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Abstract

The thesis describes a dynamic programming approach to pension funding for a defined benefit 

pension scheme. The primary purpose of the thesis is to search for a pension funding plan 

balancing optimally the conflicting interests of the sponsoring employer and the trustees. The 

starting point of this problem is to mtroduce and define mathematically two types of risk 

concerned respectively with the stability and security of pension funding: the “solvency risk” 

and the “contribution rate risk”. Next, two distinct linear asset/liability dynamic models are 

presented, based on specified assumptions: the “modified solvency-level growth equation” and 

the “zero-input, 100%-target solvency-level growth equation”. We then consider the situation 

of a short-term, winding-up valuation with contribution rates unconstrained by any funding 

plan, and introduce three distinct finite-horizon control optimisation problems - deterministic, 

stochastic with complete state information and stochastic with incomplete state information. 

We then consider the situation of a long-term, going-concern valuation with contribution rates 

constrained by the spread funding plan, and introduce four distinct infinite-horizon 

deterministic control optimisation problems - stationary, quasi-stationary, non-stationary and 

threshold. The thesis derives optimal funding control procedures for the contribution rate by 

solving each of these seven control problems by means of the optimal control theory of dynamic 

programming.
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Chapter 1 Introduction

1.1 Occupational pension schemes

The occupational pension scheme can be thought of as that part of the remuneration plan (or 

bonus program) which is set up the sponsoring employer with the aim of providing an adequate 

mcome in retirement for his employees. Broadly, the sources of retirement income for an 

individual consist of private savings (including personal pension provision) and assets, pensions 

provided by the pension scheme and some benefits provided by the social security system. In 

many countries, the employer-sponsored occupational pension scheme plays an important role 

in assuring a stable and adequate living during the individual’s retirement: in 1991 in the UK, 

about 48% of all employees were members of an occupational pension scheme and about 62% 

of the population over retirement age (65 for men and 60 for women) received an occupational 

pension [statistical source: HMSO Vol. I (1994; p28)]. Further, from the viewpoint of taxation 

advantages on income tax, investment mcome tax and capital gains tax (as currently in the 

UK), occupational pension schemes can be attractive ways of saving for retirement income.

Occupational pension schemes are classified into two types according to the salient features of 

the formulae that determine the retirement income offered by such schemes: defined benefit 

pension schemes (or eamings-related pension schemes, e.g. final salary pension scheme, the 

most common type in the UK, and average salary pension scheme) and defined contribution 

pension schemes (or money purchase pension schemes). That is,

- Defined benefit pension schemes: these are a common means of providing for retirement 

income in a number of countries including the UK, USA., Canada and the Netherlands. The 

main feature of these schemes is that the trust deed and rules specify the benefits promised in 

the event of various contingencies by a predetermined formula (based mainly on the salary and
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duration of scheme membership of the employee at or near retirement), while the contributions 

to be paid (by the employer and possibly the members) are specified by the scheme actuary as 

part of the regular valuation process. Normally, the employer bears most of the risk of poor 

investment performance causing additional contributions to be paid to support the pre-

determined amount of benefits, while the employee bears the potential risk of catastrophic 

changes in the employer’s finances (and hence has more interest in securing his promised 

benefits at any time); and

- Defined contribution pension schemes: these have been in a minority in comparison with 

defined benefit pension schemes [see Casey (1993; Diagram 1 in p3)], but are expected to 

become more popular in the UK as a result of increasing statutory regulation following the 

report of the Goode Committee and, in particular, the mtroduction of the minimum funding 

requirement (MFR) contained in the Pensions Act 1995 (- the MFR will be explained later in 

section 3.2.3). The defined contribution pension scheme is conceptually simpler than the 

defined benefit pension scheme - the trust deed and rules prescribe the contributions in advance 

(normally m the form of a fixed percentage of the pensionable payroll) and the benefits to be 

ultimately payable are unknown but determined (at the time of retirement) directly by the 

contributions paid into the scheme, subsequent investment returns that they earn and annuity 

rates provided by the open market in pension policies, so that the level of the benefits is usually 

largely dependent on the conditions of open (investment and pension) markets prevailing at the 

time of retirement. Normally, the employee bears most of the risk of poor investment 

performance, whereas the employer will discharge his obligation by paying the agreed 

contributions (and hence has no duty of paying additional contributions unlike the defined 

benefit pension scheme).

So, the pension professionals (who are involved in establishing and managing the defined 

benefit pension scheme, e.g. actuary, investment manager and auditor) are commonly required
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to pay considerable attention to the security of pension rights to which the members m the 

defined benefit pension scheme are entitled and enable the sponsoring employer to finance 

steadily the defined benefit pension scheme without undue financial burden on his business.

1.2 Conflicts of interest inherent in defined benefit pension schemes

Since the early 1990’s, there has been a growing interest in evaluating the financial strength (or 

security) of occupational pension schemes in the UK, particularly in order to restore public 

confidence in the security of schemes which has been seriously disturbed by the so-called 

“Maxwell affair” (revealed soon after Mr Maxwell’s death in November 1991). An important 

lesson arising from the Maxwell affair is that merely keeping the scheme’s assets separate from 

the assets of both employer and employees does not in itself guarantee security, leading to the 

real issue of how to strengthen the watchdog role of the trustees (who are a group of persons 

whose responsibility is to act in the best interests of the members of the scheme). Also, there is 

renewed emphasis on the need for the actuary to check regularly the financial strength of the 

scheme and the ability of the employer to meet the contribution rates required to maintain the 

scheme solvent. Without loss of generality, the security of a scheme may be regarded as the 

extent to which the accumulated assets meet all the benefits to which the members in the 

scheme are entitled when they arise (some security measures will be introduced and specified in 

section 2.1.2.7).

As outlined in section 1.1, the security problem is a specific issue in defined benefit pension 

schemes because different from defined contribution pension schemes, defined benefit pension 

schemes usually provide a (deferred or immediate) life annuity to each retiring employee, the 

amount of which is generally related both to uncertain future salaries of the employee at or near 

retirement and to his uncertain duration of employment. In other words, a defined benefit
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pension scheme has contingent liabilities in respect of all members in the scheme. In the thesis, 

we confine our interests to defined benefit pension schemes (afterwards, scheme means defined 

benefit pension scheme if there is no other mention).

In view of the long-term commitment of the sponsoring employer, the financial strength of the 

scheme will be affected mainly by the funding plan and investment strategy (or policy) m 

respect of the scheme’s assets. That is, since the two principal sources of scheme income for 

meeting the accruing liabilities are normally the contribution income and investment income, 

optimal funding and investment decisions must play a vital role in encouraging the sponsoring 

employer to continue to provide a high quality of benefits as well as protecting the accruing 

liabilities agamst any potentially catastrophic changes in the employer’s finances. The funding 

plan developed by the actuary may then be regarded as an arrangement/mechamsm for 

determining the sequence of future contribution rates with the purpose of building up assets to 

meet the accruing liabilities without placing undue financial burdens on the employer. In 

parallel, the investment strategy adopted by the scheme investment manager may be thought of 

as the (short-term and/or long-term) asset allocation decisions for selecting the asset mix 

between securities (both fixed-interest and index-linked bonds, equities, property , cash deposits 

and other investments), with the aim of improving the investment performance, without 

subjecting the invested assets to undue financial risks. Throughout the thesis, the funding plans 

for schemes are considered from the viewpoint of the actuary, smce he has, in general, 

responsibilities to both the employer and the trustees. Henceforth, we shall focus on the funding 

plan and the investment strategy will be mentioned just in connection with the funding plan.

It is generally agreed [see Lee (1986; Ch.8)] that any acceptable pension funding plan is 

required to provide the characteristics of security, stability, liquidity and durability (these shall 

be called the key funding characteristics). The relative importance of them will largely rely on 

both government legislation and the interests of the employer (including the shareholders) and
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trustees (including the scheme members). So, the employer will especially look for a funding 

plan which leads to as smooth and predictable as possible a cash flow of future contributions; 

that is, it is more important for the employer to maintain stability among the key funding 

characteristics. By contrast, the trustees seek to establish such a funding plan that ensures the 

promised benefits should be paid as they fall due, even in the event of the scheme being wound 

up; that is, it is more important for the trustees to maintain security among the key funding 

characteristics. Summing up, the employer and trustees each have their respective different 

priorities and viewpoints on setting up a pension funding plan - this is usually referred to as the 

conflicting interests between the employer and the trustees [see Loades (1992)].

As a result, the actuary will be required to establish a funding plan weighing the conflicting 

interests of the employer and the trustees, and so he will make an attempt to secure both 

stability and security as far as is possible according to their relative suitability: in fact, this 

must be one of the crucial issues in pension funding. In real life, the relative suitability may be 

determined by the views of the supervisory authorities who may “recommend” the pre-eminent 

importance of securing the promised benefits with stability taking second place, without 

discouraging the employer from continuing to support the pension scheme.

1.3 The aims and outline of the thesis

The primary aim of the thesis is to investigate pension funding plans that reconcile the natural 

desires of employer and trustees, characterised by their conflicting interests discussed in section 

1.2, without unnecessary financial distortion from their expectations (or targets) - our approach 

is to consider an optimal pension funding plan derived within the mathematical framework of 

optimal control theory. The optimisation instruments/tools in optimal control theory, especially 

the method of dynamic programming, are adapted to give some useful theoretical and practical
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answers to this pension funding problem. In Chapter 2, the fundamental concepts of this 

methodology are introduced m comparison with various aspects associated with the classical 

actuarial approach to the pension funding problem. Ultimately, we provide insight mto the 

fundamental process of how concepts and instruments of optimal control theory are selected 

and adapted to combine with the funding of the scheme (- this process is mathematically 

illustrated in Chapter 4 and 5 by means of the method of dynamic programming).

The starting point of adapting the dynamic programming approach to pension funding is 

building mathematical models that would be a structured set of simplified and abstracted 

formulations of the real financial structure inherent in the scheme. A large portion of Chapter 3 

is devoted to the linear dynamic model construction on a discrete-tune domain. Next, a unified 

mathematical framework for deriving the optimal pension funding plan (i.e. the so-called 

control optimisation problem) is constructed and solved in each of Chapters 4 and 5; in 

particular, the mathematical description and numerical illustrations of the derived funding plan 

are given in Chapter 4 for a short-term, winding-up perspective on pension funding and in 

Chapter 5 for a long-term, going-concern perspective on pension funding. In the closing chapter 

to the thesis. Chapter 6, we summarise the main concepts and results of the study together with 

providing some suggestions for future research as an extension to the thesis.

All these efforts involved in designing an effective and newly developed pension funding plan 

are eventually aimed at bridging the gap between actuarial theory in the field of pension 

funding and optimal control theory in the field of engineering, which would enable the pension 

professionals to analyse more systematically the (short-term and long-term) financial structure 

of the scheme and undertake further applied research on issues related to pension funding, in 

particular making close use of optimal control theory.
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Chapter 2 Background - General descriptions of the funding of defined benefit schemes

2.1 Considerations in determining the pension funding plan

2.1.1 Introduction

As mentioned in section 1.2, we are concerned with the defined benefit pension scheme. The 

funding plan is considered from the viewpoint of the scheme actuary and the investment 

strategy will be mentioned just in connection with the funding plan.

Prior to discussing the various types of funding plans (these are described in section 2.2), the 

next section describes the general concepts related to funding plans to clarify our aims 

(mentioned m section 1.3): in particular, section 2.1.3 deals with two principal concepts in 

adapting the dynamic programming approach to the funding of the scheme: the ‘solvency risk’ 

and the ‘contribution rate risk’.

2.1.2 Actuarial valuation

The starting point in building up confidence in the security of the scheme would be the 

periodical conducting of fully-detailed analyses of the current financial position of the scheme 

and then checking up and revising, if necessary, the current actuarial assumptions and funding 

plan.

Such an investigation can be called the actuarial valuation (or actuarial investigation) of the 

scheme. It plays an essential role in managing the scheme. As a practical explanation for the 

term ‘periodical’ introduced in the above, it is common, in the UK, for the valuation to be
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annual, although current legislation requires that for contracted-out schemes the valuation must 

be performed at least every three-and-a-half years.

2.1.2.1 Purposes

The purposes of actuarial valuation are threefold:

(i) providing information to members about the valuation result (i.e. the scheme’s funding level 

or solvency level under the valuation basis chosen according to specific legislative purposes 

(e.g. statutory requirements for the scheme’s security, taxation and so on));

(ii) adjusting the current set of actuarial assumptions regarding the future economic and 

demographic events to recent economic and demographic experience and the updated forecasts 

of future economic and demographic experience, if necessary; and

(iii) ultimately, setting the recommended contribution rate (funding rate) which is required to be 

paid (generally by reference to the valuation result).

In short, what is assumed and decided in the actuarial valuation is intended to keep the scheme 

continuing in a sound financial position in response to any potentially important adverse 

(demographic and economic) deviations in experience in the future, with the least distortion of 

the employer’s cash-flows. Now, we shall briefly discuss, in turn, the key concepts of actuarial 

assumptions, recommended contribution rate, valuation basis and funding level vs. solvency 

level.

2.1.2.2 Actuarial assumptions

The scheme’s liability can be expressed as a real-valued function characterised by the economic 

and demographic parameters used in the actuarial and financial management of the pension
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scheme (we shall call these collectively the scheme parameters): the key scheme economic 

parameters are the rate of salary growth {e.g. general salary' inflation and increases in 

individual salaries arising from promotion and scale increase} and the rates related to 

investment earnings {e.g. rate of inflation, rate of return on fixed-interest stocks (e.g. ordinary 

gilts), rate of return on equities, rate of return on index-linked stocks (e.g. index-linked gilts) 

and running yield on All Share Index} and the key scheme demographic parameters are 

mortality' and morbidity rates, withdrawal rates and the age profile of all the members. Since 

the scheme has a long lasting arrangement for protecting against various future contingencies, 

the true value of the scheme parameters can not logically be known with accuracy, that is, the 

prior commitment gives rise to the problem of scheme parameter uncertainty. Therefore, in 

order to estimate the most likely value of the scheme’s liabilities and then fund these liabilities, 

the scheme actuary needs first to construct a set of most likely assumptions for the scheme 

parameters. The set of most-likely estimated (or best estimated) parameters, specific for the 

actuarial valuation, is called the actuarial assumptions. The actuarial assumptions are usually 

founded on the long-term position for the reason that the provision of pension is a long-term 

commitment and thus the possible short-term fluctuations of the scheme parameters about the 

general (demographic and economic) trend are expected to be averaged around the long-term 

estimates (though this long-term position is not necessarily appropriate over the short-term 

period). In reality, how to determine reasonably the set is one of the most important problems in 

actuarial applications.

At this stage, it is worth reviewing two distinctive works in relation to investigating how to set 

the actuarial assumptions - Thornton & Wilson (1992) and Fujiki (1994).

Thornton & Wilson (1992) suggest that so-called ‘best estimated’ bases introduced for the 

Statement of Standard Accounting Practice No 24 (SSAP 24, 1988) purposes should be
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derived from an analysis of the economic and demographic experience in order that it should be 

used as a standard of the degree of prudence appropriate for funding purposes. Of course, the 

analysis needs to be repeated regularly with incoming updated experiences so as to verify what 

margins might be appropriate for ensuring that a scheme would remain satisfactorily funded.

On the other hand, Fujiki (1994) employs several different scenarios for actual experience (e.g. 

gradual change in experience and cyclical change in experience) and several possible responses 

in the actuarial assumptions corresponding to each scenario (e.g. constant actuarial 

assumptions, gradual change in actuarial assumptions and/or cyclical change in actuarial 

assumptions) and then checks the stability of contribution rate movements for each pair of 

actual experience and actuarial assumptions. As a result, he shows that an effective way of 

selecting the actuarial assumptions is the use of the averaging of past experience and/or the use 

of a small in delay changing in the actuarial assumptions (in order to check on the permanence 

of a change in experience).

Although these two approaches produce similar results in the light of using the experienced 

data, Thornton & Wilson (1992) are concerned with the future forecasts for the scheme 

parameters using the best estimates and/or margins to protect against future uncertainty, but in 

contrast Fujiki (1994) is concerned with analysing the pattern of past experience associated 

with the scheme parameters using the averaging of past experience and/or a time-delay in the 

adjustment of the assumptions.

Therefore, the actuarial assumptions are necessarily somewhat subjective but have to be 

determined on the basis of the actual movements in experience so as to tackle the 

characteristics and uncertainty surrounding the scheme parameters. The setting of the actuarial 

assumption is of vital importance to designing a funding plan with the aim of controlling
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optimally the security of the scheme as well as the stability of the contribution rates. This will 

be discussed further in the following sections.

Prior to describing a variety of pension funding terminologies [see PMI/PRAG (1992)], we 

must note that the term 'actuarial' refers to a theoretical or notional concept when compared 

with the term "actual or realistic’ in a legal or auditing sense (this explanation would make it 

much easier to understand the "actuarial’ related words). The necessity of this term is attributed 

to the unpredictability of the long-term future as mentioned above. In the actuarial applications, 

one of the main tasks of the actuary can be thought of as defining two versions of a particular 

mathematical function that are based on actuarial assumptions and are based on actual 

experience, comparing the effect of each on the scheme and finally attempting to minimise (or 

optimise) the possible gap between their effects subject to some desirable restrictions. In this 

respect, Thornton & Wilson (1992) and Fujiki (1994) have a common theme.

2.1.2.3 Recommended contribution rate

Based on the valuation result, the actuary is able to recommend any necessary changes to the 

contributions paid by the employer and employees (i.e. to set the recommended contribution 

rate) in order to prevent the discrepancy between the scheme’s assets and liabilities diverging 

excessively. The funding plan for recommended contribution rates falls normally into two main 

groups: m our terms, primary funding methods (usually, referred to as funding methods) and 

supplementary funding methods (usually, referred to as methods of amortisation) [for details, 

see section 2.2],

Co-ordinating the primary and supplementary funding methods aims to accumulate assets in a 

prudent and controlled way in advance of the actuarial contmgencies specified in the trust deed.
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in order to meet the defined benefits as they fall due without undue distortion of the employer’s 

cash-flows and also without undue shortfall in the scheme’s assets if the scheme prematurely

ceases.

Now, we shall describe briefly each of these concepts.

A primary funding method, except the Aggregate method [see section 2.2.1], specifies the 

actuarial liability (often referred to as the standard fund or the accrued liability (especially in 

the USA)) as a notional (or theoretical) target for the fund level and the normal cost (often 

referred to as the standard contribution rate or the regular cost) as a notional (or theoretical) 

target for the contribution rate, whose calculations are based on a given set of actuarial 

assumptions. As noted in the report ‘Terminology of Pension Funding Methods’ (TPFM, 

1984), these functions, normal cost and actuarial liability, should not necessarily be regarded 

as targets. However, the following would be widely admissible on the normal assumption that 

the pension scheme is an going-concern entity (i.e. a long lasting arrangements) and then the 

routine valuation of the scheme is carried out making this going-concern assumption: that is, 

whatever the actuary ’s targets in the funding plan would be. the employer may not want to 

accumulate assets above the actuarial liability, particularly as long as the actuarial assumptions 

are correctly matched with the actual experience.

From this point of view, the term ‘notional target’ would be interpreted as an ideally desired 

level of assets. For a clear example for this interpretation, if there were no mismatching 

between the scheme’s assets and its liabilities and a common valuation basis is set for the 

assets and the liabilities (or the actuarial assumptions are consistently borne out by actual 

experience and also the scheme starts with no surplus or deficit), then a primary funding 

method would maintain the following relationships: at each valuation date, ‘actuarial liability =
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fund level’ and ‘normal cost = recommended contribution rate'. Under these relationships, the 

primary funding method itself is enough and suitable for a funding plan, which illustrates the 

aptness of the name primary funding method.

In reality, the actual future experiences are unlikely to emerge in accordance with the actuarial 

assumptions, so the value of the assets would not be equal to the amount of the actuarial 

liability'. Therefore, although the normal cost is the regular pension cost, there must also be 

variations from the regular cost to allow for the differences between the actual experiences and 

the actuarial assumptions, i.e. the actuarial gain/loss. A supplementary funding method is 

designed to spread variations from the regular cost with the objective of limiting fluctuations in 

handing caused by the accumulated actuarial gain/loss. This fact illustrates the aptness of the 

name supplementary funding method, as a method supplementary to the primary funding 

method.

As a result, the recommended contribution rate is composed of two parts: the normal cost, 

determined by the primary funding method, and the adjustment to the normal cost for the 

actuarial gain/loss, specified by the supplementary funding method. Subsequently, it should be 

noted that the terms ‘primary’ and ‘supplementary’ are our own terms defined in connection 

with funding plans, so whenever there is no specific mention about funding methods, 

afterwards these refer to the primary funding methods.

2.1.2.4 Valuation basis - going-concern, run-off and winding-up

In the case of assessing the financial strength of the scheme, a framework of guiding accounting 

principles should be clearly stated in the scheme’s annual report because the level of the 

financial strength resulting from the actuarial valuation would vary according to the

23



assumptions relating to the methods used for assessing the scheme's assets and liabilities on the 

valuation date. There are two distinct assumptions commonly used by the actuary' m the 

process of actuarial valuation: the assumption that the scheme will continue m full force 

indefinitely (i.e. the going-concern valuation basis) and the assumption that the scheme will be 

discontinued on the valuation date (i.e. the discontinuance valuation basis).

In our view, it is confusing to refer to ‘discontinuance’ because the meaning of discontinuance 

m the pension terminology is the cessation of contributions to a pension scheme leading either 

to winding-up or to the scheme becoming a frozen (or closed) scheme. Indeed, Lee (1986) 

states in section 26.6 that “ In some cases of discontinuance it would not be feasible for the 

trustees and their successors to carry on the scheme as a closed investment trust for the benefit 

of the current and prospective beneficiaries. ... In other cases discontinuance might be 

interpreted m the sense that the trustees would continue the scheme as a closed investment 

trust.”

In practice, if their sponsoring employers went into liquidation (or bankruptcy), large pension 

schemes would generally contmue as closed schemes because there are practical limitations on 

the possibilities for a large scheme to transfer to another scheme and/or for the purchase of 

immediate and deferred annuities corresponding to the promised benefits in the open pension 

market.

In order to avoid these confusions, we shall subdivide the category of discontinuance valuation 

mto run-off valuation and winding-up (or liquidation) valuation and further make a clear 

distinction between them, where the terms used below ‘run-ofF and ‘winding-up’ have been 

taken from Daykin et al. (1987).

Daykin et al. (1987) identifies three main set of assumptions that need to be made in relation to 

measuring financial strength expressed m terms of the operations of an insurance company.
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These are termed 'going-concern basis’, ‘run-off basis’ and ‘winding-up basis', each of which 

is summarised below:

- Going-concern basis (i.e. a conventional approach for accounts prepared for shareholders, 

based on the assumption that the insurer will continue in business; hence liabilities shown in the 

accounts of the insurer are to be a best estimate and the assets are to be based on a book value 

or market value, respectively);

- Run-off basis (i.e. an approach usually adopted by supervisory authorities, based on the 

assumption that the insurer will cease to underwrite new business and run off its assets and 

liabilities; hence, liabilities and assets shown in the accounts of the insurer are to be cautious 

estimate and market value, respectively); and

- Winding-up basis (i.e. an approach rarely used for an insurance company, based on the 

assumption that the insurer will be liquidated and the new business will be prohibited almost 

immediately by a liquidator appomted by the court; hence, liabilities and assets shown for the 

accounts of the insurer are to be a best estimate of current value and a value realisable as 

quickly as possible, respectively).

Although there are many differences between an insurance company and a pension scheme, we 

believe that these bases described for measuring the financial strength in insurance companies 

(and the underlying concepts) can be applied to a pension scheme.

By combining these concepts and the meaning of discontinuance, we are then able to establish 

the following three kinds of valuation bases specific for assessing the financial strength of 

defined benefit pension schemes:

- Going-concern valuation basis is a conventional/classical valuation approach for management 

accounting purposes, based on the assumption that the sponsoring employer will continue his
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business (so, the new entrants will normally continue to be admitted) and the scheme will 

continue in existence with future contributions being received (i.e. the future lifetime of the 

scheme is infinite). Hence, this valuation would be useful for checking whether or not the 

current resources of the scheme are adequate to provide at least the best estimate of the 

scheme’s liabilities (which would be the actuarial liability calculated on a given set of the 

actuarial assumptions) at each valuation date. The description ‘optimistic’ is used because this 

valuation excludes the potential possibility that the employer’s business may cease to exist and 

then the scheme may not continue in existence.

We note that the following two scheme valuation bases are commonly founded on the 

possibility that the sponsoring employer is unable or unwilling to provide the pension scheme at 

any point in time (because of possible liquidation or bankruptcy). However, as mentioned 

above, the pension scheme does not necessarily go into immediate winding-up, so in this respect 

we can classify the discontinuance valuation basis into the run-off and winding-up valuation 

bases, that is,

- Run-off valuation basis is a valuation approach based on the assumption that the scheme will 

run on as a closed scheme without any further contribution rates, so the future lifetime of the 

scheme is finite. Hence, it would be useful for checking whether or not the current resources of 

the scheme is adequate to provide its liabilities estimated over a relevant, finite time horizon at 

each valuation date; and

- Winding-up (or liquidation) valuation basis is a valuation approach based on the assumption 

that the scheme has been discontinued at the valuation date (i.e. the future lifetime of the 

scheme are zero), so the trustees will wind up the scheme almost immediately. Hence, this 

valuation would be useful for checking whether or not the current resources of the scheme are 

adequate to provide the promised benefits assessed at any valuation date.
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As a result, the approaches to actuarial valuation can be categorised as going-concern, run-off 

and winding-up (note that this classification may not be comprehensive).

2.1.2.5 Comments on each valuation basis

We approach the controlling the conflicts of interest between the employer and the trustees by 

considering first the choice of valuation basis. In practice, the real concern is which of these 

bases should be used for gaming an appreciation of the scheme’s financial position. Before the 

actuary produces a full valuation on the chosen valuation basis, he will to some extent take into 

account the future conditions surrounding the scheme, such as the future prospect of the 

employer’s business and the future variability of the scheme’s assets and liabilities (though he 

is required to follow almost completely the current pension-related legislation or regulations).

These future conditions of the scheme would generally be reflected in the choice of methods 

employed in valuing the assets and liabilities, i.e. asset valuation methods and liability- 

valuation methods. These valuation methods are described separately m the following sections

2.1.2.6 and 2.1.2.7, mainly in the light of the consistency between the valuations of the assets 

and liabilities and the degree of realism of the valuations of the assets and liabilities.

It should also be noted that whatever the valuation basis might be adopted, the common 

purpose behind using each valuation basis would be that both employer and trustees 

continuously support the pension scheme at least over the relevant time horizon (i.e. different 

time horizon for each type of valuation), while maintaining a sound financial position and 

stabilising the contribution rates (optimally if possible).

Finally, the distinctive points of each valuation basis can be summarised as follows:
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(l) The going-concern valuation basis can be thought of as a regular management valuation 

approach to the scheme valuation and then both employer and trustees may focus mainly on 

regulating the speed at which the fund is built up during the remaining working lifetime of 

active members (which is usually referred to as the pace of funding) taking a long-term 

perspective. Hence, the actuary can have relatively more freedom in establishing the funding 

plan and the investment manager can have relatively more flexibility in choosing the investment 

policy than under the other two bases (although the trustees would provide general investment 

guidelines);

(ii) The winding-up valuation basis can be recognised as a strict supervisory approach to the 

scheme valuation and then both employer and trustees would be primarily concerned with 

meetmg the statutory requirements for the security of the scheme on a short-term perspective 

rather than with controlling the pace of funding on a long-term basis. Hence, there may be a 

problem of mismatching between these short-term security requirements and the long-term 

funding plan, particularly in the case that the investment performance is highly volatile. For 

example, if the scheme has suffered from poor investment performance, the employer will have 

to make up the investment loss either from an unexpected rise in the regular costs over a 

permitted short period or from an immediate cash injection in order to satisfy the statutory 

measures of security. In this respect, the actuary may have relatively less freedom in 

establishing the long-term funding plan than under the other two bases, and also the investment 

manager will have relatively more restrictions on the investment policies than the other two 

bases (this may sometimes place a significant financial burden on the employer). Therefore, 

this valuation basis would represent a preferable approach in particular from the viewpoint of 

the scheme's trustees and beneficiaries, for reinforcing the security of the promised benefits; 

and

(iii) The run-off valuation basis can be regarded as intermediate between the above two 

extremes but it is much closer to the statutory supervision of the scheme in the sense that the
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scheme can be expected to continue as a closed fund, and then matching the existing liabilities 

and the current assets by size and term would be of vital importance to the future security of 

the scheme. Hence, both the funding plan and investment policy would need to be reviewed in 

the light of any estimated mismatch.

2.1.2.6 Asset valuation

Different from the liability valuation, the asset valuation is independent of the choice of funding 

method, so the asset valuation may be largely at the discretion of the actuary (of course, after a 

full discussion with the trustees and the employer, taking into account the asset valuation 

regulations). In practice, the actuary commonly employs and/or adjusts one of the following 

methods: discounted cash flow method, market value method and book value method.

As a preliminary, we note that the discounted cash flow method allows for the future 

profitability of the current assets, the market value method focuses on the current market value 

of the assets, while the book value method totally ignores the current and future market 

situations, and just depends on the original purchase price of each investment.

(i) Discounted cash flow method:

The current assets can be analysed in terms of their future profitability, that is the future 

sequence of investment receipts, made by way of dividends, interest payments, redemption 

monies, sale proceeds and tax rebates. The discounted cash flow method leads to a value for 

practical use that is defined as the sum of the present values of the projected future inflows of 

cash (i.e. the cash-flows arising from the emerging streams of investment income), at an 

appropriate discount rate (or set of rates). Acceptmg the uncertainty of financial markets, the 

projected cash-flows may not turn out to be the same as the cash-flows that actually arise. That
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is, in an uncertain real world, future investment policies (for investment incomes) are unlikely 

to be fixed with certainty . Hence, both the income-occurrence tune and the amount of the 

corresponding incomes are in reality random, i.e. actual future cash-flows could be specified by 

a two-dimensional stochastic process with a probability' distribution of time and amount 

(simply denote as {(time, amount); over a projected time horizon}).

For the calculations, we need a number of assumptions to be made on the stochastic process 

{(time, amount)} so as to establish the projected future cash-flows; usually, this projection 

would be generated in the form of the expected or mean cash-flows from the assumed initial 

investment structure, future investment policies and future funding plans. Inevitably, any kind 

of projection must be subjective and inconclusive because any selected projection is dependent 

upon the authorised investment manager's decisions and choices in respect of the investments 

and also is just one realisable result from a large number of such realisations that could have 

been generated by the stochastic process. The subjectivity and unreality in connection with such 

calculations can then be thought of as a disadvantage of the discounted cash flow method [see 

Fujiki (1994; p i 16)].

It should also be noted that this method values the assets under the assumption that the scheme 

is going to continue at least during the projection, so this method is applicable to a going- 

concern valuation and a run-off valuation, but not to a winding-up valuation. Furthermore, in 

the light of the scheme continuing, choosing an appropriate discount rate (or set of rates) is 

closely related to the nature of the projected cash-flows and the assumptions made. As the 

cash-flows are subjective, the discount rate (or set of rates) is somewhat subjective but needs to 

be consistent with the actuarial economic assumptions; in particular, the discount rate (or set of 

rates) may be chosen to be equal to the valuation discount rate rather than the (volatile) market- 

related discounted rates, where the valuation discount rate is, in general, estimated in the terms 

of the long-term expected future rate of investment return.
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If the choice of discount rate (or set of rates) is consistent with the assumptions made in 

projecting the cash-flows as well as the valuation discount rate, then the discounted cash flow 

method for the assets is consistent with the normal method for the liabilities valuation that 

projects expected benefits outgoes and discounts at the valuation discounted rate. Therefore, 

the use of the discounted cash flow method can maintain consistency between assessmg the 

assets and the liabilities m the cases of going-concern and run-off valuation (- this can be 

thought of as an advantage of the method).

The discounted cash flow method for the assets is usually applied in a deterministic way and 

then produces clearly and easily interpretable results. But such an approach does not address 

the problems of subjectivity and unreality. As an alternative, we may use a stochastic approach 

and adopt computer simulation techniques using different distributional assumptions about 

future possible investment polices and their resulting cash-flows where we may calculate 

approximately the mean and variance of the value of the assets that are expected on the 

stochastic framework. Such an approach would be more complex to operate and the result 

might be more difficult to interpret [see The Institute and Faculty of Actuaries (1994; pp8~9)]; 

however, it will enable the concept of variability to be incorporated in the valuation process. Of 

course, the resulting estimates may not match reality.

(ii) Market value method:

Unlike the discounted cash flow method, the market value method provides an objective and 

realistic value of the assets because it is designed to value the underlying assets at the market 

prices on the valuation date. So, this method may be suitable for measuring the financial 

strength of the scheme no matter what type of valuation basis is adopted - going-concern, run-

off or winding-up valuation. Particularly, for a winding-up valuation this method can also 

maintain consistency between the valuations of the assets and the liabilities because the value 

of the liabilities under a winding-up valuation would be measured in terms of the market value
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of the accrued liabilities (i.e. with a transfer value into another pension scheme and/or annuity 

premiums in the annuity market) on the valuation date.

The general features of the market value method, objectivity and reality, depend on how 

reasonable it is to define market prices on the valuation date. The theoretical definition of the 

market prices of the assets on the valuation date would be the value realised when the assets 

were sold on the valuation date.

However, we may not be able to derive properly audited figures of asset values at a single point 

of tune (such as at a valuation date) because the market prices, particularly in the case of liquid 

assets (e.g. equities and index-linked stocks), are liable to fluctuate continuously and on the 

other hand, particularly in the case of illiquid assets (e.g. properties), market prices would 

depend much on the subjective opinion of the participants in the transaction, and it may take a 

considerable time to dispose of illiquid assets. Either smoothing and/or adjusting of market 

prices of the assets could be used to cope with short-term market fluctuations in market value, 

although there would then be questions about whether the smoothed and/or adjusted market 

prices are actually realisable in the event of the transaction.

In practical calculations, the market value of the assets on the valuation date would be treated 

as the smoothed price of the assets over an appropriate period of time, for example some form 

of moving average of mid-market prices and/or as the adjusted price of the assets to reflect the 

changes in the historical movements of the open investment market sectors (broadly, gilt 

market, equity market and property market) where the assets has been invested over a fixed 

period (i.e. the adjusted price using appropriate indices of the market sectors) [see Dyson & 

Exley (1995) and TPFM (1984; p8)]. Thus, these variations of the market value method for 

practical calculations can be thought of as being somewhat subjective but we should note that 

they do focus on current market prices and then without loss of generality, we can say that the 

market value method is less subjective than the discounted cash-flow method.
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(iii) Book value method:

The book value of an asset is the price at which the investment was originally purchased. From 

the viewpoint of stability in the asset values, the book value method may be regarded as the 

best approach to the asset valuation because it does not take into account any appreciation or 

depreciation of the investments on the valuation date. Furthermore, it is sometimes acceptable 

to assume that the random fluctuations in market value of an investment are (approximately) 

symmetric, over a long-term projection, about the book value of the investment; hence, the 

book value method would be more applicable in a going-concern valuation rather than in a run-

off or winding-up valuation.

Relative to the earlier two methods, the book value method is of historical interest and is now 

no longer employed for actuarial valuations because it is less realistic than the market value 

method and less consistent than the discounted cash flow method. On the contrary, if we modify 

the book value method through the market level adjustment to the book value (i.e. allowance for 

unrealised appreciation/depreciation), then this variation of book value method may be more 

attractive to the actuary than the other two methods, particularly where the asset valuation 

process is too complicated for the calculation of a reasonable value of the assets and/or there 

are substantial delays in collecting accurate information for the valuation of the assets.

(iv) Conclusions:

The three distinct asset valuation methods have their own advantages and disadvantages, and 

thus the value placed on the current assets will depend largely on the actuary’s view and on the 

purposes of the actuarial valuation. In particular, the valuation balance sheet audited on the 

basis of a market value valuation of the assets will give an objective and readily interpretable 

indicator of the security of the scheme. Throughout this thesis, the value of assets (i.e. the fund 

level) is assumed to be assessed on the basis of the market value method; hence, the 

mathematical notation for the value of the assets on hand presents the fund level measured in
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terms of the (smoothed or adjusted) market value of the underlying assets (simply, it shall be 

called the market-related fund level, where the term ‘related’ in the name indicates that carrying 

the assets at actual market value is subject to some practical limitations, as discussed above).

2.1.2.7 Liability valuation

Using the selected actuarial assumptions and funding method specific for the valuation process 

of the scheme, the actuary will calculate the theoretically desired level of its liabilities against 

which its assets are accumulated by the funding method (i.e. actuarial liability, which is a 

concept similar to the net premium reserve in life insurance mathematics). Since the actuarial 

liability is a function of a chosen funding method for a given set of actuarial assumptions, we 

can not regard its value as uniquely determined in the actuarial valuation, but must regard its 

value as one among many possible values that would be produced by numerous funding 

methods. .

Although there are a variety of funding methods in use in the UK, producing a pair of actuarial 

liability and normal cost, a consideration of their philosophical approaches to the calculation of 

the actuarial liability falls into two broad categories: accrued benefit methods (e.g. Current 

Unit method and Projected Unit method) and projected benefit methods (e.g. Entry Age method 

and Attained Age method). We note that the Aggregate method is another prototype example of 

projected benefit methods but it does not involve either a normal cost or actuarial liability, so it 

is excluded here (note that in section 2.2.1, we shall describe the funding methods in common 

use in the UK, and the inter-relation between the normal cost and the actuarial liability as a 

function of a selected funding method).

To make a distinction between actuarial liabilities by accrued and projected benefit methods, 

we shall describe these as follows: for a given set of actuarial assumptions, the actuarial
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liability measured by the accrued benefit methods shall be called the accrued actuarial liability, 

while the actuarial liability measured by the projected benefit methods shall be called the 

projected actuarial liability. For the simplicity of our discussion, we assume as one part of the 

actuarial assumptions that the members in the scheme are partitioned into active members and 

retired members (i.e. pensioners), and the trust deed and rules specify only retirement benefits. 

Thus, the actuarial liability is broadly classified as follows, according to the funding method 

applied:

(i) Accrued actuarial liability is to be expressed as the sum of {present value of accrued 

benefits for active members at the valuation date (i.e. past service pension benefits)} and 

{present value of future pension payments to retired members at the valuation date}, either on 

the basis of current salaries (i.e. as in the Current Unit method) or on the basis of projected 

final salaries (i.e. as in the Projected Unit method). Hence, if the actuary is willing to protect 

the promised benefits (to which the (active and retired) members have been entitled) against the 

potential risk of insolvency of the employer, the accrued actuarial liability would be preferable 

as a suitable target of fund level, rather than the projected actuarial liability described below 

because the accrued actuarial liability principally disregards any future contributions and 

future increases in salaries (although the Projected Unit method does not work in this way 

because of making full allowance for projected future salary increases). Furthermore, for each 

valuation date, the actuarial liability on the Current Umt method would more closely represent 

the defined benefits than the actuarial liability on the Projected Unit method.

(ii) Projected actuarial liability is to be expressed as the sum of {present value of future 

pension payments to active members at the valuation date (i.e. total (past and future) service 

pension benefits)} less {present value of future normal costs for active members at the 

valuation date} and {present value of future pension payments to retired members at the

35



valuation date}. Thus, the projected actuarial liability makes full allowance for the future 

accrual of benefits for active members on the basis of projected final salaries, in other words 

the currently active members are assumed to continue service up to the retirement age specified 

in the trustee deed and rules. Since the calculation of the projected actuarial liability is certainly 

affected by the projection of future normal costs and future salary increases, the actuary may 

focus more on regulating the pace of funding m the future rather than on securing the defined 

benefits.

As mentioned in Marshall & Reeve (1993), there has been a clear move from projected benefit 

methods towards accrued benefit methods in recent years in the UK. This trend can be 

interpreted as reflecting the relative emphasis that the supervisor}' authorities attach to the 

solvency or security of the scheme, so under this regime of supervision the accrued actuarial 

liability would be more preferable to the actuary than the projected actuarial liability as a target 

of fund level. As an example of this development in the UK, the Pension Scheme Surpluses 

(Valuation) Regulation 1987 introduced the use of the accrued actuarial liability for eliminating 

any surplus m excess of a specified upper limit of tax free funding defined m the regulation, 

where the actuarial liability is based on service up to the valuation date and makes allowance 

for projected final earnings for active members; here, this actuarial liability would be the same 

in concept as the actuarial liability based on the Projected Unit method.

Now, from the viewpoint of the security of the promised benefits, we consider the appropriate 

matching between the target for the fund level and the scheme valuation basis for the different 

types of valuation introduced in section 2.1.2.4.

Firstly, as mentioned above, the accrued actuarial liability would be suitable for the target for 

the fund level under a going-concern valuation. Further, allowing for the fact that the going-

36



concern valuation aims mainly to regulate the pattern of funding, the actuarial liability on the 

Projected Unit method may be more adequate than the actuarial liability on the Current Unit 

method because of the allowance made for future salary increases. Furthermore, as a result of 

the UK preservation legislation (requiring preserved pensions to be increased at prescribed 

rates up to pension age), the Current Unit method is not currently appropriate m the UK [see 

GN26], At this point, it should be noted that the possibility of discontinuance of the scheme is 

assumed to be almost zero under the going-concern valuation and that there would be little 

advantage in deriving assumptions to re-assess the actuarial liability according to the 

movements of the open market in pension policies (consisting of pension providers, such as 

insurance companies, building societies, unit trusts and banks). In other words, even though 

using an actuarial liability adjusted according to the movements of the open pension market 

(simply, we shall refer to this as the market value adjustment of the actuarial liability; for 

mathematical explanation, see section 3.4.1) may increase somewhat the confidence of the 

members in the process of funding and monitoring the scheme, this valuation adjustment is 

likely to add more uncertainty to the actuarial liability and then regulating the pattern of 

funding might be a greater burden to the actuary than before applying this adjustment.

Instead of allowing for the market value adjustment, the actuary may introduce some margins 

in the scheme parameters (estimated normally on long-term average assumptions) by reference 

to the way the economic and demographic conditions have generally moved over a period of 

interest in order to give some buffer against future demographic and economic uncertainties 

(specially, against short-term fluctuations around the long-term average) and then to maintain 

an adequate level of funding. Alternatively, he may change in a routine manner the actuarial 

assumptions by reference to the actual experience emerging, which is consistent with the view 

of Fujiki (1994) whose main results are described in section 2.1.2.2 (although this approach 

may. in practice, cause an extra administrative burden to pension professionals).

37



In contrast to the gomg-concem valuation, the run-off and winding-up valuations are both more 

concerned with the protection of the promised benefits against the possible ruin of the 

employer's business, rather than securing the accrued actuarial liability. So, the actuary would 

need to derive assumptions to reproduce the promised benefits in connection with an open 

pension market at a date of interest in order to establish the target for the fund level suitable for 

a practical safeguard agamst inadequate funding. For consistency with the assumptions 

introduced in the early part of this section, we also assume that the open pension market is 

broadly composed of the deferred annuity market for active members and the immediate 

annuity market for retired members (though deferred annuities are currently too “expensive” 

and there may not be a proper, competitive deferred annuity market, particularly for a small or 

medium size scheme with its assets below £50 million, see Collins (1992)).

In reality, there will inevitably be a difference between the promised benefits and the actual 

liability because the actual liability should take into account the pension market conditions. 

Here, the amount of the actual liability would, in an absolute sense, be the sum of the amount 

estimated in the deferred annuity market as transfer values for the active members and the cost 

estimated in the immediate annuity market as immediate annuities for the retired members. The 

exact value of the actual liability is unlikely to be available before carrying out the winding-up 

procedure used in the Courts because the bulk deferred annuity market value of a pension 

scheme would, in practice, be a matter of negotiation largely between receivers and liquidators, 

even though there is a competitive market between pension providers in terms of immediate 

annuity rates [see Daykin(1987)]. So, the precise calculation of the actual liability can be 

thought of as being outside the control of the actuary' and thus, for the same reasons as 

mentioned m section 2.1.2.6, the amount of the actual liability would be regarded as a market- 

related value of the promised benefits. In order to reduce to some extent the gap between the 

promised benefits and the actual liability, the actuary may thus need to apply the so-called
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market value adjustment to the promised benefits (of course, this valuation adjustment is going 

to be carried out according to the manner prescribed in the trustee deed and rules).

Following on from this argument, the actuary could suggest the following variations for 

establishing a more realistic target of fund level under each of the run-off and winding-up

cases:

- For the winding-up valuation basis, one possible variation of the actual liability is what is 

obtained by means of the market value adjustment applied to the preserved benefits, produced 

on the basis of the current (transfer and immediate annuity) market situations (simply, we shall 

call this variation the market-related current liability). That is, if the purpose of the actuarial 

valuation is to ensure the continuing security of the promised benefits at all times (i.e. the main 

purpose of a winding-up valuation), the market-related current liability should be exactly 

computed on the seller-bidding and purchaser-offering basis in the open pension market, i.e. 

should be equal to the actual liability (though it is not necessarily available). Thus, this kind of 

valuation adjustment is likely to cause a significant funding burden to the employer, 

particularly whenever the scheme suffers from poor investment performance and/or the 

(transfer and immediate annuity) costs in the open pension market are going up; and

- For the run-off valuation, one possible variation of the actual liability is what is re-assessed 

by means of the market level adjustment, produced on the basis of the cautiously estimated 

(transfer and immediate annuity) future market trends over a period of interest on the 

assumption that the scheme continues as a closed investment fund (simply, we shall call this 

variation as the market-related cautious liability). Thus, this valuation adjustment may be 

regarded as a liability valuation intermediate between the above two extremes (i.e. valuations 

for accrued actuarial liability and market-related current liability), since this adjustment can be 

expected to balance effectively the conflicting interests between employer and trustees.
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It should also be noted that the market-related current and cautious liabilities have been

discussed on the basis of a given set of actuarial assumptions. As for the going-concern 

valuation, we can similarly discuss the choice of assumptions. Thus, in order to reduce the 

difference between the promised benefits and the actual liability, directly adjusting the promised 

benefits by reference to the current or future market situations would have a similar effect 

either to introducing into the actuarial assumptions some margins, particularly in the scheme 

economic parameters, or to introducing in a routine manner the basis which the competitive 

pension providers are normally employing for the pricing of immediate and deferred annuities 

contracts. These ideas are consistent with the views of Thornton & Wilson (1992) and Collins 

(1992), which will be discussed separately in section 3.3.3.

In summary, the asset and liability valuations are important issues in evaluating the security of 

the scheme. Of course, these valuations will largely be at the discretion of the scheme actuary 

after full consideration of the views of the employer and the trustees. In accordance with the 

relative suitability to their conflicting interests, the actuaries (and supervisory authorities) aim 

to find a balancing pomt satisfying both employer and trustees at the same time (if possible). 

We believe that the market-related cautious liability will serve as one proper approach settling 

the conflicting interests m the liability' valuation.

As a result, we believe that the triple combination (run-off valuation, market value method, 

market-related cautious liability) may be viewed as the balancing point (or centre of gravity') in 

the range of all possible ordered triple combinations of {going-concern valuation, run-off 

valuation, winding-up valuation} x {discounted cash flow method, market value method, book 

value method} x {actuarial liability, market-related cautious liability, market-related current 

liability}, where the notation ‘x ’ denotes the Cartesian product.
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2.1.2.8 Security measure for the scheme

The results of the actuarial valuation will normally be integrated and clarified by producing the 

value of an appropriate security measure. In practice, the size of the scheme’s assets in relation 

to its liabilities at the valuation date is of vital importance to its security. So, the security 

measure would be a real-valued function of two variables, expressing the value of the scheme’s 

assets and the amount of its liabilities. Broadly, there are two types of security' measure: one is 

based on the scheme’s funding level and the other is based on its solvency level. In the strict 

sense of measuring security, the solvency level would be a more rigorous criterion than the 

funding level. This will be clarified in the discussion below. Following this line of argument, we 

can define both surplus/deficiency and solvent-capital/insolvent-debt, w'hich are specified m the 

end of this section.

Up to now, in the UK current pension scheme rules have not had any general requirement that 

defined benefit pension schemes should be funded to any specific funding level, let alone a 

specific solvency level. After the Maxwell affair, the UK government, consulted primarily on 

the minimum solvency requirement (MSR) proposed by the 1993 report of the Pension Law 

Review Committees (PLRC) “Pension Law Reform”, and has been contemplating a new 

framework with the main purpose of markedly reinforcing the security of defined benefit 

pension schemes. As a first regulation for the security guidance, the government introduced, in 

the Pension Act 1995, the minimum funding requirement (MFR) that the value of the assets of 

the scheme is not less than the amount of the liabilities of the scheme (which will come into 

force from 6 April 1997) - the methods of valuation of the assets, the liabilities and the 

actuarial assumptions set out in regulations [see Greenwood & Keogh (1997)]. Further, the 

Pension Act 1995 establishes The Occupational Pensions Regulatory Authority as a 

supervisory authority, which will have the function of monitoring the protection of the interests
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of the members of occupational pension schemes and will take over most of the functions of the 

existing Occupational Pensions Board (in section 3.2.2, we will discuss the basic ideas about 

the MSR and the MFR). In this section, we give a general description of the concepts of 

funding and solvency levels, which is intended to be a preliminary to the more detailed 

discussion of section 3.2.2.

(i) Funding level:

The funding level (or funding ratio) of the scheme is commonly defined as a real-valued 

function expressing the proportion (or ratio) at a specified date of the actuarial value of 

liabilities (i.e. actuarial liability) that is covered by the actuarial value of assets held. The 

nature of the funding level means that it may inevitably fluctuate up and down according to 

technical changes either to the liability valuation method and/or to the asset valuation method. 

If this definition is related to the valuation of the scheme on a long-term, going-concern basis, 

the funding level specified above may have to be termed the going-concern funding level.

In practice, the choice of valuation basis may have a major effect on the value of the funding 

level because according to the valuation basis, the corresponding liability may be identified 

differently as discussed earlier m section 2.1.2.7. Therefore, m a stricter sense, the term 

funding level should be used m relation to the results of a chosen valuation basis. Further, there 

is no loss of generality in assuming that the funding level is non-negative.

We recommend that the funding level should be extended to cover all kmds of valuation bases 

such as going-concern, run-off and winding-up valuation bases in order to operate fairly as a 

security measure of the scheme. It is worth recalling that in view of the security of the scheme, 

the value of the assets of the scheme would be taken as the market-related fund level (see 

section 2.1.2.6); the amount of the scheme’s liabilities on a going-concern valuation basis 

would be taken as the accrued actuarial liabilities rather than the projected actuarial liabilities; 

and also the amount of the scheme’s liabilities on the other two bases would be taken as the
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market-related value of the promised benefits, that is, the market-related cautious liability on a 

run-off valuation basis or the market-related current liability on a winding-up valuation basis 

[see section 2.1.2.7],

In consequence, the funding level is intended to be a reliable indicator of the security of the 

scheme at each valuation date, but in practice these levels can not be determined uniquely 

because of their dependency on the choice of assumptions and methods for the asset and 

liabilities valuations. Following our discussions of sections 2.1.2.6 and 2.1.2.7, we suggest the 

following funding levels as appropriate for each valuation basis adopted (although (a) and (b) 

have inconsistency problems, see section 2.1.2.7):

(a) {funding level on going-concern valuation basis} (= {going-concern funding level})

= [market-related fund level] / [actuarial liability on going-concern basis];

(b) {funding level on run-off valuation basis} (= {run-off funding level})

= [market-related fund level] / [market-related cautious liability]; and

(c) {funding level on winding-up valuation basis} (= {winding-up funding level})

= [market-related fund level] / [market-related current liability],

(ii) Solvency level:

Public interest in the solvency of occupational pension schemes first came to prominence in the 

UK with the property and equities’ crash of 1973-4 which led to the real value of the average 

scheme’s assets being cut by about 60% (statistical source: Pension Fund Indicators 1991). At 

the end of 1974, pension professionals were required to investigate whether or not the resources 

of the scheme would be sufficient to cover the promised benefits even if this kind of significant 

financial loss forced the sponsoring employer into the discontinuance of the scheme. As 

governmental guidance on the security of the promised benefits, the Social Security Pensions
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Act 1975 set out the actuary's certificate to the Occupational Pensions Board (so-called 

Standard Solvency Certificate or Certificate A) for contracted-out schemes, in which the 

actuary is required to state that in the event of the scheme being wound-up within the five year 

period following the date of signing of the certificate, the resources of the scheme will be 

sufficient financially to meet in full the statutory requirements prescribed in Certificate A.

However, Certificate A has some weaknesses in terms of the security on winding-up. The first 

pomt is that the certificate relies on the individual opinion of the actuary', so there may be a 

problem of inconsistency in judgements between one actuary and another. Secondly, the 

certificate covers a five year period (though it has to be renewed at least eighteen months before 

its expiry, or if its validity is affected by any changes), which is a rather long period over which 

to project, with accuracy, the movements of future contributions, liabilities and assets 

(although five year is becoming a standard period for certification, as noted in the Social 

Security Pensions Act 1975). Thirdly, in the absolute sense of a winding-up scheme valuation, 

the financial adequacy of the scheme could be measured by the current financial status of the 

scheme without allowing for the future cash-flows, as mentioned in section 2.1.2.4. Lastly, the 

certificate is only for contracted-out schemes. In our opinion, any kind of security regulations 

should be extended to cover all defined benefit pension schemes. Hence, Certificate A seems to 

be founded on the basis of a run-off valuation, not on the basis of a winding-up valuation, in 

the sense that it requires a finite time projection into the future.

Consequently, the impact of the subjective judgement of the actuary, inherent in Certificate A, 

should be reduced. Thus, for the purpose of the consistency between the solvency assessments 

of one scheme and another, solvency should be required to be certified on an exactly prescribed 

framework, such as on the basis of the minimum solvency requirement (as proposed by the 

PLRC) or the basis of the minimum funding requirement (as enacted by the Pension Act 1995). 

This would be consistent with the view of Daykin et al. (1987) expressed that “... it may be 

true to say that a company is solvent if the supervisor says that it satisfies his requirements.
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Solvency in this sense is perhaps best described as ‘meeting the statutory solvency 

requirements’...”. In this respect, a 100% statutory minimum solvency level target would be 

the standard supervisory guideline as the minimum safety ratio for protection against less 

favourable experience in the future.

The solvency level can then be thought of as a supervisory measure by which the supervisor 

judges whether or not the financial strength of each scheme is sufficient to meet its 

requirements (simply, a supervisory measure for solvency valuation). If the statutory minimum 

funding level is not imposed by the supervisor, there would be no relation between funding level 

and solvency level, and further, there would be no target of fund level for solvency valuation. In 

other words, the solvency level is subject to the requirement imposed by the supervisor, such as 

a statutory minimum funding level. Using the funding level and statutory minimum funding 

level, we can define the solvency level as

{solvency level} = {(going-concern, run-off and winding-up) funding level} / {statutory 

minimum (going-concern, run-off and winding-up) funding level}, 

respectively.

In the particular case that the statutory minimum funding level is 100%, then the solvency level 

is equal to the funding level. Further, from the non-negativity assumption of both funding level 

and statutory minimum funding level, the solvency level is also non-negative.

Or equivalently, we may, in general, define the solvency level from the standpoint that the 

assessment of the solvency of pension schemes is a matter of political decisions. In other words, 

if any kind of statutory requirement is phased in, it will prescribe the broad principles for the 

valuation of the assets and liabilities through regulations and/or legislations (simply, the broad 

principles for solvency valuation)

{solvency level} = {fund level for solvency valuation} / {liability level for solvency valuation}.

45



In the following paragraphs, we shall take our discussion forward in the light of the first 

definition in order to show some relationship between the funding level and solvency level.

Subsequently, on each (going-concern, run-off and winding-up) valuation basis, we shall refer 

to the scheme as being ‘solvent’ where the calculated funding level is greater than the imposed 

statutory minimum funding level (i.e. solvency level > 100%) and ‘insolvent’, the opposite of 

solvent, w'here the calculated funding level is less than the imposed statutory minimum funding 

level (i.e. 0% < solvency level < 100%).

Remark 2 1 : If we follow the view of Collins (1992) about solvency that “ ... the term 

‘solvency’ is used in the context that if a scheme were to wound-up there would be sufficient 

assets to buy-out the liabilities fully before any augmentation, with an insurance company.”, 

then the solvency level would be defined as the level of the premium costs to purchase the 

(active, deferred and retired) members’ accrued pension rights in the prevailing non-profit 

deferred and immediate annuity market that is covered by the market value of the scheme 

assets. This can be considered as a strict solvency measure in the view of measuring exactly the 

continuing security of defined benefit pension schemes.

(iii) surplus/deficiency vs. solvent-capital/insolvent-debt:

In general, the supervisory authorities may be required to use a method of assessing the 

financial strength of the scheme which is consistent between one scheme and another as well as 

giving a clear idea of the financial differences between one scheme and another. In this respect, 

the ratio type measure, either funding level or solvency level, would be effective. On the other 

hand, the ratio-type measure can be easily one-to-one transformed into the difference-type 

measure, defined below. The difference-type measure may be useful for accounts and audit of 

schemes, whereas the ratio-type measure may be useful for supervising consistently schemes.
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Now, we shall define two difference-type measures; one is the alternative measure of the 

funding level (we shall call it as the unfunded liability) and the other is the alternative measure 

of the solvency level (we shall call it the insolvent liability).

Firstly, the unfunded liability is commonly defined as the difference between the actuarial 

liability and the fund level (as defined in Trowbridge (1952) as “The portion of the accrued 

liability not offset by assets is called the unfunded accrued liability.”). But, this definition is 

oriented towards a going-concern valuation. For the same purposes as the extended definition 

of the funding level, we shall extend the above definition to cover the run-off and winding-up 

valuations.

The unfunded liability is the real-valued function presenting the difference between the amount 

of the liabilities of the scheme and the value of its fund level in relation to the results of the 

valuation basis used. Each valuation basis will contain the proper assessment of the 

corresponding assets and liabilities at the valuation date.

Subsequently, we can also define surplus and deficiency in line with the new definition of 

unfunded liability. That is, a negative unfunded liability shall be called a surplus and a positive 

unfunded liability, i.e. the opposite of surplus, shall be called a deficiency (or deficit).

Note that surplus and deficiency are concepts which are often referred to but which have still 

caused some trouble to the actuarial profession, in particular in the UK. Even though there 

have been several comments about the surplus/deficiency, our definition of surplus/deficiency 

properly reflects the view of Wilkie (1986) mentioned that “surplus has to be measured in 

relation to some funding target” in the light that since the term ‘funding target’ (in our term, the 

target of fund level) is likely to be differently specified in each valuation basis, our definition of 

surplus/deficiency is flexibly adapted to the choice of the valuation basis. Furthermore, the 

actuarial gain/loss concept, widely used in the USA and Canada, can also be extended to be in
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line with our definition of surplus/deficiencv [for a detailed gain/loss analysis, see Lynch 

(1979) and Dufresne (1989)].

Secondly, we shall define the insolvent liability as a counterpart of the unfunded liability. In a 

similar way to defining the solvency level, the insolvent liability can be specified on the 

condition that the statutory minimum unfunded liability is determined a priori. The insolvent 

liability is then the sum of the calculated unfunded liability and the statutory minimum 

unfunded liability. That is, the insolvent liability can be defined as

{(going-concern, run-off and winding-up) insolvent liability} = {(going-concern, run-off and 

winding-up) unfunded liability} + {statutory minimum (going-concern, run-off and winding- 

up) unfunded liability}, respectively.

As the counterpart of surplus/deficiency, we can also define the solvent-capital/insolvent-debt. 

That is, a negative insolvent liability shall be referred to as the solvent-capital, which means 

that the scheme is solvent with spare resources equal to the amount of solvent-capital, and a 

positive insolvent liability, the opposite of solvent-capital, shall be referred to as the insolvent- 

debt, which means that the scheme is insolvent with a shortfall equal to the amount of 

insolvent-debt that should be made up by the employer within a permitted period.

It is worth finally noting that in the UK, funded defined benefit pension schemes are entitled to 

tax relief (i.e. investment income and realised capital gains within the fund accrue free of 

income and capital gains tax). In such a case, the supervisory authorities (or Government) may 

need to introduce an upper limit of tax free funding if a scheme were in surplus and the solvent- 

capital were not reduced or eliminated within an allowed period from the viewpoint of 

controlling any undue level of systematic pension fund excess that might be generated; for 

example, the Pension Scheme Surplus (Valuation) Regulations 1987 can be considered as a 

practical legislation for this kind of tax penalty, in which the allowed period is fixed at within 

five years. Therefore, the scheme actuary would make the following suggestions for use of
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pension fund surplus or solvent-capital in order to avoid the tax chargeable on the investment 

income on the assets in excess of the tax exempt funding level:

(a) Reduction in (employer and/or employee) contributions (for example, spreading the surplus 

evenly over an allowed period) or implementation of so-called (employer and/or employee) 

contribution holiday; and/or

(b) Improvement in the quality of defined benefits; and/or

(c) Transfer-back into the sponsoring company; and/or

(d) Adjustment of the actuarial valuation basis, in particular using less conservative actuarial 

assumptions and/or switching the valuation basis from going-concern to run-off or winding-up; 

and/or

(e) Switching from a projected benefit method to an accrued benefit method (if appropriate).

Remark 2.2: Suggestion (d) may not be helpful with a period as short as the five-year period 

prescribed by the supervisory authorities, since it is possible for the scheme’s short-term actual 

experience to be even better/stronger than the newly adjusted actuarial valuation basis; and 

Suggestion (e) is consistent with the view of McLeish & Stewart (1993) expressed that “... in 

order to avoid the tax penalty which would now result from their holding 'excessive surplus’ in 

their funds, schemes which had hitherto been using prospective benefit methods of valuation 

have reduced their funding levels by switching to accrued benefits methods, particularly the 

Projected Unit Method.” (note that the term prospective benefit methods is an alternative, 

widely used name for projected benefit methods).

To summarise this section, the security measures, funding level, solvency level, unfunded 

liability and insolvent liability, are defined in relation to the particular valuation basis used. 

The statutory minimum funding level and statutory minimum unfunded liability each can be 

regarded as providing additional guidance on the level of security needed to protect against
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future uncertainties, determined primarily by the solvency policy of the supervisory authorities. 

In the general case that the statutory minimum funding level = 100% (or equivalently, the 

corresponding statutory minimum unfunded liability = 0), the solvency level is exactly the same 

as the funding level (or equivalently, the insolvent liability is exactly the same as the unfunded 

liability). Under the adopted valuation basis, the members in the scheme will have almost 

complete confidence in the security of their rights in the case that the valuation result seems to 

be sufficient to provide protection against the possibility of the employer’s insolvency, that is, 

whenever the resulting funding level or solvency level > 100%, or equivalently the resulting 

unfunded liability or insolvent liability < 0. Lastly, the concept of solvency can be regarded as 

equivalent to the concept of security adopted by the supervisory authorities.

2.1.3 Risks in connection with funding plan

Pension provision inevitably faces many different sources of uncertainty about the values of the 

parameters used in the pension scheme (i.e. the scheme parameters). One of the sources of 

uncertainty that is most difficult to manage is the investment market returns in the sense that 

the returns on the assets side have to be taken as the market return actually realised from the 

asset allocation decision in increasingly volatile investment markets, while the valuation rate of 

return on the liabilities side will usually be determined on the basis of expected long-term 

average return on investments in the future.

