0.524 0.358 0.597 0.149 0.232 0.262 0.247

BRL 0.972 1.090 0.004 0.012 0.004 0.006 0.123 0.509 0.408 0.331 0.212 0.373 0.047 0.021 0.092 0.041

INR 0.993 1.002 0.447 0.766 0.919 0.811 0.211 0.039 0.429 0.823 0.960 0.950 0.983 0.851 0.878 0.663

ZAR 0.997 1.023 0.099 0.039 0.202 0.078 0.113 0.493 0.615 0.885 0.862 0.581 0.196 0.098 0.171 0.128

EUR 1.000 1.015 0.349 0.420 0.252 0.116 0.020 0.751 0.557 0.994 0.353 0.567 0.186 0.131 0.265 0.176

∑ 9 0 4 6 4 3 8 1 1 1 1 0 3 2 0 1

Panel B: 3 Factors, h = 6

AUD 0.996 1.013 0.254 0.209 0.611 0.328 0.102 0.901 0.027 0.195 0.087 0.035 0.084 0.102 0.073 0.631

CAD 1.017 1.020 0.179 0.729 0.422 0.736 0.076 0.565 0.101 0.195 0.163 0.324 0.097 0.098 0.146 0.105

DKK 1.002 1.007 0.299 0.503 0.732 0.513 0.399 0.487 0.057 0.677 0.225 0.616 0.030 0.178 0.142 0.090

JPY 1.015 1.012 0.713 0.482 0.967 0.801 0.444 0.668 0.040 0.015 0.425 0.215 0.059 0.032 0.243 0.111

MXN 1.003 1.011 0.581 0.317 0.413 0.411 0.712 0.994 0.784 0.563 0.105 0.286 0.103 0.152 0.034 0.089

NZD 1.004 1.019 0.435 0.342 0.730 0.468 0.980 0.972 0.293 0.517 0.771 0.844 0.127 0.066 0.129 0.219

NOK 0.996 1.007 0.276 0.129 0.270 0.114 0.120 0.596 0.015 0.311 0.151 0.160 0.095 0.247 0.122 0.271

SEK 1.003 1.025 0.485 0.261 0.055 0.115 0.071 0.758 0.062 0.530 0.190 0.690 0.262 0.140 0.092 0.035

CHF 1.009 1.000 0.094 0.056 0.114 0.107 0.448 0.382 0.211 0.124 0.448 0.355 0.299 0.972 0.637 0.905

GBP 1.008 1.022 0.321 0.132 0.533 0.304 0.551 0.680 0.373 0.364 0.382 0.192 0.195 0.078 0.257 0.105

BRL 1.006 1.035 0.359 0.092 0.540 0.282 0.000 0.049 0.850 0.669 0.276 0.562 0.112 0.116 0.075 0.433

INR 0.993 1.003 0.395 0.189 0.792 0.727 0.273 0.026 0.215 0.239 0.557 0.503 0.375 0.452 0.892 0.881

ZAR 1.002 1.020 0.342 0.127 0.196 0.060 0.487 0.980 0.732 0.647 0.966 0.946 0.031 0.011 0.029 0.008

EUR 1.003 1.006 0.359 0.611 0.595 0.572 0.598 0.597 0.059 0.621 0.166 0.616 0.034 0.221 0.158 0.124

∑ 3 0 0 0 0 0 1 2 3 1 0 1 3 2 2 2

Panel C: 3 Factors, h = 12

AUD 0.999 1.004 0.274 0.172 0.388 0.428 0.124 0.992 0.044 0.705 0.338 0.145 0.655 0.380 0.445 0.894

CAD 1.035 1.005 0.333 0.188 0.218 0.113 0.142 0.425 0.181 0.168 0.313 0.131 0.532 0.416 0.728 0.699

DKK 1.009 0.997 0.215 0.209 0.507 0.189 0.362 0.333 0.052 0.141 0.058 0.237 0.117 0.538 0.336 0.458

JPY 1.006 1.003 0.464 0.170 0.155 0.150 0.916 0.333 0.387 0.206 0.054 0.051 0.598 0.552 0.336 0.157

MXN 1.022 1.004 0.527 0.322 0.478 0.367 0.214 0.998 0.140 0.179 0.077 0.031 0.159 0.215 0.035 0.009

NZD 1.004 1.001 0.407 0.441 0.588 0.841 0.987 0.978 0.079 0.246 0.948 0.745 0.951 0.923 0.556 0.736

NOK 0.998 0.999 0.046 0.840 0.269 0.549 0.099 0.525 0.009 0.716 0.052 0.696 0.140 0.814 0.562 0.962

SEK 1.002 1.002 0.971 0.953 0.258 0.120 0.075 0.236 0.024 0.614 0.019 0.687 0.148 0.684 0.423 0.399

CHF 1.020 0.998 0.215 0.243 0.258 0.135 0.555 0.367 0.417 0.216 0.456 0.206 0.403 0.660 0.436 0.416

GBP 1.002 0.996 0.127 0.119 0.092 0.147 0.710 0.784 0.435 0.812 0.642 0.387 0.878 0.671 0.886 0.994

BRL 0.993 0.997 0.168 0.625 0.687 0.978 0.006 0.154 0.651 0.422 0.271 0.269 0.563 0.775 0.489 0.371

INR 0.995 1.000 0.426 0.317 0.829 0.531 0.915 0.348 0.343 0.415 0.884 0.977 0.948 0.940 0.501 0.523

ZAR 0.998 1.007 0.065 0.012 0.467 0.155 0.920 1.000 0.241 0.582 0.773 0.809 0.062 0.018 0.080 0.192

EUR 1.009 0.996 0.314 0.188 0.385 0.134 0.621 0.433 0.045 0.134 0.061 0.188 0.106 0.467 0.302 0.397

∑ 5 6 1 1 0 0 1 0 4 0 1 1 0 1 1 1

Note: Columns 2 and 3 report the Root Mean square Error (RMSE) of TVL and CL forecasts divided by the RMSE of forecasts by a Random Walk
(RW). A value < 1 implies the respective model has a smaller RMSE than the RW. Columns 4 to 9 compare the TVL and CL models and report
the p-values of the Conditional Predictive Ability (CPA) and Unconditional Predictive Ability (UPA) test of Giacomini and White (2006) using a
quadratic (Quad.) and an absolute (Abs.) loss function. Further, they report the p-values of the Pesaran and Timmermann (1992) nonparametric
Direction Accuracy (DA) test for TVL and CL. Columns 10 to 13 compare TVL and RW, reporting p-values of the CPA and UPA test for quadratic
and absolute loss differentials. Columns 14 to 17 compare CL and RW, reporting p-values of the same tests. The rows denoted by ∑ report the total
number of p-values ≤ 5% and in the case of the second and third columns, the number of RMSE smaller than those of a random walk. Results are
shown for forecast horizons of h = 1, 6, 12. The currency abbreviations stand for Australian Dollar (AUD), Brazilian Real (BRL), Canadian Dollar
(CAD), Danish Krone (DKK), Indian Rupee (INR), Mexican Peso (MXN), New Zealand Dollar (NZD), Norwegian Krone (NOK), South African Rand
(ZAR), Swedish Krona (SEK), Swiss Franc (CHF), British Pound (GBP), and Euro (EUR).
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Figure 1.7: Rolling Window Forecast, h = 1

Note: This figure plots the out-of-sample, one-step-ahead, rolling window forecasting
results of the time-varying loadings (TVL, blue line) and the constant loadings (CL, red
line) model. The black line corresponds to the actual exchange rate.

accuracy 8 times for the TVL model and only once for the CL model. All
three tests provide consistent evidence of improved predictive ability when
time variation is accounted for. Next, we compare the TVL model to random
walk forecasts using the CPA and UPA tests (p-values reported in Columns
10 to 13). We do not report the direction accuracy test, as the random walk
forecast, by definition, has zero directional accuracy. With a quadratic loss
function, both CPA and UPA reject once in favour of the TVL model and
never in favour of the random walk. For an absolute loss function, the CPA
test rejects once and again in favour of the TVL model. Finally, we compare
the CL model with the random walk (p-values reported in Columns 14 to
17). Now, the CPA test rejects 3 times, and the UPA test twice, in favour of
the random walk. Using an absolute loss function, the UPA test rejects once.
The results imply that the TVL model does not only have better predictive
ability than the CL model but also that it produces better forecasts than the
CL model when comparing both to a random walk. We repeat this exercise
for a forecast horizon of h = 6 in Panel B of Table 1.3 and for h = 12 in Panel
C. While TVL and CL have equal predictive ability for h = 6 according to
the CPA and UPA test, the CPA test based on a quadratic loss function now
rejects the null hypothesis that the TVL model and a random walk have
equal predictive ability three times: twice in favour of the TVL model, for
AUD and NOK, and in case of the JPY in favour of the random walk. The
UPA test also rejects for the JPY, however using an absolute loss function, it
rejects for the AUD (i.e. in favour of the TVL model). On the other hand, the
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Figure 1.8: Rolling Window Forecast, h = 1

Note: This figure plots the out-of-sample, one-step-ahead, rolling window forecasting
results of the time-varying loadings (TVL, blue line) and the constant loadings (CL, red
line) model. The black line corresponds to the actual exchange rate.
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1.6 out-of-sample results

tests reject in favour of the random walk throughout when comparing it to
the CL model. All in all, the results demonstrate that time-varying loadings
improve the fit of the model, especially for one-step-ahead forecasts. In
a companion working paper (Hillebrand et al., 2020), we conducted the
out-of-sample estimation using the in-sample dataset, i.e. without real-time
data. The TVL model also consistently outperformed the CL model, albeit
with fewer rejections overall. We conjecture that the Kalman filter is able to
filter out noise in the real-time data, which led to an even better performance
of the TVL relative to the CL model.
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Figure 1.9: Fluctuation Test, h = 1

Note: This figure plots the results of the Giacomini and Rossi (2010) fluctuation test. The
solid blue line is the test statistic, the dotted red lines are the 5% critical values. The
results are based on a rolling window of m = 20 and a quadratic loss function.

In addition to selecting a model based on relative global predictive ability,
it is interesting to examine how the relative predictive ability of two models
changes over time. Figure 1.9 plots the results of the Giacomini and Rossi
(2010) fluctuation test for GBP and EUR at each point in time for h = 1.14

The solid black line represents the test statistic for the TVL compared to
the CL model, the dotted blue line the statistic for the TVL model against
a random walk, and the dashed red line corresponds to the test statistic
for the CL model against the random walk. The horizontal lines are the
5% critical values. The sign of the test statistic corresponds to the sign of
the MSE. When the test statistic falls below the negative critical value, the
test rejects the null hypothesis of equal predictive ability in favour of the
TVL model (or the CL model against the random walk). The results are
obtained using a rolling window of m = 20 and a quadratic loss function.

14Plots for h = 6, 12 are reported in Appendix B.
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Figure 1.10: Fluctuation Test, h = 1

Note: This figure plots the results of the Giacomini and Rossi (2010) fluctuation test. The
solid blue line is the test statistic, the dotted red lines are the 5% critical values. The
results are based on a rolling window of m = 20 and a quadratic loss function.
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Although the Giacomini and White (2006) test does not provide evidence
that the time-varying loadings model is globally more accurate in case of the
GBP (see Table 1.3), the fluctuation test rejects in favour of the TVL model
both against the CL model and the random walk during the financial crisis.
Figure 1.10 shows the results for the remaining currencies. The fluctuation
test rejects the null hypothesis that TVL and CL have equal predictive ability
for 10 currencies (AUD, BRL, CAD, CHF, GBP, JPY, NOK, NZD, SEK, and
ZAR). The Giacomini and White (2006) test only rejects the null hypothesis
of equal predictive ability for 4 currencies (BRL, NOK, NZD, and SEK, Table
1.3). That is, for an additional 6 currencies, we find evidence that accounting
for instabilities in factor loadings leads to improved local predictive ability.
In most cases, these pockets of predictability occur during the financial
crisis, which indicates that the TVL model performed particularly well in
that period. The fluctuation test statistic never attains the positive critical
value, meaning the null hypothesis is never rejected in favour of the constant
loadings model. The test further indicates that the random walk has superior
predictive ability when compared against the CL model in all except 2 cases
(NZD and SEK). In contrast, the fluctuation test only rejects twice in favour
of the random walk against the TVL model (JPY and MXN) and 5 times
in favour of the TVL model (AUD, CHF, GBP, NZD, and SEK). On closer
examination, the CL model performs particularly poorly against the random
walk during periods in which the TVL model does well, especially for AUD,
BRL, CAD, and GBP. For these 4 currencies, the random walk significantly
outperforms the CL model during periods in which the TVL model beats
the random walk.

To underscore the robustness of our out-of-sample results, we use the
1-factor model to generate forecasts over the same horizon as above and
report the statistical evaluation (see Appendix A.4.2). The results are equally
– if not more – affirmative. Neither the Giacomini and White (2006) nor the
Pesaran and Shin (1998) test find any predictive ability on the part of the
constant loadings model. In addition, we include the forecast evaluation for
the 3-factor model over different prediction horizons (P = 260 and P = 200).
In all cases, the evidence stands clearly in favour of the time-varying loadings
model. The computational complexity of the algorithm does not allow for
the use of forecast evaluation criteria as in Rossi and Inoue (2012) that
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are robust to estimation window size.15 However, the robustness checks
in conjunction with the three different forecast evaluation criteria should
eliminate concerns that the out-of-sample results are driven by window size.

1.7 conclusions

In this paper, we studied the unstable relationship between exchange rates
and macroeconomic factors. Using a novel econometric approach, proposed
in Mikkelsen et al. (2019), we showed that allowing for time-varying factor
loadings increases the percentage of explained variation in exchanges rates
by an order of magnitude. In addition, taking the aforementioned instabilities
into consideration improves the relative out-of-sample predictive ability of
the model globally, and yields better forecast of sign changes in exchange
rates.

We extracted macroeconomic fundamentals as principal components from
a new dataset that combines all 272 vintage releases of the FRED-MD
database and a large number of variables sourced from the OECD. The
unobserved time-varying loadings are estimated using a recently proposed
two-step maximum likelihood estimator for high-dimensional factor models
(Mikkelsen et al., 2019). The model is applied to 14 currencies vis-à-vis the
US Dollar and the results show that failure to account for the instabili-
ties between exchange rates and fundamentals is by no means innocuous.
In-sample, the time-varying loadings model achieves a median R2 of 52%
percentage points compared to 2% for the constant loadings benchmark.
We showed that out-of-sample, the time-varying loadings model exhibits
significantly better forecast accuracy. This holds true both when compar-
ing their predictive ability directly, and in terms of the improvements the
time-varying model generates relative to a random walk. When evaluating
the forecasts individually, the time-varying loadings model outperforms the
constant loadings model at predicting directional exchange rate changes. To
consider potentially unstable forecasting performance, we evaluated the rela-
tive predictive accuracy of the forecasts using the Giacomini and Rossi (2010)
fluctuation test. In addition to higher global forecast accuracy, time-varying

15To eliminate the effects of in- and out-of-sample window choices, Rossi and Inoue (2012)
propose a forecast test which is robust to window size. They show that for a test-statistic
ST(R),

1
[µ̄T]− [µT + 1]

[µ̄T]

∑
R=[µT]

ST(R) d−→
∫ µ̄

µ
S(µ)dµ

However, this procedure is computationally infeasible in our setting.
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1.7 conclusions

loadings improved forecasts locally around the financial crisis. This paper
provides strong evidence that the relationship between macroeconomic
fundamentals and exchange rates is highly unstable.
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C H A P T E R 2

C O M B I N I N G P - VA L U E S F O R M U LT I VA R I AT E
P R E D I C T I V E A B I L I T Y T E S T I N G

2.1 introduction

In this paper, we propose a computationally efficient test for multivariate
predictive ability that is valid for any number of univariate forecast accuracy
tests and arbitrary dependence structures, without specifying the underlying
multivariate distribution.
One of the main goals of econometric analysis is to make accurate predic-
tions of a large range of variables such as inflation, exchange rates, stock
returns, or volatility to name only a few. To this purpose, there exist a large
number of candidate models and the main challenge is to select the one with
the best predictive ability. Thus far, the literature has proposed a variety
of testing procedures, most of which are univariate and evaluate two com-
peting forecasts of a single variable. Important examples include Diebold
and Mariano (1995, DM) and Giacomini and White (2006, GW). [See Clark
and McCracken (2013) for a comprehensive overview of existing testing
procedures.] However, researchers are often interested in evaluating more
than two forecasts, either because multivariate models are used (e.g. Laurent
et al., 2013) or multiple variables are forecast (e.g. Carriero et al., 2019). In
such cases, independence between variables and forecasting models seldom
holds true. Consequently, univariate test statistics and their p-values can also
exhibit dependencies, which means they cannot necessarily be evaluated
individually. This motivates the development of multivariate forecast tests
that account for dependence. Notably, the joint distribution of dependent
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variables is difficult or impossible to obtain analytically without several
assumptions. The existing literature approaches this issue by evaluating
a set of forecasts directly with a single test that adequately captures de-
pendencies. For instance, Qu et al. (2021) condition on a common factor
within forecast errors to capture any common components. Mariano and
Preve (2012) extend the DM test into a multivariate setting without directly
addressing the dependence structure. However, approaches that evaluate
forecasts jointly suffer from drawbacks that may render them infeasible in
certain situations. First, their limiting framework is valid only under either
a large or a small cross-section, restricting their applicability. That is, one
cannot use the same test with datasets of considerably different dimensions.
Second, the design of the forecasting scenario can require the use of multiple
different tests, e.g. because one compares nested and non-nested models or
uses different estimation windows that affect the asymptotic properties of
tests. Third, it is not always obvious when a test rejects in a multivariate
setting in the sense that it is undefined how many individual forecasts must
be equally accurate for the null to be sustained.
The testing framework we propose combines univariate tests, taking ad-
vantage of both recent advances in the statistical literature on combining
dependent p-values as well as in the econometric literature on multivariate
forecast evaluation. The resulting test allows researchers to estimate any
number of univariate forecast accuracy tests – provided they fulfill some
nonrestrictive assumptions – and corrects for dependence in a subsequent
step that combines their p-values. Thus, one can implement tests that are
most appropriate in a given scenario and examine whether predictive ability
holds in the cross-section. We specify a global null hypothesis that is clearly
defined as the intersection of all individual null hypotheses, accounting for
false discovery and dependence. Furthermore, our method can be applied
to p-values from different tests, meaning that when faced with mixed or
inconclusive evidence, one can obtain a more conclusive result. Hence, our
test can be used in a plethora of, if not all, forecasting scenarios. To the best
of our knowledge, we are the first to propose such a test.
Specifically, we propose an intersection-union (IU) test by applying the theo-
retical results in Vovk and Wang (2020). We show that one can construct a
global hypothesis test, based on a single or several of the existing univariate
tests for forecast accuracy, that is level-α under any form of dependence.
Crucially, our global test does not require knowledge of the joint distribu-
tion of the p-values of the individual test statistics which cannot be derived
analytically. In addition, we study the power properties of the test and show
under what conditions Type I and II errors vanish. We demonstrate the
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good size and power properties of the test through a battery of Monte-Carlo
simulations. For this purpose, we use three benchmark tests: DM, GW, and
Clark and West (2007, CW). The three tests are widely used and suitable in
different scenarios. However, we emphasize that our method is not restricted
to these tests, meaning it can be deployed in a range of forecasting situations.
The simulations evaluate the performance of our test in low-dimensional
as well as high-dimensional scenarios. We compare our method to the Mar-
iano and Preve (2012) test, a multivariate GW test, and methods that do
not account for dependence between p-values. The simulations show that
these procedures display considerable size distortions, effectively rendering
them inapplicable in practical scenarios. When investigating their rejection
accuracy, we find that contrary to our test, the other multivariate procedures,
which are both of Wald-type, exhibit distinctly different rejection rates when
dimensions change. This highlights how the interpretation of test results
can benefit from our intersection null in practice. We illustrate the empirical
validity of our testing procedure via an application involving a large dataset
of 84 daily exchange rates, running from 1 January 2011 to 1 April 2021,
quoted against the US-Dollar, the British Pound, and the Euro. The empirical
illustration highlights the wide-ranging applicability of our test both in
small and high dimensional cases. Moreover, it exemplifies how our test
addresses inconclusive results that arise often in practice.
The remainder of the paper is structured as follows: Section 2.2 describes
the forecasting setup, introduces the IU testing framework, and also reports
a way to apply the GW test in a multivariate setting. Section 2.3 analyzes
the size and power properties of the test in various simulations and Section
2.4 provides an empirical illustration of the test. Section 2.5 concludes.

2.2 theory

This section presents our theoretical contribution. First, we outline a general
framework for univariate forecast evaluation that is consistent with our
test. Second, we propose treating univariate tests as sub-tests of a global
null hypothesis and discuss the assumptions imposed upon them. Third,
we introduce our methodology for multivariate forecast comparison which
is based on the intersection of the sub-tests. Finally, we show how the
Wald-type GW test can be applied in a multivariate setting and serve as a
benchmark for our IU test.
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2.2.1 Forecasting Setup

Suppose we observe the vector Vt ≡ (Y′
t , X′

t)
′, where Y = {Yt : Y 7→ Rn, n ∈

N} are the variables one wishes to forecast and X = {Xt : X 7→ Rs, s ∈ N}
are predictor variables. Define Ft as the σ-field generated by the infinite
history of V ≡ {Vt : Ω 7→ Rs+n} and Y ∪ X = Ω such that V is defined on
the complete probability space (Ω, F , P). The forecasting equation for Yt

takes the form of an Ft-measurable function ψ : Ω 7→ F ⊂ R. The function
can include lagged values of Yt as well as Xt and can be parametric or
non-parametric. It produces τ-step-ahead forecasts Ŷ = {Ŷt+τ : F 7→ Rn} of
Y based on the information set Ft. Notation-wise, we define the estimation
window of the parameters as R and place no restrictions on whether R is
a fixed, rolling, or expanding estimation window. Further, we define the
out-of-sample forecasting window as p such that T = R + p + τ is the total
sample the forecaster observes. Multiple procedures to evaluate the resulting
forecasts have been introduced, most of which rely on a forecast loss function.
The forecast loss function is defined as L(Ŷ, Y, X) : F × Ω 7→ Λ. In many
cases, the loss function is defined such that Λ ⊂ R+, with the most common
type being the quadratic loss:

Li,R,t+τ =
(
Yi,t+τ − Ŷi,t+τ

)2
, i ∈ {1, ..., n}.

The function can take many other forms and gives a vector {LR,t+τ}T
t=R. One

can assess forecasts based on a single loss function by testing whether it
is statistically different from zero. For two forecasts, Ŷ(1) and Ŷ(2), one can
define a loss differential, ∆L ≡ L(Ŷ(1), Y, X)− L(Ŷ(2), Y, X). That is, in the
quadratic case we have

∆Li,R,t+τ =
(

Yi,t+τ − Ŷ(1)
i,t+τ

)2
−
(

Yi,t+τ − Ŷ(2)
i,t+τ

)2
, i ∈ {1, ..., n}.

The vector ∆LR,t+1 then stacks the n univariate loss differentials. Note that
one can use several different loss functions to evaluate the same forecasts.
However, the majority of existing forecast accuracy tests evaluate forecasts
based on one single loss differential. Most commonly, by either formulating
the unconditional null hypothesis Hi,0 : E[∆Li,R,t+τ] = µi,0 or the conditional
null Hi,0 : E[∆Li,R,t+τ | Ft] = µi,0. The parameter µi,0 is known and set to
be zero when testing for equal predictive ability. The second type of tests
is then called conditional equal predictive ability test and can ascertain
if a particular model has superior forecasting abilities. This is a notable
difference to unconditional tests that only assess if there are statistically
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significant differences between two forecasts. We use the notation of GW,
E[∆Li,R,t+τ | Gt] = µi, where Gt corresponds to either the natural filtration Ft

or the trivial σ-field {∅, Ω}, thereby referring to either of the two test types.
The parameter µi characterizes either the unconditional or the conditional
mean of the loss differential of the two forecasts. In this paper we consider
the global null hypothesis:

H0 : E[∆LR,t+τ | Gt] = µ0.

Constructing a test for this hypothesis is less straightforward. One approach
is to construct a single test, based on the entire sample space Λ that jointly
evaluates all elements in ∆LR,t+τ. Dependencies between these elements
pose an analytical and computational obstacle in the construction of a valid
test. Therefore, we propose to test the intersection of the local hypotheses
Hi,0. Our methodology is compatible with all univariate test types that fulfill
the assumptions outlined in the next section.

2.2.2 Univariate Sub-Tests

Consider a series of n forecast accuracy tests, each of which is based on the
random variables Yi,t and Xt. The tests all examine the local hypothesis Hi,0,
i.e. compare the accuracy of two forecasts of the variable Yi,t. We treat these
tests as sub-test for the global null hypothesis that all forecasts exhibit equal
accuracy. Each univariate sub-test evaluates the sub-hypothesis:

Hi,0 : µi ∈ Mi,0, for i ∈ {1, ..., n},

against the alternative

Hi,A : µi ∈ Mi,A, for i ∈ {1, ..., n},

where Mi,0 is the set of admissible values for µi under the sub-hypothesis,
Mi,A is the set of admissible values for µi under the alternative hypothesis.
Suppose the tests construct a test statistic Si = si(V) with realization ŝi
which, under Hi,0, has a density fi(x). Then, the p-value of the test statistic
corresponds to:

pi ≡ Pµi [{V ∈ Ω : si(V) > ŝi}] = 1 − Fi(ŝi), for all µi ∈ M0,i,

for the cumulative distribution of fi(·), Fi(·). One rejects the sub-hypothesis
if Pµi [ŝi ≥ ci] ≤ α, i.e. pi ≤ α, where α is the significance level chosen by the
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researcher and ci = F−1
i (1 − α). To be consistent with our methodology, the

sub-tests must satisfy the following assumptions:

Assumption 2.1. (i) Under each sub-hypothesis, the choice for Mi,0 is Mi,0 =

{µi,0} for some known parameter value µi,0 ∈ R and for all i ∈ {1, ..., n}. (ii)
Under each alternative, the choice for Mi,A is Mi,A = {µi; µi ̸∈ M∗

i,A ∪Mi,0}
where M∗

i,A represents the set of all parameters that are local alternatives to
the sub-hypothesis Hi,0.

Assumption 2.2. fi : R → [0, ∞], and Pµi [a ≤ X ≤ b] =
∫ b

a fi(x)dx for all
i ∈ {1, .., n}.

Assumption 2.3. (i) Under each sub-hypothesis Hi,0, sup Pµi [ŝi ≥ ci] ≤ α.
(ii) Under each alternative Hi,A, Pµi [ŝi ≥ ci] → 1 for all i ∈ {1, ..., n}.

Assumption 2.1 (i) imposes that the parameter values for the null hypoth-
esis of each sub-test consist of a single value, i.e. they are not composite,
while (ii) ensures the sub-hypotheses are not tested against local alternatives
that are too close to the null to be detected [see van der Vaart (1998, Ch. 7)].
Assumption 2.2 imposes that the density of the test statistic is absolutely
continuous, as is the case for most econometric tests. It ensures that for any
µi ∈ Mi,0, Pµi [{V ∈ Ω : si(V) > ŝi}] is known for all i ∈ {1, ..., n}. It is easy
to see that both assumptions together imply that the p-values be uniform
over [0, 1]: pi ∼ Un[0, 1] under Hi,0. In this context, Assumption 2.1 is crucial
as Robins et al. (2000, p.1144) show that p-values are not necessarily uniform
if the null hypothesis of a test is composite. This is important as it implies
our method is not applicable for tests with a null of superior predictive ability.
Assumption 2.3 (i) ensures the univariate sub-tests are of level-α, while (ii)
stipulates that their asymptotic power approaches one.
If Assumptions 2.1 and 2.2 hold true and we observe n independent p-values
p1, ..., pn ∈ [0, 1], then the variable P = (p1, ..., pn) ∈ [0, 1]n is uniform on the
hypercube [0, 1]n. Indeed, under independence, it is easy to derive the distri-
bution of various possible combinations of the n p-values. One of the most
well known of such methods dates back to Fisher (1934) who shows that
SF = −2 ∑i log(pi) ∼ χ2

2n under H0 [see Heard and Rubin-Delanchy (2018)
for a detailed review of different methods]. Under dependence, however, the
distribution does not admit an analytical solution (Liu and Xie, 2019; Kost
and McDermott, 2002). Notably, independence rarely holds in practice, par-
ticularly when forecasting multiple variables or comparing related models.
To prevent size distortions, multivariate forecast evaluation methods must
take dependence structures into account. As the latter are unknown in most
scenarios, an essential requirement for a multivariate forecast accuracy test
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is that it exhibits good size and power properties under arbitrary forms of
dependence.
In the next section, we develop a testing framework to address these impor-
tant features encountered in most economic and financial applications.