Although investment decisions may be implemented successfully on the basis of a diversified 

portfolio, the expected return may not turn out to be the same as the return that actually arises. 

In this respect, it is worth noting Haberman (1994) expressed that “in recent experience, one of 

the principal sources of surplus or deficiency has been the rate of investment return on pension 

scheme assets.”

50



The above discussion is applicable to the other scheme parameters. As a result, the actuary 

must confront the possibility that the actual outcomes may differ from what was expected in 

connection with the scheme parameters.

It should finally be noted that the actual outcomes may broadly take one of three different 

scenarios; most likely (i.e. average), better than most-likely (i.e. optimistic) and worse than 

most likely (i.e. pessimistic). Now, we shall introduce the term ‘risk’, which will provide a 

helpful and clear measure of the future uncertainties mvolved in the funding plan. Further, we 

shall interpret the main purpose of funding as managing both the stability of the contribution 

rate stability and the security of the rights to benefits, as introduced by Haberman (1997) in 

which he categorises the main risks involved in a defined benefit pension scheme mto two 

groups, the contribution rate risk and the solvency risk, respectively.

2.1.3.1 Definition of risk

The term ‘risk’ has been defined in various ways. The main concept of risk is related to the 

inexactness in forecasts and/or projections of the future situations.

In the area of control theory, Dorf (1992; section 12.1) defines risk as “uncertainties embodied 

in the idea of unintended consequences of the design.” From the viewpoint of nsk management, 

Williams & Heins (1971; Ch. 1) define risk as “the variation in the possible outcomes that 

exists in nature in a given situation”, which is consistent with the view of Houston (1964) that 

“To the insurer, risk is a function of the variation in the pure premium distribution . . . and may 

be defined by the standard error of the mean of the pure premium distribution.” Further, they 

define nsk management as “the minimisation of the adverse effects of risk at minimum cost 

through its identification, measurement and control.” In the light of the scheme valuation, we 

may define risk as follows, which would, in concept, be in line with the above definitions:
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The term ‘risk’ may be defined as the objective volatility measured by the gap between the 

actually realised results and the designed potential (or most likely expected) results, 

encountered by the unfavourable or unanticipated (economic and/or demographic) experience.

In addition, our definition of risk might be suitable for the mathematical assessment of risk 

because the term ‘objective volatility’ can be understood as the dispersion or variation of the 

possible values of the gap caused mainly by the scheme parameter uncertainty, such as a 

sample variance under certainty or a stochastic variance under uncertainty.

It is finally worth noting that in the area of financial economics, risk is, in general, categorised 

as unsystematic risk (or diversifiable risk) and systematic risk (or non-diversifiable risk); the 

unsystematic risks are those that can be almost completely eliminated by holding a well- 

diversified portfolio of investments, while the systematic risks are those that can not be reduced 

to zero by a diversified portfolio of investments [see Hull (1993; p70)]. Therefore, it is the 

systematic risk that the investment manager should pay expend efforts to control.

2.1.3.2 Contribution rate risk

Contribution rates generated from a particular funding plan are used to pay current benefits 

and/or are invested in a diversified portfolio of investments that are intended to provide the 

future benefits prescribed in the trust deed and rules. Different from a money purchase pension 

scheme, a defined benefit pension scheme is. in principle, required to provide the predetermined 

benefits as they arise, explicitly independent of the fund level of the scheme accumulated up to 

their due date. So, the employer will inevitably be exposed to the risk of fluctuating cash-flows 

in contributions, mainly caused by the systematic risk associated with the investment market.

In view of aversion to the contribution rate risk alone, the actuary will have two options for the 

employer; one is to switch out of a defined benefit scheme into a money purchase scheme and
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the other is to lessen the exposure of the pension fund to the nsk of significant, undesigned 

variation in contribution rates (i.e. to maintain the contribution rate stability). The first option 

is a matter for the employer’s decision. The second option is a matter of actuarial management 

that is a complicated problem involving largely the actuarial assumptions, the asset allocation 

decisions and the funding policy. However, this stability problem may, in aggregate, be 

identified by introducing the concept of contribution rate risk.

Following the definition of risk, we may define the contribution rate risk as the objective 

volatility in cash-flows measured by the gap between the actual cash-flows in contributions and 

the designed potential (or most likely expected) cash-flows in contributions over the time 

horizon of interest, that might be finite horizon (e.g. five, ten and twenty years ahead) or 

infinite horizon. For an example of the stochastic formulation for the contribution rate risk, 

Haberman (1997) defines the contribution rate risk as the variance of the infinite sum of the 

present value of future contributions discounted by the valuation rate of interest. Note that his 

mathematical definition is rather similar to the performance index (or cost functional) in control 

theory, which will be clear in Chapter 4.

In view of being more faithful to our definition of risk, we may mathematically specify the 

contribution rate risk as follows:

(i) In the deterministic case (i.e. risk under certainty):

{contribution rate risk at time t} = {(actual contribution rate paid into scheme at time t)

- (designed potential contribution rate at time t)}2 and

T

{contribution rate risk over a period [s, T], s<T<oo} = (contribution rate risk at time t) ,
t=s

in discrete time; and
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(ii) In the stochastic case (i.e. risk under uncertainty):

{contribution rate risk at time t} = E {(actual contribution rate paid into scheme at time t)

- (designed potential contribution rate at time t)}2 and

T

{contribution rate risk over a period [s, T], s<T<oo} = ^ (c o n tr ib u tio n  rate risk at time t) ,
t=s

m discrete time, where the notation ‘E’ denotes the stochastic expectation.

Alternatively, it is possible to express the formulation in continuous time by replacing the 

summations with integrals.

It is worth noting that the designed potential contribution rate can be regarded as an actuary’s 

target for the contribution rate (e.g. normal cost) and the term ‘the objective volatility in cash-

flows’ in our definition is mathematically replaced by a squared loss function with the aim of 

inducing a high penalty for large gaps between the actual cash-flows in contributions and 

designed potential cash-flows in contributions but a relatively low penalty for small gaps.

Moreover, in the specific case that {designed potential contribution rate} = E {actual 

contribution rate paid into scheme}, then we know that {contribution rate risk at time t} = Var 

{actual contribution rate paid in scheme at time t}, in which the notation ‘Var’ denotes the 

variance.

As a consequence, the criterion suitable for maintaining the contribution rate stability over a 

particular time horizon will be orientated toward minimising the contribution rate risk over the 

same time horizon.
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2.1.3.3 Solvency risk

As outlined in section 2.1.2.8, making an assessment of the solvency of the scheme is 

concerned with comparing the value of the scheme’s assets with the amount of the scheme’s 

liabilities, in which the valuation method for the scheme’s assets and liabilities has to be clearly 

prescribed by regulation or legislation. Then, it is worth starting with the identification of risks 

associated with the solvency of the scheme. The described risks below are originally based on 

the well-known risks of insolvency involved in general insurance [see Bulmer (1994) and the 

risk matrix identified by Lewin et al. (1994)], but we re-categorise them in view of our focus on 

defined benefit pension schemes. Broadly, the risks to solvency associated with the scheme can 

be divided into two distinct types, investment risk and non-investment risk:

(i) Investment risk:

- asset value risk (Ec, Fc and Lc) - - the risk of a substantial fall in the market-related value of 

the scheme’s assets, primarily caused by the failure of the asset allocation decisions;

- asset mcome risk (Pc) - - the risk that the investment returns will not paid by the default of 

borrowers; and

- matching risk (Fc and Pc) - - the risk that the nature of the scheme’s assets is inappropriate, 

given the nature of the scheme’s liabilities;

(ii) Non-investment risk:

- liability risk (Ec, Fc and Lc) - - the risk that for the promised benefits of the members, the 

premium costs offered by pension providers or the transfer values offered by another permitted 

pension scheme will increase abruptly and largely, especially under run-off and winding-up 

valuation bases;
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- regulatory or tax risk (Lc) - - the risk that there will be a significant adverse change in the 

scheme regulations or in the tax laws, in particular for the income and capital gain tax;

- sponsoring employer risk (Be and Pc) - - the risk that the sponsoring employer will be subject 

to a large trading catastrophe (e.g. the European storms of 1987 and 1990) and thus the 

employer’s contribution will not be available or the scheme will be wound up with the 

resources of the scheme insufficient to cover the promised benefits; and

- management risk (Pc) - - the risk of inappropriate auditing, including fraud and 

misappropriation (e.g. Maxwell affair), a large excess of administrative costs and inadequate 

planning of recruitment and salary structure (e.g. improper rise in salary and benefits, and 

undesirable structure of workforce, in relation to the scale of the sponsoring company);

where, each capital letter in the brackets indicates the underlying main cause of the 

corresponding risk, resulting in future unpredictability, that is,

Be = Business cause, such as demand failure, premature obsolescence and competition

weakness;

Ec = Economic cause, such as unfavourable retail price inflation, market premium cost 

inflation and market investment returns;

Fc = Financial cause, such as unbalanced asset allocation decisions in connection with the 

scheme’s liabilities and inadequate assumptions for the scheme parameters;

Lc = Legislation cause, such as the removal or reduction of taxation advantages, restriction on 

the asset allocation decisions and some extreme provisions enacted by Acts, especially in 

relation with the asset/liability valuation (e.g. some regulations or legislations established 

through Social Security Act, Financial Act or Pensions Act); and 

Pc = Project cause, such as unproper planning and control in employment, human error 

or incompetence of pension professionals, including personnel manager and employer, 

and improper labour relations.
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The above described risks each affect, both directly and indirectly, the scheme's solvency 

position; then, we may call collectively these risks the solvency risk of the scheme. Further, 

employer, trustees and pension professionals will be concerned with the elimination or 

reduction of the solvency risk. However, their common and ultimate aim will be to satisfy the 

solvency requirement imposed by the supervisory authorities subject to a reasonably allowed 

level of risk in the sense that the above risks can not completely be eliminated through risk 

management.

So, the desired feature of the imposed solvency requirement would principally be that the 

chosen solvency measure (e.g. solvency level, funding level, insolvent liability or unfunded 

liability) is bounded by certain allowed limits, together with a recommendation to follow a 

specified statutory solvency standard; for example, a 100% solvency level or funding level, or 

zero insolvent liability or unfunded liability. In other words, the published value of the solvency 

measure at each valuation date will be required to satisfy firstly, the bound condition such that 

{allowed minimum value of solvency measure} < {value of solvency measure resulting from 

the scheme valuation at each valuation date} < {allowed maximum value of solvency measure} 

and secondly, the guiding condition such that {value of solvency measure resulting from the 

scheme valuation at each valuation date} is preferred to be equal to {statutory solvency 

standard at each valuation date}.

Therefore, combining our definition of risk and the statutory solvency requirement in the side of 

supervisor, we may define the solvency risk as follows.

Solvency risk of the scheme may be defined as the objective volatility in cash-flows measured 

by the gaps between the actual cash-flows in selected solvency measures and the statutory 

cash-flows in solvency standards over a time horizon of interest, that might be finite or infinite.
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As an appropriate mathematical formulation for the solvency risk, we may suggest the 

following, which is consistent with the suggested mathematical formulation for the contribution 

risk.

(1) In the deterministic case (i.e. risk under certainty):

{solvency risk at time t} = {(actual solvency measure resulting at time t)

- (statutory solvency standard imposed at time t)}2 and

T

{solvency nsk over a period [s, T], s < T < 00} = ^ (so lv e n c y  risk at time t ) ,  in discrete
t=s

time;

(ii) In the stochastic case (i.e. risk under uncertainty):

{solvency risk at time t} = E {(actual solvency measure resulting at time t)

- (statutory solvency standard imposed at time t)}2 and

T

{solvency risk over a period [s, T], s < T < 00} = ^ (so lv e n c y  risk at time t ) ,  in discrete
t=s

time.

Alternatively, it is also possible to express the formulation in continuous time just by replacing 

the summations with integrals.

As mentioned m the discussion of contribution rate risk, we can provide the same interpretation 

about the squared loss function formulation. In addition, the statutory solvency standard 

(imposed by the supervisor) can be thought of as the supervisor’s guideline or target for the 

potential measures of the solvency of the scheme. Moreover, in the specific case that
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{statutory solvency standard} = E {actual solvency measure}, then we know that 

{solvency risk at time t} = Var {actual solvency measure resulting at time t}.

In conclusion, the criterion suitable for keeping the security of the promised benefits over a 

particular time horizon will be orientated toward minimising the solvency risk over the same 

time horizon.

2.1.3.4 Conclusion

Maintaining the stability' of contribution rates corresponds conceptually to minimising the 

contribution rate risk, while maintaining the security of promised benefits corresponds 

conceptually to minimising the solvency risk; here, the solvency and contribution rate risks 

each are formulated by introducing heavy penalties for large departures from their respective 

targets but relatively small penalties for small departures from their respective targets.

Thus, achieving our funding purpose (i.e. coping with both the security and the stability 

according to their relative importance/weight) over a specified projection period corresponds to 

minimising the weighted sum of the contribution risk and the solvency risk over the projection 

period [for a mathematical formulation, see section 4.1.1],

2.1.4 Life-cycle of defined benefit pension scheme

With regard to the stages of the ‘life-time’ of a defined benefit pension scheme, it may be 

possible to introduce three distinct types of scheme: Young, Mature and Declining. This 

classification is virtually based on the exponential progress of a membership in the scheme, 

which will be clear in the following sections.
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To begin with, we need to introduce two important concepts of population theory associated 

with the exponential progress of the membership; stable population and stationary population. 

In actuarial applications of population theory, we will use the two terms population and 

membership interchangeably.

2.1.4.1 Stable membership vs. Stationary membership

We study two fundamental patterns of growth in the number of members m a defined benefit 

scheme in the light of mathematical demography. Although it is possible to describe them on 

the basis of both discrete-time and continuous-time, here we adopt the discrete-time approach 

because it is more understandable in connection with a life table. Also, the mathematical 

analysis and properties derived in the discrete-time approach will be directly applicable to the 

continuous-time approach. For a discrete-time approach, we shall employ some assumptions 

that are based on the study of a deterministic survivorship group or cohort, represented by a 

given life table with age measured in years.

The assumptions are as follows:

(i) All new entrants join the scheme at age a, where a > 0;

(ii) Survivorship in the scheme is determined by the time-independent survivorship function 

from the given life table derived from best estimates of rates of death, which indicates the 

expected number, or number, of survivors at an age y (denote as ly) where y = a, a+1, ...;

(iii) The radix of the function ly is chosen so that la represents the number of new entrants m the 

scheme at age a at time 0;

(iv) The number of new entrants grows geometrically over time t; and

(v) The assumptions (i)~(iv) have been applied for a sufficiently long time so that the 

distribution of each age in the scheme during the intervaluation period (t, t+1) becomes stable.
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The above assumptions enable us to establish the following dynamic growth function of order 

1, for all t e {0, 1, 2, ...} and y e {a. a+1, a+2, ...}. That is, the growth in the number of 

members during (t, t+1) is to be measured in terms of a dynamic membership growth function 

(denote as f) satisfying the following time-varying homogeneous recurrence equation of order 1. 

Smce f  is dependent on the time of entry into the scheme (i.e. t+a-y = z) and la plays the role of 

the radix, then we have

f(z+l) = (1+imz+i) • f(z) with the initial condition f(0) = 1

where, imz+i denotes an annual % growth rate of the number of members aged y which is 

defined as the real growth in f  during the intervaluation period (t, t+1), i.e. inv i = [f(z+l) - 

f(z)]/f(z).

Without loss of generality, we can assume that Prob[l+imz+i > 0, for all z] = 1, and thus there 

exists a z+i satisfying (l+imz+]) = exp(az+i) for all z. So, we obtain the solution of the above 

equation such that

exp(az + a z_i + ... + oq) if z > 1

f(z) = <! 1 if z = 0

exp(az + a z_i + ... + a.i) i f z < - l .

Then, the number of members aged a at time t is given by la-f(t) because z = t, and also the 

number of members aged y at tune t is given by ly-f(t+a-y) for y = a, a+1, a+2, ....

Now, we shall describe the concepts of stable and stationary membership, which deal with 

special cases of the above time-varying equation (i.e. a case of a z = a, constant for all z).

For a fixed and given a, f(z) = exp(az) is given as a solution of f(z+l) = exp(a) • f(z) with the 

initial condition f(0) = 1. The total number of existing members (or persons living) at time t
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co oo

N(t; a, a < y < co) = ^  ly • f(t+a-y) = exp(at) • []T exp(a(a-y)) • ly] and
y=a y=a

CO CO

M(t; a , a < y < co) = y] ly • % • f(t+a-y) = exp(cxt) • []T exp(a(a-y)) ■ ly • %]
y=a y=a

= [1 - exp(a)] • N(t; a , a < y < oo) + exp(a(t+l)) • la, 

where, % = (ly - ly+]) / ly (i.e. the effective annual rate of mortality at age y).

From the above formulae for N(t; a , a < y < oo) and M(t; a , a < y < oo), we can derive the these 

general properties:

(i) The case of a  > 0: the total number of existing members and leaving members each is 

increasing exponentially in the fixed ratio a  over time t, and also the number of existing 

members in each age and leaving members at each age are all increasing exponentially in the 

fixed ratio a  over time t;

(ii) The case of a  < 0: this is the exact opposite to the case of a  > 0, i.e. we can repeat the 

comments in (i), replacing ‘increasing exponentially’ with ‘decreasing exponentially’;

co

(iii) The case of a  = 0: then N(t: a . a < v < oof = E exp(a(a-y)) • ly] and M(t; a , a < y <
y=a

co) = la, that is, both of them are independent of time t (i.e. constant over time t); and

(iv) Any age-related fraction, at time t, of N(t; a , a < y < oo) and M(t; a , a < y < oo) is 

independent of time t, that is, for any ages y0 and yi, y0 < yi, then N(t; a , y0 < y < yi) / N(t; a , a 

< y < co) and M(t; a , y0 < y < yO / M(t; a, a < y < co) are all mdependent of time t, which

(denoted as N(t; a , a < y < oo)) and the total number of leaving members (or deaths) at time t

(denoted as M(t; a , a < y < oo)) are then given, respectively, by
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means that the relative age distribution of existing members and leaving members each is 

constant over time t.

In a demographic sense [see Keyfitz (1985; sections 4.1 & 12.6)], the membership (or 

population) resulting from the special case of a 2 = a, constant for all z, is called a stable 

membership (or population).

As seen m properties (i), (ii) and (iv), ‘a  = constant * 0’ implies that the scheme has a stable 

age distribution, that is, a fixed life table with the characteristic that the number of new 

entrants aged a is increasing (if a  > 0) or decreasing (if a  < 0) exponentially at the rate a  over 

time t, and then the number of existmg members at each age as well as the number of leaving 

members in each age are all increasing (if a  > 0) or decreasing (if a  < 0) exponentially at the 

same rate a. over time t. We note that that in order to distinguish between the cases a  > 0 and a  

< 0, we shall refer to the former as the increasing stable membership and the latter as the 

decreasing stable membership.

Moreover, the membership (or population) resultmg from the special case of ‘a  = O’ is called a 

stationary membership (or population) as a special case of a stable membership (or 

population). In other words, as seen in property (iii), ‘a  = 0! implies that the scheme has a 

stationary age distribution, in which the size of the membership is constant over time t and the 

number of new entrants is equal to the number of leaving members, which illustrates the 

aptness of the name stationary membership [see Bowers et al. (1986), section 18.4],

So far, we have mentioned the concepts of stable and stationary membership, subject to a single 

contingency of death. However, defined benefit schemes normally provide protection against 

multiple contingencies such as early retirement (including withdrawal from employment and
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retirement for disability), death during employment and old-age retirement. As an actuarial 

application of this extension to a pension scheme, we assume that the scheme’s trust deeds and 

rules specify the immediate payment of the total benefits described when the corresponding 

contmgency happens (which is reflected in the following assumption (i)’). In this respect, we 

generalise the earlier concepts in relation to a given multiple decrement model.

For a discrete time approach based on the multiple decrement model, we assume the following:

(i) ’ The term ‘decrement’ means the termination of membership of the scheme due to death, 

disability, withdrawal or old-age retirement;

(ii) ’ Assumptions (i), (iii) and (iv), introduced early in this section, are applied;

(hi)’ All active members retire at age b, where b > a;

(iv)’ Membership in the scheme is determined by the time-independent membership function of 

the given multiple decrement table derived from best estimates of rates of death, disability, 

withdrawal and old-age retirement, which indicate the expected number of members at an age y 

in the scheme (denote as ly(m), where the superscript (m) is added to distinguish it from ly used 

in life table) where y = a, a+1, . . ., b.

Then, ly(m) is generated in such a way that ly(m) = ly.](m) ■ [1 - qy.i(m)] with the initial condition 

la(m) = la and the boundary condition lb(m) = 0 where qv(m) = q /d) + qy{w) + q;-(c) + qy(r), m which 

qy(d) = the dependent annual rate of mortality, qy(w) = the dependent annual rate of withdrawal, 

qy(e) = the dependent annual rate of disability and qy(r) = the dependent annual rate of old-age 

retirement [see Bowers et al. (1986), section 9.6 &10.2],

And also, following the earlier mathematical formulation, we have

b b

N(m)(t; a, a < y < b) = ly(m) • f(t+a-y) = exp(at) • exp(a(a-y)) • ly(m)] and
y=a y=a
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M(m)(t; a , a < y < b) = [1 - exp(a)] ■ N(m)(t; a, a < y < b) + exp(a(t+l)) ■ Ia.

Therefore, we can follow very similar arguments to the case of the single decrement of death; 

as a conclusion, ‘a  = constant ^  O’ implies that the scheme has a stable age distribution (i.e. a 

stable membership) and 'a  = O’ implies that the scheme has a stationary age distribution (i.e. a 

stationary membership).

2.1.4.2 Young, Mature and Declining schemes

In general, the membership progress of a defined benefit pension scheme may be thought of in a 

similar way to the changes occurring in an industry (i.e. the product life-cycle that generally 

takes four consecutive stages in the area of economics [see Harvey (1991; section 13.3)] - 

'innovation stage’, ‘growth stage’, 'maturity stage’, and ‘saturation and decline stage’).

In theory, a company in the innovation and growth stages may be required to employ new 

employees increasingly until reaching the maturity stage in view of the expansion of its current 

business; a company in the maturity stage may not need to mcrease the flow of new employees 

but will need to maintain its current employment policy in view of the stabilisation of its 

current business; but on the other hand, a company in the saturation and decline stage may be 

required to curtail new employment consistently until closmg its current business in view of the 

adverse progress of economic conditions m its business. For a historical example of the product 

life-cycle, we may refer to the British shipbuilding or coal mining industries.

In this respect, we attempt to classify a defined benefit pension scheme into Young, Mature and 

Declining schemes in the light of its long-term running history (here, these three consecutive 

stages in the development of the scheme shall be called the life-cycle of a defined benefit 

pension scheme or simply the scheme life-cycle).
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Prior to specifying each scheme, we may briefly outline the relation between the scheme life- 

cycle and the product life-cycle; that is, a Young scheme might correspond to the scheme run 

by a company in the innovation and growth stages, a Mature scheme to the scheme run by a 

company in the maturity stage, and a Declining scheme to the scheme run by a company in the 

saturation and decline stage.

In order to specify the three distinct schemes (composing the scheme life-cycle) particularly in 

connection with the concept of (increasing or decreasing) stable and stationary memberships, 

we shall here make the assumptions that the level of new recruitment occurs at a fixed entry 

age and that it is increasing or decreasing exponentially at a fixed rate, or constant over time.

(i) Young scheme: the membership age structure can be considered to be closely akin to a 

stable membership as the scheme continues, by the consistent application of a constant 

exponential rate of increase in new entrants entering at the fixed entry age. Then the scheme 

will have ultimately an exponentially growing membership. So, the properties (i) and (iv) of the 

mcreasmg stable membership with a  > 0. introduced earlier in section 2.1.4.2, can be more 

closely applied to the scheme, as the scheme continues.

Therefore, each of the total benefit outgoes and actuarial liability will increase with time but 

the total normal cost will be sufficient enough to pay the total benefit outgoes over time and 

then the difference will create additional funds for the future liabilities, since both the average 

age of active members and proportion of beneficiaries are low and decreasing.

(ii) Mature scheme: the scheme can be considered to have developed from a Young scheme 

through a reasonably long-running operation with the consistent employment of the same 

number of new entrants at a fixed entry age. The property (iii) of the stationary membership
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with a  = 0, introduced earlier in section 2.1.4.2, may be more relevant to the scheme, as it 

contmues.

Therefore, each of the total benefit outgoes and actuarial liability will be constant over time but 

the total normal cost is normally expected to be less than the total benefit outgoes over time and 

then the shortage may be largely met either by the earnings from investments or by cash 

mjection made by the employer, since both the average age of active members and the 

proportion of beneficiaries have been nearly in equilibrium.

(iii) Declining scheme: the scheme can be considered to have been developed from a Mature 

scheme, mainly throughout the adverse progress of long-term economic conditions in the 

employer’s business or the mtroduction of modem technology automation, such as office and/or 

factory automation. So, we may assume that the new entrants at the fixed entry age are 

declining exponentially over time and then the scheme is more closely akin to the decreasing 

stable membership with the properties (ii) and (iv) in the case of a  < 0, introduced in section

2.1.3.2, as the scheme continues. It should also be noted that as time approaches to infinity, the 

membership m a Declining scheme will tend toward zero. Then, different from the case of 

winding up a scheme, the Declining scheme will eventually terminate without any legal liability.

Therefore, allowing only for the retirement benefit, both the total benefit outgoes and the 

actuarial liability will decrease over time but the total normal cost will be less than the total 

benefit outgoes and then the shortage may be largely met either by the earnings from 

investments or by cash mjection made by the employer, since both the average age of active 

members and proportion of beneficiaries are high and increasing.

In summarising section 2.1.4, we note that the increasing stable membership is characterised by 

the property that the membership at each age is growing exponentially in a fixed rate over time,
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and hence it can be applied to a Young scheme. The stationary membership is characterised by 

the property that the membership at each age is independent of time and further the total 

number of new entrants is equal to that of leaving members (which illustrates the 

appropriateness of the name stationary membership), and hence it can be applied to a Mature 

scheme. On the other hand, the decreasing stable membership is characterised by the 

membership at each age is declining exponentially in a fixed rate over time, and hence it can be 

applied to a Declining scheme.

2.1.5 Funded schemes vs. Pay-as-you-go (PAYG) schemes

The question of who supports the benefit provision for the scheme’s members as well as how it 

is financed, is of vital importance to the security of payment of their benefit entitlements.

In other words, if the sponsor of a scheme is assured of continuing support, the entitled benefits 

are likely to be paid directly from the sponsor’s resources as they fall due (without funding 

their payments in advance): a scheme with no arrangements for advance funding made for 

future liabilities (i.e. with no fund of investment assets for future liabilities which can 

accumulate investment returns) is usually referred to as a pay-as-you-go (PAYG) or unfunded 

scheme, in which the financing principle of PAYG schemes is that the amount of contributions 

at time t is equal to that of benefit outgoes at time t. In contrast, if the sponsor of a scheme 

faces a risk of cessation of support at some time in the future (e.g. a potential risk of 

bankruptcy or liquidation), accumulated resources of the scheme for future liabilities play an 

essential role in securing the payment of the benefit entitlements against any potential risk: a 

scheme with arrangements for advance funding made for future liabilities (i.e. with a fund of 

investment assets for future liabilities which can accumulate investment returns) is usually 

referred to as a funded scheme.
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For example, most state pension schemes (providing retirement benefit to retired eligible people 

when they reach the prescribed state pension age) are generally organised m the form of PAYG 

schemes. We note that the UK state pension schemes, the basic state pension scheme and the 

state eamings-related pension scheme, are financed through (compulsory) national insurance 

contributions (levied on earnings and paid by the working population) w'hich are paid into the 

National Insurance Fund. In reality, this fund is not a state pension fund, since it is not 

accumulated to meet the scheme's future liabilities [for practical details of the UK state pension 

schemes, see Harrison (1995; Ch. 4 & 5)]. We note that many PAYG schemes have a small 

liquidity fund for efficient operation (i.e. to respond rapidly to minor-short-term fluctuations in 

the normal benefit outgoes).

In contrast, most occupational pension schemes (i.e. money purchase scheme, defined benefits 

scheme and hybrid scheme based on both of them) are usually set up as pension trust funds, for 

the reason that from the viewpoint of the employee, a PAYG occupational pension scheme may 

cause twofold disaster in the event of failure of the employer’s business, the loss of both the job 

and the pension rights of the employee [see Lee (1986; section 8.4)]; and then, it is necessary to 

protect them from any financial risk of the employer’s business (e.g. bankruptcy or liquidation) 

in addition to taking advantage of any tax incentives (e.g. investment income and realised 

capital gains tax relief).

In the following two subsections, we specify the critical issues in financing funded and PAYG 

schemes and also suggest the solutions available in respect to each issue.

2.1.5.1 Issues in financing funded schemes

Throughout our previous discussions, we have noted that the primary concern of defined 

benefit and hybrid pension schemes is how to set up optimal arrangements for advance funding
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in the light of balancing the conflicting interests between the trustees and the sponsor. However, 

for a money purchase pension scheme, the main interest is in establishing the optimal 

investment strategy of determining the scheme asset mix. These issues, establishing optimally 

the funding arrangement and/or investment strategy, are of common interest in funded schemes. 

As a way for setting up an optimal funding arrangement for such a funded scheme, we can also 

suggest minimising both the solvency risk and contribution risk over a specified projection 

period [see, section 2.1.3],

As a subsidiary pomt, we note that implementing the optimal funding arrangement and 

investment strategy in the funded scheme would have the effect of reducing (or eliminating) the 

risk of the sponsor’s financial difficulties (and hence supporting continuously the scheme in a 

healthy financial status). So, it would not be necessary to impose, as a statutory requirement, 

full funding at any point in its lifetime and/or almost completely risk-free investments on the 

funded scheme.

2.1.5.2 Issues in financing PAYG schemes

PAYG schemes are, in principle, founded on the framework of the sponsor’s commitment to 

supporting continuously schemes without any plan for advance funding.

In our view, the commitment should be based on two principles, sufficient reciprocity and 

persistent solvency (- these corresponds conceptually to the ‘continued goodwill’ and 

‘continued solvency’ of former employers, respectively, expressed in Blake (1992a; p39)): the 

sufficient reciprocity principle may be defined as the willingness of the sponsor not to take an 

unduly biased action affecting either current or future beneficiaries, and the persistent solvency 

principle as the continued promise of the sponsor to guarantee the beneficiaries an acceptable
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level of benefit whenever benefits need to be paid. In this respect. PAYG schemes are suitable 

for social security systems (providing normally such social security benefits as retirement, 

sickness, disability, unemployment and low-income benefits) because the government is often 

regarded as an ultimate guarantor for the commitment but we note that the government support 

for modem social security' schemes can not be guaranteed because of demographic pressures 

(for example, the ageing of many western populations, characterised by the low fertility and 

falling mortality) [see Thane (1989)]. A state pension scheme is commonly operated m most 

industrialised countries as a basic social security programme and we now consider on such a 

state pension scheme.

To begin with, a state pension scheme could be termed a national tax-financed pension scheme, 

since each year’s eamings-related tax incomes are, in principle, designated to be equal to the 

same year’s retirement benefit outgoes according to the PAYG financing principle.

For convenience, we introduce and specify the following three statistical ratios which depend 

on the demographic structure of the population as well as the economic condition of the state 

(primarily, the level of employment, nature of indexing of benefit and relationship to prevailing 

level of inflation):

(a) Support ratio - - the ratio of people of working age to that of pension age (which is defined 

in the UK government White Paper (1994; p27));

As an extension to the support ratio, we can also specify the following:

(b) Member support ratio - - the ratio of working people (i.e. contributors as the future 

beneficiaries) to eligible retired people (i.e. state pensioners as the current beneficiaries); and

(c) Finance support ratio - - the ratio of the average amount of (eamings-related tax) 

contribution paid by overall contributors to the average amount of pension paid to overall state 

pensioners.
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It should be noted that each ratio is a time-varying statistic, since the number of active and 

retired eligible populations each are observable random variables depending explicitly on time. 

The support ratio is the same as the inverse ratio of the so-called ‘old-age dependency ratio’ 

[see Mortensen (1992; Glossary)]. If the persons of working age are all employed and also the 

persons of pension age are all pensioners, the support ratio is equal to the member support 

ratio. Moreover, the support ratio could be used as an approximate measure of the member 

support ratio, particularly in the case of estimating the member support ratio over the next 

generation (about 40-50 years, which is based on the general working life of an individual), 

since the development of the adult population over the next generation can be estimated with 

reasonable accuracy but there will be several practical limitations to forecasting the economy 

of a state over such a long-term period as the length of the next one or two generations.

The process of financing a state pension scheme at a particular time t over a (short-term or 

long-term) projection period will rely completely not only on the member support ratio at time t 

projected by demographic trends but also on the finance support ratio at time t projected by 

economic trends (particularly, the trends of employment).

According to the PAYG financing principle, the financing equation of the scheme can be 

written as follows: for each time t e projection period, say [0, T] where 0 < T < oo,

{average amount of contribution at time t}

= {average amount of pension at time t} / {member support ratio at time t}

(<=> {finance support ratio at time t} = {number support ratio at time t} _1 )

; that is, higher pensions imply a heavier tax burden on contributors in inverse proportion to the 

level of the member support ratio.
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Based on the above equation, we will make only three distinct points (i)~(iii) from the 

standpoint of showing the crucial issues in PAYG financing (of course, these are not 

exhaustive).

As a preliminary, we need to specify the conflicts of interest between the contributors and the 

state pensioners caused by the PAYG financing, which may be compared to the conflicts of 

interest between the trustees and the employer in a defined benefit pension scheme. The main 

interest of the contributors is commonly to avoid the overriding tax payment for pensioners, 

whereas the main interest of the pensioners is to secure an expected level of pension, so these 

interests are mutually contradictory as seen in the above equation. Moreover, the government 

(or supervisory authorities) will play a vital role in balancing these conflicts of interest since 

the government has the responsibility for keeping a high degree of sufficient reciprocity and 

persistent solvency in financing a state pension scheme (note that this government role is 

comparable to the primary role of the actuary in a defined benefit pension scheme, mentioned in 

section 2.1.1). Following the fact that PAYG financing is generally based on projections of the 

future demographic and economic situation [see Government Actuary’s National Insurance 

Fund Long Term Financial Estimates (1990)], the member support ratio is outside the control 

of the government (although the political employment policy will affect the member support 

ratio m a long-term view), while the finance support ratio is essentially under the control of the 

government. Hence, the governmental supervision of the state pension scheme will be directly 

associated with the adjustment of the level of finance support ratio in order to balance these 

conflicts of interest.

(i) In the case that in parallel with the rising tend of a state economy, the size of the newly 

employed workforce is continuously increasing (for example, the case of the stable membership 

with a  > 0, introduced in section 2.1.3.1), then the member support ratio is increasing in time t 

(which implies, from the above equation, that the corresponding finance support ratio is
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decreasing in time t). Therefore, the government could easily balance the conflicts of interest at 

an acceptable level of contribution and/or pension. In other words, since the source of eamings- 

related tax revenue is on the increase, the government has the potential to satisfy both the 

contributors and the pensioners at the same time, for example, by means of fine-tuning the 

current level of contribution downwards and the current level of pension upwards - this 

scenario (i) is not observed today in most western countries;

(ii) In the case that the demographic age distribution and state economy are both almost 

constant (for example, the case of the stable membership with a  = 0 (i.e. stationary 

membership), mtroduced in section 2.1.3.1), then the member support ratio will be almost 

constant over time t (which implies, from the above equation, that the corresponding finance 

support ratio is also almost independent of time t). Therefore, the government could keep the 

scheme in balance. In other words. It is possible to maintain the current financing process in the 

light of balancing the conflicts of mterest; and

(iii) In the case that the member support ratio shows a clear trend among the demographic and 

economic changes towards a declining population of contributors and a rising population of 

pensioners (for example, the case of the stable membership with a  < 0, introduced in section

2.1.3.1), then this situation would cause a significant burden to the government because 

different from the previous two cases, the member support ratio is decreasing in time t (which 

implies, from the above equation, that the corresponding finance support ratio is increasing in 

time t). Therefore, it is quite difficult to balance the conflicts of interest without any loss to the 

members’ interests. This problem, involving difficulties in government finance with respect to 

adverse demographic trends and high unemployment, is currently of vital importance to many 

industrialised countries [see Dilnot et al. (1994; section 3.3)], so we need to discuss it in more 

detail in the next paragraph.
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In reality, balancing the conflicts of interest under circumstances such as case (iii) has been a 

crucial issue in the operation of a state pension scheme. As mentioned in Heubeck (1992), it 

has been widely recognised that the general population model of all member states of the 

European Community (EC) is that of a shrinking and sharply-ageing population as a result of 

increased life expectancy and/or a reduced birth rate in the past; hence, this development can be 

considered as a specific example of case (iii). If the government can freely manipulate the levels 

of contribution and pension under the case (iii), there is no trouble in financing the scheme as 

seen in the above equation but this kind of financing process is completely unacceptable in view 

of the sufficient goodwill principle; in this respect, we shall exclude from our consideration 

such a financing method as simply increasing the contribution level and/or reducing the pension 

level.

Alternatively, the government may consider the following ways of balancing the conflicts of 

interest (either singly or in tandem):

(a) Increasing the state pension ages for men and/or women, which leads to increasing the 

support ratio and member support ratio. This is consistent with the view of Dilnot et al. (1994; 

section 3.5) expressed that “If the population is ageing because of increased longevity, then 

individuals will need a longer period in the labour force to obtain a given level of average 

consumption over their lifetime. This might lead to individuals prolonging their working lives 

by postponing retirement... .”

For example, the UK government has announced the raising of the woman state pension age 

from 60 to 65 (i.e. equal pension age of 65 for both men and women), expected to be phased in 

over the 10 years starting m the year 2010, where this adjustment effect can be measured in 

terms of support ratio, that is, by 2030 year the support ratio, predicted under current state 

scheme, 2.2:1 will be increased to 2.7:1 under the adjustment [statistical source: UK 

government White Paper Vol. 1 (1994; p27)]. We note that this policy of raising the state
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pension ages for men and/or women is also being implemented in other EC member states such 

as Germany, Greece, Italy and Portugal. For example, in Germany: these are currently 63 for 

men and 60 for women but these will be equalised at 65 over the 10 years starting in the year 

2001 and in Italy: these are currently 60 for men and 55 for women but these will be rise to 65 

for men and 60 of women over the 10 years starting in the year 1994 [for more details, see 

Clifford Chance (1993; ppl8 & 33)];

(b) Subsidising the state pension scheme from the other resources of government. However, this 

may cause the other potential problem of increasing the taxes on the working people, so this 

way would not be appropriate from a long-term viewpoint; and

(c) Transforming the PAYG financing of the state pension scheme into a partially funded state 

pension scheme (i.e. using a mixed (hybrid) financing principle of PAYG financing and partial 

funding). However, as mtroduced in section 2.1.3.3, the partially funded state pension fund will 

be also subject to solvency risk (particularly caused by investment risk), so its asset allocation 

strategy has to be, to a large degree, restricted in view of the persistent solvency principle; m 

this respect, the accumulated assets from partial funding should be invested largely in fixed- 

interest and index-linked government securities. For example, the PAYG old age, survivors and 

disability scheme (OASDI) organised by the US has led to a shift towards a partially funded 

basis for the social security programme after a series of financing crises in the 1980s [see 

Dilnot et al. (1994; p59)].

As a conclusion, from a long-term viewpoint, either of (a) or (c), or a mixed combination would 

be considered as appropriate financing methods for state pension schemes in the industrialised 

countries, which are suffering higher PAYG financing burdens caused by an ageing population.
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2.1.6 Conclusions

As for occupational pension schemes, arrangements for advance funding made for future 

liabilities (i.e. funded schemes) are essential from the viewpoint of security for the member’s 

benefit entitlements because of the possibility of the employer becoming unable or being 

unwilling to continue his obligations to pay the promised benefits as they fall due. The security 

problem is even more important in defined benefit schemes than in money purchase schemes, 

since the individual benefit entitlements in a money purchase scheme will be determined in 

connection with the value of the mdividual interest in the fund accumulated.

As discussed in section 2.1.2.8, we can use the funding level or solvency level as an 

appropriate security measure but these levels should be differently defined according to the 

valuation basis being used (i.e. going-concern, run-off or winding-up).

Our purpose of funding in defined benefit schemes is to balance the conflicts of interest 

between the trustees and employer over a projection period (or equivalently, minimise the 

solvency risk and contribution risk simultaneously over a projection period according to the 

relative importance for the particular scheme), whether the assets and liabilities are assessed on 

going-concern, run-off or winding-up valuation bases. Particularly from the viewpoint of the 

supervisory authorities, security (more exactly, solvency) is to be regarded as a main objective 

of funding and stability is to be regarded as a subsidiary objective of funding. For this reason, 

we need to set out the funding targets (i.e. targets of the fund level and contribution rate), which 

have to be chosen in accordance with the valuation basis applied.

Moreover, since solvency considerations are in principle based on the assumption that the 

scheme may be terminated at any time in the future (so, based on the short-term perspective),
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while the funding plan is in principle based on the assumption that the pension provision of a 

pension is a very long-term commitment (so. based on the long-term perspective), it would be 

necessary to take into account the imbalance between the short-term solvency considerations 

and long-term funding plan when determining the funding targets.

Accordingly, we may use the following as appropriate funding targets: at every valuation date t 

over a projection period, {target of fund level at time t on going-concern basis} = {accrued 

actuarial liability at time t}, {target of fund level at time t on run-off basis} = {market related 

cautious liability at tune t}, {target of fund level at time t on winding-up basis} = {market 

related current liability at time t} [see sections 2.1.2.7 & 2.1.2.8] and {target of contribution 

rate at time t} = {normal cost at time t} .

We note that these recommended funding targets are estimated over a projection period by 

means of an adopted funding method (e.g. Current Unit or Projected Unit methods) and/or 

movements of the open pension market because neither the amount of the scheme’s liabilities 

nor the contribution rate required for solvency requirements is known in advance. Furthermore, 

following the Surpluses Regulation 1987 for tax purposes, the Projected Unit method would be 

recommended as the fundamental funding method for the estimation of a suitable funding target 

[see section 2.1.2.6 & paragraph (iii) of section 2.1.2.7], Of course, there is no unique optimal 

funding target because this will depend on the particular circumstances of each pension 

scheme, particularly in relation to the employer’s situation, the economic and demographic 

prospects of the scheme and the statutory regulations imposed by supervisory authorities.
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2.2 General pension funding

2.2.1 Introduction

The title of this section 2.2, general funding plan, is here specified as the combination of 

primary funding methods and supplementary funding methods, mainly based on a going- 

concern valuation basis (which are described in the following sections 2.2.2 & 2.2.3). In 

particular, the term ‘general’ means that these (both primary and supplementary) funding 

methods are the most commonly used in a number of countries including the UK, the USA and 

Canada with the aim of determining a recommended contribution rate.

As outlmed earlier in section 2.1.2.3, the recommended contribution rate would be expressed in 

practical terms as follows: at each valuation date t,

{recommended contribution rate at time t (C,)}

= {normal cost at time t (NCt)} + {adjustment to the normal cost at time t (ADJt)},

in which the primary funding methods provide the normal cost as a regular cost, while the 

supplementary funding methods determine the adjustment to the normal cost as a 

supplementary cost (to the regular cost).

We note here that although the Aggregate method does not have a normal cost nor an actuarial 

liability, it provides a special form of the above formula, which will be shown in section

2.2.4.2.
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2.2.2 Net present value vs. Actuarial present value

As a preliminary to the detailed discussion about funding methods, it will be helpful to consider 

the concept of present value. In the actuarial valuation for the calculation of normal cost and 

actuarial liability, this concept is specified by reference to the actuarial (economic and 

demographic) assumptions, the trust deeds and rules and the primary' funding methods (which 

will be clear in the following subsection (ii)). So, it may cause some confusion with the concept 

of present value generally used by financial economists (so-called, net present value (NPV)); in 

this respect, we shall employ the concept of present value used by pension professionals 

involved in the development of pension funding methods, particularly by pension actuaries (so- 

called, actuarial present value (APV)). These two concepts are separately described in the next 

two subsections (i) and (ii) with the aim of showing some differences between them, which 

depend on the choice of assumptions for the discount function and expected cash flows.

Firstly, we will simply illustrate the concept of NPV on a deterministic and discrete time 

approach, which will provide the basic idea for the APV.

(i) Net present value (NPV):

The net cash flows emerging from an investment project may be determined a priori with 

certainty or estimated as the most likely expected cash flows (i.e. best estimates of the 

prospective cash flows), where (net cash flow at time t) = (cash inflow at time t) - (cash 

outflow at time t) over a specified projection period. We shall here focus on the investment 

project appraisal of deterministic cash flows. As mentioned in subsection (i) in 2.1.2.6, the 

actual prospective cash flows could be specified by a two-dimensional stochastic process 

{(time, amount)} and its appraisal is theoretically available by statistical techniques including 

simulations (e.g. mean and variance analysis). But it may well be more straightforward for
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investors to combine a deterministic approach with a sensitivity analysis (i.e. broadly, using 

expected, optimistic and pessimistic scenarios about the prospective cash flows according to 

the analyst’s perspective of the investment project).

The appraisal of deterministic cash flows involves the conversion to a common point in time 

(usually, viewed as time 0, the present time) because it is necessary to allow for the time value 

of money, inflation and other financial factors (e.g. tax). Then, the subject of how to obtain a 

stable measure with respect to the expected cash flows is of importance in the investment 

appraisal. The commonly used techniques are the discounted cash flow methods, net present 

value (NPV) and mtemal rate of return (IRR) [see, Lumby (1988; Ch. 4)]; we are only 

concerned with the NPV method.

The NPV method is adapted by discounting the deterministic cash flows backwards through 

time with a chosen discount function or a sequence of discount functions. The resulting value of 

the cash flows is usually referred to as the discounted present value or NPV: this is 

mathematically described below using a discrete time approach. (Also, it is possible to adopt a 

continuous time approach)

When employing a deterministic approach, the discount function for an NPV investment project 

appraisal is usually assumed to be constant over the projection penod and based on the 

analyst’s perception of the future sequence of actual rates of return occurring on the investment 

project, except when there are special circumstances so that the NPV is calculated on the basis 

of a historical/experienced sequence of discount functions. In general, the discount function 

suitable for NPV calculations would be presented as a function of a best estimate discount rate 

such as the anticipated mean rate of the prospective rates of return, or as a function of a risk- 

adjusted discount rate (i.e. risk-free discount rate + risk-premium, see Mehta (1992)). The size
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of the risk-premium will reflect the analyst’s perception of the “riskiness” of the project, for 

example, represented by “risk-averse” (i.e. greater risk premium than the project’s perceived 

risk), “risk neutral” (i.e. risk-premium equivalent to the project’s perceived risk) and “risk-

seeking” (i.e. lower risk-premium than the project’s perceived risk).

Thus, the net present value (NPV) for a given project can be expressed as the sum of its 

discounted prospective cash flows:

n

NPV -  ^  { (project’s monetary cash flow at time t) • (project’s discount function)1}
t= o

where, “0” denotes the present time when the project starts; “n” denotes the future time when 

the last cash flow earned on the project occurs; and (project’s discount function) is given in the 

form of (1+best estimate discount rate)'1 or (1+risk adjusted discount rate)"1, as discussed 

above.

(ii) Actuarial present value (APV):

In the actuarial application to pension funding and valuation, the concept of APV is founded on 

two distinct frameworks.

Firstly, we have the valuation interest rate (specified in the actuarial economic assumptions), 

which identifies the appropriate discount function for the scheme’s prospective cash flows 

(here, this discount function shall be called the actuarial discount function as a counterpart of 

the project’s discount function). Secondly, we have the decrement (service) table (specified m 

the actuarial demographic assumptions), which identifies the probability distribution of the 

timing of the scheme’s prospective cash flows associated with either benefit outgoes (on the 

contingencies specified in the trust deeds and rules) or normal cost mcome (specified by the 

primary funding methods).
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Therefore, the concept of APV is distinguishable from that of NPV because the decrement table 

makes it possible to interpret the concept of APV in a statistical sense (i.e. it is, in principle, 

based on a stochastic approach), while the concept of NPV is, in principle, based on a 

deterministic approach. In this respect, we can understand the definition of APV made by 

Bowers and et al. (1986; section 4.2.1) expressed as “the expectation of the present value of a 

set of payments contingent on survival (a contingent annuity)” (note that in Anderson (1990; 

section 6.4), APV is also called the expected present value). However, as noted by Bowers et 

al. (1986; section 10.2), the decrement table can also be used to represent the survivorship of 

the members existing in the scheme subject to given probabilities of the specified contingencies, 

and hence the APV can also interpreted in a deterministic manner.

We note that, although we may make a time-varying assumption as to the actuarial economic 

parameters by using an appropriate stochastic model such as that advocated by Wilkie (1995), 

the actuarial economic parameters are usually determined in a deterministic approach, using a 

time-invariant best estimate such as a mean rate which is constant over time, by reference to 

both the actuary’s analysis of experienced values of any past period and the actuary’s 

perspective as to the future political and economic developments. Further, following the fact 

that the valuation interest rate is the assumed rate of investment return on the scheme’s fund, 

both the valuation interest rate and the actual rates of investment return are measured in the 

same terms, nominal or real (here, ‘real’ is considered in the sense that it represents the rate of 

investment return in excess of the effects of general price inflation).

Therefore, the prospective cash flows (e.g. the accrual of future benefits and normal costs) 

must be considered to be m nominal terms or in real-terms in accordance with the terms 

expressed for the valuation mterest rate. Consequently, the discount function corresponding to 

the project’s discount function for NPV will be identified by the valuation interest rate.
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For the pension funding methods, we introduce the following notation:

PVSt = APV of future salaries of active members existing at time t throughout their expected 

future working lifetimes, computed at tune t;

PVNt = APV of future normal costs of active members existing at time t throughout their 

expected future working lifetimes, computed at time t; and

PVBt = APV of future benefits for all members, including pensioners, existing at time t, 

computed at time t.

For the convenience of our arguments in the next sections 2.2.2 & 2.2.3, we will divide PVBt 

into three distmct components: that is,

PVBt = PVBpt + PVBft + PVBrt

where, PVBpt = APV of past service benefits for the active members existing at time t, 

computed at time t; PVBft = APV of future service benefits for the active members existing at 

time t, computed at time t; and PVBrt = APV of future benefits for all members excluding 

active members (i.e. retired and deferred members) existing at time t, computed at time t.

The above notation can be thought of as representing the average or expected outcomes of the 

actual prospective cash flows, calculated by ignoring the risk of variability of outcomes in 

future. As an extension to the concept of APV, it would be worth considering the present value 

of a stochastic cash flows reflecting the future uncertainty, but this will be the subject of future 

work [see Dufresne (1992) for a discussion of probability distributions of discounted stochastic 

cash flows, characterised by independent and identically distributed cash flows and discount 

functions; Buhlmann (1992) for some preliminary comments on the present value of stochastic 

cash flows and the effect of the stochastic time series of discount functions, characterised by
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the Beta-Binomial distribution, on the present value of stochastic cash flows; and Norberg 

(1995) for some practical applications of the conditional moments of present values of the 

stochastic cash flows characterised by a continuous-time Markov process, using stochastic 

discount indicator functions).

In the next section, the concept of present value will be used separately as APV and NPV.

2.2.3 Primary funding methods

2.2.3.1 Preliminary

The Institute and Faculty of Actuaries (1984, 1988) has listed and provided standard 

descriptions of the five main funding methods, commonly used by actuaries in the UK, with the 

aim of facilitating communication and understanding both within and outside the actuarial 

profession. These are the Current Unit, Projected Unit, Entry Age, Attained Age, and 

Aggregate methods. In the following presentation, we focus on the important features of these 

funding methods. In our nomenclature, each of these methods shall be called a primary funding 

method. However, no mathematical definition of the primary funding methods are given [for 

detailed mathematical definitions, see Dufresne (1986; Ch. 1) using discrete and continuous 

time approaches, Anderson (1992; Ch. 2) using a discrete time approach, and Fujiki (1994; Ch. 

3) using a continuous time approach, which are all differently formulated according to their 

prescribed assumptions].

As expressed in the 1993 report of PLRC [see Vol. 1, section 4.3.10] that “Since the funding 

method is designed to fulfil the funding objective agreed for the particular scheme, there is no 

single standard actuarial funding method .... Much depends on the particular circumstances of
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the employer and the employer’s future strategy and desired pace of funding.”, there is no 

unique best funding method covering all circumstances. Thus, there are a variety of funding 

methods being applied (differently from scheme to scheme according to its own circumstances) 

which may be considered a variation or modification of the primary funding methods.

The primary funding methods can be categorised in various ways, subject to the properties of 

each funding method; for example, the widely recognised classification in the UK is the split 

between accrued benefit methods = {Current Unit method, Projected Unit method} and 

projected benefit methods = {Entry Age method. Attained Age method, Aggregate method} and 

next, the classification made by Dufresne (1986) and Haberman (1992) is the split between 

individual funding methods = {Current Unit method. Projected Unit method, Entry Age 

method} and aggregate funding methods = {Attained Age method. Aggregate method}.

The former classification is based on the actuary’s viewpoint of the scheme’s security; in other 

words, methods in the first category commonly address the security of the members’ accrued 

rights, whereas methods in the second category commonly address the security of the 

members’ prospective nights relying on a particular pattern of future contribution rates. On the 

contrary, the latter classification is subject to whether the actuarial calculations are performed 

for the total members or for individual members. In other words, methods in the first category 

each produce the normal cost and actuarial liability calculated separately for each member and 

summed up to yield totals for all members at the valuation date. However, the Attained Age 

method in the second category produces the normal cost and actuarial liability calculated for all 

members at the valuation date and the Aggregate method in the second category produces a 

recommended contribution rate calculated for all members at the valuation date. For 

convenience, the descriptions for each primary funding method here follow the first 

classification (i.e. accrued and projected).
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For consistency with the earlier discussions in section 2.1.2.6 and the general descriptions, the 

following assumptions are made:

(Al) Valuations are carried out annually; hence, all descriptions are based on a discrete time 

approach;

(A2) The trust deeds and rules specify only final salary retirement benefits for age and service; 

hence, the members existing in the scheme are partitioned into active and retired members;

(A3) A suitable multiple decrement model (the service table) is constructed to represent 

correctly the survivorship of the members existing in the scheme;

(A4) The salary growth rate (including inflation on salaries and promotional salary scale) is 

fixed and constant for each unit periods (denoted by is); hence, the accrual rate of pension 

benefits is the same as the salary growth rate from (A2) and is deterministic;

(A5) The valuation interest rate is fixed and constant for each unit time period (denoted by iv); 

hence, the discount function for NPV or APV is ( 1 + iv) '; and

(Notation) The superscript on the left side of each main symbol is used for describing the 

primary funding method; for example, cuNCt indicates the normal cost at time t calculated by 

the Current Umt method

2.2.3.2 Accrued benefit methods

As a preliminary to the details of each accrued benefit methods, we make the following 

comments. The theoretical funding principle of the accrued benefit methods is that the normal 

cost is calculated to be the level of contribution required to maintain a 100 per cent target 

funding level at each valuation date: that is, if all actuarial assumptions are exactly realised up 

to a fixed valuation date then the actuarial liability is the fund level which is the accumulated 

value of the past normal costs paid when due. Thus, the main aim is to secure the members’ 

accrued rights with stability taking second place. If there have been (actuarial) surpluses or
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deficiencies (or, (actuarial) gains or losses), adjustment to the normal cost is likely to focus on 

restoring the target over an amortisation period determined mainly by the scheme’s actuary.

(i) Current unit method:

The funding principle is described as follows: (a) the actuarial liability at the valuation date is 

calculated as if the scheme would be terminated immediately, based on current salaries for each 

active members (projected salary growth being disregarded) and (b) the each year’s normal cost 

is estimated to meet the sum of that year’s accrual of all benefits for each active members, so 

that in theory this method is designed to build up a 100 per cent funding level based on current 

salaries.

Thus, the actuarial liability and normal cost at each valuation date t are defined as follows: 

{actuarial liability at time t (cuALt)}

= {sum of the actuarial present values (APVs) at time t of the past service pension benefits 

for each active members existing at time t, based on his current salary} + {sum of APVs 

at time t of future pension payments to each retired members existing at time t}

= cuPVBpt + cuPVBrt; and

{normal cost at time t (cuNCt)}

= {sum of the accrual of benefits for each active members existing at time t during the 

intervaluation period (t, t+1), based on his salary projected only as far as the end of 

( t t + 1 ) }

= {sum of APVs at time t of benefits accruing for each active membership existing at time t 

during (t, t+1), based on his projected salary at the end of (t, t+1)} + {sum of the increase 

in the actuarial present value (APV) at time t of the benefits already accrued for each active 

members existing at time t, arising from salary growth during (t, t+1)}

= [cuPVBpt+I / (1 + iv) - cuPVBpt] + is- cuPVBpt.
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For the stability of normal costs, this method requires a continuing and constant flow of new 

members entering at a fixed age (i.e. stationary membership from the start) and requires the 

average past service benefits at each active age to be approximately constant.

In summary, the name Current Unit method can be considered to contain most of the underlying 

funding characteristics: in our explanation, the term 'Current’ means the member’s current 

salary, the term ‘Unit’ means one unit which can be defined as the member’s accrual of benefits 

over each year of active membership years based on the member’s projected salary' at the end 

of that year.

(ii) Projected Unit method:

The principle of this method is the same as for the Current Unit method, except that the 

actuarial liability and normal cost at each valuation date t are commonly calculated by 

reference to the member’s salary projected to retirement age (i.e. the member’s projected final 

salary) rather than the member’s current salary or projected salary over (t, t+1) (i.e. except that 

future salary growth is fully taken into account in the actuarial calculations). Of course, if there 

is no inflation on salaries, and no promotional salary scale, then the Projected Unit method is 

equivalent to the Current Unit method.

Therefore, the actuarial liability and normal cost at each valuation date t are defined as follows: 

{actuarial liability at time t (puALt)}

= {sum of APVs at time t of accrued benefits for each active member existing at time t, based 

on his projected final salary} + {sum of APVs at time t of future pension payments for 

each retired member existing at time t}

= puPVBpt + PUPVBrt; and
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{normal cost at time t (puNCt)}

= {sum of APVs at time t of benefits accruing for each active member existing at time t 

during the intervaluation period (t, t+1), based on his projected final salary}

= puPVBpt+i / (1 + iv) - PUPVBpt.

That is, each year's normal cost is then estimated to meet the sum of that year’s accrual of 

benefits for each active member, so in theory this method is designed to build up a 100 per cent 

funding level based on projected final salaries. Indeed, Thornton & Wilson (1992) conclude 

that “... no strong reasons to use any other method than the projected unit method for funding 

large schemes expected to have a continuing flow of new entrants. ... the majority of actuaries 

are now using the projected unit method”. Also, they point out three attractive features of this 

method: in short, the distinction between the level of funding for accrued benefits and the 

ongoing level of contribution required for accruing benefits, the consistency with the underlying 

premise of a continuing scheme and the use of the estimated future cost of the benefit promises 

made. Thus, this method addresses, to a large degree, the general problem of mismatch between 

the short-term security position and the long-term funding position, which would be a main 

reason for this method being widely acceptable.

Consequently, we can say that the Projected Unit method is a very suitable funding method for 

establishing the funding targets appropriate for both security and stability.

As a summary, we note that the name Projected Unit method can be analysed in a similar way 

to the analysis of the name Current Unit method: that is, the term ‘Projected’ means the 

member’s projected final salary, the term ‘Unit’ means one unit which can be defined as the 

member’s accrual of benefits over each year of active membership years based on the 

member’s projected final salary.
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2.2.3.3 Projected benefit methods

Different from the accrued benefit methods, the theoretical funding principle of projected 

benefit methods takes full account of both the future salary growth and the future accrual of 

benefits for active members (i.e. the total (past and future) service of active members). In 

theory, they are concerned more with achieving a stable pace of funding in the future (ideally, 

producing a level normal cost) than with securing the members’ accrued rights; that is, their 

underlying premise is that the pension scheme of interest is an ongoing entity and its active 

members contmue service up to the assumed retirement age subject to a given multiple 

decrement table. If there have been (actuarial) surpluses or deficiencies, adjustment to the 

normal cost would be carried out particularly from the viewpoint of the sponsoring employer, 

that is, it is likely to be determined with the aim of ensuring stability.

(i) Entry Age method:

Historically, this method was first described (but not named) by Porteous (1936). The funding 

principle is that (a) a (single) normal entry age is assumed to represent the average age of new 

entrants (here, we shall call a member assumed to enter the scheme at a normal entry age the 

notional member) and (b) the normal cost for any active member is defined as a uniform level 

percentage of salary for the notional member from the date of entry to retirement, necessary to 

finance the future service pension benefits for the notional member over his expected future 

working lifetime. Thus, each year’s normal cost for any active member is calculated as if at 

each valuation date he was regarded as the notional member, irrespective of his actual age, and 

thus the resulting normal cost is the same rate for all the active members.

Therefore, it may be appreciated that this method is designed to estimate, on a long-term and 

going-concern position, the normal cost appropriate for future new entrants with the normal
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entry age, rather than for the already existing active members. We note that the normal cost for 

an existing member in mid-career is generally higher than that for a new entrant. To overcome 

this disadvantage, it is possible to incorporate a range of entry ages; for example, regarding 

each member’s actual entry age into the scheme as his normal entry age, the normal cost for 

each active member are effectively fixed at his actual entry and remains level throughout his 

active membership (- this is usually referred to as the Individual Entry Age method).

The actuarial liability and normal cost at each valuation date t are defined as follows:

{normal cost at time t (EANCt)}

= {normal cost for the notional member} • {number of the active members existing at time t}, 

in which the normal cost for the notional member is calculated as

{normal cost for the notional member}

= [ {APV at time t of future service pension benefits for the notional member, based on his 

projected final salary} / {APV at time t of future salaries of the notional member 

throughout his expected future working lifetime}] • {salary of the notional member at time 

t}, which is independent of the actual age of any active member at time t; and

{actuarial liability at time t (EAALt)}

= {sum of APVs at time t of future pension payments to each active member existing at time 

t, based on his projected final salary} - {sum of APVs at time t of future normal costs for 

each active member existing at time t} + {sum of APVs at time t of future pension 

payments to each retired member existing at time t}

= EAPVBt - EAPVNt.

Considering the stability of normal costs, this method requires a continuing flow of new 

entrants with an entry age equal, on average, to the assumed normal entry age. As for the
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security of payment of the members' benefit entitlements, the actuarial liability for active 

members is greater than the accrued liabilities in respect of past pensionable service, since as 

time goes by, the active members will have a higher average age than the assumed normal entry 

age (so, the normal cost required for them should be greater than the normal cost on this 

method); hence, if the funding level on a going-concern basis is maintained at least 100 per 

cent, the scheme holds assets significantly in excess of its accrued liabilities at all times [see 

TPFM (1984; p i5)].

Consequently, this method would cope with the stability and security problems under the going- 

concem basis, but it would have a high potential of generating a systematic surplus, measured 

agamst its accrued liabilities, which is likely to give rise to a tax penalty imposed by surplus 

supervising regulations such as the Pension Scheme Surpluses (Valuation) Regulations 1987 

mtroduced earlier in section 2.1.2.7.