2.2.3 An Intersection-Union Test of Multivariate Forecast Accuracy

Consider a scenario where one has conducted a total of n sub-tests. Each
test i ∈ {1, ..., n} constructs a statistic ŝi, yielding a p-value pi, both stacked
in the vectors S = (ŝ1, ..., ŝn) and P = (p1, ..., pn)∈ Pn, where P is the
set of all p-values. We do not assume that ŝi and ŝj are independent for
i ̸= j ∈ {1, ..., n}. The previous section discussed the properties of the sub-
tests in detail. Now suppose we are interested in the global null hypothesis
H0 : E[∆LR,t+1 | Gt] = µ0. Rather than developing a statistic that tests
H0 directly, we formulate the global null as the intersection of the sub-
hypotheses Hi,0. That is, if we define the set R = {i ∈ {1, ..., n} : µi ∈ Mi,A}
with cardinality R0, we wish to test if R = ∅. Formally, the intersection null
hypothesis can be defined as

H0 =
⋂
i∈N

Hi,0 : µ ∈
⋂
i∈N

Mi,0, (2.1)

with the index set N = {1, ..., n}. It is tested against the alternative

HA =
⋃
i∈N

Hi,A : µ ∈
⋃
i∈N

Mi,A.

We can write M0 = ∩i∈NMi,0 and MA = ∪i∈NMi,A. To test for equal predictive
ability, we can set µi,0 = 0 for all i ∈ N. In that case, the global null
hypothesis H0 is that equal predictive ability holds for each of the n pairs
of forecasts and it is rejected if any of the n sub-hypotheses is false. One
can select whichever sub-test is most appropriate to examine each sub-
hypothesis Hi,0. This is a decisive advantage if one analyzes characteristically
different datasets or models. The clearly defined rejection set of our IU test
stands in contrast to other Wald-type tests of multivariate predictive ability
whose rejection set is undefined. We demonstrate this in our Monte-Carlo
simulations. When the test statistics are not independent, the global Type I
error of the tests depends on the joint distribution of S which is unknown.
The obvious implication is that one cannot simply consider the p-values
individually to test H0. If one consults a statistic that assumes p-values are
independent, one is, in fact, not testing H0 but rather a composite of H0 and
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A0 := {pi ⊥⊥ pj for all i ̸= j ∈ N}, where ⊥⊥ denotes independence between
variables. This can lead to considerable size distortions, as a rejection may
simply be due to a false independence assumption – a point illustrated in
our Monte-Carlo simulations. The main complication to testing H0 is finding
a test statistic s(P) for which it can be shown that

Pκ(·)

[
s(P) ∈ Cκ(·)

∣∣∣∣∣ ⋂
i∈N

pi ∼ Un[0, 1]

]
≤ α.

Here, κ(p) denotes an unknown reference density for the joint distribution
of the p-values under the intersection null hypothesis and Cκ(·) is a critical
region for the significance level α. Note that we do not condition on A0. In
what follows, we propose a simple, widely applicable, and computationally
convenient methodology to circumvent the problem of defining κ(·).
Based on recent results on the precision of merging functions for p-values
of Vovk and Wang (2020), we define the following test statistic:

Pr,n = n−1

(
n

∑
i=1

p−r
i

)1/r

, for any r ∈ (1, ∞). (2.2)

Unlike methods of minimum p-values like the Bonferroni correction, the
statistic above incorporates p-values of all sub-tests. The negative exponent
ensures small p-values increase the statistic by more relative to large values.
It can be seen that the statistic is permutation invariant, i.e. the order in
which the individual tests are conducted does not change the outcome of
the IU test. We apply Proposition 5 in Vovk and Wang (2020) to study the
properties of the test both in a finite sample environment and asymptotically.
The results are formulated in the following theorem:

Theorem 2.1. Suppose Assumptions 2.1 (i), 2.2, and 2.3 (i) hold. Let {s1, ..., sn}
be test statistics from level-α tests of {H1,0, ...,Hn,0} with unknown dependence
structure and p-values {p1, ..., pn}. Under the intersection null hypothesis H0, for
the test statistic Pr,n in (2.2) we obtain the finite sample result:

P

[
Pr,n ∈ Cr,n

∣∣∣∣∣ ⋂
i∈N

pi ∼ Un[0, 1]

]
≤ α, (2.3)

and the asymptotic result:

lim sup
n→∞

P

[
Pr,n ∈ Cr,n

∣∣∣∣∣ ⋂
i∈N

pi ∼ Un[0, 1]

]
= α, ∀ (p1, ..., pn) ∈ Pn, (2.4)
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for all α ∈ (0, 1), any r ∈ (1, ∞), and the critical region Cr,n =
{

cr,n ≥ r
α(r−1)

}
.

Theorem 2.1 shows that the statistic is level-α for finite n and size-α for
n → ∞. Note that the asymptotic result holds irrespective of whether the
sub-tests are size-α or level-α. The size properties follow as it can be shown
the test statistic (2.2) falls into the category of increasing Borel functions
F : [0, 1]n → [0, ∞) for which Vovk and Wang (2020) show sup[P{F(U) ≤
ϵ} | U ∈ [0, 1]n] ≤ ϵ for any ϵ ∈ (0, 1), regardless of the joint distribution
of U. To construct and analyze the statistic, we do not need to impose any
assumptions about the degree of dependence on the individual p-values.
Nor does the computation require knowledge of the joint distribution of
P, as long as the uniformity of the p-values under their individual null
hypotheses is satisfied. Indeed, this is a decisive advantage of our approach
as it allows researchers to compare the accuracy of dependent forecasts
without making restrictive assumptions about the joint distribution of their
tests statistics and p-values, respectively. Importantly, if one decides to
compare multiple forecasts through individual tests without our procedure
(or a comparable method) one is implicitly assuming independence. Thereby,
one is also testing the independence assumption which can increase the Type
I error. Furthermore, our methodology controls the False Discovery Rate
(FDR) which is defined as: FDR = E[FP/(FP + TP)1{FP+TP≥1}], where FP
are false positives and TP are true positives. It can be seen that Theorem 2.1
keeps the FDR lower or equal to α. Notice also that we do not impose any
restrictions on n relative to T. One implication of Theorem 2.1 is that, in finite
samples, under H0 the statistic has size smaller or equal to the minimum
size of any of the individual tests under the global null hypothesis:

π(µ) ≤
∧
i∈N

πi(µ), µ ∈ M0, (2.5)

where πi(µ) = Pi[Si ∈ Ci | µi] is the power function for each sub-test, ∧i∈N
denotes the minimum over all πi(µ) for all i ∈ N, and π(µ) = P[Pr,n ∈ Cr,n |
µ] is the power function for the global test. In the next theorem, we turn to
the behavior of the test statistic under the alternative hypothesis HA.

Theorem 2.2. Suppose Assumptions 2.1-2.3 hold. Let {s1, ..., sn} be a sequence
of test statistics from level-α tests of {H1,0, ...,Hn,0} with unknown dependence
structure and p-values {p1, ..., pn}. Then under the alternative HA:

P [Pr,n ∈ Cr,n | µ ∈ MA] → 1,

for all α ∈ (0, 1), any r ∈ (1, ∞), and the critical region Cr,n =
{

cr,n ≥ r
α(r−1)

}
.
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Theorem 2.2 presents a general finite sample case that shows the test
rejects with probability approaching 1 if the intersection null hypothesis
is false. It is not necessary, and often impossible, to impose a particular
distribution on the p-values under the alternative and analyze the finite
sample power of the test. However, we can derive a specific asymptotic
result if the test statistics are jointly normally distributed and the global
null hypothesis is tested against sparse alternatives. This necessitates the
following assumption:

Assumption 2.4. (i) S = (s1, ..., sn) ∼ N (µ, Σ), where Σ has off diagonal
elements σi,j = 0 for any |i − j| > 1, (ii) R0 = nγ for γ ∈ [0, 0.5], (iii)
Mi,0 = {i ∈ N : µi,0 = 0} and Mi,A = {i ∈ N : µi =

√
2δ log n} for all

δ > −2
√

γ(2r − 1)/r + γ − 1/r + 2.

Assumption 2.4 (i) imposes the vector of test statistics be multivariate
normal with banded correlation matrix, (ii) ensures only a relatively small
number of tests rejects, by restricting the number of rejected sub-tests to
be a function nγ of the total number of sub-tests, while (iii) replaces the
conditions imposed on local alternatives in Assumption 2.1. Since the param-
eter δ, which controls the magnitude of µi under the alternatives, depends
negatively on γ, the magnitude of µi for which the test rejects decreases in
the relative number of rejected sub-tests. The choice of µi,0 = 0 is standard
in most forecast accuracy tests. This setup follows Liu and Xie (2020) and
Donoho and Jin (2004) and embeds our test in the existing literature on
combining p-values. In addition, we can define a specific range for δ that
maximizes the power of our test. Under Assumption 2.4, Liu and Xie (2020,
Theorem 3) show that the power of the statistic ∑n

i=1 ωi tan{(0.5− pi)π} con-
verges to 1 for non-negative ωi, with ∑i ωi = 1. The following proposition
extends their result to our IU test:

Proposition 2.1. Suppose Assumptions 2.3 (i), 2.4 (i)-(iii) hold and we observe
S = (s1, ..., sn) as well as P = (p1, ..., pn). Then under the alternative HA:

lim
n→∞

P [Pr,n ∈ Cr,n | µ ∈ MA] = 1, (2.6)

for all α ∈ (0, 1), any r ∈ (1, ∞), and the critical region Cr,n =
{

cr,n ≥ r
α(r−1)

}
.

Proposition 2.1 represents a special case of our test for normally dis-
tributed sub-tests. If Assumption 2.4 holds and the magnitude of µi under
the alternative is known, we can derive a more explicit lower bound for r
that ensures the power of the test equals 1 asymptotically:
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Corollary 2.1. Suppose Assumptions 2.3 (i) and 2.4 (i)-(iii) hold. If δ ∈ (γ −
2
√

γ + 1, γ − 2
√

2
√

γ + 2), then the sum of Type I and II errors vanishes asymp-
totically for any r ∈ (1, 2 − 2

√
γδ − γ − δ)−1).

Corollary 2.1 places an upper bound on r which depends positively
on γ and δ. The result implies that the larger γ, the larger the range of
admissible values for r. In the general case, we cannot specify a particular
joint distribution. Therefore,we cannot simply obtain a p-value for the
statistic as 1 − F(Pr,n), where F(·) is any CDF. It is, however, possible to
compute a p-value according to the proposition below:

Proposition 2.2. Suppose Assumptions 2.1-2.3 hold and we observe S = (s1, ..., sn)

as well as P = (p1, ..., pn). Then a p-value for the test statistic in (2.2) can be
computed as

h(Pr,n) =
r

r − 1
1

Pr,n
∧ 1. (2.7)

Proposition 2.2 defines a variable h(Pr,n) ∈ [0, 1] that can be interpreted
as a p-value to the test statistic. Notably, we do not necessarily obtain
h(Pr,n) ∼ Un[0, 1], nor are we able to analyze the distribution of h(Pr,n).

Theorems 2.1 and 2.2 hold regardless of whether we merge n different
or identical tests, as long as they satisfy Assumptions 2.1-2.3. This is an
important feature, as data availability and alternative model specifications,
respectively, may render some univariate tests impractical or change the
degrees of freedom of their test statistics. To the best of our knowledge, this
is the first paper to propose an IU framework to test for forecast accuracy.
Regarding the performance of our test, we are interested in (i) how the
IU test compares to other methods of combining p-values, and (ii) how it
compares to a test that jointly evaluates all individual forecasts in a single
step. However, there are not many suitable benchmarks to assess the second
point. A requirement in this regard is that the multivariate benchmark
displays similar properties as the univariate sub-tests. One example for such
a test is the multivariate DM extension of Mariano and Preve (2012, MP
henceforth) which is comparable to the IU test based on DM sub-tests. Other
multivariate tests, such as Qu et al. (2021), are not extensions of a univariate
test. Thus, they are less suitable as a benchmark: it is possible that the IU
test, based on, say, univariate GW p-values, has high (low) power relative
to a test in Qu et al. (2021), while having relatively low (high) power when
combining p-values from, say, CW tests. In the next subsection, we suggest
an additional competitor for our test in the form of a multivariate GW test.
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2.2.4 A Wald Test for Multivariate Forecast Accuracy

The framework of GW presents a natural point of comparison for our IU test.
In what follows, we discuss how the GW test can be applied in multivariate
settings and report details of the derivation in Appendix B.1. Like the
IU test introduced above, the multivariate GW test evaluates the global
null hypothesis H0 : E[∆LR,t+1 | Gt] = µ0 and takes into account cross-
dependencies between forecasts. We seek to investigate if models have equal
predictive ability relative to a benchmark across different variables, based on
the information set Ft. If this is the case, ∆LR,t+1 is a martingale difference
sequence under the null hypothesis. Adopting the notation of GW, the
global null can be written as a moment condition, H0 : E[h̃t ⊗ ∆LR,t+1] = 0
based on a q × 1 dimensional, Ft-measurable vector h̃t. Define ZR,t+1

qn×1
=

h̃t ⊗ ∆LR,t+1, Z̄R,n = p−1 ∑T−1
t=R ZR,t+1, and Ω̂n

qn×qn
= p−1 ∑T−1

t=R ZR,t+1Z′
R,t+1.

The multivariate version of GW is a Wald test:

Th
R,n = pZ̄′

R,nΩ̂
−1
n Z̄R,n

p−→ χ2
qn, as p → ∞. (2.8)

The crucial difference compared to the univariate version lies in the dimen-
sion of the matrices: both Z̄′

R,n and Ω̂n are a multiple n of the dimension
of h̃t. Therefore, the degrees of freedom of the test distributions differ: the
univariate test converges to a χ2

q, rather than a χ2
qn distribution. The test is

still consistent against the alternatives in GW, meaning it is straightforward
to implement and its properties are readily available. As the matrix Ω̂

−1
n

includes the covariance between loss differentials, the multivariate test also
evaluates dependence in the cross-section of forecasts, whereas the univari-
ate test only accounts for serial correlation. However, similarly to the MP
test, it quickly encounters inconsistency problems as the number of variables
increases. If one follows the suggestion of GW and uses lagged values of
∆LR,t+1 as h̃t, Ω̂n is consistent and invertible when n is small. Vice-versa,
tests that rely on n → ∞ in the presence of cross-sectional dependence are in-
consistent in a small n environment. In the next section, we compare our IU
test to the multivariate GW and MP Wald tests in high- and low-dimensional
settings.

2.3 monte-carlo simulations

In this section, we report the results of an extensive set of Monte Carlo
simulations to evaluate size and power properties of the test. Most univariate
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forecast accuracy tests are only valid asymptotically and we analyze how this
affects our IU test. We are interested in the question how our test compares
to (i) tests that directly evaluate the global null hypothesis of equal predictive
ability across n forecasts and (ii) other methods of combining p-values. To
this end, we construct different simulation designs. We construct actual
forecasting scenarios and illustrate the properties of our method using three
different sub-test: GW, DM, and CW. All three tests are widely used which
underlines the relevance of our simulations for practitioners. Furthermore,
they allow us to test for both conditional as well as unconditional predictive
ability. For our small-sample power simulations, we only use GW and DM
as sub-test which allows us to compare the results of the IU test directly
with the multivariate GW test and the MP test. As GW and DM have
different null hypotheses, our simulations also study scenarios where one
sub-test will plausible reject its null while the other will sustain it. In our
final, high-dimensional, power-simulation, we focus on nested models and
present results using GW and CW as sub-tests for our global null. We
cannot present results for MP and the multivariate GW test due to the large
number of forecasts we evaluate. In all simulations, we present results from
Fisher’s method of combining p-values for further comparison. All results
are generated through 5000 Monte-Carlo iterations.

2.3.1 The Choice of r

This subsection provides guidance on the choice of r. Theorem 2.1 shows
that any r ∈ (1, ∞) controls the asymptotic size of the test, and suffices to
control the level in finite samples. In practice, one seeks to minimize the
difference between empirical and nominal size.

Corollary 1 provides an upper bound for r based on values of δ and
γ. The Corollary says r ∈ (1, (2 − 2

√
γδ − γ − δ)−1) for δ ∈ (γ − 2

√
γ +

1, γ − 2
√

2
√

γ + 2) and γ ∈ [0, 0.5]. In Figure 2.1, we plot implied upper
bound for r based on values of δ slightly below γ − 2

√
2
√

γ + 2. We denote
the difference by δ̃ = (0.01, 0.011, 0.012, ..., 0.05). The figure shows r on the
y-axis, δ on the x-axis, and γ on the z-axis The upper bound lies between 8.5
and 50, depending on γ. Generally, the larger δ, i.e. the smaller δ̃, the larger
r can be be. Unreported results show that for δ̃ very small, the bound on r
increases exponentially.

We now conduct an extensive simulation in which we skip the sub-
testing step and simulate p-values directly to analyze the performance of
the test under various dependence structures, and different values of r
and n. We analyze different degrees of dependence and examine if and
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Figure 2.1: Upper Bound on r Implied by Corollary 1

Note: The figure plots the upper bound placed on r according to Corollary 1. The figure
shows r on the y-axis, δ on the x-axis, and γ on the z-axis.

how the size changes in r. Further, we are interested in high- and low-
dimensional settings and compare our test to conventional methods of
combining p-values, namely SF = −2 ∑n

i=1 log(pi) ∼ χ2
2n (Fisher, 1934),

SP = −2 ∑n
i=1 log(1 − pi) ∼ χ2

2n (Pearson, 1933), and ST = min1≤i≤n pi ∼
Beta(1, n) (Tippett, 1931). To illustrate the behavior of the combined p-values
for different values of r, we generate a vector of dependent random variables
u that are uniform on [0,1]. We proceed as follows: First, we simulate a vector
of multivariate normal random variables, z ∼ N (0, Σ), with covariance
matrix

Σ =


1 σ12 · · · σ1n

σ21 1
...

... . . . ...
σn1 · · · · · · 1


whose off-diagonal elements σij are themselves random. However, in high-
dimensional settings, it is not possible to simply draw each σij from some dis-
tribution as the resulting Σ will not be symmetric positive definite. To ensure
Σ is a covariance matrix, we first generate a random matrix A ∼ N (0, In),
drawn from a standard normal distribution. We then transform each row
of A such that A∗

i = Ai + (ξi − 1/2) ∗ σa, where the random variable ξi
is uniform on the interval [0,1] and different for each row i = 1, ..., n of
A∗. The parameter σa characterizes the degree of dependence implied by
Σ. To be precise, σa controls the standard deviation of the distribution of
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the off-diagonal elements σij, i.e. the higher σa, the higher the probability of
large covariances. That is, by setting σa, we are able to control the depen-
dence of the data and test statistics. We transform the matrix A∗ again such
that Ã∗ = (n − 1)−1 ∗ (A∗′A∗) . Let ã∗ be a vector containing the diagonal
elements of Ã∗. The random positive definite covariance matrix Σ is then
given as: Σ = (ã∗)−1/2Ã∗(ã∗)−1/2. It can easily be checked that Σ is indeed
positive definite. We transform the dependent normal variables in z through
F(z), where F is the Gaussian CDF, to obtain a vector of dependent uniform
random variables u. Repeating this process 5000 times allows us to compute
the size for each (1.1, 2.1, 3.1, ..., 100.1) and n = (10, 20, ..., 500) at a nominal
level of α = 5%. The results are shown as surface and contour plots in Figure
2.2 for σa = (0, 2, 5). When the correlation between p-values is small (σa = 0),
the size converges and stabilizes quickly at the nominal level. The test is
visibly undersized for values of r < 2; we do not observe any differences
across values of n. Interestingly, for large r > 70, the empirical size of the
test declines again, with the decline being more pronounced for large n. The
results are similar for σa = 2, although the empirical size stabilizes at a lower
level, and starts to decline earlier. For very strong forms of dependence,
the test becomes more conservative: when σa is increased to 5, the size falls
below the nominal level between 3-2%. It now starts to decline for r > 50.

This stands in stark contrast to the three other methods of combining
p-values we present as a comparison (Figure 2.3). When dependence is
low (σa = 0), all methods are slightly oversized; interestingly, more so for
small values of n. Conversely, as we increase the degree of dependence, the
size becomes highly unstable and more distorted the greater n is. When
dependence is high (σa = 5), the Type I error of the tests is large – above 30%
for the Tippett (1931) method. The reason for this lies in the fact that these
test simultaneously examine the independence assumption. This illustrates
the importance of using our test in the presence of dependence to avoid
size distortions, and highlights the fact that one cannot simply choose the
minimum p-value as this will leave researchers highly prone to Type I errors.

The simulations confirm that any choice of r ∈ (1, ∞) ensures the test
is level-α. However, values of r < 5 result in the test being undersized,
while the empirical size quickly approaches the nominal size for r > 5
and declines again for large values of r > 50, depending on the degree
of dependence. In general, a similar analysis for the power of the test can
only be conducted on a case-by-case basis. However, under Assumption
2.4, Corollary 2.1 narrows down the optimal range for r that maximizes the
power of the test by providing an upper bound for r based on admissible
values for δ and γ. As a rule of thumb, it implies that for a sparse number
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(c) σa = 2, Surface (d) σa = 2, Contour
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(e) σa = 5, Surface (f) σa = 5, Contour
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Figure 2.2: Simulated Size

Note: The figure reports the size of test statistic for r = (1.1, 2.1, 3.1, ..., 100.1) and
n = (10, 20, ..., 500).
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Figure 2.3: Size of Other Methods

Note: In the figure, the red line represents size of Fisher statistic (SF), dotted blue line
represents size of Pearson statistic (SP), and dashed black line size of Tippett statistic
(ST).

of rejected sub-hypotheses, r ∈ (1, 50) maximizes the power of the test. On
that basis, we suggest to implement our test with any r ∈ (5, 50). In the
following sections, we set r = 20 and study the size and power of our test in
detail.

2.3.2 Size Properties

This section analyzes the size of the test. We conduct univariate sub-tests
using GW, DM, and CW tests by simulating different forecasting scenarios.
We show results for low and high dimensions and compare them to other
p-value combination methods. We also include results from the multivariate
GW test as a reference but emphasize that the high-dimensional scenarios
we consider are expected to result in size distortions.

We are interested in analyzing the size of our test in small n and large
n settings. To this purpose, we proceed as follows: First, we generate an
n × T matrix Z of cross-sectionally dependent Gaussian random variables.
Each column of Z is drawn from a multivariate normal distribution with
covariance matrix computed as described in the previous subsection. The
parameter σa describes the degree of dependence between variables, i.e. the
higher σa the more dependent are the forecasts. We use the i-th column of Z
to construct n variables Yi,t = ϕ1Yi,t−1 +Zi,t. We set ϕ = 0.5 and generate two
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Table 2.1: Test Size
α = 1% α = 5% α = 10%

n: 10 50 100 200 10 50 100 200 10 50 100 200

Panel A: σa = 0

Pr,n

CW 0.002 0.004 0.004 0.005 0.023 0.021 0.013 0.019 0.035 0.030 0.049 0.050

DM 0.009 0.015 0.008 0.011 0.043 0.049 0.050 0.044 0.077 0.081 0.102 0.112

GW 0.012 0.009 0.003 0.009 0.058 0.047 0.045 0.043 0.103 0.096 0.095 0.106

SF

CW 0.008 0.004 0.002 0.000 0.044 0.016 0.002 0.000 0.059 0.023 0.014 0.001

DM 0.300 0.975 1.000 1.000 0.546 0.996 1.000 1.000 0.720 0.999 1.000 1.000

GW 0.075 0.332 0.563 0.875 0.215 0.546 0.777 0.962 0.311 0.671 0.865 0.979

MGW 0.116 0.747 0.991 1.000 0.357 0.912 0.998 1.000 0.551 0.972 1.000 1.000

Panel B: σa = 0.5

Pr,n

CW 0.002 0.004 0.004 0.005 0.023 0.021 0.013 0.019 0.035 0.030 0.049 0.050

DM 0.009 0.015 0.008 0.011 0.043 0.049 0.050 0.044 0.077 0.081 0.102 0.112

GW 0.012 0.009 0.003 0.009 0.058 0.047 0.045 0.043 0.103 0.096 0.095 0.106

SF

CW 0.008 0.004 0.002 0.000 0.044 0.016 0.002 0.000 0.059 0.023 0.014 0.001

DM 0.300 0.975 1.000 1.000 0.546 0.996 1.000 1.000 0.720 0.999 1.000 1.000

GW 0.075 0.332 0.563 0.875 0.215 0.546 0.777 0.962 0.311 0.671 0.865 0.979

MGW 0.116 0.747 0.991 1.000 0.357 0.912 0.998 1.000 0.551 0.972 1.000 1.000

Panel C: σa = 2

Pr,n

CW 0.005 0.003 0.006 0.003 0.029 0.022 0.018 0.019 0.051 0.031 0.045 0.035

DM 0.010 0.014 0.004 0.012 0.049 0.053 0.049 0.033 0.078 0.083 0.071 0.092

GW 0.005 0.002 0.008 0.004 0.059 0.040 0.044 0.034 0.129 0.091 0.069 0.102

SF

CW 0.019 0.029 0.038 0.063 0.041 0.051 0.062 0.077 0.077 0.067 0.072 0.092

DM 0.290 0.940 0.999 1.000 0.540 0.990 1.000 1.000 0.701 0.998 1.000 1.000

GW 0.083 0.346 0.487 0.668 0.223 0.496 0.675 0.806 0.327 0.625 0.730 0.834

MGW 0.190 0.891 0.998 1.000 0.474 0.973 1.000 1.000 0.636 0.994 1.000 1.000

Panel D: σa = 5

Pr,n

CW 0.005 0.004 0.007 0.002 0.019 0.018 0.019 0.019 0.034 0.035 0.031 0.014

DM 0.009 0.012 0.009 0.005 0.027 0.033 0.030 0.023 0.052 0.064 0.051 0.043

GW 0.009 0.006 0.010 0.002 0.058 0.038 0.040 0.031 0.093 0.090 0.067 0.054

SF

CW 0.051 0.122 0.130 0.154 0.084 0.138 0.158 0.178 0.121 0.155 0.189 0.182

DM 0.285 0.710 0.919 0.997 0.489 0.885 0.976 1.000 0.581 0.952 1.000 1.000

GW 0.125 0.365 0.448 0.507 0.261 0.471 0.511 0.581 0.326 0.508 0.556 0.609

MGW 0.665 0.992 1.000 1.000 0.844 1.000 1.000 1.000 0.925 1.000 1.000 1.000

Notes: The table reports the size of intersection-union test (Pr,n) for different sub-tests (CW, DM, GW) and different degrees of dependence (σa). The
Fisher statistic (SF ) is provided as a comparison. Results obtained through 5000 Monte Carlo iterations. CW stands for Clark and West (2007), DM for
Diebold and Mariano (1995), GW for Giacomini and White (2006), and MGW for the multivariate GW test. To compute the latter, loss differentials
were averaged in higher dimensions, as described in the supplementary material, to make the covariance matrix invertible.
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2.3 monte-carlo simulations

one-step-ahead rolling window forecasts of each Yi = (Y1, ..., Yn) according
to

Ŷ(1)
i,t+1 = β̂i,1Yi,t,

Ŷ(2)
i,t+1 = µ̂ + β̂i,2Yi,t.