As a summary, we note that the name Entry Age method can also be analysed in relation to its 

principal characteristics: that is, the term ‘Entry Age’ means that the active member’s normal 

cost each year is the new entrant rate at the chosen normal entry age, which is constant over his 

expected future active membership years.

(ii) Attained Age method:

The funding principle is that (a) this method makes no allowance for future new entrants to the 

scheme and (b) the normal cost covers the cost of all future service pension benefits of the 

existing active members by reference to the expected future working lifetime of the members’ 

pensionable service, where the term ‘future service pension benefits’ is identified by the current 

attained age of each member (i.e. total service pension benefits for all active members is

93



exactly divided into past service pension benefits and future service pension benefits by means 

of the current attained ages of the existing active members).

However, this method places no restrictions on funding the past service pension benefits; for 

this reason, there may not be a unique determination of a normal cost or actuarial liability, 

which will be variable according to how the past service pension benefits are funded. In this 

respect, this method is a member of the aggregate funding methods family. However, assuming 

that the normal cost does not cover the past service pension benefits (i.e. the past service 

pension benefits are left to be funded by the supplementary funding methods), the normal cost 

and actuarial liability at each valuation date t can be defined as for the individual funding 

methods: that is,

{normal cost at time t (^NQ)}

= [ {sum of APVs of future service pension benefits for each active member existing at time t, 

based on projected final salaries} / {sum of APVs of future salaries of each active member 

existing at time t throughout his expected future working lifetimes (PVSt} ] • {payroll of 

the active members existing at time t (St)}

= ^PVtft • (St / PVSt),

which means that NCt is determined as a uniform level fraction of St since the future accrual of 

service pension benefits is evenly spread over the working lifetime of the active members by 

means of the PVSt term (i.e. the future accrual rate of benefits is in parallel with the salary 

growth rate from assumption A4).

In other words, NCt • (PVSt / St) implies that a level annuity of NCt per year is accumulated 

over the expected future working lifetime to provide the future service pension benefits; this 

discussion explams the second equality in the following actuarial liability formula, that is,
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{actuarial liability at time t (^AU)}

= {sum of APVs of future pension payments to each active member existing at time t, based on 

his projected final salaries)} - {sum of APVs of future normal costs of each active member 

existing at time t} + {sum of APVs of future pension payments to each retired member 

existing at time t}

(= v PYBt - ^PVNt)

= {sum of APVs of all past service benefits for the active members existing at time t, based on 

projected final salaries} + {sum of APVs of future pension payments to each retired 

member existing at time t}

= AAPVBpt + ^PV B rt,

which is equivalent to the (accrued) actuarial liability under the Projected Unit method because 

AAPVBpl = puPVBpt and ^PVBrt = puPVBrt and then A-AALt = puALt for any t.

Therefore, comparing the Attained Age method with the Projected Unit method (described in 

subsection 2.2.2.2) under the general assumption that the scheme remains open to new entrants, 

younger on average than the currently active members, the normal cost under this method is 

normally higher than that under the Projected Unit method. This is because the former can be 

considered as presenting the average future cost, so it is likely to be estimated to be relatively 

higher for new young entrants than the latter, but as seen in the above formula, the actuarial 

liability under the two methods are the same. For this reason, the Attained Age method has the 

potential for generating a systematic surplus, measured against its accrued liabilities, if the 

initial past service pension benefits have been paid off.

In theory, this method would be suitable for funding a closed pension scheme because as time 

goes on, St is decreasing and approaching zero and so the normal cost tends to zero (i.e. 

asymptotically stable with the equilibrium level equal to zero).

95



In summary, we note that the name Attained Age method can also be analysed in relation to the 

principal characteristics: that is, the ‘Attained Age' plays a vital role in funding because the 

attained ages of the active members existing at a specific time leads to dividing the total service 

pension benefits into two parts, past service pension benefits and future service pension 

benefits, and the funding method is designed to fund the future service pension benefits.

(in) Aggregate method:

The funding principle is that (a) different from the above four funding methods, this method 

does not define a normal cost nor an actuarial liability and (b) the recommended contribution 

rate is determined commonly by the formula: at each valuation date t,

Ct = [ ( AGPVBt - AGFt) / PVSt ] • St

where, AGFt represents the fund level at time t accumulated under the Aggregate method (i.e. the 

value placed on the assets held at time t by the scheme’s actuary).

Remark 2,3: (a) In the case of no salary growth, then (PVSt/St) denotes, in particular, the 

present value of expected future working lifetime of the active membership existing at time t;

(b) The above formula unplies that any imbalance between PVBt and Ft is automatically met 

evenly over the expected future working lifetime of the active membership existing at time t, 

effectively by a level temporary annuity value allowing for projected future growth in salaries 

thereafter (i.e. by PVSt / St); and

(c) If AGPVBt is based on the projected final salaries of active members, then AGPVBt is 

equivalent to EAPVBt or AAPVBt

This method is not really a separate method, but a variation of the earlier defined methods, 

specifically the Entry Age method (particularly in view of the scheme being open to new
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entrants) or the Attained Age method (particularly in view of the scheme being closed to new 

entrants), subject to surpluses/deficiencies being spread over the remaining working lifetime of 

the active membership (which is shown mathematically in section 2.2.4.2).

It is worth finally notmg that if the same actuarial assumptions are applied to each of the 

primary funding methods (except the Aggregate method) and the salary growth rate is > 0, then 

the Current Umt method will produce the lowest actuarial liability among them because the 

others take full account of at least either the future salary growth or the future accrual of 

benefits. Furthermore, under the assumption that Pro[iv, is > -1] = 1 and of a stationary 

membership, Duffesne (1986, section 1.5) compares the transient behaviour of normal costs 

and actuarial liabilities and illustrates numerically that the Projected Unit and Entry Age 

methods produce a relatively quick convergence to its limiting value, in which EAALt is 

relatively higher than puALt for all t, but EANCt is relatively higher than puNCt for a short 

period of time, while EANCt is relatively less than puNCt for a long period of time. These results 

are very similar to those of O’Brien (1984) based on computer simulations allowing for a 

logistic membership growth function and a range of entry ages.

2.2.4 Supplementary funding methods (to Primary funding methods)

In reality, we have no mathematical way of accurately predicting the future. Therefore, the 

normal cost will not be sufficient to finance the actuarial liability because of the likely 

differences between the actual experience and the actuarial assumptions. As mentioned earlier 

in section 2.1.2.3, a supplementary' funding method is designed for spreading variations from 

the normal cost with the aim of limiting fluctuations in funding caused by these likely 

differences. Although there may be, in theory, a variety of methods for controlling any 

undesirable variations, actuaries employ commonly either the Spread method or the
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Amortisation of losses method, as a supplementary method to all of the primary funding 

methods except the Aggregate method.

2.2.4.1 Spread method

This supplementary method is most commonly used in the UK The funding principle is 

described as follows: at each valuation date t, (a) it is expected that each valuation will show an 

overall difference between the actuarial liability at time t (i.e. ALt) and the fund level at time t 

(i.e. Ft); (b) it causes the necessity of the adjustment (i.e. ADJt) to the normal cost at time t (i.e. 

NCt) provided by a primary funding method; hence, (c) the difference, ULt = ALt - Ft (which is 

called (actuarial) unfunded liability, see subsection (iii) in section 2.1.2.8), is required, in 

practice, to be evenly met over an agreed period; in which (d) the term ‘evenly met over an 

agreed period’ would characterise the spreading mechanism of the Spread method and its 

mechanism may be specified mathematically in various ways.

Two forms are commonly used:

- Dividing ULt by the net present value (NPV) of an annuity certain of 1 per unit period, 

payable at the beginning of each period for n-unit periods (positive integer n>l) with the 

discount function (1+ iv)"', a n(iv), (i.e. ULt / a n(iv)), where ‘n’ is usually called the amortisation 

period which refers to the period over which the surpluses/deficiencies at the valuation date are 

run-off through the actuarial valuation process (typically, n = 20-25 years, corresponding 

approximately to the average remaining working lifetime of the active members); and

- Dividing ULt by a level temporary annuity value defined by the formula with the discount 

function (l+ is)/(l+iv), so that at(iv-is) = PVSt / St, (i.e. ULt / at(iv-is)). Of course, we can find 

some integer n satisfying at(iv-is) = a n(iv).
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In view of spreading UL, evenly over a projected period (i.e. in order to assure that a n(iv), at(iv- 

is) ^ 1), it is necessary to assume that Prob(iv, is > -1) = 1 and thus the recommended 

contribution rate at time t under the Spread method would be generally formulated in the 

following form (2.1): for all t,

Ct = NCt + ADJt = NCt + kt ■ ULt, 0 < kt < 1, - - - ( 2 . 1)

in which the value of kt can be determined by time-invariant formula l/a n(iv), time-varying 

formula St / PVSt or other formulae (that holds the property of spreading evenly ULt over a 

decided amortisation period). So, the boundary values in formula (2.1), i.e. kt = 0 and 1, may 

well be excluded but these values each have a specific meaning such that ‘kt=0’ implies taking 

no action for amortising ULt, while ‘kt= P  implies immediate and complete amortisation of ULt 

without spreading into the future: for this reason, these values are included in the uniform 

boundedness condition of kt, as extreme values.

Thus, kt defines the process for amortising UU: in this respect, kt shall be called the spread 

parameter at time t and formula (2.1) the spread funding formula. Then, the above uniform 

boundedness condition 0< kt<l can be considered to be the parameter space of kt, i.e. {kt: 0 < kt

<!}•

From the viewpoint of a classical actuarial valuation, it is usually assumed that iv > 0 and kt= k 

= l/an(iv) constant for all t and then the spread funding formula (2.1) is transformed into its 

specific and restrictive form such that letting dv = iv/(l+iv), we have

Ct = NCt + k • ULt, dv < k < 1 with iv> 0 ---- (2.1)’

; the above term "specific and restrictive’ can be interpreted on the grounds that in comparison 

with formula (2.1) for each time t, kt is fixed and constant, {iv > 0} c  {iv > -1} and {k: dv < k <
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1 with iv > 0} c  {kt: 0 < kt < 1} where the parameter space of k is deduced from the fact that 

for iv > 0, a n(iv) is strictly increasing function of n, a,(iv) = 1 and ¿»(iv) = l/dv.

It should be finally noted that in our later study (in Chapters 3 and 5), even though this is not 

mathematically essential, we will not necessarily deal with kt in (2.1) nor k in (2.1)’ in 

connection with their respective amortisation periods, but we will deal with the parameter 

space, i.e. {kt: 0 < kt < 1} (or {k: dv < k < 1 with iv > 0}), in such a way that {kt: kt a real 

number satisfying 0 < k, < 1} (or {k: k a real number satisfying dv < k < 1 with iv > 0}).

Remark 2.4: (a) In practice, kt would be required to be determined differently according to 

whether the scheme is in surplus or in deficit; for example, on a going-concern valuation basis 

the scheme in deficit would, in general, take the amortisation period at a fixed level (typically 

20-25 years), but on the other hand the scheme in surplus should make arrangements to 

eliminate the excess above the upper limit of tax free funding within five years to follow the 

Pension Scheme Surpluses (Valuation) Regulations 1987. In this case, the scheme’s actuary 

can make several different suggestions, as mentioned in subsection (iii) of section 2.1.2.8, in 

which spreading the surplus evenly over five years would be one. On the other hand, the 

minimum funding requirement (MFR), enacted by the Pensions Act 1995, now puts constraints 

on funding deficiencies - this will be explained in section 3.2.3;

(b) Following Haberman (1994)’s economic interpretation, the spread parameter kt, the fraction 

of ULt that makes up ADJt, can be thought of as a penal rate of interest that is being charged 

on the unfunded liability ULt, except for kt = 0;

(c) In the light of optimal control theory, the spread parameter kt (or corresponding 

amortisation period) can be thought of as a controlling parameter under control of the scheme’s 

actuary and which allows continued readjustment of the transient behaviour of Ct and Ft, and 

accordingly controlling the recommended contribution rate can be completed by way of
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controlling the spread parameter. Thus, it would be desirable to be able to control kt optimally 

subject to a formulated control optimisation problem (which is the main subject in Chapter 5); 

and

(d) As one pioneering approach for optimising the value of the spread parameter in formula 

(2.1)’, we would refer to Dufresne (1986 & 1988) and Haberman (1992, 1993 & 1994), in 

which using a discrete-time and stochastic approach, they specify and investigate the optimal 

region/optimal spread period such that 1 < n < n*, where n* is defined as the minimum value 

that brings to an end the trade-off relationship between the limiting variance of Ft and the 

limiting variance of Ct. However, these can be considered as a non-sequential (or single-point- 

time) optimisation (especially, focused on t cc), rather than a sequential (or multi-time- 

period) optimisation provided by optimal control theory, since its optimal value n* is admissible 

by using a numerical analysis (i.e. trial-and-see method) at some point in time: in this respect, 

their approach is distinguishable from our approach briefly described in (c).

2.2.4.2 Aggregate method vs. General funding plan

We show here that the Aggregate method is a variation of either the Entry Age method plus the 

Spread method or the Attained Age method plus the Spread method, which will address our 

earlier comment in section 2.2.1 in which the term ‘a special form of the above formula’ 

corresponds to the spread funding formula (2.1).

Under the assumption that Prob(iv, is > -1) = 1, the spread funding formula (2.1) can be 

rewritten for a specific choice of kt = St / PVS, e [0, 1] as follows:

Since under the Entry Age method.

eaAJU = EAPVBt - EAPVNt, EAPVNt = EANCt • (PVSt/St) and EAULt = ea AL; - EAFt
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(because the normal cost for the notional member is independent of the actual age of any active 

member at time t (see paragraph (i) in section 2.2.3.3), then

Ct = eaNC + kt . (EAALt - EAFt) = {(EAPVBt - EAFt)/PV St }• St,

which implies that the Aggregate method is in essence a variation of the Entry Age method 

under which the unfunded liability is run-off over the future expected working lifetime of the 

active members.

Next, since under the Attained Age method,

AAALt = AAPVBpt + ^PV B b = ^PV BV  (St/PVSt) and AAULt = ^ A U  - ^F ,,

and thus

Ct = ^N C  + kt • (AAALt - ^F t) = { r 'P V B t - ^F ,) / PVSt } ■ St,

which implies that the Aggregate method is in essence a variation of the Attained Age method 

under which the unfunded liability is run-off over the future expected working lifetime of the 

active members.

In a conclusion, we can say that from the above two cases, the Aggregate method provides a 

special form of the spread funding formula (2.1): in other words, the Aggregate method can be 

considered as a special funding plan of general pension funding plan (although the Aggregate 

method does not have a normal cost nor an actuarial liability).

2.2.4 3 Amortisation of losses method

This supplementary method is most commonly used in Canada and U.S.A, but it is not our 

principal interest, so we shall only discuss briefly the funding principles below [for more 

details, see Duffesne (1986 & 1989)].
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The funding principle is described as follows: (a) this method is based on the (actuarial) gain 

and loss analysis at each valuation date; (b) the (actuarial) loss experienced during the 

intervaluation period (t-1, t), Lt, is defined as Lt = ULt * {value of ULt if all actuarial 

assumptions had been realised during (t-1, t)}; (c) at each valuation date t, the informed 

intervaluation loss, Lt, is spread evenly over a fixed future term, say m (i.e. Lt / am(iv)), in 

which it is necessary to assume that Prob(iv> -1) = 1 in order to assure an(iv) > 1, as in the 

Spread method; and thus, (d) the recommended contribution rate is the normal cost plus the 

sum of liquidated payments which is still in force, that is, at each valuation date t (assuming t > 

1),

m-1

Ct = NCt + ADJt = NCt + £ L t-j / am(iv)
j=0

; here, m would be chosen by the scheme's actuary in consultation with the trustees and the 

employer within a period permitted by the related current law or regulation, typically fixed in 

the range 5—15 years.

Finally, it is worth drawing attention to Owadally & Haberman (1995). They show that using a 

discrete-time and stochastic approach, the Spread method is superior to the Amortisation of 

losses method from the viewpoint of minimising limiting variances of the fund and contribution 

rate levels.

2.2.5 Summary and Conclusion

Primary funding methods each have their own characteristics in generating normal costs, but 

according to these we can classify the primary funding methods into accrued benefit methods 

and projected benefit methods, or individual funding methods and aggregate funding methods.
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Since the actuarial assumptions are usually based on a deterministic approach, using mean 

rates for the various demographic and economic factors (i.e. scheme parameters), any primary 

funding method is unlikely to match exactly emerging experience. Hence, the supplementary 

funding methods are essential in financing the scheme to a desired target of funding level or 

solvency level. In view of spreading evenly the undesirable unfunded liability or (actuarial) 

gains/losses informed at each valuation date, the Spread method (in UK) and the Amortisation 

of losses method (in Canada and USA) are most commonly used. Thus, the recommended 

contribution rate is identified by the normal cost plus the adjustment to the normal cost.

Throughout this section 2.2, we describe the general pension funding plan without a prescribed 

time-invariant relationship (so-called dynamic relationship) between the recommended 

contribution rate and the actuarial valuation results (e g. unfunded liability or funding level).

For this reason, the mechanism for determining the recommended contribution rate is unlikely 

to give a proper indication of the future actuarial valuation results which may be affected by 

the likely fluctuations in demographic and economic movements.

Thus, the general pension funding plan used in the classical actuarial approach to valuation is 

interchangeable with the description static pension funding plan (which is in contrast with the 

dynamic pension funding plan to be considered in the next section 2.3). Here, the term ‘static’ 

is adopted from a static (or instantaneous) system in the field of control theory [see McGillem 

& Cooper (1991; p 14)]. In contrast to a dynamic system, a static system is one in which the 

output response at time t depends only on the input information at time t, and not on any future 

or past input values (i.e. zero-memory system). In other words, considering the mechanism for 

producing the recommended contribution rate, the current reference set {NCt, ULt} available to 

the actuary through the actuarial valuation at time t (corresponding to the input information at

104



time t) determines instantaneously the current value of Ct according to the actuary's choice of 

the value of kt (corresponding to the output response at time t). Hence, this mechanism will be 

newly carried out at each valuation date (i.e. non-sequential) because the output response Ct 

does not depend on the past information set {kj, NCj, ULj; j < t} but depends only on the 

current information set {kt, NCt, ULt}.

As a conclusion, the general pension funding plan used in the classical actuarial approach to 

valuation would be characterised by the terms ‘static’ and ‘non-sequential’.

105



2.3 Dynamic pension funding plan

A dynamic pension funding plan is a funding algorithm or function to generate sequentially a 

recommended contribution rate in the course of time. The full meaning of this title is given m 

the paragraph (iii) in section 2.3.2.2. Throughout this thesis, there is no conceptual loss of 

generality in using the pairs of terms dynamic and sequential or static and non-sequential, 

interchangeably.

2.3.1 Introduction

In an uncertain world, a general pension funding plan used m the classical actuarial valuation 

(in our terms, a static pension funding plan, see section 2.2.3) can not be said to lead to 

securing optimally the promised benefits without undue financial burden being placed on the 

employer - for example the potential of his insolvency/bankruptcy when the scheme is not fully 

funded (i.e. achieving our funding purpose described previously, particularly in section 

2.1.3.4). This is because the static funding plan pays little attention to estimating/examining 

how the scheme’s financial position might appear at each future valuation date (although we 

are not always able to predict the results of this activity with certainty).

For funding purposes, it is necessary, particularly for the pension actuary, to understand how 

the various variables (including scheme parameters) composing the mechanism of pension 

funding interact with one another and evolve with time. This necessity would be an explanation 

for the recent move from a static (or non-sequential) approach to a dynamic (or sequential) 

approach (see the following section 2.3.2.4). Indeed, Daykin et al. (1987) state that “Although 

the EEC and a number of other supervisory authorities adopted a static approach, actuarial 

opinion has moved in favour of the dynamic concept, whether in respect of general insurance,
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life insurance or pension funds” Throughout Chapters 4 and 5, we deal with funding from the 

standpoint of a dynamic approach.

We believe that one of the main branches involved in the development of a dynamic approach is 

optimal control theory (from the field of engineering). Historically, the starting point in 

introducing the optimal control theory into a purpose-orientated activity of decision making 

and/or of analysing the possible misjudgments (e.g. econometrics, operation research and 

actuarial valuations (whether in respect of general insurance, life insurance and pension 

schemes)) would be, as mentioned in Benjamin (1984), the publication of Tustin (1953)’s 

important book.

Let us now restrict our attention to the control of the contribution rate in a defined benefit 

pension scheme. Most of system-related descriptions are based on Dorf (1992) and for further 

details, we have consulted other text books, in particular Jacobs (1993).

2.3.2 Actuarial applications of optimal control theory to pension funding plan

This section is intended to provide a conceptual framework for a dynamic (or sequential) 

pension funding plan rather than to formulate mathematically a dynamic pension funding plan, 

which will be dealt with in Chapters 4 and 5. Various terminologies involved in optimal control 

theory are interpreted in the light of the actuarial valuation.

To begin with, we need to distinguish between the terms ‘system’ and ‘control system’: the 

term ‘system’ is understood as an interconnection of components through the input and output 

devices for their common purposes, while the term ‘control system’ is a system subject to 

control so as to achieve a desired output response by way of one or more controlling variables.
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In short, pension funding can be regarded as a control system subject to control mechanisms 

established by the scheme’s actuary.

2.3.2.1 Mathematical model for pension funding system

In order to gain an understanding of how the pension funding system evolves with time and how 

it is controlled by reference to the information acquired, we must mathematically specify the 

behaviour of the pension funding system.

In practice, the pension funding system is too complicated to describe mathematically and solve 

analytically and hence we need to make some simplifying assumptions. Mathematical modelling 

usually commences from assumptions concerning the system operation, although these 

assumptions may lead to some criticisms on the grounds of validity/reality of the assumed 

mathematical model.

Even though mathematical relations between variables of a model, describing the behaviour of 

a system, can be specified in various forms, for example discrete-time or continuous-time, 

linear or non-linear, static or dynamic and/or deterministic (nonprobabilistic) or stochastic 

(probabilistic), our approach is to model a discrete-time linear dynamic system under the 

following assumptions.

For simplicity, we assume that contribution income and benefit outgo cash flows occur at the 

start of each unit valuation period (e.g. scheme year), and that the administrative costs of the 

scheme are paid separately by the employer and then have no effect on the cash-flows affecting 

the scheme, under which the cash flows of pension fund levels will be well specified by the 

first-order difference growth equation evolving in discrete time (as an assumed reduced 

structural form of the actual pension funding system): for t = 0, 1, 2, . . . ,
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Ft+i = (1 + it+i) • (Ft + Ct - Bt) with the given initial condition F0 - - ( 2 .2)

where

it+i = rate of investment return earned during the intervaluation period (t, t+1), defined in a 

manner consistent with the valuation interest rate (i.e. in nominal or real terms); and 

Bt = overall actual benefit outgo for the intervaluation period (t, t+1).

We note that the fund growth equation (2.2) is of fundamental importance in our thesis; for 

convenience, our discussions in section 2.3 are based on this equation. We can also transform 

this equation into other first-order difference equation under some assumptions, for example, 

the solvency level growth equation [see section 3.2.4], on which we can base similar 

discussions without any difficulty.

In practice, Bt and/or it+] are affected by the demographic and economic environment. If Bt 

and/or it+) are modelled to contain any disturbances, representing the influence of random 

(demographic and economic) environment, the fund growth equation (2.2) becomes a discrete-

time linear dynamic stochastic equation. Otherwise, the fund growth equation (2.2) is a 

discrete-time linear dynamic deterministic equation, in which case the sequence {Bt, it«; t=o, l, 

2, . . .} would be mean values estimated by the pension professionals (particularly, by the 

scheme’s actuary).

In summary, the above discussion about pension funding system is condensed by the diagram 

of Figure 2.1, which is systematically clarified in Figures 2.1.1 and 2.1.2.

{Inputs: Ct, Bt, it+]} -----» F,+1 = (1 + it+i) • (Ft + Ct - Bt) -----> {Output: Ft}

Figure 2.1 Pension funding dynamic system identified by equation (2.2).
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t _________________ Ft ________________ I

Fig. 2.1.1 Pension funding deterministic dynamic system: L F t+] = Ft.

- Random Environmental Disturbances - 

------------- {Inputs: Bt, it+i } ---------------

4

{Input: Ct} ....-> (1 + it+i) • (Ft + Ct - Bt) —» L (Time delay) ----- > {Output: Ft}

t __________________ Ft _________________ 4

Figure 2.1.2 Pension funding stochastic dynamic system when Bt and it+i are all containing 

some disturbances; L Ft+i = Ft.

Finally, we note that as seen in Figures 2.1.1 and 2.1.2, the pension funding dynamic system 

has inputs {Ct, Bt, it+i} and output {Ft} with their own internal transient response mechanism 

(characterised by the time delay L) such that the output does not respond instantaneously to the 

inputs, and then it is required to have a one-dimensional memory inside the dynamic system to 

store the latest output. In this respect, a dynamic system is completely distinguishable from a 

static system characterised by zero-memory. Next, we consider the mathematical model of the 

pension funding control system.

2 .3 2 .2  Mathematical model for pension funding control system

As mentioned in section 2.3.2, the pension funding control system can be regarded as pension 

funding system subject to control mechanism (so-called control law) established by the 

scheme’s actuary. The control law can be classified into open-loop and feedback (or closed-

{Inputs: Ct, Bt. it+]} —> (1 + it+1) • (Ft + Ct - Bt) —> L (Time delay) —> {Output: Ft}
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loop). The open-loop control law determines a recommended contribution rate only on the basis 

of information about the desired output response. There is conceptually no difference between 

the general pension funding plan itself and the open-loop control law because the spread 

parameter in the general funding plan can be thought of as reflecting the desired output 

response, whereas the feedback control law adjusts a recommended contribution rate on the 

basis of information about the desired output response together with information fed back 

about the actual output response; hence, the general pension funding plan subject to regular 

actuarial valuations is a feedback control system. These is clearly shown in Figures 2.2.1 &

2.2.2 given at the end of this section. That is, the system subject to open-loop control law is 

called the open-loop control system and the system subject to feedback control law the 

feedback control system.

Even though each control system has its own advantages and disadvantages [for details, see 

Dorf (1992; Ch. 3)], we prefer to realize our funding purpose by way of a feedback control law 

rather than an open-loop control law, particularly for the distinct advantage that a feedback 

control system provides the ability to adjust the error for both the transient and the steady-state 

cases.

Remark 2.5: (a) e(t) = x(t) - y(t), where e(t) = [control error at time t in the general control 

system (e.g. UL,)], x(t) = [desired output response at time t (e.g. ALt)] and y(t) = [actual 

output at time t (e.g. Ft)]; and

(b) The control error e(t) may be considered in two parts: one part of e(t), known as the 

transient error, which reduces to zero as time increases and the other part of e(t), known as the 

steady-state error, which remains after transient errors have decayed to zero; hence, as t —» oo, 

e(t) = [transient error] + [steady-state error] —» [steady-state error], which may be zero,
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finite, or unbounded. Satisfactory performance of a control system requires that the steady- 

state error should, at worst, be finite.

Therefore, the control error is of vital importance to the performance of a control system. Here, 

we shall introduce some typical performance mdices of a control system and compare these 

with our concepts of solvency risk and contribution rate risk described separately in section

2.1.3.2 and 2.1.3.3. Mathematical definitions of each performance index will be given in 

section 4.1.1.

In order to make control systems behave in some desired way such as reducing control errors, 

we must first define a quantitative measure of the system’s performance representing 

adequately the control errors (so-called performance index) and then by minimising the 

performance index, we would be able to obtain the optimal feedback control law. The 

performance index for control errors is usually formulated in one of three distinct forms on a 

specified time domain: integral/sum of squares of the control errors, integral/sum of the 

absolute values of the control errors and integral/sum of the product of time and squares of the 

control errors (or the absolute values of the control errors) [see Jacobs (1993; section 6.4.1)], 

where the terms 'integral’ and ‘sum’ means that the index is formulated in a continuous-time 

domain and discrete-time domain, respectively. So, the performance mdex for control errors 

conceptually corresponds to the solvency risk over the same time domain [see section 2.1.3.3],

On the other hand, we may need to measure the amount of control effort expended through the 

control action errors (so-called cost of control). The performance index for control action errors 

is usually formulated on a specified time domain as mtegral/sum of the squares of the control 

action errors. So, the cost of control conceptually corresponds to the contribution rate risk over 

the same time domain.
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Considering a performance index only for control errors is not a sufficient index for designing a 

practical, feedback control law because a zero cost of control action means that the decision 

maker (e.g. actuary) is doing nothing for the improvement of the performance of a control 

system. It usually appears in a composite index for control errors and control action errors such 

as m the form of a weighted sum of them. So, the composite index conceptually corresponds to 

the weighted sum of contribution risk and solvency risk over the same time domain [see section 

2.1.3.4],

Thus, analytic control procedures for designing a feedback control law through the minimising 

of a composite performance index are applicable to the pension funding process (in defined 

benefit pension schemes) with the aim of realizing our funding purpose (i.e. minimising the 

weighted sum of contribution risk and solvency risk, see section 2.1.3.4). We note that in 

optimal control theory, the term ‘process’ is the device, plant or system under control, so the 

pension funding process can be regarded as a pension funding control system, which is 

specifically under the control of the scheme’s actuary.

For completeness, we describe how to realize mathematically our funding purpose.

The actuary’s control law is oriented towards determining optimally the recommended 

contribution rate that ensures the realization of the funding purpose. The starting point in 

establishing the optimal control law would be to specify the controlled object, the control goal 

subject to control constraints (if necessary) and the available information (produced from the 

actuarial valuation process).

(i) Controlled object:

The controlled object is that part of a pension scheme which is to be influenced by the control 

action; as seen in Figure 2.1, the pension funding dynamic system identified by equation (2.2)
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is the controlled object because it is the main process generating the control error. Then, the 

mputs {Ct, Bt. it+i} to the controlled object can be regarded as controlling variables and its 

output {Ft} as the controlled variable. However, from the actuary’s viewpoint and from our 

viewpoint, Ct rather than Bt or it+], would be treated as a controlling variable.

(ii) Control goal:

The control goal is to realize our funding purpose as described in section 2.1.3.4. If our 

funding purpose is realizable, then it may be obtained in many ways. Therefore, as a qualitative 

measure of the efficiency of our funding control system, the performance index is first 

formulated m accordance with our funding purpose, and based on this we can adjust optimally 

the controlling variable Ct to realize our funding purpose. Our performance index leads to the 

weighted sum of the contribution risk and the solvency risk over the projection period [for a 

mathematical formulation, see section 4.1.1], Then, the control goal is attained by solving the 

control problem (i.e. minimising the established performance index, with respect to our 

controlling variable Ct, subject to the given constraints). Our specific approach to this control 

problem is to use the method of dynamic programming [see sections 4.2 & 4.3], The resulting 

optimal control law is a linear function of the available information (to be discussed in the next 

paragraph (iii)), which generates an optimal controlling variable (i.e. optimal Ct) sequentially in 

the course of time as a controlling input to the controlled object; in this respect, the optimal 

control law is known as the optimal feedback control law. The optimal feedback control law 

shall be called the dynamic pension funding plan (as mentioned in the title of this section 2.3).

(iii) Available information:

This is a matter for discussion in stochastic control optimisation, and not an issue in 

deterministic control optimisation. Accordmg to the characteristics of available information, 

control problems are classified into control problem with complete state information and 

control problem with incomplete state information.
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(a) control problem with complete state information:

In an ideal situation, the actuarial valuation process must describe the exact financial status of 

the scheme at each valuation date. This is the situation of complete state information (or 

observation). This ideal situation is mathematically modelled by the system equation (2.2) 

designated to generate outputs in the course of time; that is, for every time t, the financial status 

of the scheme at time t is exactly equal to the output response from the controlled ob ject at time 

t. The control problem under this kind of ideal situation is called the control problem with 

complete state information. Considering a control problem with complete state information, it is 

not necessary that at each valuation date t, the actuary has knowledge of frill information on the 

past control history {F0, Fj, . . ., Ft.i, C0, Ci, . . ., Ct-i} in order to determine the current 

controlling variable Ct, smce the current output Ft informed from the actuarial valuation at time 

t, yields full information on the past control history, sufficient to generate the future state 

variables without the knowledge of the past control history. For this reason (i.e. representing 

the state of the funding dynamic system), the output is particularly referred to as the state 

variable and the system equation as the state equation. Introducing the concept of a state 

variable can be of benefit to the actuary in the light of memory efficiency because the past 

control history is increasing with time t as the information gained is retained. Consequently, the 

accessibility of the current state variable removes the disadvantage of needing to retain all of 

the past control history (i.e. the current state variable itself is the complete state information).

(b) control problem with incomplete state information:

In a practical situation, the actuarial valuation process can not always provide the exact 

financial status of the scheme at each valuation date as a result of accounting and auditing 

work. This is the situation of incomplete state information (or observation). The control 

problem under this situation is called the control problem with incomplete state information. 

That is, the state variable Ft is likely to be partial, delayed and/or noise-corrupted, so the 

current state value is no longer available to the pension actuary. Mathematically, the actuary’s
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valuation process can be specified by a so-called measurement process {Zt, t = 0, 1, 2, . . .}, 

which is characterised by the measurement equation such that

Zt = pt - F,_b + cot , t = 0, 1, 2, . . . ---- (2.3)

where ‘pt’ denotes the partial observation parameter at time t, ‘b’ the time delay parameter in 

the observation and ‘cot’ the observation noise (or disturbance) with a given probability 

distribution.

All these features can occur in practice:

- The actuary at time t may be able to observe only certain aspects of the state variable (i.e. in 

the case of 0 < pt < 1, b = 0 and cot = 0);

- The actuary at time t may consult only on the basis of the situation as it was some time ago 

(i.e. in the case of pt ^  0, b > 0 and cot = 0); and

- The actuary at time t may have only noise-corrupted observation overlaid by an observation 

disturbance (i.e. in the case of pt = 1, b = 0 and cot following the given probability distribution).

Of course, in the situation of complete state information (i.e. in a case of pt, b, cot = 0), then

Zt= Ft.

The inability of the actuary to observe the exact value of the state variable could be due to the 

physical inaccessibility of some of the economic scheme parameters (particularly, the real rate 

of return on equities) and/or to maccuracies of the procedures used for measurement for the 

reason that the financial status of the scheme is highly correlated with the random economic 

and demographic environments and it is difficult to collect the necessary information. In other 

cases, it may be very costly to obtain the exact value of the state variable even though it may be
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physically attainable. Thus, delays in knowing the precise financial status may arise because of 

the time taken to produce the required accounting estimates.

Given that the financial status of the scheme would be reviewed at the next valuation which 

would be in 1~3 units’ time, we believe that it is reasonable to focus on a one-unit time delay in 

observations. In practice, a one-year time delay would be the most frequent one. Whenever 

considering a control problem with incomplete state information in this thesis, we assume that 

the measurement equation is of the form, Zt = Ft.i with the given initial condition Z0 = F.i.

In contrast with the actuarial valuation under the complete state information situation, the 

actuary at time t does not have direct access to the current state variable Ft and may need to 

keep the past control history and current valuation result, Zt; that is, the information at tune t 

available to the actuary is given by Yt = {Z0, Z t, . . ., Zt, C.j, C0, C,. . . ., Cm } with the initially 

given information Y0 = {Z0, C.i}.

Remark 2,6: (a) The current state variable Ft is not observable at time t; for this reason, Ft is 

usually called the process or conceptual state variable [see Whittle (1983; Ch. 39)]; and 

(b) Yt is increasing with time as one of the characteristic features of a temporal stochastic 

optimisation problem; hence, in the light of the memory efficiency, it is necessary to find an 

observable state variable which summarizes all the appropriate current information and is 

recursively calculable as a best alternative to the current state variable [see Whittle (1983; Ch. 

39)]. Then, the control problem with incomplete state information can be reduced to problem of 

complete state information by means of a reformulation with respect to the obtained observable 

variable. These discussions are taken further in section 4.3.3.

The above discussion in relation to pension funding control system is summarised by the 

diagrams in Figures 2.2 ~ 2.4.
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To begin with, we interpret the principal factors used in Figures 2.2.1 ~ 2.4. which are all 

associated with equations (2.2) and/or (2.3):

- Controlled object D or s = Pension funding dynamic system with controlling variable Ct and 

controlled variable Ft; here, the superscript D or S denote the pension funding deterministic or 

stochastic dynamic system, respectively [see Figures 2.1.1 and 2.1.2];

- Measurement process = Actuarial valuation process specified by measurement equation (2.3) 

with input {Ft} and output {Zt}, which is involved m the feedback control, assuming Ft or Ft_i;

- {Targets (or Reference variables): ctt, ftt} = recommended contribution target at time t 

(representing the desired level of Ct; e.g. NCt), ctt, and fund target at time t (representing the 

desired level of Ft; e.g. ALt), ftt, which can be regarded as exogenous variables providing the 

external reference information which will be decided by the scheme’s actuary in consultation 

with the trustees and sponsoring employer; and

- Estimator of Ft = process for estimating effectively the current value of the conceptual state 

variable Ft in the light of memory efficiency, under the situation of incomplete state information 

(i.e. Zt = Ft_i), in which the resulting effective point estimate of Ft is denoted as Ft.

The open-loop control law can be more easily formulated than the feedback control law. It may 

be largely dependent on the actuary’s past experience and capacity for forecasting the future 

uncertainty because his desired funding action is straightforward but there is no mechanism to 

fine-tune systematically any misaction (i.e. no feedback path as illustrated below in Figure

2.2.1). On the other hand, most controlled objects are controlled by embedding them m a 

feedback system with the mechanism to fine-tune systematically any misaction (i.e. feedback 

path as illustrated below in Figure 2.2.2) because control engineers study the open-loop 

responses as part of designing and testmg the effects of closing the loop to create a proper 

control system.
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Controlled objectDorS -----> {Output: Ft}

{Controlling variable: Ct}T 

{Targets: ctt, ftt} -----> Open-loop control law

Figure 2.2.1 Pension funding open-loop control system.

Controlled objectDorS -----» {Output: Ft} ----->

{Controlling variable: Ct} t -l

{Targets: ctt, ftt} -----> Feedback control law <----- Measurement process

Figure 2.3 Pension funding feedback/closed-loop control system.

We note that the above ‘Open-loop control law’ is unable to be optimally designed in most 

cases bacause it uses at time t only the target information (not feedback information); for 

example, a general pension funding plan specified by formula (2.1) in section 2.2.4.1, in which 

the spread parameter, kt, can be interpreted as a target level representing the common features 

of the targets ctt and ftt. On the contrary, by applying control optimisation to the pension 

funding dynamic control system, we can realise our funding purpose by way of designing 

optimally the above ‘Feedback control law’. The resulting optimal feedback control law is 

defined as dynamic pension funding plan. The control mechanism can be summarised as in 

Figures 2.3 and 2.4.

Controlled objectDorS -----> {Output: Ft} — — > Measurement process

{Controlling variable: Ct}T ■i

{Targets: ctt, ftt} ------> Optimal feedback control law <----- {Feedback: Zt= Ft} J

Figure 2.3 Optimal pension funding feedback control system under complete state information

(i.e. Zt = Ft).
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We note that the above ‘Optimal feedback control law’ is a dynamic pension funding plan 

under complete state information, designed using control optimisation, which uses at time t not 

only the complete state information fed back from the measurement process but also the target 

information to generate a controlling input Ct to the controlled object.

Controlled objects -----» {Output: Ft} — —> Measurement process

{Controlling variable: Ct} t {Feedback: Zt = Ft_i} -l

t  —» L (Time delay) —> {Feedback: Ct_i} — 4- 

{Targets: ctt, ftt} -----> Optimal feedback control law <----- { Ft} <-----  Estimator of Ft

Figure 2.4 Optimal pension funding feedback control system under incomplete state 

information (i.e. Zt = Ft_i).

We note finally that the above ‘Optimal feedback control law’ is a dynamic pension funding 

plan under incomplete state information, designed using control optimisation, which uses at 

time t not only the current information Ft transmitted from ‘Estimator of Ft’ but also the target 

information to determine the control action Ct. The above ‘Estimator of Ft’ uses at time t not 

only the incomplete state information fed back from ‘Measurement process’ but also the one- 

unit-time delayed control action Ct_i to derive an effective point estimate Ft of Ft. Moreover, 

the combination of ‘Optimal feedback control law’ plus ‘Estimator of Ft’ is usually referred to 

as the optimal feedback controller, which shows the interaction between the separate dual 

functions of estimation and control [see, Jacobs (1993; section 15.3)].

2.3.2.3 The need for dynamic pension funding plan

This section provides some supporting arguments for our introducing the concept of dynamic 

pension funding plan and using this in our approach to pension funding. Our dynamic pension
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funding plan is designed in the form of feedback control in order to cope optimally with both 

the contribution rate and solvency risks, as mentioned in section 2.3.2.2.

Firstly, we consider why we formulate our funding purpose as minimising the (target-related) 

contribution and solvency risks at the same time with their relative importance allowing for the 

specific circumstances of a defined benefit pension scheme.

Benjamin (1989) posed the following pedantic question expressed that “Actuaries have several 

methods of controlling the funding of pension schemes. There is, however, very little formal 

comparison between the methods. If it were possible to consider two pension schemes which 

were identical m all respects except for the method of funding, and we had the complete 

histories laid before us, what criteria would use to decide which method of funding had done 

the better job?”

Although so far we may have no definite criteria suitable for answering these questions, we 

note the views of Loades (1992) expressed that “If the actuarial process is regarded as a 

control system . . .  the criteria for success need to be addressed, taking into account the 

conflicting interests of the members and sponsors of a defined benefit pension scheme”, and 

also of Haberman (1997) expressed in terms of contribution rate and solvency risks [see section 

2.1.3], Here, ‘the conflicting interests of the members and sponsors’ can be translated into 

contribution rate and solvency risks, as described in section 2.1.3.

Consequently, we believe that a reasonable criterion for judging the quality of the pension 

funding process should be established in view of both stability and security (or solvency) with 

the scheme’s own relative weight placed on them (which exactly corresponds to our pension 

funding purpose). In our view, the introduction of the somewhat subjective concept of relative
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weight is essential because, practically, each pension scheme is operating under somewhat 

different financial and demographic environments, for example Young, Mature and Declining 

schemes [see section 2.1.4] and on the other hand, stability and security are essentially in 

conflict with each other to some extent as in the inevitable conflict of interests between the 

trustees and supporting employer.

Secondly, the following statement can be considered as expressing the necessity of designing a 

pension funding plan in the form of a feedback control mechanism (i.e. sequentially controlling 

the contribution and solvency risks at the same time by reference to information fed back about 

the actual financial status of a scheme).

PLRC (1993; section 4.4.9) argues that “Funding is a necessary condition of security but will 

be adequate only if the funding process is sufficiently dynamic and flexible to respond to 

changing circumstances of both assets and liabilities.” This supports our intended approach, 

since the expression ‘sufficiently dynamic and flexible to response to changing circumstances’ 

would be well matched with the characteristics of our dynamic pension funding plan, i.e. 

optimal feedback control law (although the original purpose of this is to address the necessity 

of introducing the minimum solvency level from the viewpoint of the supervisory authorities, 

see section 3.2.2).

Lastly, as quoted in Daykin et al. (1987), Humphrys (1984) argued that “what is needed is a 

forward spread of cash-flow so a clear picture can be represented of what funds will be 

available from time to time in future and what cash will be needed to meet claims and expenses 

as they emerge.”

In our view, the point of the above statement would be the necessity of having knowledge about 

the likely future financial position and making arrangements in advance for the future situation,
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particularly from the words ‘a forward spread of cash-flow’. In this respect, mathematical 

modelling (if well specified) can play a vital role in gaining reliable information about the 

future financial status. Further, optimal control theory will be effective in this requirement 

because the feedback control mechanism is originally based on controlling the future situation 

in advance and sequentially adjusting the controlled object by means of processing the updated 

information.

2.3.2.4 Review of actuarial applications in pension funding

After Benjamin (1984) advocated the actuarial applications of the concepts and methods of 

control theory and stated that “It is likely to be useful to apply the concepts and methods of 

Control Theory to actuarial work . . . Analogy with Control Theory draws attention to the idea 

of d e s ig n in g  actuarial control systems”, there has been broadly two actuarial applications of 

control theory, particularly to the pension funding process:

the first is to control effectively the pension funding process with respect to some controllable 

parameter used in the valuation assumptions; and the other is to control optimally the pension 

funding process with respect to the recommended contribution rates.

(i) The first application is associated mainly with adjusting effectively some parameter used in 

the actuarial assumptions (e.g. valuation interest rate, withdrawal rate) and/or the actuarial 

valuation methods (e.g. frequency of valuations, amortisation period, margin the valuation 

mterest rate) by reference to the actual experience of the scheme parameters (usually, changes 

m the investment rates of return).

At this point, it is worth drawing attention to three distinct works, Benjamin (1989), Loades 

(1992) and Fujiki (1994, Ch. 8) (note that Bejamin (1984) provides the basic tool for Benjamin
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(1989) but his main results are very similar and even extended in Benjamin (1989), so we focus 

on Benjamin (1989)).

(a) Benjamin (1989) is based on a discrete-time, deterministic approach. The variability m 

recommended contribution rates is compared with respect to a time-varying valuation interest 

rate (specified as the arithmetic mean of real interest rates earned in recent years), subject to a 

small change in earned real interest rates (i.e. stationary inputs), in which the recommended 

contribution rate and the valuation interest rate are regarded as a controlled variable (i.e. 

output) and controlling variable, respectively. One most interesting result is that the best 

control law for setting the valuation interest rate is averaging over all past experienced rates. 

Furthermore, it is worth noting that since the actuarial valuation process can be thought of as 

the mechanism for processing information fed back about the actual value of an output (i.e. 

measurement process), his funding process corresponds to the feedback control system (not 

optimal).

(b) Loades (1992) is also based on a discrete-time, deterministic approach, in which he 

investigated how the recommended contribution rates and (actuarial) surpluses respond to a 

periodic oscillation m It (i.e. interest rate net of salary growth observed at time t), subject to a 

separate (not concurrent) change in the valuation methods and a time-varying valuation interest 

rate specified by it = SF • in + (1 - SF) • In where 0 < SF (smoothing factor) < 1.

In his work, the recommended contribution rate and surplus each can be regarded as a 

controlled variable (i.e. output) and each factor in the valuation method as a controlling 

variable. One clear and significant result is that the best control law for the stability of outputs 

with respect to SF is numerically shown as SF = 1, so it = in, ... = io, which implies that the 

stability of outputs depends on the initial value of i0 (usually, it would be determined as the
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arithmetic mean of past experienced sufficient cycles I t ,  t < 0). So, this result is conceptually 

consistent ■with that of Benjamin (1989).

On the other hand, Loades's numerical results based on various scenarios for each controlling 

variable lead to the conclusion that keeping any controlling variable at a fixed value under 

unstable changing environments is unlikely to be an effective control law from the viewpoint of 

the stability of both the contributions and surpluses. Thus, Loades's numerical results show a 

high risk of instability of contributions and/or surpluses, even sometimes insolvency. As a 

supporting example, Khorasanee (1993) reached the same conclusion, in which he compared 

several different pension funding methods with a fixed amortisation period (e g. Projected Unit. 

Attained Age and Entry Age methods) by means of a simulation model based on unstable 

historic investment returns net of salary growth. Consequently, we believe that the starting 

point of both Loades and Khorasanee’s approaches are based on regarding the process of 

funding defined benefit pension schemes as a feedback control system (not optimal) because of 

the presence of regular actuarial valuations.

(c) Fujiki (1994; Ch. 8) is also based on a discrete-time, deterministic approach. As mentioned 

earlier in section 2.1.2.2. he investigated how to modify effectively the actuarial assumptions to 

improve the long-term stability of contributions under separate (not concurrent) changes in real 

investment rates of return (relative to salary growth and pension increase), withdrawal rates 

and equity dividend growth rates. The most interesting result has been described in section 

2.1.2.2; m particular, the best control law for setting the valuation interest rate is consistent 

with those of (a) and (b). In the aspect of a control system, his approach assumes that the 

pension funding process is essentially a feedback control system as in (a) and (b), since the 

recommended contribution rate is a controlled variable and each parameter to be modified is a 

controlling variable and further the actuarial valuation process corresponds to the measurement 

process. Further, his various cash projections of contributions can each be thought of as having
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been generated according to his resulting control law (not optimal), such as changing 

immediately or gradually in relation to the actual experience of each parameter.

(d) Summary: The above approaches can be commonly characterised as follow's:

- All of the obtained decision rules for setting effectively some parameter used in the actuarial 

assumptions and/or valuation methods can be considered as being derived from the posterior 

analysis on the results simulated on each artificial scenario. This exactly corresponds to the 

feedback control law (not optimal) because each scenario virtually represents the actuary's 

subjective plan for his desired output responses but there is a mechanism for processing 

information fed back about the actual output responses (i.e. the actuarial valuation process); 

and

- The form of recommended contribution rate is a priori given as a general pension funding 

plan specified by the Spread method [see section 2.2.3.1]: that is, Benjamin (1989) is based on 

the Projected Umt plus Spread method, Loades (1992) on the Entry Age plus Spread method; 

and Fujiki (1994) on the Projected Unit plus Spread method. However, they do not try to 

optimise the value of some parameter, such as a spread parameter, by a mathematical analysis. 

At this point, it is worth recalling Remark (d) in section 2.2.3.1: that is, Dufresne (1986 & 

1988) and Haberman (1992, 1993 & 1994)'s approaches do not provide sequential 

optimisation provided by optimal control theory, so their approaches are not associated with 

optimal control theory; in this respect, these are excluded from this section.

Consequently, the above approaches (a)~(c) all consider the development of pension funding 

from the standpoint that the pension funding process is regarded as a feedback control system 

which is not optimal.
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(ii) Different from the above subsection (i), the principal idea of the following approaches is 

mtroduced of specifying a suitable performance index so that we can optimise the pension 

funding process with respect to the recommended contribution rates by a mathematical 

analysis; hence, these approaches belong to optimal control theory, whereas the approaches in 

subsection (i) belong to ordinary control theory. Now, four distinct works are briefly described 

separately.

(a)’ O’Brien (1987) is based on a continuous-time, stochastic approach. He derived the optimal 

feedback control law in the form of a linear function of the current state variable; hence, he 

considered a control problem with complete state information (see, subsection (iii) in section

2.3.2.2). The controlled object (i.e. pension funding dynamic system) was linearly formulated 

on the assumptions such that the benefit outgo is a linear growth function of time, growth rate 

in membership and salary, and earned rate of return on the fund are mutually independent 

normal random variables and the scheme is only for active members. The performance index 

was designated to evaluate the control errors and the cost of control (excluding the contribution 

rate target level).

(by Benjamin (1989) is based on a discrete-time, deterministic approach. Usmg a given 

simplified cash projection, he defined the optimal set of future recommended contribution rates 

as being a set minimising the performance index designed to measure the changes in 

recommended contribution rates from year to year (i.e. realising the so-called minimum energy 

control approach in optimal control theory). Hence, different from the other approaches (a)’,

(c)’ and (d)’, his approach failed to provide an optimal feedback control law because the 

controlled object was not given dynamically (i.e. in the form of a difference equation), so the 

optimal set can be obtained simultaneously by utilizing the Lagrangian-multiplier method, not 

sequentially.
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(c) ’ Vanderbroek (1990) is based on a continuous-time, deterministic approach. As in (a)’, she 

also derived the optimal feedback control law in the form of a linear function of the current 

state variable. The controlled object (i.e. pension funding dynamic system) was linearly 

formulated on the assumptions such that the benefit outgo, total payroll and the actuarial 

present value of future benefits are each exponential functions of time. The performance index 

was designated to evaluate the control errors and the cost of control relative to the contribution 

rate target level. She is particularly concerned with the application to the case of national social 

security plans.

(d) ’ Haberman & Sung (1994) is based on a discrete-time, deterministic and stochastic 

approach. They derived the optimal feedback control law in the form of a linear function of the 

current state variable; hence, they considered a control problem with complete state information 

[see subsection (iii) in section 2.3.2.2], The controlled object (i.e. pension funding dynamic 

system) was linearly formulated as in equation (2.2) in section 2.3.2.1; particularly, the 

stochastic controlled object is modelled on the assumption that the investment returns are 

represented by independent and identically distributed random variables. The performance 

index was chosen to evaluate the control errors and the cost of control relative to the 

contribution rate target level. They are in particular concerned with the application to the 

pension funding plan for a defined benefit pension scheme. This investigation can be regarded 

as part of our earlier work, and will be extended and modified primarily in Chapters 4 and 5.

(e) ’ Summary: The above approaches have the following common characteristics, which are 

distinguishable from the approaches in subsection (i), that is,

- They are start with specifying a suitable performance index;

- The controlled object is dynamically formulated in a linear form, except for (b)’;
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- The form of recommended contribution rate is not specified a priori and is to be sought to 

produce the minimisation of an established performance index subject to some constraints by 

means of a mathematical analysis (not numerical analysis); and

- The resulting control law is a function of the current state variable (i.e. optimal feedback 

control law under complete state information), which generates the recommended contribution 

rates sequentially, except for (b)\

2.3.3 Summary and Conclusion

It would be reasonable to organise pension funding by reference to the fund and contribution 

targets and assess the difference between the two sequentially over a projection period. This 

would be realizable by the dynamic pension funding plan derived from the application of 

optimal control theory to pension funding process. In other words, once the pension funding 

process is well specified mathematically and considered as a feedback/closed-loop control 

system, it is likely to be useful to apply the concept of control optimisation.

In this thesis, we shall call the pension funding plan which realizes our pension funding purpose 

by means of control optimisation a dynamic pension funding plan; that is, our dynamic pension 

funding plan is a so-called optimal feedback control law. Thus, our dynamic pension funding 

plan is generally characterised by sequentially and optimally controlling the contribution and 

solvency risks in the course of tune and adjusting the two risks by means of processing 

information generated sequentially in time by the feedback mechanism.

As a conclusion, we shall consider the pension funding process as a feedback control system 

(not an open-loop control system) throughout this thesis for the main reason that our pension 

funding purpose can be realized optimally on a feedback control system by means of
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mathematical analysis (i.e. dynamic programming approach). We note that it is very difficult, 

except by chance, to realize our pension funding purpose optimally on a feedback control 

system by means of numerical analysis (i.e. trial-and-see approach) because generally, it 

requires a considerable number of simulations and our planned future scenarios may not 

completely cover the future range of uncertainty.
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Chapter 3 Mathematical models for the financial strength of defined benefit pension schemes

3.1 Introduction: Basic mathematical model

In this section, we consider schemes providing age-service retirement benefits, which are 

defined by the product of a fixed accrual rate of pension benefits, the number of active service 

years and the (current or projected) salaries. For consistency with our previous discussion in 

Chapter 2, we shall concentrate on constructing a mathematical model on a discrete-time 

domam, subject to some simplifying assumptions, from which we can easily understand the 

behaviour over time of the financial structure of defined benefit pension schemes and the 

relations between variables in the model. We note that the simplifying assumptions employed 

may cause some criticisms on the grounds of validity/reality, as mentioned earlier in section

2.3.2.1 and also that it is possible to derive the continuous-time versions of the following 

models (which are simply given at the end of this section).

3.1.1 Actuarial liability growth equation

Assuming that for a given set of actuarial assumptions, the expected benefit outgoes (EB) and 

the normal costs (NC) each occur at the beginning of each unit valuation period (e.g. scheme 

year), so that the actuarial liabilities (AL) are measured prior to either NC or EB, then the 

following recurrence relation holds over two consecutive valuation dates t, t+1 (corresponding 

to the fund growth equation (2.2) in section 2.3.2.1): for each valuation date t = 0, 1, 2, . . . ,

v ■ V ALt+i = dv • ALt + NCt - EBt { <=> ALt+i = (1+ iv) • (ALt + NCt - EBt) } --(3 .1 )

with the initial condition AL0 specified

where
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V = backward difference operator defined by VALt = AL, - ALn, so that V2ALt = V(VALt) = 

ALt - 2ALt_, + AI4.2 and in general VnAL, = V(Vn_1 ALt), n = 2,3, ...;

iv = assumed valuation interest rate during the unit intervaluation period (t, t+1); 

dv = iv/(l+iv), assumed valuation discount rate during (t, t+1); and

v = (1+iv)’1 = 1 - dv, assumed discount function during (t, t+1)

; we shall call the above first-order linear difference equation (3.1) the actuarial liability growth 

equation.

The dynamic relationship specified by equation (3.1) provides the fundamentals for 

understanding the financing of any type of pension scheme, such as Young, Mature and 

Declining schemes (see section 2.1.4.2).

Remark 3,1: Trowbridge (1952) describes the mature case (i.e. stationary population with no 

inflation and no other growth of salaries over time), for which ALt, NCt and EBtare all constant 

and then the equation reduces to NC + dv • AL = EB, known as the equation of equilibrium (or 

equation of maturity).

3.1.2 Net actuarial liability growth equation

When the present moment is taken as time t+1, the net increase in actuarial liability during the 

intervaluation period (t, t+1), NIL(t, t+1) (= V ALt+0, is known and so the sequence {NIL(t, 

t+1), t = 0, 1, 2, ...} shows the time-path of one-unit-time changes of AL and gives information 

on the development of the scheme’s actuarial liabilities.

Here, we can also establish the linear first-order difference equation of NIL such that for each 

valuation date t = 0, 1 ,2 ,...,
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NIL(t, t+1) = (l+iv) • {NIL(t-l, t) + V(NCt-EBt)} with the initial condition NIL(-1, 0) = AL0

---(3 .2 )

; we shall call this equation the net actuarial liability growth equation (note that NIL(t, t+1) = 0 

in the Trowbridge mature case).

Let ty< ti < t2, where to, fi and t2 e {0, 1,2, ...}and consider the change in AL during the period 

(ty, t2). Then,

ALt -  ALto = A LU -  ALt + ALt -  ALt « • NIL(ty, t2) = NIL(ty, t,) + NIL(tt, t2).

Accordingly, we can generally formulate by mduction as follows: for any k 6 {0, 1, 2, ...} and 

to < ti<  ..., < tk wherety, t,, tke{0, 1, 2,

N I L ( to ,  tk) = N I L ( t o ,  t,) + N I L t y i ,  t2) + . . . + N I L ( t k. , ,  tk) with N I L ( t k, t k)  = 0 - - - (3.3)

; this property shall be called the property of additive consistency in N I L .

3.1.3 Fund growth equation

In section 2.4.2.1, we have already built the fund growth equation (2.2) on a discrete-time 

domain under the assumptions that contribution incomes (Ct) and actual benefit outgoes (Bt) 

occur at the start of each unit valuation period, and that the cost of administration is paid 

separately by the employer: for each valuation date t = 0, 1, 2, ..., and for a given initial 

condition F0, the valuation-output sequence (or capital growth sequence) {F0, Ft, F2, ...} can 

be characterised by the following forward recurrence equation,

Ft+i = (1 + it+i) • (Ft + Ct - Bt) <=> Vt+i • V Ft+i = dt+i • Ft + (Ct - Bt) ---- (^.4)

where dt+i = it+i / (l+ it+i) and vt+i = 1 - dt+i = 1 / (l+it+i).
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This linear dynamic fund growth equation can be thought of as representing the actual financial 

structure for the funding of defined benefit pension schemes.

Remark 3.2: (a) In practice, the asset variability inherent in the asset mix depends on the 

nature and distribution of the scheme’s assets. By denoting t+ as the beginning of each unit 

valuation period, then Ft+ = F, + Ct - Bt (i.e. accumulated fund level at time t+) can be thought

N

of as the sum of fund levels of N types of assets, that is, for integer N > 1, Ft+ = ^  Fk t+
k=l

where Fk,t+ = value of asset-type k at time t+. Hence, it+! = (Ft+] - Ft+) / Ft+ =

N

y X t+I • (Fk t+ /F t+) ,  where itt+] = rate of return earned on the asset-type k during the
k=l

intervaluation period (t, t+1): in other words, there is no loss of generality in taking the value of 

each type asset as non-negative at any time and hence the total rate of return during (t, t+1), 

it+i, is represented by a convex combination of a finite number of {itt+u k=l, 2, ..., N} with its 

smoothing factor 0 < Ftt+/ Ft+ < 1. A number of models of asset portfolio behaviour have been 

discussed in the literature: see, for example. Black (1992b; Ch. 2) for a general mean-variance 

model, Janssen (1994) for a dynamic stochastic asset-liability management model, Wilkie 

(1995) for a stochastic asset model and Dardis & Huynh (1995) and Kemp (1996) for a 

simulation-based asset-liability management model;

(b) In the case of stationary funds (i.e. when Ft = F constant for any t), then the above linear 

dynamic system equation reduces to the linear static system equation, that is, Bt= Ct + dt+1 - F, 

in which dt+i = it+i/(l+it+1), actual discount rate for the period (t, t+1); and

(c) It should be noted that the equation (3.4) would be controlled by Ct (which is, in practice, 

recommended by the pension actuary) sometimes using Bt, which is adjustable with the 

approval of trustees, sponsoring-employer and supervisory authorities, or using both of Ct and 

Bt. Even for a stationary fund, the fund can remain stationary (i.e. constant F) mainly by 

controlling Ct.
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3.1.4 Net fund growth equation

As the counterpart of NIL(t, t+1), the net increase in funds during a unit intervaluation period 

(t, t+1), NIF(t,t+l) (= V Ft+i), is evaluated by the linear first-order difference equation such 

that for each valuation date t = 0, 1 ,2 ,...,

NIF(t, t+1) = (1+it+i) • NIF(t-l, t) + (1+it+i) • V(Ct-Bt) with the initial condition NIF(-1,0) = F0

---(3 .5 )

; we shall call this equation the net fund growth equation (note that NIF(t, t+l)=0 in the case of 

a stationary fund).

Following the same procedure by which the property of additive consistency in NIL has been 

driven, we can easily deduce the following property: for any ke {0, 1, 2, ...} and to < fi <, ..., < 

tk whereto, fi, ..., tke{0, 1 ,2 ,...},

N I F ( to ,  tk) = N I F ( t o ,  t,) + NIF(t], t 2)  + . . . + N I F ( t w , t k)  with N I F ( t k, t k)  = 0 - - - (3.6)

; this property shall be called the property of additive consistency in NIF.

3.1.5 Net unfunded liability (NUL) growth equation

As mentioned earlier m subsection (iii) in section 2.1.2.7, the unfunded liability (denoted by 

UL) is usually defined as ULt = AU - Ft. In addition to ULt, the net increase in UL (denoted by 

NUL) during a unit period (t, t+1) could be also employed as a measure of the financial 

strength of defined benefit pension schemes, in particular for showing how the financial 

strength of the scheme is changing during the intervaluation period. So, we define NUL(t, t+1) 

= UL^i - ULt, which is identical to NIL(t, t+1) - NIF(t, t+1) because ULt = AL. - F,.
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Subtracting equation (3.5) from equation (3.2) leads to the following result: for each valuation

date t = 0, 1, 2, ...,

NUL(t, t+1) = (iv-ALt- it+,-Ft) + [(l+iv)-NCt- (l+it+,)-Ct] - [(l+iv)-EBt- (l+it+,)-Bt] - - - (3.7)

; in particular, NUL(t, t+1) = 0 in the Trowbridge mature and stationary fund cases.