The estimation window is set to be of length h = 100 and the out-of-sample
window p = 300. The loss differential is specified to be ∆Li,t+1 = {(Yi,t+1 −
Ŷ(1)

i,t+1)
2 − (Yi,t+1 − Ŷ(2)

i,t+1)
2}n

i=1. For the DM test, we set ∆Li,t+1 = {Zi,t}n
i=1

as its denominator is limiting to zero under the null for nested models.
We compute the size at significance levels α = (0.01, 0.05, 0.1) for n =

(10, 50, 100, 200) and for different degrees of dependence σa = (0, 0.5, 2, 5).
We compare the results to the Fisher statistic, denoted by SF. The results
are reported in Table 2.1. The size properties of our IU test are good across
the different sub-tests, albeit slightly undersized for CW’s test. The size
appears stable across different values of n with the global tests based on
GW sub-tests being slightly oversized for small n at a nominal level of 10%.
As we increase dependence up to σa = 2, there are no notable differences
in the size of our statistic, although the size increases by some tenth of
a percentage point. When dependence is increased further to very high
levels (σa = 5), the test is noticeably more undersized. This indicates the
test is conservative in the presence of strong dependence. In contrast, the
Fisher statistic displays a high degree of variation in size paired with high
distortions. What is more, there are stark differences across the underlying
tests and for different values of n. For CW sub-test, the Fisher statistic is
undersized for some n and oversized for others. As dependence increases,
the size distortions of the Fisher statistic become greater; for DM and GW
sub-tests the size reaches 1 for large n. Clearly, dependence renders the Fisher
test impractical. The simulations also highlight the size distortions of the
multivariate GW test, mirrored by other Wald-type tests whose results are
corrupted by inconsistent high-dimensional covariance matrices. In contrast,
these simulations demonstrate that our test has good size properties in small
and high-dimensional settings and for different degrees of dependence.

2.3.3 Power Properties

We investigate the power of our test in three different settings, each designed
with a specific purpose. The first scenario entertains a low dimensional, small
n environment with changing cross-dependence. The second analyzes the
rejection accuracy of the test by simulating combinations of true and false
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null models. The third scenario considers the performance of the test in a
high dimensional, large n case. Throughout, we evaluate the global null
hypothesis in (2.1) against the alternative HA = ∪i∈NHi,A.

2.3.3.1 Low Dimensions

(a) GW Sub-Test: n = 5
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(b) GW Sub-Test: n = 10
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(c) DM Sub-Test: n = 5
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(d) DM Sub-Test: n = 10
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Figure 2.4: Power Functions IU Test Low Dimensions

Note: The figure reports the conditional predictive ability test of Giacomini and White
(2006), GW, the multivariate GW test in Section ??, MGW, the Diebold and Mariano
(1995) test, DM, the Mariano and Preve (2012) test, MP, and the Fisher (1934) test. The
x-axis reports the absolute values of the boundaries imposed on the distribution of Ψ.
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2.3 monte-carlo simulations

In the first Monte-Carlo study, we simulate the loss differentials directly
as a VAR(1) process to ensure both cross- and serial correlation:

∆Lt+1 = Ψ∆Lt + εt+1, ε ∼ N (0, 1),

where ∆Lt+1 = (∆L1,t+1, ..., ∆Ln,t+1)
′ and t = 1, ..., p. The coefficients in

the n × n matrix Ψ, ψi,j ∈ [ψl, ψu], are drawn randomly from a truncated
standard normal distribution with upper and lower bounds ψu and ψl.
We ensure the roots of Ψ lie inside the unit circle by conditioning that its
eigenvalues are smaller than one in absolute value. Additionally, to generate
differences in test statistics, we impose Ψ be lower triangular. The number
of forecasts is set to n = (5, 10) with p = 200 periods each. The bounds are
parameterized as ψl = (0,−0.05, ...,−1) and ψu = (0, 0.05, ..., 1). We then
conduct GW and DM sub-tests for each of the n loss differentials. Notably,
as soon as ψl < 0 and ψu > 0, the sub-hypothesis of all GW tests is no
longer true. In contrast, the sub-hypothesis of the DM test, E[∆Li,t+1] = 0,
remains true on average. Based on the p-values of the individual tests, we
compute the global test statistic Pr,n and its power function. In addition, we
conduct the multivariate GW test as well as the adjusted MP test jointly for
all n loss differentials. For further comparison, we also report the Fisher
statistic. The results are shown in Figure 2.4. The solid red line is the power
function of the intersection union test. The black diamonds represent the
power with which each sub-test rejects its sub-hypothesis, the blue line
corresponds to the multivariate GW and DM test, and the green line plots
the Fisher test. We first consider the case of GW sub-tests. The power of
our combined p-value statistic, is high regardless of n and higher than the
power of individual GW tests. Its size also corresponds to the nominal
level. The multivariate GW test performs well when n is small. However,
it becomes increasingly undersized as n increases. Unreported simulations
show that for n > 10, the covariance matrix of the multivariate GW test
will be close to singular when p ≤ 200, meaning it is no longer consistent.
The Fisher statistic exhibits slightly greater power than our test, and also
greater power than the multivariate GW test for n = 10. Moving to the DM
sub-test, however, the Fisher statistic is extremely oversized. The MP and
our test have roughly equal size for n = 5, but the former shows greater size
distortions for n = 10. This simulation illustrates that, overall, our test has
the best performance in a small dimensional scenario, regardless of the test
type.
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2.3.3.2 Rejection Accuracy

(a) GW Sub-Tests: n = 5
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(b) GW Sub-Tests: n = 10
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(c) DM Sub-Test: n = 5
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(d) DM Sub-Tests: n = 10
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Figure 2.5: Power Functions IU Test Rejection Accuracy

Note: The figure reports the conditional predictive ability test of Giacomini and White
(2006), GW, the multivariate GW test in Section 2.2.4, MGW, the Diebold and Mariano
(1995) test, DM, the Mariano and Preve (2012) test, MP, and the Fisher (1934) test. The
x-axis reports the absolute number of the true null hypotheses.

The second scenario we consider is one where I = (0, 1, .., n) sub-hypotheses
Hi,0 are true, while n − I sub-hypotheses are false. More precisely, we in-
crease the number of true sub-hypotheses from 0 to n and are interested in
the question how accurately our test rejects in each case and in comparison
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2.3 monte-carlo simulations

to the multivariate GW test and the MP test. We use the same benchmarks
as in the previous subsection. Specifically, we simulate

∆Li,t+1 = εt+1, for i = 0, ..., I,

∆Lj,t+1 = Ft+1 + ψ∆Lj,t + νt+1, for j = I + 1, ..., n,

Ft+1 = µ + ψFt + ηt+1

Here, εt, νt, ηt ∼ N (0, 1). The coefficient ψ is fixed at 0.3 and µ is set to be
0.5. We ran unreported simulations with different values for the coefficients
which did not change the overall picture of the results. Ft, the common factor
across loss differentials, is the source of dependence. We set n = (5, 10),
noting that the ratio of n and p will impact the power of the multivariate GW
and MP tests. The results are reported in Figure 2.5. The top panel shows the
power functions based on GW sub-tests. Our test has consistently greater
power than the multivariate GW test as well as the Fisher test. Indeed, for
n = 10, the rejection pattern of the multivariate GW test looks remarkably
different. The bottom two figures consider DM sub-tests. The MP test has
lower power than our test and appears oversized when all null hypotheses
are true for n = 10. Its power curve has steepened slightly, albeit less than
the multivariate GW test. Although the Fisher test has slightly higher power
than our test, it has a high likelihood of incorrectly rejecting the global null
hypothesis when it is, in fact, true. Overall, the IU test exhibits the highest
rejection accuracy. This simulation highlights that it is not obvious when the
multivariate DM and GW tests reject their null hypotheses, obscuring the
interpretability of their results.

2.3.3.3 High Dimensions

In the third scenario, we consider a large n × T framework and generate
artificial rolling-window one-step-ahead forecasts instead of simulating the
loss differential directly. We simulating nested models and therefore report
results for GW and the CW sub-tests. Define the estimation window as h
and the out-of-sample window as p such that T = h + p + 1 equals the
total number of observations. First, we generate a random matrix U whose
elements are uniform on [−0.5, 0.5] which can easily be transformed into
a symmetric positive definite matrix Σ = UU′. This, in turn, can be used
to generate a random n × T matrix with dependent rows, Zi = N (0, Σ),
such that Z = (Z1, Z2, ..., Zn), where Zi are T × 1. The Z matrices are used
to generate n × 1 vectors Xt = ϕXt−1 + Zt, with ϕ = 0.3. We summarize the
information in X in form of a common factor using the principal components
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(a) GW Sub-Test: n = 50
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(b) GW Sub-Test: n = 100
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(c) CW Sub-Test: n = 50
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(d) CW Sub-Test: n = 100
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Figure 2.6: Power Functions IU Test High Dimensions

Note: The figure reports the conditional predictive ability test of Giacomini and White
(2006), GW the Diebold and Mariano (1995) test, DM, and the Fisher (1934) test. The
x-axis reports the mean of the first DGP.
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2.4 empirical illustration

estimator laid out in Bai (2003) and specify the process Yt = µ+ Xt, for
t = 1, ..., T, and generate two different forecasts for each of the n variables
in Yt:

Ŷ(1)
i,t+1 = µ̂ + β̂1,i F̃1,t+1,

Ŷ(2)
i,t+1 = β̂2,i F̃1,t+1,

for i = 1, ..., n. The coefficients are estimated using OLS over a rolling
window of size h. The total number of forecasts for each model is p. F̃1,t is
the first principal component estimate of X and for simplicity its value in t+ 1
is assumed known. The forecast loss is specified to be quadratic, i.e. L(1)

i,t+1 =

(Yi,t+1 − Ŷ(1)
i,t+1)

2. We parameterize µ such that each µi = (0, 0.1, ..., 1). That
is, for µi = 0, the sub-hypothesis is true for both GW and the CW sub-test.
The number of variables is set to n = (50, 100), the estimation window
to h = 100 and p = 200 such that T = 301. In a large n framework, the
consistent computation of the multivariate GW and MP tests is no longer
feasible. Therefore, we only present the results of the Fisher test. The power
functions are depicted in Figure 2.6. Considering first the GW sub-tests,
the top figures bear out the fact that Fisher’s statistic exhibits considerable
size distortions – exemplifying the need for appropriate corrections when
considering dependent p-values. On the other hand, the IU test has low
power for smaller values of µ, in line with the individual GW tests. As µ

increases, however, the power of our test surpasses that of GW sub-tests. In
contrast, for the CW test, it is slightly oversized and the divergence relative
to the power of the individual tests is even more visible. Fisher’s method
displays moderately greater power.
The simulations highlight that the IU test we propose in this paper is a very
reliable test for forecast accuracy in the presence of dependence. Whilst
other tests may have higher power in some scenarios, they exhibit large Type
I errors in others. We are able to confirm that our test most accurately rejects
(sustains) the false (true) global null hypothesis of equal predictive ability
across forecasts. The simulations substantiate that the intersection union test
has good size and power properties regardless of dependence structures or
dimensions.

2.4 empirical illustration

This section provides an empirical illustration of the test. As interdependen-
cies are ubiquitous in financial data, exchange rate forecasts are well suited
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to apply our test. If a currency appreciates against the US-Dollar (USD)
following the release of positive macroeconomic data, we would expect to
see similar movements in its exchange rate against, say, the Euro (EUR).
Dependencies are also reflected in common factors that explain currency
variations, for example carry, momentum, or value factors. As such factors
affect multiple currencies simultaneously, one can expect a model that is
able to predict these elements for one FX rate to have an elevated likelihood
of predicting them for others. Likewise, if a test only indicates predictive
ability in a single instance out of many, this may well be a false positive
(Harvey et al., 2016). Altogether, this strengthens the argument that one
cannot disregard dependencies in the evaluation of exchange rate forecasts.
We compile a large daily dataset of 84 exchange rates, consisting of 39 cur-
rencies vis-a-vis the USD, 23 currencies against the EUR, and 22 currencies
against the Great British Pound (GBP). The three exchange rates USD-GBP,
USD-EUR, and GBP-EUR are only included once. USD currency pairs are
obtained from the Bank for International Settlements (BIS), EUR currency
pairs from the European Central Bank (ECB), and GBP currency pairs from
the Bank of England (BoE). The dataset spans from January 4, 2011 to April
1, 2021, a total number of 2558 observations for the USD, 2590 for the GBP,
and 2622 for the EUR. We use the dataset to generate out-of-sample forecasts
for each exchange rate and compare the performance of different models
across currencies and tests. The aim is to show the main characteristics of
the test in a scenario where some, but not all, individual tests reject for
some models. Thereby, we illustrate how our test addresses mixed evidence
problems. Moreover, we demonstrate how the test can be applied to differ-
ent combinations of exchange rates, models, and individual tests. To this
end, we estimate three models for each of the 84 exchange rates in our
sample, a constant coefficients (CC) AR(1) model, and AR(2) model as well
as a time-varying parameter (TVP) AR(1) model, estimated via maximum
likelihood:

∆ei,t = βi,1∆ei,t−1 + νi,t,

∆ei,t = βi,2∆ei,t−1 + βi,3∆ei,t−2 + ηi,t,

∆ei,t = γi,t∆ei,t−1 + εi,t,

γi,t = ρiγi,t−1 + ϵi,t.

Here, i = 1, 2, ..., 84 and ∆ei,t is the first difference of the log-FX rate. For
each model, we generate one-step-ahead rolling window forecasts with an
estimation window R of 750 for all exchange rates. We rely on the simula-
tions of CW that show their MSPE-adjusted statistic performs well if p/R
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converges to a finite constant. The GW test requires p → ∞ whilst R remains
fixed. However, their simulations show the test statistic exhibits excellent
properties for the p/R ratios used here. This yields a total of 3× 84 forecasts.
We compare both the TVP-AR(1) and CC-AR(2) forecasts with the CC-AR(1)
forecasts using GW, CW, and DM sub-test. The latter is not designed for
nested models (Diebold, 2015); however, as it remains one of the most widely
used tests, we include it nonetheless for illustrative purposes, emphasiz-
ing that its results should be taken with a grain of salt. For both GW and
DM sub-test we use the loss differentials ∆L(1)

i,t+1 = {LAR(1)
i,t+1 − LAR(2)

i,t+1 } and

∆L(2)
i,t+1 = {LAR(1)

i,t+1 − LTVP
i,t+1}, where L(m)

i,t+1 is the quadratic loss function of
model m. This results in 3 different forecast accuracy tests being applied to
compare the predictive ability of 2 models relative to a CC-AR(1) process for
84 exchange rates (USD + EUR + GBP), i.e. 3 × 2 × 84 = 504 test statistics
and p-values, respectively. Table 2.2 fleshes out the absolute number of

Table 2.2: Rejections for Individual Tests

USD EUR GBP

AR(2) (%) TVP (%) AR(2) (%) TVP (%) AR(2) (%) TVP (%)

CW 1 2.6 16 41.0 0 0 5 21.7 1 4.5 6 27.3
DM 1 2.6 3 7.7 4 17.4 1 4.3 6 27.3 1 4.5
GW 2 5.1 4 10.3 0 0 1 4.3 4 18.2 0 0

Note: The table contains the total number of rejections for each test as well as the number
of rejections in percent of the total number of forecasts. AR(2) refers to CC-AR(2)
compared to CC-AR(1) forecasts, while TVP refers to TVP-AR(1) forecasts compared to
CC-AR(1) forecasts.

rejections of each sub-hypothesis at the 5%-level per model and currency.
In addition, the table reports the number of rejections relative to the total
number of tests conducted in each category. For instance, the GW sub-test
rejects the null hypothesis that the CC-AR(2) and CC-AR(1) model display
equal predictive ability twice for USD currency pairs. We have performed
this test for each USD exchange rate in the dataset, i.e. 39 times, and only
rejected in 5.1% of all cases. In several cases, the rejection rate is below 5%,
i.e. in a range one would expect given a false discovery rate equal to the
nominal size of the tests. The null hypothesis of equal predictive accuracy
between TVP-AR(1) and CC-AR(1) is rejected more frequently, especially by
the CW sub-test.
Figure 2.7 (a) - (b) show the p-values grouped by sub-tests. Subfigure (a)

plots the results for the CC-AR(2) forecasts and Subfigure (b) the results
for the TVP-AR(1). The dotted red values correspond to the p-values of the
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(b) TVP-AR(1)
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(c) CC-AR(2)
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(d) TVP-AR(1)
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Figure 2.7: Sorted Individual p-Values

Note: The figure reprots the individual p-values for each of the n forecasts, grouped by
test type (upper panel) and currency (lower panel). The solid line drawn at significance
level α = 0.05.
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2.4 empirical illustration

GW sub-test for USD, EUR, and GBP. The blue stars represent the p-values
for the CW sub-test, while the black triangles correspond to the p-values
of the DM sub-test. In all cases, with the exception of the CW test for the
TVP-AR(1), only very few tests reject at the 5%-level across currencies for
either model. Rather than assessing the results by test, one can also assess
the findings per currency. Therefore, we group the p-values by currency
and display the results for all tests in Figure 2.7 (c) - (d). The red dots show
the p-values of all tests for exchange rates against the USD, the blue stars
against the EUR, and the black triangles against the GBP. Again, with the
exception of the TVP-AR(1) forecasts of USD exchange rates, there are only
few rejections per currency. The figure visualises that we observe consider-
able differences across currencies, and the individual tests do not provide
a conclusive answer to the question which model has the best predictive
accuracy for each or all currencies.

We proceed by demonstrating that combining the individual p-values
through our test is a convenient way to compute a global test statistic
both when looking at USD, EUR, or GBP in isolation (small n) and for
combinations of the three currencies or tests (large n). Panel A in Table
2.3 reports the test statistic of the IU test for USD, EUR, and GBP. The
first three rows display the IU test statistic combining the p-values from
each of the sub-tests: GW, CW, and DM. The first two columns CC-AR(2)
and TVP-AR(1) contain the results combining the p-values of each sub-test,
comparing the CC-AR(2) and TVP-AR(1) forecasts, respectively, with the
CC-AR(1) forecasts for exchange rates against the USD. The statistics in
these columns indicate whether there is evidence against the global null
hypothesis of equal predictive ability between the two forecasts and a CC-
AR(1) across all exchange rates in the sample that are quoted against the
USD. The third column, Combined (Comb.), combines the p-values of the
two preceding columns. The global null hypothesis is now that there is equal
predictive ability between either of the two forecasts and a CC-AR(1), put
differently, no available model produced better or worse forecasts than an
CC-AR(1). In the fifth row, the p-values of the three sub-tests are combined
together to ascertain whether there is evidence for predictive accuracy across
different test types. The results for exchange rates quoted against EUR and
GBP are reported analogously in the subsequent columns. It is common
to use different individual tests to assess forecasting performance, hence
we view this as an important application for our methodology, as the sub-
tests may yield conflicting results. Our methodology allows researchers to
formulate and evaluate a global null hypothesis of equal predictive accuracy
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across different types of sub-tests.
Panel A presents scenarios with small to medium n which are reported in

Table 2.3: Test Statistic for Combined p-Values
Panel A: Individual Currencies

USD EUR GBP

AR(2) TVP Comb. AR(2) TVP Comb. AR(2) TVP Comb.

CW 0.9 17.9* 8.9 0.1 12.2* 6.1 2.6 26.9** 13.4*
DM 0.9 2923.2*** 1461.6*** 4.3 1.3 2.2 6.9 1.5 3.4
GW 4.7 374.2*** 187.1*** 0.7 2.3 1.1 2.3 0.3 1.1

n 39 39 78 23 23 46 22 22 44

All 1.6 974.4*** 487.2*** 1.4 4.1 2.0 2.3 9.0 4.5

n 117 117 234 69 69 138 66 66 132

Panel B: Combined Currencies

USD-EUR USD-GBP EUR-GBP All

AR(2) TVP Comb. AR(2) TVP Comb. AR(2) TVP Comb. AR(1) TVP Comb.

CW 1.0 11.4* 5.7 0.5 11.2* 5.6 1.3 13.1* 6.6 0.7 8.3 4.2
DM 2.5 1869*** 934.5*** 1.6 1838.8***919.4*** 3.4 0.8 1.7 1.8 1357.2***678.6***
GW 3.0 239.3*** 119.6*** 2.9 235.4*** 117.7*** 1.1 1.2 0.6 2.2 173.7*** 86.9**

n 62 62 124 61 61 122 45 45 90 84 84 168

All 1.0 612.9*** 306.5*** 1.0 623.0*** 311.5*** 1.1 4.4 2.2 0.7 452.4*** 226.2***

n 186 186 372 183 183 366 135 135 270 252 252 504

Note: AR(2) refers to CC-AR(2) compared to CC-AR(1) forecasts, while TVP refers to TVP-
AR(1) forecasts compared to CC-AR(1) forecasts. GW stands for Giacomini-White test,
CW for Clark-West test, and DM for Diebold-Mariano test. Panel A: First two columns
and first three rows contain test statistic of combined p-values from each tests for USD
for each model. Third column contains test statistic for both models. Forth row contains
test statistic for combined p-values from all tests for each model and for both models.
Panel B contains test statistic for combined p-values from currency combinations for
each test for each model and for both models as well as p-values from all tests combined
for each model and for both models. Test rejects if statistic exceeds the critical values,
obtained as r/(α(r − 1)): α = 1%: 105.263, denoted by ***, α = 5%: 21.053, denoted by **,
α = 10%: 10.526, denoted by *.

the respective rows. Stars indicate the significance level at which the test
rejects. Starting with USD exchange rates, the global null hypothesis that
the CC-AR(2) and the CC-AR(1) forecasts exhibit equal predictive ability
across exchange rates is sustained for all test types for all three currencies.
In contrast, the same global null hypothesis for the TVP-AR(1) forecasts is
rejected when combining the individual p-values of both GW and DM test
(the CW test only rejects at the 10% level). When combining the p-values from
all three tests, the global null hypothesis of equal predictive ability across
exchange rates against the USD is also rejected. Likewise, the global null
that neither model under- or outperforms a CC-AR(1) is rejected using the p-
values of GW and DM tests as a basis as well as for all three tests combined.
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On the contrary, the same global null hypotheses can only be rejected at the
10%-level for CW tests considering GBP exchange rates. Barring a 5%-level
rejection of the CW test for the TVP-AR(1) model in case of the GBP, and
a 10%-level rejection for the EUR, no other global null is rejected. Suppose
one faces the decision whether to use the TVP model or not. The findings
give rise to the question whether evidence against equal predictive ability
exists only for the USD or also for combinations of the three currencies. Our
test can analyze the null hypothesis of equal predictive ability across such
combinations, and thereby provide an indication on whether a model can be
deemed suitable for USD modeling or also in more general scenarios. Panel
B presents the results for currency combinations, with n taking medium
to large values. The first three columns combine the p-values of USD and
EUR with the three corresponding sub-columns defined as in Panel A. That
is, the values in the first column reflect the global null that there is equal
predictive ability between CC-AR(2) and CC-AR(1) across exchange rates
vis-a-vis USD and EUR. The second column, which reports the results for
an analogous null hypothesis for the TVP-AR(1), shows that the latter is
rejected at the 1% level according to both GW and DM test (and the CW
test at the 10% level) as well as for all three tests combined. The same holds
true for the global null that no model under- or outperforms a CC-AR(1)
for USD and EUR combined. The results are the identical for USD and GBP
combined. On the contrary, there is no evidence that any or both models
perform differently than a CC-AR(1) when only considering p-values of
EUR and GBP. The results should be interpreted bearing in mind that there
are several rejections by the underlying individual tests, as reported in Table
2.2. However, this does not translate into an automatic rejection of the global
null hypothesis, as the IU test accounts for dependence and false discovery.
Finally, in the last column, we combine the p-values of all three currencies.
The global null of equal predictive ability of TVP- and CC-AR(1) across USD,
EUR, and GBP is rejected when combining the p-values of GW and DM test.
The global null that no forecast is better or worse than a CC-AR(1) forecast is
rejected by both GW and DM test at the 1% and 5% level. Next, we combine
the p-values of all three tests, leading to the global null hypothesis that there
is equal predictive ability across all currencies regardless of the underlying
test. When tested for the TVP forecasts (penultimate column, fifth row) and
for all forecasts (final column, fifth row), the global null is rejected at the 1%
level. That is, there is evidence that, across all currencies, and all tests the
TVP-AR(1) forecasts differ significantly from the CC-AR(1) forecasts. What
is more, there is evidence that across currencies, and tests, forecasts of either
model differ significantly from CC-AR(1) forecasts.
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To summarize, the set of univariate tests conducted presents mixed ev-
idence with generally few rejections. Through our IU test, we are able to
formulate a range of global null hypotheses, based on different combinations
of univariate tests. Thereby, we can present statistically significant evidence
that a time-varying AR(1) model is able to produce superior forecasts com-
pared to a constant coefficients model for currencies quoted against the USD.
These results continue to hold when considering USD together with EUR or
GBP exchange rates.

2.5 conclusions

In this paper, we proposed an intersection-union multivariate forecasting ac-
curacy test. The test is constructed using p-values of existing univariate tests
that are treated as sub-tests and combined to evaluate a global null hypothe-
sis of equal predictive ability across forecasts. Our test does not require any
assumptions on the dependence structure between tests, and has a clearly
defined rejection set. This is an important feature, as independence rarely
holds in most forecasting exercises, and assuming independence may lead
to considerable size distortions. In contrast, we proved that our test is level-α
and consistent under the alternative. An extensive Monte Carlo simulation
showed very good size properties of our test compared to conventional
procedures of combining p-values, by conducting the intersection-union test
using three popular univariate sub-tests of predictive ability. We showed
that the properties of our multivariate procedure are unaffected by the
number of sub-tests. To examine the power of the test, we simulated three
different forecasting scenarios: a low dimensional scenario with changing
cross-dependence, one that illustrated the rejection accuracy of our test, and,
finally, a high-dimensional scenario. Our test showed high power in all cases.
We compared our test to alternative benchmark procedures, each of which
exhibited considerable limitations. An empirical illustration underpinned
the wide applicability of our test. We compiled a large dataset of 84 daily
exchange rates, quoted against USD, GBP, and EUR, to examine whether
a time-varying AR(1) or a constant coefficients AR(2) model delivered dif-
ferent forecasts with respect to a constant coefficients AR(1) model. We
also analyzed this across various combinations of currency pairs. While the
results of the sub-tests themselves were mixed, our intersection-union test
provided statistically significant evidence that the time-varying parameter
model outperformed the constant coefficient AR(1) across combinations of
currencies.
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T E S T I N G F O R P O I N T W I S E P R E D I C T I V E A B I L I T Y W I T H
A N A P P L I C AT I O N T O I N T R A D AY V O L AT I L I T Y

F O R E C A S T I N G

3.1 introduction

In this paper, we propose new tests for predictive ability that compare two
forecasts at each point in time. The tests are pointwise consistent and allow
for the identification of breakpoints in forecasting performance.
Evaluating the out-of-sample performance of econometric models is crucial
to determine which forecasting method to use under what circumstances.
In particular for predictive stock return regressions, empirical evidence
suggests that dependent variables are only able to predict returns in cer-
tain pockets of predictability (Timmermann, 2008). To address such findings,
Georgiev et al. (2018) propose a test for structural breaks in predictive
regressions and Demetrescu et al. (2022) introduce a method to evaluate
the presence of episodic predictive ability in models with highly persistent
endogenous predictors. Their empirical applications support the notion of
temporal predictability in such regressions. Evidence like this suggests the
relative predictive ability of different forecasting methods can also be time-
varying, which gives rise to the need for appropriate evaluation procedures.
Although numerous tests have been proposed that formulate a global test
statistic for the joint evaluation of models throughout an entire forecasting
period,1 such global tests conceal time-variations in forecast accuracy. For

1See, for example West (1996), Diebold and Mariano (1995), Giacomini and White (2006),
Clark and West (2006, 2007), Clark and McCracken (2001, 2015), or Li et al. (2022).
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instance, we would expect a global test to reject a null hypothesis of equal
predictive ability, even though such differences are only present during the
first half of the evaluation period. Rossi (2021) provides a review of practical
issues surrounding forecasting in unstable environments. The first formal
time-varying method for the comparison of forecasts was introduced by
Giacomini and Rossi (2010). They propose what is essentially a t-test on
the mean of the difference in forecast loss between two models, computed
over a rolling window. Thereby, the test is evaluating the Unconditional
Predictive Ability (UPA) hypothesis of Giacomini and White (2006).2 More
recently, Odendahl et al. (2022) propose a tests for absolute and relative
out-of-sample predictive ability of two models under state dependence.

Our paper adds to the literature on time-varying predictive ability tests in
several ways. First, we formalise a test that evaluates the null hypothesis of
equal Conditional Predictive Ability (CPA) at each point in time. We dub the
test pointwise CPA test and it can be viewed as a time-varying analogue to the
CPA test of Giacomini and White (2006). Second, we introduce a novel null
hypothesis that examines whether, at each point in time, one model could
have outperformed the other, conditional on all past and future information
in the sample. We refer to this as pointwise Total Predictive Ability (TPA) test.
Third, we are the first to propose a multivariate framework for the evaluation
of time-varying predictive ability. We demonstrate that, at each point in time,
both the pointwise CPA and TPA tests are consistent when jointly evaluating
a cross-section of forecasts. Notably, our tests further distinguish themselves
from the existing literature through their pointwise consistency. That is, they
accurately reject at each time period, whereas existing tests reject accurately
across time periods. This is achieved by evaluating the null hypothesis of
equal relative predictive ability through a Kalman filter smoother algorithm.