In some situations when valuations are performed every n-unit periods, it is possible only to 

measure the net increase during n-unit period (t, t+n), NUL(t, t+n). The sequence {NUL(t, 

t+n), t=0, n, 2n, ... and n = 0, 1, 2, ...} is also completely determined by the relationship 

NUL(t, t+n) = NIL(t, t+n) - NIF(t, t+n). Furthermore, as established in NIL and NIF, the 

property of additive consistency in NUL is provided by those in NIL and NIF: that is,

NUL(t, t+n) = NIL(t, t+n) - NIF(t, t+n)

= {NIL(t, t+1) + NIL(t+l, t+2) + . . . + NIL(t+n-l, t+n)}

- {NIF(t, t+1) + NIF(t+l, t+2) + . . . + NIF(t+n-l, t+n)}

= NUL(t, t+1) + NUL(t+l, t+2) + . . .  + NUL(t+n-l, t+n).

3.1.6 A specific funding formula based on NUL

In this section, we consider a specific pension funding formula based on NUL. We assume that 

the valuation starts at time 0 and is performed every' unit period (t, t+1), the Trowbridge 

mature case is exactly realised, the scheme’s funds are stationary, and AL0 and F0 are initially- 

given.

The above condition is summarised as follows:

for every te  {0, 1,2, ...}, Bt = EB, EB = NC + dv ■ AL0 and B, = Ct + dt+i • F0 and hence 

NUL(t, t+1) = 0 (i.e. ULt^ UL0 = AL0 - F0, constant for all t).
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Therefore, the corresponding pension funding formula is to be formulated as follows in order to 

maintain ULt at the equilibrium state UL0 for all t subject to Bt = EB for all t:

Ct = NC + dv ■ AL0 - dt+i • F0 for all t e {0, 1, 2, ...} ---- (3.8)

; this funding formula can be regarded as presenting the static funding mechanism for a Mature 

scheme in a discrete-time domain.

In order to achieve stability of the contributions, the scheme’s actuary may have an option to 

adjust dv (i.e. iv) in the on-going valuation process with the intention to reduce the gap between 

the actually experienced dt-F0 and the most likely expected dv-AF0. In this respect, this 

parameter can be thought of as a controlling variable under the control of the scheme’s actuary.

On the other hand, the fund manager is going to face a certain opportunity set of scheme assets 

(i.e. asset allocation decision). Thus, he attempts to achieve an investment rate of return of at 

least dt+i > d./ALo / F0with the purpose of improving the financial strength of the scheme and/or 

reducing the financing burden on the sponsoring employer. However, he is not free to adjust 

exactly its value of dt+i through his asset mix/portfolio selection decision, since dt+i (i.e. it+i) is 

highly dependent on the prevailing investment markets.

Therefore, the pension actuary may face two extreme cases in respect of reducing the 

variability of contribution rates:

The first case is that the actual investment rate of return earned during (t, t+1) is realised 

exactly for all t in accordance with the assumed valuation interest rate (i.e. dt+i = dv for all t). 

Then, there is no necessity' to modify the assumed valuation interest rate (iv). If iv > 0 , then the 

funding plan (3.8) can then be transformed into the following form representing stationary 

funding: that is,
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Ct = NC + (AL0 - F0) / a.(iv), constant for all te  {0, 1,2,...} --(3 .9)

where a»(iv) represents the net present value of the perpetuity-due calculated at iv, assuming

iv>0.

We note that the funding plan (3.9) is consistent with the theoretical result of Haberman (1993) 

considering the stabilisation of future contribution rates such that the lower is the variance of 

investment rates of return, the larger is the amortisation period, that is, as the variance 

decreases to zero the amortisation period increases to infinity. Moreover, if the initial unfunded 

liability (UL0) equals zero, then Ct = NC for all t will result in UL, = UL0 = 0 (i.e. funding level 

= 100%) for all t, which represents the most desirable (or ideal) funding mechanism from the 

viewpoint of stability and security.

In the second case, there is a difference between the valuation interest rate iv and the actually 

experienced investment rate of return it+]. Here, two extreme options are considered (note that 

the other possible options will lie between these two extremes): (a) modifying iv immediately to 

equal it+i and (b) keeping iv deliberately different from it+1.

To begin with, we note that for notational convenience, the superscripts ‘a ’ and ‘b ’ on the left 

side of each principal algebraic symbols are used to indicate that they concern options (a) and 

(b), respectively.

Now, we are concerned with the former option (a) such that iv ->  it+i, while the latter option (b) 

will be discussed at the end of this section. Accordingly, ALt (assumed to be AL0) is changed to 

:‘ALt fixed for the period (t, t+1) and NCt (assumed to be NC) is also changed to "NC fixed for 

the period (t, t+1), since the valuation basis is continuously modified according to the 

investment performance. Then, EB = NC + dv ■ AL0 is no longer applicable because this is 

based on a constant valuation basis.
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Hence, the new actuarial liability growth equation aALt+] = (l+it+i) • (aALt + aNCt - EB) for the 

period (t, t+1) should be applied for the varying valuation basis and the corresponding fund 

growth equation is aFt+] = (l+it+]) • (aFt + aCt - EB) during the period (t, t+1). Supposmg further 

that it+i>0, then aCt = aNC, + (aALraFt) / a„(it+i) for the penod (t, t+1), in which a.(it+1) is 

calculated at the newly determined valuation interest rate it+i for the penod (t, t+1).

Therefore, if the valuation interest rate is adjusted immediately after the change in the actually 

experienced investment rate of return and to the same degree, then aCt is not constant but varies 

according to the fluctuation of the investment performance instead of being maintained at the 

equilibnum state. If it is assumed further that UL0 = 0, then aCt = aNCl will maintain aFt = aALt 

(i.e. funding level = 100%) for all t, which implies that after amortising the initial unfunded 

liability, the policy of adjusting immediately and exactly iv to the investment performance will 

provide the fully funded security of the scheme (although this policy may lead to the instability 

of contribution rates). Consequently, this policy is unlikely to balance the conflicting interests 

between the trustees and the employer.

It is worth recalling that the analyses of Benjamin (1989), Loades (1992) and Fujiki (1994), 

described in subsection (i) in section 2.4.2.4, indicate that a satisfactory policy for determining 

valuation interest rates would be the averaging of the experienced investment rates of return. 

This would seem to balance the conflicting interests of the employer and trustees.

Now', we consider option (b) (i.e. keeping iv different from it+1). Then, there are no changes in 

NCt and ALt (i.e. NCt = (assumed) NC and ALt= (assumed) AL0) and hence EB = NC + dv • 

AL0 is true because this is based on a constant valuation basis. The corresponding fund growth 

equation is bFt+, = (l+it+i) • (bFt + bCt - EB) during the period (t, t+1). According to our funding 

policy (i.e. NUL(t, t+1) = 0), aCt is of the form
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bCt = [(l+iv)/(l+it+i)]-NC + (iv-ALo-it+i • bFt)/(l+it+1) + [(it+1 - iv)/(l+it+i)]-EB for the period 

(t, t+1).

; hence, this funding formula can be interpreted as a linear combination of three terms, each of 

which relates to the gap between the actual investment rate of return and actuarial valuation 

rate.

If it is assumed further that UL0 = 0, then bCt governed by the above formula will maintain aFt 

= AL0 (i.e. funding level = 100%) for all t. This implies that after amortising the initial 

unfunded liability, the funding policy of adjusting the level of bCt (instead of adjusting 

immediately and exactly iv to the realised investment performance as investigated in option (a)) 

will also provide the fully funded security of the scheme but this funding policy may lead to the 

instability of contribution rates. As in option (a), this funding policy is also unlikely to balance 

the conflicting interests of the employer and trustees - the next section addresses this problem.

3.1.7 A general funding formula based on NUL

In this section, we generalise the specific funding formula (3.8) derived in the above section

3.1.6 and compare it with the spread funding formula (2.1)’ mtroduced in section 2.2.3.1.

The sequence of unfunded actuarial liabilities, {ULt; t = 0, 1, 2, ...}, is convertible to that of the 

net increase in UL. defined as {NUL(t, t+1); t = 0, 1, 2, ...}. In general, ULt can be thought of 

as a point measure givmg information on the financial strength of pension schemes at time t, 

but in contrast, NUL(t, t+1) is a period measure showing how the financial strength of the 

pension schemes is developing during the inter-valuation period (t, t+1). So, from the viewpoint 

of the long-term, on-going position, the newly defined measure NUL (and its progress over 

time) may be thought of as a compromise for measuring the financial strength of the scheme to
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balance the conflicts of interest between the trustees and the employer. For example, in the case 

of an underfunded (Young, Mature or Declining) pension scheme, the financial strength of the 

scheme will gradually approach that of a fully funded (i.e. funding level = 100%) state by 

setting up the funding policy as NUL(t, t+1) = Nt < 0, during a control period (how the value of 

Nt is reasonably chosen is illustrated below).

Of course, whenever the above-mentioned three kinds of scheme have already been fully funded 

we can maintain its financial status by keeping NUL(t, t+1) = 0 during the control period. In 

some situations, it may be necessary to fortify the security' of pension schemes, and the pension 

actuary can boost the speed of approaching the desired funding level simply by lowering the 

value of NUL(t, t+1), such that NUL(t, t+1) = Nt" < Nt, during the control period.

Thus, we believe that such a funding policy that NUL(t, t+1) = specified value of Nt for the 

period (t, t+1) could harmonise the conflicts of interest between the sponsoring employer and 

the trustees by means of a reasonable choice of Nt: from equation (3.7), NUL(t, t+1) = Nt leads 

to, for each t,

Ct= [(l+iv)/(l+it+1)]-NCt + (fyALt- it+,-Ft)/(l+it+i) + [Bt- (l+iv)/(l+it+i)-EBt] - Nt/(l+it+1) (3.10)

Here, Nte(-oo, oo) can be thought of as a speed adjusting controlling variable at time t, since it 

should be determined mainly by the compromise between the trustees and the employer on the 

future financial strength of the scheme, and furthermore by any current statutory requirements. 

The Nt determined will then indicate how quickly the scheme moves towards its new required 

funding level. In general, a value of Nt < 0  is suitable for underfunded schemes (i.e. scaling 

down the deficit), that of Nt = 0 for fully-funded schemes and that of Nt > 0 is appropriate to 

the all kinds of over-funded schemes (i.e. scaling down the surplus). Moreover, the funding 

formula (3.10) can be interpreted as a linear combination of three terms, each of which relates
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to the gap between the actual experience and actuarial assumptions: that is, the first can be 

referred to as a term reflecting the difference between iv and it+], [(l+iv)/(l+it+i)] • N C t, the 

second as a term reflecting difference between iv and it+i, EBtand Bt, and ALt and Ft, i.e.

(iv-ALt - it+i-Ft) / (1+it+i) + [Bt - (1+i) / (1+it+i) • EBt], and the last representing the target value 

of NUL, i.e. Nt/(l+it+i) (These terms can be further analysed, usmg algebraic identities, to 

identify the separate contributions to the gap between actual experience and actuarial 

assumptions). In particular, if it+] is exactly equal to iv and Btis given by EBt, then 

C t = NCt + (ALt - Ft)/à-(iv) - Nt/(l+iv).

Consequently, the newly defined funding formula (3.10) can be regarded as another version of 

the spread funding formula (2.1)’, which will be explained at the end of this section.

Now, we shall consider how to determine the control period and how to amortise gradually the 

positive initial unfunded liability (i.e. ULo>0) and eventually achieve the fully funded scheme, 

in the light of a fixed funding policy with respect to time t such that NUL(t, t+ 1 ) = N < 0 for 

all t.

With U L o  > 0, the definite solution of the first-order difference equation N U L ( t ,  t+1) = N  is 

that U L t  = U L o  + N  • t for t = 0, 1, 2, ...; hence, the sequence {LL; U L 0 >  0, t = 0, 1, 2, ...} 

is strictly decreasing and there is no equilibrium state. However, we may interpret the time path 

of U L t as being a constant deviation ( U L 0) from the moving equilibrium state N - t  which is 

decreasing in time t.

Let T be the control period to be taken to achieve a funding level = 100%. Hence, T = 1 + 

(greatest integer < - UL0 / N) by setting UL, = UL0 + N • t = 0, which shows that the length of 

T is proportional to the value of UL0 and inversely proportional to N. Replacing Ntas constant 

N in equation (3.10) and then keeping these contribution rates over a control period [0, T] will
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make the unfunded liability decrease and the funding level reach 100% at time T. The time-path 

of ULt, 0< t <T, is dependent upon both the size of UL0 and the scale of N. During this control 

period, the reduction in volatility of the levels of contribution may be provided by adjusting the 

current valuation rate in the form of the convex combination of two extreme values as 

suggested by Loades (1992) [see section 2.3.2.4], After time T, the pension actuary, if 

necessary, can reduce the value of N to zero in order to maintain the fund ratio at the level of 

100% .

Finally, in order to illustrate the similarity between the spread funding formula (2.1)’ and the 

newly defined funding formula (3.10), we assume that all actuarial assumptions are realised 

exactly and the valuation interest rate iv > 0. Therefore, formula (3.10) reduces to Ct = NCt + 

ULt/a„(iv) - Nt/(l+iv), which is comparable with formula (2.1)’, i.e. Ct = NCt + ULt/a n(iv).

Letting Nt = (l+iv)-[l/a»(iv) - l/a n(iv)]-UL, = - [l/sn(iv)]-ULt makes the above two funding 

formulae equivalent to each other, where sn(iv) = accumulated value of an immediate annuity of 

1 per unit time for n-unit periods (integer n > 1), calculated at iv.

In conclusion, the spread funding formula (2.1)’ can be thought of as a special form of our 

funding formula (3.10).

3.1.8 Continuous-time version of NUL

As derived by Bowers et al. (1976), the continuous-tune version of the actuarial liability 

growth equation (3.1) is that for 5 being the force of valuation mterest and any t e [0, co),

d A L x/d t = 8 • ALt + NCt - EBt with the initial condition ALo specified ---- (3.11)
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Moreover, in the Trowbridge mature case (i.e. NC, and EBt are constant over time t and 

¿/ALtM=0) then the equation reduces to NC + 5 • AL = EB, which can be regarded as the 

equation of equilibrium on a continuous-time domain.

Accordingly, the continuous-time version of the fund growth equation (3.4) will be given as for

any te[0, co),

dF i/d t -  5t • Ft + Ct - Bt with the initial condition F0 specified ---- (3.12)

where 8t = force of investment rate of return at time t.

Additionally, in the case of stationary funds, then equation (3.12) reduces to the linear static 

equation Bt = Ct + 5t • F, which makes the obvious statement that the actual benefit outgoes 

must derive from contributions and/or from the investment return earned on the scheme assets.

On a continuous-time domain, the marginal increase in UL (denoted by MUL as the 

continuous-time version of NUL) at time t can be defined as MUL, = d\JLx/dt = d A L J d t  - 

dF Jd t. Subtraction equation (3.12) from equation (3.11) provides

MULt = (5-AL, - SfFt) + (5-NC, - 5t-Ct) - (5-EBt - 5t-Bt) - - - (3.13)

; in particular, MUL(t) = 0 m the Trowbridge mature and stationary fund cases and further, we 

can establish and discuss a general funding plan based on this measure MUL in a very similar 

manner as m section 3.1.7. Also, assuming that for any given h > 0, NUL(t, t+h) is a 

continuous function of t e  {0, oo), we can define MUL(t) as the instantaneous rate of change of 

NUL, that is, MUL(t) = lim NUL(t, t+h) / h, where h>0 and h->0+ denotes that h tends to
h->0+

zero from above.
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Furthermore, if M U L ( t )  and N U L ( t o ,  t )  are continuous functions of t for t o <  t ,  to  and t e [ 0 ,  co) 

with the initial condition N U L ( t o ,  to )  =  0  specified, and the principle of additive consistency in 

N U L  holds, then we can derive the relationship between M U L  and N U L  such that for to  < t i  <

r t 2
t2, NUL(ti, t2) = J MUL(s)r/s [for the proof, see Appendix 3 given at the end of this 

chapter].

Of course, the above relationship is simply obtainable under the assumption that ULt is 

differentiable at all t: for to < ti < t2,

U L t2 - U Lt = Jt ’ rfULs <=> N U L(t,, t 2) = £  ‘ MUL(s)r/s 

; consequently, NUL can be evaluated from MUL and the reverse is also true.

3.2 Minimum solvency requirement and Minimum funding requirement

3.2.1 Introduction

In section 2.1.2.7, we have already outlined the concepts of the minimum solvency requirement 

(MSR) proposed by the Pension Law Review Committee (PLRC) and of the minimum funding 

requirement (MFR) enacted by the Pensions Act 1995; in particular, the MFR will have a 

significant impact on funding plans in the future (after April 1997) because there is currently 

no statutory requirement for funding the accruing liabilities in advance.

In this section, we shall give some more detailed descriptions about the recommendations for 

the MSR because these will provide a rigorous guidance or yardstick for setting a pension 

funding plan in order to reduce the risk of insolvency of occupational pension schemes. And 

also, the MFR will be briefly described, which has now taken the place of the MFR.
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As discussed earlier in subsection (ii) in section 2.1.2.7, the term ‘solvency’ can be used in a 

way that satisfies the MSR or MFR imposed by a supervisory authority (or government) 

through legislation and/or regulation. Hence, the solvency test is intended to test whether the 

scheme’s assets as assessed by legislation and/or regulation would be sufficient to cover its 

liabilities as assessed by legislation and/or regulation. The method for valuing the scheme 

assets and liabilities must be prescribed for both the MSR or MFR.

3.2.2 Minimum solvency requirement (MSR)

In response to the growing interest in and concern about the security of occupational pension 

schemes following the so-called Maxwell affair (involving the loss of the pension funds through 

the misappropriation of scheme assets), the UK government set up the PLRC as an independent 

committee, under the chairmanship of Roy Goode, professor of law at the university of Oxford, 

in June 1992, soon after Mr. Maxwell’s death in November 1991.

This committee was organised to review the present law and regulation for occupational 

pension schemes and hence ultimately provide useful recommendations for tightening the law 

and regulation for occupational pension scheme management and the administrative 

arrangements.

The objective was to provide greater protection of the accrued pension rights of the (active, 

deferred and retired) members against any kind of Maxwell-type fraud or misappropriation 

which could result in the fund being in deficiency [see Pension Law Reform Volume I Report 

(1993; p iii)] and to restore confidence in occupational pension schemes as a whole. Although 

the PLRC’s 218 recommendations published on 29 September 1993 are addressed mainly to 

the security of occupational pension schemes, we are concerned about the pension funding 

related recommendations, and the so-called minimum solvency requirement (MSR).
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The PLRC recommendations for the MSR are intended primarily to ensure that the schemes 

will be able to meet their legal commitments, as prescribed in the trust deed, to all the scheme’s 

members at least m the level of 90 per cent, even in the event of the schemes being wound up 

immediately.

These can be summarised as follows (for more details, see Pension Law Reform Volume I 

Report, Ch. 4.4):

(Rl) MSR should be introduced for all funded schemes, except those that provide benefits in 

excess of Inland Revenue earning-related limits or earnings caps (e.g. unapproved top-up 

pension schemes);

(R2) A solvency level should be calculated by dividing the fund level by the liability level, in 

which the fund level is the market value of the scheme’s assets and the liability level is the sum 

of cash equivalents, calculated on the same basis as for an individual transfer value, for non-

pensioners (i.e. active and deferred members) and the cost of immediate annuities for 

pensioners;

(R3) A solvency band is introduced in the form of a closed interval [90%, 100%] of all 

solvency levels between a base level of 90% and the minimum solvency standard of 100%;

(R4) Any scheme which falls below the solvency band should restore the solvency level up to 

90% by making an immediate injection of funds within three months (unless the proposed 

Occupational Pensions Regulator allows a longer period than three months); and 

(R5) Any scheme which falls within the solvency band should set up a funding plan to restore 

the solvency level to 100% within three years.

Setting aside the risk of dishonest removal of the scheme’s assets (including fraud, theft and 

some other misappropriation of the scheme’s assets which can lead to the fund being in 

deficiency as, for example, in the Maxwell affair or the collapse of Barings), the MSR would
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reinforce greatly the security of defined benefit pension schemes, rather than that of money 

purchase pension schemes.

As mentioned earlier in section 1.1, m the operation of money purchase pension schemes, the 

members accept most of the risk of poor investment performance and hence this scheme can be 

thought of as being fully funded so that there would be no need to apply the MSR as a rule, if 

the other benefits (e.g. death benefits) are funded from an insurance company.

Consequently, the proposed MSR could be an effective and objective supervisory measure of 

the security of a funded pension scheme, in a particular defined benefit pension scheme. The 

basic idea of the MSR is based on a winding-up (or liquidation) valuation approach (although 

there are some deficiencies in terms of protecting all the members' accrued pension rights in 

comparison with the nature of a winding-up valuation basis, which will be discussed below).

3.2.2.1 Problems of MSR and their alternatives

Firstly, the minimum solvency requirement (MSR) would be unlikely to protect all the 

members' accrued pension rights in full against the potential risk of dishonest removal of the 

scheme’s assets in cases where the sponsoring employer is insolvent and unable to restore lost 

assets. For this reason, the PLRC proposes to establish the compensation scheme (for achieving 

better protection for all the members of occupational pension schemes against the dishonest 

removal of the scheme assets) and the Pension Compensation Board (for considering the 

payment of compensation in cases where the sponsoring employer becomes insolvent as a result 

of the dishonest removal of the scheme’s assets). This proposal is largely introduced in the 

Pension Act 1995 by changing the name of the Pensions Compensation Board, which will be 

responsible for all aspects of the compensation scheme as an administrative body. From the
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viewpoint of pension funding, the PLRC protection measures for all of the members’ accrued 

pension rights of occupational pension schemes would be twofold: the introduction of the MSR 

and the establishment of the compensation scheme.

Secondly, the use of market value of the scheme assets proposed in (R2) suffers from the 

problem of being affected by temporary fluctuations in the prevailing investment market sectors 

(especially, in the equity market); in this respect, the proposed market value of the scheme’s 

assets could be adjusted as in the concept ‘market related fund level’ introduced in subsection 

(ii) in section 2.1.2.6.

Thirdly, as recognised by the PLRC [see Pension Law Reform Volume I Report, section 

4.4.42], the proposed cash equivalents would not be sufficient to ensure the continuing security 

of a defined benefit pension scheme (even in the case of actual winding-up), since the premium 

needed to buy-out the promised benefits of non-pensioners in the prevailing non-profit deferred 

annuity market could be greater than the proposed cash equivalents. An option for guaranteeing 

almost completely the promised benefits could be either to introduce some deliberately cautious 

margins into the actuarial basis used for calculating the cash equivalents (i.e. set out a more 

conservative basis than best estimate) or, in theory, to adapt widely the actuarial basis used for 

calculating the cash equivalents to the prevailing basis for the non-profit deferred annuity 

contracts offered by reputable pension providers.

Moreover, along with the proposed pensioner liabilities calculated as the cost of the appropriate 

immediate annuities, the cash equivalents would also place a great financial burden on the 

sponsoring employer and eventually the members’ benefits could be scaled down. This is 

because a scheme’s investment manager would feel compelled to change most of the portfolio 

of assets from equity and property-based to fixed-interest or index-linked investments (e.g. 

gilts) so as to avoid the volatility on short-term equity and property market conditions and then
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reduce the risk of an unexpected rise in contribution rates (including an immediate cash 

injection) in order to satisfy the statutory minimum solvency standard over a short period (i.e. 

at most within three and quarter years). Hence, this type of investment strategy- would lose the 

long-term investment return on equity and property investments and the prospects of capital 

growth, given that equities and property produce generally higher long-term investment returns 

than gilts [see Thornton & Wilson (1992)].

Therefore, in terms of balancing the security of the promised benefits and the financial burden 

placed on the employer, one option could be that the actuarial basis for calculating the (non-

pensioner and pensioner) liabilities should allow for an equity-based valuation of the liabilities 

and, in parallel, the proposed time limits for restoring solvency (i.e. at most three and quarter 

years) should be extended to some degree by reference to the typical amortisation period of the 

Spread method (e.g. 20-25 years) or the amortisation period of the Amortisation of losses 

method (e.g. 5-15 years) [see section 2.2.3], However, this option would be likely to cause 

some criticisms in terms of weakening the security of the members’ accrued pension rights in 

comparison with the original intentions of the MSR.

Lastly, we note that for the valuation of a large pension scheme, a run-off valuation approach 

would be appropriate (see section 2.1.2.4). However, as seen in (Rl), the size of the scheme’s 

assets does not matter in the MSR. So, it may be realistic to apply the MSR differentially 

according to the size of the scheme’s assets, for example, for a small pension scheme the basis 

for calculating the solvency level would be a winding-up valuation, while for a large pension 

scheme the basis for calculating the solvency level would be a run-off valuation.

In conclusion, the focus of the funding plan for the MSR would be switched from a (long-term) 

going-concern valuation basis to a (short-term) winding-up valuation basis. As mentioned in 

section 2.1.2.6, this winding-up valuation basis could cause a general problem of mismatching
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between these short-term security requirements and the long-term funding plan. For this reason, 

although the accrued pension rights under a winding-up valuation basis would be better 

protected than those under a going-concern or run-off valuation basis, the security supervision 

using a winding-up valuation approach may place a significant financial burden on the 

employer. This kind of financial burden may make a further shift from the defined benefit 

pension scheme towards a money purchase pension scheme, as pointed out m Pension Law 

Reform Volume I Report (1993, section 4.4.43), “The disadvantage of the cash equivalents 

solution is that it changes the nature of the pension promise from eamings-related to money 

purchase.” This move may not be acceptable to employees because defined benefit pension 

schemes were originally designed to provide a stable and adequate level of retirement income 

for the employees but the employees in money purchase pension schemes bear most of the risk 

of poor investment performance.

3.2.3 Minimum funding requirement (MFR)

As discussed in the above section 3.2.2.1, the MSR intrinsically contains several problems, 

particularly from the view of the sponsoring employer. For this reason, the MSR proposed has 

been adjusted mainly in the direction of balancing the security of the promised benefits and the 

financial burden placed on the employer. Here, we shall briefly explain three distinct balancing 

procedures, in relation to the government responses to the MSR.

The first government response to the PLRC recommendations was the White paper, ‘Security, 

Equality, Choice: The Future for Pensions’, published on 23 June 1994, in which the 

recommendations were received with some modification. As for the MSR, the recommendations 

(R1)~(R5) in section 3.2.2, were accepted in the White paper, except that the method of 

calculating the cash equivalents has been modified according to the proposal made by The
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Institute and Faculty of Actuaries: that is, cash equivalents for younger non-pensioners would 

be calculated on the basis of equity investments, movmg gradually to a gilt investment basis for 

those members approaching retirement (older non-pensioners) and for pensioners. Thus, the 

degree of balance between the security of all the members' accrued rights and the financial 

burden placed on the employer will depend on the actuarial basis finally established for the 

calculation of cash equivalents.

As a second response to the PLRC recommendations, the government introduced the Pensions 

Bill on 15 December 1994 in the House of Loads. After a period of further discussion since the 

publication of the White paper, the MSR was adjusted mamly to improve further the 

harmonisation between security and the employer’s financial burden as follows:

- (allowance for equity-based pensioner liability for large schemes): a solvency level should be 

calculated by dividing the fund level by the liability level, in which the fund level is calculated 

on the market value of the scheme’s assets averaged over a period of months and the liability 

level is calculated on the basis for the cash equivalents proposed in the White paper, except that 

for a large pension scheme (with funds over £100 million) about 25% of the pensioner 

liabilities can be valued by reference to an equity rate of return; and

- (extension to the time limits for restoring solvency): a solvency band [90%, 100%] is the same 

as the MSR, but any scheme which falls below the solvency band should return to the basic 

solvency level of 90% within one year and also any scheme which falls within the solvency 

band should set up a funding plan to regain the minimum solvency solvency standard of 100% 

within five years.

Finally, the Pensions Bill was enacted on 19 July 1995 by the Pension Act 1995, which leaves 

the details to regulations. One major feature of the Act is that a series of modifications to deal 

with the MSR related problems (discussed in section 3.3.2.1) have led to changing the name of
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the minimum solvency requirement (MSR, proposed by the PLRC) to the minimum funding 

requirement (MFR, enacted by the Pensions Act 1995) during its progress through the House 

of Lords. As we might envisage from the name change to the MFR, the structure of the MFR 

has a different emphasis from the MSR. The MFR can be summarised as follows:

(LI) The MFR applies to all occupational pension schemes which are not money purchase 

pension schemes or schemes to be prescribed m regulations;

(L2) The MFR requires the value of the scheme assets to be not less than the amount of the 

scheme liabilities (although the broad principles of how the scheme assets and liabilities are 

calculated will be set out in regulations); hence, as mentioned in section 3.3.1, the MFR will 

define a solvency level as that (solvency level) = (amount of the scheme liabilities assessed by 

regulations to be prescribed) / (value of the scheme assets assessed by regulations to be 

prescribed);

(L3) The funding plan (which is termed as a schedule of contributions in the Act) is designed to 

meet the MFR continuously throughout the period to be prescribed by regulations, or to meet it 

by the end of that period; and

(L4) The case that solvency level is less than 90% is considered as a serious underprovision 

and in this occasion the employer must secure an increase of the solvency level up to at least 

90% before the end of a period to be prescribed by regulations, by making an appropriate 

payment to the trustees or managers, by a method to be prescribed or by contributions made 

before the end of that period.

Given (L3) and (L4), the solvency supervision of the MFR would be characterised by the 

solvency band [90%, 100%], as under the MSR, even though the regulations for the methods of 

valuing the assets and liabilities, the time limits for restoring (90% and 100%) solvency level, 

and some other necessary assumptions have not yet been phased in. In particular, how to set 

out the time limits for the restoration of solvency and the actuarial basis used for calculating
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the (non-pensioner and pensioner) liabilities for the MFR will be the most important issues in 

the prescribing regulations.

In addition, as a supervisory authority with overall responsibility for monitoring and 

supervising occupational pension schemes, the Occupational Pensions Regulator proposed by 

PLRC is enacted by the Occupational Pensions Regulatory Authority. This new body will take 

over most of the functions of the existing Occupational Pensions Board, with the power to 

remove, suspend and replace trustees and to order an occupational pension scheme to be wound 

up. under prescribed circumstances.

3.3 Review of studies on the actuarial basis for solvency valuations

Establishing an appropriate actuarial basis for the MSR or MFR is one of the most important 

concerns in the MSR or MFR structure, in particular setting the scheme economic parameters 

which will determine the valuation interest rate and will be concerned with estimating the cost 

of the liabilities (e.g. rate of price inflation, rates of return on equities and gilts and salary 

growth rate).

The basic idea is that funding conservatively on a going-concern valuation improves the 

security of the accrued pension rights mainly through higher contribution rates than would arise 

from a best estimate basis. This leads then to the question of what level of margins in the 

actuarial basis would be appropriate for the purpose of the MSR or MFR (i.e. solvency 

valuations).

At this pomt, it is worth reviewing two distinct approaches to setting the realistic actuarial 

basis for solvency valuations in order to provide a degree of security even in the case of the 

scheme being wound-up, Thornton & Wilson (1992) and Collins (1992):

154



(i) Using the continuous-time equation of equilibrium introduced in section 3.1.8, Thornton & 

Wilson (1992) investigate the effect on pension funds of the investment rates of return deviating 

from the assumed rate of return. One of the most interesting results is that in order to reduce 

the frequency of insolvency on a winding-up valuation basis, a minimum 20% margin between 

the winding-up valuation and the going-concern valuation is suggested as a desirable liability 

solvency margin, that is, {amount of actuarial liability on the winding-up valuation} > 1.20 • 

{amount of actuarial liability on the going-concern valuation}. This suggestion will be used in 

modelling the solvency level growth equation [see section 4.1].

(ii) Employing various economic scenarios in the actuarial basis (with respect to the rate of 

price inflation, equity dividend growth rate and rate of return on gilts, and salary growth rate), 

Collins (1992) shows numerically that in order to reduce the frequency of insolvency and cash 

injection for solvency, firstly the assumed equity dividend growth rate should be less than the 

assumed rate of price inflation, secondly funding should be on a more conservative actuarial 

basis than best estimate and lastly the proportion of gilt-based investment should be greater 

than that of equity-based investment. Following his results, the actuarial basis for solvency 

valuations would be constructed in a manner that each economic scheme parameter includes 

some margins for caution in the actuarial basis (which provides a conservative actuarial basis). 

Also, he shows that simply increasing the target solvency level (in excess of 100%) would not 

reasonably address the problem of maintaining solvency because an additional cash injection is 

inevitably required both to fund and maintain the higher target level. However, we note that in a 

mature scheme once a higher funding level is achieved, investment returns on the higher level of 

assets would reduce the funding burden on the sponsoring employer. Finally, he ends his paper 

with a clear conclusion expressed that “The higher the contributions paid the lower the number 

of insolvencies.” Thus, Collins’ conclusions would suggest that setting a statutory minimum 

solvency or funding standard of 100% is appropriate and setting a conservative actuarial basis
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for solvency valuations plays a vital role in easing the mismatching problem between short-

term solvency requirement (i.e. security) and long-term funding requirement (i.e. stability) and 

also in balancing somewhat the security of the promised benefits and the financial burden 

placed on the employer.

In conclusion, we can follow two distinct approaches in setting the actuarial basis for solvency 

valuations. The first is that suggested by Thornton & Wilson (1992) - we may introduce a 

liability solvency margin to be charged ‘in aggregate’ on the actuarial liability as assessed on a 

going-concern valuation. The second follows Collins (1992) - we may introduce, into the 

actuarial basis used in the going-concern valuation, a deliberate margin for the solvency 

valuation in the choice of each scheme parameter (simply, we shall call this the parameter 

solvency margin). The relation between these two approaches, involving respectively the 

liability and parameter solvency margins, will be discussed in relation to modelling the solvency 

growth equation [see section 3.4.1],
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3.4 Mathematical model for solvency level

Throughout this section, we are concerned with the solvency level for the MSR (proposed by 

the PLRC, see section 3.2.2). In the same line of section 3.1, we shall here focus on building up 

a mathematical model of the solvency level on a discrete-time domam.

3.4.1 Solvency level growth equation

The (non-pensioner and pensioner) liabilities for the MSR (simply, called the solvency liability, 

denoted by SL) is defined as the sum of the cash equivalents for non-pensioners and the cost of 

buying-out immediate annuities for pensioners from a competitive pension provider [see section

3.2.2],

Here, SL is considered as an appropriate volume measure arising from a solvency valuation 

(i.e. winding-up valuation in the MSR), while AL (i.e. actuarial liability) is used as an 

appropriate scheme volume measure from a classical actuarial valuation (i.e. going-concern 

valuation). The mathematical relationship between SL and AL will be specified below. Also, 

the fund growth equation (3.4) is assumed to reflect appropriately the effect of the MSR on the 

investment policy.

Now, we define the solvency level (or solvency ratio) at time t (denoted by SRt) as 

SRt= Ft/SLt, in which there is no loss of generality in taking SLt as non-zero for all te  {0, 1, 2,

. . . } .

By dividing both sides of the fund growth equation (3.4) with SLt+i, we obtain the following 

linear first-order difference equation of SR such that for each valuation date t = 0, 1,2,
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Ft+i / Sty+1 = (1 + it+1) • [SLt / Sty+i] • [Ft / Sty + Ct / Sty - Bt / Sty]

SRt+, = (1 + it+1) • [SLt / SLt+i] - [SRt + CRt - BRt] - - - (3.14)

where

SRt (= Ft/SLt) = solvency level at time t. with given initial condition SRo= F0 /SL0,

CRt (= Ct/SLt) = contribution ratio at time t and 

BR, (= Bt /SLt) = benefit ratio at time t

; we shall call this equation the solvency-level growth equation, which will be modified further 

m the following sections 3.4.3 and 3.4.4.

In practice, there may be a difference between the actuarial liability AL and the solvency 

liability SL. The amount of SL, the sum of the transfer values and the cost of buying-out 

immediate annuities, will be often higher than that of AL. It will be affected by the short-term 

volatility in the (transfer and immediate annuity) market conditions; in this respect, the amount 

of AL could be viewed as the value which smoothes out the short-term fluctuations in the 

amounts of SL. Then, following the view of Thornton & Wilson (1992) introduced m section 

3.3, the relationship between SL and AL would be expressible in the following general form:

Sty = (l+mt) • Aty, for t = 0, 1,2, ... ---(3 .1 5 )

where Aty *  0 and mt ̂  -1 in the line of the assumption Sty 0; mt is specified by the convex- 

combination (interpreted as a weighted average) of immediate annuity market cost adjustment 

and transfer market cost adjustment assessed at time t, that is, mt = [(Aty for pensioners) / Aty]

• [immediate annuity market cost adjustment at time t] + [(Aty for non-pensioners) / Aty] • 

[transfer market cost adjustment at time t]; in this respect, we shall describe mt as the market 

cost adjustment at time t, which is corresponding to the liability solvency margin at time t 

introduced in section 3.3) and can be interpreted as the proportionate experience shortfall at 

time t (relative to Aty), i.e. (SLt- ALt) / Aty.
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The above equation (3.15) implies that the gap between the amounts of ALt and SLt, 

attributable intrinsically to the difference between the actuarial basis for AL valuation and the 

actuarial basis for SL valuation, is specified by the market cost adjustment mt. Of course, 

unless carrying out the actual winding-up procedure used in the Courts, the true value of the 

members' accrued pension rights can not be determined because the true value of their actual 

liabilities arises only from a negotiation between receivers and liquidators (see section 2.1.2.7). 

Thus, assuming that ALt is well presented by the chosen funding method (e.g. Projected Unit 

method. Current Unit method, see section 2.2.2.2) and the actuarial assumptions for the 

purposes of SSAP 24 (i.e. best estimated basis, see section 2.1.2.2), SL, in equation (3.15) is 

designed to express more closely the true value of the actual liabilities by way of employing mt 

and also to indicate that the solvency liability is distinguishable from the actuarial liability.

As mentioned in section 3.3, the need for a realistic and objective actuarial basis for solvency 

valuations would appear to be paramount. The following arguments are essential:

(i) Like the true value of actual liabilities through the actuarial valuation process, the exact 

value of m, is unlikely to be available. The sequence of market cost adjustments {mo, mi, m2, 

...} to be generated through the actuarial valuation process would be derived most likely by 

reference to prevailing quotations by competitive pension providers with respect to the actual 

winding-up of pension schemes. In a practical aspect, we note that the suggestion of Thornton 

& Wilson (1992) (introduced in section 3.3) that SLt = (1 + m) • ALt with the liability solvency 

margin m > 20% may be applicable, where in theory, the value of m has to be an estimate that 

minimises Var(mt) subject to E(mt) = m over a long-time historical market trends (as in a 

similar manner to setting the actuarial basis for SSAP 24 purposes), or may be determined in 

the light of balancing, within any prescribed regulations, the security of the promised benefits 

agamst the financial burden placed on the employer. Of course, the process for determining the

159



value of m needs to be repeated regularly m the light of updated market experience and new 

regulations in order to modify/fine-tune m accordmg to whether or not the currently adopted m 

is appropriate for ensuring that the scheme would remain satisfactorily funded.

(li) Or alternatively, as discussed in section 3.3, the actuarial basis for SL valuation will be set 

out in such a manner that introduces some deliberate margins for the solvency valuation in each 

of the scheme parameters, particularly the scheme economic parameters, so that the resulting 

basis would be more conservative than the best estimates for SSAP 24 purposes.

(iii) The relation between the market cost adjustment and the conservative basis is as follows: if 

ALt is assessed on a more conservative basis than best estimate, then the market rate mt may be 

close to zero (i.e. the gap between the amounts of AL and SL could be closer to zero). In 

theory, the best decision rule for reducing the gap between ALt and SLt (i.e. keeping mt ~ 0) 

would be to introduce the deferred and immediate annuity basis used by competitive pension 

providers into the actuarial basis.

In conclusion, the above arguments (ii) and (iii) lead ultimately to the problem of the extent to 

which it may be appropriate to introduce some margins for solvency valuation in the actuarial 

basis. Even though we may determine separately a suitable degree of margin in respect of each 

of the scheme parameters, the estimation of these margins would be extremely complicated 

because most of the scheme economic parameters are highly correlated to each other. The 

model (3.15) collectively summarises a range of scheme parameter margins for the solvency 

valuation, by means of the market cost adjustment (i.e. liability solvency margin) mt. Thus, mt 

can be thought of as a time-varying exogenous parameter, which will be determined at each 

valuation date t by the scheme actuary by reference to the prevailing quotations by reputable 

pension providers, the imposed regulations, the interests of the trustees and employer, etc.
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3.4.2 Assumptions

We are going to make some assumptions that shall be used to build our discrete-time model of 

solvency level including both the growth in the number of members and the growth in salaries 

(note that most aspects have already been introduced separately in sections 2.2.2.1 and 2.1.4.1, 

except for (A8)):

(Al) Valuations are carried out annually; hence, all descriptions are based on a discrete-time 

approach;

(A2) The trust deeds and rules specify only final salary retirement benefits for age and service; 

hence, the members existing in the scheme fall into active and retired members;

(A3) All new entrants join at age a, where a > 0;

(A4) Retirement is fixed at age r;

(A5) A suitable multiple decrement table (the service table) is constructed to represent correctly 

the survivorship of the members existing in the scheme, which is specified by the time-invariant 

survivorship function ly, where y = a, a+1, ...;

(A6) The radix of the function ly is chosen so that la represents the number of new entrants in 

the scheme at age a at time 0;

(A7) The valuation interest rate is fixed and constant for each unit time period (denoted by iv); 

(A8) The number of new entrants and level of salaries each grows geometrically over time t 

(note that geometric growth is normally used as the discrete-time analogue of the exponential 

growth in a continuous-time domain but the geometric growth is convertible to the exponential 

growth subject to some assumptions as shown in section 2.1.4.1; in this respect, we prefer to 

start with the concept of geometric growth); and

(A9) Assumptions (Al) ~ (A8) have been applied for a sufficiently long time that the 

distribution of each age in the scheme during the intervaluation period (t, t+1) becomes stable.
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The above assumptions enable us to establish the following dynamic growth functions of order

1, for all t € {0, 1 , 2 , . .  .} and current age y e {a, a+1, a+2, . . .}.

Firstly, the following descriptions have already been given in details in section 2.1.4.1. Here, 

we shall briefly restate some parts involved in the development of our model.

The general model of the growth in the number of members during the intervaluation period (t, 

t+1) is to be measured in terms of a dynamic membership growth function (denoted by fi) 

satisfying the following recurrence relationship. Since fi is dependent on the time of entry into 

the scheme (denoted by z, which is t+a-y) and la plays the role of the radix, then we have

fi(z+l) = (l+im2+1) ■ fi(z) with the given initial condition fi(0)=l

where imz+] denotes an annual % growth rate of the number of members aged y which is 

defined as the real growth in fi during the intervaluation period (t, t+1), i.e. [fi(z+l)-fi(z)]/fi(z).

Considering a stable membership (i.e. a geometric growth in membership), we have (1+invO = 

1+im, constant for all z, and Prob[im > - l j  = 1, and then

fi(z+l) = (1+im) • fi(z) with the given initial condition fi(0)=l ---- (3.16)

; this indicates that the size of the total covered membership grows geometrically if im > 0 or 

decay geometrically i f -1 < im < 0, in particular im = 0 implies that the size of the total covered 

membership is constant over time t (i.e. a stationary membership as a special case of a stable 

membership, see section 2.1.4.1).

Secondly, the general model of the growth in the annual salaries is also represented by a year- 

of-expenence salary growth function (denoted by f2) satisfying the following recurrence 

relationship; since f2 is independent of the age of an individual in the scheme, we have
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f2(t+l) = [(1+iwni)] • f2(t) with the given initial condition f2(0) = 1

where iwt+i = annual % growth rate which is defined as the growth in f2 during the 

intervaluation period (t, t+1), i.e. [f2(t+l) - f2(t)] / f2(t), defined in a manner consistent with the 

valuation interest rate (i.e. in nommal or real terms).

Considering a geometric growth m salaries, we have (l+iwt+i) = 1+iw, constant for all t, and 

Probfiw > -1] = 1, and then

f2(t+l) = (1+iw) • f2(t) with the given initial condition f2(0) =1 ---- (3.17)

; this indicates that the active members' salaries are growing geometrically (if iw > 0), decaying 

geometrically (if -1 < iw < 0) or constant (if iw = 0).

Lastly, using the above two equations (3.16) and (3.17), the growth in AL during the 

intervaluation period (t, t+1) is expressed in the interaction of the stable membership growth 

increment and the salary growth increment so that the actuarial liability growth equation (3.1) 

mtroduced earlier in section 3.1.1 can be rewritten (see the proof given below)

ALt+I = (l+iv) • (ALt + NCt - EBt)

= [(1+im) • (1+iw)] • ALt with the given initial condition AL0= b-W0 ---- (3.18)

; here, (l+im)-(l+iw) is the incremental factor of the scheme volume AL during (t, t+1) on a 

going-concern valuation.

The proof of equation (3.18) is as follows:

Letting two consecutive values of the total annual pensionable payroll as Wt and Wt+) assessed 

at time t and t+1 respectively, then
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W t = J ' ,  f, (t +  a -  x) • f , (t) • 1 v • w v and hence
x=a
r-1

Wt+I = X  f ,( t  + l + a - x ) - f 2(t + l ) - l x - w x
x=a

r-1

= ( l + iw t+1) • { X  0  + inW a -x )-  f ,( t + a - x )  f2(t) l x - w x }
x=a

where, wx = annual pensionable salary for each member aged x at time 0, defined in a manner 

consistent with the valuation interest rate (i.e. in nominal or real terms).

Smce imt+i+a.x = im for all t+l+a-x from equation (3.16) and iwt+i = iw for all t from equation

(3.17) , we obtain

Wt+i = [(1 + im) • (1 + iw)] • W(t) with the initial condition

r-1

Wo= £ f , ( a - x ) - l x -w*
x=a

And also, ALt can be expressed as AL, = b-Wt, where b is a known constant parameter.

Finally, we have the equation (3.18) as required, that is,

ALt+i = b • W(t+1) -  b • [(1+im) • (1+iw)] ■ Wt = [(1+im) • (l+iwt+1)] • ALt. QED

3.4.3 Modified solvency-level growth equation

Utilising equations (3.14), (3.15) and (3.18), we obtain the following linear, time-varying 

dynamic system model for solvency level: for all te{0, 1,2, ...},

SRt+i = (l+irt+i) • (SRt + CRt - BRA with the initial condition SRo specified ---- (3.19)

where (l+irt+1) = (l+ it+1) / (SLt+i/SLt) = [(l+it+iMl+mt)] / [(l+im)-(l+iw)-(l+mt+,)]

; this equation shall be called the modified solvency-level growth equation on the ground that 

this equation is simply derived in a modified form of equation (3.14) from equations (3.15) and

(3.18) .
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Remark 3.3: (a) From the viewpoint of control theory, we can make the same interpretations 

about the modified solvency growth equation (3.19) as about the fund growth equation (2.2) 

introduced in section 2.3.2.1; in particular, the modified solvency-level growth equation (3.19) 

specifies the controlled object. SRt is the output from the controlled object (i.e. controlled 

variable which is also called the state variable in the complete state information case or the 

conceptual state variable in the incomplete state information case) and {CR;. BRt, irt+,} are 

inputs to the controlled object (i.e. controlling variables, in which from the viewpoint of the 

actuary, only CRt should be a controlling variable; we note also that irt+i is a system parameter) 

[for more details, see section 2.4.2]; and

(b) As m sections 3.1.2 and 3.1.4, we also easily derive the net increase in SR such that 

NSR(t, t+1) = V SRt+i = (l+irt+i) ■ NSR(t-l, t) + (l+irt+1) • V (CRt - BRt).

Lastly, there is no loss of generality in assuming that Prob[(l+it+i), (l+mt) > 0 for all t] = 1, so 

the above equation (3.15) is simply rewritten as follows:

SRt-, = exp[<M • [SRt + CRt - BRt] - - - (3.20)

where <j)t+, = [8t+, - (xt+i - xt) - a  - p], force of combined interest corresponding to (l+irt+,);

5t+, = force of interest corresponding to (l+it+,);

Tt+i-Xt = difference between the forces of market cost growth corresponding to (l+mt+i) and 

(l+mt), respectively;

a  = force of membership growth corresponding to (1+im);

P = force of salary growth corresponding to (1+iw); with both of these forces assumed to be 

constant over the period (t, t+1) for all t.

This equation (3.20) is often more convenient than equation (3.19), particularly in the analysis 

of the effect of each system factor on the controlled variable SR.
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3.4.4 Modified solvency-level growth equation with given spread funding formula

Let us now develop the modified solvency-level growth equation (3.20) where the form of 

recommended contribution rate is specified by the spread funding formula modified for a 

solvency valuation - winding-up valuation in the MSR. as illustrated below'.

To begin with, it is worth recalling that the spread funding formula (2 .1) is defined as Ct = NCt 

+ kt • (ALt - Ft), kt e {kt: 0 < kt < 1}. and further, if kt = k constant for all t, then formula (2.1) 

reduces to Ct = NC, + k • (ALt - Ft), k e  {k: dv< k < 1 with iv> 0} [see, section 2.2.4.1],

Since formula (2.1) is appropriately designed for the classical actuarial valuation (i.e. long-

term, going-concern valuation), it needs to be modified for a solvency valuation. Then, if the 

fund level Ft is appropriately assessed on the solvency valuation basis for all t (as assumed at 

the early stage of section 3.4.1), we can define the following solvency-version of formula (2.1), 

since for all t, AL, for going-concern valuations corresponds to SLt for solvency valuations: for 

all t,

Ct = NCt + kt • (SLt - Ft), kt e {kt: 0 < k t < l} ,  - -- (3 .21)

and further, if kt = k constant for all t m formula (3.21), then we have

Ct = NCt + k ■ (SLt - Ft), k e {k: dv< k < 1 with iv> 0}. ---- (3.21)'

Moreover, simply dividing both sides of formula (3.21) with SLt and letting NRt -  NCt/SLt, 

then we have

CRt = NRt - kt • (SR, - 1), kt e {kt: 0 < kt < 1}, - - - (3.22)

and further, if kt = k constant for all t in formula (3.22), then we have
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CRt = NRt - k • (SRi - 1), k e {k: dv< k < 1 with iv> 0}. - - (3.22)’

We note that the above spread funding formulae (2.1), (3.21) and (3.22) are commonly based 

on the Spread method - spreading evenly the undesirable valuation outcomes, such as unfunded 

liability' (i.e. ALt-Ft) in (2.1), insolvent liability (i.e. SLt-Ft) in (3.21) and insolvent ratio (i.e. 1- 

SRt) in (3.22), over a projected period. In this respect, formula (3.21) and (3.22) each can also 

be called the spread funding formula but these are especially designed for the solvency 

valuation (which is distinguishable from the spread funding formula (2.1)). Here, we 

concentrate on the spread funding formula (3.22).

Now, we develop the modified solvency-level growth equation (3.20) subject to the spread 

funding formula (3.22). The assumptions and principal equations for deriving the resulting 

equation (3.25) are as follows:

Assuming that (a) all actuarial assumptions including the assumptions (A1)~(A9) introduced in 

section 4.3.2, are exactly realised over time, except for the investment rates of return; (b) r| = 

force of valuation interest = ln(l+iv) with Pro[iv > -1] = 1; and (c) the spread funding formula 

(3.22) is adapted to the modified solvency-level equation (3.20), then we have the following 

principal equations (3.23), (3.24) and (3.25), from which we derive the resulting equation 

(3.26). These are

[From assumption (a)]: for all t, Bt = EBt (so, BRt = EBR* = EBt/SLt). ---- (3.23)

[From equations (3.1), (3.15) and (3.23) and assumption (b)]: for all t,

SLt+i= exp(xt+i+r|) • [exp(-xt)-SLt+NCt-E B t] ---- (3 24)

; this equation shall be called the solvency liability growth equation in a similar manner to the 

actuarial liability growth equation (3.1).
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[By dividing the both sides of equation (3.24) with SLt and using equation (3.18)]: for all t,

exp(a+p-xt) = exp(r|-xt) + exp(q)-(NR - EBRt). ---- (3.25)

Finally, applying equation (3.25) to equation (3.20) and using assumption (c) produce the 

resulting equation (3.26): that is, for all t e {0, 1,2, ...},

[SR*, - 1] = [exp(5t+1 - (Tt+1 - xt) - a  - p) • (l-kt)] • [SR, - 1] +

[exp(8t+1 - (xt+1- xt) - a  - P)] • [1 - exp(-xt)] +

[exp(8t+I - xt+] - q) - 1], with the initial condition SRo- 1 specified ---- (3.26)

where kt e {kt: 0 < kt < 1}.

Here, we shall call the resulting equation (3.26) as the zero-input, 100%-target solvency-level 

growth equation, except for kt= l, for the reason that the term ‘zero-input’ means that the 

controlling variable does not appear in equation (3.26) and the term ‘100%-target solvency- 

level’ implies that [SRt-1] can be considered as a new state variable.

Remark 3,4: (a) From the viewpoint of control theory, the solvency-level spread funding 

formula (3.22) is a linear static (not dynamic) function of the state variable SRt-1, which is 

made proportional to the negative state variable by means of kt (i.e. -kt-(SRt-l)). For this 

reason, the spread parameter kt can be thought of as the proportional negative state-feedback 

controlling parameter, (except for the case of kt=0). Also, following Haberman (1994)’s 

economic interpretation (introduced in Remark (b) in section 2.2.4.1), the spread parameter can 

be interpreted as a penal rate of interest that is being charged on the insolvent ratio (i.e. 1-SRt), 

except for kt=0;

(b) From equation (3.15) (i.e. ALt/SLt=exp(-xt)) and equation (3.18) (i.e. ALt+i/ALt=exp(a+P)) 

, then the solvency liability growth equation (3.24) reduces to
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exp(-Tt) • [1 - exp(a+ p - r|)] • SLt = EBt - NCt

; for positive SL. this equation shows the necessity of a certain degree of capitalisation (i.e. a 

certain amount of funds reserved for the accrued benefits), that is, the essential nature of a 

funding policy (including pay-as-you-go financing policy); and hence,

(c) At each valuation date t,

- in Mature/Declining pension schemes where q > a  + p, the difference between EBt and NCt 

(i.e. EBt > NCt) may be subsidised by the eammgs from investments, such as mterest, rent and 

dividend earnings, or by a cash injection;

- in Young pension scheme where q < a  + p, the gap (i.e. EBt < NCt) will create additional 

funds for the future liabilities; and

- in the special case of q = a  + p, the above equation reduces to EBt = NCt which implies that 

there is no funding for the accrued benefits, that is, we have a pav-as- you-go financing policy 

[for more details of Declining, Mature and Young pension schemes, see section 2.1.4],

3.4.5 Summary

As discussed in section 3.4.1, the actuarial basis for the solvency valuation can be established 

by two distinct approaches, introducing either the liability solvency margin or parameter 

solvency margins into the actuarial basis for SSAP 24 purposes (i.e. the long-term and best 

estimate basis). We have taken the view that the liability solvency margin mt specified in 

equation (3.15) can cover the liability valuation effect of a range of parameter solvency 

margms and would be flexible and simply adjustable in response to changes in (transfer value 

and unmediate annuity) market values, and this approach has been adopted in deriving two 

distinct solvency-level growth models (3.20) and (3.26).

When applying optimal control theory m order to find a dynamic pension funding plan, the 

model (3.20) will be used to specify the controlled object without any specific formulae for the
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controlling variable CRt (- this will be considered in Chapter 4 dealing with the situation of a 

short-term, winding-up valuation), while the model (3.26) can be used for the controlled object 

when the controlling variable CRt is governed by the solvency-level spread funding formula 

(3.22) but in our study, this model (3.26) will be modified later in section 5.1 for dealing with 

the situation of a long-term, going-concern valuation (- the modified model will be considered 

m Chapter 5). The rigorous procedures for establishing a dynamic pension funding plan in each 

case will be given in Chapters 4 and 5.

Appendix 3 (proof of the relationship between MUL and NUL described in p!49):

If MUL(t) and NUL(to, t) are continuous functions of t for to< t, to and te[0 , oo) with NUL(to, 

to) = 0 , and the principle of additive consistency in NUL holds, then for to < fi < t2,

NUL(t,, t2) = j /  MUL(s)fife.

P r o o f . For to < t, we have 

MUL(t) = lim NUL(t, t+h) / h (by definition)
h->0+

= lim {NUL(to, t) + NUL(t, t+h) - NUL(to, t)} / h
h—>0+

= lim {NUL(to, t+h) - NUL(to, t)} / h (by the principle of additive consistency)
h—>0+

= lim {g(t+h) - g(t)} / h (by letting NUL(to, t) = g(t), continuous function of t)
h->0+

= g’+(t)

; hence, MUL(t) is differentiable at time t because we are assunung that g(t) and g’+(t) are all 

continuous functions of t and then g’(t) = g’+(t) = g'.(t), where g’(t) = derivative of g at time t, 

g’+(t) = righthand derivative of g at time t and g ’.(t) = lefthand derivative of g at time t.
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Therefore, we obtain g(t) = j" M UL(s)iis, since the initial condition g(to) - - - (* )

By using the principle of additive consistency in NUL, we can then easily derive the following 

relationship between MUL and NUL: for to < ti < t2,

NUL(t,, t2) = NUL(to, t,) + NUL(t,, t2) - NUL(to, t,)

= NUL(to, t2) - NUL(to, t,)

= g(t2) - g(t,)

= |  MLrL(s)i/s (from the above equation (*)). QED
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Chapter 4 Dynamic pension funding plan with no given form of controlling vanable

4.1 Introduction

Chapters 2 and 3 provide the principal bases for the investigation of this chapter: broadly, 

Chapter 2 provides the conceptual framework for dynamic pension funding plans and Chapter 

3 provides the structural models for the controlled object of defined benefit pension schemes. 

Thus,

- We have discussed various aspects associated with pension funding plans in Chapter 2. In 

particular, we have explained our contentions that our funding purpose (i.e. control goal) is 

designed to balance simultaneously the conflicting interests between the trustees and sponsoring 

employer of a defined benefit pension scheme, which allows simultaneous minimisation of the 

contribution rate and solvency risks over a defined projection period (for a summary, see 

section 2.1.3.4) and produces an optimal feedback control law by employing optimal control 

theory from the field of engineering, in which the resulting optimal feedback control law is 

defined as our dynamic pension funding plan (see section 2.3).

- As a fundamental framework for specifying the financial structure of the controlled object, we 

have constructed several growth equations in Chapter 3, such as the basic growth equations 

(see section 3.1) and the solvency level growth equations (see section 3.4). These equations are 

considered to represent a reduced structural model of the real financial structure of defined 

benefit pension schemes.

This chapter is a major part of our research, in which we are concerned with deriving and 

presenting the dynamic pension funding plan by solving the (deterministic and stochastic) 

control optimisation problem (which we have set up, subject to the form of controlling vanable 

being not specified) over a finite control time horizon by means of the method of dynamic
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programming. Our controlled object is assumed to be specified and governed by the modified 

solvency level growth equation (3.20) (established earlier in section 3.4.3).

In section 4.2, we will construct the principal structure of the control optimisation problem 

(both deterministic and stochastic). Further, the fundamental principles for solving the 

established problem will be illustrated. In section 4.3, we will define a dynamic pension funding 

plan under a deterministic control problem, while the stochastic control problem will be 

explored in section 4.4.

4.2 The principal structure of control optimisation problems

4.2.1 Classification of pension funding control system variables

As a preliminary to building up mathematically our control problems, it will be worthwhile 

modifying our previous discussions in section 2.3 in the light of the newly defined controlled 

object (governed by the modified solvency level growth equation (3.20)). By simply redefining 

the various variables mvolved in modelling pension funding control system, we can have a 

similar discussion to that of section 2.3. Considering time t 6 [0, T-l], these are

(a) Information vector (i.e. all current information available to the actuary at the time of taking 

the control action, composed of both past control history and current valuation result).

Here, the information vector of the complete state information case, including the deterministic 

case, is given by Ht = (SRo, SR), ..., SRt, CRo, CRi. ..., CRm ) with the given initial 

information Ho = SRo and the information vector of the mcomplete state information case by 3, 

=(SR_i, SRo, ..., SRt.i, CR-i, CRo, ..., CRoi) with the given initial information 3 0=(SR_i, CICi). 

The difference between Ht and 3 t is identified by the measurement equation Mt = SR^, b = 0 

or 1, described below in (f);
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(b) Controlling variables (i.e. inputs {CRt, BRt, <j>t+]} to the controlled object).

In particular, only CRt is a controlling variable to be manipulated in the view of the actuary 

and <j)t+i a system parameter where if either <j)t+i or BRt contains some (random) disturbances, 

the model (3.20) specifies the stochastic controlled object. Otherwise the model (3.20) specifies 

the deterministic controlled object (simply, denoted by Controlled object D or s, in which the 

superscript D or S indicates the deterministic or stochastic controlled object, respectively). 

Here, we are concerned with feedback control (not feedforward control) using the optimal 

control theory of dynamic programming, which implies that our control lawr is restricted by the 

causality principle (i.e. present controlling inputs should not depends on future controlled 

outputs) and other practical requirements. Hence, it is assumed that the admissible controlling 

variable is expressed as a function of the information vector but the form of the function is not 

specified, i.e. CRt = 7tt(Ht) in the deterministic control optimisation problem and CRt = C7tt(Ht) 

or ^ (S t)  in the stochastic control optimisation problem, in which the superscript C or I 

indicates the complete or incomplete state information case, respectively.

Therefore, our purpose is to determine the function form to produce whatever will be the 

optimal performance of a given Controlled object D or s (denoted by 7i*t(.), crc*t( ) or I7r*t(.), 

which each corresponds to our optimal control law at time t, see sections 4.3.2, 4.4.1.3 and 

44.2.3);

(c) Controlled variable (i.e. output SRt from the controlled object).

In particular, SRt is called the state variable in the complete state information case or the 

conceptual state variable in the incomplete state information case [see Remark 2.6 (a) in 

section 2.3.2.2]. For convenience, the state space of SRt is assumed to be some countable set S;

(d) Targets (or Reference variables) (i.e. desired level of CRt, denoted by crtt, and desired level 

of SRt, denoted by srtt).
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These can be thought of as exogenous variables providing the external reference information 

(e.g. the statutory minimum solvency standard of 100% for the MSR, see section 3.2.2) 

determined mainly by the actuary;

(e) Observable/Realisable valuation variable (i.e. output Mt from the actuary’s valuation 

process specified by the measurement equation specified by Mt = SRt.b, b = 0 or 1).

Here, the complete state information case is specified by M, = SRt with the given initial 

condition M0 = SRo and the incomplete state information case by Mt = SR; i with the given 

initial condition M0 = SR_i;

(f) Most effective point estimator of the conceptual state variable SRt (in the incomplete state 

information case) in the light of memory efficiency and estimation (denoted by SRt).

Thus the actuary at time t does not have direct access to the current value of SRt and he is 

required to estimate effectively the current value of SRt from the available information at time 

t, 3 t. As a result, SR, = E(SR, | 3,) is the most effective point estimator of the unknown 

current state SRt (which will be discussed in section 4.4.2.1); and

(g) Linear dynamic system.

The pension funding control system for solvency valuation is called a linear dynamic system 

because the controlled object is specified by the first-order difference growth equation (3.20) 

and both this growth equation and the measurement equation given in (e) are all linear with 

respect to SR, and CR,.