We conduct extensive Monte-Carlo simulations to demonstrate the finite
sample properties of our tests. The simulations show that both the TPA and
CPA test have very good size and power in different scenarios. We apply
the tests to compare intraday volatility forecasts of a GARCH model and
the Markov-Switching Multifractal (MSM) model of Calvet and Fisher (2001,
2004). GARCH models are a natural benchmark in volatility forecasting
due to their computational efficiency. MSM models are highly non-linear
and, unlike a classical GARCH model, capture different states of volatility
processes. Therefore, one might expect them to produce more accurate
forecasts. Indeed, at lower frequencies, the evidence tilts in favour of the
MSM model (e.g. Calvet and Fisher, 2004; Lux, 2022). When combined with
a Support Vector Regression, Khashanah and Shao (2022) find that the MSM

2Their test can also be applied to other forecast comparison tests.
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model also outperforms different GARCH models at one-minute frequency.
However, intraday volatility exhibits strong diurnality (Andersen et al., 2019),
which suggests that differences in predictive ability are periodic. We employ
our test to investigate the relative forecast accuracy of MSM and GARCH
models using one-minute NASDAQ index values. The results illustrate
several points. First, the predictive ability of the two volatility models is
highly time-varying. Second, across trading days, differences in predictive
ability occur in clusters, particularly during market opening hours. Third,
a simple GARCH model performs well in an estimation without overnight
returns. Fourth, the MSM model has superior predictive ability when it
comes to forecasting overnight returns.

The remainder of the paper is structured as follows: Section 3.2 sets out the
theoretical framework behind the pointwise CPA and TPA tests. Section 3.3
presents the Monte-Carlo simulations and Section 3.4 discusses the empirical
application. Section 3.5 concludes.

3.2 theory

3.2.1 Forecasting Setup

We consider both a univariate and a multivariate forecasting setup in which
2n different forecasts are being compared. The forecasts are based on the
variables vt ≡ (yt, xt)′, with σ-field Gt := σ(v′

1, ..., v′
t) for t = 1, ..., T. Here,

yt is a n × 1 dimensional vector of forecast variables, and xt is an s × 1 vector
of predictors. We let n ≥ 1 and s ≥ 0, t = 1, ..., T, and define N := {1, ..., n}.
Forecasts of the n variables are generated using two Gt-measurable functions
f̂ (j)
i,t+τ(vt; β̂i,t), for j ∈ {1, 2} and i ∈ N. The functions yield τ ≥ 1 step ahead

forecasts and are dependent on a, possibly empty, set of parameters, β̂t,
which are estimated over a horizon r such that one obtains p = T − r − τ

forecasts for each of the two forecasting methods. Let T := {r, ..., T − τ}.
The estimation window r < ∞ can be different for each function. All 2n
forecasts are evaluated using the same loss function,

L(j)
i,t+τ := L(j)

i,t+τ

(
Yi,t+τ, f̂ (j)

i,t+τ(vt; β̂i,t)
)
∈ R+

0 , for i ∈ N and t ∈ T.

Since the loss function is restricted to be positive, the loss-differential
∆Li,t+τ := L(1)

i,t+τ − L(2)
i,t+τ indicates which forecasting method produced

the smaller forecast loss in period t. The tests proposed in this paper provide

73



chapter 3

the statistical means to assess the hypothesis that both methods have equal
predictive ability for each t ∈ T.

3.2.2 Null Hypotheses

3.2.2.1 Conceptual Remarks

This paper develops time-varying predictive ability tests for both a single
loss differential as well as multiple, possibly dependent, loss differentials.
Our testing framework examines loss differentials by conditioning on two
different σ-fields. The first way of conditioning builds on the existing litera-
ture, and the second one is a novel contribution of this paper. The concept
of Conditional Predictive Ability (CPA) was introduced by Giacomini and
White (2006). Their approach is based on evaluating the null hypothesis
H0 : E[∆Lt+τ | Gt] = 0, i.e. the expected value of the loss differential con-
ditional on the σ-field Gt. Thus, it accounts for the uncertainty and bias
that can arise from miss-specification of the forecasting model and from
changes in the information set over time. Giacomini and White (2006) exploit
the fact that under the conditional null hypothesis, the loss differential is
a martingale difference sequence and write: H0 : E[h̃t∆Lt+1] = 0, for all
Gt-measurable functions h̃t. They restrict themselves to a subset of such
functions, denoted by ht. Conventionally, their test is implemented using
lagged values of ∆Lt+1 as a test function in which case one essentially tests
for the presence of serial correlation in the loss differential. Hence, under
homoskedasticity, the null hypothesis becomes:

∆Li,t+1 = α + β∆Lt + ϵt+1, H0 : α = β = 0.

Their test is examined against the alternative that E[Z̄r]E[Z̄r] ≥ δ > 0 for
Z̄r =

1
p ∑T

t=r ht∆Li,t+1. The choice of ht is therefore crucial for the power of
the test statistic. More recently, the literature has emphasised the issue of
forecasting under instabilities (see Rossi (2021) for a survey). Giacomini and
Rossi (2010) stress that the forecasting performance of models may change
and break down locally. They propose a test which can be understood as a
sequence of t-tests on:

∆L̂i,m,t = α + ϵt, H0 : µ = 0,

where ∆L̂i,m,t is computed over a rolling window of size m yielding a
sequence of p − m test statistics. However, a rolling window will inevitably
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smooth over breakpoints and mask the exact time in which their relative
performance changes.

3.2.2.2 Univariate Null Hypotheses

We begin by formulating null hypotheses for the evaluation of two competing
models based on a single loss differential. Tests of such hypotheses are
henceforth referred to as univariate tests. Let the expectation of the i-th loss
differential conditional on a period-t σ-field be:

E[∆Li,t+τ | Ft] = µi,t+τ|t for each t ∈ T and any i ∈ N. (3.1)

Here, Ft = σ(∆Li,r+τ, ..., ∆Li,t) is the σ-field generated by the history of the
loss differentials and clearly Ft ⊆ Gt. By analysing this expectation, we
provide a time-varying analogue to the CPA test of Giacomini and White
(2006). It should, however, be noted that the power of Giacomini and White’s
(2006) test depends on the choice of test function ht, which may generate a
σ-algebra that is a smaller subset of Gt than Ft. Second, their test is a global
test that forms a single test statistic for all t. In contrast, we form a null
hypothesis of pointwise CPA, which says that at time t one cannot predict
that one model outperforms the other

Hi,t,0 : µi,t+τ|t = 0, for t ∈ T and i ∈ N. (3.2)

The null hypothesis is tested against the local alternative

Hi,t,A : µi,t+τ|t ∈ Mi,t,A, for t ∈ T and i ∈ N, (3.3)

where Mi,t,A is a set of admissible values under the alternative.
In addition, we introduce a new hypothesis to the literature, which we

call pointwise Total Predictive Ability (TPA) hypothesis. It evaluates the
following conditional expectation

E[∆Li,t+τ | FT] = µi,t+τ|T for each t ∈ T and any i ∈ N, (3.4)

where FT = σ(∆Li,r+τ, ..., ∆Li,T). That is, we examine the expectation of the
loss differential at time t conditional on all future and past information
embedded in FT:

H∗
i,t,0 : µi,t+τ|T = 0, for t ∈ T and i ∈ N, (3.5)
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This hypothesis is tested against the alternative

H∗
i,t,A : µi,t+τ|T ∈ Mi,t,A, for t ∈ T and i ∈ N, (3.6)

The null hypotheses of CPA and TPA differ fundamentally. Under the CPA
null hypothesis in (3.2) one cannot predict whether one forecasting method
will outperform the other at time t + τ based on information up to time t.
On the other hand, the TPA hypothesis in (3.5) tests if one method could
have outperformed the other at time t based on all information in T. It is
possible to write the alternative hypothesis to the null of CPA as,

Ht,A : E[∆Lt+τ | Ft]E[∆Lt+τ | Ft] ≥ δ > 0, for all t ∈ T and i ∈ N,

(3.7)

which encapsulates the alternative in Giacomini and White (2006).3 However,
it has potentially greater power in a range of scenarios, as the properties
of the test do not depend on a test function. We permit Mi,t,A ̸= Mi,j,A
for any t ̸= j and t, j ∈ T. By allowing Mi,t,A to be time-varying, we can
examine the null hypothesis against a range of changing alternatives. For
instance, by specifying Mi,t,A = {x ∈ R : x < 0} for t = R, ..., R + p/2 and
Mi,t,A = {x ∈ R : x > 0} for t = r + p/2 + 1, ..., T − τ, we can test the null
hypothesis against the specific alternatives that the first model performs
better during the first half of the sample, while the second model is superior
in the second half.

3.2.2.3 Multivariate Null Hypotheses

Whilst the null hypotheses above focus on univariate forecast evaluation,
considering multiple forecasts jointly is another leading case of interest. In
this context, it is crucial to consider potential cross-dependencies between
forecasts, as failing to do so can lead to considerable size distortions (e.g. Qu
et al., 2021; Spreng and Urga, 2022). Our paper is the first to examine point-
wise multivariate hypotheses. Let ∆Lt = (∆L1,t, ..., ∆Ln,t)′. The multivariate
version of the CPA hypothesis examines the conditional expectation

E[∆Lt+τ | F t] = µt+τ|t for all t ∈ T and any i ∈ N, (3.8)

where µt+τ|t := (µ1,t+τ|t, ..., µn,t+τ|t)
′ and F t := σ(∆L′

r+τ, ..., ∆L′
t). Here, the

σ-field contains cross-sectional as well as time-series information. Thus, we
now condition on past information about variables in conjunction with the

3Clearly, a similar formulation can be obtained for the alternative TPA hypothesis.
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covariation between them. The multivariate null hypothesis implies that
pointwise CPA holds in the cross section at each point in time:

Ht,0 =
⋂
i∈N

Hi,t,0 : µt+τ|t = 0, for t ∈ T, (3.9)

The null hypothesis is tested against the local alternative

Ht,A :
⋃
i∈N

Hi,t,A : µt+τ|t ∈
⋃
i∈N

Mi,t,A, for t ∈ T. (3.10)

The alternative hypothesis is that, considering previous information about
variables and their dependencies, we can predict that for the i-th fore-
casting variable, one method outperforms the other. Define µt+τ|T :=
(µ1,t|T, ..., µn,t|T)

′, such that the multivariate TPA analogue is:

E[∆Lt | FT] = µt+τ|T for all t ∈ T and any i ∈ N, (3.11)

with FT := σ(∆L′
r+τ, ..., ∆L′

T). Importantly, the TPA test now conditions on
all past and future covariations between the loss differentials. The local TPA
null reads

H∗
t,0 =

⋂
i∈N

H∗
i,t,0 : µt+τ|T = 0, for t ∈ T, (3.12)

and is tested against the local alternative

H∗
t,A :

⋃
i∈N

H∗
i,t,A : µt+τ|T ∈

⋃
i∈N

Mi,t,A, for t ∈ T. (3.13)

The testing framework is flexible in the sense that it allows for Mi,t,A ̸= Mj,t,A,
for i, j ∈ N and i ̸= j. Thereby, it enables the testing of different null
hypotheses, whilst still considering cross-dependencies.

3.2.3 Assumptions

Assumption 3.1. For all t = r, ..., T − τ, the joint process for all n loss
differentials is ∆Lt+τ = αt+τ + εt+τ, where αt+τ = αt+τ−1 + ηt+1, such
that ∆Li,t+τ = αi,t+τ + εi,t+τ, with αi,t+τ = αi,t+τ−1 + ηi,t+τ, for all i ∈ N.

Assumption 3.2. For all t ∈ T:

A. {εt} and {ηt} are i.i.d. Gaussian processes,

B. E[εt] = 0, E[ηt] = 0, E∥ηt∥δ< ∞ and E∥εt∥δ< ∞, for 0 < δ ≤ 4,
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C. E∥εtε
′
t+k∥= Σε1{k=0} < ∞ and E∥ηtη

′
t+k∥= Ση1{k=0} < ∞,

D. w′Σηw > 0 and w′Σεw > 0 for all w ∈ Rn,

E. E∥εt+kη
′
t+j∥= 0 for all k and j.

Assumption 3.3. α0 ∼ N (µ0, V0).

Assumption 3.1 stipulates that the loss differential is the sum of a local
level component and a noise component. Notably, we do not require the
loss differential to be stationary. Assumption 3.2 imposes several conditions
on the noise components, ensuring they are zero-mean, white, and i.i.d.
Gaussian. In Appendix C.2, we discuss the effects of removing the Gaussian
assumption. Further, the moments of the disturbance terms exist up to
order four, and their covariance matrix is assumed to be positive definite.
Assumption 3.3 is a standard assumption in the literature on state-space
models (Durbin and Koopman, 2012), and ensures the density of the initial
first state is Gaussian with mean µ0 and variance V0. Assumption 3.1, 3.2-A
to 3.2-E and 3.3 together imply the joint density of the loss differentials
corresponds to:

fθ ≡ f (∆Lr+τ, ..., ∆LT;θ) =
T

∏
t=r+τ

p(∆Lt | F t−1), (3.14)

for the parameter vector θ :=
(
vec(Ση)′, vec(Σε)′

)′.
Assumption 3.4. A. θ is an interior point in the parameter space Θ ⊂ R,

B. If fθ1 = fθ2 then θ1 = θ2 for all θ1,θ2 ∈ Θ,

C. ∂3 log f
∂θ3 exists and is continuous in the neighbourhood of θ.

Assumption 3.4 imposes standard regularity conditions that, in conjunc-
tion with Assumption 3.2-B and 3.2-D, ensure the parameter vector θ can be
estimated.

Assumption 3.5. E[εi,tε j,t] = 0 and E[ηi,tηj,t] = 0 for all i ̸= j and i, j ∈ N.

Assumption 3.5 is necessary to ensure the consistency of the univariate
tests by restricting the covariance matrices to be diagonal. If Assumption 3.5
holds in addition to Assumptions 3.1-3.3, Equation (3.14) reduces to

fθi ≡
T

∏
t=r+τ

p(∆Li,t | Ft−1), for all i ∈ N,
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with the parameter vector θi :=
(
σi,η, σi,ε

)′. This serves as a useful illustration
of the differences between the univariate and the multivariate framework,
which applies to all existing forecast accuracy tests. By evaluating a single
loss differential, one implicitly imposes Assumption 3.5, altering the infor-
mation set that is used to conduct the test.4 The σ-field in the univariate case
does not include information about past cross-correlations.

Assumption 3.6. A. n/p → 0,

B. Σε = qΣη for any scalar q ∈ R+
0 .

Assumption 3.6-A rules out high-dimensional cases in which the number
of forecast variables is larger than the number of out-of-sample periods
and 3.6-B imposes that the covariance matrix of the n level components is
proportional to the covariance matrix of the loss differentials.

3.2.4 Pointwise Conditional Predictive Ability Test

3.2.4.1 Univariate Test

In this section, we introduce the pointwise CPA test. For simplicity, we first
focus on the univariate case where either n = 1, or n > 1 and Assumption
3.5 holds true. It follows from Assumption 3.1-3.3 that the expectation of the
loss differential conditional on Ft is equal to

E[∆Li,t+τ | Ft] = E[αt+τ | Ft] = µi,t+τ|t, (3.15)

That is, under the null hypothesis, the expected value of the level component
and the loss differential both equal zero. It can easily be shown that under
Assumptions 3.1-3.3, the time-t conditional expectation and variance of the
loss differential is obtained recursively as:

µi,t+τ|t = µi,t|t−1 +
pi,t|t−1

pi,t|t−1 + 1
(∆Li,t − µi,t|t−1),

pi,t+τ|t =
pi,t|t−1

pi,t|t−1 + 1
+ τqi,

vi,t+τ|t = pi,t+τ|tσ̃i,ε(qi),

(3.16)

where σ̃i,ε(qi) := ∑T
t=r+τ+1(∆Li,t − µi,t|t−1)

2/(pi,t|t−1 + 1) for a given value of
qi. These are Kalman filter predictions which concentrate the variance of the

4Note that one always imposes an information set when evaluating a test statistic based
on expectations.
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state equation out of the recursions as derived, for example, in (Harvey, 1990,
Chapter 3). Per Assumption 3.2, the Kalman filter is the optimal estimator
of µi,t|t−1 and vi,t|t−1 [see e.g. Simon (2006)].

The recursions in (3.16) can be used to formulate the predictive likelihood
function

log f̃θi = − p − 1
2

log 2π − p − 1
2

log (σ̃i,ε)−
1
2

T

∑
t=r+τ

log(pi,t|t−1 + 1),

which can be maximised with respect to the signal-to-noise ratio q. Denote
the solution to the maximisation problem arg maxθi∈Θ log f̃ by θ̃i := q̃i.
Assumption 3.4 guarantees that θ̃i → θi for p → ∞. The maximisation
problem cannot be solved in closed form, but the solution can be efficiently
computed using standard numerical procedures. One does not need to
include the initial conditions µi,0 and vi,0 in the parameter vector, as the
Kalman filter will converge exponentially fast under Assumption 3.4. In
most applications, it suffices to set µi,0 = ∆Li,0 and vi,0 = (1 + qi)σ̃i,ε.

To test the local null hypothesis in (3.2), we define the following p × 1
dimensional vector of test statistics for pointwise conditional predictive
ability:

Si,t+τ|t =
µi,t+τ|t
√vi,t+τ|t

for any i ∈ N, (3.17)

for all t = r, ..., T − τ. The test statistic is defined on the entire real line,
i.e. Si,t+τ|t ∈ R. Using established properties of the Kalman filter, we can
summarise the properties of the test statistic

Proposition 3.1. For any i ∈ N, suppose Assumptions 3.1-3.5 hold such that
θ̃i

p−→ θi as p → ∞. Then for any Si,t+τ|t and i ∈ N, under Hi,0 in (3.2)

lim
p→∞

P
[
|Si,t+τ|t| > kα

]
= α,

and under the alternative in (3.3)

lim
p→∞

P
[
|Si,t+τ|t| > kα

]
= 1,

where kα is the critical value of the standard normal distribution at the significance
level α.

The test is size-α under the null hypothesis and the behaviour of the
test statistic under the alternative hypothesis is easily characterised as the
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application of the Kalman filter eliminates the possibility of non-identical
distributions. In case of a rejection, the sign of the test statistic indicates
which model outperformed the other.

3.2.4.2 Multivariate Test

We now discuss two approaches to construct a multivariate version of the
test in which the CPA hypotheses are examined jointly for all n > 1. If
Assumption 3.5 does not hold and one compares two forecasting methods
across n > 1 variables, it is insufficient to form a conclusion on which
method outperformed the other based on the univariate tests outlined above.
To avoid Type II errors, one should instead evaluate the n loss differentials
jointly.

Assumption 3.6-A is necessary to ensure the parameters of the likelihood
function are estimated consistently. If the size of the cross-section is small,
maximum likelihood estimation of the parameter vector is still feasible and
a multivariate Kalman filter can be used to obtain the cross-sectional vector
µt+τ|t with covariance matrix Vt+τ|t. The recursions in (3.16) become

µt+τ|t = µt|t−1 +
pt|t−1

pt|t−1 + 1
(∆Lt −µt|t−1),

Vt+τ|t = pt+τ|tΣ̃ε.
(3.18)

with Σ̃ε := ∑T
t=r+τ+1(∆Lt − µt|t−1)(∆Lt − µt|t−1)

′/(pt|t−1 + 1) and pt+τ|t
given by Equation (3.16). In the multivariate case, the parameter vector still
corresponds to θ := q [see (Harvey, 1990, Chapter 8) for details]. Concentrat-
ing the covariance matrices Σε and Ση = qΣε out of the likelihood function
enables the construction of the test in multivariate settings, since it reduces
the number of parameters to be estimated from n(n + 1) to 1. Nonetheless,
the Kalman filter explicitly models the predicted covariance between the
level components of the n loss differentials at each time step, which can be
exploited to form a multivariate n × 1 dimensional local test statistic of the
form

St+τ|t = V−1/2
t+τ|tµt+τ|t for t ∈ T, (3.19)

where St+τ|t = (SM
1,t+τ|t, ..., SM

n,t+τ|t)
′ and V−1/2

t+τ|t denotes the matrix square

root of V−1
t+τ|t. As in the univariate case, the test statistic standardises the

conditional mean of the loss differential. In contrast to the univariate case, it
also takes into account the covariance between the different loss differentials.
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The two are identical only if Vt+τ|t is diagonal. Finally, to jointly assess the
relative predictive ability of two methods across n loss differentials, we can
use

S̄t+τ|t = µ′
t+τ|tV

−1
t+τ|tµt+τ|t for t ∈ T. (3.20)

Analogous to the univariate case above, to test the null hypothesis in (3.2)
and (3.9) when dependence is present, we can define the following Proposi-
tion:

Proposition 3.2. Suppose Assumptions 3.1-3.4 and 3.6 hold such that θ̃
p−→ θ as

p → ∞. Then for all t ∈ T

A. under the null hypothesis in (3.2),

lim
p→∞

P
[
|SM

i,t+τ|t| > kα

]
= α,

and under the alternative in (3.3),

lim
p→∞

P
[
|SM

i,t+τ|t| > kα

]
= 1,

where kα is the critical value of a standard normal distribution at the signifi-
cance level α.

B. under the null hypothesis in (3.9),

lim
p→∞

P
[
S̄t+τ|t > qα

]
= α,

and under the alternative in (3.10)

lim
p→∞

P
[
S̄t+τ|t > qα

]
= 1,

where qα is the critical value of a χ2
n distribution with n degrees of freedom at

the significance level α.

The elements of St+τ|t allow for inference on whether it is possible to
predict that one of the two forecasting methods forming the i-th loss differ-
ential will be more accurate than the other. The multivariate null hypothesis
(3.9) is rejected by the χ2

n test of S̄t+τ|t if one element of µt+τ|t is statistically
different from zero – controlling for false discovery and dependence. By
conditioning on dependencies when formulating the test, we eliminate the
need to correct for size distortions due to correlations between variables
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when evaluating the test results.5 In order to make the test statistic inter-
pretable, we can multiply it by the sign of 1

n ∑n
i=1 µi,t+τ|t, which indicates the

forecasting method in favour of which the test rejects.

3.2.5 Pointwise Total Predictive Ability Test

3.2.5.1 Univariate Test

We now introduce the pointwise Total Predictive Ability test. Under As-
sumptions 3.1-3.3, the expectation of the loss differential conditional on FT
corresponds to

E[∆Li,t+τ | FT] = E[αt+τ | FT] = µi,t+τ|T. (3.21)

The conditional mean µi,t+τ|T can again be obtained recursively as

µi,t−1|T = µi,t|t−1 + Ji,t−1

(
µi,t|T − µi,t|t−1

)
,

vi,t−1|T = Ji,t−1vi,t|t−1 + J2
i,t−1

(
vi,t|T − vi,t|t−1

)
,

(3.22)

for t = r + τ, ..., T, with Ji,t =
(

1 − pi,t|t−1
pi,t|t−1+1

) pi,t|t−1
pi,t+1|t

and initial conditions

µi,T|T = µi,T+1|T and vi,T|T =
(

1 − pi,t|t−1
pi,t|t−1+1

)
vi,T|T−1 given by the recursions

in (3.16). That is, the conditional mean can be computed with a Kalman
smoother using the QML estimate q̃. The difference between the expectations
µi,t+τ|t used in the CPA test and µi,t+τ|T is that the former predicts the
conditional mean using only information available up to point t, while the
latter recovers the mean of the loss differential conditional on all previous
and future observations. To test the local null hypothesis in (3.5), we define
the following n × 1 dimensional vector of test statistics for pointwise total
predictive ability:

Si,t+τ|T =
µi,t+τ|T
√vi,t+τ|T

for any i ∈ N, (3.23)

for all t = r, ..., T − τ. Under the null hypothesis in (3.5), the size and power
of the test can be summarised as

5The consequences of falsely imposing the independence assumption when comparing
multiple individual tests have been studied at length in Spreng and Urga (2022) and are
not the focus of this paper.
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Proposition 3.3. Suppose Assumptions 3.1-3.5 hold such that θ̃
p−→ θ as p → ∞.

Then for any Si,t+τ|T and i ∈ N, under H∗
i,0 in (3.5),

lim
p→∞

P
[
|Si,t+τ|T| > kα

]
= α,

and under the alternative H∗
i,A,

lim
p→∞

P
[
|Si,t+τ|T| > kα

]
= 1,

where kα is the critical value of the standard normal distribution at the significance
level α.

3.2.5.2 Multivariate Test

In the multivariate case, the vector of conditional means and its covariance
matrix is obtained as

µt−1|T = µt|t−1 + Jt−1

(
µt|T −µt|t−1

)
,

Vt−1|T = Jt−1Vt|t−1 + J2
t−1

(
Vt|T − Vt|t−1

)
,

As can be seen, Vt|T not only depends on all past and future realisations
of its diagonal elements but also on past and future cross-correlations
between measurements. This allows us to formulate a test statistic for the null
hypothesis in (3.13), which says that no method could have outperformed
the other at time t:

St+τ|T = V−1/2
t+τ|Tµt+τ|T. (3.24)

where St+τ|T = (SM
1,t+τ|T, ..., SM

n,t+τ|T)
′. Additionally, we can compute the

following joint test statistic

S̄t+τ|T = µ′
t+τ|TV−1

t+τ|Tµt+τ|T for t ∈ T. (3.25)

Proposition 3.4 demonstrates the behaviour of the test under the null and
the alternative hypothesis.

Proposition 3.4. Suppose Assumptions 3.1-3.4 and 3.6 hold such that θ̃
p−→ θ as

p → ∞. Then for all t ∈ T
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A. under the null hypothesis in (3.5), for any SM
i,t+τ|T ∈ St+τ|T,

lim
p→∞

P
[
|SM

i,t+τ|T| > kα

]
= α,

and under the alternative in (3.6)

lim
p→∞

P
[
|SM

i,t+τ|T| > kα

]
= 1,

where kα is the critical value of a standard normal distribution at the signifi-
cance level α.

B. under the null hypothesis in (3.12),

lim
p→∞

P
[
S̄t+τ|T > qα

]
= α,

and under the alternative in (3.13)

lim
p→∞

P
[
S̄t+τ|T > qα

]
= 1,

where qα is the critical value of a χ2
n distribution with n degrees of freedom at

the significance level α.

3.3 monte-carlo simulation

To analyse the size and power properties of the tests, we simulate 3 different
scenarios. All results are obtained for 5000 Monte-Carlo iterations. The
models are parameterised differently for size and power simulations. In
this section, we conduct the simulations using Gaussian error terms. To
address the issue of non-normality, we repeat all simulations presented
herein using a t-distribution with 5 degrees of freedom in Appendix C.2.2.
The first simulation generates forecast loss differentials as a process with a
time-varying mean.

∆Lt = ct + ϵt, ϵt ∼ N (0, Σ), (MC1)

where ∆Lt = (∆L1,t, ..., ∆Ln,t)′ is an n× 1 vector and Σ is an n× n matrix that
controls the dependence between loss differentials. To generate Σ, we rely
on the vine method proposed in Lewandowski et al. (2009). They propose a
way to generate a correlation matrix Σ ≡ Σ(γ), whose off-diagonal elements
are decreasing in γ ∈ R+, such that Σ → In as γ → ∞. That is, low values
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of γ imply high dependence between variables. Next, we simulate an actual
forecasting scenario in which the forecast variables, yt, have time-varying
means

yt = ct + ηt, ηt ∼ N (0, Σ). (MC2)

The elements of yt are forecast individually, with the two competing i-th
forecasts corresponding to,

ŷ(1)i,t+1 = ĉi,t,

ŷ(2)i,t+1 = 0.

The forecasts are estimated over a rolling window of length r. That is,
ĉi,t = ∑t

j=t−R+1 yi,j. One forecast is miss-specified, while the other assumes
the correct model. In the fourth simulation, we assume the forecast variables
obey a factor structure

yt = βtxt + ηt, ηt ∼ N (0, Σ). (MC3)

where the common factor xt = 0.5xt + νt follows an AR(1) process with
Gaussian errors, and βt is an n × 1 vector of time-varying factor-loadings. To
forecast each yi,t, we assume xt+1 is observed at time t + 1 and use a rolling
window OLS estimator to compute

ŷ(1)i,t+1 = β̂i,txt+1,

ŷ(2)i,t+1 = 0.