Therefore, our control mechanism can be summarised as illustrated below in Figure 4.1 and

4.2. We note that there are no differences in comparison with Figures 2.3 and 2.4 (illustrated in 

section 2.3.2.2), except for the redefinition of the control system variables. Hence, the detailed 

discussions related to Figures 2.3 and 2.4 are applicable here.
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Controlled object 

{ C R jt

•> {SRt} -----> Measurement processD or S

4,

{crtt, srtt} Optimal feedback control law {7it*(.) or C7t*t(.)} <- {Feedback: Mt=SRt}

Figure 4.1 Optimal pension funding feedback control system for the complete state information 

case (i.e. Mt = SRt).

The above “Optimal feedback control law” is a dynamic pension funding plan for the complete 

state information case, designed using control optimisation. The rigorous procedure for finding 

the dynamic pension funding plan will be given separately in section 4.3 for the deterministic 

case and in section 4.4 for the stochastic case.

Controlled objects -----» {SRt} -----> Measurement process

{CRt}t {Feedback: Mt = SRt.i} 4

T —» L (Time delay) —> {Feedback: C R u} —̂  4

{crtt, srtt} -» Optimal feedback control law {V t(.)} <— { SRt} <— Estimator of SRt 

Figure 4.2 Optimal pension funding feedback control system for the incomplete state 

information case (i.e. Mt = SR^); ASRt = E(SRt | 3 t).

The above “Optimal feedback control law” is a dynamic pension funding plan for the 

incomplete state information case, designed using control optimisation. The combination of 

“Optimal feedback control law” plus “Estimator of SRt” is usually called the optimal feedback 

controller, which is distinguishable from the control problem with complete state information - 

this optimality structure is assured by the Separation Theorem which will be explained in 

subsection (iii) of section 4.2.5. The detailed procedure for establishing a dynamic pension 

funding plan will be given m section 4.4
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4.2.2 Performance index

In order to complete our previous discussion about suitable performance indices in section

2.3.2.2, we shall describe their mathematical definitions on a discrete-time domain. We note 

that as discussed in section 2.3.2.2, the performance indices for control errors and control 

action errors conceptually correspond to the solvency risk and contribution rate risk, 

respectively. The principal performance indices would be defined as follows:

(a) PIi = {sum of square of control error over a finite control horizon [0, T], 0<T<oo}

T

= Z  (SR t - srtt ) 2 in the deterministic case, or

T

-  E { Z  (SR, - srtt ) 2 } in the stochastic case
t=0

; this index correctly corresponds to the solvency risk over [0, T] (see section 2.1.3.3), and is 

designed to penalise more severely larger control errors;

(b) PI2 = {sum of absolute value of control error over [0, T], 0 < T < 00}

T
= Z  |SR t - s r t j  in the deterministic case, or

T

-  E {Z  |SRt - srt 11} in the stochastic case;
t=o

(c) PI3 = {sum of the product of time and square of control error over [0, T], 0<T<co}

T

= Z 1 • (SRt - srtt ) 2 in the deterministic case, or

T

= E { Z  t • (SR t - srtt ) 2 } in the stochastic case
t=o

; this index is designated to reduce the effect of the large initial control error as well as put an 

emphasis on the later control errors;
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(d) PI4 = {sum of square of control action error over [0, T], 0 <T<oo}

T

= X  (C R t - crtt ) 2 in the deterministic case, or
t=o

T

= E {^ , (C R t - cr tt )~ } in the stochastic case
t=0

; this index correctly corresponds to the contribution rate risk over [0, T] (see section 2.1.3.2), 

and is designed to penalise more severely larger control action errors; hence.

(e) PI5 = {general form of the performance sum over [0, T], 0 < T < co}

T

= Z / ( S R t - s r t t , C R t -  cr tt , t) in the deterministic case, or
t=o

T

= E { Z / ( SRt ~ srtt> C R t - crtt, t) } in the stochastic case
t=0

where /(., ., .) is a function of the control error (SR-srtt), control action error (CR;-crtt) and 

time t, so we can establish a variety of performance indices based on various combination of 

these variables, subject to a specific purpose of measuring the quantitative performance of a 

control system.

Now, we shall define our performance index (denoted by Pie) suitable for our funding purpose 

(i.e. searching for a pension funding plan for balancing the solvency and contribution rate risks 

at the same time), which is a specific form of PI5.

Pie = {discounted weighted-average of the solvency risk and contribution rate risk 

over [0, T-I], 0 < T < oo, plus discounted terminal cost at the final time T}

T-l

= Z {e_T,l-[0-(SRt - srtt)2 + (1-GMCRt - crtt)2]} + e ’,T-(SRT - srtT)2 - - - (4.1)
t=o

in the deterministic case, or
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--(4.2)
T-l

= E {X  {e^ie-CSRt - srtt)2 + (1-0MCR. - crtt)2]} + ^ - ( S R t  - srtT)2}
t=o

in the stochastic case

where 0 is a weighting parameter which balances the importance between solvency risk and 

contribution rate risk over [0, T-l], assuming 0 < 0 < 1 in view of our funding purpose, and e’111 

is the performance discount function at time t in which r| is the valuation force of interest.

We note that the deterministic Pie can be interpreted as the net present value (NPV) of the 

project’s future costs over a fixed projection period [0, T] and the stochastic Pie as the 

expected NPV of the project’s future costs over [0, T] [see section 2.2.1], Here, the term 

■ (SRj - srtx)2 represents the NPV of the solvency risk associated with the final state S R t  at 

the final time T, which will play the role of a boundary condition. This terminal cost is 

mtroduced to estimate the terminal behaviour/response of control system to the final control 

action CRt -i (which will be clarified in the following sections 4.3 and 4.4).

Lastly, in the special case that srtt = E(SRt) and crtt = E(CRt), then the solvency risk at time t is 

defined as Var(SRt) and the contribution rate risk at time t as Var(CRt), so the stochastic Pie 

would become

T-l

Pie -  X Var(SRt) + (l-0)-Var(CRt)} + e nT-Var(SRT),
t=0

which gives one reason why a squared-error performance index, such as PL, PI3, PI4 or Pie, is 

often considered m evaluating decision processes.

4.2.3 Optimal performance criterion

The performance criterion for realising our funding purpose introduced in section 2.1.3.4 is 

termed the optimal performance criterion, which can fall into two groups, primary and 

supplementary.
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4.2.3.1 Primary performance criterion

From the viewpoint of the realisation of our funding purpose, our performance criterion can be 

expressed as follows: for a given 0,

Min PIe - - - (4.3)
{CR,;t=0, 1___ T - l }

; in particular, this criterion shall be called the primary performance criterion.

The actuary could choose the value of 0 on a subjective basis; for example, if he acts only in 

the best interests of the employer, he will recommend a value of 0 close to zero (which will lead 

to reducing only the contribution rate risk), but in contrast if he acts only in the best interests of 

the trustees, he will recommend a value of 0 close to one (which will lead to reducing only the 

solvency risk).

In practical terms, the value of 0 would be affected mainly by some compulsory requirements 

unposed by the supervising authorities (e.g. the minimum funding requirement (MFR) 

contained in the Pensions Act 1995, see section 3.2.3), the conflicting interests of the trustees 

and employer, and the prospects for the future demographic and financial status of the 

sponsoring company. These factors would exert influence directly on the pace of funding and 

the progress of solvency level through 0.

However, the primary performance criterion (4.3) does not address how the value of 0 should 

be appropriately determined. In this respect, the actuary needs to supplement this weakness of 

the primary performance criterion (4.3) with a new decision criterion for the appropriate choice 

between all possible values of 0. This subject is considered in the next section.
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4.2.3.2 Supplementary performance criterion

(i) Preliminary:

Using the primary' criterion (4.3), the actuary can obtain the optimal control action at time t 

(denoted by CR\) and accordingly the optimal control response corresponding to C R \ (denoted 

by SR ’t+i), for an arbitrary value of 9 chosen on his subjective basis (here, these resulting 

control action and response shall be called the pre-optimal control action CR’t and response 

SRy+i, respectively). Both CR t and SR’t+i will then be a function dependent on 0, so 9 can be 

thought of as a parameter that needs to be appropriately controlled by the actuary.

For this reason, he would be required to suggest some additional criteria for determining 

objectively the value of 9. We suggest the use of one of the three distinct supplementary 

performance criteria (to the primary performance criterion (4.3)), i.e. Suggestions I, II and III 

described below, for the completion of the optimal performance criterion: of course, he could 

construct other suitable criteria. This section is intended to give some insights into determining 

the value of 0 from the actuary's point of view.

(li) Suggestion I:

The actuary may employ the following supplementary performance criterion designed for a 

recommendable value of 0:

T-l

Min ( X  [M S R ’.-srtt^  + O -^M C R ’t-crtt)2] + M S R 'x  - srtT)2 } ---- (4.4.1)
6 t=0

where 0 < X-i < 1 (generally, we may fix at ¡U = 14).

Here, A,i can be regarded as a weighting parameter to adjust the relative importance between 

the pre-optimal solvency and contribution rate risks at time t, i.e. (SR\- srtt)2 and (C R \- erf)2, 

and further U may be thought of a semi-parameter of 9 for the reason that A, can not influence
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directly these risks but can exert influence indirectly through 0. We note that this criterion 

(4.4.1) does not allow for discounting as in the primary criterion (4.1) on the grounds that SR\ 

and CRy are produced by the primary criterion (4.1) and then each of them represents the pre- 

optimal value at time t discounted to time 0.

This criterion (4.4.1) can then be thought of as the pre-optimal version of the primary 

performance criterion (4.3), particularly in the case of A.i = 0, since this criterion is designed to 

minimise the pre-optimal contribution rate and solvency risks that will be result from the pre- 

optimal control action, while the primary performance criterion is designed for defining the pre- 

optimal control action.

However, Suggestion I may cause a severe funding burden on the employer in view of the fact 

that this criterion does not take into account the smoothness of the pre-optimal sequences, 

{CR\; t=0, 1, ..., T-l} and {SR\: t=0, 1, T}. A further problem in employing this

criterion would be setting an appropriate value for .

(iii) Suggestion II:

Taking into account the initially given SRo, the prospects for the future (demographic and 

economic) status of the sponsoring company and so on, the trustees and employer each would 

have their own sensible views on the pace of future funding such that the relative percentage 

growth of pre-optimal contribution ratios (relative to their original value), i.e. VCRVi/CRf, is 

bounded by their own acceptable limits: that is, for each time t, trgcmin < V C R W C R \<  trgCmax 

in view of the trustees and ergcmin < VCRVi/CR\< ergcmax in view of the employer, say.

On the other hand, the trustees and employer each would also have their own sensible views on 

the progress of future solvency levels such that the relative percentage growth of pre-optimal 

solvency levels (relative to their original value), i.e. VSR\+i/SR’t, is bounded by their own
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acceptable limits: that is, for each time t, trgs^.n < VSR’t+i/SR't< trgsmax in view of the trustees 

and ergsmm < V S R W S R \<  ergsmax in view of the employer, say.

Further, there is no loss of generality in assuming that for every t, {trgcm;n < VCR’t+i/CR't < 

trgCmax} n  {ergcmin < V CRW CR’t < ergcmax} ^  0  and {trgsmin < VSR\+,/SR’t < trgsmax} n  

{ergSjnm  ̂VSR\+i/SR\< ergsmax} *  0 .

From the above mequality equations, the actuary can first derive such a common region of the 

trustees and employer’s views that rgcmm < VCR\+i/CR\< rgcmax for the pace of funding and 

rgSmm < VSR’t+i/SR’t< rgsmax for the progress of solvency levels, where rgcmn = Min {trgcmn, 

ergCmm}, rgCmax = Min {trgCynax, ergcmax}, rgSnun = Mm {trgsmin. ergsmm} and rgsmax = Mm 

{trgsmax, ergsmax}. Next, for each common region he could suggest some balancing values 

(denoted by rgc and rgs), which each should be a value acceptable to both the trustees and the 

employer: for example, rgc = (rgcmin+ rgcmax)/2 and rgs = (rgsnun+ rgsmax)/2.

By using the balancing values ‘rgc’ and ‘rgs’ as the target values of the pre-optimal relative 

percentage growth sequences, i.e. {VCR’t+i/CR’t; t=0, 1, T-2} and {VSRVi/SR’t; t=0, 1,

..., T - l}, he may construct the following supplementary performance criterion:

T-2

Min { T  [X2 • (V SR V SR ’t - rgs)2 + (l-?,2) • (VCR\+,/CR\ - rgc)2] +
6 t=0

\ 2 ■ (VSR’t /SR’t -i - rgs)2} - - - (4.4.2)

where 0 < X2 < 1 (generally, we may fix at X2 = 'A).

As for ^i, k 2 can be regarded as a weighting parameter to adjust the relative importance 

between the squared pre-optimal relative percentage growth errors, (VSR’,+i/SR\ - rgs)“ and 

(VCR’t+i/CR’t - rgc)2 and further k 2 can be thought of as a semi-parameter of 0 for the same 

reason as in X,j. We note that the success of using this criterion would depend on how its target 

values, rgs and rgc, are appropriately chosen. As mentioned above, these values should be
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determined objectively by the actuary, m consultation with the trustees and employer. A further 

problem in employing this criterion would be choosing a sensible value of X2.

(iv) Suggestion III:

As another possible alternative, the actuary may employ the following supplementary- 

performance criterion usmg differences: for either n = 1 or 2,

T-n-l

Min { £  [ V  (VnSR\+n)2 + ( l - \ 3) • (VnCR’t+n)2] + X3 • (VnSR’T)2 } - - - (4.4.3)
6 t=o

where 0 < A,3 < 1 (generally, we may fix at X3 = 'A).

Hence, this criterion (4.4.3) is designated to maximise the smoothness of the pre-optimal 

sequences, {CR’0, CR’i, ..., CR’t -i } and {SR’0, SR’i, ..., SRT}, that is, ‘X3 —> 0’ implies that 

the actuary places great emphasis on stabilising the pace of funding, but in contrast ‘X3 —> 1’ 

implies that he has more interest m stabilising the progress of solvency levels. In particular, the 

criterion with n=I can be thought of as an extension of the minimum energy control approach 

in optimal control theory [see Benjamin (1989) introduced in section 2.3.2.4 for an early 

application to pension funding] and the criterion with n=2 is consistent with the approach to 

optimising maximum smoothness because X [A.3-(V2SR’t+2)2 + (l-X3)-(V2CR\+2)2] + X3 ■

(VnSR’T)2 can be thought of as a measure of smoothness from graduation theory [see London 

(1985)].

However, Suggestion III could have a potential risk for underestimating the pre-optimal errors, 

CR’t-crtt and SR’t-srtt. For example, there may be a situation where the sequence of either CR\ 

or SR’t deviate relatively far from their respective target values, crtt or srtt, during a long 

period, in comparison with the above Suggestions I and II. A further problem would be, of 

course, determining an appropriate value of X3.

184



(v) Conclusion:

The above criteria (4.4.1)~(4.4.3) have been suggested as additional means for improving the 

performance of the primary criterion (4.4) in the light of the pace of funding and/or the 

progress of solvency level. Of course, we can not say that any of these criteria is the unique 

and best supplementary performance criterion for determining appropriately the value of 0. 

Further, these criteria are unlikely to deliver their respective optimal values of 0 based on 

numerical iterations for all possible combinations (0. A,), 0 < 0, A = Aj, A2 or A3 < 1, because of 

the possible uncountable number of computational iterations being involved. Moreover, it is not 

easy to derive the optimal value of 0 in a mathematical form by solving these supplementary 

performance criteria because the pre-optimal quantities C R \ and SR\ each have a complicated 

functional form dependent on 0 (- this will become clear later in sections 4.3.2, 4.4.13 and

4.4.2.3), but on the other hand we can find the optimal value of 0 by means of numerical 

analysis, subject to some specified finite admissible combinations of (0, A).

We recognise that it would be important to deal with the primary performance criterion (4.3) in 

association with a supplementary performance criterion formulated in a desirable direction of 

improving both the pace of funding (as a best interest of the employer) and the progress of 

solvency levels (as a best interest of the trustees) in relation to their respective target values 

(e.g. a combination form of the merits inherent in the above criteria (4.4.1)~(4.4.3)). However, 

this formulation is likely to involve new parameters and the diagnosis of its appropriateness 

would rely on numerical and/or mathematical performance comparisons between all suitable 

types of supplementary performance criteria. Owing to constraints of time and space, we 

propose leaving this subject to future research as a possible extension to this thesis.

For simplicity', we do not take into account any mathematical supplementary performance 

criteria in our control optimisation problems formulated later in section 4.2.4. Alternatively, the 

employer and trustees in consultation with the actuary are assumed to determine the best (not
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necessary optimal) value of 8 values (denoted by 8*) by reference to the predictable forward 

error projections {CR’t-crtt; t=0, 1, T-l} and {SR’t-srtt; t=0, 1, T}, subject to a

specified finite admissible set of 8 [see sections 4.3.3.3 and 4.4.3.3]. Hence, the value 8* 

would be chosen at the level balancing the conflicting interests of the employer and trustees 

(although this decision can not avoid the criticism of subjectivity). For convenience, this 

mechanism for deciding 8* shall be called the 8*-criterion.

4.2.4 Control optimisation problems

In this section, we construct mathematically our control optimisation problems on a discrete-

time domain, which are characterised as linear dynamic systems with quadratic performance 

criteria (known by the nomenclature ‘LQP optimisation problems’). In other words, the 

controlled object with the controlling variable CR* and the controlled variable SRt is governed 

by the modified solvency level growth equation (3.20),

SRt+i = exp[<t>t+i] • [SRt + CRt - BRt], where <(>t+, = [5t+1 - (xt+, - xt) - a  - p], 

and the actuary’s valuation process provides at each valuation date t an observation of the form 

Mt = SRt.b where b = 0 or 1: these are all linear with respect to CRt and SRt. Further, the 

optimal performance criterion, both primary and supplementary, is already established in the 

form of the quadratic performance criteria (4.3) and (4.4), respectively.

As outlined m section 2.3, the LQP optimisation problems in discrete-time are generally 

classified into

- deterministic control optimisation problem over [0, T] for T>0

- stochastic control optimisation problem over [0, T] for T>0

- complete state information case

- incomplete state information case
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(i) Deterministic control optimisation problem over [0, T]:

The squared deviations between SR. and srtt and between CR, and crtt are completely known 

for all te  [0, T], where the sequence {SRt; te  [0, T]} is generated with certainty by the modified 

solvency level growth equation (3.20) with the given initial SR).

Our dynamic pension funding plan would be defined to generate the sequence of optimal 

control actions {CR't; tefO. T-l]} satisfying the following deterministic (pension funding) 

control optimisation problem over [0, T]:

T-l

Min {T  e nt-[0.(SR - srtt)2 + (l-O)-(CR - crtt)2] + e ^ S R x  - srtT)2 }
{CRt ; t=0, 1. . , T - l } "

subject to SR+i = exp[c|)t+i] • [SR + CR - BR] with given SRo, te[0, T-l] and 

0* determined by the ©’-criterion.

_ _ _

The procedure for solving the control problem (4.5) will be considered in section 4.3 and some 

illustrative numerical examples will be given in section 4.3.3.

(ii) Stochastic control optimisation problem over [0, T]:

The above deterministic LQP optimisation problem can only make limited progress in 

overcoming the effects of external economic and demographic uncertainty, which can disturb 

the financial status of pension schemes. A satisfactory theory of control problems needs 

therefore to recognise the random nature of influences like investment rate of return and 

changes to the membership of the pension scheme.

Here, uncertainty in control problems is assumed to be characterised by the uncertainty about 

the values of the unknown investment rate of return 5t+1 in cj)t+1 and the unknown benefit outgo
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Bt in BR,. which are separately specified below according to whether or not the available state 

information is complete.

(a) Stochastic control optimisation problem over [0, T] with complete state information:

The stochastic processes, {8t+1; te[0. T-l]} and {Bt; te[0, T-l]}, each are simply assumed to 

be made up of the following two components:

5t+i = p + a8t+i and Bt = EB, + bst+i ---- (4.6)

where

ast+1 = unpredictable disturbance which follows an independent and identically distributed (IID)

N(0, oa") distribution with cra2 < oo), defined on each unit control period [t, t+1);

bst+i = unpredictable disturbance which follows IID N(0. a b2) distribution with c>b2 < co, defined

on each unit control period [t, t+1); and

aet+1 and bss+i are mutually independent for all t, s e [0, T-l].

Thus, this model implies that the (long-term) force of valuation interest is correctly determined 

m view of the expected value of the actual forces of interest corresponding to the investment 

return (i.e. E(5,+i) = rj for all t) and the expected benefit outgo is also well designed in view of 

the expected value of the actual benefit outgo (i.e. E(Bt) = EBt for all t).

We note that {aet+i; te[0, T-l]} and {bst+i; te[0, T-l]} each is a (zero-mean) Gaussian white 

noise process (simply, (zero-mean) bivariate Gaussian white noise process with the correlation 

between ast+i and bst+i being zero, {(ast+], b8t+]); te[0, T-l]}) with the property of strong 

stationarity [see Harvey (1990, section 1.5)]. Further, the available information vector at tune t 

is Ht = (S R o , SRi, ..., SRt, CRo, ..., CRm ) with the given initial information H0 = SRo

From the stochastic model (4.6) specified for each te[0, T-l], we have the stochastic controlled 

object governed by the following stochastic solvency level growth equation: for all te  [0, T-l],
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SRt î = exp[<|)t+i] • [SRt + CRt - BR*] with given SRo --(4.7)

where

<t>t+i = [r|-(Tt+rTt)-a-P] + ast+i = Mt+i + V i  ~ HD N(pt+1, a a2) with a a2< oo;

BRt = Bt/SLt = EBt/SLt + bst+1/SLt = EBRt + bs l+]/ S U  ~ IID NCEBRt, VBRt) with VBRt = 

c b2/SLt2 < oo; and. <j)t+1 and BRS are mutually independent for all t, se[0, T-l], and SRo is 

mdependent of <t>t+I and BRt.

Our stochastic (pension funding) control optimisation problem over [0, T] with complete state 

information can be written m the form:

T-l

Min E{ T  {e_Tlt-[0-(SRt- srtt)2 + (l-0)-(CRt - crtt)2]} + ^•[© •(SR t - srtT)2] }
{CRt ;t=0, 1 . . . . T - 1 }  ^

subject to the stochastic controlled object governed by model (4.7) and 0* determined by the 

©"-criterion.

- - - (4 .8 )

The procedure for solving the control problem (4.8) will be considered in section 4.4.1 and 

some illustrative numerical examples will be given in section 4.4.4.

(b) Stochastic control optimisation problem over [0, T] with incomplete state information:

Now, we consider the incomplete state information version of the problem constructed in (a), 

w'hich involves the measurement equation Mt = SR^ with one-unit time delay in the state 

information and then the information available to the actuary at time t is 3 t = (M0, Mi, Mt, 

CR-i, CRo, CRt_i) with given initial information 3 0 = (M0, CR_0, and furthermore we 

assume that the stochastic solvency level growth equation (4.7) is also applicable at time -1 

because of the one-unit-tune delay in information.

Thus, our stochastic (pension funding) control optimisation problem over [0, T] with 

incomplete state information can be written in the form:
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T-l

Min E{ Y  {e'nt-[0-(SRt- srtt)2 + (1-0HCR,- crtt)2]} + ^-[©-(SR-T-sitT)2] }
{ C R , ; t = 0 . 1 . . . . T - l }  “

subject to the stochastic controlled object specified by model (4.7) being applicable for all

te [- l , T-l] (so, given initial information 3 0=(M0, CR_i) is independent of 4>t+i and 

BRt). Mt = SRt.i and 0* being determined by the ©’-criterion.

- - - (4.9)

The procedure for solving the control problem (4.9) will be considered in section 4.4.2 and 

some illustrative numerical examples will be given m section 4.4.4 in connection with the 

numerical examples of the complete state information problem (4.8).

4.2.5 Principles for control optimisation

Prior to solving the LQP optimisation problems (4.5), (4.8) and (4.9) specified in section 4.2.4, 

it would be helpful to make some brief comments on three distinct principles related to their 

optimal solutions. Bellman’s principle of optimality, the Certainty Equivalence Principle and 

the Separation Theorem. These principles occupy a central position in the development of 

optimal control theory, with applications particularly in the fields of engineering, economics 

and operations research.

(i) Bellman’s principle of optimality:

Bellman (1957, p83) states the principle of optimality formally as “An optimal policy has the 

property that whatever the initial state and initial decision are. the remaining decisions must 

constitute an optimal policy with regard to the state resulting from the first decision.”

Comparing with our control terminology, the term ‘stage’ corresponds to the unit control 

period (t, t+1), ‘optimal policy’ to the optimal control law and ‘state resulting from the first
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decision' to the value of the state variable SR* in the complete state information case or the 

value of the effective state estimator SR, in the incomplete state information case.

This principle is concerned with the mathematical technique for multi-stage decision processes 

(i.e. sequences of decisions). Considering our control optimisation problems (4.5), (4.8) and 

(4.9), each of them can be thought of as a T-stage decision process in which the resulting 

sequence of T decisions {CR*t; te[0, T-l ] } are to be made such that the corresponding optimal 

performance criterion is realised by transforming each control problem from one of making T 

decisions simultaneously to one of making the decisions one at each stage but sequentially, so 

that we can overcome the algebraic difficulties in dealing with a multi-stage decision process.

The method of dynamic programming, developed by Bellman (1957, 1961) as a mathematical 

technique for multi-stage decision processes, originates from Bellman’s principle of optimality 

because it provides a systematic procedure for making a sequence of interrelated decisions by 

decomposing control problems into multi-stage decision problems. This is the reason why we 

employ the dynamic programming method for our pension funding control optimisation 

problems, both deterministic and stochastic.

(ii) Certainty Equivalence Principle:

Although deterministic LQP optimisation problems are not too difficult to solve, stochastic 

LQP optimisation problems require, in general, more care. If this principle holds, it is not 

necessary to solve directly stochastic LQP optimisation problems, but enough to solve its 

deterministic version, obtained by replacing all random variables in the performance index by 

their expected values. This principle appears in various forms m many (but not all) stochastic 

LQP optimisation problems.

These arguments can be illustrated by the following two simple examples.
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Firstly, consider the stochastic LQP optimisation problem over a one-unit control horizon such 

that Min Ec{(ay + bx + c)2} where a, b are given constants and Ec denotes mathematical
X

expectation with respect to the random disturbance c. The optimal control solution is attained 

for x* = -(a/b)-y - (l/b)-E(c), which is equal to the optimal control solution (the so-called 

certainty equivalence solution) of the deterministic version of the above stochastic problem 

such that Min {[ay + bx + E(c)]2}. Further, we can easily make a similar discussion even in
X

the case of multiperiod LQP optimisation problems by way of Bellman’s principle of 

optimality [see Bertsekas (1976, section 3.1)]. Thus, for stochastic LQP optimisation problems 

specified only by additive random disturbances the Certainty Equivalence Principle holds and 

the certainty equivalence solution is optimal for the original problem.

Next, consider the stochastic LQP optimisation problem over a one-unit control horizon such 

that Min Ea.b,c {(ay + bx +c)2} where E^.c denotes mathematical expectation with respect to
X

random coefficients a, b and random disturbance c. Differentiating with respect to x yields the 

optimal control solution x* = - [E(ab)/E(b2)]-y - [E(bc)/E(b2)]. However, the deterministic 

version of the above stochastic problem is given in the form of Min {[E(a)-y + E(b)-x +
X

E(c)]2} and hence the certainty equivalence solution is attained for x* = - [E(a)/E(b)]-y - 

E(c)/E(b), which is not optimal for the original stochastic LQP optimisation problem with 

random coefficients a and b. We can make a similar discussion in the case of multiperiod LQP 

optimisation problems by way of Bellman’s principle of optimality [see Bertsekas (1976, 

section 3.1)]. Thus, for the stochastic LQP optimisation problem with random coefficients, the 

Certainty Equivalence Principle does not hold, smce if we replace the random coefficients with 

their expected values, then the resulting certainty equivalence solution is not optimal for the 

original problem [for a more rigorous example in the pension funding area, see Haberman & 

Sung (1994)]. So, for our stochastic LQP optimisation problems (4.8) and (4.9) this principle
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will not hold because of the random coefficient <j>t+], which appears in sections 4.4 and 4.5, 

respectively.

Historically, the Certainty Equivalence Principle first introduced by Simon (1956) provides 

that the optimal control law can be designed without any consideration of stochastic effects 

whenever we deal with the stochastic LQP optimisation problems specified only by additive 

random disturbances.

(iii) Separation Theorem:

This principle is limited to stochastic LQP optimisation problems with incomplete state 

information. As earlier illustrated as Figure 4.2 (or Figure 2.4 in section 2.3.2.2), the optimal 

feedback controller can be separated into two parts. The first part is the state estimator (as an 

optimal filter) which produces, assuming no control action takes place, the most effective 

estimator (e g. SR, in Figure 4.2) of the conceptual state variable (e.g. SR, in Figure 4.2) from 

the available information vector (e.g. 3, in Figure 4.2), in the light of memory efficiency. The 

second part is the optimal feedback control law of the control problem which provides the 

control action (e.g. CR, in Figure 4.2) as a linear function of the most effective estimator (fed 

directly into the optimal feedback control law), so that the optimal control law is independent of 

the accuracy of the estimation of the current conceptual state.

This interesting property, which shows that the two parts of the optimal feedback controller can 

be designed independently/separately as the current state estimation and optimal control 

solution, has been called the Separation Theorem [see Bertsekas (1976; section 4.3)].

Historically, the Separation Theorem first published by Joseph & Tou (1961) provides a 

connection between filtering theory and optimal stochastic control theory, as illustrated in 

Figure 4.2 (or Figure 2.4 in section 2.3.2.2).
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4.3 Dynamic pension funding plan for deterministic LQP optimisation problem

In this section, we explore the optimal solution of the deterministic LQP optimisation problem 

(4.5) specified in subsection (i) in section 4.2.4. Firstly, the objective is to find a sequence of 

pre-optimal control actions {CR’0, CR’i, ..., CR'T-i } for solving the problem (4.5). Secondly, 

we determine the best (not necessary optimal) value of 0 (i.e. 0*) in accordance with the 0*- 

cnterion (mentioned in subsection (v) in section 4.2.3.2). Finally, we can then define a 

sequence of optimal control actions {CR*0, CR*i, ..., CR*t _i }-

4.3.1 A functional equation

Consider time t e [0, T-l], The whole available information vector at time t is given by (SRo, 

SR], ..., SRt, CRo, CR], ..., CRt.i), the target mputs at time t to the optimal feedback control 

law are {crtt, srtt} and the dynamic system inputs at time t to the deterministic controlled object 

are {BR,, <j)t+]}[see Figure 4.1 of section 4.2.1], So, the actuary is required to determine the 

control action CRt.

Remark 4.1: In any practical situation, the control law (or decision function) at time t 

admissible to the actuary, i.e. 7it(.) introduced in subsection (b) of section 4.2.1, is expressed as 

a linear function of the current dynamic state SRt of the controlled object, for the reason that 

(a) SRt contains all the information on the scheme’s financial status at time t; (b) as the 

solvency growth process {SRo, SR], ..., SRt } is governed by a first-order linear difference 

equation (3.22) specified in section 3.4.3, the sequence of future states {SRt+i, SRt+2, ..., SRt } 

can be represented by a function of SRt only; and hence, (c) it is sufficient to choose CRt as a 

linear function of SRt, that is, the general form of feedback control, i.e. CRt = 7tt(fi), is reduced 

to CRt = 7tt(SRt) linear in SRt, which is consistent with the causality principle and other
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practical requirements. Therefore, our control law at time t is reduced to linear feedback from 

the current dynamic state SRt, which would appear to be practical and reasonable.

Our performance index (4.1), specified in section 4.2.2, can then be written as a sum of two 

parts:

T-l

Pie = X  e ’Me-iSR. - sit*)2 + (l-0)-(CRs - crQ2] + ^-(SR x - srtT)2
s=0

= PIAe + PIBe ---(4.10)

where

t-i
PIAe = Z  e ,1s-[e-(SRs -srts)2 + (l-eH C R s -crts)2]; and

s=0

T-l

PIBe = Z  e ns-[0-(SRs - srts)2 + (1- 0)(CRS - crt*)2] + ^ - ( S R t  - srtT)2
S = t

Hence, PIAe is independent of the decisions to be made {CRt, CRt+i, ..., CRj-i}, so to minimise 

Pie with respect to {CRt, CRt+i, ..., CR-n} is equivalent to minimising PIBe (which we will 

refer back to m section 4.4).

To produce the backward recursion in time t, we define

T-l

V(SRt, t) = Min {e'lls-[0-(SRs-srts)2 + (l-0)-(CRs-crts)2]} + ^ - ( S R i  - srtT)2} .

Applying the backward dynamic programming method (based on Bellman's principle of 

optimality) for sequential control optimisation, we have

V(SRT, T) = e nT-(SRT - srtT)2 and
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V(SR,, t) = Min { e'^-te-iSRt - srtt)2 + (l-GHCRt - crtt)2] +
CRt

T-l

Min { X  {e'1s-[0-(SRs-srts)2+(l-e)-(CRs-crts)2]}+e-,lT-(SRT-srtT)2}}
{C R S; s= t+ l,t+ 2....T -l}  " ,

= Min { e'r|t-[9-(SR1 - srtt)2 + (l-9)-(CRl - crtt)2] + V(SRt+1, t+1) } - - - (4.11)
C R t

; this functional equation for V(., .) is called the Bellman equation, in which V(SRt, t) can be 

interpreted to be the minimal future cost discounted at time 0, independent of the control 

actions before time t, obeying the above recursion in time.

Hence, the terminal cost associated with the terminal state SRT, Y(SRT, T) = e^T (SRT - srtT)2, 

plays the role of a boundary condition for the Bellman equation (4.11).

4.3.2 Control optimisation

Following the fact that the control law at time t is a linear function of the current state variable 

SRt [see Remark 4.1], the solution of the Bellman equation (4.11) with the boundary condition 

V(SRt , T) = e‘r|T-(SRT - srtT)2 is uniquely determined in the following quadratic form

V(SRt, t) = Ai(t)-SRt2 + A2(t)-SRt + A3(t) with the boundary condition Ai(T) = e‘7’T,

A2(T) = - 2e‘7lT-srtT and A3(T) -  e^-srtx2, - - - (4.12)

which can be verified using the mathematical induction argument below.

This form is identical with the form of the boundary condition (at t = T) and then proceeding 

by induction, we have

V(SRt+i, t+1) = A,(t+l)-SRt+i2 + A2(t+l)-SRt+1 + A3(t+1) with A,(T) = e ”T, A2(T) = - 2e''lT-srtT 

and A3(T) = e'T,T-srtT2.
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Introducing the above trial solution into equation (4.11), we can rewrite the Bellman equation

(4.11) in the form: for every t e  [0, T-l],

V(SR,, t) = Min { G(CRt, t) }
CRt

where

G(CRt, t) = [e’lt-(l-9) + exp(2())t+1)-A1(t+l)] • CRt2 + [-2crfc-e’,t-(l-9) + 

2exp(2<()t+i)-Ai(t+lHSRt-BRt) + exp((j)t+1)• A2(t+1 )] • CRt +

[e^e-iSRt - srtt)2 + e^O-GJ-crt,2 + exp(2<j)t+1)-AI(t+l)-(SRt - BRt)2 + 

exp(<t)t+i)-A2(t+l)-(SRt - BRt) + A3(t+1)].

It is sufficient that the coefficient of CRt" in G(CRt, t) is positive for all t e [0, T-l] as a 

condition for a unique sequence of pre-optimal control actions, that is

A,(t+1) > - [e_T|t-(l-©) / exp(2(])t+i)] for all t e [0, T-l]. - - - (4.13)

Using the fact that G(CRt, t) is a strictly convex function under condition (4.13), we obtain the 

pre-optimal control action at time t for all t e  [0, T-l] with an arbitrary value of 9 specified, 

given by

CR t = - [D,(t;9) / D3(t;9)] • SR, + [D2(t;9) / D3(t;9)]

= - [D,(t;9) / D3(t;9)] • [SR, - 1] + [D2(t;9) - D,(t;9)] / D3(t;9)

^  n ’,(SR0 ---- (4.14)

where

D](t;9) = exp(2(j)t+,)-A,(t+l),

D2(t;9) = crtt-e'^^il-fi) + exp(2<j)t+i)-A1(t-t-l)-BRt - exp(c])t+i)-A2(t+l)/2, and
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D3(t;9) = e_,lt-(l-0) + exp(2<j)t+i)-Ai(t+l)

; in particular, the above equation shall be called the pre-optimal (linear feedback pension) 

funding formula and accordingly, 7t't(.) the pre-optimal (linear feedback pension funding) 

control law at time t.

For completion, substituting CR\ into Min G(CR,, t) yields

V(SR„ t) = A](t) • SR,2 + A2(t) • SR, + A3(t)

-  {[e2,1t-0-(l-0) + e'111-exp (2<J),+,) - A! (t+1)] / [e^il-G ) + exp(2<|>t+I)- 

A,(t+1)]} • SR,2 + {[2e‘,lt-exp(2(j)t+1)-((l-0)-(crtt - BR,) - 0-srt,)- 

A,(t+1) + e"111-exp((|)t+!)■ (1 -0)• A2(t+1) - 2e'2,1t-0-(l-0>srt,] / [e ^ l-G )  + 

exp(2<t),+i)-Ai(t+l)]} • SR, + [Remainingpart].

Here, we do not need to calculate the [Remaining part] m full because it does not affect our 

computation for CR’t, i.e. CR’t depends only on the functional coefficients Ai(t+1) and 

A2(t+1), not on A3(t+1). So, we need only to solve the following backward recursive equations 

for all t:

A,(t) = [e_2T|t-0 (1 -0) + e‘T,t-exp(2(t)t+i)-A1(t+l)] / [ent-(l-0) + exp(2 4),+1)-A1(t+l)] and 

A2(t) = [2e_Tlt-exp(2<})t+i) • ((1-0) • (crt, - BR,) - 0-srt,) • A](t+1) + e ̂ -exp^t+O • (1-0) •

A2(t+1) - 2e2,lt-0-(l-0)-srtt] / [e^-O-G) + exp(2([)t+1) • A,(t+1)], - - - (4.15)

which start with the boundary conditions, Ai(T) = e"711 and A2(T) = - 2e'’lT-srtT, and hence the 

first recursive equation can be solved to give Ai(t) and then after substitution the second can be 

solved to give A2(t).

The above recursion for A,(.) generates sequentially the positive sequence (A](t); te[0, T-l]} 

in the backward course of time t, starting with Ai(T) = e~rT > 0; hence, the condition (4.13) for
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uniqueness is redundant. We have thus shown that the Bellman equation (4.11) has a unique 

solution of the suggested quadratic form (4.12) with Ai(t) and A2(t) satisfying the above 

recursions (4.15) - here, we complete the mathematical mduction argument.

It is worth noting that, from the fact that A](t) > 0 for all t implies that 0 < Di(t;0) < D3(t;0) for 

all t, the pre-optimal funding formula has a similar mathematical form to the (ratio-type) 

spread funding formula (3.22) given in section 3.4.4: that is, Di(t;0)/D3(t;0) can be thought of 

as corresponding to the spread parameter kt and [D2(t;0)-Di(t;0)]/D3(t;0) to NRi.

Next, the pre-optimal control response SR’t+) corresponding to CR’t is given in the form: for all

te[0, T-l],

SRVi = exp[<t>t+i] • [SR't + CR't - BR,] with given SRo = SR’0. ---- (4.16)

After determining a best value of 0 (i.e. 0*) based on the ©‘-criterion, we can obtain a unique 

sequence of optimal control actions {CR*0, CR*i, ..., CR*T_i} and corresponding optimal 

control responses {SRo, SR*i, SR*x} with 0 determined by 0* in equations (4.14), (4.15) 

and (4.16).

In conclusion, our dynamic pension funding plan is defined as a sequence of functions {7t*t(.); 

te[0, T-l]} where is defined by the equation with 0 determined by 0* in the pre-optimal 

funding formula (4.14), for each t e [0, T-l] ,

71*,(SRO -  - [D,(t;0‘) / D3(t;0*)] • [SR, - 1] + [D2(t;0*) - D,(t;0*)] / D3(t;0*) - - - (4.17)

; in a similar manner to the pre-optimal funding formula (4.14) and control law 7t’t(.), this 

equation shall b e  called the optimal funding formula and function 7t*t(.) the optimal control law
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at time t (and hence, our dynamic pension funding plan is completely governed by the optimal 

funding formula).

4.3.3 Numerical illustrations

The aim of this section is to illustrate numerically the relationship between the optimal control 

law {7i")(.); te[0, T -1]} and its corresponding solvency level sequence {SR*t; te[0, T]} with 

respect to the given initial solvency ratio SR). the control targets (crtt, srtt), the assumed 

valuation basis (particularly, the force of valuation interest r|) and/or the weighting parameter 

value 0*. The results obtained will provide a fundamental framework for the stochastic 

numerical illustrations to be investigated in section 4.4.4. Further, we compare mathematically 

the spread funding formula (3.22) with our optimal funding formula (4.17).

Although we can set a variety of scenarios, in particular, of those time-varying components 

which are not under the control of the actuary, such as 5t+] and Bt, in order to test the effects on 

the controlling variable CR and controlled variable SR+i, we address the above objectives 

subject to the following simple assumptions. All numerical illustrations are given in Appendix 

4A in tabular form, except for Graph 4.1.

4.3.3.1 Assumptions

The assumptions (Al) and (A2) are consistent with our mathematical modelling assumptions 

used in section 3.4: for all te[0, T-l],

(Al) Actuarial assumptions:

(A 1.1) Demographic assumptions
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- stable membership (with members at age x dependent on English life table No. 14 (Males) 

and an exponential new entrant growth rate a  per year with exp(a) = 1.03);

- Entry age = 25 (in particular, the life table value l2s to be used as the radix); and

- Retirement age = 65.

(A 1.2) Economic assumptions (based primarily on the economic parameter estimates by 

Thornton & Wilson (1992))

- force of market cost adjustment for solvency valuations (xt), exp(x;) = 1.2 constant for all t 

and also exp(xT) = 1.2;

- force of salary growth (P), exp(P) = 1.02;

- force of valuation interest (r|), exp(r() = 1.06; and

- benefits = retirement life annuity for age and service (1/60* of final pensionable salary per 

year of service).

(A2) All actuarial assumptions, both demographic and economic, are consistently realised by 

experience, except for investment returns.

(A3) Primary funding method for NCt and ALt: Projected Unit method.

(A4) Projection assumptions

- control period: T = 12;

- force of investment interest (8t+i), exp(5t+i) = 1.06 or 1.08 constant for all t;

- admissible weighting parameter set for 9: {90%, 50%, 10%};

- control targets: (crtt, srtt) = (NRt, 100%) and srtT = 100%; and

- admissible initial solvency ratio: SRo = 100% or 0%.

Given the above assumptions (A1)~(A3), we can obtain the following formulae from equation 

(3.18) derived in section 3.4.2, for our numerical illustrations:

(a) ALt+i = exp(a+P) • ALt = 1.0506-ALt with AL0 = 150.1738% of initial payroll W0;

(b) NCt+i = exp(a+P) • NCt = 1.0506-NCt with NC0 = 5.0470% of W0;
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(c) EBt+i = exp(a+p) • EBt = 1.0506-EB, with EB0 = 6.3787% of W0; and hence

(d) equation (3.24) derived earlier in section 3.4.4, i.e. exp(a+p-tt) = exp(r|-Tt) + exp(ri)-(NRt - 

EBRt), holds clearly.

; hence, any pair of ALt, NCt and EBt is constant for all t.

Accordingly, EBRt (= EBt/SLt) = 0.035396 and NRt (= NC./SLt) = 0.028006.

In particular, formula (d), i.e. exp(a+p-xt) = exp(ri-xt) + exp(r|)-(NR, - EBRt), enables us to 

compare more exactly the spread funding formula (3.22) with our pre-optimal funding formula 

(4.14) and this is considered in the next section 4.3.3.2.

Remark 4.2: It is worth recalling that our funding purpose is to balance long-term funding 

requirement (i.e. stability) and short-term solvency requirement (i.e. security) [see section

2.1.3.4 and subsection (ii) in section 3.3]: in this respect, the control targets specified in (A4) 

would be sensible to both the trustees and the employer. Further, the contribution ratio target 

NRt is calculated by way of the Projected Unit method, which is appropriate because a  > 0 in 

(A l.l) [see subsection (ii) in section 2.2.2.2],

4.3.3.2 Dynamic pension funding plan vs. Spread funding plan

Here, we are concerned with the mathematical comparison between the pre-optimal funding 

formula (4.14) and the spread funding formula (3.22) derived in section 3.4.4. Applying the 

control target assumption in (A4) to formula (4.14) leads to the following simplified form, 

which is distinct from the spread funding formula (3.22): that is, for all t e [0, T-l],

n \ ( S R d  = - [D,(t;e)/D3(t;e)] • [SR, - 1] + [D2(t;0) - D,(t;6)] / D3(t;0)

= NR, - cp(t;0)-(SRt - 1) + ^(t;0), and hence

202



SRVi = exp(t|>t+iH(l-(p(t:0))-SR.'t + exp(a+p-x-r|) - exp(-x) + tp(t;0) + ^(t;0)] with the

initial condition S R ’0 = S R o  (from equations (3.20) and (3.24)) ---- (4.18)

where

cp(t;0) = [D](t;0)/D3(t;0)], in which 0 < cp(t;0) < 1 for all te[0, T-l); and 

£(t;0) = - [D](t;0)-(exp(a+p-Tt-ri) - exp(-xt) + 1) + exp(4>t-Hi)-A2(t+1 )/2] / D3(t;0).

Thus, the above formula (4.18) has mathematically the same form as the spread funding 

formula (3.22), except for the term ^(t;0), in which cp(t;0) can be thought of as the proportional 

state-feedback controlling parameter (or spread parameter) as m k, in the spread funding 

formula (3.22), while S,(t;0) can be regarded as the additive controlling parameter, playing the 

additional role of a cushion against the solvency and contribution rate risks in connection with 

tp(t;0) [see Table 4.1],

Furthermore, we can easily check the characteristics of cp(t;0) and £(t;0) with respect to 0, so 

that for all te  [0, T-l],

(a) cp(t;0) is a strictly increasing function of 0 because Ai(T) = e^7 and A:(k) is a positive and 

strictly increasing function of 0, m particular, as 0 —> 100%, then cp(t;0) —» 1; that is, 

strengthening the security (i.e. 0=01 > 0=02) implies a reduction in the amortisation period (i.e. 

cp(t;0,) > cp(t;02));

(b) ^(t;0) can not be said generally to be a (strictly) increasing or decreasing function of 0 

because of the complexity of the function A2(t) defined in the recursive equation (4.15), but it is 

true that as 0 -> 100%, then c(t;0) -»  [exp(-<t>t+1) + exp(-it) - exp(a+p-xt-r|) - 1] because A,(t) 

-> e_Tlt, A2(t) -> -2e_Tlt and srtt = 100% by assumption; and thus,

(c) as 0 —» 100%, then SR’t+i —> 1 and CR’t+rNRt+i —> [exp(-<])t+1) + exp(-xt) - exp(a+p-xt-ri) - 

1], whereas CR’o-NRo -> [-(SR'0-1) + exp(-(j>i) + exp(-x0) - exp(a+P-x0-r|) - 1] where SR?0 = 

SRo given.
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By using the above assumptions in section 4.3.3.1, we give a numerical example of the 

movement of the time-varying parameters cp(t;0) and £(t;0) involved in formula (4.18) as time t 

progresses to T-l, which is illustrated in Table 4.1, based on 0 = 50%. To make the patterns of 

(cp(t;0); te[0, T-l]} and {^(t;0); te[0, T-l]} clearer, the case of the poorest investment 

performance (i.e. exp(5) = 1.04 < exp(r|)=1.06) is additionally illustrated.

From this table, it is clear that both cp(t;0) and £,(t:0) are nearly constant during the initial 

periods, while, during the last few periods, <p(k:0) mcreases but ^(k;0) decreases as time t 

becomes close to T-l (- this may imply that some trade-off between (p(t;0) and ^(t;0) is 

maintained over the last few periods). Further, (p(t;0) and £(t;0) each are sensitive to the 

changes in the investment performance.

In the next section, we simply illustrate how to determine the best value of 0 (denoted by 0*) 

according to the ©'-criterion (introduced in subsection (v) of section 4.2.3.2) and provide an 

illustrative projection of our dynamic pension funding plan.

4.3.3.3 Numerical illustrations of dynamic pension funding plan

(i) Searching for 0*:

From the assumptions in section 4.3.3.1, we find the best value of 0 (i.e. 0*) among the 

admissible set {90%, 50%, 10%} based on the ©'-criterion.

The simulated pre-optimal error projections {SR’t-l: t=0, 1, ..., 12} and {CR\-NRt: t=0, 1,

..., 11} for exp(5) = 1.06 are given in Graphs 4.1.1 (in the case of S R o  = 0%) and 4.1.2 (in the 

case of S R o  = 100%). The other case of exp(5) = 1.08 leads to a similar result to Graphs 4.1.1 

and 4.1.2.
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These graphs show that firstly, 9* = 50% would be suitable as a balancing point of the 

conflicting interests of the employer and trustees: in other words, the pace of funding and the 

progress of solvency level are better balanced at 9* = 50%, rather than at 9* = 90% and 10%. 

The choice of a balancing 9* would be more crucial in the case of S R o  being far away from the 

solvency target 100% than in the case of S R o  close to the solvency target 100%: for S R o =  0%, 

both the funding burden on the employer and the scheme solvency are heavily affected by the 

value of 9* as seen in Graph 4.1.1, whereas for S R o  = 100%, there is neither a funding burden 

nor insolvency, and further, the simulated pre-optimal (control and control action) error 

projections do not change greatly with the variations in 9*, as seen in Graph 4.1.2.

Finally, Graph 4.1.1 clearly illustrates that when adopting the supplementary performance 

criterion (4.4.1) designed for removing quickly the pre-optimal (control and control action) 

errors, the value 9* is likely to be set at the level of 99% among the admissible set {9: 90%, 

50%, 10%} because this provides the quickest convergence to the specified control targets (i.e. 

srtt=100% and crt,=NRt), but this policy is linked with a heavy financial burden on the 

employer at the initial periods; and when employing the supplementary criterion (4.4.3) 

emphasising smoothness, the value 9* is likely to be determined at the level of 10% among the 

admissible set {9: 90%, 50%, 10%} because this provide the slowest but monotonical 

convergence to their respective control targets, but this policy is linked with the problem of 

slowness in progressing to these targets.

In the next subsection, we shall consider the dynamic pension funding plan with the 

intermediate value 9* = 50% for the numerical illustrations.

(ii) Projections of dynamic pension funding plan:

Our dynamic pension funding plan is governed by the optimal funding formula defined as 

follows by replacing 9 with 9* in the pre-optimal funding formula (4.18):
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7i*t(SRt) = NRt - (pitiB*) • (SRt - 1) + £(t;0*) with 0* = 50% specified, and hence,

SR*t+i = exp(<j)t+i)-[(l-q)(t;0*))-SR*t + exp(a+[3-x-r|) - exp(-t) + cp(t;0*) + ^(t;0*)] with SR*0 = 

SRo and 0* = 50% specified. ---- (4.19)

The optimal projections { C R * t- N R t ;  t=0,l,..., 11} and { S R * t+ i; t= 0 ,l,..., 11}, generated from 

formulae (4.19), are given in Table 4.2.1 (in the case of exp(5) = 1.06) and Table 4.2.2 (in the 

case of exp(5) = 1.08).

Comparing these two tables, we can say that if we have a better investment performance (e.g. 

exp(8)>exp(r|) in Table 4.2.2) rather than a best estimate investment performance (e,g, 

exp(5)=exp(r|) in Table 4.2.1), then our dynamic pension funding plan governed by formula 

(4.19) leads to more reductions in both the financing burden on the employer and the risk of 

msolvency. In other words, even in using our dynamic pension funding plan, the investment 

performance of the pension funds plays vital role in enabling the actuary (and trustees) to 

manage the finances and solvency of the scheme successfully, as is generally well-known in 

actuarial applications [see Haberman (1994)].

4.3.3.4 Suggestions for reducing the insolvency risk

As illustrated in Table 4.2.1, the best estimate basis with SRo=0% is seen to be merely funding 

for a solvency level target 100% due to the market cost adjustment exp(x) = 1 .2 . Thus, the 

solvency-level projections starting with SR/;=0% are at a lower level than 100% (i.e. insolvent 

in the view of PLRC) over most of our control period. On the other hand, the best estimate 

basis with SRo=100% is shown to be solvent but quite close to the 100% solvency target over 

the whole control period.

Given the unpredictable and adverse nature of the risk of solvency for pension funds, the 

trustees would require more protection against this potential risk. The actuary could then
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suggest the following four options in order to meet their requirement (although these will yield 

commonly additional contributions to both finance and maintain the higher solvency level, as 

illustrated below m subsections (i)~(iv)):

(a) Increasing the value 0*;

(b) Increasing the solvency ratio target srtk;

(c) Readjusting the valuation basis more conservatively than the best estimate basis, in 

particular, employing a more conservative valuation interest rate than a best estimate; or

(d) Combining appropriately the above options (a), (b) and/or (c).

The aim of this section is to illuminate the effects of these suggestions in turn through some 

illustrative numerical examples. Other possible scenarios will produce similar results. To begin 

with, we note that the numerical illustrations for these options will not consider the ©^-criterion 

because it is not necessary in our discussions (although we have to find out a new best value 0* 

according to the changes in the related parameters (e.g. srtt and rj)). So, we shall refer to the 

pre-optimal values as the optimal values. Moreover, the calculation basis used in Table 4.3.1 is 

considered to be a standard basis for our further arguments, that is, (exp(5) = exp(r|) = 1.06 

(so, NRt = 0.02806), 0* = 50% and srtt = 100%}; for convenience, we shall indicate only the 

differences from the standard basis in the numerical illustrations given in Appendix 4A.

(i) Effects of suggestion (a):

Applying the property (c) investigated in section 4.3.3.2, as 0*—»100%, we note that SR*t+i-»l 

and CRVi-NRt+j —» - 0.001478 for all t, whereas CR*0-N R  —» 0.998522 for SR) = 0% and 

CR‘o-NRo -»  - 0.001478 for SR, -  100%, which is illustrated m Table 4.3.1 for 0* = 99.9%.

Therefore, simply putting greater emphasis on the solvency risk (i.e. 0* —» 1) may be 

unacceptable to both the employer and trustees, particularly in the case of the initial solvency 

level being far lower than the solvency target 100%, because the additional funding burden at
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the starting point places a heavy burden on the employer and there will be no substantial 

improvement in solvency level due to convergence to 100%. On the contrary, in the case that 

the lmtial solvency level is close to 100% and the funding policy is to manage solvency levels 

at the level of 100%, the policy of setting 9* close to 100% would be highly suitable.

(ii) Effects of suggestion (b):

As illustrated in Table 4.3.2, slightly increasing the solvency target (here, switching the 

solvency target from 100% to 100.5%) shows that the risk of the occurrence of insolvency are 

increasingly reduced in the case of SR ; = 0% (relative to the results shown in Table 4.2.1) and 

the projections of solvency levels starting with SRo=100% are also improved to around the new' 

solvency target. The resulting additional contributions occurring during first period are 

commonly of “reasonable” magnitude (considering the modest reductions in contribution rates 

during the last few periods).

(iii) Effects of suggestion (c):

Funding on a more conservative basis than a best estimate basis leads to an increasingly 

healthy solvency position (relative to that being shown in Table 4.2.1), as illustrated in Table 

4.3.3. Further, this table clearly shows that the lower is the specified initial solvency level, the 

more conservative a valuation basis is required in order to reduce the occurrences of 

insolvencies. Further, the additional contributions that are inevitably required to be paid are 

higher mainly due to the increase in the normal cost NRt.

(iv) Effects of suggestion (d):

As examined in the above (i)~(iii), much attention should be focused by the actuary on the case 

of the initial solvency level being low. In Table 4.3.4. we are concerned with examining the 

effects of the combined strategy of (a), (b) and/or (c) in the case of SRo=0%.

This table can be said to imply that even though there are a number of ways of improving the 

solvency level over the whole control period, the actuary may need to set a best combmation
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among all available ways, subject to some constraints (typically, involved in balancing the 

conflicting mterests of the trustees and employer). This subject would be an interesting and 

potentially useful area of work but constraints of time and space mean that this subject is left to 

future research as a possible extension to this thesis.

4.3.3.5 Conclusions

We can derive the following conclusions from Graph 4.1.1 and 4.1.2, and Tables 4 .1~ 4.3.4:

(a) Our dynamic pension funding plan governed by the optimal funding formula (4.19) can be 

characterised mathematically by the additive controlling parameter %(t;0*), compared with the 

spread funding plan governed by the spread funding formula (3.22) [see Table 4.1];

(b) The optimal projections, {CR*t; te[0. T -l]> and {SR*t; te[0, T]}, illustrate the effects of 

reacting to the initial solvency level SRo, that is, a higher S R  contributes to improved stability 

and security [see Tables 4.2.1- 4.3.3], Further, these projections are greatly affected by the 

value of 0 specified, particularly in the case of SR) being lower than 100%, that is, as 0 -» 1, 

then the solvency level speedily progresses to 100% but the additional funding burden is quite 

high at the starting point [see Graph 4.1.1 and Table 4.3.1];

(c) For better protection against insolvency, the actuary is likely to employ one or a 

combination of the three distinct strategies, increasing the value of 0, increasing the solvency 

target and adjusting the valuation basis in a more conservative direction [compare Table 4.2.1 

with 4.3.1-4.3.4]; and

(d) The better protection against insolvency the more the additional financial burden on the 

employer, particularly in the case of lower initial solvency level [compare Tables 4.2.1 with 

4.3.1-4.3.4], This clear conclusion is consistent with that of Collins (1992) introduced in 

section 3.3.
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Finally, although we have not illustrated the numerical results in full, one of the most 

interesting results from our numerical experiments is that the force of new entrant growth a  

and/or the force of salary growth p has a great impact on the optimal projections {CR\; te[0, 

T -l]} and {SR\; t e [0, T]}. As expected, this result is related to the exponential actuarial 

liability growth equation (a) derived in section 4.3.3.1, i.e. ALt+i = exp(a+P) • ALt. In other 

words, from the viewpoint of stability and solvency, the optimal projections are worsened 

severely with the increase in exp(a+P), while the optimal projections are greatly improved with 

the decrease in exp(a+P); hence, the effects of a  and/or p would be well-matched with 

opposing effects of the force of investment interest (i.e. 5).
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4.4 Dynamic pension funding plan for stochastic LQP control optimisation problems

The objective of this section is to find the optimal control laws for solving our stochastic LQP 

control optimisation problems (4.8) and (4.9) formulated in section 4.2.4. These can be 

considered as the stochastic version of the problem examined in section 4.3. In a manner 

analogous to the deterministic optimisation of section 4.3, we will then be able to solve the 

problems (4.8) and (4.9), but this requires more care because we must allow for the effects of 

uncertainty existing in the system parameter tj>t+i and benefit ratio BIT

We consider firstly the problem (4.8) with complete state information and secondly the problem 

(4.9) with incomplete state information.

4.4.1 Complete state information

4.4.1.1 Preliminaries

The problem (4.8) is characterised by

(a) The stochastic controlled object specified by for all te[0, T-l],

SRt+i = exp[<j>t+i] • [SIT + CRt - BIT] with given SRo,

where <j)t+] ~ IID N(pt+), cra2) with a a2 < oo, BIT ~ HD N(EBIT, VBIT) with VBRt < °° and <|>t+i 

and BRS are independent for all t, se[0, T-l] ;

(b) The given initial information Ho = SRo is independent of <j)t+i and BIT; and

(c) The measurement equation Mt = S I T  with given M0 = S R o  (i.e. there is no time delay in the 

state information).

Consider a situation at time te[0, T-l]. As mentioned earlier in subsection (iii) in section

2.3.2.2, the value of the current state SIT (informed from the actuarial valuation at time t)
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contains all the essential and summarised information on the available information vector at

time t, Ht = (SRo, SR , SR, C R , CRU CR.i). In other words, the sequence of 

stochastic variables {SR, SRi, ..., SRT} has the Markov property (and hence the sequence is a 

(discrete-time, finite-state) Markov process): the conditional distribution of the future dynamic 

state SR+i given Ht depends only on the current dynamic state SR  because the controlled 

object is governed by a stochastic difference equation of order one, i.e. Pr(SR-i | Ht) = Pr(SR+i 

| SR) for all t e [0, T-l], a property which can be extended to the joint conditional distribution 

of the future dynamic states SR+i, SR+2, SRT given Ht, i.e. Pr(SR+i, SR+2, ..., SRT | Ht) = 

Pr(SR+i, SR+2, ..., SRt  | SR) for all t e [0, T-l], Hence, it is sufficient to determine C R  as a 

lmear function of the current dynamic state SR  of the controlled object (as m the deterministic 

case examined in Remark 4.1 in section 4.3.1): in other words, the general form of feedback 

control described in subsection (b) of section 4.2.1, i.e. CR = C7tt(Ht), is reduced to CR = 

C7it(SR) linear in SR. As a result, SR  itself is a state variable at time t for every te[0, T-l] - 

this is helpful on grounds of memory efficiency because otherwise, the actuary may need to 

retain the full information Ht (which has the monotonic property of increasing with time t).

Applying the backward dynamic programming method for sequential control optimisation as in 

section 4.3.1, we can directly obtain the Bellman equation for the problem (4.8). Prior to 

utilising this method, the following two properties would be helpful.

(i) Property 1 [for proof, see Grimmett and Stirzaker (1992, pp 67 and 106)]):

Let X and Y be two integrable random variables on a probability space (Cl, K, Pr). The 

conditional expectation of Y  given X, written as E(Y | X), has the important property such 

that E(Y) = E{E(Y | X)}.

In our applications, the mathematical expectation of PIBe (described in equation (4.10) in 

section 4.3.1) has the property that E(PIBe) = E{E(PIBe | Ht)} = E{E(PIBe | SR)} for all te[0, 

T-l], in which the second equation comes from the Markov property of {SR, SRi, ..., SRT}.
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(ii) Property 2 [for proof, see Astrom (1970, p 260)]:

Let X be a integrable random variable on a probability space (D., 3 , Pr) and let Y be the 

controlling or decision variable as a function of X. Let the deterministic performance index be 

PI (X, Y) as a function of X and Y. Assuming that PI(X, Y) has a unique minimum with 

respect to Y for all X, then

Min E{PI(X. Y)} -  E{ Min PI(X, Y)} = E{PI(X, Y*)}
Y  Y

where Y* denotes the value of Y at which the minimum is achieved

; these equations imply that the expected value E{PI(X, Y)} can be minimised by minimising 

the inner part PI(X, Y) of E{PI(X, Y)}.

In our applications in connection with Property 1, we find that for all t e  [0, T-l]

Min E(PIBe)
C R t ,C R t+1 ,...,CRt _j

= Min E{E(PIBe | SR*)}
C R t ,C R t+1 ,...,CRt _j

= E{ Min E(PIBe | SRt) },
C R t ,C R t+1 ,....CRt _!

which implies that E(PIB0) can be minimised by minimising the conditional expectation 

E(PIB0 1 SRt) with respect to CRt for all SRt+], te  [0, T-l].

4.4.1.2 Bellman equation

To begin with, we note that for notational convenience, the superscript ‘C’ on the left side of 

each main symbol is used to indicate that it concerns the problem with complete state 

information.