As before, the first model is correctly specified, while the second one is
miss-specified.

3.3.1 Size

To analyse the size of our test statistics, we need to ensure that the ex-
pectation of the loss differential is zero at each point in time. We conduct
simulations for n = {1, 2, 5} and, in the multivariate case, γ = {1, 108}. The
case of γ = 1 resembles strong dependence between variables, and γ = 108

independence. In our first simulation, we simply set ci,t = 0 for all t and i.
For the actual forecasting scenarios, to satisfy the null hypothesis, we solve
E
[
(yi,t+1 − ŷ(1)i,t+1)

2
]
= E

[
(yi,t+1 − ŷ(2)i,t+1)

2
]

for all t = r, ..., T − 1. In the case
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Table 3.1: Average Size
MC 1 MC 2 MC 3

p/r: 0 50 100 150 200 50 100 150 200

Panel A: n = 1

St+1|t

50 0.027 0.03 0.033 0.034 0.035 0.03 0.032 0.032 0.034

100 0.031 0.027 0.033 0.031 0.035 0.027 0.031 0.031 0.032

150 0.032 0.024 0.03 0.03 0.031 0.022 0.03 0.031 0.032

200 0.03 0.022 0.027 0.029 0.03 0.024 0.027 0.029 0.031

St+1|T

50 0.05 0.047 0.049 0.051 0.051 0.042 0.045 0.044 0.046

100 0.049 0.043 0.047 0.044 0.048 0.037 0.041 0.042 0.04

150 0.052 0.035 0.046 0.044 0.042 0.03 0.04 0.041 0.04

200 0.044 0.03 0.039 0.043 0.039 0.03 0.037 0.038 0.039

Panel B: n = 2, γ = 1

St+1|t

50 0.028 0.029 0.038 0.037 0.036 0.036 0.044 0.041 0.039

100 0.03 0.025 0.032 0.036 0.036 0.028 0.035 0.041 0.041

150 0.027 0.023 0.028 0.032 0.032 0.028 0.034 0.036 0.04

200 0.027 0.022 0.026 0.028 0.032 0.023 0.027 0.035 0.036

St+1|T

50 0.049 0.046 0.053 0.053 0.051 0.051 0.064 0.054 0.052

100 0.05 0.036 0.046 0.046 0.044 0.042 0.048 0.053 0.049

150 0.041 0.034 0.036 0.044 0.04 0.036 0.048 0.047 0.048

200 0.04 0.028 0.035 0.037 0.039 0.029 0.035 0.049 0.048

Panel C: n = 2, γ → ∞

St+1|t

50 0.034 0.033 0.036 0.04 0.038 0.035 0.042 0.043 0.045

100 0.025 0.03 0.029 0.036 0.04 0.031 0.032 0.032 0.042

150 0.027 0.027 0.023 0.033 0.032 0.023 0.029 0.033 0.034

200 0.027 0.02 0.028 0.032 0.03 0.028 0.034 0.035 0.037

St+1|T

50 0.06 0.05 0.048 0.05 0.054 0.054 0.061 0.061 0.053

100 0.042 0.044 0.032 0.049 0.05 0.037 0.038 0.035 0.05

150 0.044 0.038 0.03 0.045 0.035 0.033 0.039 0.039 0.037

200 0.036 0.03 0.042 0.039 0.039 0.039 0.051 0.046 0.04

Panel D: n = 5, γ = 1

St+1|t

50 0.036 0.038 0.05 0.049 0.051 0.046 0.061 0.059 0.053

100 0.03 0.025 0.033 0.042 0.047 0.031 0.043 0.056 0.052

150 0.028 0.021 0.028 0.033 0.041 0.027 0.036 0.044 0.048

200 0.028 0.018 0.025 0.032 0.034 0.024 0.032 0.038 0.046

St+1|T

50 0.069 0.064 0.072 0.069 0.073 0.067 0.083 0.083 0.065

100 0.05 0.036 0.046 0.05 0.053 0.04 0.056 0.069 0.061

150 0.041 0.029 0.038 0.037 0.043 0.032 0.046 0.054 0.061

200 0.041 0.022 0.036 0.038 0.035 0.028 0.042 0.046 0.053

Panel E: n = 5, γ → ∞

St+1|t

50 0.036 0.037 0.052 0.049 0.052 0.034 0.045 0.047 0.045

100 0.03 0.028 0.032 0.042 0.043 0.025 0.034 0.041 0.044

150 0.03 0.02 0.031 0.031 0.04 0.02 0.027 0.035 0.038

200 0.03 0.019 0.026 0.031 0.037 0.019 0.025 0.03 0.034

St+1|T

50 0.067 0.063 0.079 0.07 0.077 0.041 0.056 0.058 0.05

100 0.049 0.04 0.046 0.049 0.054 0.028 0.041 0.043 0.041

150 0.043 0.029 0.038 0.037 0.041 0.025 0.032 0.035 0.036

200 0.048 0.028 0.033 0.039 0.043 0.023 0.03 0.029 0.032

Notes: The table reports the average size of the pointwise CPA test (St+1|t) and the pointwise TPA test
(St+1|T). The column headers denote the size for the respective Monte-Carlo Simulation (1, 2, and 3). The rows
correspond to the size for different values of p and the columns to the size for different values of r. Panel A
reports the simulation results for n = 1, Panel B reports the results for the multivariate χ2 test with two loss
differentials (n = 2) and strong dependence (γ = 1). Panel C reports the results for n = 2 and independence
between loss differentials (γ = 108), Panel D for n = 5 variables and strong dependence, and Panel E for n = 5
independent variables.

87



chapter 3

of the second simulation, the parameters that satisfy this condition are given
by

ci,t+1 =

1
r

(
∑t

j=t−r+1 ci,j

)2
+ σ2

i,i

2 ∑t
j=t−r+1 ci,j

, for all i ∈ N,

where σ2
i,i is the (i, i)-th element of Σ. For t = 1, ..., r we draw ci,t from a

normal distribution, ci,t ∼ N (0, 0.2). Moving to the third simulation, the
parameter values for t = r, ..., T − 1 are obtained as:

βi,t+1 =

(
∑t

j=t−r+1 βi,jx2
j

)2

∑t
j=t−r+1 x2

j
+ σ2

i,i

2 ∑t
j=t−r+1 βi,jx2

j
(3.26)

This equation is derived in Giacomini and Rossi (2010). The difference
between their simulation and ours is that we let βt ∼ N (0, 0.2) for t = 1, ..., r.

We conduct all simulations for p = {50, 100, 150, 200} and a nominal size
of α = 5%. In simulations 2 and 3, we focus on one-step-ahead forecasts
and set the estimation window to r = {50, 100, 150, 200}. Table 3.1 reports
the results of the size simulations, averaged across p. The column headers
denote the nominal size for the respective Monte-Carlo Simulation. The
rows correspond to the empirical size for different values of p and the
columns to the empirical size for different values of r. Panel A reports the
simulation results for n = 1. In most cases the size is no more than two
percentage points below the nominal level, even for a small estimation and
prediction window. For the second and third simulation, the size increases
the larger the estimation window is. The size of the TPA test is closer to
the nominal size across all simulations. Panel B reports the results for the
multivariate χ2 test with two loss differentials and strong dependence. As
before, the size of the TPA test is closer to the nominal size, and neither test
is oversized nor are they markedly undersized. Panel C reports the results
for two variables under independence. There are no discernable differences
between the simulations, suggesting the test maintains its size properties
regardless of the degree of dependence between variables. Panel D shows
the size for n = 5 variables and strong dependence, and Panel E for n = 5
independent variables. The TPA test is now oversized when the forecasting
window is small, due to the increasing n/p ratio. The CPA test, however,
still displays remarkably good size properties, regardless of window size.
The size simulations indicate that, on average, both tests have a low Type
I error even in small samples, provided the number of variables is not
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3.3 monte-carlo simulation

too large. The averages reported in Table 3.1 may obscure some temporal
differences in the size. Hence, we also plot the size of the TPA and CPA
statistics against one another. Figure 3.1 displays these scatter plots together
with an overlayed contour plot, to indicate how clustered the size is. The
rows correspond to the respective Monte-Carlo Simulation. Panel (i) contains
the simulation results for the univariate test, Panel (ii) the results for n = 2
variables and Panel (iii) the results for n = 5 variables. The rows within the
panels correspond to the degree of dependence between variables. In the
first simulation, the size is distributed very densely around the nominal level
of 5%, regardless of the number of variables and the degree of dependence.
This changes somewhat for the second and third simulation in which the
size is more scattered, although it is still just under the 5% mark in most
instances.

(i) n = 1 (ii) n = 2 (iii) n = 5

γ = 1 γ → ∞ γ = 1 γ → ∞
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Figure 3.1: Size Contours

Note: The figure plots the size of the TPA test on the vertical axis against the size of the
CPA test on the horizontal axis and displays a contours that encircles predominant clus-
ters. The rows correspond to the respective Monte-Carlo Simulation. Panel (i) contains
the simulation results for the univariate test, Panel (ii) the results for n = 2 variables and
Panel (iii) the results for n = 5 variables. The columns in Panel (ii) and (iii) correspond
to high dependence (γ = 1) and independence (γ → ∞).
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3.3.2 Power Properties

To examine the power properties of the test, we parameterise the equations
for simulations 1 to 3 in a way that creates different forecasting scenarios.
In the first simulation, we simply set ct = c where c = {0, 0.1, ..., 1} is in-
creased from 0 to 1 in steps of 0.1. For the second simulation, we draw
ct from N (c, Σ), where c = {0, 0.1, ..., 1} is increased from 0 to 1. Thereby,
we gradually widen the accuracy gap between the two forecasts and intro-
duce dependence into the level component of the forecast variable. In the
third simulation, we draw each factor loading βi,t from N (2c, 0.2), where
c = {0, 0.1, ..., 1} is increased from 0 to 1, which increases the dependence
between variables and the difference between forecasting models. As above,
we conduct each simulation for n = {1, 2, 5} and dependence γ = {1.0, 108}.
We set the out-of-sample window to p = 100 and the estimation window to
r = 100. We first present the results for n = 1, which allows us to contrast
our tests with the pointwise rejection accuracy of the Giacomini and Rossi
(2010) fluctuation test. We emphasise, however, that, unlike our test, the
fluctuation test is consistent across all p, not for each p. Therefore, the test
size at each time step is zero. Figure 3.2 displays surface plots of the power
of each test. The rows of the figure correspond to the respective Monte Carlo
simulation and the columns to the respective test. For each Subfigure, the
x-axis corresponds to the time periods, the y-axis to the different values of c
and the z-axis to the power of the tests. In the first simulation, the power
of the pointwise CPA test is steeply upwards-sloping. During the first few
periods, the rejection frequency is lower, reflecting the fact that one cannot
predict from the start with high accuracy which method will yield better
forecasts. Conversely, the pointwise TPA test has high power also for the
first periods, as it conditions on FT. The power curve of the fluctuation test
is less steep, but converges to one as c increases. This changes in the second
and third simulation, where the GR test has visibly lower pointwise power
of up to 18% and 65%, respectively. As before, the power surface of the
TPA test increases at the same rate across all p, unlike the CPA test, which
has lower power at the start of the forecasting period – particularly for the
second simulation. Next, we simulate the power of the test using n = 2
forecast variables, for which the Giacomini and Rossi (2010) fluctuation test
is no longer feasible. The results are reported in Figure 3.3, in which Panel
(i) contains the power surfaces of the CPA test, and Panel (ii) the power
surfaces of the TPA test. The first column of each Panel corresponds to
the high-dependence scenario and the second panel to the low-dependence
case. Overall, the results are very similar to the univariate case, although
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Figure 3.2: Power Surface, n = 1

Note: The columns of the figure display the power surface of the CPA and TPA tests as
well as the power of the Giacomini and Rossi (2010) fluctuation test at each point in time
for n = 1 variable. The rows correspond to the respective Monte-Carlo Simulation. For
each figure, the x-axis corresponds to the time periods, the y-axis to the different values
of c, and the z-axis to the power of the tests.
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(i) CPA (ii) TPA
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Figure 3.3: Power Surface, n = 2

Note: The columns of the figure display the power surface of the CPA test in Panel (i),
and the power of the TPA test in Panel (ii) for n = 2 variables. In each Panel, the first
column contains the high-dependence case and the second column the low-dependence
case. The rows correspond to the respective Monte-Carlo Simulation. For each figure,
the x-axis corresponds to the time periods, the y-axis to the different values of c and the
z-axis to the power of the tests.
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3.3 monte-carlo simulation

the power curves of both tests are slightly steeper and closer to one in the
second and third scenario. There are virtually no differences between the
different dependence cases, which is reassuring given that the simulations
are otherwise identically. The results therefore illustrate that introducing
dependence does not distort the results of the test.

(i) CPA (ii) TPA
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Figure 3.4: Power Surface, n = 5

Note: The columns of the figure display the power surface of the CPA test in Panel (i),
and the power of the TPA test in Panel (ii) for n = 5 variables. In each Panel, the first
column contains the high-dependence case and the second column the low-dependence
case. The rows correspond to the respective Monte-Carlo Simulation. For each figure,
the x-axis corresponds to the time periods, the y-axis to the different values of c and the
z-axis to the power of the tests.

Finally, we set the number of variables to n = 5 (see Figure 3.4). This leads
to a further increase in the power of the tests, most visibly in the second
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simulation. Compared to the n = 1 variable case, the TPA test also displays
markedly higher power in the first and third simulation. Generally, there is
no difference between the two dependence scenarios, with the exception of
the first simulation, in which the power of the CPA test is somewhat higher
for low values of p.

In Appendix C.2.2, we repeat these simulations using a t-distribution with
5 degrees of freedom. The results indicate that the change in distribution
has little effect on the power of our tests. In fact, the power of the fluctuation
test is noticeably more diminished.

3.4 empirical application

We illustrate the performance of our test through a comparison of intraday
volatility forecasts. In a seminal paper, Engle and Sokalska (2012) note that,
although a large body of literature covers volatility forecasts at daily or lower
frequencies, few papers address the issue of intraday forecasting. However,
the latter is of high practical relevance when it comes to order submission
strategies or the computation of intraday risk measures. Since Engle and
Sokalska (2012), several papers have (i) proposed new models for intraday
volatility (e.g. Rossi and Fantazzini, 2015; Stroud and Johannes, 2014), (ii)
compared the predictive ability of such models (e.g. Khashanah and Shao,
2022), or (iii) introduced tests for the presence of periodicity in intraday
volatility (e.g. Andersen et al., 2019). Our empirical application connects
these lines of research by evaluating the time-varying predictive ability
of two established volatility models. Predictive ability tests that evaluate
out-of-sample performance across forecasting periods will fail to capture
important intraday performance variation. Additionally, if a test is based
on an average measure such as the Mean Squared Error (MSE) its rejection
may be outlier driven. Our method can provide crucial insights into breaks
in intraday forecasting performance. For example, if the aim is to forecast
volatility to determine optimal end-of-day order submissions it is important
to ascertain when precise breaks in predictive ability occur.

3.4.1 Data

We obtain 1,050,000 tick-by-tick observations on NASDAQ 100 index values
from Refinitiv Eikon between 31/10/2022 and 28/11/2022. We do not apply
any further cleaning procedures to the data. As the purpose of this exercise
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is to forecast volatility, we instead augment our volatility models with an
ARMA(1, 1) process to model microstructure noise directly, rather than re-
moving it.6

Each day in our sample is denoted by i = 1, ..., n and contains t = 1, ..., T
minutes and each minute contains an irregularly spaced number of ticks h =

1, ..., ς. Let pi,t,h denote the log price of an asset. We define the continuously
compounded minutely log-return of the asset as

ri,t =


pi,t,ς − pi,t−1,ς if t > 1

p1,t,ς − pi−1,T,ς if t = 1 and i > 1

p1,1,ς − p1,1,1 if t = 1 and i = 1

Note that this definition includes overnight returns, which are generally
of larger magnitude than the remaining T − 1 returns. Many papers in-
tentionally drop overnight returns (e.g. Engle and Sokalska, 2012) as they,
and their induced volatility, are more challenging to forecast. Instead of
removing them, we compare the performance of the models with and with-
out overnight returns. At high frequencies, the measurement of the true
unobserved volatility becomes problematic as realised volatility is likely
biased (Hansen and Lunde, 2006). Following Engle and Sokalska (2012)
and Khashanah and Shao (2022), we use squared one-minute returns as a
volatility proxy.

3.4.2 Volatility Models

We employ two established volatility models: the Markov Switching Multi-
fractal (MSM) model of Calvet and Fisher (2001, 2002, 2004) and a GARCH(1, 1)
model. The ARMA-MSM model takes the following form

ri,t = αi + βiri,t−1 + θiϵi,t−1 + ϵi,t

ϵi,t = σi,tηi,t

σ2
i,t = σ2

i

k̄

∏
k=1

Mk,i,t.

(3.27)

The Mk,i,t are latent state variables that must be computed recursively
through Bayesian updating. We can stack the state variables in a volatility

6It is common practice in many papers to purge raw data of microstructure noise by
defining continuously compounded returns as the residuals of an MA(1) process.
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state vector Mi,t = (M1,i,t, ..., Mk̄,i,t). The minute-t multiplier Mk,i,t is drawn
from a fixed distribution M with probability γi,k, and remains at its previous
value with probability 1 − γi,k: Mk,i,t = Mk,i,t−1. M is a binomial random
variable that takes the values mi,0 and 2 − mi,0, each with probability 0.5,
and mi,0 ∈ (0, 2]. The marginal distribution of all Mk,i,t is the same, their
transition probabilities are different, however, and given by

γi,k = 1 − (1 − γi,1)
bk−1

i , (3.28)

where γi,1 ∈ (0, 1) and bi ∈ (1, ∞). At each day, we estimate the parameter
vector ψi = (αi, βi, θi, mi,0, σi, bi, γi,1)

′ via maximum likelihood (Calvet and
Fisher, 2004). The volatility state vector Mi,t takes d = 2k̄ possible values. The
transition probabilities of the Markov chain Mi,t are given by the matrix Ai =

(aqj)1≤q,j≤d with components aqj = P[Mi,t+1 = mj
i |Mi,t = mq

i ]. Although

Mi,t is latent, we can still obtain transition probabilities Πj
i,t = P[Mi,t =

mj
i |x1, ..., xT] over the unobserved states. The conditional probability vector

Πi,t = (Π1
i,t, ..., Πd

i,t) can be computed recursively as:

Πi,t =
ω(ϵi,t)⊙ Πi,t−1Ai

(ω(ϵi,t)⊙ Πi,t−1Ai)ι′
,

where ι is a d-dimensional vector of ones, ⊙ is the Hadamard product and
ω(ϵi,t) is the conditional density of ηi,t. We re-estimate the models on each
day and use the resulting parameters to forecast volatility throughout the
next day:

σ̂2
i+1|i,t+τ =

d

∑
j=1

σ2
i+1|i,t

(
mj

i+1|i

) (
Πi+1|i,t Aτ

i+1|i

)
j

Note that the subscript i + 1|i reflects the fact that parameters used in the
forecast estimation at day i + 1 are estimated using day-i data. It is different
from the conditional expectations formed in the forecast evaluation step.
The volatility function of the ARMA-GARCH(1, 1) takes the following form:

σ2
i,t = ωi + ϕiσ

2
i,t−1 + κiϵ

2
i,t−1. (3.29)
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and its τ-minutes-ahead forecasts on day i+ 1, based on parameter estimates
of day i, are generates as:

σ̃2
i+1|i,t+τ = ω̂i|i

[
1 + (κ̂i|i + ϕ̂i|i) + · · ·+ (κ̂i|i + ϕ̂i|i)

τ−1
]

+ (κ̂i|i + ϕ̂i|i)
τ

[
ω̂i|i

1 − ϕ̂i|i
+ κ̂i|i

∞

∑
j=1

ϕ̂
j−1
i|i ϵ2

i,t−j

]
.

(3.30)

We use the following loss differential

∆Li+1,t+τ =
(

r2
i+1,t+τ − σ̂2

i+1|i,t+τ

)2
−
(

r2
i+1,t+τ − σ̃2

i+1|i,t+τ

)2
, (3.31)

which is evaluated conditional on the time-t and time-T σ-field of each day,
respectively. As the market closes at 16:00, we can treat trading days as the
cross-sectional dimension, and minutes-of-the-day as the time dimension in
our evaluation. Hence, the vector of loss-differentials used in the multivariate
evaluation is ∆Lt+τ = (∆L2,t+τ, ..., ∆Ln,t+τ)′. Ex-ante, one would expect the
loss differentials across different days to be highly dependent – if one
model outperforms the other during the market opening hours on day
t = (2, .., n − 1), it is also more likely to deliver better predictions on the
n-th day. Therefore, the results of the multivariate test can differ from those
of the univariate test.

3.4.3 Empirical Results

We focus on the case of τ = 1. Figure 3.5 presents the intraday test statistics
on the 20 days in the sample between 9:30 and 16:00, excluding overnight
returns. Subfigure (a) shows the univariate CPA tests and Subfigure (b) the
univariate TPA tests. The shaded regions contain the individual test statis-
tics, and the red lines correspond to the critical values. If the test statistic
falls below the negative critical value, the test rejects in favour of the MSM
model, and, vice-versa, in favour of the GARCH model if it exceeds the
positive critical value. In both cases, there are several periods during which
the test rejects, predominantly clustered at the start of the trading day. The
tests offer no decisive indication as to which method has had, or will have,
better predictive ability. After the first trading hour, there is a lower overall
number of rejections – favouring the GARCH model on some days and
the MSM model on others. In contrast, the joint multivariate evaluation is
more conclusive, as shown in Subfigure (c) and (d). Looking first at the CPA
test, frequent rejections in favour of either model during the first trading
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(a) Univariate CPA
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Figure 3.5: Individual Test Results Excluding Overnight Returns

Note: The figure reports the results of the test when overnight returns are excluded. The
shaded blue area contains the time-series of test statistics for each trading day between
9:30 and 16:00. The red lines are the 5% critical values of the test. If the blue area, and
the lines within it, fall above the positive critical value, the GARCH model has superior
predictive ability for the respective time period. If the blue area falls below the negative
critical value, the MSM model has superior predictive ability. The top row reports the
univariate test results, and the bottom row the multivariate test results.
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hour still leave some ambiguity regarding the choice of forecasting method.
However, with few short-lived exceptions during the rest of the trading
days, it is not possible to say if one method will outperform the other or
not. The TPA test paints a clearer picture: on five days, the GARCH model
would have been the better choice until 11:00. Until approximately 10:00,
the MSM model would have been preferred on three different days. The
differences between the univariate and the multivariate evaluation reflect
the strong dependencies between the loss differentials. Our application illus-
trates that failure to account for dependence can lead to noisier and more
ambiguous results. Including overnight returns – an uncommon practice
in many academic papers – leads to fundamentally different results (see
Figure 3.6). Both univariate tests reject their null hypotheses more often in
favour of the MSM model, and the TPA test still rejects on most days with
no clear indication as to which method to choose. This changes somewhat
by considering the multivariate tests reported in Subfigures (c) and (d). As
in the application without overnight returns, the overwhelming majority
of rejections occurs during the fist hour of the trading day for both tests.
However, during the first hour itself, it is not obvious which model to choose
based solely on Figure 3.6. The multivariate χ2 test of the CPA and TPA
hypotheses can provide a more conclusive result. In Figure 3.7, we report the
test statistic and critical values of the test, multiplied by the sign of the mean
of the level components of the loss-differentials. Subfigure (a) shows the
CPA statistic (black line) and the TPA statistic (blue line) for the forecasting
exercise without overnight returns. The results provide a clear indication
that the GARCH model is the preferred choice, especially during market
opening hours. This finding is reversed when overnight returns are included
(see Subfigure (b)). Now, both tests clearly reject in favour of the MSM model
during the first hour of the day.

There are several takeaways from our empirical application. The first
is that the relative predictive ability of volatility models is highly time-
varying. If one model is found to perform better than another on average,
this may well be due to specific and constraint intraday periods. Second,
the forecasting performance of volatility models across trading days is
highly dependent, which can alter the conclusions drawn from evaluation
procedures. Third, a simple GARCH model performs remarkably well at
an intraday level if one removes overnight returns from the sample. Fourth,
an MSM model is vastly superior when it comes to forecasting overnight
returns.
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(a) Univariate CPA
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(c) Multivariate CPA
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(d) Multivariate TPA
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Figure 3.6: Individual Test Results Including Overnight Returns

Note: The figure reports the results of the test when overnight returns are included. The
shaded blue area contains the time-series of test statistics for each trading day between
9:30 and 16:00. The red lines are the 5% critical values of the test. If the blue area, and
the lines within it, fall above the positive critical value, the GARCH model has superior
predictive ability for the respective time period. If the blue area falls below the negative
critical value, the MSM model has superior predictive ability. The top row reports the
univariate test results, and the bottom row the multivariate test results.
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(a) Excluding Overnight Returns
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(b) Including Overnight Returns
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Figure 3.7: χ2 Test Results

Note: The figure displays the results of the χ2 test, computed jointly across trading days
between 9:30 and 16:00. The blue line corresponds to the TPA tes and the black line to
the CPA test. The red lines are the 5% critical values of the test. If the test statistic falls
below the negative critical value, the MSM model has superior predictive ability. If it
exceeds the positive critical value, the GARCH model has superior predictive ability.

3.5 conclusion

In this paper, we proposed new tests to compare the predictive ability of
different forecasting methods in a time-varying manner. First, we developed
a time-varying version of the Conditional Predictive Ability (CPA) test of
Giacomini and White (2006). The CPA null hypothesis is that, based on past
information, one cannot predict if one method will outperform the other.
Second, we introduced a new type of hypothesis that asks the question if –
based on all available information in the sample – one method could have
outperformed the other at any point. We refer to this as Total Predictive
Ability (TPA) hypothesis. Furthermore, we proposed multivariate versions of
both tests that account for cross-dependence between variables. The tests are
pointwise consistent, meaning they reject accurately at each point in time,
instead of across time periods. The size and power properties of the tests
were verified in multiple Monte-Carlo simulations. We applied the test in an
intraday volatility forecasting exercise that compared the Markov-Switching
Multifractal (MSM) model of Calvet and Fisher (2002, 2004) to a GARCH
model. Our empirical application demonstrates that there is considerable
time variation in the forecasting performance of the two models, which can
not be uncovered by global tests. During the first hour of the trading day,
differences in predictive ability are most pronounced. The testing framework
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proposed in this paper can identify such breakpoints and thereby periods
during which a model provides more accurate forecasts.
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C O N C L U S I O N A N D F U T U R E R E S E A R C H

This thesis has contributed to the econometric forecasting literature in sev-
eral ways. The first chapter addressed the long-standing issue of whether
macroeconomic fundamentals can predict foreign exchange rates. Specif-
ically, we showed that accounting for time-variation in the relationship
between exchange rates and macroeconomic fundamentals leads to im-
proved predictive ability. This was demonstrated by contrasting a factor
model with time-varying loadings to both a constant parameter model and
the random walk. In-sample, time-varying factor loadings led to a significant
increase in the percentage of explained variation in exchange rates. Further-
more, incorporating these instabilities resulted in improved out-of-sample
forecasts. Compared to the benchmarks, our model had better global pre-
dictive ability, produced better forecasts of sign changes in exchange rates,
and yielded superior forecasts during the financial crisis. We also provided
a novel real-time database of macroeconomic variables, comprised of 272

datasets, each containing over 100 variables. Future research can build upon
this chapter and analyse the novel dataset by employing a tensor factor
model, a burgeoning area of current research (Chen et al., 2022; Feng et al.,
2020; Zhou et al., 2022; Babii et al., 2022).

The second chapter proposed an intersection-union test for multivariate
predictive ability that combines the p-values of established univariate fore-
cast accuracy tests. The test is valid under arbitrary dependence structures
and requires only few broad assumptions. Through a battery of simulations,
we demonstrated that evaluating multiple univariate tests with methods
that fail to account for dependencies between them leads to size distortions.
In contrast, our method exhibits desirable size and power properties across
various scenarios. A practical application involving a dataset of 84 daily
exchange rates further underscored the practical relevance of our test. A
natural progression for this line of research is to directly consider panel
datasets as opposed to individual time series. We can also expand our ap-
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conclusion and future research

proach into other areas where approaches using combined p-values had
previously been suggested (Bergamelli et al., 2019).

The third chapter proposed tests that evaluated the relative predictive
ability of models pointwise for each out-of-sample period in both univariate
and multivariate settings. The first test can be viewed as a time varying
analogue to the Conditional Predictive Ability test of Giacomini and White
(2006). Additionally, we presented a novel hypothesis called Total Predictive
Ability hypothesis, which is used to test whether one method could have
outperformed the other at any moment, considering all the information
available in the sample. Currently, these tests operate under the assumptions
underlying a Kalman filter, which could be relaxed by moving towards a
Monte-Carlo testing procedure, thereby allowing for more flexibility with
respect to the disturbances in the model. As an alternative approach, the
computation of a likelihood function by the Kalman filter can be used to
formulate a likelihood ratio test.
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A P P E N D I X A

C H A P T E R 1

a.1 computation of time-varying factor loadings

a.1.1 Kalman Filter Algorithm

This section describes the Kalman filter algorithm used to compute the
time-varying loadings. Generally, the Kalman filter is applied to a linear
state space model, such as

yt = Ztαt + εt, εt ∼ N(0, Ht)

αt+1 = Ttαt + Rtηt, ηt ∼ N(0, Qt)

where α1 ∼ N(a1, P1). It computes a prediction αt+1|t = E(αt+1|Yt) and the
corresponding variance Pt+1|t = V(αt+1|Yt) recursively through:

vt = yt − Ztαt|t−1

Σt = ZtPt|t−1Z′
t + Ht

Kt = TtPt|t−1Z′
tF

−1
t

Lt = Tt − KtZt

αt+1|t = Ttαt|t−1 + Ktvt

Pt+1|t = TtPt|t−1L′
t + RtQtR′

t
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a.1.2 Algorithm to Compute Time-Varying Loadings

We now turn to a factor model with time-varying loadings model, which
can be written as:

Xt = ΛtFt + εt for t = 1, ..., T,

xit = λ′
itFt + εit, for i = 1, ..., n and t = 1, .., T,

(A.1)

where λit are the stationary time-varying factor loadings, collected in the
n × r Matrix Λt, Ft = ( f1t, ..., frt)′ is a r × 1 vector of factors and Xt =

(x1t, ..., xnt)′ is a n × 1 matrix of dependent variables. We can rewrite the
model as

xit = λ̄′
iFt + ξ ′itFt + εit,

where ξit = λit − λ̄i is the time-varying mean zero part of the loadings. We
have E[xit] = λ̄′

iFt and V[xit] = E[(xit − λ̄′
i ft)2] = Ωi. Hence, we can rewrite

(A.1) as:

xit = λ̄′
iFt + uit

Xi = Fλ̄i + ui
(A.2)

where uit = ξ ′itFt + εit and the second equation is written in matrix form for
each n. Clearly, mean and variance remain unchanged, since E[ξit] = 0 for
all i and t. The Generalised Least Squares (GLS) estimator for λ̄i is:

λ̃i = (F′Ω−1
i F)−1F′Ω−1

i Xi. (A.3)

Because the matrix Ωi is positive definite, it can be Cholesky decomposed
into Ω−1

i = C′
i Σ

−1
i Ci, where Σi is diagonal with elements σii.

We can pre-multiply A.2 by C:

CiXi = CiFλ̄i + Ciui

X∗
i = F∗λ̄i + u∗

i
(A.4)

such that u∗
i are now uncorrelated over time with variance Σi. This results

in the following GLS estimator for λ̄i:

λ̃i = (F∗′Σ−1
i F∗)−1F∗′Σ−1

i X∗
i (A.5)
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with V[λ̃i] = (F∗′Σ−1
i F∗)−1. Since

X∗
i − F∗λ̄i = Ci(Xi − Fλ̄i) = vi, (A.6)

it follows that applying the same Kalman filter to the measurement equations

xit = ξitF′
t + εit = uit

Ft = Ξ′
tF

′
t + ϵit = ωit

(A.7)

gives CiXi and CiF. To see this, consider the following Kalman filter recur-
sions, applied separately to each of the i = 1, ..., n variables:

x∗it = xit − ξ ′i,t|t−1Ft

F̃∗
t = Ft − Ξ′

t|t−1Ft

Σit = FtPi,t|t−1F′
t + σi,ε

Kit = TiPi,t|t−1F′
itΣ

−1
it

ξi,t+1|t = Tiξi,t|t−1 + Kitx∗it
Ξt+1|t = TiΞt|t−1 + KitF∗

t

Pi,t+1|t = (TPi,t|t−1 − KtFtPi,t|t−1)T
′ + Qi

where Qi is the covariance matrix of the state equation and σi,ε is the variance
of the measurement equation. Note that x∗it and F∗

t are the innovations
generated by this filter, which can be used to construct the GLS estimator
A.5 and, ultimately, yield λ̃i. From there, the residual vit = x∗it − F∗

t λ̃′
i is easily

calculated, which allows for the computation of the likelihood function for
(θi, λ̄i):

LT = ci +
1
2

log |Σi| −
1
2

v′iΣ
−1
i vi (A.8)

Maximising the likelihood function gives an estimate θ̃i of the parameter
vector θ. Mikkelsen et al. (2019) prove the consistency of such a maximum
likelihood estimator for the time-varying factor model (A.1) when using the
principal component estimates F̃t in place of the true latent factors Ft.

Once θ̃ is computed, one can apply the Kalman filter recursion to the state
space formulation:

xit = F̃t(ξit + λ̃i) + εit

ξi,t+1 = Tiξit + ηit
(A.9)
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to compute ξi,t+1|t = E[ξi,t+1|Yt] and Pi,t+1|t = V[ξi,t+1|Yt] by applying the
following recursion separately to the n variables:

ωit = xit − F̃t(ξi,t|t−1 + λ̃i)

Σit = F̃tPi,t|t−1F̃′
t + σiε

Kit = TiPi,t|t−1F̃′
t Σ−1

it

Lit = Ti − Kit F̃t

ξi,t+1|t = Tiξi,t|t−1 + Kitωit

Pi,t+1|t = TiPi,t|t−1L′
it + Qi

The state smoother then calculates ξ̂i,t|T = E[ξi,t|YT] and Vi,t|T = V[ξi,t|YT]

through the backwards recursion:

ri,t−1 = F̃′
t Σ−1

it ωit + L′
itrit

Ni,t−1 = F̃′
t Σ−1

it F̃t + L′
itNitLit

ξ̂i,t|T = ξi,t|t−1 + Pi,t|t−1ri,t−1

Vi,t|T = Pi,t|t−1 − Pi,t|t−1Ni,t−1Pi,t|t−1.

This results in the smoothed time-varying factor loadings estimates λ̃it =

λ̃i + ξ̂i,t|T used in the paper.
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a.2 data summary

Table A.1: Main Economic Indicators, 2022:02 Vintage
Series Cat. Unit AUS CAN DNK FRA DEU ITA JPN MEX NZL NOR SWE CHE GBR BRA IND ZAF

Industrial production 1 Idx. ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✓
Composite leading indicator 1 Idx. ✓∗ ✓ ✓∗ ✓ ✓ ✓ ✓∗ ✓ ✗ ✓∗ ✓ ✓∗ ✓∗ ✓1∗ ✓2∗ ✓∗

Production in construction 1 Idx. ✗ ✓ ✗ ✓ ✓ ✓3 ✗ ✓ ✗ ✗ ✓5 ✗ ✗ ✓⋆ ✗ ✓6

Retail trade volume 4 Idx. ✗ ✓ ✓ ✓ ✓ ✓ ✓⋄ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✓
Consumer Price Index 7 Idx. ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Total employment 2 lvl. ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Hourly earnings, manufacturing 2 Idx. ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗

Monetary aggregates 5 Lvl. ✓ ✓ ✓⋆ ✗ ✗ ✗ ✓ ✓⋆ ✗ ✓ ✓⋆ ✓⋆ ✓ ✓4⋆ ✓⋆ ✓
Exports 1 Vol. ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Note: The table summarises the data used in the in-sample estimation based on the 2022:02 vintage of the OECD Main Economic Indicators database. Cat. refers to McCracken and Ng (2016) categories into which each series is sorted: (1)
Output & Income, (2) Labour Market, (3) Housing, (4) Orders & Inventories, (5) Money & Credit, (6) Interest Rates, (7) Prices, and (8) Stock Markets. Unit refers to original unit in OECD database. Idx. stands for Index (2015=100), % denotes
annualised percentages, Lvl. number of 1000 persons, and $ stands for US-$ billions. All variables not in % are transformed using first log differences (∆log), variables in % are transformed using first differences ∆, consistent with
McCracken and Ng (2016).
✓indicates consistent availability for the respective country between 1990:04 to 2021:09,
✗ indicates no availability throughout the sample.
∗ indicates the series ends in 2021:08,
⋆ indicates the series ends in 2018:12,
⋄ indicates the series ends in 2021:07,
1 indicates the series starts in 1996:02,
2 indicates the series starts in 1996:05,
3 indicates the series starts in 1995:01,
4 indicates the series starts in 1994:07,
5 indicates the series starts in 1994:01,
6 indicates the series starts in 1993:01.
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Table A.2: BTCO Survey: Manufacturing
Survey Cat. AUS DNK FRA DEU ITA JPN MEX SWE GBR BRA

Production Tendency 1 ✗
1990-01 to

2022-01

1990-01 to
2022-01

1990-01 to
2022-01

1990-01 to
2022-01

✗ ✗
1990-01 to

2022-01

1990-01 to
2021-03

✗

Production Future tendency 1 ✗
1990-01 to

2022-01

1990-01 to
2022-01

1990-01 to
2022-01

1990-01 to
2022-01

✗ ✗
1990-01 to

2022-01

1990-01 to
2021-03

1990-01 to
2022-01

Finished goods stocks Level 1 ✗
1990-01 to

2022-01

1990-01 to
2022-01

1990-01 to
2022-01

1990-01 to
2022-01

✗
1990-01 to

2022-01

1996-01 to
2022-01

1990-01 to
2021-03

1990-01 to
2022-01

Order books Level 4 ✗
1990-01 to

2022-01

1990-01 to
2022-01

1990-01 to
2022-01

1990-01 to
2022-01

✗ ✗
1990-01 to

2022-01

1990-01 to
2021-03

1990-01 to
2022-01

Orders inflow Tendency 4 ✗ ✗ ✗
1990-01 to

2022-01

✗ ✗ ✗ ✗ ✗ ✗

Export orders books or demand Level 4 ✗
1990-01 to

2022-01

1990-01 to
2022-01

1990-01 to
2022-01

1990-01 to
2022-01

✗ ✗
1990-01 to

2022-01

1990-01 to
2021-03

1990-01 to
2022-01

Selling prices Future tendency 7 ✗
1998-01 to

2022-01

1990-01 to
2022-01

1990-01 to
2022-01

1990-01 to
2022-01

✗ ✗
1990-01 to

2022-01

1990-01 to
2021-03

✗

Employment Future Tendency 2 ✗
1990-01 to

2022-01

1990-01 to
2022-01

1990-01 to
2022-01

1990-01 to
2022-01

✗ ✗
1990-01 to

2022-01

1990-01 to
2021-03

1990-01 to
2022-01

Capacity Utilisation 1 ✗ ✗ ✗ ✗ ✗ ✗
1998-01 to

2022-01

✗ ✗
1990-01 to

2022-01

Business Activity Current 1 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
1995-04 to

2022-01

Business Activity Future Tendency 1 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
1995-04 to

2022-01

Confidence indicators 1 ✗
1990-01 to

2022-01

1990-01 to
2022-01

1990-01 to
2022-01

1990-01 to
2022-01

✗ ✗
1990-01 to

2022-01

1990-01 to
2019-10

✗

Note: The table summarises the manufacturing survey data used in the in-sample and out-of-sample estimation, sourced from the OECD Business Tendency and Consumer Opinion (BTCO) Survey data. Cat. refers to McCracken and Ng
(2016) categories into which each series is sorted: (1) Output & Income, (2) Labour Market, (3) Housing, (4) Orders & Inventories, (5) Money & Credit, (6) Interest Rates, (7) Prices, and (8) Stock Markets.
✗ indicates no availability throughout the sample.
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Table A.3: BTCO Survey: Construction
Survey Cat. AUS DNK FRA DEU ITA JPN MEX SWE GBR BRA

Business Activity Tendency 1 ✗
1990-01 to

2022-01

1990-01 to
2022-01

1990-01 to
2022-01

1990-01 to
2022-01

✗ ✗
1990-01 to

2022-01

1990-01 to
2019-10

✗

Confidence indicators 1 ✗
1998-01 to

2022-01

1990-01 to
2022-01

1990-01 to
2022-01

1990-01 to
2022-01

✗ ✗
1990-01 to

2022-01

1990-01 to
2019-10

✗

Order books Level 4 ✗
1990-11 to

2022-01

1990-01 to
2022-01

1990-01 to
2022-01

1990-01 to
2022-01

✗ ✗
1996-08 to

2022-01

1990-01 to
2021-03

2010-03 to
2022-01

Employment Future tendency 2 ✗
1990-11 to

2022-01

1990-01 to
2022-01

1990-01 to
2022-01

1990-01 to
2022-01

✗ ✗
1996-08 to

2022-01

1990-01 to
2021-03

✗

Selling prices Future tendency 7 ✗
1990-11 to

2022-01

1990-01 to
2022-01

1990-01 to
2022-01

1990-01 to
2022-01

✗ ✗
1996-10 to

2022-01

1990-01 to
2021-03

2010-03 to
2022-01

Note: The table summarises the construction survey data used in the in-sample and out-of-sample estimation, sourced from the OECD Business Tendency and Consumer Opinion (BTCO) Survey data. Cat. refers to McCracken and Ng (2016)
categories into which each series is sorted: (1) Output & Income, (2) Labour Market, (3) Housing, (4) Orders & Inventories, (5) Money & Credit, (6) Interest Rates, (7) Prices, and (8) Stock Markets.
✗ indicates no availability throughout the sample.
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Table A.4: BTCO Survey: Retail Trade
Survey Cat. AUS DNK FRA DEU ITA JPN MEX SWE GBR BRA

Business Activity Future Tendency 1 ✗

2000-04

to
2022-01

1990-01

to
2022-01

1995-04

to
2022-01

1996-04

to
2022-01

✗ ✗

1996-04

to
2022-01

1997-01

to
2021-03

✗

Business Activity Tendency 1 ✗

2000-04

to
2022-01

1990-01

to
2022-01

1995-04

to
2022-01

1996-04

to
2022-01

✗ ✗

1996-04

to
2022-01

1997-01

to
2021-03

2008-06

to
2022-01

Confidence Indicators 1 ✗

2000-04

to
2022-01

1990-01

to
2022-01

1995-04

to
2022-01

1998-01

to
2022-01

✗ ✗

1996-04

to
2022-01

1997-01

to
2021-03

✗

Volume of stocks Level 4 ✗

2000-04

to
2022-01

1990-01

to
2022-01

2001-02

to
2022-01

1996-04

to
2022-01

✗ ✗

1996-04

to
2022-01

1997-01

to
2021-03

2008-06

to
2022-01

Employment Future tendency 2 ✗

1990-01

to
2022-01

1990-01

to
2022-01

1990-01

to
2022-01

1990-01

to
2022-01

✗

2001-04

to
2022-01

1995-10

to
2022-01

1990-01

to
2022-01

✗

Order Intentions/Demand Future Tendency 4 ✗

1990-01

to
2022-01

1990-01

to
2022-01

1990-01

to
2022-01

1990-01

to
2022-01

✗ ✗

1995-10

to
2022-01

1990-01

to
2020-12

✗

Note: The table summarises the retail trade survey data used in the in-sample and out-of-sample estimation, sourced from the OECD Business Tendency and Consumer Opinion (BTCO) Survey data. Cat. refers to McCracken and Ng (2016)
categories into which each series is sorted: (1) Output & Income, (2) Labour Market, (3) Housing, (4) Orders & Inventories, (5) Money & Credit, (6) Interest Rates, (7) Prices, and (8) Stock Markets.
✗ indicates no availability throughout the sample.
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Table A.5: BTCO Survey: Service
Survey Cat. AUS DNK FRA DEU ITA JPN MEX SWE GBR BRA

Business Activity Tendency 1

1990-01 to
2022-01

1990-01 to
2022-01

1990-01 to
2022-01

1990-01 to
2022-01

1990-01 to
2022-01

1990-01 to
2022-01

2001-04 to
2022-01

1995-10 to
2022-01

1990-01 to
2022-01

1994-06 to
2022-01

Confidence indicator 1 ✗
1990-11 to

2022-01

1990-01 to
2022-01

1990-01 to
2022-01

1990-01 to
2022-01

✗ ✗
1996-08 to

2022-01

1990-01 to
2021-03

2010-03 to
2022-01

Demand evolution Tendency 1 ✗
2000-04 to

2022-01

1990-01 to
2022-01

1995-04 to
2022-01

1998-01 to
2022-01

✗ ✗
1996-04 to

2022-01

1997-01 to
2021-03

2008-06 to
2022-01

Demand evolution Future Tendency 1 ✗
1990-01 to

2022-01

1990-01 to
2022-01

1990-01 to
2022-01

1990-01 to
2022-01

✗
1998-01 to

2022-01

1996-01 to
2022-01

1990-01 to
2022-01

1995-04 to
2022-01

Employment Tendency 2 ✗
1990-01 to

2022-01

1990-01 to
2022-01

1990-01 to
2022-01

1990-01 to
2022-01

✗ ✗
1990-01 to

2022-01

1990-01 to
2019-10

2010-07 to
2022-01

Employment Future Tendency 2 ✗
2000-04 to

2022-01

1990-01 to
2022-01

1995-04 to
2022-01

1998-01 to
2022-01

✗ ✗
1996-04 to

2022-01

1997-01 to
2021-03

2008-06 to
2022-01

Note: The table summarises the service sector survey data used in the in-sample and out-of-sample estimation, sourced from the OECD Business Tendency and Consumer Opinion (BTCO) Survey data. Cat. refers to McCracken and Ng
(2016) categories into which each series is sorted: (1) Output & Income, (2) Labour Market, (3) Housing, (4) Orders & Inventories, (5) Money & Credit, (6) Interest Rates, (7) Prices, and (8) Stock Markets.
✗ indicates no availability throughout the sample.

Table A.6: BTCO Survey: Consumer
Survey Cat. AUS DNK FRA DEU ITA JPN MEX SWE GBR BRA

Economic Situation Future Tendency 1 ✗
1998-01 to

2022-01

1990-01 to
2022-01

1990-01 to
2022-01

1990-01 to
2022-01

✗ ✗
1990-01 to

2022-01

1990-01 to
2019-10

2010-07 to
2022-01

Confidence Indicators 1 ✗
1990-11 to

2022-01

1990-01 to
2022-01

1990-01 to
2022-01

1990-01 to
2022-01

✗ ✗
1996-08 to

2022-01

1990-01 to
2021-03

✗

Inflation Future Tendency 7 ✗
1990-11 to

2022-01

1990-01 to
2022-01

1990-01 to
2022-01

1990-01 to
2022-01

✗ ✗
1996-08 to

2022-01

1990-01 to
2021-03

2010-03 to
2019-07

Note: The table summarises the construction consumer survey data used in the in-sample and out-of-sample estimation, sourced from the OECD Business Tendency and Consumer Opinion (BTCO) Survey data. Cat. refers to McCracken and
Ng (2016) categories into which each series is sorted: (1) Output & Income, (2) Labour Market, (3) Housing, (4) Orders & Inventories, (5) Money & Credit, (6) Interest Rates, (7) Prices, and (8) Stock Markets.
✗ indicates no availability throughout the sample.

1
2
1



appendix

a.3 additional results

122



appendix

(a) AUD

1995 2000 2005 2010 2015 2020

Date

-0.15

-0.1

-0.05

0

0.05
AUD

CC-TVL

CC-CL

(b) BRL

1995 2000 2005 2010 2015 2020

Date

-0.4

-0.3

-0.2

-0.1

0

0.1
BRL

CC-TVL

CC-CL

(c) CAD

1995 2000 2005 2010 2015 2020

Date

-0.1

-0.05

0

0.05 CAD

CC-TVL

CC-CL

(d) CHF

1995 2000 2005 2010 2015 2020

Date

-0.1

-0.05

0

0.05

CHF

CC-TVL

CC-CL

(e) DKK

1995 2000 2005 2010 2015 2020

Date

-0.06

-0.04

-0.02

0

0.02

0.04

0.06
DKK

CC-TVL

CC-CL

(f) INR

1995 2000 2005 2010 2015 2020

Date

-0.15

-0.1

-0.05

0

0.05 INR

CC-TVL

CC-CL

(g) JPY

1995 2000 2005 2010 2015 2020

Date

-0.05

0

0.05

0.1
JPY

CC-TVL

CC-CL

(h) MXN

1995 2000 2005 2010 2015 2020

Date

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05
MXN

CC-TVL

CC-CL

(i) NOK

1995 2000 2005 2010 2015 2020

Date

-0.1

-0.05

0

0.05 NOK

CC-TVL

CC-CL

(j) NZD

1995 2000 2005 2010 2015 2020

Date

-0.1

-0.05

0

0.05

NZD

CC-TVL

CC-CL

(k) SEK

1995 2000 2005 2010 2015 2020

Date

-0.1

-0.05

0

0.05

SEK

CC-TVL

CC-CL

(l) ZAR

1995 2000 2005 2010 2015 2020

Date

-0.15

-0.1

-0.05

0

0.05

0.1

0.15
ZAR

CC-TVL

CC-CL

Figure A.1: In-sample Fit – Real Economy Factor

Note: The figure displays the results of a model estimated with only 1-factor, the real
economy factor. The black line is the FX change, the blue line is the TVL model fit, and
the red line is the CL model fit. CC-TVL stands for the Common Component of the
time-varying loadings, CC-CL for the Common Component of the constant loadings
model.
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Figure A.2: In-sample Fit – 3 Factors

Note: The figure displays the results of a model estimated with only 1-factor, the real
economy factor. The black line is the FX change, the blue line is the TVL model fit, and
the red line is the CL model fit. CC-TVL stands for the Common Component of the
time-varying loadings, CC-CL for the Common Component of the constant loadings
model.
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(a) GBP (b) EUR

Figure A.3: Loadings – Real Economy Factor

Note: The figure displays the loadings of the 1-factor TVL model with pointwise confi-
dence intervals together with the loadings on the 1-factor CL model.
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(a) AUD (b) BRL (c) CAD
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Figure A.4: Loadings – Real Economy Factor

Note: The figure displays the loadings of the 1-factor TVL model with pointwise confi-
dence intervals together with the loadings on the 1-factor CL model.
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Figure A.5: Loadings – 3 Factors

Note: The figure displays the loadings of the 3-factor model. The black line are the
loadings on the real economy factor, the blue line the loadings on the housing factor,
and the red line the loadings on the interest rate factor.
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Figure A.6: Fluctuation Test, h = 6

Note: This figure plots the results of the Giacomini and Rossi (2010) fluctuation test. The
solid blue line is the test statistic, the dotted red lines are the 5% critical values. The
results are based on a rolling window of m = 20 and a quadratic loss function.
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Figure A.7: Fluctuation Test, h = 6

Note: This figure plots the results of the Giacomini and Rossi (2010) fluctuation test. The
solid blue line is the test statistic, the dotted red lines are the 5% critical values. The
results are based on a rolling window of m = 20 and a quadratic loss function.
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Figure A.8: Fluctuation Test, h = 12

Note: This figure plots the results of the Giacomini and Rossi (2010) fluctuation test. The
solid blue line is the test statistic, the dotted red lines are the 5% critical values. The
results are based on a rolling window of m = 20 and a quadratic loss function.
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Figure A.9: Fluctuation Test, h = 12

Note: This figure plots the results of the Giacomini and Rossi (2010) fluctuation test. The
solid blue line is the test statistic, the dotted red lines are the 5% critical values. The
results are based on a rolling window of m = 20 and a quadratic loss function.
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a.4 robustness checks

a.4.1 In-Sample Robustness

Table A.7: In-Sample Performance 5 Factor Model

Currency
R2 Hit Rate

TVL CL TVL CL
AUD 0.60 0.07 78.78 56.76

CAD 0.54 0.06 76.39 56.76

DKK 0.65 0.02 81.70 53.05

JPY 0.46 0.00 70.56 53.05

MXN 0.53 0.03 66.84 52.79

NZD 0.62 0.07 81.70 57.82

NOK 0.53 0.04 75.86 54.11

SEK 0.61 0.04 81.70 55.17

CHF 0.56 0.01 78.51 53.85

GBP 0.28 0.05 66.31 53.85

BRL 0.94 0.06 92.31 57.29

INR 0.95 0.01 90.72 54.91

ZAR 0.74 0.06 85.15 58.62

EUR 0.68 0.02 83.55 53.85

Note: The table reports measures of in-sample fit to compare the CL and TVL model.
Namely, both the squared correlations between changes in the exchange rate and the
in-sample prediction of the TVL & CL model as well as the hit rate in %. The latter
being the times the sign of the fitted values corresponded to the sign of the realised
values. The currency abbreviations stand for Australian Dollar (AUD), Brazilian Real
(BRL), Canadian Dollar (CAD), Danish Krone (DKK), Indian Rupee (INR), Mexican
Peso (MXN), New Zealand Dollar (NZD), Norwegian Krone (NOK), South African
Rand (ZAR), Swedish Krona (SEK), Swiss Franc (CHF), British Pound (GBP), and Euro
(EUR).
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(a) GBP & Model Fit
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Figure A.10: GBP & EUR In-Sample Fit – 5 Factor Model

Note: The figure displays the results of a model estimated with 5 factors. The black line
is the FX change, the blue line is the TVL model fit, and the red line is the CL model fit.
CC-TVL stands for the Common Component of the State Space model, CC-CL for the
Common Component of the CL model.
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Figure A.11: In-sample Fit – 5 Factor Model

Note: The figure displays the results of a model estimated with only 1-factor, the real
economy factor. The black line is the FX change, the blue line is the TVL model fit, and
the red line is the CL model fit. CC-TVL stands for the Common Component of the
time-varying loadings, CC-CL for the Common Component of the constant loadings
model.
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Figure A.12: Loadings – 5 Factor Model
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Figure A.13: GBP & EUR Loadings – 5 Factor Model

a.4.2 Out-of-Sample Robustness
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Table A.8: Forecast Statistics, 1 Factor, P = 238
TVL vs. CL TVL vs. RW CL vs. RW

RMSE Quad. Abs. DA Quad. Abs. Quad. Abs.