In view of the above Properties 1 and 2, we first define the following equation in order to 

produce the backward recursion in time.
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T-l
cV(SRt, t) = Min E { ^  {e_lls-[e-(SRs - srts)2 + (1- 0)(CRs - crt,)2]} +{CRS; s=t,t+l..T-l} “

e'T,T-(SRT - srtT)21 SR,}

Applying now the backward dynamic programming method (based on Bellman's principle of 

optimality) for sequential control optimisation as in section 4.3.1, we find the following version 

of the Bellman equation

cV(SRt , T) = E{e1nT-(SRT - srtT)2 1 SRX} = e^T-(SRT - srtT)2 and 

°V(SR,, t) = Min E{ e T|‘-[0-(SRt - srt,)2 + (l-0)-(CR, - crt,)2] +CRt

T - l

Min E{{ Y  (em-[0-(SR, - srt,)2 + (l-0)-(CRs - crt,)2]) +
{CR,;s=t+l,t+2..T-l}

e^-IO-iSRx - srtT)2] } |SR +,} | S R ,}

= Min {ent-[0-(SR,-srtt)2 + (l-0)(CR,-crt,)2] + E{CV(SR+1, t+1) | SR,}} - - - (4.20)
CRt

; here, CV(SR,, t) can be interpreted to be the minimal expected future cost discounted at time 0 

in the case of complete state information, given the summarised information up to time t (i.e. 

SR,), which is independent of the control actions before time t, and obeys the above recursion 

in time.

Further, the terminal cost associated with the terminal state SRT at the terminal time T,

CV(SRX, T), gives the boundary condition for the Bellman equation (4.20)

4.4.1.3 Control optimisation

Using the fact that the control law at time t is a linear function of the dynamic state SR, [see 

section 4 .4 .1.1], we will now show that the solution of the Bellman equation (4.20) with the
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boundary condition CV(SRT, T) = e'TlT (SRT - srtT) is uniquely determined m the following 

quadratic form (which can be verified using a mathematical induction argument, as discussed 

in section 4.3.2):

cV(SRt, t) = cA|(t)-SR; + A2(t)-SR; + cA3(t) with the boundary conditions

CA,(T) = e nT, cA2(T) = -2enT-srtT and CA3(T) = e ^ -s itj2. - - - (4.21)

The above form (4.21) is true for t=T and then proceeding by mathematical induction, we have 

cV(SRt+1, t+1) = cA,(t+l)-SRt+,2 + cA2(t+l)-SRt+, + cA3(t+l) with cA,(T)=e‘nT, cA2(T)=-2e‘7lT 

■srtT and cA3(T)=e‘,lT srtT2.

To obtain the solution of the Bellman equation (4.20), we firstly determine the conditional first 

and second moments of SR++1 given SRt which come from the following equations:

SRt+i = exp[(|)t+i] • [SRt + CRt - BRt] and

cV(SRt, t) =M in {e^-te-iSRt-srtt)2 + (l-OXCRt-crt,)2] + E{CV(SR,+1, t+1) | SRt}}.
CR,

Then, the conditional first and second moments of SRt+i, given SRt, are obtained as

E{SRt+i | SRt} = exp(pt+] + a a2/2) ■ [SRt + CRt - EBRJ and

E{SRt+i2 i SRt} = exp(2pt+1+2cra2) ■ [(SRt+ CRt)2 - 2EBR,-(SRt+ CR,) + VBRt + EBR»2].

Given the above known results, we can rewrite the Bellman equation (4.20) in the form: for 

each te[0, T-l],

cV(SRt, t) = Min { cG(CRt, t) }
CR,

where
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cG(CRt? t) = {e-T,t-(l-0) + exp(2(^+1+aa2))-cA,(t+l)} • CRt2 + {-2crtt-e m-(l-0) +

2[exp(2(pt+I+ aa2))-cA1(t+l)].(SRt-EBRt) + exp(M,+l+aa2/2)-cA2(t+l)} •

CRt + {e’lt-(0-(SRt-srtt)2 + (l-0)-crtt2) + cA,(t+l)-[(exp(2(pt+1+aa2)) ■

(SRt2 - 2EBRt SRt + VBRt + EBRt2)] + cA2(t+l)-fexp(ptT,+ca2/2) •

(SRt-EBRt)] + cA3(t+l)}.

It is sufficient that the functional coefficient of CRt2 in cG(CRt, t) is positive for all te  [0, T-l] 

as a condition for a unique sequence of pre-optimal control actions {CR\; te[0, T-l]}, which 

are optimal subject to an arbitrary specified value of 0, that is

cAi(t+I) > - {e-'nt-(l-0) / exp[2(pt+i+aa2)]} for all te[0, T-l] - - - (4.22)

; hence, this is clearly true for t = T - l .

Utilising the fact that cG(CRt, t) is a strictly convex function under condition (4.22), we obtain 

the pre-optimal control action at time t, cCR\, for all te  [0, T-l]

CCR\ = - [cD,(t;0)/cD3(t;0)] • SR, + [cD2(t;0)/cD3(t;0)]

= - [cD,(t;0)/cD3(t;0)] • [SR, - 1] + [cD2(t;0) - cD,(t;0)] / cD3(t;0)

-  cV ,(SRt) - - - (4.23)

where

cD,(t;0) = exp[(2(pt+i+CTa2)]- cA,(t+l),

cD2(t;0) = crtt-e'^-il-©) + exp[2(pt+i+c?a2)]- cAi(t+l)-EBR, - exp[pt+i+aa2/2]- cA2(t+l)/2, and 

cD3(t;0) = e^-il-G ) + e x p P ^ - K j .2)]- CA,(t+l)

; m a similar manner to the deterministic case, the above equation shall be called the pre- 

optimal (linear feedback pension) funding formula and accordingly, C7t\(.) the pre-optimal
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(linear feedback pension funding) control law at time t, expressed as a function of the current 

state variable SRt.

For completion, substituting cC R \ into Min G(CR;. t) leads to

°V(SRt, t) = cA](t) • SRt2 + cA2(t) • SRt + cA3(t)

= {[e-271t-0 -(l-e> + e'T1k-exp(2(pt.i+aa2))-cA,(t+1)] / [e ^ l-G )  +

exp(2(pt+I+aa2))-CA1(t+l)]} • SR*2 + {[2eTlt-exp(2(pt+1+aa2))-((l-0) •

(c rtf EBRt) - 0-srtt)-cAi(t+l) + e^k-exp(|a^i+aa2/2)-(l-9)-A2(t-rl) - 

2e'2l1t-0-(l-0)-srtt]/[e -11t-(l-0) + exp(2(pt+,+cTa2))-CA1(t+l)]} • SR, + 

c[Remaining part].

We note that it is not necessary to compute fully the c[Remaimng part] because this constant 

term does not affect our calculation of cCR’t, i.e. cCR"t depends on the functions cA](t+l) and 

cA2(t+l), not on cA3(t+l). So, we need only to solve the backward recursions below for all t:

cA,(t) = [e‘2T,t-0-(l-0)+e"r|t-exp(2(pt+1+CTa2))-cAi(t+l)]/[e',1k-(l-0)+exp(2(pt+]+aa2))-cA1(t+l)] and 

cA2(t) = [2e'’1t-exp(2(pt+1+CTa2))-((l-0)-(crtt- EBR,) - 0-srtt) cA,(t+l) + e'Tlt-exp(pt+i+aa2/2)-

(l-0)-cA2(t+l) - 2e'2Tlt-0-(l-0)-srtt] / [e m-(l-e) + exp(2(pt+,+CTa2))-cA,(t+l)], - - - (4.24) 

which is soluble by back-tracking step by step, starting from the boundary conditions, cAt(T) = 

e_TlT and CA2(T) = -2e_,lT-srtT, and hence the first recursive equation can be solved to give cAi(t) 

and then after substitution the second can be solved to give cA2(t).

It should be noted that the above recursive equation for cAi(.) generates sequentially the 

positive sequence {cAi(t); te[0, T -l]} in the backward course of time t, starting with cAi(T) = 

e '111 > 0; hence, the condition (4.22) for uniqueness is redundant. Thus, we find that the
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Bellman equation (4.20) has a unique solution of the suggested quadratic form (4.21) with 

cA,(t) and cA2(t) satisfying the above recursions (4.24) - here, we complete the mathematical 

mduction argument.

From the fact that cAi(t) > 0 for all t, we find that 0 < cD](t;0) < cD3(t;0) for all t. Then, the 

pre-optimal funding formula (4.23) has a similar mathematical form to the spread funding 

formula (3.22) specified in section 3.4.4: cD](t;0)/cD3(t;0) can be thought of as corresponding 

to the spread parameter kt and [cD2(t;0*)-cDi(t;0*)]/ cD3(t;0*) to NR,.

Moreover, the pre-optimal control response SR\+i corresponding to cC R \ is generated in the 

form: for each te[0, T-l],

SR’t+i -  exp[<J>t+i] • [SR\ + cC R \ - BRJ with given SR« = SR’0. - - - (4.25)

After determining a best value of 0 (denoted by 0*) by employing the 0*-criterion, we can 

obtain a unique sequence of optimal control actions {cCR*0, cCR*i, ..., cCR*x.i} and 

corresponding optimal control responses {SR/,. SR*\, ..., SR*T} with 0 determined by 0* m 

equations (4.23), (4.24) and (4.25).

In conclusion, our dynamic pension funding plan is defined as a sequence of time-indexed 

functions {C7c*t(.); t e [0, T-l]} in which cn*t(.) is defined by the equation with 0 determined by 

0* in equation (4.21), that is, for every te[0, T-l],

V k(SR0 = - [cD,(t;0*) / cD3(t;0*)] • [SR, - 1] + [cD2(t;0*) - ^(t;© *)] / cD3(t;0*) - - - (4.26)

; in a similar manner to the pre-optimal funding formula (4.23) and control law C7t\(.), this 

equation shall be called the optimal funding formula and function C7t*t( . )  the optimal control
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law at time t (and hence, our dynamic pension funding plan is governed by the optimal funding 

formula).

We note finally that the dynamic economic model of the stochastic process of investment 

retums{ôt+i; te[0, T-l]} could be extended by considering more complex representations of 

investment returns, for example, using the time series models of the so-called AR1MA type 

introduced by Box & Jenkins (1976). Thus, based on Panjer & Bellhouse (1980)’s empirical 

justification of the autoregressive representation of the underlying force of interest, and 

following the approach of Haberman (1994), we could set St+i as following a stationary first- 

order (unconditional) autoregressive model SAR(l) such that ôt+] = r| + y ■ (ôt - r|) + a£t+], |y| < 

1. Applying the SAR(l) model to our stochastic control problem (4.8), the minimal expected 

cost function is a function of SRt and 8t, so the recursive equations of cA,(t) and cA2(t) can not 

be derived in full, except at time T-l, because expressions like E{cAi(t+l)-exp(5t+i) | 5t} and 

E{cA2(t+l)-exp(ôt+i) | 5t} are not integrable. Only the case of y = 0 is soluble and produces the 

recursive equations of cA,(t) and cA2(t) as given in (4.24).

Remark 4,3: As mentioned in subsection (ii) in section 4.2.5, the Certainty Equivalence 

Principle does not hold here, since if we replace the random coefficients, exp[<J>t+I] for all t e [0, 

T-l], with their corresponding expected values, expfp^+i + cia2/2] for all t e [0, T-l], the 

resulting certainty equivalence solution is not optimal for our stochastic problem (4.8) because 

{exp[pt+] + CTa2/2| }2 *  exp[2(pt+] + a a2)].

4.4.2 Incomplete state information

4.4.2.1 Preliminaries

We consider the incomplete state information version (4.9) of the corresponding complete state 

information problem (4.8) investigated in section 4.4.1, which is characterised as follows:
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(a) The stochastic controlled object is specified by for all te [- l , T-l],

SRt+i = exp[<t>t+i] • [SR, + CR, - BRt] with given SR_i ---- (4.27)

where, <j>t+i ~ IID normal (pt+i, c?a2), BRt ~ IID normal (EBRt, VBRt), and (j) t+1 and BR$ are 

independent for all t, se [-l, T-l];

(b) The given initial information 3 0 = (SR_i, CR_i) is mdependent of <t>t+i and BRt; and

(c) The measurement equation Mt = SRm with given M0 = SR_i (i.e. there is a one-unit period 

time delay in the availability of the state information).

Thus, except that the current value of dynamic state SR, of the controlled object is no longer 

available to the actuary, control problem (4.9) is very similar to control problem (4.8).

Consider the situation at time t e  [0, T-l]. The current dynamic state SR, of the controlled 

object is not observable because Mt = SR,.i; for this reason, SR, is called the conceptual state 

variable [see Remark (a) in section 2.3.2.2], Then, the actuary needs to find an observable state 

variable as a best alternative to the conceptual state variable SR, in the light of estimation and 

memory efficiency, which summarises all the information available to the actuary at time t, i.e. 

3, = (SR-i, SRo, ..., SRt.i, CR-i, CRo, ..., CRt.i), and is recursively calculable [see Remark (b) 

in section 2.3.2.2], Providing that we define effectively a new state variable, we can solve the 

problem (4.9) in a similar manner to the approach employed in section 4.4.1.

Now, we shall define the effective state variable for the problem (4.9) as the best alternative to 

the unknown SR,.

Although the current state SR, is not obtainable at time t, its movements are governed by the 

system equation (4.27). Then, we should define a new system equation whose dynamic state at
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time t is generated recursively with certainty when the actuary makes his t-th decision, as in the 

situation of complete state information.

As a result of this argument, we propose that for each te  [0, T], the conditional mean SR, = 

E(SRt | 3.) is the most effective state variable based on information up to time t (i.e. 3 t), for 

these reasons that

(a) Supposing that E(SRt2) < oo, SRt = E(SRt | 3 t) is the so-called minimum mean-squared 

error estimator/predictor (or best estimator/predictor) of SR, given 3 t. This is because setting 

Zt = Z(3t) (i.e. an estimator of SRt, presenting a function of 3 t) and using the Properties 1 and 

2 described in section 4.4.1.1, then Min E[(SR, - Zt)2] = Min E{E[(SR, - Zt)2] | 3 t} leads
z, zt

directly to the result that Zt = E(SRt | 3 t), that is, the conditional expectation of SR, given 3 k 

minimises the mean-squared error E[(SR, - Zt)2] over all Zt [see Grimmett and Stirzaker (1992; 

section 7.9)];

(b) Using the fact that SR, = exp(4>t) • [exp(-p,-aa2/2) • SR, + EBR,., - BRt.i] from the system 

equation (4.27) where SR, = E(SR, | 3 t) = exp[p,+aa2/2] • [SR,_i + CR,_, - EBR,.,], then 

Pr(SRt | 3 t) = Pr(SRt | SR,) which implies that the value of SR, yields full information on the 

available information vector 3 t;

(c) The sequence of observable states at each valuation date, {"SRo, SR], ..., SRT} can be 

generated recursively in the course of time by the following recursion: for every ts  [0, T-l],

''SR,-, = E(SRt+i | 3 t+I)

= exp[pt+,+CTa2/2] ■ {exp[<j)t-(p,+CTa2/2)] ■ SR; + CR, - [EBR, - exp(t[),)-(EBRt., - BRt.,)]}

with the (estimated) initial condition SRo= exp[po+o;i2/2] • [SR., + CR-, - EBR.,] ---- (4.28)

; hence, this new system equation is a stochastic difference equation of order one, which will 

sequentially generate the state variable SR, with certainty and no time delay as time
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(d) In a similar manner to the complete state information case examined in section 4.4.1.1, the 

sequence of stochastic variables {SR,. SR,. ..., SRT} is a (discrete-time, finite-state) 

Markov process because the conditional distribution of the future dynamic state SR^i given 3, 

depends only on the current dynamic state SR,, i.e. Pr(SR+i | 3,) = Pr(SR+i | SR,) for all t e 

[0, T-l], a property which can be extended to the joint conditional distribution of the future 

dynamic states SR+i, SR+2, SRT given 3 t, i.e. Pr(SR+i, ASR+2, ..., SRT | 3 t) = 

Pr( SR+i, SRt+2, SRt  | SR) for all t e [0, T-l]. Hence, it is sufficient to determine CR 

as a linear function of the current dynamic state SR, of the controlled object governed by the 

system equation (4.28): in other words, the general form of feedback control described in 

subsection (b) of section 4.2.1, i.e. CR, = ‘71,(3,), is reduced to CR = :7i,(SR) linear in SR. 

As a result, SR  itself is a state variable at time t and is the best linear predictor for the 

unknown SR, for every te[0, T-l] - this is helpful on grounds of memory efficiency because, 

otherwise, the actuary may need to retain the full information 3 t (which has the monotonic 

property of increasing with time t).

In summary, SR summarises effectively all the information available to the actuary at the time 

of taking control action CR (i.e. 3 t), and is recursively calculable/observable by means of the 

new system equation (4.28). Therefore, the control problem (4.9) with incomplete state 

information can be reduced to a problem with complete state information by way of redefining 

the stochastic controlled object by the new system equation (4.28) instead of the original 

system equation (4.27). So, for every te[0, T-l] the control law at time t admissible to the 

actuary is described in the form of a linear function of the (currently observable) dynamic state 

SR of the new controlled object governed by the system equation (4.28). Therefore, we can 

solve the problem (4.9) in a similar manner to the approach employed in section 4.4.1 (dealing

progresses, like the system equation dealing with the complete state information case (described

in (a) in section 4.4.1.1).
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with the complete state information case). That is, applying the Properties 1 and 2 introduced

in section 4.4.1.1, we find that for all te[0. T-l],

Min E(PIBe)
CRt ,CRt+]....CRt _j

Min E{E(PIB0 1 "SR,)}
CRt ,CRt+1....CRt _,

= E{ Min E(PIB0 1 SRt)}.
CRt ,CRt+1 ,...,CR -p_j

4.4.2.2 Bellman equation

We note first that for notational convenience, the superscript T  on the left side of each mam 

symbol is used to indicate that it concerns the problem with incomplete state information.

In order to produce the backward recursion in time (as in the situation of complete state 

information), we define

T-l

V fSRt, t) = Min E { Y  {e115-[G ^SR,-srf)2 + (1-0H C R ,-erf)2]} +
{CR( ; s= t,t+ l T - l} "

e^-iSRT-srtTiTSRt},

which implies that smee SRt is the state variable (defined as the best predictor of SRt given 

3 t), the right hand side of this equation is expressed as a function of SRt.

Applying now the backward dynamic programming method (based on Bellman’s principle of 

optimality) for sequential control optimisation as in section 4.3.1, we can establish the 

following Bellman equation:

V (aSRt , T) = E{e‘TlT-(SRT - srtT)2 1 SRr} and
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V fSR ,. t) = Min E{ e^-fe-iSR, - srtt)2 + (l-0)-(CR, - crt,)2] +CRt

T-l

Min E{{ 2  (e^-te-iSRs - srf)2 + (l-0)-(CRs - crt,)2]) +{CRs;s=t+l,t+2....,T-l}

e-T,T-(SRT-srtT)2 }rSR t+1} rS R t}

= Min E{e’lt-[0-(SRt-srt,)2 + (l-0)-(CRt-crtt)2] + V fSR *,, t+1) | "SR,} - - - (4.29)CRt

; here, :V( SR,, t) presents the minimal expected future cost discounted at time 0 in the situation 

of incomplete state information, given the summarised information up to time t (i.e. SR*), 

which is independent of the control actions before time t, and obeys the above recursion in time.

Further, the terminal cost associated with the terminal state SRT at the terminal time T, 

V ( SRt , T) = E{e'nT-(SRT - srtr)2 | SRx}, provides the boundary condition for the above the 

Bellman equation (4.29), where from the relation SR, = exp(<j)t) • [exp(-p,-aa2/2) • SR, + EBR,., 

- BRt.i] for all te[0. T] [see subsection (ii) in section 4.4.2.1], V ( SRT, T) is computed as

V (aSRt , T) = [etlT-exp(aa2)]-'SRT2 - [2e’lT-srtT]-ASRT + [e”lT-exp(2pT+2aa2)-VBRT.I+ e,lT-srtT2].

4.4.2.3 Control optimisation

Utilising the fact that the control law at time t is a linear function of the (currently observable) 

dynamic state SR, [see section 4.4.2.1], the solution of the Bellman equation (4.29) with the 

boundary condition V ( SRT, T) = E{e'TlT-(SRT - srtT)2 | SRT} is uniquely determined in the 

following quadratic form (as in the complete state information case):

ty^SRt, t) = :Ai(t) • SR,2 + !A2(t) • SR, + 'A3(t) with the boundary condition :Ai(T) = e'111- 

exp(ua2), !A2(T) = -2e'r|T-srtT and ‘A3(T) = e ’lT-exp(2pT+2cia2)-VBRT_I + e ’,T-srtT2, - - - (4.30) 

which can be shown using the following mathematical induction argument.
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This form holds clearly for t = T, and then proceeding by induction, we have

V ( SRt+i, t+1) = 'A, (t+1) • "SRt+i2 + !A2(t+l) • SRt+1 + ‘A3(t+1) with the boundarv conditions

specified in equation (4.30).

To obtain the solution of the Bellman equation (4.27), we firstly determine the conditional first 

and second moments of SRt+i given SR, which come from the following equations:

SR, = exp(<|>t) • [exp(-pt-cTa:/2) • "SR, + EBR,., - BR,_i],

SR,-, = exp(pt. l+ aa2/2) • { exp[<t>k-(p,+a a2/2)] • SR, + CR, - [EBR, - exp(<j)t)-(EBR,., - BR,.,)] } 

and ---(4 .3 1 )

V fSR ,, t) =M in E { e ' l- [ H S R r s r t t)2 + (l-QHCRrcrtt)2] + V ^SR^i, t+1) | "SR,}. - - - (4.32)
CRt

Then, the conditional first and second moments of SR, and SR,*], given SR,, are obtamed as 

follows:

E{SR, | aSR,} = E{SR, | 3,} = "SR,,

E{SR,21 aSRJ = exp(aa2) • 'SR,2 + exp(2p,+2aa2) • VBR,.,,

E{aSR,,! | aSR,} = exp(p,+1+CTa2/2) • fSR, + CR, - EBR,] and 

E{aSR,+12 | aSR,} = exp(2pt. 1+cja2) • [exp(aa2)-ASR,2 + 2(CR, - EBR,)ASR, + (CR, - 

EBR,)2+ exp(2p,+2aa2)-VBR,-i].

Given the above results, we can rewrite the Bellman equation (4.29) in the form:

V (aSR,, t) -  Min {‘G(CR,, t)}
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rG(CRt, t) = {e^-d-e) + exp(2(it+,+aa2) • 'A,(t+1)} • CRf + {-2crtt-e nt-(l-0) +

2[exp(2pt+1+CTa2) • 'A^t+l)] • ( SRt-EBR,) + exp(^,+cTa2/2) • !A2(t+l)} •

CRt + {e'Tn-0-[exp(CTa2)-SRl2 + exp(2(pt+cja2))-VBRt„i - 2srtt- SRt + srtt2] + 

e'1’t-(l-0)-crtt2 + exp(2pt*,+aa2)-IAi(t+l)-[exp(aa2)- SR.2 - 2EBR,SRt +

EBRf + exp(2(pt+aa2))-VBR{.1)] + exp( ̂ , +ct32/2) •1 A2(t+1) ■( SRr EBRt) +

:A3(t+l)}.

It is sufficient that the functional coefficient of CRt" in 'G(CRt, t) is positive for all te[0, T-l] 

as a condition for a unique sequence of pre-optimal control actions {CR\; te[0. T-l]}, which 

are optimal subject to an arbitrary value of 0 specified, that is

^ ( t + l )  > - [e’M l-e) / exp(2p,+i+aa2)] for all te[0, T-l], - - - (4.33)

which is true for t = T - l .

Using the fact that G(CRt, t) is a strictly convex function under condition (4.33), we obtain the 

pre-optimal control action at time t, ’CR’t, for all te[0, T-l]

‘CR’t = - [fyfcO) / !D3(t;0)] • aSR, + [ID2(t;0) / !D3(t;0)]

= - [ % m  / ID3(t;0)] • [ SRt - 1] + [ID2(t;0) - ’D,(t;0)] / !D3(t;0)

= ln \ ( S R d  - - - (4.34)

where

‘Di(t;0) = exp(2pt+i+aa2) • !Ai(t+l),

:D2(t;0) = crtt-e'^-O-Q) + exp(2pt+1+CTa2)-IAi(t+l)-EBRt - exp(pt+i+aa2/2)-IA2(t+l)/2 and 

!D3(t;0) = e^-fl-O) + e.xp(2pt, 1+CTa2) • ’A,(t+1)

; in a similar manner to the complete state information case, this equation shall be called the 

pre-optimal (linear feedback) funding formula and V t(.) the pre-optimal (linear feedback
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pension funding) control law at time t, expressed as a linear function of the current state 

variable SR,.

We note that the pre-optimal control law V t(.) is identical to the pre-optimal control law C7i’t(.) 

for the corresponding complete state information problem derived in section 4.4.1, except for 

the fact that the state SR, is now replaced by its conditional mean given 3 t, i.e. SR, = E{SR, | 

3,}, and the term exp[2(pt+i+aa2)] appearing in cDi(t;0), cD2(t;0) and cD3(t;0) is now replaced 

by exp[2p,+l+CTa2] m [Di(t;0), ’D2(t;0) and ID3(t;0). Thus, we can easily check that if the 

random coefficients, <j>t+i’s, are all regarded as a constant, then we can obtain V t(.) simply 

replacing SR, in C7r\(.) by SR,.

For completion, substitutmg CR’t into Min ’G(CRt, t) yields

VCSRfe t) = % ( t )  ■ aSR,2 + 'A2(t) • SR, + 'A3(t)

= {[e"2Tlt-0-(l~0)-exp(cja2) + e‘T,t-exp(2pt*,+2CTa2)-IA1(t+l) +

exp(4p1+1+2aa2)-(exp(CTa2) - l)-IA,(t+1)2] / [e'^-fl-O) + exp(2p,+i+aa2)- 

^,(1+1)]} • S R ? + {[2e'r|t-exp(2pt+1+2aa2)-((l-0)-(crtt - EBR,) - 

©•srtO-'AKt+l) + e'^-expipt-n+cTa^H 1 -0)-'A2(t+1) - 2e‘2T0.(l-0).Srtt] / 

[e'^'-il-O) + exp(2pt+i+cya2)-IAi(t+l)]} • SR , + '[Remaining part].

Here, it is not necessary to calculate the '[Remaining part] in full because C R \ depends only on 

'A^t+l) and 1 A2(t+1) (not on ‘A3(t+1)). Then, we need only to solve the backward recursive 

equations below. For all te[0. T-l],

’Ai(t) = [e'2T,t-0-(l-0)-exp(<ja2) + e"Tlt-exp(2pt+i+2c7a2)-IAi(t+l) + exp(4p,+,+2aa2)- 

(exp(aa2) - l).!A,(t+l)2] / [e_r|t-( 1-0) + exp(2pt+1+aa2)-IA,(t+l)] and
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*A2(t) = [2e‘Tlt-exp(2fxt+1+2CTa2)-(( 1 -0)-(crt, - EBRt) - G-srtO-’A^t+l) + X -  e x p ^ + a ^ ) -

(l-ej-'Aoit+l) - 2e'2T|t-e-(l-0)-srtt] / [e^O-G) + exp(2pt+1+c7a2)-IA1(t+l)], - - - (4.35)

which are soluble by back-tracking step by step, starting from the boundary conditions, ^ ( T )  

= e'1lT-exp(ca2) and :A2(T) = - 2e TlT-srtT, and hence the first recursive equation can be solved to 

give !Ai(t) and then after substitution the second can be solved to give 'A2(t).

We can easily check that the above recursion for (AiO generates sequentially the positive 

sequence {IAi(t); te[0, T-l]} in the backward course of time t, starting with AjfT) = 

e_r|T-exp(aa2) > 0, since if !A](t+l) > 0 then ‘Ai(t) > 0; hence, the condition (4.33) for 

uniqueness is redundant. We thus find that the Bellman equation (4.29) has a solution of 

suggested quadratic form (4.30) with !Ai(t) and !A2(t) satisfying the backward recursions 

(4.35) - here, we complete the mathematical induction argument.

Further, the fact that :As(t) > 0 for all t implies that 0 < 'Di(t;0) < '^ ( tG )  for all t so that the 

pre-optimal funding formula (4.34) has a similar mathematical form to the spread funding 

formula (3.22) specified in section 3.4.4: that is, ^ (t;© )/^ ^ ;© ) can be thought of as 

corresponding to the spread parameter kt and [ D2(t;0) - rDi(t;0)] / !D3(t;0) to NR..

Next, the pre-optimal control response SR\+i corresponding to 'C R \ is generated recursively 

with time t in the form (which is the same mathematical form as equation (4.31), but presents 

the system equation after obtaining the pre-optimal control law):

SR’t+i = exp(pt+1+CTa2/2) • {exp(t|>t-pt-aa2/2) • SR\ + ’CR\ - [EBRt - exp^.XEBR,.! - BRt.,)]} 

with given SRo = SR’0. ---- (4.36)

After determining a best value of 0 (denoted by 0*) by applying the ©’-criterion, we can obtain 

a unique sequence of optimal control actions {!CR*ft, CR*i, ..., 'CR’t -i } and corresponding
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optimal control responses { SR*o, SR i, SR*t } with 0 determined by 0* in equations 

(4.34), (4.35) and (4.36).

In conclusion, our dynamic pension funding plan is defined as a sequence of functions {V t(.); 

te[0, T-l]} where !7t t(.) is defined by the equation with 0 determined by 0* in equation (4.34): 

that is, for every te[0, T-l],

V /S R O  = - ['Diit;©*) / 'D s i tQ ')]  • f  SR* - 1] + [ID2(t;0*) - ^(t;©*)] / rD3(t;0*) - - - (4.37)

; in a similar manner to the pre-optimal funding formula (4.34) and control law V t(.), the 

above equation shall be called the optimal funding formula and function V tO  the optimal 

control law at time t and hence our dynamic pension funding plan is governed by this optimal 

funding formula.

Remark 4.4: As in the dynamic pension funding plan cn*t(.) for the complete state information 

problem of section 4.4.1, we can obtain a general solution V t(.) only for the stationary first- 

order (unconditional) autoregressive model SAR(l) such that 5t+] = r| + y • (5t - -q) + ast+I, y = 

0, smce expressions like E^Aiit+l^expiSt) | 5m } and Ei'A^lt+lbexplOt) j 5t.i} are not 

integrable.

4.4.3 Mean and Variance approach

4.4.3.1 Preliminaries

After obtaining the formulae for the control action cC R \ and its control response SR’t+i in the 

case of complete state information, or for 'CR) and SRt+i in the case of incomplete state 

information respectively, the actuary may be asked to give the employer and trustees
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information on the projections of cCR\ and SR’t+i, or 'CR't and SRt+i- The choice of 9* is of 

considerable interest for balancing their conflicting interests, so they may want to check the 

possible movement of the contribution rates and solvency levels under more or less predictable 

scenarios. In general, two approaches may be suggested for producing the numerical results for 

determining 9* in accordance with the 9*-criterion.

(i) Simulation approach:

It is necessary to repeat the simulation, say n times, according to the idea of the Monte Carlo 

method. The simulation will consist of the following steps [for further information about 

simulation technique, see Daykin et. al (1994; Appendix F)]:

Step 1 - Fix up the parameter set {aa, a b} assumed in the stochastic model (4.6), an arbitrary 

value of 9 and a specified initial condition (SRo in the case of complete state information, while 

SRo in the case of incomplete state information);

Step 2 - Generate the zero-mean bivariate normal random numbers with variances a,,2, a b2 and 

correlation zero, that is, {(aS], bet), (ae2, bs2), ..., (asT, bs-r)} in the case of complete state 

information, whereas {(as0, bs0), (a£i, b£,), ..., (aeT.i, beT.i)} in the case of incomplete state 

information;

Step 3 - [In the case of complete state information: for each time k=0, 1, T -l, calculate 

the pre-optimal value of cC R \ defined in formulae (4.23) and then compute the pre-optimal 

value of SR\-m generated by equation (4.25) at each simulated (ast+i, b£t+i)] or 

- [In the case of incomplete state information: for each time k=0, 1, ..., T -l, calculate the pre- 

optimal value of ‘CR’k defined in formulae (4.34) and then compute the pre-optimal value of 

SR't+i generated by equation (4.36) at each simulated (ask, b(t)]; and

Step 4 - Return to Step 1 and repeat, say n times.

230



Even though the simulation approach offers a flexible and powerful means of coping with even 

the most complicated model specifications, there are several specific problems that arise in 

connection with gathering the data from simulated experiments. Especially, we assume that the 

experimental output data, {(aet, bst)}, are m the form of a collection of distinct and independent 

random observations from the (zero-mean) bivariate normal distribution with zero correlation.

However, the observations generated from a simulated experiment are likely to be highly 

correlated with each other because of the artificiality introduced by the starting (or 

regeneration) point. Another problem is how many realisations are needed to obtain data which 

are relevant for predicting the steady-state behaviour of the real system, that is, how to 

determine the iteration number n. Generally, in order to obtain an immediate, visual idea about 

the character of the real system, such as the range of variation and whether there are any 

trends, many realisations are required and also a considerable amount of unproductive 

computer time may be expended [for more tactical problems involved in the simulation 

approach, see Hiller & Lieberman (1980; pp 663-664)].

Consequently, even though the simulation approach is one of the best techniques for 

quantifying future uncertainty, both the employer and trustees may find it difficult to derive 

some clear information for determining 0* from a number of simulated results.

(ii) Mean and Variance approach:

A potentially more effective alternative would be employing a mean and variance approach for 

both the employer and trustees for the following reasons. Firstly, the mean and standard 

deviation can be interpreted to be the main-trend and most-likely-variation from the main-trend, 

respectively. Secondly, the mean provides a single but clear realisation and then is more 

economical in computation. Lastly, this approach provides clear information for determining 0*
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to the employer who may find it easier to understand these outputs rather than the outcomes of 

n simulations.

In conclusion, we prefer the mean and variance approach to the simulation approach not only 

to determine 9* but also to make a diagnosis of our optimal future projections for the 

contribution rate and solvency level.

4.4.3.2 Mean and Variance in the case of complete state information

Substituting CR't specified by formulae (4.23) into equation (4.25) yields

SRV, = exp(<M • {[(cD3(t;0)-cD,(t;e))/cD3(t;e)] ■ SR \ + cD2(t;e)/cD3(t;6) - BRJ

with the initial condition SRo = SR’0. ---- (4.38)

By taking the mathematical expectation and variance on the both side of equation (4.38), we 

can then derive the following mean and variance of SR’t+i for each te[0, T-l], each presented 

as a recurrence relation: that is,

E(SR’t+1) = [ex p (^ ,+ aa72) • (cD3(t;6) - cD,(t;0)) / cD3(t;0)] ■ E(SR\) + e x p ip ^ + a ^ )  .

[cD2(t;0)/cD3(t;0) - EBRtJ with the initial condition E(SR'0)=SR’o=SR] - - (4.39) 

and

Var(SR\+1) = [(cD3(t;0)-cD1(t;0))/cD3(t;0)]2- Var(exp(<|)t+1)-SR't) + [cD2(t;0)/cD3(t;0)]2 • 

Var(exp(<t>t+i)) + V a^exp^O -BR,) + 2[(cD3(t;0)-cD,(t;0))/cD3(t;0)] • 

[cD2(t;0)/cD3(t;0)] • Cov[exp(<t>t+I)-SR\, exp(<j>t+1)] - 2[(cD3(t;0) - 

cD1(t;0))/cD3(t;0)] • Cov[exp((j>M)'SRV exp^O -B R J - 2[cD2(t;0)/cD3(t;0)] • 

Cov[exp(<()t+i), exp((j)t.i)-BRt] with the initial condition Var[SR’o]=0 - - (4.40)

where
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(a) Var(exp(((>t+i)) = exp(2p^,+2aa2) - exp(2|v,+aa2),

(b) Var(exp(cj)t+ i ) • S R’t) = [exp(2pt+1+2cra2) - exp(2pt̂ ,+oa2)] • [E(SR\)]2+ exp(2pt+1+2aa2) •

Var(SR’t),

(c) Var(exp(<j)t.])-BRt) = [exp(2pt+!+2cra2) - exp(2pt+,+cra2)] • EBR,2 + exp(2pt. I+2aa2) • VBR.

(d) Cov[exp((|)t+i)-SR,t, exp((|)t+i)] = [exp(2pt+i+2cra2) - exp(2p,+1+aa2)] • E(SR’t),

(e) Cov[exp(<j>t+i)-SR\, exp(<t)M)-BR.] = |exp(2pt*1+2aa2) - exp(2pt+i+aa2)] -EBRt -E(SR\), and

(f) Cov[exp(<j)t+i), exp(<t>t+i)-BRt] = [exp(2pt+1+2aa2) - exp(2p^,+aa2)] • EBRt.

And also, by replacing SRt with SR’t in formula (4.23) and then taking the mathematical 

expectation and variance on the both sides of formula (4.23), we can easily derive the following 

mean and variance of cC R \ for each te[0, T-l]:

E[cCR’t] = - [cD,(t;e)/cD3(t;e)] • E[SR’J + [cD2(t;0)/cD3(t;0)] and - - - (4.41)

Var[cCR\] -  ^D K t;© )^^;© )]2 • Var[SR’t] ---(4 .4 2 )

Lastly, the 0*-criterion (as our supplementary performance criterion) would need to be 

consistently applied in accordance with the mean and variance approach: that is, the value for 

0* will be determined mainly by reference to the mean-variance pre-optimal error projections 

such as {E(SR\-srtt): te[0, T]}, {E(cCR\-crtt): te[0, T-l]}, {Var(SR\): te[0, T]} and 

{Var(cCR’t): te[0, T-l]}.

Therefore, after determining 0*, we can obtain the optimal projections of the contribution ratio 

and solvency level by simply replacing the arbitrary value of 0 with 0*. Some numerical 

illustrations will be given m section 4.4.4.
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4.4.3.3 Mean and Variance in the case of incomplete state information

In a similar manner to the case of complete state information, we can derive the mean and 

variance of SR t+i and CR't, respectively.

Substituting ’CR't specified by formula (4.34) into equation (4.36) leads to

SRV, = exp(pt+,+CTa2/2) • { [exp^t-prCTa2̂ )  - ^ (f iG y ^ R G )]  ■ SR\ +

[(ID2(t;e))/ID3(t;6)) - EBR] + exp(<K) • [EBR, - B R ,] }

with the initial condition SR 0 = S R  ---- (4.43)

By taking the mathematical expectation and variance on the both sides of equation (4.43), we 

can then obtain the following recursive equation for the mean and variance of SR’t+,, 

respectively: that is, for every te[0, T-l],

E( SR’t+i) = exp(pt+i+CTa2/2) • { ['D3(t;G) - ^,(1;©)] / fyfcO) • E( SR’t) + [ID2(t;G) / 'D3(t;G) - 

EBR] } with the initial condition E [SR ’0] = SR'0 = S R  ---- (4.44)

and

Var( SR’t+i) = exp(2pt+,+cfa2) ■ {Var[(exp(c()t-pt-oa2/2) - ‘DiRGy'DsRG)) • SR\] +

Var[exp(<j)t)-(EBR, - BR.,)] + 2Cov[(exp(<|>t-pt-c7a2/2) - 'D,(t;G)/rD3(t;G)) •

SR’t, exp(cj)t)-(EBR.i-BR.i)]} with the initial condition V ar(SR o)=0 - - (4.45)

where

(a) Var[(exp(<|)rMt-c7a2/2) - ID,(t;G)/1D3(t;G)) ■ ASR\] = [exp(aa2) - 1] • [E( SR\)]2 + 

[exp(aa2) - 2 ID,(t;G)/ID3(t;G) + (‘D iRGV'DsRG))2] • Var(SR\),

(b) Var[exp((j)t) • (EBR, - B R ,)] = exp(2pt+2cra2) • V BR,, and
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(c) Cov[(exp(<t)r|at-aa2/2)-ID1(t;e)/ID3(t;e)) • SR„ expOKKEBR^-BR,.,)] = 0.

Moreover, by replacing SR, with SR't in formulae (4.34) and then taking the mathematical 

expectation and variance on the both sides of formula (4.34), we can easily derive the following 

mean and variance of ̂ R ’, for each t e [0, T-l], respectively: that is,

E[‘CR\] = - [ fy fc e y ’Djfce)] • E fSR ’J + [ID2(t;e)/ID3(t;e)] and - - - (4.46)

Var[cCR\] = [ 'D ^ t ;© ) /^ ^ ) ] 2 • V arfSR’J ---(4 .4 7 )

In a smiilar manner to the complete state information case, the value for 9* will be determined 

mainly by reference to the mean-variance pre-optimal error projections such as {E( SR't-srt,): 

te[0, T]}, {Ei'CR’t-crtt): te[0, T-l]}, {Var(ASR't): te[0, T]} and {Var('CR’t): te[0, T-l]}.

After determining ©*, we can then establish the optimal cash-flow projections of the 

contribution ratio and solvency level by simply replacing the arbitrary value of 0 with 0*. Some 

illustrative numerical examples will be given in the next section 4.4.4 in connection with those 

of the complete state information problem.

4.4.3.4 Performance comparison measures between cV t(.) and V t(.)

We have shown in section 4.4.2 that the incomplete state LQP control optimisation problem 

(4.9) can be reduced to another form of the complete state LQP control optimisation problem 

(4.8) by means of replacing the intrinsically inaccessible state (i.e. SR,) with the best linear 

estimator/predictor for SR, (i.e. SR,, defined as E(SR, | 3,) in section 4.4.2.1). So, we need to 

measure the closeness of our estimator SR, to the conceptual state variable SR,, since the 

estimation error at time t, defined here as SR, - SR,, will not be zero in general.
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Even though we may adopt several measures (commonly termed loss functions, see Berger 

(1985; section 2.4)) in which two random variables may be said to be close to one another, the 

so-called mean-squared error is usually used as an appropriate measure in the field of 

theoretical statistics [see Grimmett & Stirzaker (1992; section 7.9)]: here, the mean-squared 

error at time t is defined as E[(SRt -S R t)2] for a measure of the precision of the estimator SRt 

of the unknown state SRt.

Prior to further applications of the mean-squared error, it is worth recalling that after setting 

the optimal control law with chosen 9*, we can obtain the sequences of optimal control actions, 

{cCR*0, cCR*1, ..., cCR*t .]} for the complete state information case and {ICR*0, 'CR*i, 

jCR*t -i } for the incomplete state information case, and the sequences of corresponding optimal 

control responses, {SR*0, SR*i, ..., SR'T} for the complete state information case and { SR*0, 

SR*i, ..., SR*x} for the complete state information case, respectively, in which the initial 

states, SR*0 and SR*0, each are fixed at time t=0. Moreover, we find that cCR*t is a function of 

state SR*, and CR*t is a function of state SR*t

Hence, we can defined the mean-squared error of the optimal control response as follows: for 

each te[0, T-l],

SRMSEt+i = E[(SR*t+i - “SRVO2] - - - (4.48)

= Var(SR‘t+1) + [E(SR*t+1)]2 + Var('SR*t+1) + [E(ASR*t+1)]2 - 2E(SR*t+r'SRV,)

where

E(SR*t+r SR*t+i) = {exp(2 pt+i+aa2) • [(cD3(t;e‘)-cD1(t;e*))/cD3(t;e*)] • [(!D3(t;0*) - 

‘D j^eV D sitie*)]}  • E(SR*f SR*t) + {exp(2pt+1+CTa2) • 

[(cD3(t;e*)-cD1(t;0*))/cD3(t;e*)] ■ [ID2(t;e*))/ID3(t;0*) - EBR,]} •

E(SR\) + {exp(2pt+i+CTa2) • [(ID3(t;0*)-IDi(t;0*))/ID3(t;0*)] •
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[cD2(t;e*)/cD3(t;0*) - EBR,]} • E(ASR*t) + exp(2^+1+aa2) • {EBRf- 

[cD2(t;0*)/cD3(t;e‘) + ID2(t;0*)/ID3(t;0*)] • EBR, + [cD2(t;0’) • 'D2(t;0*)] / 

[cD3(t;0*)ID3(t;0*)]} with the initial condition E(SR*0-SR*o) = SRV  SR*o 

; hence. SRMSEt+i is calculable from the above recursive equation and our previous recursive 

equations (4.39), (4.40), (4.44) and (4.45) with the arbitrary value of 0 replaced by the 

specified 0*.

Similarly, we can defined the mean-squared error of the optimal control action as follows: since 

cCR*t is a linear function of the state SR*, (denoted by/i(SR*:)) and CR'- is a linear function of 

the state SR*t (denoted by / 2(SR*t)). the mean-squared error (denoted by CRMSEt) can be 

defined as CRMSE = E[(/i(SR*t) - / 2( SR*t))2] in a general form of sr MSE, that is, for each 

t€[0, T-l],

CRMSEt = E[(cCR*t - !CR*t)2] - - - (4.49)

= Var(cCR*t) + [E(cCR*t)]2+ Var('CR*t) + [E('CR*t)]2 - 2E(cCR*t ICR*t)

where

E fC R V ’CR’O = {^.(tO ^-'D K t^^-E iSR ’/S R ’O - cD,(t;0*) ID2(t;0*)-E(SR*t) -

cD2(t;0*)-1D1(t;0*)-E( SR*t)+cD2(t;0*)-ID2(t;0*)} / {cD3(t;0*)-ID3(t;0*)}

; hence, this measure is calculable from our previous recursive equations (4.39), (4.41), (4.42), 

(4.44), (4.46), (4.47) and (4.48) with replacing the arbitrary value of 0 with determined 0*.

Consequently, in order to compare the performance of the optimal control law' C7r*t( ) for the 

complete state information with that of the optimal control law V t(.) for the incomplete state 

information at each time te[0, T-l], we shall employ the newly defined measures, SRMSEt+i 

defined by the equation (4.48) and CRMSEt defined by the equation (4.49). An illustrative 

numerical comparison will be made in section 4.4.4.
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4.4.4 Numerical illustrations

In this section, we consider the stochastic version of the deterministic numerical illustrations 

examined in section 4.3.3, by using the mean and variance approach described in section 4.4.3. 

All numerical illustrations are given in the form of tables in Appendix 4.2, except for Graphs

4.2.1 and 4.2.2.

4.4.4.1 Assumptions

The assumptions are as follows:

(A1)~(A4): the same as the assumptions made in section 4.3.3.1, except that <t>t+i ~ IID N(pt+i, 

a a2) with <ja2 < oo and BRt ~ IID N(EBRt, VBR.) with VBR, < oo, where due to the one-time-unit 

tune delay, this stochastic model is assumed to be applicable at time t = -1, and the standard 

deviations each are specified as a a = 10% or 30% of |pt+i| and VVBRt = 10% or 30% of |EBRt|.

As mentioned m section 4.3.3.1, we note that E(BRt) = EBRt = 0.035396 and NRt = 0.028006, 

constant for all t.

4 4.4.2 Dynamic pension funding plan vs. Spread funding plan

We consider the stochastic version of the deterministic comparison with the spread funding 

formula (3.22) (described in section 3.4.4), investigated in section 4.3.3.2. First of all, it is 

worth recalling that assumption crtt = NRt ¡in (A4) enables us to compare more clearly, in a 

mathematical form, our pre-optimal funding formula before deciding on the value 0*, (i.e. 

equation (4.23) for the complete state information case and equation (4.34) for the incomplete 

state information case) with the spread funding formula (3.22).
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Then, applying the control target assumption in (A4) to the pre-optimal funding formulae 

(4.23) and (4.34), we can transform each of them into a form distinguishable from the spread 

funding formula (3.22): for all te[0, T-l],

V t(SR0 = - [CD 1 (t;0)/cD3(t;0)] • [SR, - 1] + [cD2(t;0) - cD,(t;0)] / cD3(t;0)

= NR; - ccp(t;0) • (SRk - 1) + c^(t;0), and hence 

SRVi = exp(<j>t+i)-[(l-ccp(t;0))-SR.,t+ exp(a+p-xt-r|) - exp(-xt) + ccp(t;0) + c£(t;0)] with

the initial condition SR'0 = SRo; and ---- (4.50)

VtCSRO = - [ID,(t;0)/ID3(t;0)] • [^SR, - 1] + [ID2(t;0) - b .ftO )] / ^ (t;© )

= NRt - !(p(t;0) • ( SRi - 1) + !i;(t;0), and hence 

SR’t+i = exp(pt+,+CTa2/2) • {[exp(cj)t-pt+ ca2/2)-I(p(t;0)]- SR't+ exp(a+p-xt-r|) - exp(-xt) + cp(t;0) 

+ ^(t;0) + exp^O^EBRt.i-BRi.!)} with the initial condition SR’o = SR, ---- (4.51)

where

C(p(t;0) = [ ^ . ( t ;© ) /^ ;© ) ] ,  in which 0 < cp(t;0) < 1 for all te[0, T-l];

c^(t;0) = -[cDi(t;0)-(exp(a+P-xt-ri)-exp(-xt)+l) + exp(pt+i+aa2/2)-cA2(t+l)/2]/cD3(t;0);

rcp(t;0) = [ID](t;0)/ID3(t;0)], in which 0 < :cp(t;0) < 1 for all te[0, T-l]; and

:̂ (t;0) = - [ID,(t;0)-(exp(a+p-xt-ri)-exp(-xt)-i-l) + exp(pt+i+CTa2/2)-IA2(t+l)/2] / 'D3(t;0).

Here, c and Ttp(t;0) and c and :̂ (t;0) has the same meanings as cp(t;0) and ^(t;0) mentioned in 

section 4.3.3.2, that is, the proportional state-feedback controlling parameter as in kt in the 

spread funding formula (3.22) and the additive controlling parameter. Thus, formulae (4.50) 

and (4.51) each have the same mathematical form as the spread funding formula (3.22), except 

for their additive controlling parameters CandÎ (t;0).

Using basic calculus, we can derive the following definitive characteristics about ccp(t;0) and 

c^(t;0): for a llte[0 , T-l],
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(a) ccp(t;0) is a strictly increasing function of both 0 and cra2 because c A](T) = e'71'1 and cAi(t) is 

a positive and strictly increasing function of both 0 and a a2;

(b) ^(t;©) is a strictly increasing function of both 0 and a a2 because JA] (T) = e‘I,T-exp(cja2) and 

:A] (t) is a positive and strictly increasing function of both 0 and a a2; and additionally as 

investigated in section 4.3.3.2,

as 0 —» 100%, then

(c) ccp(t;0) —» 1 and cE,(t;0) —» exp(-pt+i-3/2cra2) + exp(-xt) - exp(a+P-xt-r|) - 1 because cA](t) 

—» e’r': and cA2(t) -» -2e‘T1' and hence,

(d) SR’t+i -» exp(<j>t+i-pt+i-3/2oa2) and cCR,t+i-NRt+] -> [exp(-|a,+i-3/2aa2)-(l-exp(<|)t+i)) + exp(- 

xt) - exp(a+p-xt-r|)], whereas CR’0-NRo -> [-SR’0 + exp(-p,-3/2oa2) + exp(-x0) - exp(a+p-x0- 

r()] where SR’0 = SRo given.

By usrng the above assumptions in section 4.4.4.1, the movement of the time-varying 

parameters c and ‘<p(t;0) and c and̂ (t;0) for k close to T-l is illustrated numerically in Table 4.5, 

subject to 0 = 50% and cra = 30% of |p.|.

From this table, it is obvious that both CandI(p(t;0) and CandÎ (t;0) are almost constant during the 

initial periods, while during the last few periods, c and tp(t;0) is increasing but 

c and ^(t;0) is decreasing as time t progressed to T-l (- this may imply that some trade-off 

between c and ’(p(t;0) and c and ^(t;0) is maintained, as in the numerical illustrations in Table 4.1 

for cp(t;0) and Ç(t;0)).

4 .4.4.3 Numerical illustrations of dynamic pension funding plan

For the reasons mentioned earlier in section 4.4.3, we adopt here a mean and variance approach 

rather than a simulation approach for the numerical illustrations, and further, the performance 

comparison between the dynamic pension funding plans for complete state information and
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incomplete state information is based on the mean-squared error introduced in section 4.4.3.4. 

All numerical calculations are based on the assumptions in section 4.4.4.1.

(i) Searching for 6*:

We simply illustrate how to determine the balance point 9* among the admissible set {90%, 

50%, 10%} in relation to the conflicting interests of the employer and trustees (i.e. in 

accordance with the ©‘-criterion described in subsection (v) of section 4.2.3.2). As noted in the 

deterministic case [see subsection (i) of section 4.3.3.3], the issues in finding the balance point 

9 would be more crucial in the case of the initial solvency level being far away from the 

solvency target, even in the stochastic case. Here, we shall content ourselves with dealing with 

the complete state information case with Sf% = 0%. The resulting pre-optimal mean and 

variance projections, {SR’0=SRo(given initially), E(SR\+i-l), E(CR>NRt): t=0, 1, ..., 11}, 

and {SR’o=SRo (given initially), Var(SR\+i), Var(CR\): t=0, 1, ..., 11}, are visualised in 

Graphs 4.2.1 and 4.2.2, respectively, subject to cra = 30% of [p| and VVBRt = 30% of |EBR| 

(note that Graph 4.2.2 has different profiles for different 0* as well as different variabilities, as 

compared with Graph 4.2.1).

These graphs show that 9* = 50% is likely to be suitable as a compromise value in the light of 

the pace of funding and the progress of solvency levels evaluated in terms of their means and 

variances.

(ii) Mean-variance projections of dynamic pension funding plan:

Simply replacing the arbitrary value of 9 with a chosen value 0* in the pre-optimal control laws 

(4.50) and (4.51), we have the dynamic pension funding plans {cn*t(.): t=0, 1, ..., 11} and 

{ V t(.): t=0, 1, ..., 11}, respectively.
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We concentrate on the intermediate case 9* = 50% for the subsequent numerical illustrations. 

For 9* = 50%, the mean-variance optimal projections for the complete state information case, 

{E(cCR*t - NRt), Var(cCR*t); t=0, 1, ..., 11} and {SR*0=SRo (given initially), E(SR*t+i), 

Var(SRVi); t=0, 1, ..., 11}, are calculated from the equations (4.39)~(4.42) (derived m 

section 4.4.3.2) and their resulting numerical values are given m Table 4.6.1. And also, the 

mean-variance optimal projections for the incomplete state information case, {E^CRVNRO, 

VaifCR*«); t=0, 1, ..., 11} and { SR*C=SR, (given initially), E ( S R * t+]), Var('SR*t+1); t=0, 1, 

..., 11}, are calculated from equations (4.44)~(4.47) (derived in section 4.4.3.3) and their 

numerical values are given in Table 4.6.2. Lastly, in order to compare the performances 

between C7t*t(.) and 17t*t(.), we adopt the performance companson measures specified in section 

4.4.3.4, i.e. SRMSEt+i defined by the equation (4.48) and CRMSEt defined by the equation 

(4.49), and these are numerically assessed in Table 4.6.3. Further, each of these tables contains 

a sensitivity analysis for changes to a a and VVBR.

From Tables 4.6.1-4.6.3, we make the following observations:

(a) the influence of the initial solvency level (SRn): the case of SRo = 100% provides a better 

performance than that of S R o = 0 %  in the light of the stability of mean, variance and mean 

square error [see Tables 4.6.1-4.6.3], In general, we may say that providing that the initial 

solvency level is very close to a constant solvency target, our dynamic pension funding plan 

will play an effective role in stabilising both the contribution rate and solvency level, more 

quickly than otherwise;

(b) sensitivity analysis for the change of g a: the variances, Var(cCR*t), Var(!CR*t), Var(SRVi) 

and Var( SR*t+i), all increase with increasing cra, while the expectations, E(cCR*t), E(rCR*t), 

E(SR*t+I) and E( SR*t+i), decrease all with increasing oa, which implies that there is a trade-off 

between expectations and variances with respect to increasing a a [see Tables 4.6.1 and 4.6.2],
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Since this result would be unfavourable to both the trustees and the employer, special care 

should be taken in investing the scheme fund in the direction of minimising the investment risk

Sa2;

(c) sensitivity analysis for the change of VVBR,: as we know from expectation formulae (4.39), 

(4.41), (4.44) and (4.46), the expectations, E(cCR\), E('CR*t) and E(SR*t+i) and E(ASR*t+]), 

are all mdependent of varying VVBR, while the variances, Var(cCR*t), Varf'CRV), Var(SR*t+i) 

and Var( SR*t+i), all increase with increasing VVBR. but the resulting influence is even lower 

than that of cra [see Tables 4.6.1 and 4.6.2]: for this reason, we can identify a a as a more 

sensitive factor than VVBR, which is consistent with the view of Haberman (1994) mentioned 

earlier at the beginning of section 2.1.3; and

(d) performance comparison bv mean square error: the mean-squared error SRMSEt+i is slowly 

increasing over time t and then decreases during the last few periods. However, the mean- 

squared error MSEt mcreases with time t. As expected, both MSE, and MSEt increase 

with increasing a a and/or VVBR [see Table 4.6.3], This numerical result clearly suggests that 

in the case that we have to accept inevitably the one-unit time delay in the state information, 

subsequently we should put great emphasis on minimising a a2 and VBR so as to reduce the 

performance difference between C7i*t(.) and :7r*t( . f

4.4.4.4 Suggestions for reducing the expectation of the risk of insolvency

This section corresponds to section 4.3.3.4. As shown in Tables 4.6.1 and 4.6.2, the projection 

{E(SR*t+i), E( SR*t+i); te[0, T - l]} starting with the given SR) = 0% is seen to be at a lower 

level than 100% (i.e. insolvent m relation to the solvency level target 100% in terms of 

expectation) over most of the control period. In order to provide more confidence in the security 

of pension schemes (i.e. more than 100% in expected value of solvency level), especially to the
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trustees/members. the actuary could suggest the same options introduced in section 4.3.3.4: 

that is,

(a) Increasing the value 0 ;

(b) Increasing the solvency ratio target (i.e. srtt > 100%);

(c) Readjusting the (long-term) force of valuation interest to be more conservative than the 

expected force of investment interest: that is, from the stochastic model (4.6), ôt+i = r| + e ,+1 ~ 

IID normal (rp c a:). the force of conservative valuation interest (denoted by rf)  would be rp<r| 

(i.e. exp(r|’) < exp(r|) = 1.06); or

(d) Combining appropriately the above options (a), (b) and/or (c).

As would be expected, the same arguments as in section 4.3.3.4 will be maintained just by 

changing the concept of deterministic solvency level with that of expected solvency level. So, 

the effect of the individual options (a), (b) and (c) is here omitted, but instead we shall illustrate 

the combined effect of suggestion (d) under three illustrative options, i.e. {9* = 90% and srtt = 

100.5%} as a combination of suggestions (a) and (b), {9* = 90% and exp(rp) = 1.04} as a 

combmation of suggestions (a) and (c), and {srtt = 100.5% and exp(rf) = 1.04} as a 

combination of suggestions (b) and (c).

Prior to consulting the numerical illustrations, given in Table 4.7, for the above three options, 

we note that firstly, since the incomplete state information case can be reduced to the complete 

state information case by means of redefining a new state variable (as seen in section 4.4.2), we 

consider the effect of each combined options only for the complete state information case; 

secondly, although we need to determine a new best value of 9 according to each of the above 

three options by usmg the 9*-criterion, this is not significant in terms of our further discussion, 

so we shall regard each value of 9 as 9*; thirdly, we concentrate only on the case of SRo=9%
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because the case of SRo= 100% is shown to be solvent over the whole control period in terms of 

expectation; and lastly, the calculation basis used for the top values in Table 4.6.1 is 

considered to be a standard basis for our numerical illustrations, that is, {9* = 50%, srtt = 

100%, cra = 10% of |p| and VVBR; = 10% of EBR}. so we shall indicate only any differences 

from the standard basis in Table 4.7.

Comparing Table 4.6.1 with Table 4.7. it is clear that even though the expectation and variance 

of SR*t is increasingly improved by each of the defined three options, the corresponding 

expectation and variance of cCR*t is worse than before. This result seems to be unfavourable to 

the employer. As mentioned in subsection (iv) in section 4.3.3.4. identifying a best (not 

necessary optimal) combination among all available options for improving the solvency of the 

scheme, such as suggestion (a), (b) and (c), would then be an interesting subject for further 

research.

4.4 4.5 Conclusions

We have considered the stochastic version of the numerical illustrations examined for 

deterministic problems in section 4.3.3. As would be expected, we have very similar 

conclusions to those described in section 4.3.3.5. That is,

(a) Supposing that the contribution rate target is set by the normal cost ratio (i.e. crtt = NRt), 

we derive the dynamic pension funding plan in the form that

CorICR*t = NRt + {Proportional controlling parameter at time t (i.e. CorIcp(9*; t))} • {1 - (State 

variable at time t (i.e. SRt or SR*))} + {Additive controlling parameter at time t

(i.e. CorÎ (0*; t)}
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; hence, the term c orÎ (0*; t) is distinguishable from the spread funding formula (3.22) derived 

in section 3.4.4 [see Table 4.5];

(b) From the viewpoint of the general funding method, we may regard NRt + c or !cp(0*; t) ■ [(SRt 

or SRt) - 1] as the average terms in c or ’CR -. to which the new term c or ̂ (0*: t) is added with 

the aim of avoiding large variations in c or :CR*t; and

(c) Assuming that a scheme has its own solvency level target with an acceptable lower bound 

and upper bound, it is sensible to take the following funding policy:

- if the scheme has a solvency level between the acceptable (lower and upper) bounds (which 

means that there is a small deviation from the target), we can control c or 'CR*t mainly with 

adjusting c or cp(0*; t) (rather than with adjusting c or !£(0*; t)) in order to achieve the target in 

the near (pre-determined) future;

- if the solvency ratio is outside of the acceptable bounds (which may be caused by a large gap 

between the actual experience and the actuarial assumptions), we need to adjust c or t) 

and c or ^(0*; t) simultaneously to achieve the target in the near future, according to the trade-

off between the two controlling parameters, CorI(p(0*; t) and CorI%(0*; t); and

- using the funding formula, we can treat surpluses and deficiencies in a different fashion, that 

is, if we keep the policy for c or rcp(0*; t), then c or ‘̂ (0*; t) should be handled in a different way to 

achieve the target in the near future.

(d) For improving the confidence in the financial soundness of the pension scheme, the actuary 

would have one or a combination of the three distinct controllable strategies, i.e. increasing the 

value 0*, increasing the solvency target and using a more conservative valuation basis than the 

best estimate valuation basis;
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(e) As illustrated in Table 4.7, the common effect of these options is not only to improve the 

protection against the expected risk of insolvency but also to lead to additional contributions in 

return for the higher expectation of solvency level; hence

(f) What combmation of these controllable strategies or which one of these controllable 

strategies is optimal for balancing the additional financial burden on the employer and the 

better protection against insolvency? This important problem must be left for the subject of 

future research; and

(g) Finally, we have introduced the performance comparison measures, SRMSEt and CRMSEt 

defined by formulae (4.48) and (4.49) respectively, which are based on the concept of mean- 

squared error and the numerical comparisons are illustrated m Table 4.6.3. We believe that this 

measure would be useful for comparing the incomplete state information control problems with 

the corresponding complete state information control problems.
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Appendix 4A: Numerical illustations for deterministic LQP optimisation problem

Al. (Mathematical comparison with the spread funding formula)

Table 4.1

Pre-optimal funding formula (4.18) with given 9 = 50% for t close to T

t rc’tlSRt)

{for each cell, (left, m iddle, right) values each are given, subject to exp(5) = (1.04, 

1.06, 1.08), respectively}

T -l N Rt ., - (0.64899, 0.65762, 0.66598) • (SR t -, - 1) + (0 .0 1 1 4 1 ,-0 .0 0 0 9 7 ,-0 .0 1 3 2 1 )

T-2 NRt .2 - (0.60387, 0.61418, 0.62418) • (SRT.2 - 1) + (0.01484, - 0.00126, - 0.01719)

T-3 N Rt .3 - (0.59721, 0.60787, 0.61820) -(S R t -3- 1) + (0 .0 1 6 0 8 ,-0 .0 0 1 3 7 ,-0 .0 1 8 6 3 )

T-4 NRt _4 - (0.59621, 0.60694, 0.61733) • (SRT̂ -  1) + (0 .0 1 6 5 5 ,-0 .0 0 1 4 1 ,-0 .0 1 9 1 6 )

T-5 N R t .s - (0.59606, 0.60680, 0 .6 1 7 2 1 )-(S R t .5- 1) + (0 .0 1 6 7 2 ,-0 .0 0 1 4 2 ,-0 .0 1 9 3 5 )

T-6 NRt .6 - (0.59604, 0.60678, 0.61719) • (SRT.6 - 1) + (0.01679, - 0.00143, - 0.01942)

T-7 NR t -7 - (0.59604, 0.60678. 0.61719) • (SRT.7 - 1) + (0.01681, - 0.00143, - 0.01945)

T-8 NR t -8 - (0.59604, 0.60677, 0.61719) • (SRT.8 - 1) + (0.01682, - 0.00143, - 0.01946)

T-9 NR t .s - (0.59604, 0.60677, 0.61719) • (SRT.9 - 1) + (0.01683, - 0.00143, - 0.01947)

T-10 NR t -io  - (0.59604, 0.60677, 0.61719) • (SRT,10- 1) + (0 .0 1 6 8 3 ,-0 .0 0 1 4 3 ,-0 .0 1 9 4 7 )

T - l l NR t -h  - (0.59604, 0.60677, 0.61719) • (SRT.„  - 1) +  (0.01683, - 0.00143, - 0.01947)

T-12 N R t -12 - (0.59604, 0.60677, 0.61719) - (SRT-i 2 - 1) +  (0 .0 1 6 8 3 ,-0 .0 0 1 4 3 ,-  0.01947)

; here, NRt = 0.02801, constant for all t.
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A2. (Illustrating; the influence of the value of 9* on SRVl and CRV iS'R.,)

Graph 4.1.1

The time path of SR*t-l and CRVNR. forexp(8)= 1.06 and SR> = 0%

• In a case of 9* = 90%:

-------CR-NR

-------SR-1

• In a case of 0* = 50%:

-------CR-NR
——  SR-1

• In a case of 0* = 10%:

CR-NR
SR-1
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Graph 4.1.2

The time path of SR*t-l and CRVNRi for exp(5) = 1.06 and SRo=100%

• In a case of 9 = 90%:

CR-NR
SR-1

• In a case of 9* = 50%:

• In a case of 9* = 10%:
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A3. (Comparision in relation to SRA

Table 4.2.1

Projections of the dynamic pension funding plan governed by formula (4.19)

{9* = 50%, exp(5) = 1.06, SRo=100%} {0*= 50%, exp(8) = 1.06, SRo = 0%}

t CR*t - NRt SR*t CR*t - NR, SR*t

0 -0.001433 1.0 0.605341 0.0

1 -0.001461 1.000045 0.239273 0.603302

2 -0.001471 1.000063 0.094038 0.842658

3 -0.001476 1.000070 0.036417 0.937621

4 -0.001477 1.000073 0.013557 0.975297

5 -0.001477 1.000075 0.004487 0.990245

6 -0.001476 1.000076 0.000890 0.996176

7 -0.001472 1.000079 -0.000533 0.998531

8 -0.001462 1.000085 -0.001089 0.999471

9 -0.001433 1.000103 -0.001285 0.999859

10 -0.001356 1.000149 -0.001297 1.000053

11 -0.001152 1.000273 -0.001127 1.000236

12
-

1.000605
-

1.000592

; here, NRt = 0.028006, constant for all t.
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A4. (For comparision with Table 4.2.1 in view of better investment performance)

Table 4.2.2

Projections of the dynamic pension funding plan governed by formula (4.19)

{9* = 50%, exp(8) = 1.08. SRo = 100%} {9* = 50%, exp(8) = 1.08, SRo = 0%}

t CR*t - NR, SR*t CR*t - NR, SR*t

0 -0.019467 1.0 0.597718 0.0

1 -0.019699 1.000375 0.223181 0.606847

2 -0.019789 1.000523 0.075790 0.845659

3 -0.019824 1.000581 0.017789 0.939638

4 -0.019836 1.000606 - 0.005034 0.976623

5 -0.019834 1.000619 -0.014009 0.991182

6 -0.019817 1.000635 -0.017524 0.996921

7 -0.019765 1.000669 -0.018863 0.999207

8 -0.019623 1.000757 -0.019268 1.000182

9 -0.019241 1.000994 -0.019101 1.000767

10 -0.018210 1.001630 -0.018155 1.001541

11 -0.015434 1.003343 -0.015411 1.003309

12 - 1.007958 - 1.007946

; here, NR* = 0.028006, constant for all t.



A5. (Some illustrative effects of suggestion (a) in relation to Table 4.2.1)

Table 4.3.1

Readjusted projections of Table 4.2.1 under suggestion (a)

In the case of switching from 9* = 5 0 .0 % to e*= 99.9%

t CR*t - NR, SR*, CR*, - NR, SR*,

0 -0.001478 1.0 0.997482 0.0

1 -0.001478 1.000000 - 0.000430 0.998951

2 -0.001478 1.000000 -0.001477 0.999999

3 -0.001478 1.000000 -0.001478 1.000000

4 -0.001478 1.000000 -0.001478 1.000000

5 -0.001478 1.000000 -0.001478 1.000000

6 -0.001478 1.000000 -0.001478 1.000000

7 -0.001478 1.000000 -0.001478 1.000000

8 -0.001478 1.000000 -0.001478 1.000000

9 -0.001478 1.000000 -0.001478 1.000000

10 - 0.001478 1.000000 -0.001478 1.000000

11 -0.001477 1.000000 -0.001477 1.000000

12 - 1.000002 - 1.000002

; here, NR, = 0.028006, constant for all t.
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A6. (Some illustrative effects of suggestion (b) in relation to Table 4.2.1)

Table 4.3.2

Readjusted projections of Table 4.2.1 under suggestion (b)

In the case of switching from srtt= 100.0% to srtt = 100.5%

t C R \ - NRt SR*t CR*t - NRt SR*t

0 0.001558 1.0 0.608332 0.0

1 -0.000301 1.003063 0.240433 0.606319

2 -0.001038 1.004278 0.094472 0.846872

3 -0.001330 1.004760 0.036562 0.942310

4 -0.001446 1.004951 0.013587 0.980175

5 -0.001492 1.005028 0.004473 0.995198

6 -0.001509 1.005059 0.000858 1.001159

7 -0.001512 1.005073 - 0.000573 1.003526

8 -0.001503 1.005085 -0.001131 1.004471

9 -0.001475 1.005104 -0.001327 1.004861

10 -0.001397 1.005153 -0.001337 1.005057

11 -0.001186 1.005281 -0.001161 1.005244

12 - 1.005623 - 1.005610

; here, NRt = 0.028006, constant for all t.
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A7. (Some illustrative effects of suggestion (c) in relation to Table 4.2 .1)

Table 4.3.3

Readjusted projections of Table 4.2.1 under suggestion (c)

In the case of switching from exp(ri) = 1.06 to exp(r|) = 1.04

t CR*t - NRt SR*t CR’t - N R SR*t

0 -0.017039 1.0 0.595057 0.0

1 -0.017238 1.000325 0.222321 0.608950

2 -0.017316 1.000453 0.076442 0.847278

3 -0.017345 1.000503 0.019349 0.940555

4 - 0.017354 1.000525 - 0.002993 0.977062

5 - 0.017352 1.000536 -0.011731 0.991354

6 - 0.017335 1.000551 -0.015136 0.996957

7 -0.017287 1.000582 -0.016426 0.999175

8 -0.017157 1.000662 -0.016820 1.000112

9 -0.016810 1.000875 -0.016678 1.000660

10 - 0.015888 1.001440 - 0.015836 1.001355

11 -0.013437 1.002939 -0.013416 1.002907

12 - 1.006925 - 1.006914

; here, for exp(r|) = 1.06, NRt = 0.028006 constant for all t; and for for exp(r() = 1.04, N R  = 

0.034506 constant for all t.
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A8. (Some illustrative effects of suggestion (d) in relation to Table 4.2.1)

Table 4.4.4

Readjusted projections of Table 4.2.1 under suggestion (d)

Combination of suggestions 

(a) and (b): switching from 

(9*=50%, srt, = 100%) to 

(9*=90%, srtt= 100.5%)

Combination of suggestions 

(a) and (c): switching from 

(9*=50%, exp(ri)=1.06) to 

(9*=90%, exp(ri)=1.04)

Combination of suggestions 

(b) and (c): switching from 

(srtt=T00%, exp(r()=1.06) to 

(srtt=100.5%, exp(r|)=1.04)

t CR*t - NRt SR*t CR*t - NRt SR*t CR*t - NRt SR*t

0 0.907882 0.0 0.889205 0.0 0.598073 0.0

1 0.085761 0.908549 0.068148 0.905731 0.223475 0.611994

2 0.006855 0.995750 - 0.009296 0.991162 0.076866 0.851514

3 -0.000718 1.004120 -0.016601 0.999220 0.019488 0.945256

4 -0.001445 1.004923 -0.017290 0.999980 - 0.002966 0.981946

5 -0.001515 1.005000 -0.017355 1.000052 -0.011748 0.996309

6 -0.001522 1.005008 -0.017361 1.000059 -0.015169 1.001940

7 -0.001522 1.005008 -0.017362 1.000059 -0.016466 1.004170

8 -0.001522 1.005009 -0.017361 1.000059 -0.016862 1.005111

9 -0.001521 1.005009 -0.017350 1.000061 -0.016720 1.005661

10 -0.001511 1.005010 -0.017233 1.000072 - 0.015876 1.006359

11 -0.001398 1.005021 -0.015936 1.000203 -0.013450 1.007915

12 1.005147 1.001643 1.011932

; here, for exp(rj) = 1.06, NRt = 0.028006 constant for all t; and for for exp(ri) = 1.04, NRt =

0.034506 constant for all t.
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Appendix 4B: Numerical illustations for stochastic LQP optimisation problem

Bl. (Mathematical comparision with the spread funding formula)

Table 4.5

Pre-optimal funding formulae (4.50) and (4.51) for t close to T-l

k C7t’t(SRt) for 9 = 50%  and a a = 30%  of |p ^ ’tfSR t) for 0 = 50%  and a a = 30%  o f |p|

T -l N R t -i - 0.657620 • ("SRT-i - 1) - 0.000979 NRt ., - 0.657620 • 0 SRT-i - 1) - 0.000979

T-2 NR t -2 -0 .6 1 4 1 8 6  ■ (TSRt -2- 1) - 0.001274 NRt .2 -0 .614188  • (TSRt -2- 1) - 0.001275

T-3 N R t .3 - 0.607876 ■ ("SRT.3- 1) - 0.001380 NR t .3 - 0.607877 • 0SR T-3- 1) - 0.001382

T-4 N R t .4 - 0.606942 • ("SRT.4 - 1) - 0.001420 NRt .4 - 0.606943 • ( S R T.4 - 1) - 0.001421

T-5 N Rt .5 - 0.606803 • (TSRt .5- 1) - 0.001435 N R «  - 0.606804 • ("SRt -s - 1) - 0.001436

T-6 NR t .6 - 0.606782 • f S R T-6- 1) - 0.001440 N R «  - 0.606783 • CSRT.6- 1) - 0.001442

T-7 NR t .7 - 0.606779 • 0S R t -7 - 1) - 0.001442 NR t .7 - 0.606780 • ( " S R ^ -  1) - 0.001444

T-8 NR™  - 0.606779 • (fSRT.8 - 1) - 0.001443 NRt .8 - 0.606780 • (TSRt -s - 1) - 0.001444

T-9 NR t .9 - 0.606779 • f S R T„9- 1) - 0.001443 NR t .9 - 0.606780 • ( S R T.9 - 1) - 0.001445

T-10 N R t .,o - 0.606779 • ("SR-r-io- 1) - 0.001443 NR t -,o - 0.606780 • ("SRt -io - 1) - 0.001445

T -l 1 N R t -h  - 0.606779 • ("SRT.n - 1) - 0.001444 NRt -h - 0.606780 • ("SRt . , i - 1) - 0.001445

T-12 NRt .,2 -0 .6 0 6 7 7 9  • <fSRT.12- l )  -0 .001444 NR t .i 2 - 0.60678 • ("S R ^n - 1) - 0.001445

; here, NRt = 0.028006, constant for all t.
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B2. (Searching for the value 9* in accordance with the 9^criterion)

Graph 4.2.1

The time path of E(SR*t-l) and E(cCR.VNRt), subject to exp(5)=1.06. cra = 30% of |p| VVBRl

= 30% of |EBRj and SRo=0%

• In a case of 0* = 90%:

• In a case of 9* = 50%:

• In a case of 9* = 10%:
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Graph 4.2.2

The time path of Var(SR*t) and Var(cCR*t) for exp(8)=1.06 ct;, = 30% of |p|, VVBR; = 30% of

|EBR| and SRo=0%

• In a case of 0* = 90%:

-------Var(CR)
— Var(SR)

• In a case of 0* = 50%:

0.00016
0.00014
0.00012
0.00010
0.00008
0.00006
0.00004
0.00002
0.00000

0 1 2 3 4 5 7 8 9 10 11

-------Var(CR)
— —  Var(SR)

• In a case of 0* = 10%:

-------Var(CR)
— —  Var(SR)
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B3. (Sensitivity analysis with respect to a, and VVBR)

Table 4.6.1

Mean and variance of the optimal projections {cCR*t} and {SR*-}

For each cell, top values subject to { 0" = 50%, 

m iddle values subject to { 0* =  50%. 

and bottom  values subject to { 0* = 50%,

cra = 10% o f |n| and V'VBR, = 10% o f EB R  }, 

a a = 30%  o f Im-I and VVBRt = 10% o f |EBR| } 

c a = 30%  o f ||x| and VVBR, = 30%  o f |EBR| }

t
E(cCR*t - NRt) (Var('CR't)) E(SR\) (Var(SR*[)) E(cCR't-NRt) (Var(cCR*i)) E(SR'i) (Var(SR’t))

0 -.001434 (0.0) 

-.001444 (0.0) 

-.001444 (0.0)

1.0 (0.0) 

1.0 (0.0) 

1.0 (0.0)

0.605341 (0.0) 

0.605335 (0.0) 

0.605335 (0.0) o
 

o
 

o
 

b
 

b
 

b

o
 

o
 

o
 

b
o

b

1 -.001461 (4.99E-06) 

-.001467 (7.33E-06) 

-.001467 (4.49E-05)

1.000044 (1.35E-05)

1.000038 (1.99E-05)

1.000038 (12.2E-05)

0.239273 (4.80E-06) 

0.239267 (5.65E-06) 

0.239267 (4.32E-05)

0.603301 (1.30E-05) 

0.603297 (1.54E-05) 

0.603297 (11.7E-05)

2 -.001472 (5.77E-06) 

-.001476 (8.48E-06) 

-.001476 (5.20E-05)

1.000062 (1.57E-05)

1.000054 (2.30E-05)

1.000054 (14.1E-05)

0.094038 (5.66E-06) 

0.094033 (7.45E-06) 

0.094033 (5.09E-05)

0.842657 (1.54E-05) 

0.842650 (2.02E-05) 

0.842650 (13.8E-05)

3 -.001476 (5.90E-06) 

-.001479 (8.66E-06) 

-.001479 (5.31E-05)

1.000069 (1.60E-05)

1.000060 (2.35E-05)

1.000060 (14.4E-05)

0.036417 (5.84E-06) 

0.036413 (8.18E-06) 

0.036413 (5.26E-05)

0.937620 (1.59E-05) 

0.937611 (2.22E-05) 

0.937611 (14.3E-05)

4 -.001478 (5.92E-06) 

-.001481 (8.69E-06) 

-.001481 (5.32E-05)

1.000072 (1.61E-05)

1.000062 (2.36E-05)

1.000062 (14.5E-05)

0.013556 (5.89E-06) 

0.013553 (8.48E-06) 

0.013553 (5.30E-05)

0.975296 (1.60E-05) 

0.975286 (2.30E-05) 

0.975286 (14.4E-05)

5 -.001478 (5.92E-06) 

-.001481 (8.68E-06) 

-.001481 (5.33E-05)

1.000073 (1.61E-05)

1.000063 (2.36E-06)

1.000063 (14.5E-05)

0.004487 (5.91E-06) 

0.004484 (8.61E-06) 

0.004484 (5.32E-05)

0.990243 (1.61E-05) 

0.990234 (2.34E-05) 

0.990234 (14.4E-05)

6 -.001476 (5.92E-06) 

-.001479 (8.69E-06) 

-.001479 (5.33E-05)

1.000075 (1.61E-05)

1.000065 (2.36E-05)

1.000065 (14.5E-05)

0.000890 (5.92E-06) 

0.000887 (8.66E-06) 

0.000887 (5.32E-05)

0.996175 (1.61E-05) 

0.996165 (2.35E-05) 

0.996165 (14.5E-05)

7 -.001472 (5.92E-06) 

-.001476 (8.69E-06) 

-.001476 (5.33E-05)

1.000077 (1.61E-05)

1.000067 (2.36E-05)

1.000067 (14.5E-05)

-.000534 (5.92E-06) 

-.000537 (8.68E-06) 

-.000537 (5.33E-05)

0.998530 (1.61E-05) 

0.998520 (2.36E-05) 

0.998520 (14.5E-05)
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8 -.001462 (5.92E-06) 

-.001465 (8.70E-06) 

-.001465 (5.33E-05)

1.000084 (1.61E-05)

1.000074 (2.36E-05)

1.000074 (14.5E-05)

-.001089 (5.92E-06) 

-.001092 (8.69E-06) 

-.001092 (5.33E-05)

0.999470 (1.61E-05) 

0.999460 (2.36E-05) 

0.999460 (14.5E-05)

9 -.001433 (5.94E-06) 

-.001436 (8.72E-06) 

-.001436 (5.33E-05)

1.000101 (1.61E-05)

1.000091 (2.36E-05)

1.000091 (14.5E-05)

-.001285 (5.94E-06) 

-.001288 (8.72E-06) 

-.001288 (5.35E-05)

0.999858 (1.61E-05) 

0.999848 (2.36E-05) 

0.999848 (14.5E-05)

10 -.001356 (6.06E-06) 

-.001359 (8.90E-06) 

-.001359 (5.45E-05)

1.000148 (1.61E-05)

1.000138 (2.36E-05)

1.000138 (14.5E-05)

-.001297 (6.06E-06) 

-.001300 (8.90E-06) 

-.001300 (5.45E-05)

1.000052 (1.61E-05)

1.000042 (2.36E-05)

1.000042 (14.5E-05)

11 -.001152 (6.91E-06) 

-.001152 (1.02E-05) 

-.001152 (6.22E-05)

1.000272 (1.60E-05)

1.000263 (2.35E-05)

1.000263 (14.4E-05)

-.001127 (6.91E-06) 

-.001127 (1.02E-05) 

-.001127 (6.22E-05)

1.000235 (1.60E-05)

1.000226 (2.35E-05)

1.000226 (14.4E-05)

12 1.000604 (1.55E-05)

1.000598 (2.27E-05)

1.000598 (13.9E-05)

1.000591 (1.55E-05)

1.000585 (2.27E-05)

1.000585 (13.9E-05)

; here. NR. = 0.028006, constant for all t.
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B4. (Sensitivity analysis with respect to a a and VVBR,)

Table 4.6.2

Mean and variance of the optimal projections {:CR*t} and { SR*t}

For each cell, top values subject to { 9 " = 50%, 

m iddle values subject to { 9* = 50%, 

and bottom  values subject to { 9* = 50%,

cra = 10% o f lui and VVBR = 10% o f |EBR| }, 

a a = 30%  of |p  and VVBR, = 10% o f |EBR } 

a a = 30%  o f |p  and VVBR. = 30%  o f |EBR| }

t
EC'CR’.-N R t)  (V ar(‘C R \)) E ( S R ',)  (V arri S R \)) E ( 'C R \-N R 0  (V ar(‘C R -,)) E(~SR \) (V arfS R 'O )

0 -.001435 (0.0) 

-.001445 (0.0) 

-.001445 (0.0)

1.0 (0.0) 

1.0 (0.0) 

1.0 (0.0)

0.605341 (0.0) 

0.605335 (0.0) 

0.605335 (0.0)

0.0 (0.0) 

0.0 (0.0) 

0.0 (0.0)

1 -.001461 (5.08E-06) 

-.001467 (7.46E-06) 

-.001467 (45.7E-06)

1.000044 (1.38E-05)

1.000037 (2.03E-05)

1.000037 (12.4E-05)

0.239273 (4.78E-06) 

0.239266 (4.78E-06) 

0.239266 (43.0E-06)

0.603301 (1.30E-05) 

0.603297 (1.30E-05) 

0.603297 (1 1.7E-05)

2 -.001472 (5.88E-06) 

-.001476 (8.63E-06) 

-.001476 (52.9E-06)

1.000062 (1.60E-05)

1.000052 (2.34E-05)

1.000052 (14.4E-05)

0.094038 (5.64E-06) 

0.094032 (6.51E-06) 

0.094032 (50.8E-06)

0.842657 (1.53E-05) 

0.842649 (1.77E-05) 

0.842649 (13.8E-05)

n
J -.001476 (6.00E-06) 

-.001480 (8.82E-06) 

-.001480 (54.0E-06)

1.000069 (1.63E-05)

1.000057 (2.39E-05)

1.000057 (14.7E-05)

0.036417 (5.88E-06) 

0.036412 (7.70E-06) 

0.036412 (52.9E-06)

0.937619 (1.60E-05) 

0.937610 (2.09E-05) 

0.937610 (14.4E-05)

4 -.001478 (6.02E-06) 

-.001481 (8.84E-06) 

-.001481 (54.2E-06)

1.000072 (1.64E-05)

1.000060 (2.40E-05)

1.000060 (14.7E-05)

0.013556 (5.97E-06) 

0.013553 (8.35E-06) 

0.013553 (53.7E-06)

0.975295 (1.62E-05) 

0.975284 (2.27E-05) 

0.975284 (14.6E-05)

5 -.001478 (6.03E-06) 

-.001481 (8.85E-06) 

-.001481 (54.2E-06)

1.000073 (1.64E-05)

1.000061 (2.40E-05)

1.000061 (14.7E-05)

0.004487 (6.00E-06) 

0.004484 (8.64E-06) 

0.004484 (54.0E-06)

0.990243 (1.63E-05) 

0.990232 (2.35E-05) 

0.990232 (14.7E-05)

6 -.001476 (6.03E-06) 

-.001479 (8.85E-06) 

-.001479 (54.2E-06)

1.000074 (1.64E-05)

1.000062 (2.40E-05)

1.000062 (14.7E-05)

0.000890 (6.02E-06) 

0.000887 (8.76E-06) 

0.000887 (54.2E-06)

0.996175 (1.63E-05) 

0.996163 (2.38E-05) 

0.996163 (14.7E-05)

7 -.001473 (6.03E-06) 

-.001476 (8.85E-06) 

-.001476 (54.2E-06)

1.000077 (1.64E-05)

1.000065 (2.40E-05)

1.000065 (14.7E-05)

-.000534 (6.02E-06) 

-.000537 (8.82E-06) 

-.000537 (54.2E-06)

0.998530 (1.64E-05) 

0.998518 (2.39E-05) 

0.998518 (14.7E-05)
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8 -.001462 (6.03E-06) 1.000084 (1.64E-05) 

-.001465 (8.85E-06) 1.000072 (2.40E-05) 

-.001465 (54.3E-06) 1.000072 (14.7E-05)

-.001089 (6.03E-06) 0.999470 (1.64E-05) 

-.001092 (8.84E-06) 0.999458 (2.40E-05) 

-.001092 (54.3E-06) 0.999458 (14.7E-05)

9 -.001433 (6.05E-06) 1.000101 (1.64E-05) 

-.001436 (8.88E-06) 1.000089 (2.40E-05) 

-.001436 (54.4E-06) 1.000089 (14.7E-05)

-.001285 (6.05E-06) 0.999858 (1.64E-05) 

-.001288 (8.88E-06) 0.999846 (2.40E-05) 

-.001288 (54.4E-06) 0.998846 (14.7E-05)

10 -.001357 (6.17E-06) 1.000148 (1.64E-05) 

-.001359 (9.06E-06) 1.000136 (2.40E-05) 

-.001359 (55.5E-06) 1.000136 (14.7E-05)

-.001297 (6.17E-06) 1.000051 (1.64E-05) 

-.001300 (9.06E-06) 1.000039 (2.40E-05) 

-.001300 (55.5E-06) 1.000039 (14.7E-05)

11 -.001151 (7.04E-06) 1.000272 (1.63E-05) 

-.001150 (10.3E-06) 1.000261 (2.39E-05) 

-.001150 (63.3E-06) 1.000261 (14.6E-05)

-.001127 (7.04E-06) 1.000234 (1.63E-05) 

-.001126 (10.3E-06) 1.000223 (2.39E-05) 

-.001126 (63.3E-06) 1.000223 (14.6E-05)

12 1.000604 (1.57E-05)

1.000597 (2.31E-05)

1.000597 (14.2E-05)

1.000591 (1.57E-05)

1.000584 (2.31E-05)

1.000584 (14.2E-05)

; here, NRt = 0.028006, constant for all t.
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B5. (Sensitivity analysis with respect to g, and VVBR,)

Table 4.6.3

Performance comparision between cVr*t(.) and V t(.) by means of mean-squared error

t

For each cell, top values subject to { 9* = 50%, 

m iddle values subject to { 9 = 50%, 

and bottom  values subject to { 9* = 50%,

a a = 10% o f j i  and VVBRt = 10% of|E B R | }, 

a a = 30%  o f |H and VVBR, = 10% o f |EBR| } 

o a = 30%  o f |H and VVBR* = 30%  o f |EBR| }

E [(cC R t - 'C R t ) 2] E[(SR*t - SR*t)2] E [(cCR*t - 'C R 't)2] E[(SR*t - "SR*t)2]

0 2.39E-14 0 .0  (S R 'o = " S R 'o = 1 .0 ) 6.66E-16 0.0 (SR*o= SR"o=0.0)

1.93E-12 0.0 (SR"o= SR*0=1.0) 4.95E-14 0.0 (SR*0= SR"o=0.0)
1.93E-12 0.0 ( S R > AS R > 1 .0 ) 4.95E-14 0.0 (SR'0= SR*o=0.0)

1 1.01E-05 2.73E-05 9.58E-06 2.60E-05

1.48E-05 4.01E-05 1.04E-05 2.83E-05

9.06E-05 2.46E-04 8.62E-05 2.34E-04

2 1.16E-05 3.16E-05 1.13E-05 3.07E-05

1.71E-05 4.65E-05 1.40E-05 3.79E-05

1.05E-04 2.85E-04 1.02E-04 2.76E-04

3 1.19E-05 3.23E-05 1.17E-05 3.18E-05

1.75E-05 4.75E-05 1.59E-05 4.31E-05

1.07E-04 2.91E-04 1.06E-04 2.87E-04

4 1.19E-05 3.24E-05 1.19E-05 3.22E-05

1.75E-05 4.76E-05 1.68E-05 4.57E-05

1.07E-04 2.92E-04 1.07E-04 2.90E-04

5 1.19E-05 3.24E-05 1.19E-05 3.24E-05

1.75E-05 4.76E-05 1.72E-05 4.68E-05

1.08E-04 2.92E-04 1.07E-04 2.91E-04

6 1.19E-05 3.24E-05 1.19E-05 3.24E-05

1.75E-05 4.76E-05 1.74E-05 4.73E-05

1.08E-04 2.92E-04 1.07E-04 2.92E-04

7 1.19E-05 3.24E-05 1.19E-05 3.24E-05

1.75E-05 4.76E-05 1.75E-05 4.75E-05

1.08E-04 2.92E-04 1.07E-04 2.92E-04
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8 1.20E-05

1.76E-05

1.08E-04

3.24E-05

4.76E-05

2.92E-04

1.19E-05

1.75E-05

1.08E-04

3.24E-05

4.76E-05

2.92E-04

9 1.20E-05 3.24E-05 1.20E-05 3.24E-05

1.76E-05 4.76E-05 1.76E-05 4.76E-05

1.08E-04 2.92E-04 1.08E-04 2.92E-04

10 1.22E-05 3.24E-05 1.22E-05 1.61E-05

1.80E-05 4.76E-05 1.80E-05 4.76E-05

l.lO E -04 2.92E-04 l.lO E-04 2.92E-04

11 1.39E-05 3.23E-05 1.39E-05 3.23E-05

2.05E-05 4.74E-05 2.05E-05 4.74E-05

1.26E-04 2.90E-04 1.26E-04 2.90E-04

12 3.12E-05

4.58E-05

2.81E-04

3.12E-05

4.58E-05

2.81E-04
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B6. (Some illustrative effects of suggestion (d) in relation to Table 4.6.1)

T ab le  4 .7

M ean  an d  v arian ce  p ro jec tions u nder suggestion  (d)

{0*=9O%. srtt=100.5%} {0"=9O%. exp(iy)=1.04} {exp(ri’)=1.04. srtt=T00.5%}

t E(cCR',-NR,) E(SR't) E(cCR',-NR,) E(SR',) E(cCR", - NR,) E(SR',)

(Var(cCR*,)) (Var(SR*,)) (Var(cCR*t)) (Var(SR\)) (Var(cCR*,)) (Var(SR'O)

0 0.907881 0.0 0.889204 0.0 0.598073 0.0

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

1 0.085761 0.908548 0.068147 0.905730 0.223474 0.611994

(1.10E-05) (1.34E-05) (6.20E-06) (7.54E-06) (2.69E-06) (7.19E-06)

2 0.006855 0.995750 -.009297 0.991161 0.076866 0.851513

(1.12E-05) (1.37E-05) (6.36E-06) (7.73E-06) (3.21E-06) (8.56E-06)

3 -.000719 1.004119 -.016602 0.999219 0.019488 0.945255

(1.12E-05) (1.37E-05) (6.37E-06) (7.75E-06) (3.34E-06) (8.91E-06)

4 -.001446 1.004922 -.017291 0.999979 -.002966 0.981945

(1.12E-05) (1.37E-05) (6.37E-06) (7.75E-06) (3.38E-06) (9.02E-06)

5 -.001515 1.004999 -.017356 1.000051 -.011748 0.996308

(1.12E-05) (1.37E-05) (6.37E-06) (7.75E-06) (3.39E-06) (9.06E-06)

6 -.001522 1.005007 -.017362 1.000058 -.015170 1.001939

(1.12E-05) (1.37E-05) (6.37E-06) (7.75E-06) (3.40E-06) (9.07E-06)

7 -.001523 1.005008 -.017363 1.000058 -.016467 1.004169

(1.12E-05) (1.37E-05) (6.37E-06) (7.75E-06) (3.40E-06) (9.08E-06)

8 -.001523 1.005008 -.017362 1.000059 -.016863 1.005110

(1.12E-05) (1.37E-05) (6.37E-06) (7.75E-06) (3.40E-06) (9.08E-06)
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9 -.0015222

(1.12E-05)

1.005008

(1.37E-05)

-.017351

(6.37E-06)

1.000060

(7.75E-06)

-.016721

(3.41E-06)

1.005660

(9.08E-06)

10 -.001511 1.005009 -.017234 1.000072 -.015877 1.006358

(1.12E-05) (1.37E-05) (6.37E-06) (7.75E-06) (3.48E-06) (9.07E-06)

11 -.001398 1.005020 -.015937 1.000202 -.013450 1.007914

(1.12E-05) (1.37E-05) (6.38E-06) (7.75E-06) (3.96E-06) (9.03E-06)

12 1.005146

(1.37E-05)

1.001642

(7.75E-06)

1.011931

(8.75E-06)

; here, the standard calculation basis is {0* = 50%, srtt = 100%, exp(rj) = 1.06, a a = 10% of p| 

and VVBR, = 10% of |EBR|}, which is equivalent to the basis for top values in Table 4.7.1; 

and NRt= 0.028006 for exp(ri) = 1.06 and NR* = 0.034506 for exp(r|’) = 1.04, constant for 

all t.
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Chapter 5 Dynamic pension funding plan with a given form of controlling variable

5.1 Introduction

In Chapter 4, we have discussed various aspects of dynamic pension funding plans derived 

from the LQP control optimisation problems over a finite control horizon, both deterministic 

and stochastic, where the mathematical form of the controlling variable CR is unconstrained. 

In sections 4.3.3.2 and 4.4.4.2, it was noted that the derived dynamic pension funding plan 

could be distinguished from the spread funding plan governed by formula (3.22) in section

3.4.4 by the addition of an additive controlling parameter.

Nevertheless, the actuary may have a strong view about controlling the spread parameter [see 

Remark 2.5 in section 2.2.4.1], In this respect, different from Chapter 4 where we considered 

the situation of a solvency valuation (i.e. short-term, winding-up valuation), this chapter 

considers the situation of a classical actuarial valuation (i.e. long-term, going-concern 

valuation) in recognition of the fact that the spread funding plan is normally applied to a 

classical actuarial valuation.

The objective of this chapter is to gain an understanding of how the spread funding plan can be 

optimally designed in the light of optimal control theory when the controlling variable is 

constrained by the spread funding formula. It is required to optimise the value of the spread 

parameter by solving control optimisation problems (formulated later) with respect to the 

spread parameter, unknown/undetermined at the time of making a decision: in this respect, the 

unknown spread parameter can be considered to be a controlling parameter in control 

optimisation problems. This chapter is then devoted to LQP optimisation problems of the type 

investigated in Chapter 4 but with three different projection assumptions modified for the
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classical actuarial valuation (first of all, we note that the symbols adopted below, i.e. Ct, NCt, 

ALt, kt, dv, iv, 5t+i, a, p and r| all have the same meaning as given throughout Chapter 3 but 

CRft, NRft and FR  are newly mtroduced and defined for the classical actuarial valuation m 

order to avoid any notational confusion with CR, NR, and SR used in Chapter 4 for the 

solvency valuation):

(a) Control horizon is assumed to be infinite, i.e. te  [0, oo);

(b) Controlling variable CRft is assumed to be specified by the following funding-level spread 

funding formula: that is, for all t,

CRf, = NRf, - kt - (FR-1) = p.(FR-l; kt) - - - (5.1)

where

CR1, = Ct/AL, (denoting the contribution ratio at time t on the classical actuarial valuation), 

NRf, = NCt/AL, (denoting the normal cost ratio at time t on the classical actuarial valuation), 

FR  = F,/ALt (denoting the funding level at time t on the classical actuarial valuation), and 

p(FR-l; kt) indicates a linear function of state variable FR-1 which has the unknown spread 

parameter k, having values in the spread parameter space {kt: 0 < k, < 1} (particularly, {k: dv< 

k < 1 with iv > 0} in the case that k, = k constant for all t, see section 2.2.4.1) and NRft is 

considered to be the so-called CRf, intercept which is pre-computable on the current actuarial 

assumptions for the classical actuarial valuation. Here, the linear function p(.; kt) shall be 

called the spread funding plan (characterised by the unknown spread parameter k,); and

(c) Controlled object is assumed to be deterministic and governed by the following zero-input, 

100%-target funding-level growth equation with the state variable FR-1 and the unknown 

spread parameter k, (which can be thought of as the funding-level version of the zero-input, 

100%-target solvency-level growth equation (3.26) with x, = 0, i.e. market cost adjustment m, =
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0, for all t and using the relationship (3.15), i.e. SLt = (l+mt) • ALt for all t, lead to the 

resulting equation),

[FRt+i - 1] = [exp(5t+i - a  - P) • (l-kt)] • [FR - 1] + [exp(8t+i - r|)] - 1 with initially given FR-1 

= qi(t) • (l-kt) ■ [FR - 1] + q2(t) with initially given FR-1. ---- (5.2)

Assumption (a) may appear unrealistic but has been made on the grounds that dealing with 

infinite-horizon control problems could provide an analytically convenient approximation for 

optimising the value of the spread parameter for control problems over a finite but long time 

horizon. Further, we have some benefits of comparing, on a long-term, going-concern valuation 

basis, our dynamic approach over an infinite control horizon with the static approach of 

Dufresne (1986 & 1988) and Haberman (1992, 1993 & 1994) [for a brief review of their 

approach, see Remark 2.5 in section 2.2.4.1],

Although dealing with a stochastic approach may be a more proper way of coping with the 

uncertain real world, we are here concerned with a deterministic approach, which, we believe, 

is sufficient to illustrate how the spread parameter can be optimally determined. Further, the 

deterministic approach has some distinctive advantages such that firstly, diagnosing a 

deterministic controlled object is somewhat easier and facilitates our understanding of the 

principal results, as we can easily check by comparing the deterministic results of section 4.3 

with the stochastic results of section 4.4. Secondly, owing to the complexity of the pension 

fund system, there are some restrictions in considering a stochastic controlled object (as 

discussed at the end of section 4.4.1.3). Lastly, testing the sensitivity of funding levels to 

variations in the principal factors of interest will provide an approximate but clear description 

of the future behaviour of solvency levels and the future funding policies securing the desired 

solvency level [see section 4.3.3],
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In this chapter, we consider four distinct control optimisation problems - stationary (defined in 

section 5.3), quasi-stationary (defined in section 5.4), non-stationary and threshold (defined in 

section 5.5). In section 5.2, we consider the optimal performance criterion appropriate for the 

infinite-horizon control optimisation problem: in particular, we make some important 

comments on the supplementary performance criterion, as in section 4.2.3.2. In section 5.3, we 

consider a stationary controlled object (i.e. its motions are invariant under a translation of time) 

and then construct our stationary LQP optimisation problem [for the meaning of LQP, see the 

beginning stage of section 4.2.4], In section 5.4, we define and consider a quasi-stationary 

controlled object (as a variation of the stationary controlled object) and then construct our 

quasi-stationary LQP optimisation problem. Lastly, in section 5.5, we model and consider a 

non-stationary controlled object and then construct our non-stationary LQP optimisation 

problem.

In sections 5.3, 5.4 and 5.5 each, we explore their respective optimal values of the spread 

parameter by solving their respective control problems and further we give some numerical 

illustrations at the end of each section.

When considering infinite-horizon control problems, the stability properties of the controlled 

object are important in deciding the value of the spread parameter and analysing the motions of 

the controlled object. The general concepts of stability mentioned in sections 5.2 ~ 5.5 are 

discussed briefly in Appendix 5B. 1.

5.2 Optimal performance criterion

As in section 4.2.3 for finite-horizon optimal performance criterion, the infinite-horizon 

optimal performance criterion would be composed of primary and supplementary, which are 

commonly designed to realise our funding purpose (introduced in section 2.1.3.4).
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5.2.1 Primary performance criterion

Considering the characteristics of our controlling variable (specified by formula (5.1)) and 

controlled object (specified by equation (5.2)) such as 100%-target related state variable FR;-1 

and spreading CRft around NRft, it would be appropriate to set the funding level target at time t 

at the level of 100% and the contribution ratio target at time t at the level of NRft; hence, the 

solvency and contribution rate risks at time t for the classical actuarial valuation are defined as 

(FR. - l)2 and (CRft - NRft)2, respectively [see section 2.1.3],

Therefore, the following infinite-horizon performance index (denoted by IPIe, which is 

distinguishable from PI0  denoting the finite-horizon performance mdex for the solvency 

valuation in section 4.2.3.1) would be suitable for a classical actuarial valuation: that is, for an 

arbitrary' value of 0 (chosen on the actuary’s subjective basis) where 0 < 0 < 1,

IPIe = X { e"nt- [0 • (FRt - J)2 + i 1-0) • (CRft - NRft)2] } (by formula (5.1))
t=0

00

= Z  { e'nt- [0 + (1-0) • kt2] • [FRt - l]2 }, --- (5 .3 )
t=o

which illustrates that the contribution rate risk is completely determined by the solvency risk 

through the spread parameter.

The above IPIe can be interpreted as the net present value (NPV) of the project’s future costs 

over an infinite projection period [0, oo), identified by the convex combination of the solvency 

and contribution rate risks to be potentially caused by the operation of the spread funding 

formula (5.1), where e'11 is the project’s discount function. It should be noted that different from 

the finite-horizon control optimisation problems examined in chapter 4, the infinite-horizon 

control optimisation problems should be constructed under the guarantee that the value of
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performance index I P I e  should be finite from the mathematical point of view (i.e. defined as a 

real-valued I P I 9) .  This requirement can be met provided that the discount factor q in I P I e is 

positive and the performance index per unit control period [t, t+1), i.e. [0 + (1 -0)-kt2j • [FR. - l]2, 

is bounded for all t.

Thus, the function value IPIe is well defined on such a space that {kt: r|>0 and 0 < [0+(l- 

0) kt2]-[FRrl]2 < u (i.e. some positive real number)} for all t. Further, taking into account the 

parameter space of kt in formula (5.1), the feasible region of kt should be the intersection of {kt: 

0 < kt < 1} and {kt: r|>0 and 0 < [0+(l-0) kt2]-[FRt-l]2 < u}: that is, for all t,

{kt: 0 < kt < 1, -q > 0 and 0 < [0+(l-0)-kt2] • [FRt-1]2 < u} - - - (5.4)

(in the special case of kt = k constant for all t, then

{k: l-exp(-r|)< k < 1 with r) > 0 and 0 < [0+(l-0)-k"j • [FRt-1]2 < u})

; this will be regarded as the general controlling parameter space of kt in our infinite-horizon 

control problems (formulated later).

Our purpose of optimising the performance index (5.3) with respect to the spread parameter, 

our primary performance criterion can be defined as follows: for a given 0,

Min IPIe - - - (5 .5 )
{kt ; t=0, 1.

: that is, when the controlling variable CRft is constrained by the given form of the spread 

funding formula (5.1), controlling both the solvency and contribution rate risks with respect to 

CRft is equivalent to controlling only the solvency risk with respect to the spread parameter kt 

(and hence, controlling CRft is to be completed by controlling kt) - this is quite different from 

our previous analysis in Chapter 4. In this respect, kt is considered to be the controlling 

parameter at time t (specifying the controlling variable CRft at time t).
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5.2.2 Supplementary performance criterion

Following the arguments to (i)~(v) made m section 4.2.3.2, we may consider the infinite- 

honzon version of the finite-horizon supplementary performance criteria. Suggestion I, II and 

III, proposed in section 4.2.3.2. As a simple example, if we adopt the infinite-horizon version 

of Suggestion I as our supplementary performance criterion to the primary performance 

criterion (5.5), it will be given by

co co

Min M FR t'-l)2+ (l-A.)-(CRf t’-NRft)2} o  Min { £  ( ^ ( l - ^ ) ’kt')-(FRi,- l)2}
9 t=o 9 t=0

where

CRf . FR,' and A, each have the same meaning as given m section 4.2.3.2; and

kt‘ = pre-optimal controlling parameter at time t with the relationship CRft’ = NRft - kt’- (FRy-

1), 0 < kt’ < 1 (particularly, d, < k’ < 1 for k’t=k’ constant for all t).

As mentioned earlier in section 4.2.3.2, constructing a supplementary performance criterion 

suitable for improving the pace of funding and the behaviour of solvency levels simultaneously, 

would involve severe computational problems, even more so than m the finite-horizon case.

Throughout this chapter, we prefer alternatively to illustrate how the pre-optimal value of kt’ 

responds to changes in the values of 0 from a specified finite admissible set of 0, instead of 

considering formally a supplementary performance criterion.

Remark 5,1: At this point, it would be worth illustrating how' the methodology of primary and 

supplementary performance criterion can be applied to the single-point-time static approach. 

Here, we give an illustration with respect to the work of Dufresne (1988).
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(a) Dufresnc's primary performance criterion: using a discrete-time and stochastic model under 

some simplification assumptions, he illustrated numerically how a best value of the constant 

spread parameter k at some point of time t (denoted by k*) can be determined, since generally 

there is no closed form expression for k*. His decision criterion at time t is Min Var(Ct) and
k s [0, 1]

then the interval [k*, 1] is defined as his admissible region for k in view' of the fact that the 

tradeoff between Var(Ct) and Var(Ft) is maintained over lk \ 11. In this respect, Min Var(Ct)
k e  [0, 1]

can be called Dufresne’s primary performance criterion (for the admissible region for k) at time 

t. We note that, more recently, these results have been formalised and extended by Owadally & 

Haberman (1995). In addition, taking into account the scale of the tradeoff between Var(Ct) 

and Var(Ft), we could make a more condensed admissible region for k than that provided by 

Dufresne’s primary performance criterion. To begin with, assuming that Var(Ct) and Var(Ft) 

are both differentiable with respect to k, then we have the instantaneous rate of growth of 

Var(Ct) and of Var(Ft) with respect to k, defined as [<fVar(Ct)/<s(k] / Var(Ct) = RVCt and 

[<fVar(Ft)/ifk] / Var(Ft) = RVFt, respectively. Consequently, the following criterion (b) is 

intended to focus on the movement of Var(Ct) with respect to k as well as that of Var(Ft) with 

respect to k, at a fixed time t; and

(b) Supplementary performance criterion to Dufresne’s primary performance criterion: for any 

k e [k*, 1], RVCt > 0 and RVFt < 0 (since Var(Ct) increases and Var(Ft) decreases with 

increasing k), so it is appropriate to define a measure of the tradeoff between RVCt and RVFt 

in the form: MSt = RVCt + RVFt. We believe that the new measure MSt is suited to the 

balancing the movement of Var(Ct) against that of Var(Ft). There will be a more condensed 

admissible region for k such that [kL , ku] c  [k\ 1], in which ‘kL’ is defined as the value of k

satisfying Min (MSt(k) < 0} and also ‘ku’ is defined as the value of k satisfying
k q k * . 1]

Max |M St(k) < 0}. Therefore, Min {MSt(k) < 0} and Max (MSt(k) < 0} could be
ke{k», 1] k q k * . 1] ke(k*. 1]
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considered the supplementary performance criterion (to Dufresne’s primary performance 

criterion). For example, adopting the same numerical bases as given in his Fig. 2 (i.e. the 

investment rate of return it follows an IID with E(it) = iv= 0.03 and Var(it) = 0.01), we can give 

an illustrative numerical comparison as follows:

[0.12,0.38] vs. [0.00,1.00] fo rt =10 

[kL, ku] vs. [k*, 1] = •{ [0.15, 0.38] vs. [0.15, 1.00] fort = 30

[0.16, 0.38] vs. [0.16, 1.00] fo rt = oo

This indicates that we are able to redefine the admissible region for k in a more restrictive way

by employing a supplementary performance criterion appropriately designed for our additional

needs and interest.

5.3 Dynamic pension funding plan for stationary LQP optimisation problem

In order to avoid any notational confusion with the other two control problems to be considered 

later - quasi-stationary and non-stationary, we shall put the superscript ‘S’ on the left side of 

each main symbol (introduced in this section), which indicates that it concerns the stationary 

LQP optimisation problem formulated under the stationary assumptions (given m the following 

section 5.3.1).

5.3.1 Preliminary

We make first the stationary assumptions such that all system parameters (involved in the 

system equation (5.2)) are constants for all t based on best estimates, that is, 8t+1 = 5 and kt = k 

are all time-invariant (i.e. stationary), as in the classical approach to actuarial valuation.
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Applying these parametric assumptions to the spread funding formula (5.1) and the system 

equation (5.2) and using the fact that l-exp(-r)) = dv. then for all te[0, oo), we have

sCRft = sNRft - k-(sF R rl) = sp(sFRt-l; k), ke{k: l-exp(-ri) < k < 1 with q > 0} - - - (5.6)

; k shall be called the stationary spread parameter, formula (5.6) the stationary spread funding 

formula. sp(- k) the stationary' spread funding plan: and.

[sFRt+i - 1] = [q,- (1-k)] • [SFR - 1] + q2, with given SFR,- 1 - - - (5.7)

where qj = exp(8-oc-[S); and q2 = exp(8-q) - 1

; hence, this system equation is autonomous (i.e. zero-input and stationary), and accordingly 

the controlled object is called the autonomous controlled object.

Further, considering the stationary system equation (5.7), it would be reasonable to impose 

some stabilising condition on the control error sequence {SFR-1; te  [0. co)} because it would be 

quite unacceptable to the trustees and employer if {SFR.-1; te[0, oo)} were any type of 

divergent sequence. In the next section 5.3.2, we give a brief discussion of stability problems of 

stationary controlled objects [for a further discussion, see Appendix 5A],

In section 5.3.3, we construct a stationary LQP optimisation problem by reference to the 

stability problem and then find the optimal value of k by solving the formulated control 

problem in section 5.3.4. Numerical illustrations are given in section 5.3.5.

5.3.2 Stability problems of autonomous controlled object

The purpose of this section is to derive a convergence condition for k from the limiting 

behaviour of the control error sequence {sSRt-l; te[0, oo)} and then establish an admissible 

condition for k.
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(i) Definite solution to system equation (5.7):

The general solution to equation (5.7) consists of the sum of two solutions: a particular 

solution (denote, PSt) which represents the mter-temporal equilibrium level of sFRt-l (i.e. 

equilibrium state or moving equilibrium state, see Comments (1.1)~(1.4) in A5.5.2) and is any 

solution of the complete equation (5.7) with q2 * 0, and a complementary function solution 

(denote. CFt) which represents the deviation of the inter-temporal equilibrium and is the general 

solution of the reduced equation (5.7) with q2 = 0.

The initial condition sFRo-l enables us to determine completely the general solution to (5.7) 

(i.e. leads to the definite solution to (5.7)):

sFRt - 1 = CFt + PSt ---(5.8)

where

• [in the case of qi • (1-k) ^ lj:

CFt = {(SFRo-l) - q2 / [1 - q, (l-k)]} • {qr (l-k)}\ and 

PSt = q2/ [ l  -q r(l-k )]

; hence, we can easily check from Definition 1 in Appendix 5A that PSt reaches an equilibrium 

state (here, PSt is a constant function value satisfying the system equation (5.7), PS); and

• [m the case of qi • (1-k) = 1]: CFt = sFRo- 1 and PSt = q2 • t

; hence, PSt becomes a moving equilibrium state, since PSt is a time-varying function value 

satisfying equation (5.7).

(ii) Stability':

If |q, • (l-k)| < 1 (for convergence), then the equilibrium state PS is asymptotically stable [see 

Definition 3 in Appendix 5A], since CFt decays to zero as t tends to infinity, and then the 

control error sequence {sFRi-l: te[0, co)} is convergent with the limiting value PS. Thus,
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|qi ■ (l-k)| < 1 is the asymptotic stability condition: in other words, as t —> oo, [control error FRt 

- 1 (with given initial error FR,r l)J —> (after transient error CFt has decayed to zero) —» 

[steady-state error PS] [see Remark 2.5 in section 2.3.2.2],

Moreover, we have the following inequality from the properties of the absolute values 

|sFRt-l-PS| = |[sFRo- 1 - PS] • [q, • (1-k)]] < {|sFRo-l| + |PS|} • |[q, • (l-k)]|\

From Definition 4 in Appendix 5A, we know that |qi • (1 -k)| corresponds to (1 - SQ e  [0, 1) 

(here, the constant convergence rate SC is sometimes called the geometric damping rate as the 

discontinuous analogue of the exponential damping rate defined normally on a continuous-tune 

domam, as mentioned in Comment 4 in Appendix 5A) and that the equilibrium state PS is 

geometrically stable. As a result, the asymptotic stability condition, |q; • (l-k)| < 1, is also a 

geometric stability condition. Thus, if we can continuously manage our pension scheme subject 

to |qi • (l-k)| < 1, then the scheme becomes stable and the solution sequence {sFRt-l; te[0, oo)} 

is uniformly convergent to lim (sFR, - 1) = SFR«>-1 = PS. In other words, if 0 < qi • (1-k) < 1,
t->oo

the solvency level decreases steadily with limiting value SFRX. but on the other hand if -1 < qi • 

(1-k) < 0, the solvency level experiences damped oscillations and tends to the limiting value 

sFRco, with each successive cycle of smaller amplitude than the preceding one.

As a result, the admissible space for k that guarantees the convergence of the control error 

sequence {sFRt-l; te[0, cc)} is {k: |qj • (l-k)| < 1} and the convergence speed of {sFRt-l; te[0, 

co)} to PS is increasing with k: in other words, the convergence rate SC is an increasing function 

of k with the maximum damping rate 1 when k = 1.

(iii) Stationary parameter space of k:

Considering the convergence of the control error sequence together with the finiteness of sIPIe, 

the feasible region of k should be the intersection of {k: l-exp(-r|) < k < 1 with p > 0} (i.e. 

general parameter space of k given in (5.1)) and {k: |q,-(l-k)| < 1}. Thus, we have
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{k: l-exp(-r|) < k < 1 with r| > 0 and |qi • (l-k)| < 1} --(5 .9 )

; this shall be called the stationary controlling parameter space of k (as a specific and 

restrictive form of the general controlling parameter space (5.4)), which will be used in the 

formulation of the stationary control problem in the next section 5.3.3.

5.3.3 Stationary LQP optimisation problem

From the discussions made in section 5.3.2, we have found an admissible controlling parameter 

space (5.9) that guarantees the finiteness of sIPIe. Then, the optimal value of k would be 

defined as the value of k satisfying the following stationary LQP optimisation problem:

oo

Min { Z  [ e * ' (6 + (1-9) • k2) ' (SFRt - l)2 ] }
k t=0

subject to given 0 e  (0, 1); stationary system equation (5.7); and k e  {stationary 

controlling parameter space (5.9)}.

_ _ _ _ _

The optimisation procedure for solving the above control problem (5.10) will be considered in 

the next section 5.3.4.

5.3.4 Optimisation procedure with respect to the stationary spread parameter

The objective of this section is to find the optimal value of k (denoted by k*) by solving the 

stationary LQP optimisation problem (5.10) and then we define the optimal stationary spread 

funding plan (specified by k*) as our dynamic pension funding plan [see, section 5.3.4.1], We 

will discuss some advantages and disadvantages of the algebraic approach adopted for the 

mathematical solution [see, section 5.3.4.2], Finally, we give a block diagram illustrating our 

control mechanism as a summary of this section [see, section 5.3.4.3],
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5.3.4.1 Optimal stationary spread funding plan

The optimisation procedure with respect to k is carried out as follows using an algebraic 

approach:

For convenience, letting qr(l-k) = f(k) (as a linear function of k; hence, k = 1 - f(k)/qi) and 

sFRo- 1 = s. From the relation k = 1 - f(k)/qi, sIPIe can be expressed as a function of f(k), so 

we deal with sIPIe as a function of f(k) (denoted by sIPIe(f(k)).

Then, the stationary controlling parameter space (5.9) yields a more condensed feasible region 

of values of f(k), that is,

{f(k): 0 < f(k) < 1 if 5-a-p-r) > 0, otherwise 0 < f(k) < exp(5-a-P-r|)} ---- (5.11)

Then, the infinite series sIPIe is a convergent geometric series and reduces to 

sIPIe(f(k)) = [0 + (1-0) • (1 - f(k)/q,)2] • [(s - s-f(k) - q2)2- ( l - e ^ k ) 2)'1 +

2(s-q2- s qr f(k) - q22) • (1 - e ^ k ) ) ’1 + q22-(l - e")'1] / [1 - f(k)]2.

For convenience, we rewrite the above equation as 

sIPIe(f(k)) -  [0 + (1-0) ■ (1 - f(k)/q,)2] • G(f(k)) / [1 - f(k)]2 

where

G(f(k)) = {[(e'2T1 i s  - q2) 2 - e" -s-(s - 2q2)] • f(k)3 + [(s2+ e 11 -(s2- 4s-q2+ q22) - 2e2’1 -(s - q2)2] •

f(k)2 + [-2s2 + e_T1 -(s2 + 2s-q2 - 2q22) + e 2\ s  - q2)2] • f(k) + [s2 + e" -(s2 - q22)]} 

/ {(1 - e"11 -f(k)2) • (1 - e'11 -f(k)) • (1 - e'71)}

= {[1 - f(k)]2 - [(e-211 i s  - q2) 2 - e^-s-is - 2-q2)) • f(k) + e^-iq,2 - s2) + s2]} 

/ {(1 - e'11 -f(k)2) • (1 - e_T1 -f(k)) • (1 - e'11)}.
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Finally, we have a more simplified form with

sIPIe(f(k)) = [9 + (1-0H1 - f(k)/q,)2] • [(e2r| -(s - q2)2 - ^ - ( s  - 2-q2)) • f(k) + e T> -(q22- s2) + s2] 

/  [(1 - e ” -f(k)2) - (1 - e ” -f(k)) - —  (5.12)

As a first step to searching for the value of k to minimise sIPIe(f(k)) in (5.12), we need to solve 

the polynomial equation, ¿flPIeifih)) / d k  = [i/lPIe(f(k) / d f(k ) \  ■ [r/f(k) / dk] -  0, which leads to 

a biquadratic equation in f(k) (note that the solutions to the following equation (5.13) may lead 

to a maximum rather than minimum of sIPIe(f(k)). After some simplification, we obtain

</lPIe(f(k))/ d k  = [a ia ^  - aia3a7 - a2a3a,5] • f(k)4 + P a i a ^  - 2aia3 - 2a2a3a7] • f(k)3 +

[3aia5a6- 3a2a3~t aia4a7 * a7a4a, - a a.: - a2a4a7] • f(k)~ ■

[2aia5a7 + 2a2a5a<5 - 2a2a4] • f(k) + [aia5 + a2a5a7 - a2a4] = 0 ---- (5.13)

where

ai = e"2ll-(s - q2) 2 - e n'S-(s - 2-q2); a2 = e'ri-(q22 - s2) + s2; a3 = e'2T1 - e 3T1; a4 = e'211 - e'n; 

a5 = 1 - e_r|; a6 = (l-0)/qi2; and a7 = -2(l-0)/qi.

Moreover, if [a^a^  - aia3a7 - a2a3ae] *  0, it is convenient to reparameterise equation (5.13) by 

dividing each coefficient by [a^ae  - aia3a7 - a2a3ag] and then we have the form

¿/iPI9(f(k)) / d k  = f(k)4 + c, • f(k)3 + c2 • f(k)2 + c3 • f(k) + c4 = 0 ---- (5.14)

where

C] = f2a]a4a/) - 2aia3 - 2a2a3a7] / [aia^a  ̂- aja3a7 - a2a3ae]; 

c2 = 13a.axv.- ja 2a3+ aia4a7 + a2a;a.. - aia4 - a2a4a7) / [a ]a.;a. - aia3a7 - a2a3â ]̂  

c3 — [2aia5a7 2a3aai. - 2 a2a4] / f a- a â. - aia3a7 - a2a3a<5 j j and 

c4 — [aia5 + a2a5a7 - a2a4] / [aja^a^ - aja3a7 - a2a3ai].
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The algebraic solution of biquadratic equations is generally given by Ferrari's method [see, 

Upensky (1948, Ch. 5)]. Usmg this method, the procedure for obtaining the solutions is given 

m Appendix 5B.1.

On the other hand, in the case of [a^ae  - a]a3a7 - a2a3a6] = 0, equation (5.13) is reduced to a 

cubic equation. In general, the algebraic solutions of cubic equations are given by Cardan’s 

method [see, Upensky (1948, Ch. 5)]. As seen in Appendix 5B.1, Ferrari’s method is 

completed by using Cardan’s method, so we can also refer to Appendix 5B.1 to find the 

solutions for the case of [a^a^  - aia3a7 - a2a3a ]̂ = 0.

Now, we shall build up the following optimisation procedures for determining the optimal value 

of k (denoted by k*) because it is too complicated to derive a closed mathematical expression 

for k*, on the evidence of Appendix 5B. 1.

To begin with, for notational convenience we define x' for a real number x such that 

lim (x - h) = x', in which h —» 0+ indicates that the limit is considered as h tends to zero from
h -»0+

above: that is, x' is approximately equal to x but is smaller than x.

Procedure 1: If f(k) = - [e " -(q22 - s2) + s2] / [e'2r| -(s - q2)2 - e'71 -s-(s-2-q2)] e {feasible region of 

f(k) derived in (5.11)} from formula (5.12), then k’ is given by k* = 1 - f(k)/qi, which leads to 

the value of sIPIe(f(k)) in (5.12) being zero, so k* provides the most ideal result in control 

optimisation because sIPIe(f(k)) > 0 for any k, otherwise

Procedure 2: If 5-a-p-rj > 0, then k* is the value corresponding to Min { sIPIe(0), sIPI0(fj(k)), 

sIPIe(T) }, where fj(k) are the real-valued solutions of the polynomial equation (5.13) 

satisfying fj(k) € [0, 1); but on the other hand,
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Procedure 3: If 5-a-p-r| < 0, then k* is the value corresponding to Min {sIPIe(0), sIPIe(fj(k)),

^IPIeiexpid-a-p-ri))}, where fj(k) are the real-valued solutions of the polynomial equation 

(5.13) satisfying fj(k) e  [0, exp(5-a-p-ri)].

In conclusion, we can identify' the optimal stationary control action at time t, sCRf*t, after k* 

has been determined through Procedures 1, 2 or 3 as follows: that is, for every te  [0, oo),

sCRf*t = sNRft - k* • (sFRi - 1) = V ( SFRrl; k*) - - - (5.15)

where sp*(.; k*) denotes the optimal stationary spread funding plan, which is our dynamic 

pension funding plan (i.e. optimal linear stationary feedback control law for the autonomous 

controlled object governed by equation (5.7)).

Further, the optimal stationary control response sFR*t+i, corresponding to SCR*\, is generated 

sequentially with tune t by the following optimal autonomous system equation (5.16):

(sFR*t+i -1) = exp(5-a-P)-(l-k*)-(sFR*t -1) + exp(5-ri) -1 with given SFR)-1=SFR*0-1 - - (5.16)

We note finally that the above formulae (5.15) and (5.16) are completely characterised by k* 

obtained through Procedures 1, 2 or 3.

5.3.4.2 Essential requirements for the algebraic approach

The essential requirements for applying the algebraic approach to the stationary LQP 

optimisation problem (5.8) are summarised as follows, in their order of priority:

Requirement A l: The unknown spread parameter kt is fixed over an infinite control horizon, 

i.e. kt = k, constant for all t;
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Requirement A2: The geometric stability condition (i.e. |exp(8-a-p)-(l-k)| < 1) and the positive 

discount factor (i.e. rj>0) (for convergent geometric series); and

Requirement A3: The polynomial equation (5.13) obtained has to be an equation of degree less 

than fifth (for mathematical solutions to (5.13), we note that in general, polynomial equations 

of degree higher than the fourth are not soluble, see Tignol (1988; Ch. 13) for the proof)

For a practical point of view, these requirements would be a great limitation for using the 

algebraic approach as a mathematical solution tool of the stationary LQP optimisation problem

(5.10).