TVL CL CPA UPA CPA UPA TVL CL CPA UPA CPA UPA CPA UPA CPA UPA

Panel A: 1 Factor, h = 1

AUD 0.965 1.013 0.057 0.019 0.037 0.022 0.122 0.342 0.136 0.048 0.236 0.090 0.346 0.149 0.511 0.255

CAD 0.990 1.014 0.044 0.013 0.018 0.004 0.790 0.982 0.658 0.378 0.366 0.203 0.404 0.280 0.369 0.248

DKK 1.008 1.010 0.971 0.871 0.554 0.470 0.617 0.373 0.893 0.636 0.903 0.985 0.330 0.158 0.365 0.176

JPY 1.019 1.018 0.408 0.842 0.762 0.537 0.369 0.368 0.349 0.168 0.349 0.150 0.102 0.032 0.364 0.152

MXN 0.995 1.021 0.168 0.064 0.020 0.034 0.590 0.695 0.824 0.571 0.613 0.414 0.387 0.198 0.426 0.247

NZD 0.965 1.019 0.073 0.023 0.048 0.041 0.095 0.983 0.107 0.114 0.115 0.122 0.298 0.126 0.284 0.237

NOK 0.980 1.007 0.126 0.053 0.135 0.064 0.031 0.768 0.323 0.188 0.441 0.264 0.149 0.178 0.168 0.093

SEK 0.972 1.014 0.040 0.040 0.158 0.125 0.011 0.280 0.062 0.126 0.164 0.371 0.409 0.263 0.410 0.282

CHF 1.007 1.005 0.301 0.545 0.357 0.961 0.672 0.660 0.522 0.276 0.319 0.159 0.054 0.193 0.081 0.044

GBP 0.973 1.015 0.145 0.090 0.296 0.288 0.293 0.333 0.329 0.260 0.082 0.700 0.206 0.453 0.319 0.508

BRL 0.992 1.034 0.001 0.001 0.000 0.000 0.323 0.984 0.634 0.540 0.643 0.440 0.001 0.000 0.000 0.000

INR 0.992 1.004 0.474 0.567 0.818 0.968 0.333 0.444 0.417 0.742 0.895 0.819 0.881 0.625 0.865 0.702

ZAR 0.998 1.019 0.272 0.107 0.511 0.279 0.511 0.872 0.630 0.900 0.950 0.767 0.269 0.200 0.408 0.187

EUR 1.005 1.010 0.934 0.714 0.365 0.226 0.414 0.281 0.946 0.773 0.795 0.636 0.361 0.173 0.434 0.225

∑ 9 0 3 5 5 5 2 0 0 1 0 0 1 2 1 2

Panel B: 1 Factor, h = 6

AUD 1.002 1.016 0.301 0.197 0.344 0.166 0.828 0.786 0.120 0.385 0.539 0.776 0.089 0.037 0.108 0.035

CAD 1.023 1.027 0.568 0.378 0.604 0.668 0.421 0.344 0.130 0.063 0.054 0.017 0.110 0.055 0.043 0.016

DKK 0.998 1.006 0.159 0.150 0.184 0.165 0.362 0.352 0.592 0.304 0.539 0.327 0.177 0.102 0.182 0.093

JPY 1.012 1.004 0.163 0.181 0.182 0.183 0.880 0.740 0.057 0.026 0.044 0.035 0.300 0.231 0.387 0.370

MXN 1.003 1.015 0.317 0.132 0.116 0.039 0.752 0.999 0.232 0.189 0.185 0.189 0.070 0.108 0.015 0.047

NZD 1.002 1.022 0.358 0.218 0.304 0.203 0.895 0.589 0.800 0.663 0.975 0.906 0.145 0.055 0.114 0.039

NOK 1.002 1.011 0.296 0.186 0.291 0.173 0.206 0.344 0.118 0.496 0.127 0.832 0.182 0.081 0.127 0.046

SEK 1.006 1.030 0.297 0.217 0.318 0.138 0.234 0.277 0.271 0.294 0.212 0.798 0.270 0.130 0.102 0.034

CHF 1.001 1.002 0.619 0.470 0.270 0.976 0.362 0.297 0.345 0.450 0.536 0.345 0.166 0.328 0.394 0.342

GBP 1.014 1.025 0.297 0.202 0.348 0.181 0.880 0.852 0.277 0.134 0.353 0.169 0.164 0.058 0.124 0.062

BRL 1.010 1.020 0.030 0.026 0.010 0.004 0.074 0.136 0.096 0.049 0.127 0.063 0.013 0.004 0.001 0.000

INR 0.996 1.005 0.198 0.136 0.331 0.173 0.693 0.852 0.344 0.303 0.524 0.422 0.380 0.298 0.409 0.183

ZAR 0.999 1.015 0.513 0.215 0.390 0.186 0.164 0.117 0.107 0.595 0.124 0.055 0.091 0.035 0.101 0.033

EUR 1.000 1.006 0.266 0.283 0.300 0.308 0.678 0.451 0.997 0.950 0.983 0.901 0.177 0.104 0.180 0.096

∑ 3 0.000 1.000 1.000 1.000 2.000 0.000 0.000 0.000 2.000 1.000 2.000 1.000 3.000 3.000 8.000

Panel C: 1 Factor, h = 12

AUD 1.000 1.000 0.813 0.675 0.316 0.964 0.989 0.933 0.653 0.791 0.971 0.811 0.389 0.967 0.296 0.950

CAD 1.004 1.007 0.275 0.152 0.758 0.741 0.141 0.191 0.749 0.448 0.462 0.363 0.485 0.233 0.415 0.262

DKK 1.005 0.992 0.250 0.115 0.148 0.104 0.496 0.162 0.441 0.391 0.357 0.321 0.279 0.113 0.190 0.074

JPY 1.004 1.001 0.296 0.179 0.223 0.099 0.829 0.957 0.612 0.328 0.305 0.149 0.523 0.714 0.113 0.155

MXN 1.001 1.006 0.376 0.370 0.202 0.159 0.838 0.650 0.456 0.230 0.171 0.279 0.262 0.156 0.045 0.013

NZD 0.999 0.997 0.308 0.515 0.398 0.827 0.252 0.334 0.659 0.449 0.483 0.227 0.358 0.520 0.373 0.744

NOK 0.997 0.997 0.946 0.739 0.413 0.284 0.219 0.124 0.081 0.086 0.401 0.200 0.439 0.205 0.274 0.831

SEK 0.998 1.001 0.272 0.239 0.239 0.407 0.055 0.165 0.510 0.257 0.375 0.528 0.835 0.774 0.579 0.603

CHF 0.999 0.997 0.479 0.201 0.427 0.243 0.511 0.609 0.894 0.640 0.488 0.918 0.421 0.190 0.361 0.507

GBP 0.996 0.995 0.246 0.390 0.439 0.326 0.868 0.839 0.740 0.502 0.993 0.914 0.801 0.505 0.907 0.788

BRL 1.000 1.003 0.249 0.210 0.224 0.176 0.466 0.555 0.916 0.983 0.868 0.955 0.606 0.336 0.257 0.317

INR 1.001 1.000 0.451 0.839 0.655 0.977 0.005 0.002 0.659 0.817 0.934 0.934 0.955 0.982 0.595 0.945

ZAR 0.998 1.002 0.170 0.136 0.623 0.293 0.008 0.235 0.110 0.069 0.156 0.151 0.564 0.548 0.381 0.645

EUR 0.999 0.992 0.206 0.257 0.162 0.242 0.296 0.098 0.560 0.536 0.996 0.963 0.282 0.116 0.199 0.080

∑ 7 6 0 0 0 0 2 1 0 0 0 0 0 0 1 1

Note: Columns 2 and 3 report the Root Mean square Error (RMSE) of TVL and CL forecasts divided by the RMSE of forecasts by a Random
Walk (RW). A value < 1 implies the respective model has a smaller RMSE than the RW. Columns 4 to 9 compare the TVL and CL models
and report the p-values of the Conditional Predictive Ability (CPA) and Unconditional Predictive Ability (UPA) test of Giacomini and
White (2006) using a quadratic (Quad.) and an absolute (Abs.) loss function. Further, they report the p-values of the Pesaran and Shin
(1998) nonparametric Direction Accuracy (DA) test for TVL and CL. Columns 10 to 13 compare TVL and RW, reporting p-values of the
CPA and UPA test for quadratic and absolute loss differentials. Columns 14 to 17 compare CL and RW, reporting p-values of the same tests.
The rows denoted by ∑ report the total number of p-values ≤ 5% and in the case of the second and third columns, the number of RMSE
smaller than those of a random walk. Results are shown for forecast horizons of h = 1, 6, 12. The currency abbreviations stand for Australian
Dollar (AUD), Brazilian Real (BRL), Canadian Dollar (CAD), Danish Krone (DKK), Indian Rupee (INR), Mexican Peso (MXN), New Zealand
Dollar (NZD), Norwegian Krone (NOK), South African Rand (ZAR), Swedish Krona (SEK), Swiss Franc (CHF), British Pound (GBP), and Euro (EUR).
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Table A.9: Forecast Statistics, 3 Factors, P = 200
TVL vs. CL TVL vs. RW CL vs. RW

RMSE Quad. Abs. DA Quad. Abs. Quad. Abs.

TVL CL CPA UPA CPA UPA TVL CL CPA UPA CPA UPA CPA UPA CPA UPA

Panel A: 3 Factors, h = 1

AUD 0.984 1.009 0.320 0.129 0.646 0.524 0.011 0.176 0.683 0.364 0.863 0.559 0.616 0.435 0.784 0.945

CAD 1.131 1.009 0.602 0.363 0.538 0.444 0.238 0.468 0.346 0.331 0.547 0.371 0.506 0.511 0.870 0.675

DKK 1.008 1.013 0.789 0.760 0.286 0.139 0.049 0.806 0.839 0.709 0.390 0.508 0.202 0.189 0.255 0.359

JPY 1.019 1.023 0.311 0.796 0.295 0.463 0.022 0.246 0.236 0.331 0.272 0.219 0.108 0.129 0.515 0.371

MXN 0.982 1.015 0.148 0.081 0.103 0.031 0.016 0.243 0.232 0.317 0.120 0.164 0.533 0.338 0.627 0.471

NZD 0.985 1.017 0.260 0.110 0.702 0.479 0.032 0.211 0.576 0.463 0.738 0.608 0.454 0.273 0.561 0.843

NOK 0.991 1.008 0.397 0.269 0.296 0.179 0.003 0.478 0.702 0.608 0.948 0.895 0.081 0.366 0.071 0.093

SEK 0.966 1.010 0.027 0.031 0.004 0.015 0.003 0.080 0.030 0.080 0.050 0.142 0.434 0.479 0.414 0.289

CHF 1.134 1.010 0.199 0.074 0.136 0.050 0.701 0.621 0.155 0.056 0.080 0.036 0.011 0.246 0.082 0.473

GBP 0.988 1.025 0.356 0.165 0.954 0.823 0.005 0.090 0.578 0.621 0.231 0.599 0.186 0.199 0.505 0.465

BRL 1.020 1.200 0.013 0.015 0.005 0.001 0.004 0.850 0.927 0.735 0.859 0.889 0.001 0.000 0.000 0.000

INR 0.997 1.018 0.230 0.426 0.586 0.515 0.501 0.618 0.356 0.909 0.774 0.459 0.439 0.214 0.027 0.012

ZAR 0.985 1.022 0.046 0.012 0.124 0.038 0.047 0.475 0.378 0.515 0.443 0.366 0.265 0.198 0.296 0.172

EUR 1.010 1.013 0.825 0.860 0.677 0.346 0.015 0.877 0.802 0.656 0.625 0.760 0.248 0.201 0.282 0.425

∑ 8 0 3 3 2 4 11 0 1 0 1 1 2 1 2 2

Panel B: 3 Factors, h = 6

AUD 0.998 1.010 0.425 0.243 0.463 0.300 0.021 0.860 0.127 0.587 0.299 0.104 0.097 0.145 0.089 0.776

CAD 1.005 1.015 0.355 0.161 0.146 0.194 0.258 0.595 0.042 0.507 0.169 0.534 0.096 0.158 0.159 0.178

DKK 1.005 1.002 0.637 0.634 0.610 0.896 0.206 0.500 0.107 0.428 0.105 0.642 0.091 0.633 0.321 0.398

JPY 1.001 1.007 0.094 0.100 0.333 0.243 0.703 0.421 0.291 0.761 0.496 0.819 0.075 0.103 0.353 0.204

MXN 1.003 1.012 0.239 0.111 0.182 0.096 0.570 0.995 0.368 0.463 0.954 0.955 0.099 0.098 0.039 0.098

NZD 0.993 1.014 0.325 0.233 0.598 0.306 0.565 0.591 0.465 0.357 0.467 0.432 0.193 0.129 0.111 0.400

NOK 0.992 1.004 0.377 0.331 0.547 0.362 0.056 0.522 0.158 0.174 0.307 0.403 0.098 0.497 0.160 0.290

SEK 1.006 1.019 0.666 0.404 0.520 0.267 0.092 0.116 0.114 0.372 0.126 0.502 0.272 0.188 0.108 0.048

CHF 0.998 0.996 0.607 0.413 0.741 0.844 0.028 0.105 0.356 0.759 0.575 0.643 0.324 0.428 0.529 0.485

GBP 1.016 1.015 0.438 0.936 0.562 0.833 0.555 0.684 0.308 0.231 0.248 0.088 0.276 0.177 0.388 0.175

BRL 1.077 1.037 0.451 0.348 0.484 0.315 0.001 0.174 0.031 0.007 0.084 0.019 0.190 0.045 0.551 0.243

INR 0.993 1.005 0.211 0.058 0.291 0.341 0.130 0.532 0.328 0.169 0.852 0.725 0.076 0.288 0.042 0.577

ZAR 1.004 1.016 0.448 0.210 0.392 0.241 0.385 0.994 0.350 0.303 0.597 0.323 0.018 0.018 0.053 0.017

EUR 1.004 1.002 0.661 0.837 0.598 0.731 0.208 0.565 0.128 0.578 0.171 0.838 0.087 0.644 0.289 0.399

∑ 5 0 0 0 0 0 3 0 2 1 0 1 1 2 2 2

Panel C: 3 Factors, h = 12

AUD 1.001 1.003 0.067 0.410 0.201 0.376 0.469 0.940 0.167 0.831 0.506 0.285 0.791 0.496 0.543 0.827

CAD 0.998 1.003 0.239 0.088 0.372 0.150 0.106 0.614 0.543 0.566 0.678 0.452 0.822 0.619 0.557 1.000

DKK 1.011 0.996 0.092 0.149 0.189 0.106 0.246 0.201 0.055 0.108 0.061 0.172 0.079 0.400 0.372 0.300

JPY 0.996 0.999 0.343 0.163 0.557 0.779 0.755 0.268 0.463 0.294 0.579 0.692 0.909 0.739 0.753 0.537

MXN 1.001 1.003 0.790 0.429 0.483 0.162 0.958 0.988 0.265 0.385 0.412 0.261 0.422 0.195 0.069 0.019

NZD 1.005 1.000 0.319 0.112 0.331 0.173 0.988 0.713 0.070 0.212 0.245 0.283 0.819 0.924 0.586 0.834

NOK 1.004 0.998 0.291 0.284 0.318 0.228 0.362 0.468 0.081 0.412 0.322 0.261 0.352 0.552 0.687 0.943

SEK 1.003 0.999 0.531 0.272 0.716 0.448 0.250 0.435 0.104 0.502 0.243 0.485 0.349 0.780 0.481 0.989

CHF 1.002 0.998 0.484 0.190 0.445 0.221 0.205 0.134 0.266 0.707 0.364 0.853 0.331 0.565 0.350 0.256

GBP 0.997 0.995 0.592 0.492 0.829 0.701 0.738 0.994 0.646 0.630 0.973 0.905 0.747 0.505 0.942 0.965

BRL 1.012 0.991 0.587 0.286 0.524 0.285 0.002 0.176 0.730 0.447 0.991 0.891 0.386 0.333 0.177 0.105

INR 0.997 0.997 0.898 0.971 0.427 0.464 0.469 0.319 0.839 0.555 0.869 0.924 0.346 0.387 0.620 0.436

ZAR 1.001 1.006 0.032 0.043 0.299 0.150 0.606 0.999 0.608 0.646 0.815 0.644 0.067 0.021 0.102 0.205

EUR 1.008 0.995 0.037 0.182 0.212 0.167 0.290 0.290 0.070 0.185 0.124 0.320 0.080 0.348 0.353 0.300

∑ 4 9 2 1 0 0 1 0 0 0 0 0 0 1 0 1

Note: Columns 2 and 3 report the Root Mean square Error (RMSE) of TVL and CL forecasts divided by the RMSE of forecasts by a Random
Walk (RW). A value < 1 implies the respective model has a smaller RMSE than the RW. Columns 4 to 9 compare the TVL and CL models
and report the p-values of the Conditional Predictive Ability (CPA) and Unconditional Predictive Ability (UPA) test of Giacomini and
White (2006) using a quadratic (Quad.) and an absolute (Abs.) loss function. Further, they report the p-values of the Pesaran and Shin
(1998) nonparametric Direction Accuracy (DA) test for TVL and CL. Columns 10 to 13 compare TVL and RW, reporting p-values of the
CPA and UPA test for quadratic and absolute loss differentials. Columns 14 to 17 compare CL and RW, reporting p-values of the same tests.
The rows denoted by ∑ report the total number of p-values ≤ 5% and in the case of the second and third columns, the number of RMSE
smaller than those of a random walk. Results are shown for forecast horizons of h = 1, 6, 12. The currency abbreviations stand for Australian
Dollar (AUD), Brazilian Real (BRL), Canadian Dollar (CAD), Danish Krone (DKK), Indian Rupee (INR), Mexican Peso (MXN), New Zealand
Dollar (NZD), Norwegian Krone (NOK), South African Rand (ZAR), Swedish Krona (SEK), Swiss Franc (CHF), British Pound (GBP), and Euro (EUR).
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Table A.10: Forecast Statistics, 3 Factors, P = 260
TVL vs. CL TVL vs. RW CL vs. RW

RMSE Quad. Abs. DA Quad. Abs. Quad. Abs.

TVL CL CPA UPA CPA UPA TVL CL CPA UPA CPA UPA CPA UPA CPA UPA

Panel A: 3 Factors, h = 1

AUD 0.964 1.006 0.139 0.047 0.261 0.116 0.004 0.405 0.221 0.093 0.133 0.080 0.806 0.552 0.435 0.743

CAD 0.987 1.005 0.295 0.129 0.583 0.549 0.016 0.207 0.527 0.331 0.478 0.334 0.657 0.661 0.712 0.509

DKK 1.000 1.018 0.431 0.325 0.454 0.199 0.141 0.726 0.421 0.986 0.475 0.612 0.383 0.148 0.577 0.323

JPY 1.013 1.013 0.764 0.998 0.407 0.987 0.319 0.856 0.632 0.360 0.193 0.924 0.421 0.219 0.408 0.892

MXN 0.990 1.017 0.609 0.358 0.727 0.425 0.001 0.323 0.883 0.650 0.733 0.434 0.239 0.145 0.177 0.921

NZD 0.958 1.020 0.055 0.018 0.118 0.083 0.009 0.493 0.161 0.118 0.212 0.168 0.487 0.249 0.732 0.642

NOK 0.973 1.010 0.024 0.022 0.014 0.017 0.001 0.767 0.260 0.152 0.521 0.316 0.087 0.302 0.105 0.051

SEK 0.950 1.011 0.008 0.009 0.004 0.014 0.001 0.253 0.006 0.024 0.044 0.124 0.324 0.447 0.288 0.207

CHF 1.022 1.010 0.610 0.364 0.486 0.348 0.740 0.666 0.344 0.168 0.393 0.221 0.481 0.308 0.769 0.515

GBP 0.990 1.026 0.325 0.158 0.593 0.534 0.502 0.369 0.857 0.663 0.203 0.451 0.161 0.228 0.235 0.171

BRL 0.964 1.145 0.011 0.004 0.002 0.001 0.020 0.102 0.550 0.308 0.507 0.390 0.005 0.002 0.002 0.001

INR 1.003 1.015 0.539 0.634 0.984 0.845 0.127 0.464 0.587 0.916 0.536 0.344 0.201 0.111 0.035 0.030

ZAR 0.992 1.018 0.115 0.041 0.347 0.138 0.213 0.804 0.615 0.642 0.773 0.566 0.400 0.160 0.160 0.217

EUR 1.000 1.018 0.338 0.355 0.551 0.243 0.216 0.579 0.375 0.995 0.391 0.687 0.389 0.148 0.578 0.323

∑ 8 0 3 6 3 3 7 0 1 1 1 0 1 1 2 2

Panel B: 3 Factors, h = 6

AUD 0.996 1.009 0.149 0.199 0.511 0.344 0.027 0.810 0.340 0.163 0.121 0.056 0.093 0.161 0.062 0.734

CAD 1.007 1.015 0.030 0.118 0.725 0.526 0.375 0.634 0.035 0.446 0.151 0.171 0.079 0.086 0.144 0.094

DKK 1.004 1.007 0.820 0.560 0.864 0.611 0.443 0.884 0.559 0.457 0.471 0.179 0.085 0.175 0.165 0.062

JPY 1.228 1.004 0.344 0.307 0.364 0.302 0.021 0.238 0.359 0.308 0.316 0.315 0.009 0.167 0.059 0.980

MXN 1.002 1.003 0.486 0.887 0.972 0.796 0.666 0.386 0.685 0.682 0.311 0.891 0.167 0.320 0.795 0.865

NZD 1.005 1.016 0.500 0.350 0.849 0.535 0.531 0.269 0.430 0.389 0.791 0.565 0.176 0.117 0.119 0.282

NOK 1.003 1.009 0.366 0.224 0.554 0.342 0.205 0.740 0.181 0.578 0.208 0.250 0.177 0.191 0.120 0.060

SEK 1.003 1.021 0.340 0.244 0.025 0.116 0.477 0.622 0.222 0.556 0.777 0.824 0.303 0.174 0.100 0.028

CHF 1.019 1.000 0.632 0.347 0.831 0.605 0.295 0.560 0.675 0.365 0.789 0.482 0.352 0.996 0.401 0.543

GBP 1.011 1.016 0.624 0.311 0.968 0.734 0.672 0.791 0.346 0.231 0.157 0.058 0.306 0.141 0.263 0.112

BRL 1.000 1.045 0.415 0.219 0.483 0.176 0.000 0.040 0.974 0.974 0.646 0.303 0.152 0.063 0.103 0.102

INR 1.000 1.009 0.377 0.114 0.527 0.284 0.021 0.236 0.249 0.917 0.314 0.736 0.039 0.063 0.093 0.189

ZAR 1.001 1.017 0.146 0.054 0.181 0.082 0.829 0.948 0.541 0.842 0.985 0.963 0.012 0.004 0.037 0.008

EUR 1.003 1.006 0.669 0.547 0.617 0.575 0.386 0.891 0.688 0.566 0.640 0.291 0.095 0.210 0.187 0.082

∑ 1 0 1 0 1 0 4 1 1 0 0 0 3 1 1 2

Panel C: 3 Factors, h = 12

AUD 1.000 1.001 0.462 0.529 0.355 0.529 0.060 0.956 0.336 0.893 0.364 0.138 0.861 0.647 0.596 0.736

CAD 1.002 1.002 0.561 0.991 0.216 0.975 0.534 0.442 0.698 0.666 0.700 0.979 0.789 0.630 0.583 0.995

DKK 1.000 0.993 0.301 0.247 0.375 0.176 0.278 0.500 0.118 0.951 0.454 0.871 0.268 0.210 0.288 0.124

JPY 1.556 0.999 0.313 0.302 0.305 0.294 0.369 0.623 0.372 0.318 0.390 0.307 0.166 0.747 0.073 0.607

MXN 1.006 1.000 0.173 0.063 0.208 0.076 0.778 0.237 0.396 0.161 0.155 0.067 0.452 0.807 0.862 0.938

NZD 1.000 0.997 0.053 0.351 0.101 0.538 0.396 0.858 0.185 0.896 0.531 0.923 0.621 0.463 0.552 0.677

NOK 1.010 0.998 0.619 0.428 0.342 0.742 0.077 0.706 0.083 0.514 0.268 0.820 0.756 0.652 0.384 0.900

SEK 0.999 0.999 0.378 0.798 0.683 0.487 0.106 0.579 0.145 0.876 0.591 0.437 0.411 0.731 0.391 0.884

CHF 1.111 0.996 0.445 0.304 0.386 0.325 0.209 0.542 0.616 0.336 0.606 0.418 0.578 0.257 0.365 0.131

GBP 0.995 0.992 0.437 0.203 0.216 0.204 0.911 0.714 0.600 0.408 0.974 0.877 0.572 0.295 0.939 0.815

BRL 1.008 1.020 0.503 0.362 0.520 0.630 0.032 0.370 0.639 0.374 0.960 0.914 0.167 0.072 0.677 0.573

INR 0.997 0.998 0.454 0.661 0.945 0.714 0.449 0.278 0.254 0.387 0.364 0.483 0.336 0.620 0.227 0.299

ZAR 1.011 1.005 0.439 0.588 0.414 0.609 0.669 0.877 0.545 0.322 0.666 0.385 0.091 0.038 0.175 0.371

EUR 1.000 0.993 0.347 0.272 0.368 0.273 0.376 0.388 0.115 0.989 0.603 0.935 0.251 0.191 0.310 0.137

∑ 3 9 0 0 0 0 1 0 0 0 0 0 0 1 0 0

Note: Columns 2 and 3 report the Root Mean square Error (RMSE) of TVL and CL forecasts divided by the RMSE of forecasts by a Random
Walk (RW). A value < 1 implies the respective model has a smaller RMSE than the RW. Columns 4 to 9 compare the TVL and CL models
and report the p-values of the Conditional Predictive Ability (CPA) and Unconditional Predictive Ability (UPA) test of Giacomini and
White (2006) using a quadratic (Quad.) and an absolute (Abs.) loss function. Further, they report the p-values of the Pesaran and Shin
(1998) nonparametric Direction Accuracy (DA) test for TVL and CL. Columns 10 to 13 compare TVL and RW, reporting p-values of the
CPA and UPA test for quadratic and absolute loss differentials. Columns 14 to 17 compare CL and RW, reporting p-values of the same tests.
The rows denoted by ∑ report the total number of p-values ≤ 5% and in the case of the second and third columns, the number of RMSE
smaller than those of a random walk. Results are shown for forecast horizons of h = 1, 6, 12. The currency abbreviations stand for Australian
Dollar (AUD), Brazilian Real (BRL), Canadian Dollar (CAD), Danish Krone (DKK), Indian Rupee (INR), Mexican Peso (MXN), New Zealand
Dollar (NZD), Norwegian Krone (NOK), South African Rand (ZAR), Swedish Krona (SEK), Swiss Franc (CHF), British Pound (GBP), and Euro (EUR).
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C H A P T E R 2

b.1 proofs

Proof of Theorem 2.1: To show

P

[
Pr,n ∈ Cr,n

∣∣∣∣∣ ⋂
i∈N

pi ∼ Un[0, 1]

]
≤ α, ∀ α ∈ (0, 1), (A1)

note first that:
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The term
(

1
n ∑n

i=1 pr
i

)1/r
fulfils the definition of a Kolmogorov-Nagumo

average:

Definition 1 (Kolmogorov-Nagumo). For a strictly continuous and mono-
tonic function ψ : [0, 1] 7→ R, the Kolmogorov-Nagumo average is defined
as

M(P) = ψ−1

(
1
n

n

∑
i=1

ψ(pi)

)
,

where M :
⋃∞

n=1 In 7→ R for a closed and bounded interval I ⊂ R.

As ψ(·) = p−r
i is strictly continuous and monotonic, we obtain

P

[
M(P) ≤ αn

1−r
r

r − 1
r

∣∣∣∣∣ ⋂
i∈N

pi ∼ Un[0, 1]

]
≤ α

Hence, to prove the first part of Theorem 1, it is sufficient to show that

P

[
M(P) ≤ α

∣∣∣∣∣ ⋂
i∈N

pi ∼ Un[0, 1]

]
≤ r

r − 1
n

r−1
r α.

For this purpose, we can apply Theorem 2 of Vovk and Wang (2020) which
states that for any Kolmogorov-Nagumo average with stricly decreasing
continuous ψ : [0, 1] → [−∞, ∞] with ψ(0) = ∞ and ψ(α) ≥ 0 for any
α ∈ (0, 1):

P [M(P) ≤ α] ≤ inf
v∈(0,ψ(α)]

∫ ψ(α)+(n−1)v
ψ(α)−v ψ−1(u)du

v
.

The function ψ(·) = u−r is strictly decreasing for r = (1, ∞). Thus, we have

inf
v∈(0,ψ(α)]

∫ ψ(α)+(n−1)v
ψ(α)−v ψ−1(u)du

v
=

∫ α−rn
0 u−1/rdu

α−r =
r

r − 1
n

r−1
r α,

which completes the first part of the proof.
To prove the second part of Theorem 2.1, we demonstrate

lim sup
n→∞

P

[
Pr,n ∈ Cr,n

∣∣∣∣∣ ⋂
i∈N

pi ∼ Un[0, 1]

]
= α, ∀ (p1, ..., pn) ∈ Pn.
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Which is equivalent to proving the following condition:

sup
P∈Pn

{
P

[
n1−1/r r

r − 1
M(P) ≤ α

∣∣∣∣∣ ⋂
i∈N

pi ∼ Un[0, 1]

]}
= α, as n → ∞.

(A2)

for the set of all p-values P . Define the left-continuous p-quantile of a
random variable as:

qp(X) := sup{x ∈ R : P[X ≤ x] < p}, p ∈ (0, 1],

and the right-continuous p-quantile as q+p (X). If

inf

{
qα

(
n1−1/r r

r − 1
M(P)

) ∣∣∣∣∣ ⋂
i∈N

pi ∼ Un[0, 1]

}
= α,

can be demonstrated, condition (A2) is satisfied. Following Vovk and Wang
(2020), we can use Theorem 4.6 of Bernard et al. (2014) according to which:
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By reformulating the final step of the proof of Proposition 5 Vovk and Wang
(2020) it can be seen that:

lim
n→∞

(
n−1 sup

{
q+0

(
n

∑
i=1

p−r
i

) ∣∣∣∣∣ ⋂
i∈N

pi ∼ Un[0, 1]

})
n1−r =

(
r

r − 1

)r
.

We therefore obtain:

inf

{
qα

(
n1−1/r r

r − 1
M(P)

) ∣∣∣∣∣ ⋂
i∈N

pi ∼ Un[0, 1]

}
= α, as n → ∞,

which verifies condition A2 and completes the proof.
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Proof of Theorem 2.2. The i-th p-value of a sub-test is defined as pi = 1− Fi(ŝi)

and without loss of generality we write pi = 1 − Fi(|ŝi|), where ŝi is the test
statistic associated with each of the i = 1, ..., n sub-tests. Each ŝi is distributed
according to Fi(·) under the null hypothesis Hi,0. Assume the set of sub-tests
which reject their sub-hypothesis is R = {i ∈ {1, ..., n} : µi ∈ Mi,A}. The
cardinality of the set, 1 ≤ R0 ≤ n, corresponds to the number of tests that
reject their sub-hypothesis. The number of tests that do not reject is given
by the cardinality of the set S = {i ∈ {1, ..., n} : µi ∈ Mi,0}, S0 = n − R0. To
prove Theorem 2, it suffices to show that under the alternative

Pr,n = n−1

(
n

∑
i=1

p−r
i

)1/r

= n−1

(
n

∑
i=1

(1 − Fi(|ŝi|))−r

)1/r

≥ r
α(r − 1)

.

As x1/r is a real concave function, the finite version of Jensen’s inequality
holds for the combination

(
n−1 ∑n

i=1 p−r
i
)1/r. Thus, we have:

Pr,n = n
1−r

r

(
1
n

n

∑
i=1

p−r
i

)1/r

≥ n
1−2r

r

n

∑
i=1

(1 − Fi(|ŝi|))−1

Sort the terms (1 − Fi(|ŝi|)) from small to large. Then

Pr,n ≥ n
1−2r

r

n

∑
i=1

(1 − Fi(|ŝi|))−1

= n
1−2r

r

{
R0

∑
i=1

(1 − Fi(|ŝi|))−1 +
n

∑
j=R0+1

(
1 − Fj(|ŝj|)

)−1

}

Under Assumption 2.3, we have that (1 − Fj(|ŝj|)) ≥ 1 − α, as ŝj < cj, i.e the
test statistics is smaller than the critical value of the test. Therefore,

= n
1−2r

r

{
R0

∑
i=1

(1 − Fi(|ŝi|))−1 + Op(1)

}

By Assumption 2.3 (ii), under the alternatives Hi,A, for i = 1, ..., R0 the
sub-tests associated with ŝi produce test statistics that are larger than any
critical value ci. Thus,

Pr,n ≥ n
1−2r

r

R0

∑
i=1

lim
ŝi→∞

(1 − Fi(|ŝi|))−1 + Op(1)

→ ∞.

144



appendix

Proof of Proposition 2.1: The proof is based on several of the steps in the proof
of Theorem 3 in Liu and Xie (2020) which we adapted for our test statistic.
The i-th p-value of a sub-test is defined as pi = 1 − Fi(ŝi) and without
loss of generality we write pi = 1 − Fi(|ŝi|), where ŝi is the test statistic
associated with each of the i = 1, ..., n sub-tests. The vector of test statistics
is distributed according to S ∼ N (µ, Σ). Assume the set of sub-tests which
reject their sub-hypothesis is R = {i ∈ {1, ..., n} : µi ∈ Mi,A}. The cardinality
of the set R0 = nγ, γ ∈ [0, 0.5], corresponds to the number of tests that reject
their sub-hypothesis. Under the alternative, µi =

√
2δ log n for all i ∈ N and

δ > −2
√

γ(2r − 1)/r + γ − 1/r + 2.
To prove the Proposition, we show:

Pr,n = n−1

(
n

∑
i=1

p−r
i

)1/r

= n−1

(
n

∑
i=1

(1 − Fi(|ŝi|))−r

)1/r

≥ r
α(r − 1)

.

By applying Jensen’s inequality and proceeding as in the proof of Theorem
2.2 above, we obtain

Pr,n ≥ n
1−2r

r

{
R0

∑
i=1

(1 − Fi(|ŝi|))−1

}
+ op(1)

≥ n
1−2r

r

(
1 − Fi(max

i∈R
|ŝi|)

)−1

+ Op(1)

Clearly, the last term is positive, so it suffices to show (1 − Fi(maxi∈R |ŝi|))−1 →
∞. The lower bound for a standard normal distribution is:

1 − Fi(x) ≥ 1√
2π

x
x2 + 1

exp{−x2/2}

We have S = µ+ Z for Z ∼ N (0, Σ) and under Assumption 2.4 (i) [see Cai
et al. (2014, Lemma 6)]:

max
i∈R

|ŝi| ≥ max
i∈R

|Zi + µi| ≥ µ1 + max
i∈R

|Zi| = µ1 +
√

2 log R0 + op(1)
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Thus, we obtain:

Pr,n ≥n
1−2r

r

(
exp

{
(max

i∈R
|ŝi|)2/2

}(√
2π max

i∈R
|ŝi|+

√
2π

maxi∈R |ŝi|

))
≥n

1−2r
r exp

{
(µ1 +

√
2 log R0)

2/2
}

×
(
√

2π(µ1 +
√

2 log R0) +

√
2π

µ1 +
√

2 log R0

)
+ op(1)

=n
1−2r

r exp
{
(
√

2δ log n +
√

2γ log n)2/2
}

×
(
√

2π(
√

2δ log n +
√

2γ log n) +
√

2π√
2δ log n +

√
2γ log n

)
+ op(1)

=

√
πn2

√
γδ+γ+δ+1/r−2(2(2

√
γδ + γ + δ) log n + 1)

(
√

γ +
√

δ) log n
+ op(1)

Since δ, γ, and r are real valued and δ > −2
√

γ(2r − 1)/r + γ − 1/r + 2,
γ ∈ [0, 0.5] and r ∈ (1, ∞) we have 2

√
γδ + γ + δ + 1/r > 2. Therefore, we

obtain Pr,n → ∞ as n → ∞.

Proof of Corollary 2.1. The range r ∈ (1, (2 − 2
√

γδ − γ − δ)−1) can be de-
rived by noting that Proposition 2.1 holds if 2

√
γδ + γ + δ + 1/r > 2

(see proof of Proposition 2.1). Since r > 1, we obtain the bounds r ∈
(1, (2 − 2

√
γδ − γ − δ)−1). The range δ ∈ (γ − 2

√
γ + 1, γ − 2

√
2
√

γ + 2)
is obtained by solving (2 − 2

√
γδ − γ − δ)−1 > 1 for δ conditional on

γ ∈ [0, 0.5].

Proof of Proposition 2.2: A p-value can be defined as P[pi ≤ ϵ] ≤ ϵ for ϵ ∈
(0, 1). From the proof of Theorem 2.1 it can be seen that

P

n
1−r

r

(
1
n

n

∑
i=1

p−r
i

)1/r

≥ r
α(r − 1)

∣∣∣∣∣ ⋂
i∈N

pi ∼ Un[0, 1]


= P

n
r

r − 1

(
n

∑
i=1

p−r
i

)−1/r

≤ α

∣∣∣∣∣ ⋂
i∈N

pi ∼ Un[0, 1]


= P

[
r

r − 1
1

Pr,n
≤ α

∣∣∣∣∣ ⋂
i∈N

pi ∼ Un[0, 1]

]
≤ α.
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As it is possible that r
r−1

1
Pr,n

> 1, a p-value for the test statistic is given by

h(Pr,n) =
r

r−1
1

Pr,n
∧ 1.
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b.2 the giacomini-white test in a multivariate set-up

This appendix provides theoretical details and derivations of the multivariate
version of the GW test [see also Borup et al. (2022), who use GW in a
multivariate setting to examine bond return predictability]. The conditional
predictive ability test of GW is testing for serial correlation in the loss
differential for the following reason: GW formulate the null hypothesis
conditional on the time-t information set available to the forecaster, i.e.
H0 : E[∆Li,R,t+1 | Ft] = 0. Therefore, the loss differential is a martingale
difference sequence (MDS) under the null hypothesis. That is, the null can
be rewritten as the following moment condition: H0 : E[h̃t∆Li,R,t+1] = 0, for
all Ft-measurable functions h̃t. GW suggest using a subset of such functions
as a test function, ht, which consists of lagged values of ∆Li,R,t+1. In this
case one essentially tests for the presence of serial correlation in the loss
differential. Under homoskedasticity, the null hypothesis becomes:

∆LR,t+1 = µ + β∆LR,t + ϵt+1, H0 : µ = 0 ∩ β = 0.

Their framework is widely applicable and, in contrast to the unconditional
approach, indicates which forecasting method may be more accurate in the
future. The test preserves estimation error under the null hypothesis and
does not require the estimation window, R, to converge to infinity. The test
is consistent for a large out-of-sample window p → ∞. In a multivariate
setting, the test also incorporates serial correlation between loss differentials.
This requires only a single additional assumption and is easily done with
knowledge of multivariate MDS central limit theorems and is useful to
exemplify the curse of dimensionality in a multivariate forecast evaluation
environment.
Suppose that we are now interested in comparing m ≥ 1 models against
some benchmark and seek to forecast ϑ ≥ 2 variables, collected in the
vector Yt. The quantity n = m + ϑ is equivalent to the number of sub-tests
in the IU framework. This results in i = 1, ..., m vectors each including ϑ

loss differentials: ∆Li,R,t+τ = (∆L(1)
R,t+1, ..., ∆L(ϑ)

R,t+1)
′. Now define the vector

∆LR,t+1 = (∆L1,R,t+1, ..., ∆Lm,R,t+1)
′ where ∆Li,R,t+1 = 1

ϑ ∑ϑ
i=1 L(i)

R,t+1. That
is, ∆LR,t+1 is an m × 1 vector containing the cross-sectional averages for
each model across ϑ variables. If we have ϑ = 1 and m > 1, the framework
reduces to LR,t+1 = (∆L1,R,t+1, ..., ∆Lm,R,t+1)

′, i.e. a comparison which is
not based on averages. Likewise, if m = 1 while ϑ > 1, we can write
LR,t+1 = (∆L(1)

R,t+1, ..., ∆L(ϑ)
R,t+1)

′. If m = 1 and ϑ = 1, we apply the univariate
GW test. The rationale behind this set-up is the following: We seek to
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investigate if the models have equal predictive ability relative to a benchmark
across different variables, based on the information set available to the
forecaster. If this is indeed the case, the expectation E[∆LR,t+1 | Ft] is a
vector of zeros conditional on the σ-field Ft, regardless of whether we use
averages or not. The null hypothesis is therefore the following moment
condition based on a q × 1 vector of test function vectors, ht:

H0 : E[ht ⊗ ∆LR,t+1] = 0. (B.1)

Denote ZR,t+1
qm×1

= ht ⊗∆LR,t+1, Z̄R,m = p−1 ∑T−1
t=R ZR,t+1, and Ω̂m

qm×qm
= p−1 ∑T−1

t=R ZR,t+1Z′
R,t+1.

In the original GW test, we have ϑ = m = 1, meaning the dimensions of the
matrices and vectors in the multivariate extension are increased by m times.
GW impose the following assumptions:

Assumption B.1. (i) All elements of {Vt} and {ht} are α-mixing of size
− b

(b−1) , b > 1 or ϕ-mixing of size − b
2b−1 , b ≥ 1, (ii) E∥ZR,t+1,i∥2(b+δ)< ∞ for

some δ > 0, i = 1, ..., qm, and for all t, and (iii) Ω̂m ≡ p−1 ∑T−1
t=R E[ZR,t+1Z′

R,t+1]

is uniformly positive definite.

In addition we require:

Assumption B.2. qm
p → 0 as p → ∞ and qm → c̄, where c̄ ∈ N+.

Assumption B.1 is imposed in GW; (i) quantifies the dependence of the
data and allows for considerable heterogeneity, (ii) is a standard moment
bound assumption that ensures no single observations dominate the asymp-
totic distribution, and (iii) ensures the covariance matrix of the test statistic
is positive definite. GW emphasize that this matrix is not computed at the
probability limits of the model parameters which ensures the test remains
valid for nested models. A noteworthy difference to the univariate setting
is that Ωm now also contains the covariances between the cross-sectional
averages of the ϑ forecast loss differentials, computed across time periods. If
we use lagged values of ∆LR,t+1 as a test function, we can think of the test
as one for both serial correlation and cross-sectional correlation between the
averages of the loss differentials generated for each variable by each model.
Finally, we add Assumption B.2 which implies the dimensionality of the
loss differential and the test functions is small relative to the sample size.

If we allow qm/p → c̄ ∈ (0, ∞] it is well known that Ω̂m

p
̸→ Ωm, which is a

required condition for the MDS Central Limit Theorem (CLT). Furthermore,
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if qm > p, Ω̂m is non-invertible. The multivariate GW test statistic looks as
follows:

Th
R,m = pZ̄′

R,mΩ̂
−1
m Z̄R,m. (B.2)

The dimensions of the vectors and the covariance matrix of this statistic are
larger compared to the univariate version as both are a multiple m of the
dimension of the test function. What is more, the matrix Ω̂

−1
m includes the

covariance between loss differentials, the test is also evaluating dependence
in the cross-section of forecasts, rather than only serial correlation. The
Wald-type test statistic remains a scalar, wherefore it is true that:

Theorem B.1. Suppose Assumptions B.1-B.2 hold. Then, under H0, Th
R,p

d−→ χ2
qm

as p → ∞.

Proof. To prove this Theorem, we modify the proof in Giacomini and White
(2006) slightly in order to show that a Martingale Difference Sequence
(MDS) CLT can still be applied to the test statistic. We first demonstrate
that {∆LR,t+1} is α-mixing of size −b

b−1 , b > 1 or ϕ-mixing of size −b
2b−1 , b ≥

1. White and Domowitz (1984, Lemma 2.1) show that if a variable Lt =

ψ(Vt, Vt−1, ..., Vt−τ) is Ft-measurable onto Rv where τ and v are finite
integers, and Vt is defined as above, Lt is mixing of the same size as Vt.
Consider first the case where ϑ > 1 and m > 1. By Assumption B.1, Vt is
mixing, hence the same is true for ∆L(i)

r,t+1 and ∆Li,R,t+τ = 1
ϑ ∑ϑ

i=1 ∆L(i)
R,t+τ.

Consequently, ∆LR,t+1 = (∆L1,R,t+τ, ..., ∆Lm,R,t+τ)
′ is mixing of the same

size as Vt. As ZR,t+1 = ψ(ht, Vt, ..., Vt−τ), it is also mixing of the same size
as Vt and so is ZR,t+1Z′

R,t+1. It is easy to see that the same is true if m > 1
and ϑ = 1 such that ∆LR,t+1 = (∆L1,R,t+1, ..., ∆Lm,R,t+1)

′ and if m = 1 while
ϑ > 1 where ∆LR,t+1 = (∆L(1)

R,t+1, ..., ∆L(ϑ)
R,t+1)

′. The remainder of the proof is
equivalent to the proof of Theorem 1 in Giacomini and White (2006).

Analogously to GW, we can specify the alternative HA,h = E[Z̄′
R,pZ̄R,p] ≥

δ > 0 and obtain the following result:

Theorem B.2. Suppose Assumptions B.1-B.2 hold. Then under HA,h, P[Th
R,p >

c] → 1 for any constant c ∈ R as p → ∞.

Proof. Having established in the previous proof that {ZR,t+1} is mixing of

the same size as Vt and Ω̂m
p−→ Ωm by Assumptions B.1 (ii) and B.2, the

proof of Theorem 2 in Giacomini and White (2006) is still valid here: All the
conditions of White (1994, Theorem 8.13) are satisfied and P[Th

r,p > c] → 1
for any c ∈ R as p → ∞.
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As in the univariate case, if ∆LR,t+1 is correlated with elements in Ft that
are not included in ht, the test will have no power. That is, if one excludes
such elements, the test may incorrectly fail to reject a false null hypothesis.
If one follows the suggestion of GW and uses lagged values of ∆LR,t+1 in
the test function, then q ≥ m, hence qm/p ≥ m2/p. Therefore, Assumption
B.2 may already be violated for small values of m, unless p is large. Similar
issues are encountered for the MP test. That is, the covariance matrices used
in both tests will only be consistent when m is small. Hence, they quickly
encounter inconsistency problems as m increases. Vice-verse, tests that rely
on m → ∞ in the presence of cross-sectional dependence are inconsistent in
a small m environment.

151





A P P E N D I X C

C H A P T E R 3

c.1 proofs

To demonstrate the Propositions in the paper, we proceed from a general
homogeneous Kalman filter and, without loss of generality, focus on the
univariate case n = 1. For t = 1, ..., T, the corresponding state space model
is

yt = αt + εt

αt = αt−1 + ηt

where the error terms have variances denoted by ση and σϵ. The Kalman
filter recursions are

ft = pt|t−1 + 1 at|t = at|t−1 + ϵtkt

kt = pt|t−1/ ft at+1|t = at|t

ϵt = yt − at|t−1 vt|t = (1 − kt)vt|t−1

pt+1|t = (1 − kt)pt|t−1 + q̃ vt+1|t = pt+1|tσ̃ε

Define at+1 := at+1|t and let

Ψt,j :=

{
∏t

i=j(1 − ki) if t > j

1 if t = j
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We can define the prediction error of the filter as

xt+1 ≡ αt+1 − at+1|t

= αt + ηt − at|t−1 − kt(∆Lt − at|t−1)

= αt + ηt − at|t−1 − kt(αt + ϵt − at|t−1)

= (1 − kt)xt + ηt − ktϵt

= Ψ(t, 0)x0 +
t

∑
i=1

Ψt,i(ηi − kiεi)

Under the null hypothesis of equal predictive ability, αt+1 = 0. Therefore,
the Kalman filter prediction can be written as:

at+1|t =
t

∑
i=0

Yti

where Yti := Ψt,i(kiεi − ηi) for i > 1 and Yt0 := Ψ(t, 0)x0. That is, the Kalman
filter prediction can be written as the sum of ηt, εt. Under Assumption 3.2-
A, both disturbances are i.i.d. Gaussian as well as independent from one
another. If the starting values of the Kalman filter are chosen as a0 = y0, then
x0 = 0. Thus, by the closure property of Gaussian distributions under linear
transformations, the Kalman filter predictions are normally distributed, with
mean zeros and variance vt+1|t under the null hypothesis (3.2). It is easy to
verify that this generalises to the multivariate case (3.9).

Consequently, for the test statistics in (3.23), (3.24), and (3.25) we obtain
the following distributions for the pointwise CPA test

Si,t+τ|t ∼ N (0, 1),

SM
i,t+τ|t ∼ N (0, 1) for all i ∈ N,

S̄t+τ|t ∼ χ2
n.

(C.1)

Proposition 3.1, 2-A, and 2-B follow accordingly.

The Kalman smoother equations are

αt−1|T = αt|t−1 + Jt−1

(
αt|T − αt|t−1

)
,

vt−1|T = Jt−1vt|t−1 + J2
t−1

(
vt|T − vt|t−1

)
,
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with αT|T = αT|T−1. By the closure property of the Gaussian distribution un-
der linear transformation, the Kalman smoother estimates are also normally
distributed. Therefore,

Si,t+τ|T ∼ N (0, 1),

SM
i,t+τ|T ∼ N (0, 1) for all i ∈ N,

S̄t+τ|T ∼ χ2
n,

(C.2)

and Proposition 3.3, 2-A, and 2-B follow.

c.2 results under non-normality

The theory underlying the Kalman filter is derived under the Gaussian
assumption and, nonetheless, has proved to be successful in many scenarios.
Under the assumption that the noise terms are i.i.d, no general (asymptotic)
results for the distribution of the filtered and smoothed states are a available.
However, the Kalman filter will still be the optimal linear estimator for the
states. If the distribution of the error terms is known, Durbin and Koopman
(2012, Section 9.3) can be used. In this section, we explore how relaxing the
normality assumption (Assumption 3.2-A) to i.i.d. impacts the results of our
test.

c.2.1 Theoretical Results

If ση = 0, i.e. the states are constant across time, the Kalman filter equations
become:

pt+1 = 1/t

at+1 =
t − 1

t
at +

1
t

yt

vt+1 = σε/t

So

at+1 =
t

∑
i=0

Yti

Yt0 =

(
t − 1

t

)t
µ0

Yti =
t

∑
j=i

(
t − 1

t

)t−j 1
t

ηi−1 +

(
t − 1

t

)t−i 1
t

εi
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In the general case of the previous section above, the first two moments are

E[Yti] = 0

E[Y2
ti] = (Ψt,i)

2 (ση + k2
i σϵ) = (Ψt,i)

2 (q + k2
i )σϵ

Following the arguments above, asymptotically, we have Yt0 = op(1) and

E[Yti] = 0

E[Y2
ti] =

(
t − 1

t

)2(t−i) 1
t2 σε

It is clear that V[at+1] ≤ ∑t
i=0 E[Y2

ti]. Thus

sup0≤i≤T E[Y2
ti]

vt+1
=

1
t
→ 0 as t → ∞

meaning the Lindeberg condition is satisfied and

aT+1√
vT+1

d−→ N (0, 1).

That is, the distribution of the last Kalman filter prediction converges to a
normal distribution as T → ∞. In fact, backwards substitution yields

αt+1 =
1
t

t

∑
i=0

yi.

We obtain Jt = 1 and thus

αt|T =
1
T

T

∑
i=0

yi for all t = 1, ..., T.

Hence, if the variance of the state is constant, the final Kalman filter pre-
diction is asymptotically normally distributed, and all smoothed states are
asymptotically normal.

c.2.2 Simulations

In this section, we repeat the simulations in the main part of the paper using
a t-distribution with ν = 5 degrees of freedom to abstract from normality.
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c.2.2.1 Size

Table C.1 reports the results of the size simulations in the main text using a
t-distribution. As can be seen, the empirical size is virtually identical to the
size under normality.

c.2.2.2 Power

Figures C.1, C.2, and C.3 display the power simmulation results in the main
text under t-distributed innovations. Interestingly, looking at Figure C.1,
the Giacomini and Rossi (2010) test appears to suffer in a greater reduction
in power than our tests, compared to the normally distributed scenarios.
However, their power, too, is somewhat diminished in the second simulation.
Altogether, our tests still exhibit high power across different simulations
for all values of n under consideration, with only minor differences to the
normally distributed case.
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Table C.1: Average Size, t-distribution
MC 1 MC 2 MC 3

p/r: 0 50 100 150 200 50 100 150 200

Panel A: n = 1

St+1|t

50 0.031 0.031 0.034 0.035 0.036 0.03 0.033 0.034 0.036

100 0.03 0.028 0.032 0.033 0.034 0.025 0.031 0.032 0.033

150 0.029 0.024 0.028 0.033 0.034 0.024 0.028 0.029 0.034

200 0.03 0.023 0.023 0.03 0.031 0.023 0.027 0.031 0.031

St+1|T

50 0.054 0.046 0.05 0.052 0.053 0.044 0.049 0.046 0.05

100 0.046 0.045 0.046 0.049 0.046 0.034 0.041 0.04 0.043

150 0.044 0.034 0.043 0.047 0.048 0.034 0.038 0.038 0.043

200 0.045 0.032 0.033 0.04 0.043 0.03 0.036 0.04 0.04

Panel B: n = 2, γ = 1

St+1|t

50 0.028 0.033 0.04 0.037 0.038 0.034 0.043 0.041 0.041

100 0.03 0.027 0.03 0.034 0.039 0.028 0.036 0.037 0.037

150 0.028 0.022 0.029 0.032 0.034 0.027 0.032 0.037 0.038

200 0.027 0.02 0.025 0.029 0.032 0.022 0.031 0.035 0.034

St+1|T

50 0.051 0.051 0.06 0.051 0.054 0.048 0.06 0.06 0.052

100 0.051 0.04 0.041 0.042 0.048 0.038 0.049 0.048 0.044

150 0.042 0.03 0.042 0.04 0.039 0.036 0.04 0.049 0.047

200 0.037 0.028 0.035 0.039 0.04 0.027 0.041 0.046 0.045

Panel C: n = 2, γ → ∞

St+1|t

50 0.028 0.03 0.041 0.037 0.036 0.03 0.037 0.036 0.038

100 0.028 0.025 0.029 0.035 0.036 0.026 0.029 0.036 0.035

150 0.028 0.023 0.027 0.033 0.033 0.023 0.026 0.029 0.034

200 0.028 0.021 0.027 0.029 0.031 0.022 0.025 0.028 0.031

St+1|T

50 0.048 0.049 0.058 0.051 0.051 0.037 0.046 0.046 0.047

100 0.045 0.038 0.042 0.043 0.046 0.034 0.039 0.04 0.041

150 0.044 0.031 0.04 0.045 0.042 0.029 0.033 0.031 0.04

200 0.039 0.026 0.037 0.037 0.036 0.027 0.034 0.035 0.035

Panel D: n = 5, γ = 1

St+1|t

50 0.036 0.037 0.051 0.048 0.048 0.047 0.061 0.061 0.059

100 0.033 0.026 0.033 0.041 0.043 0.032 0.044 0.052 0.054

150 0.03 0.021 0.03 0.033 0.04 0.026 0.035 0.043 0.05

200 0.031 0.019 0.024 0.029 0.036 0.022 0.033 0.037 0.045

St+1|T

50 0.071 0.061 0.077 0.07 0.068 0.068 0.087 0.079 0.08

100 0.054 0.038 0.04 0.047 0.047 0.041 0.057 0.07 0.065

150 0.043 0.028 0.041 0.039 0.044 0.035 0.044 0.056 0.054

200 0.046 0.026 0.033 0.036 0.039 0.024 0.042 0.047 0.051

Panel E: n = 5, γ → ∞

St+1|t

50 0.038 0.038 0.048 0.05 0.05 0.034 0.047 0.048 0.045

100 0.031 0.026 0.033 0.041 0.044 0.025 0.033 0.041 0.043

150 0.028 0.02 0.027 0.034 0.042 0.018 0.027 0.036 0.04

200 0.028 0.018 0.025 0.029 0.035 0.019 0.024 0.031 0.036

St+1|T

50 0.074 0.06 0.069 0.079 0.07 0.047 0.056 0.057 0.056

100 0.048 0.043 0.044 0.052 0.049 0.029 0.037 0.041 0.038

150 0.045 0.03 0.039 0.041 0.047 0.02 0.029 0.037 0.037

200 0.041 0.021 0.034 0.035 0.042 0.018 0.026 0.032 0.03

Notes: The table reports the average size of the pointwise CPA test (St+1|t) and the pointwise TPA test
(St+1|T). The column headers denote the size for the respective Monte-Carlo Simulation (1, 2, and 3). The rows
correspond to the size for different values of p and the columns to the size for different values of r. Panel A
reports the simulation results for n = 1, Panel B reports the results for the multivariate χ2 test with two loss
differentials (n = 2) and strong dependence (γ = 1). Panel C reports the results for n = 2 and independence
between loss differentials (γ = 108), Panel D for n = 5 variables and strong dependence, and Panel E for n = 5
independent variables.
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Figure C.1: Power Surface, t-distribution n = 1

Note: The columns of the figure display the power surface of the CPA and TPA tests as
well as the power of the Giacomini and Rossi (2010) fluctuation test at each point in time
for n = 1 variable. The rows correspond to the respective Monte-Carlo Simulation. For
each figure, the x-axis corresponds to the time periods, the y-axis to the different values
of c, and the z-axis to the power of the tests.
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(i) CPA (ii) TPA

γ = 1 γ → ∞ γ = 1 γ → ∞
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Figure C.2: Power Surface, t-distribution, n = 2

Note: The columns of the figure display the power surface of the CPA test in Panel (i),
and the power of the TPA test in Panel (ii) for n = 2 variables. In each Panel, the first
column contains the high-dependence case and the second column the low-dependence
case. The rows correspond to the respective Monte-Carlo Simulation. For each figure,
the x-axis corresponds to the time periods, the y-axis to the different values of c and the
z-axis to the power of the tests.
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(i) CPA (ii) TPA

γ = 1 γ → ∞ γ = 1 γ → ∞
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Figure C.3: Power Surface, t-distribution, n = 5

Note: The columns of the figure display the power surface of the CPA test in Panel (i),
and the power of the TPA test in Panel (ii) for n = 5 variables. In each Panel, the first
column contains the high-dependence case and the second column the low-dependence
case. The rows correspond to the respective Monte-Carlo Simulation. For each figure,
the x-axis corresponds to the time periods, the y-axis to the different values of c and the
z-axis to the power of the tests.
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