It is worth noting that the rational motivation of using the algebraic approach is to expect that 

repeated use of the optimal value of k (denoted by k*) decided at the initial time, no matter what 

further information is encountered, will reduce the solvency risk as well as the contribution rate 

risk over an infinite control horizon. Consequently, the decision of k* occurs at the initial time 

(i.e. t=0) and is to be permanently maintained thereafter. Thus, the spread parameter kt is 

viewed as an unknown but fixed parameter (to be estimated at the initial time). In the light of 

statistical decision theory, the viewpoint of algebraic approach on the spread parameter kt is 

similar to the Frequentist Perspective in the light of repeated use of decision k* at the starting 

time, irrespective of any information updated with time t [see, Berger (1985; section 1.6)].

5.3.4.3 Summary

Our control mechanism for autonomous (i.e. zero-input, stationary) controlled object can be 

summarised, as illustrated below in Figure 5.1 (which will also provide a useful comparison 

with Figures 4.1 and 4.2 given in section 4.2.1).
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[Autonomous controlled object] ■> {sFRt-l} ■>

{k=k*}t i

{sNRt} -----> [Optimal control law sp*(.; k=k*)] <-----  {Feedback: sFRt-l}

Figure 5.1 Optimal stationary spread funding control system.

The above Figure 5.1 shows that both the autonomous controlled object and the stationary 

spread funding plan are optimally designed by way of optimising the value of the unknown but 

fixed spread parameter k at the level of k*.

5.3.4.4 Numerical illustrations

In this section, we will simply illustrate numerically the relationships of the optimal value of k 

(i.e. k*) with respect to the force of investment interest (i.e. 8), the relative weighting parameter 

(i.e. 0) and/or the given initial solvency level (i.e. sFRo). Owing to the inaccessibility of the 

closed mathematical form of k’, it is not possible to derive these relationships analytically. All 

the numerical illustrations are given in Appendix 5B.

(i) Assumptions:

(Al) All actuarial assumptions are the same as given m section 4.3.3.1, except for exp(x)=l (in 

short, exp(a)=1.03, exp(|3)=1.02 and exp(ri)=1.06); and 

(A2) Projection assumptions:

- infinite control horizon: t e [0, oo);

- admissible values of 9: {90%, 80%, ..., 10%};

- admissible values of sFRo: {100%, 50%, 0%}; and

- force of investment interest (8): exp(S) = 1.06 or 1.08.
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Hence, the formulae (a)~(d) and Remark 4.2 introduced in section 4.3.3.1 hold simply by 

replacing NRt (=NCt/SLt) and EBRt (=EBt/SLt) with their respective sNRft (=NCt/ALt) and 

sEBRft (=EBt/ALt).

(ii) Illustrative numerical results:

From the above assumption (i), we have the relationship 5 < a+p+r). So, the optimal value of k 

(denoted by k*) will be provided by Procedure 3 (established in section 5.3.4.1) in relation to 

the admissible combinations of 5, 0 and sFRo. The illustrative numerical results are given in 

Table 5.1 in Appendix 5B.

This table illustrates that

(a) k* increases monotonically with sFRo. This implies that under a stationary economic and 

demographic circumstances, maintaining the solvency level at each valuation date at the level 

of around 100% reduces both the solvency and contribution rate risks. This follows because as 

the value of k becomes closer to one, so the control error sequence {sFRt-l; t e [0, oo)} 

converges more speedily to the steady-state error lim (sFRt - 1) = PS and the transient error
t-> co

CFt decays more quickly to zero [see subsection (ii) of section 5.2.2.1];

(b) Weighting the solvency risk more than the contribution rate risk (i.e. 0 —» 1) leads to a 

value of k* closer to one, irrespective of the initial solvency level, and hence {SFR,-1; te[0, co)} 

will be stabilised more quickly (and the control action error sequence {sCRft - sNRft; te[0, cc)} 

as well). This result is as expected, since with 0=1 the immediate and complete spread method 

is recommended: k* = 1 means paying-off the control error informed at each valuation date 

without any spreading into the future;

(c) On the other hand, concentrating on controlling the contribution rate risk provides k* closer 

to l-exp(-rj), irrespective of the initial solvency level, (i.e. the lowest available value of general
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parameter space of k given in (5.1)). This result is also as expected, since spreading the control 

error informed at each valuation date into an infinite period is recommended (i.e. l-exp(-t|) = 

l/aco(iv)), which is consistent with the conclusion of Haberman (1997); and

(d) The better investment performance (i.e. 5 > r|) than the most likely expected performance 

(i.e. 5 = r|) provides a larger k*. which implies that both {sFRt-l; te[0, go)} and {sCRit - sNRft; 

te[0, co)} are stabilised more quickly, as discussed in (b) above.

5.4 Dynamic pension funding plan for quasi-stationary LQP optimisation problem

Throughout this section, we put the superscript £Q" on the left side of each main symbol (to be 

introduced in this section), which is used to indicates that it concerns the quasi-stationary LQP 

optimisation problem (formulated later in section 5.4.3).

5.4.1 Quasi-stationary assumptions and Preliminaries

As for the stationary LQP optimisation problem (5.10) in section 5.3.3, the stationary spread 

parameter k is considered to be unknown but fixed. In practice, the value of the spread 

parameter would generally be decided and adjusted through the regular valuation process, it 

would be more realistic to treat k as an unknown quantity depending on the currently available 

information: in other words, denoting the available information vector at time t by QHt = (QFRo, 

qFR i, ..., QFRt, QCRf0, qCR\, ..., QCRfn) with the given initial information °H0 = QFRo, then it 

is proposed that k be of the form of k(QHt), a time-invariant function of (i.e. independent 

explicitly of time t but not constant for all t). In this respect, interpreting the stationary spread 

parameter k (involved in the stationary control problem in the previous section 5.3), k itself 

could be thought of as a function of all possible and exhaustive prior information QH* = (QFRo, 

qFR i, qFR2, QCRf0, QCRfi, QCRf2, ...), say k = k(QH00) constant for all t (i.e. initially
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dependent on the full history of the controlled object, QFL), which shows that assuming a 

stationary spread parameter k is not reasonable as well as not practical.

We make here the same assumptions as the stationary assumptions in section 5.3.1, except for 

replacmg k with k(QHt): that is, 8t+i = 5, t t = t  and kt = k((>Ht) for every te[0, cc): in this 

respect, these assumptions shall be called the quasi-stationary assumptions as a variation of the 

stationary assumptions (here, the term 'quasi-stationary' is added to reflect the fact that k(QHt) 

does not depend explicitly on time t but is not constant for all t).

Applying the quasi-stationary assumptions to the spread funding formula (5.1) and the system 

equation (5.2), then we obtain the following quasi-stationary versions (5.17) and (5.18) of the 

stationary formula (5.6) and autonomous equation (5.7) derived in section 5.3.1: that is, for all

te[0, oo),

QC R ft =  QN R f  t -  k(QHt) • ( QF R t- 1 )  =  V ( QF R r  1 ; k ^ ) ) ,  - - - ( 5 . 1 7 )

m which k ^ , )  e 0 < k(QH:) < 1}

; in a similar manner to the stationary formula (5.6), k i^ t)  shall be called the quasi-stationary 

spread parameter, formula (5.17) the quasi-stationary spread funding formula and Qp(.; k(QHt)) 

the quasi-stationary spread funding plan, and further, we note that sNRft; and hence,

[qFR +i - 1] = q, • (1 - k ^ ) )  • (qFR, - 1) + q2 with given QFRo- 1 - - - (5.18)

where qi and q2 are the same as earlier specified in the autonomous system equation (5.7).

In particular, this equation (5.18) shall be called the quasi-autonomous (i.e. quasi-stationary 

and zero-input) system equation, and accordingly the controlled object governed by this 

equation shall be called the quasi-autonomous controlled object. Here, the term ‘quasi-
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autonomous’ is added on the grounds that this equation seems not to be autonomous in view of 

k(QHt) not being constant for all t, but provided that the unknown k(r<Ht) is specified as a 

function of the current state variable FR,-1 (i.e. k(QHt) = k(QFRt-l)), it turns out to be an 

autonomous system equation, i.e. QFRt+ r l = / ( QFRt-l) w here/(QFR fl) is stationary and zero- 

input function of QF R rl. Hence, whether or not equation (5.18) is autonomous depends on how 

k i^ t )  is specified. In fact, the optimal control theory of dynamic programming specifies k(QHt) 

as a function of the current state variable, i.e. k(QF R -1) (as illustrated in the following section

5.4.3.3).

Therefore, k(QHt) violates Requirement A1 in section 5.3.4.2, so the algebraic approach is 

inapplicable. In this case, dynamic programming (DP) approach of optimal control theory is 

probably the best alternative since unlike the algebraic approach, it provides a systematic 

procedure for making a sequence of interrelated decisions at a sequence of times by 

decomposing control problems into multistage decision processes [see, section 4.2.5] (- this will 

be made clear in section 5.4.4).

In section 5.4.2, we construct two distinct quasi-stationary LQP optimisation problems and 

then we explore their solution in section 5.4.3. Further, numerical examples are illustrated in 

section 5.4.4.

5.4.2 Quasi-stationary LQP optimisation problems

Prior to constructing our control problem, we note that using the dynamic programming (DP) 

approach, the stability problem of the quasi-autonomous controlled object would not be serious 

because the DP approach is based on Bellman’s principle of optimality (introduced earlier in 

section 4.2.5), by which the control error sequence {QFRt- 1; te[0, oo)} is controllable (- this

290



will be clarified in subsection (iii) of section 5.4.5.1). Consequently, different from using the 

algebraic approach [see Requirement A2 in section 5.3.4.2], we do not need here to impose any 

stabilising condition on {QFRr l; te[0, co)}.

However, we have to guarantee the finiteness of QIPIe (i.e. quasi-stationary version of IPIe, see

oo

section 5.2.1.1) where QIPI0 = £  { e'111- [6 + (1 -0) • k ^ t ) 2] • [QFRt - l]2 }.
t=0

(a) Quasi-stationary controlling parameter space I:

The quasi-stationary version of the general controlling parameter space (5.4) is given as 

follows: let u be some positive real number, then for all t,

(k(QHt): 0 < k ^ )  < 1. q > 0 and 0 < [0 + (1-9) ■ k(QHt)2] • [QF R rl]2 < u}, - - - (5.19)

on which QIPIe is well defined with a positive function value < oo for all t.

At this point, it is worth noting that even though constraint c 0<k(QHt)< 1 ’ imposes a somewhat 

strong restriction on each controlling parameter k i^ t) ,  it is not necessary for securing a real-

valued function QIPIe, so ‘O^kf'^Hd^r can be regarded as a dummy (or additional) constraint 

for our control optimisation with respect to K ^ t)-  For this reason, the next controlling 

parameter space is specified only to guarantee of the finiteness of QIPI0.

(b) Quasi-stationary controlling parameter space II:

A possible quasi-stationary version of the general controlling parameter space (5.4) can be 

defined as follows: let u be some positive real number, then for all t,

( k ^ ) :  r) > 0 and 0 < [0 + (1-0) • k ^ ) 2] • [QFRt-l]2 < u} - - - (5.20)

; this space ensures the finiteness of QIPIe, without imposing restrictions on the controlling 

parameters because if QFRt-l=0, then (k(QHt): |k(QHt)| < oo}, otherwise {kl^H,): |k(QHt)| < ui}, 

u^VUu-OVKl-OM^Rrl)2]}.
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Therefore, these two controlling parameter spaces are quite distinct from one another. So, it 

would be worth investigating the impact of each space on the control optimisation procedure 

with respect to the controlling parameters. The following quasi-stationary LQP optimisation 

problem is formulated m order to consider this matter separately.

Min { y  e’T|t- [0 + (1-0) ■ k C W ] • [QFRt - l]2 }
{k(QH t ) : t  = 0.1,2,...} ^ 0

[Constramts set I]: given 0e(O, 1); quasi-stationary system equation (5.18); and

k(QHt)e {quasi-stationary controlling parameter space I (5.19)}; or

[Constraints set II]: given 0 e (0, 1); quasi-stationary system equation (5.18); and

k(°Ht)e {quasi-stationary controlling parameter space II (5.20)}.

---(5 .2 1 )

Two distinct optimisation procedures, dealing with the control problem (5.21) subject to 

[Constraints set I] and [Constraints set II] separately, will be considered m sections 5.4.4 and 

5.4.5, respectively.

5.4.3 Introduction to control optimisation

We elaborate upon the dynamic programming (DP) approach (based on Bellman’s principle of 

optimality), as a mathematical solution tool of the control problem (5.21).

As a preliminary to investigating the rigorous optimisation procedure for the control problem 

(5.21), the following two subsections 5.4.3.1 and 5.4.3.2 will provide a framework for control 

optimisation with respect to quasi-stationary spread parameters.
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5.4.3.1 Purposes

First of all, it would be helpful to notice the purposes of dealing with the quasi-stationarv 

control problem (5.21) subject to two distinct constraint sets, separately. They are

- to demonstrate the insolubility of the control problem (5.21) subject to [Constraints set I] (- 

as an illustration of the disadvantages of the DP approach, see section 5.4.4);

- to illustrate how the DP approach to the control problem (5.21) subject to [Constraints set II] 

optimises the value of the controlling parameter k^^t) at each time t (- as an illustration of the 

advantages of the DP approach, see section 5.4.5); and

- to give some results useful for the threshold LQP control problem (to be considered later in

5.5.5).

Accordingly, an objective is to provide an introduction to spread parameter control 

optimisation (in the light of optimal control theory) as well as to illustrate some aspects related 

to the DP approach and the associated mathematical concepts.

5.4.3.2 Forward dynamic programming approach

Throughout Chapter 4, we have been accustomed to the backward dynamic programming 

(BDP) approach but we are here concerned with the forward dynamic programming (FDP) 

approach. The following descriptions (i)~(iii) provide a fundamental framework for solving the 

control problem (5.21).

(i) General discussion of the FDP approach:

The DP approach is classified into two distinct groups - BDP and FDP. The BDP approach, 

using mathematical induction with a boundary condition, is generally convenient in finite-
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horizon control problems, while it is necessary to employ the FDP approach, usmg 

mathematical deduction with a starting condition in infinite-horizon control problems for the 

reason that in general, we are unable to determine the boundary condition for the BDP 

approach to a infinite-horizon control problem [see Bertsekas (1987; pp 24-25 and 180-181)]. 

Accordingly, we adapt the FDP approach to our infinite-horizon control problem (5.21).

Considering the control optimisation at time te[0, oo) and applying the FDP approach to our 

control optimisation problem (5.21), the dynamic states QFRo-l, QFRr l, ..., QFRt-l have been 

observed and the controlling parameters k(QH,i), k(QHi), ..., k(°Hn) have been optimally 

determined; hence, the controlling parameter k i^ t )  is required to be optimally determined (i.e. 

search for the optimal value of k(QHt), denoted by k*(lQHt)).

We can then rewrite our performance index QIPIe as the sum of two parts as in the control 

optimisation for finite deterministic LQP optimisation problem examined in section 4.3: that is,

co

QIPIe = X  { • (0 + (1-6) • k f t ) 2) • (qFRs - l)2 }
s=0

= QIPIAe + qIPIB9 ---(5 .2 2 )

where

t-i
QIPIAe -  X  { e ̂  ■ (6 + (1-0) - k(QHs)2) • (QFRS-1)2 } and

s=0

CO

QIPIBe -  X  { e_T1S' (6 + (1-6) • k ^ s ) 2) • (qFRs-1)2 }.
s=t

We note that by letting QIPICe = ent • QIPIBe, QIPICe can be interpreted to be the future cost at 

time t discounted to time t, while QIPIBe can be interpreted to be the future cost at time t 

discounted to time 0 (- this transform will be convenient in the later mathematical discussions).
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The first part QIPLAe does not depend on the decisions to be made, i.e. k(QHt). k(QHt+i), so 

minimising QIPIe with respect to these controlling parameters is equivalent to minimising 

QIPICe. Furthermore, the second part QIPIBe can be expressed as a function of the current 

dynamic state QFRt-l, since the sequence of future dynamic states {QFRt+i-l, QFRt+2-l, ...} is 

recursively generated from the current dynamic state QFRt-l by the first-order system equation 

(5.18). Also, the decision at time t, k(QH;), will be a function of the current state variable 

'FRr l because using the dynamic programming approach based on Bellman’s principle of 

optimality, the knowledge of the current dynamic state is enough to substitute for Ht, i.e. k(QHt) 

= k(QFR rl) for all t.

(ii) Possible spread rule for determining the value of the spread parameter in the case of 100% 

funding level:

Prior to constructing an optimisation procedure at time t with respect to k i^ t) ,  we need to 

check whether or not the value of the starting/current dynamic state QFRt-l is zero. That is, if 

the value of QFRt-1 is zero, we do not need to consider the optimisation procedure at time t 

because the controlling parameter k i^ t)  appears as k(QHt)2-(QFRt-l)2 in QIPIBe, so the value of 

QFR rl being zero implies that we can choose the optimal value of k(QHt) arbitrarily. This 

decision would be meaningless in view of our seeking to set up a systematic and unique 

optimisation procedure with respect to the controlling parameters. In the light of optimal 

control theory, we can say that the case of a 100% funding level reflects the weakness in the 

mathematical formulation within the framework of the Spread method. In order to avoid this 

kind of undesirable situation, it is necessary to make such a possible spread rule that if the 

funding level is 100% at some time in a process of sequential optimisation, then we set the 

optimal value of the corresponding controlling parameter at the level of zero; here, the term 

‘possible’ is added to reflect that the rule is consistent with the conceptual purpose of the 

Spread method, that is, as mentioned in section 3.4.4, the mathematical formulation of the
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Spread method is basically designed for penalising the unfunded ratio (i.e. the funding level 

that is not 100%). So, whenever the funding level reaches the level of 100% we should not 

place any penalty on 100% funding level. Without loss of generality, this rule will be applied to 

all the remaining sections of this chapter.

Simply applying the possible spread rule to the optimisation procedure at tune t, we will 

consider the optimisation procedure at time t+1 for the new starting state QFRl+rl and so on; in 

particular, if 8 = -q and QFRt=100% (i.e. initially fully funded and no difference between the 

actual experience and actuarial assumptions), the optimisation procedure over [t, oo) is 

completely determined by the possible spread rule due to QFR,-1 = 0 for all j > t from the 

system equation (5.18).

(iii) Notation for the FDP approach to the control optimisation problem (5.21):

Consider time te[0, oo) and for convenience, assume QFRt-leR'-{0}. The following notations 

are useful for constructing our optimisation procedure at time t with respect to k i ^ )  by using 

the FDP approach to the control optimisation problem (5.21) - decomposing the control 

problem (5.21) into an infinite-stage decision process and applying mathematical deduction 

based on Bellman’s principle of optimality.

These mathematical notations will be used in sections 5.4.4 and 5.4.5 and their respective 

mathematical interpretations will be more apparent later:

n = stage index with non-negative integer, for example, the term ‘stage n’ corresponds to the 

unit control period [t+n-1, t+n); in particular, ‘stage 0’ is the starting stage corresponding to 

the starting control time te[0, oo);

QFRt-1 = starting/current state variable at time t, whose value is assumed to be observable at 

time t and to be non-zero, i.e. QFRt-leR'-{0} at time t;
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t+ n-1

QJn(QF R rl, t) = erit • Min { Y  [e T,‘- (6 + (1-6) ■ k(QHs)2) • (QFRS-1)2] }, which
{k(QH s ;s = t .t + l..... t+n-1} s=t

can be mterpreted as the minimal future cost over [t, t+n) discounted to time t. In particular, we 

can let QJ0(QFRt-l, t) = 0 as a starting condition of QJn(QFRt-l. t), since QFRt-l is not mvolved 

in the past cost QIPIAe;

Qj ’(QFRt-l, t) = optimal function value at time t of control problem (5.21) for any 

QFRt-leR'-{0}, defined by the equation QJ*(QFRt-l, t) = Min QIPICe, which can be
(k(QHs ); s=t, t+1, ...}

interpreted as the minimal future cost discounted at time t over [t, oo). We will prove in 

Proposition 5.1 of section 5.4.5.3 that for any QFR -leR '-{0}, J '(QFRt-l, t) is equivalent to the 

limit function value of the sequence {Jn(QFRt-l, t); n=0, 1, 2, ...} (denoted by lim Jn(QFRt-l,
n —>co

t));

kn(QFRt-l) = sub-optimal value of the controlling parameter k(QHt4 determixiing QJn(QFRt-l, t), 

which can be thought of as a sub-optimal decision value processed from stage 0 up to stage n 

for any QFR t-leR ’-{0}; and

k*(QFR,-1) = optimal value of the controlling parameter k(QH,) determining QJ*(QFR.-1), that is, 

k ^ F R t-l)  = k*(QHt) owing to Bellman’s principle of optimality, which can be thought of as an 

optimal decision value processed from stage 0 up to state oo for any QFRt-leR'-{0}. From the 

relation QJ*(QFR;-1, t)= lim QJn(QFR,-l, t), we can derive the equation, for each QFR rl eR ’-{0},
n —>co

k*(QFR,-l) = limk„(QFRt-l).

QJn(QFRt-l, t) = sub-optimal function value at time t of control problem (5.21) only processed

from stage 0 up to stage n for any QFRt-l eR'-{0} at time t, defined by

We note finally that the term ‘sub-optimal’ is added to emphasise that both Jn(., .) and kn(.) are 

not our final optimal function but intermediate optimal functions processed up to stage n.

297



(iv) A brief sketch of the FDP approach to control problem (5.21):

Even though all these descriptions are clearly verified in the following section 5.4.5.1, we shall 

here sketch out the mam points of our optimisation procedure with respect to the controlling 

parameter k(QHt).

We first construct a N-multistage optimisation procedure for any QFRt- le R I-{0} at time te[0, 

go ) : by using the mathematical deduction - proceeding from the starting condition QJ0(QFRt-1, 

t)=0 to higher values of the index ‘n’ in QJn(QFRr l, t), using the recurrence relationship 

between QJn(QF R rl, t) and QJn.](QFRt-l, t) for n = 1, 2, ..., N. Then, we obtain kn(QFRt-l) 

corresponding to QJn(QFRt-l, t).

Next, we would extend this optimisation procedure to the infinite-stage optimisation procedure 

by using the uniform boundedness condition, i.e. 0 < [0+(l-0)-k(QHj)2] • [qFRj-1]2 < u for all 

j=t+l, t+2, ..., and r\ > 0: in other words, as n -» oo, then QJn(QF R rl, t) -» QJ*(QFRt-l, t), so 

kn(QFRt-l) -»  k*(QFRt-l) = k*(QHt), expressed as a function of non-zero QFRt-l.

Further, if the value of QFR fl is zero, then we apply the possible spread rule such that k*(QFRr 

1) = 0, as described in the above subsection (ii).

5.4.4 Control optimisation under [Constraints set I]

- an illustration of the inappropriateness of using the FDP approach

The practical usefulness of the FDP approach is occasionally limited by computational 

intractability, in particular when concerned with an infinite-horizon control problem with some 

strong constraints on the controlling variables (or parameters). As an illustration of this kind of 

weakness of the FDP approach, we shall now show that the FDP approach to the control 

problem (5.21) subject to [Constraints set I] is incapable of providing a complete control
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optimisation procedure. To begin with, it is worth recalling that for all t, k(QH;) should satisfy 

the condition 0 < k(QHt) < 1 specified m [Constraints set I],

5.4.4.1 Control optimisation procedure

Consider time te  [0, co). We employ the notations and follow the control optimisation procedure 

introduced previously in section 5.4.3.2. We are then able to derive the following recurrence 

relationship between QJn(QFR rl, t) and QJn.](QFRi-l. t) for n = 1, 2, 3, ... with given starting 

condition QJ0(QFR{-1. t)=0.

Firstly, if proceeding from stage 0 up to stage 1, then

QJi(QFRt-1, t) = Min [(e+(l-0)-k(QHt)2H QFRrl)2 + QJo(QFRt-l,t )]=  0-(QFRt-l)2
0<k(QH t)<l

= Qn • (QFRt-l)2 + Qn- (QFR rl) + QI3 with Qn = 0 and Q12, Q i3 = 0 

; hence, the sub-optimal decision value proceeding from stage 0 up to stage 1 was uniquely 

given by ki(QFRt-l) = 0, since (l-0)-(QFRt-l)2 > 0.

Secondly, if proceeding from stage 0 up to state 2, then

^ F R M )

= 0 Min { (0+(l-0)-k(QHt)2)-(QFRt-l)2 + e ,1-[e+(l-0)-k(QHt+I)2]-(QFRt+1-l)2}
0<k(QH t),k (QH t+1)£l

= Min {(0 + (l-0 )4 i(W )-(QFRrl)2 + e-M Min [(0+(l-0)-k(QHt+1)2) • (QFRt+!-l)2]}}
0<k(QH t)<l 0<k(QH t+1)<l

= Min { (0 + (l-0)-k(QHt)2) ■ (QFRr l)2 + e 71 ■ QJ1(q1-(l-k(QHt))-(QFRt-l)+q2, t) }
0<k(QH t)<l

= Min { [((1-0) + e 11 -Qn-q,2) • ( ^ - l ) 2] - k(°Ht)2 - 2[(e’1-Q1I.q!2) • ( ^ - l ) 2 +
0 £ k (m t)^i

e 11 Q n-qrqr^FRt-l)] • k ^ )  + [(0 + e^-Qn-q,2) • (QFR,-1)2 +

2e,1-Qirqrqr (QFRt-l) + e-,1-Q11.q22] }•
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will be conditionally determined because k(QHt)e {k(QH,): 0 < k( Tit) < 1}. So, letting kk be the

unrestricted sub-optimal decision value in QJ2(QF R rl, t), we should consider three disjoint

events separately, say Event 1 = { k k :0 < k k < l} ,  Event2 = {kk: kk < 0} and Events = {kk:

kk> 1}, in which kk is uniquely determined by the form,

kk = [(e11 • Qirqi2)-(QFRr 1) + e"1 Q„ qr q2] / [((1-9) + e" -Qn*qi2)*(QFRt-l)],

since ((1-0) + e T,-Q„-qi2)-(QFRt-l)2 > 0.

Then, the sub-optimal decision value proceeding from stage 0 up to stage 2, i.e. k2(QFRt-l),

Hence, k2(QFR^-1) would be determined subject to Event 1, Event2 or Event3 (each are denoted 

by k2(QFRt-l; Event 1), k2(QFR rl; Event2) or k2(QFR -l; EventS)):

(a) In the case of Event 1. k2(QFRt-l; Event 1) = kk, and further, the corresponding sub-optimal 

function value QJ2(QFRt-l, t; Eventl) is given by

QJ2(QF R rl, t; Eventl) = {(0-(l-0) + e ’ -Qn-q,2) / (1 - 0 + e^-Qn-q,2)} • (QF R rl)2 +

{(2(l-0)-e’1-Q„-qr q2) / (1 - 0 +e’1-Qi r q12)} • (QFRt-l) + 

{((l^-e 'TQ n-q,2) / (1 - 0 + e'TQn-q,2)};

(b) In the case of Event2, k2(QFR,-l; Event2) = 0 and then QJ2(QFRt-l, t; Event2) * QJ2(QFRt-l, 

t; Eventl); otherwise

(c) In the case of Events, k2(QFRt-l; Event3)=l and then QJ2(QFRt-l, t; Event3) ^  QJ2(QFRt-l, t; 

Event2) ^  QJ2(QFRr l, t; Eventl).

Without any difficulty, we can envisage that the total number of possible sub-optimal decision 

value per stage will be three. So, by the recurrence relationship between QJn(QF R -1. t) and QJn. 

i(QFRt-l, t), it should be necessary to consider up to 3"'1 combinations until reaching stage n in 

order to find kn(QFR -l). Accordingly, the number of possible combinations is increasing
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geometrically as n —» oo. Consequently, we can not obtain the optimal value of k(Ht) (denoted 

by k*(Ht)) because kY'Ht) is determined by lim kn(QFRt-l). Smce the FDP approach produces
n —»00

a sequence of interrelated decisions, we can not obtain the optimal control sequence such as 

{k"(H0). k*(H]), k*(H2), ...} because of this computational infeasibility.

5.44.2 Conclusion

The resulting basic method of enumeration to find kn(QFRt-l) can then be described 

diagrammatically, by a decision tree (as given in Appendix 5B.3), and we can clearly 

demonstrate the insolubility of control problem (5.21) subject to [Constramts set I], In general, 

the problem of computational dimensionality may be a prototype illustration of the limitation of 

the DP approach, both FDP and BDP, when considering infinite-horizon (including a large- 

finite-horizon) control problems with strong boundary constramts on the controlling variables 

(or parameters), e.g. 0 < k(Ht) < 1 for each time t. In this respect, we can conclude in respect of 

adapting the DP approach to control problems, that the larger the number of strong boundary 

constraints on the controlling variables (or parameters) and the longer the control horizon, the 

higher the potential risk of insolubility of the corresponding control problems.

5.4.5 Control optimisation under [Constraints set II]

- an illustration of the applicability of using the FDP approach

Adoptmg [Constramts set II] instead of [Constraints set I], we shall here show an advantage of 

using the FDP approach. In general, one of the great strengths of the DP approach, both FDP 

and BDP, is that a sequence of interrelated decisions can be set up which lead to the optimal 

control law with considerable computational savings, once an appropriate basic recurrence 

relationship for the DP calculations has been found and solved.
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To begin with, we note that different from the previous discussion in section 5.4.4, here it is not 

necessary to take into account the constraint imposed on k(Ht) because under [Constramts set 

II], we can set a sufficiently large real number ui so that the constraint that, for all t, k(QHt) e 

(k(QHt): |k(QHt)| < Ul < oo)}, makes no impact on our control optimisation procedure with 

respect to k(QHt) (as mentioned earlier in section 5.4.2).

5.4.5.1 Control optimisation procedure

In a similar manner as in section 5.4.4.1, we can derive the consecutive recurrence relationship 

between QJn(QFRt-1, t) and QJn.i(QFRt-l-1) for each n=0, 1, 2, ..., and in the case of the value of 

QFRt-1 being zero, we simply set the optimal value of k(QHt) at the level of zero m accordance 

with our possible spread rule introduced in subsection (ii) of section 5.4.3.2. We note that the 

following algebraic results processed up to stage 2 are simply restated from those derived in the 

previous section 5.4.4.1.

Firstly, if proceeding from stage 0 up to stage 1, then 

QJ,(QFRt- l. t) = Min { (©-Kl-©)-k(QH02)-(QFRt-l):t+ QJ0(QFRt-l. t) }
k(QH ,)

= Q ir(QFRt-l)2 + Q,2-(QFRt-l) + Q,3 with Qn = 0 and QI2, Q i3 = 0; and 

k,(QFRt-l) = 0.

Secondly, if proceeding from stage 0 up to stage 2, then

QJ2(QF R rl, t) = Min {(0+(l-e)-k(QHt)2) • (QFR,-1)2 + e ” - ^ . ( q r i l - k ^ - ^ F R t - ^ + q , ,  t)}
k(QHt )

= {(0 (1-9) + e"11 -Qn-q,2) / (1 - 0 + e ” Q„ q,2)} • (QFIV1)2 +

{(2(l-0)-e"r|-Q irqrq2) / (1 - 0 + eT| -Qn-q,2)} • (QF R rl) +

{((l-0)-e T1 Q„ q22) / (1 - 0 + e 11 -Q,,-q,2)}
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-  Q2 1 • (QF R rl)2 + Q22- (QFR rl) + Q23; and 

k2(QFRt-l) -  {(eT1 -Qn-q,2) ■ (QF R rl) + e^Qn-qi-q,} / {((1*9) + e ’1 -Qn-q,2) • (QFRt-l)}.

Thirdly, if proceeding from stage 0 up to state 3, then

QJ3(QFRcl, t) = Min { (0+(l-0)-k(QHt)2) • (QFRt-l)2 + e"1 • [0+(l-0)-k(QHt+1)2] •
k (<5H t ) ,k ( QH t+1) .k ( QH t+2)

(QFR +I-1)2 + e 211- [0+(l-0)-k(QHtr2)2] ■ (QFRt+2-l)2 }

= Min { (0+(l-0)-k(QHt)2) • (QF R rl)2 + e ” • { Min [(0-t-(l-0)-k(QHt+1)2) •
k (QH t ) k(«H t+1)

(qFRw.i-1)2 + e'n • Min [(0+(l-0)-k(QHH2)2) ■ (QFR,.2-1)2] ] } }
k(QH t+2)

= Min { (0 + ( l-O y k C W M ^ R d )2 + e'n • QJ2(qr (l-k(QHt))-(QFR;-l)+q2. t) }
k(QH t )

= Min {[((1 -0)+e'T1 -Q2i-qi2)-(QFRt-1 )2] - k(<5Ht)2 - 2[(eT1-Q21-q12)-(QFRt-l)2 +
k(QH t )

e ’1-qr(Q2rq 2+ Q22̂ H QFRr l)] • k(°Ht) + [(0+e!1-Q21-ql2)-(QFRt-l)2 + 

2e‘71-qr(Q2rq 2+ Q22/2)-(QFRt-l) + e T'-(Q2rq22 + Q22-q2+ Q23)]

= {[0-(l-0)+e',1-Q2rq12]/[(l-0)+e-,1-Q2rq12]} • (QFR-1)2 +

{[2( 1 -0)-e'r|-q1 (Q2i-q2 + Q22/2)] / [(l-0)+e T1-Q21-q12]} • (QFR-1) + 

{[(l-0)-e,1-(Q21.q22+Q22.q2+Q23) + e-2T1-qi2.(Q2rQ23-Q222/4)] / [(l-0)+e11-Q21.q12]}

= Q31 • (qFR-1)2 + Q32- (qFR-1) + Q33

; hence, the sub-optimal decision value proceeding from stage 0 up to stage 3 is uniquely 

determined by the form

k3(QF R -l) = {(e'1,-Q2i-q12)-(QFRt-l) + e ,1-qr(Q2rq2+Q22/2)}

/ {((l-0)+e’1-Q21q12)-(QFRt-l)}, smce ((l-0)+e,1-Q21-q12)-(QFRt-l)2> 0.

Proceeding by mathematical deduction, we can easily deduce the consecutive recurrence 

relationship between QJn(QFRt-l, t) and QJn.i(QFRt-l, t) for each n = 1, 2, 3, ... As described in
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section 5.4.3.2, we first confine our interests to establishing a general N-multistage

optimisation procedure and then it will be extended to an infinite-stage optimisation procedure, 

(i) N-multistage optimisation procedure (N positive integer}:

Proceeding recursively in a similar manner to the above, we obtain the following sub-optimal 

functional equation from stage 0 up to stage n

QJ0(QFRt-l, t) = 0 (given as a starting condition); and

QJn(QFRt-l, t) = Min {(0+(l-0)-k(Ht)2) ■ (QFRt-l)2 + e ” • QJn.1(qr (l-k(QHt))-(QFRt-l)+q2, t)}
k(QH t )

-  Qnr(QF R rl)2 + Qn2-(QFRt-l) + Qn3 for n = 1, 2, N - - - (5.23)

where

the coefficients of (QFR-1)2. (QFR;-1) and (QFRt-l)° each is given recursively by the three 

simultaneous recursions

Qm = [0<l-0) + e-T1-Qn.11V ] / [ ( l - 0 )  + e^-QnW l

withQn = 0 (initially obtained from QJ,(QF R rl, t)); ---- (5.24)

Qn2 =[2(l-0)-eT1-qI-(Qn.i r q2+ Q n.I2/2 )] /[ ( l-0 )  + e'11 Qn., ,-q,2]

with Q i2= 0 (initially obtained from QJi(QF R rl, t)); and ---- (5.25)

Q n 3 =  [ ( l-0 ) -e 'T| * (Q n - I  l-q22 +  Q n -1 2*q2 +  Q n -1 3)  +  ^  q ^ ’ i Q n - l  l Q n -1  3 ~ Q n -1 7 I 4 ) ]

/ [(1-0) + e'71 -Qn.i i-qi2] with Qb = 0 (initially obtained from J:(QFR:-1)). ---- (5.26)

Hence, the above result implies that the sub-optimal decision value proceeding from stage 0 up 

to stage n, determining QJn(QFRo-l, t), is uniquely given (i.e. single-valued) in the form:

kn(QFRt-l) = [(e',1-qI2 Qn.i i) • (QFR,-1) + e 11 -qriqrQn.,, + Qn_, 2/ 2)] /

[((1-0) + e^V-On.,,) • (QFRt-l)], - - - (5.27)
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since ((l-0)+e',1-Qn„1 r qi2)-(QFRt-l)2] > 0.

At this point, we should note that the function value QJn(QFRt-l, t) does not depend explicitly on 

time t. as shown in equation (5.23), which could be expected from the fact that the FDP 

approach specifies k(QHt) as a function of QFR,-1. so the quasi-autonomous system equation 

(5.18) turns out to be autonomous (i.e. its motions are invariant for a translation of time, see 

section 5.4.1). Also, the time-indexed discount function e_T|S in the performance index per stage, 

i.e. e'Tls-[0+(l-9)-k(QHs)2]-(QFRs-l)2, s = 1.1+1, ..., appears m the form of e_T1 in the consecutive 

recurrence relationship between QJn(QFRt-l, t) and Jn i( FFi_t- 1. t) for each n = 1.2, ... N. We 

shall henceforth re-denote QJn(QFRt, t) as QJn(QFRt) and accordingly, QJ*(QFRt, t) as QJ*(QFRt) 

because the time variable t turns out to be a dummy variable in the application of the FDP 

approach.

Consequently, for each time t. we do not need to derive and extend the above sub-optimal 

functional equation (5.23) to the case of an infinite number of stages for its corresponding 

optimal functional equation (5.28) in subsection (ii), due to the time-invariant nature of the 

function QJn(.): otherwise, we need to derive and solve an infinite number of optimal functional 

equations, which will lead to the insolubility of the control problem (5.21) - this subject will be 

considered later m section 5.5 in relation to the non-stationary control problem.

Next, we consider the extension of the N-multistage optimisation procedure, specified by 

formulae (5.23) ~ (5.27), to an infinite-stage optimisation procedure.

(ii) Extending to infinite-stage optimisation procedure:

In order to extend the N-multistage to the infinite-stage, a natural question that arises now is 

whether or not the optimal function value proceeding from stage 0 up to stage n, i.e. QJn(QFRt- 

1), converges monotonically to JY'FR.-1) as n —» co. The following proposition provides the 

answer for this requirement [see Bertsekas (1976; section 6.1)].
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Proposition 5.1 (Convergence of N-multistage optimisation procedure): for any non-zero QFRt- 

1 at time te[0, oo),

P 1. Umform boundedness of QJ*(QFRt-l): 0 < QJ*(QFR rl) < u / (1-e'71);

P2. Increasing sequence {QJn(QFRt-l); n = 0, 1, 2, ...}: for each n,

QJ0(QFRt-l) < qJ,(qFFC-1) < ... < QJn(QFR,-l) < ... < lim QJn(QFR,-l); and
n->oo

P3, Unique convergence of {QJn(QFRrl): n = 0, 1, 2, ...} to QJ*(QFRrl): 

lim QJn(QFRt-l) = QJ*(QFRt-l).

P r o o f  (note that these proofs are largely adapted from Bertsekas (1976; section 6.1))

By combining the assumption specified in [Constraints set II], i.e. 0 < (0+(l-9)-k(Hs)2)-(FRs-l)2

< u for all s, 9 e  (9, 1) and QFRt-l * 0, then we have 0 < (0+(l-0)-k(Ht)2)-(FRrl)2< u at time t 

and 0 < (9+(l-0)-k(HJ)2)-(FRJ-l)2 < u for all j = t+1, t+2, t+3, ..., so the first part PI can be 

proved as follows:

co

0 < 2  ■ (e + (l-9) k(QHs)2) • (QFR5-1)2
S=t

t+n-1 oo

< { ^  e'T1(s't)- (0 + (1 -0)-k(QHs)2) • ^FRs-l)2 } + u -  e ”<M)
s=t s=t+n

By taking the minimum for each k(QHs) of both sides and using r\ > 0, we obtain the inequality: 

0 < QJ*(QFRt- l ) < QJn(QF R -1) + u-e_r|'n/ (l-e'11), in which QJn(QFRt-l) takes non-negative value 

for any n = 0, 1, 2, ... . Hence, putting n = 0, then we have the required result because 

QJ0(QFR rl) = 0, i.e. 0 < QJ*(QFR rl) < u / ( l-e 71).

Next, the second part P2 can be proved as follows: using 0 < (0+(l-0)-k(QHJ)2)-(FRJ-l)2< u for 

all j= t+l, t+2, ... and the consecutive recurrence relationship (5.23), then P2 is clear.

306



The existence of the limit in P3 can be proved as follows: by combining PI and P2, i.e. 

Jn(QFRt-l) < J*(QFRt-l) < Jn(QFRt-l) + u-e_r|'n /( l-e_r|), and then taking the limit for n in both 

sides, we clearly have the required result, i.e. J*(QFR:-1) = lim Jn(QFRt-l).
n—>co

Finally, the uniqueness of the limit in P3 of the increasing sequence {Jn(QFRt-l); n = 0, 1, 2, 

...} comes from the absolute value properties, especially the inequality property: that is, 

assuming that J„(QF R rl) -» J lfT T f-l)  and Jn(yFRr l) -» J2(QFR,-1), we will prove U (QFR,-1) 

= J l(yFRt-l) = J2(qFR.-1). By the inequality property for absolute values, we have 0 < 

|J1 (QFRt~ 1) - J2(QFRr l)| < |Jl(QFRt-l) - Jn(QFRrl)| + |Jn(QFR rl) - J2(QFRt-l)|. Then taking the 

limit for n of both sides, we have the required result: Joo(QFRt-l) = J 1 (QFRi- 1) = J2(QFRt-l), 

since as n -> co, |J1(QFR,-1) - Jn(QFR rl)| -> 0 and |Jn(QF R rl) - J2(QFRt-l)| -> 0. Q.E.D.

Using the results proven in Proposition 5.1 that for any non-zero QFRt-l at time t, the sequence 

{Jo(QFRt-l), Ji(QFRt-l), J2(QFRt-l), ...} is positive, increasing but convergent monotonically to 

J*(QFRt-l), it follows that each sequences of the functional coefficients, i.e. {Qn , Q2], Q31, ...}, 

{Q12, Q22, Q32, •••} and {Qi3, Q23, Q33, ■■■}, converge monotonically to some real number for 

any non-zero QFRo-l, say Qn! -»  Q,, Q„2 -> Q2 and Q„3 -> Q3, as n -» 00. The optimal 

functional equation for QJ*(.) is then given as follows (- this equation shows clearly that this 

functional equation does not depend explicitly on time t, i.e. time-invariant optimal functional 

equation): for any non-zero QFRt-l at time t,

lim QJn(QF R rl) = lim { Min { (0 + ( l - G ) - ^ ) 2) ■ (QFRt-l)2 + ■ 0Jn l(q,-( 1-k(QHt)>
n —>0 0  n—>co k(^H t )

(QFRt-l)+q2) } }

QJ*(QF R rl) = M in {(0 + (l-0)-k(QHt)2) • (QFRt-l)2+ e 71 • Qj ‘(qr (l-k(QHt)H QFRt-l)+q2)},
k(QH t )

which leads to a tune-invanant quadratic function J*(.) defined by the equation
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--(5 .28)QJ*(QF R fl) -  Q, • ^ F R rl)2 + Q2 • (QFRt-l) + Q3 

where Qi, Q2 and Q3 each are obtained by taking the limit for n in both sides of their respective 

recursive equations (5.24), (5.25) and (5.26), that is, Qi, Q2 and Q3 each are the steady-state 

value (or limiting value) satisfying the three simultaneous equations

Q. = [0 (1-0) + e n-qi2-Qi] / [(1-6) + e^qf-Q ,]; - - - (5.29)

Q2= [2(l-0)-e-’1-qr (qr Q1 + Q2/ 2)] / [(1-9) + e^q.'-Q,]; and - - - (5.30)

Q3-  [(l-9)-e,1-(q22 QI+qr Q2+Q3) + e-2’1-q12-(Qr Q3- Q22/4)] / [(1-0) + e^qF-Q,]. - - - (5.31)

The above result implies that kn(QFRt-l) in (5.27) converges to a finite limiting value 

k*(QFR,-l) as n —» oo, that is,

lim k ^ F R t - l )  = k*(QFRt-l) = k * ^ )
n—>oo

= [(e^q^-Q.) • ( ^ R r l )  + e^qH qrQ , + Q2/2)] / [((1-0) + e^-qf-Q,) • (QFRt-l)]> - - - (5.32) 

expressed as a time-invariant function of the current non-zero state variable QFRt -1.

Here, the above function k*(.) presents the optimal stationary spread policy that specifies the 

spreading mechanism of the unfunded ratio (i.e. 1 - QFRt e R’-{0}) informed through the 

actuarial valuation process, whereas if the informed value of QFRt is 100%, we apply an 

possible spread rule (i.e. k*(QFRt-l) = 0, as described in subsection (ii) of section 5.4.3.2).

The uniqueness of our optimal spread policy k*( ) is determined by that of the limiting value Qi 

because k*(.) involves Qi and Q2 but Q2 is a function of Qi. So, we concentrate on the property 

of the sequence {Qu, Q2], Q31, ...}.
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Proposition 5.2 (Property of {Qn,  Q21, Q31, •••})

The sequence {Q n, Q21, Q31, ...} generated by the recursive equation (5.24) is positive and 

converges monotonically to the limiting value Qi, which is the unique positive solution of 

(5.29) given in the form

Qi -  { ( e V - ( l- e ) )  + V[(e-Tqi2-(l-e))2 + 4-0-(l-0)-e'T1-q12] } / {2 -e'Tq,2}.

P r o o f  Firstly, the sequence {Qn, Q21, Q31, ■■■} is positive and strictly increasing, which can be 

proven by proceeding by deduction such that since Qn = 0 e (0, 1) and qi > 0, we have 

Q2 1 - Qn = [(l-0)-e-T*-q12-Q11] / [(1-0) + e^-qr-Qn] > 0,

Q3> - Q2, = [(l-0)2-e-Tq,2.(Q2I - Q,,)] / [((1-0) + eT qi2.Q21).((l-0) + e^-qr-Q,,)] > 0 ,

• • • ?

Qn. - Qn-11 = [(l-0)2,e’n-qi2-(Qn-1l - Qn-2 ,)] / [((1-0) + e^-q,2-Qn_,,)-((1-0) + e'Tqi2-Qn_2])] > 0,

. . . > 0.

Secondly, the sequence of consecutive slopes {(Q3 i-Q2i)/(Q2 i-Qii), (Q4 1 -Q3 1 )/(Q3 1-Q2 1), (Qsr 

Q4 i)/(Q4 i-Q3 i), ...} is positive and strictly decreasing, which can be easily proven as follows: 

using the above results, then we have the following inequality:

(Qs. - Q2 1 ) / (Q2 1 - Qn) = [(l-Of-e^-q,2] / [((1-0) + e^qr-Q^M Q-O) + e^-qr-Q,,)]

> (Q41 - Q3.) / (Q31 - Qn) = [(1-0)2-e’̂ -qi2] / [((1-0) + e'tl-q,2-Q3i)-((l-0) + e T1-q12-Q21)],

> (Qm - Qn-.i) / (Q„-i 1 - Qn-21) = [(l-O^-eTq,2] / [((l-0)+e’1-q!2-Qn.„H(l-e)+e-’1-q12-Qn.21)],

. . . > 0

;hence, we have the required result.

Therefore, from the first and second results, the sequence {Qn, Q2 1, Q31, •--} is positive, strictly 

increasing and convergent monotonically to the limiting value Qi, i.e. Qn 1 -» Qi as n -» 00
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(as like the well-known cobweb moving toward an equilibrium point, see Sandefur (1990; 

section 1.5).

Thirdly, the property of Qi being unique can be proven as follows:

assuming that Qn] -> Ql and Qn) —> Q2, then by applying the absolute value properties we 

have 0 < |Q1-Q2| < |Q1-Qni| + |Qn]-Q2| and then taking limit in both sides provides 0 < |Q1 - 

Q2| < lim { |Q1 - Qni| + |Qni - Q2| } = 0, which implies that Qi = Ql = Q2.
n—>oo

Finally, now by taking the limit for n in the both sides of equation (5.24) it follows that the 

positive limiting value Qi satisfies equation (5.29). By multiplying [(1-0) + e'n-qf- Qn] on the 

both sides of (5.29), we obtain a positive root of the quadratic equation. Q.E.D.

Remark 5,2: In the light of control theory, equation (5.24) is particularly called the discrete-

time Riccati equation (in the scalar case), i.e. Qn i = / (Qn-i i), an equation of the first-order and 

first-degree where / ( Q n-i i) is rational in Qn_i, ). Accordingly, equation (5.29) is called the 

equilibrium Riccati equation (in the scalar case), i.e. Qi = / (Qi) [see. Whittle (1982; sections

5.3 and 5.5)].

(iii) Conclusion:

The control optimisation procedure with respect to k(QHt) is specified by the time-invariant 

equations (5.28)~(5.32) together with the possible spread rule established in subsection (li) of 

section 5.4.3.2. The optimal quasi-stationary spread funding formula is then given by

qCRY = ^ R ^ - k*(QHt) • (QFR fl) = V ( QFR rl; k*(°Ht)), for each te[0, oo) - - - (5.33) 

where Qp.*(.; kYYf)) denotes the optimal quasi-stationary spread funding plan, which is our 

dynamic pension funding plan (i.e. optimal control law). The value of the control action QCR!\  

is produced from the information fed back about the current state (i.e. the actual value of
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QFRt-l) and the information calculated on the current actuarial assumptions (i.e. the computed 

value of NRft).

Alternatively, substituting k*(QHt) defined in (5.32) into equation (5.33) yields

QCR‘t = ^ R ,  - Qcp(0) ■ (QF R rl) + Q̂ (0), for any non-zero QFR<-1, t e [0, oo) - - - (5.34)

where

Q(p(0) = [e^-qf-Qi] / [(1-0) + e'^qfi-Qi], depending on 0 and O < Qcp(0)<l; and 

Q̂ (0) = - [e^qriq rQ , + Qj/2)] / [(1-0) + e T1-q12-Q1], dependmg on 0.

; hence, this expression takes mathematically a similar form to the stationary spread funding 

formula (5.6), except for the term Q̂ (0) and we notice that QCRf*t = ^ R ^  for zero-valued 

qFR,-1, te[0, oo) in accordance with our possible spread rule.

Referring back to the funding formula (4.18) derived in section 4.3.3.2, we can easily check 

that there is a similarity between formulae (5.34) and (4.18) for non-100% funding level 

(although formula (5.34) is derived from the form of CRft constrained by the Spread method in 

the situation of a long-term, going-concern valuation, i.e. from formula (5.17), while formula 

(4.18) is derived from the unconstrained form of CR, for the situation of a short-term, winding- 

up valuation). In short. Qcp(0) in (5.34) can be thought of as the proportional state-feedback 

controlling parameter as in cp(t; 0) in (4.18) and Q̂ (0) in (5.34) as the additive controlling 

parameter as m ^(t; 0) in (4.18).

However, there is a fundamental difference in dealing with 100% funding level: that is, for 

100% funding level, the unconstrained CR t is to be optimally designed in the form of NRf, + 

Q̂ (0) but the constrained CRft is best (not necessary optimally) designed in the form of NRft 

according to our possible spread rule.
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Moreover, the optimal quasi-stationary control response QFR*t+i corresponding to QCR*_ is 

recursively generated with time t by the following optimal quasi-autonomous system equation: 

for each te[0, oo),

qFRV i- 1 = qi • (1 -k*(QHt)) ■ (QFR*t-l) + q2 with given QFR r  1 = QFR*0-1- ---- (5.35)

Substituting k*(QHt) into equation (5.34), we have an alternative expression of equation (5.35) 

such that for each te  [0, oo) and given QFR r 1 = QFR*0-1,

QFR*t+, - 1 = [q. • (1 - Qcp(0))] ■ (QFR*t- 1) + [q, • % (6 )  + q2] - - - (5.36)

; hence, the optimal quasi-autonomous system equation (5.35) turns out to be autonomous (i.e. 

stationary and zero-input), so if the value of 0 is controllable in a direction to satisfying 

|qi •( 1 - Qcp(0))| < 1 (i.e. geometric stability condition of the optimal system equation (5.36)), then 

the optimal control error sequence, {°FR*rl; te[0, oo)}, will be geometrically stable about the 

steady-state error [qi-Q£,(0) + q2] / [1 - q r(l - Qtp(0))]. In other words, different from the 

algebraic approach, the DP approach provides that the control error sequence is controllable by 

adjusting the values of 0 without imposing directly any stability constraints on the controlling 

parameter.

In conclusion, our optimal spread control sequence, (k*(QH0), k*(QH1), k*(QH2), ...}, will be 

uniquely generated with time t by the optimal stationary spread policy k*(.) defined in (5.32) 

together with the possible spread rule.

Remark 5,3 (geometric stability condition |qr ( l - Q(p(0))| < 1): from the fact that qi > 0 and 0 < 

Qcp(0) < 1, the geometric stability condition reduces to 0 < q r ( l - Qcp(©)) < 1 and hence, there 

exists a constant convergence rate Q̂ (0)e(O, 1] such that qi-(1 - Qtp(0)) = (1 - QC(0)) for any
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q ,-(l-Qcp(0)) e [0, 1), o < e < 1 (which is the so-called geometric damping rate, see Comment 

4 in Appendix 5A). In this respect, q r( l-  Qcp(0)) can be interpreted in terms of the geometric 

damping rate ^(9). We can easily check that the convergence rate QC(9) is strictly increasing in 

0e(O, 1): in other words, as putting more emphasis on reducing the solvency risk (i.e. 9 -» 1), 

{qF R \-1; te[0, oo)} converges more quickly (and monotonically) to the steady-state error 

[qi-Q̂ (0) + q2] / [1 - q, (l - Qcp(0))].

5.4.5.2 Essential requirements for the FDP approach

The essential requirements for applying the FDP approach to the quasi-stationary LQP 

optimisation problem (5.21) are summarised as follows (- these will provide a useful 

comparison with those for the algebraic approach described in section 5.3.4.2):

Requirement B l: The unknown spread parameter should be adapted as a time-invariant 

function of currently available information vector QHt, i.e. kt = k(QHt);

Requirement B2: The uniform boundedness condition imposed on the control cost per unit 

control period (i.e. 0 < [9+(l-9)-k(QHt)2]-[QFRt-l]2 < u, for all te[0, oo)) and the positive 

discount factor (i.e. r|>0) (for uniform convergence of {Jn(QFRt-l); n=0, 1,2, ...} in connection 

with Requirement B3 described below, see Proposition 5.1 in section 5.4.5.1); and

Requirement B3: The mathematical structure of the recursive relationship for FDP calculations 

is to be stationary (for the extension of the N-multistage optimisation procedure to an infinite 

stage optimisation procedure in connection with Requirement B2, see Proposition 5.1 in section 

5.4.5.1).

We can then check the conceptual difference in mathematical methods between the algebraic 

approach and the FDP approach by comparing Requirements A l, A2 and A3 with
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Requirements B l, B2 and B3 respectively. It is worth noticing that the fundamental differences 

relate to our viewpoint of the unknown spread parameter kt: in short, kt = k, constant for all t in 

the algebraic approach, while kt = k(QHt), a time-invariant function of Ht in the FDP approach.

The rational motivation for using the FDP approach is to expect that adjusting sequentially the 

decision for kt according to the information updated with time t will reduce the solvency risk as 

well as the contribution rate risk over an infinite control horizon. Consequently, kt is viewed as 

an unknown but variable parameter, denoted by k(°Ht). In this respect, we may say that this 

viewpoint is similar to the Bayesian Perspective in the field of statistical decision theory m the 

light of using the actual observed data as prior information about the unknown quantity kt [see 

Berger (1985; section 1.6)]. This viewpoint is distinct from the viewpoint of using the algebraic 

approach on the spread parameter kt which is similar to the Frequentist Perspective [see section

5.3.4.2],

5.4.5.3 Summary

Our control mechanism for the quasi-autonomous controlled object, specified by equations 

(5.32)~(5.36), can be visualised by the following block diagram (which will also provide a 

useful comparison with Figures 5.1 given in section 5.3.4.3).

[Quasi-autonomous controlled object] -----» {QFRr  l } ----->

{k(QHt) = k*(QF R rl)} t ^

{QNRt} -----> [Optimal control law Qp*(.; k(QHt)=k*(QFRt-l)] <----- {Feedback: QFR,-1}

Figure 5.2 Optimal quasi-stationary spread funding control system: k*(QFRt-l) denotes the 

optimal value of k(QHt) defined m (5.32).
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The above Figure 5.2 illustrates that both the quasi-autonomous controlled object and quasi- 

stationary spread funding plan are optimally designed by way of optimising sequentially the 

value of the unknown but variable spread parameter k(Ht) in the course of time t, i.e. by setting 

k(QHt) = k*(QFRr l) for each t.

5.4.5.4 Numerical illustrations

The objective of this section is to illustrate numerically the relationship between the optimal 

value of k(QHt) (i.e. k*(°Ht)) and its resulting control action error QCRf\ - QNRft and funding 

level qFRh t+i with respect to the force of investment interest (i.e. 5) and the relative weighting 

parameter (i.e. 0). All the numerical illustrations are given in graphical form in Appendix 5B.4.

(i) Comments on a suitable value of 6:

Controlling only the contribution rate risk with respect to k(QHt) would not make any sense to 

our control problem (5.22) in view of sequential optimisation because minimising Ze_,lt-(QCRt - 

°NRt) leads clearly to k*(QHt) = 0 for all t, irrespective of the information fed back about the 

actual value of current dynamic state QFRt-l (and hence, the corresponding performance index 

is ideally zero). Flowever, we can say from this ideal result that optimising the value of the 

unknown spread parameter k(QFIt) with tune t is much more orientated toward controlling the 

contribution rate risk rather than controlling the solvency risk. This argument is consistent with 

the view of Dufresne (1988) [see Remark 5.1], Following this ideal result, we propose some 

suggestions about how to set up the value of 9 involved in our control problem (5.22) without 

constructing a proper supplementary performance criterion. That is, one possible policy for 

determining the value of 0 would be setting the value of 0 close to zero. For this reason, we 

shall content ourselves with illustrating the influence of 0, subject to {0: 10%, 1%}, on the 

optimal sequences {k*(QHt); te[0, co)}, {QCR’V QNRff te[0, oo)} and {QFR*t+i; te[0, oo)}.
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(ii) Assumptions:

(Al) All actuarial assumptions are the same as given in section 5.3.4.4 (in short, exp(a)=1.03, 

exp(P)=1.02 and exp(q)=1.06); and 

(A2) Projection assumptions:

- infinite control horizon: t e [0, oo);

- admissible value set of 9: {10%, 1%};

- given initial value QFRo = 50%; and

- force of investment interest (8): exp(5) = 1.06 or 1.08.

Hence, the formulae (a)~(d) and Remark 4.2 introduced in section 4.3.3.1 hold simply by 

replacing N R  (=NCt/SLt) and EBR (=EBt/SLt) with their respective QNRf, (=NCt/ALt) and 

QEBRft (=EBt/ALt). Further, the geometric stability condition of the optimal system equation 

(5.36), i.e. |q r(l- Qcp(0))| < 1, is satisfied and hence the funding level is convergent to an 

equilibrium state 1 + [qr Q£(0)+q2] / [l-qr (l-Q<p(0))].

In particular, we note that if q = 8 (representing the case that all actuarial assumptions are 

exactly realised), then q2 = 0 (and hence Q2 = 0 from equation (5.30) and Q̂ (0) = 0 from 

equation (5.34)). Thus, the equilibrium state is equivalent to the 100% funding target and 

further the optimal value of the spread parameter is constant for all t from equation (5.32), that 

is, k*(QHt) = Qcp(0), O<Q(p(0)<l, constant for all t.

(iii) Illustrative numerical results:

The projections of optimal quasi-stationary spread funding plan governed by formula (5.33) 

are visualised in Graph 5.1 (composed of Graphs 5.1.1 -5.1.3, produced on the assumption that 

q = 8) and Graph 5.2 (composed of Graphs 5.2.1-5.2.3, produced on the assumption that q < 

8) of Appendix 5B.4.
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Exploring and comparing Graphs 5.1 and 5.2, we can derive the important observations below:

(a) Graphs 5.1 illustrate that the most likely expected investment performance (i.e. q = S) 

provides that the optimal sequence{k*(QHt); te[0, cc)} is constant, while the corresponding 

sequences {QCRf*t-QNRft; t e [0, cc)} and {QFR*t+]; te |0 , oo)} are monotonically convergent to 

their respective target values 0 and 1 . respectively. Comparing k*(QHt) with k* (obtained from 

the stationary control problem using the algebraic approach) subject to 0 = 10%, rj = 5 and 

sFR=qFR=50%, then

- these are commonly constant for all t but different from one another, i.e. k*(QHt) = 0.265734 

< k*= 0.905243, constant for all t (note that the large difference between these two values can 

be attributed to the different philosophies employed in finding their respective optimal 

solutions, as mentioned m sections 5.3.4.2 and 5.4.5.2);

- the optimal sequences {QFR*t} and {sFR*t} have the same equilibrium state (i.e. 100% 

funding target) but their respective convergence speeds are different, i.e. [convergence rate of 

{QFR*t} to 100% funding target] = 1 - qi(l-Qcp(0)) = 0.259165 < [convergence rate of {SFR*J 

to 100% funding target] = 1 - qi(l-k‘) = 0.904395; and

- consequently, the algebraic approach provides a quicker convergence to a 100% funding 

target than the DP approach and accordingly, the contribution rates are more quickly stabilised 

than when using the DP approach, but we note that the funding burden on the sponsoring 

employer is even larger than when using the DP approach due to k*(QHt) «  k*.

(b) As seen in Graph 5.2.1, the optimal quasi-stationary spread control mechanism under the 

better investment performance (i.e. t j < 8) can be broken into four consecutive stages in 

relation to the control responses of QFR*t (note that the added examples are based on the case of 

kl (i.e. 0=10%) in Graph 5.2.1): broadly,
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- introduction stage: providing a fast improvement in the initially given unfunded QFRo m the 

direction of the 100% funding target but there is no abrupt change in the values of the spread 

parameter (e.g. {k*(QHt): 0 < t < 6});

- turmoil stage: providing a break in the fast growth of the funding level in the mtroduction 

stage (and hence a slowing down in its rate of increase), which causes an abrupt change in the 

values of the spread parameter, particularly when crossing the 100% funding target (e.g. 

(k*(QHt): 7<t<17>);

-stabilising stage: enabling the funding level to approach gradually and steadily to the 

equilibrium state for the funding level, i.e. 1 + [qrQ̂ (0)+q2] / [ 1 -qr(1 -Qq>(0))] after the turmoil 

stage (e.g. {k^^H,): 18 < t < 45}); and finally,

- maturity stage: enabling the funding level to be attained at the level of its equilibrium state as 

a result of the stabilising stage (e.g. (k*(QHt): t > 46})

; hence, these four stages are quite distinguishable from the optimal stationary spread control 

mechanism illustrated in 5.3.4.4, except for the introduction stage: in other words, the turmoil, 

stabilising and maturity stages shows clearly the difference between the algebraic and dynamic 

approaches to optimising the value of the spread parameter;

(c) In particular, although we do not show fully the influence of 0, the turmoil stage is very 

sensitive to the change in values of 0 (which is thought to be caused by the weakness in the 

mathematical formulation of the Spread method in the case of a 100% funding level) and we 

note also that this stage is essential for the future stability of both funding levels and 

contribution rates within the framework of the Spread method, as illustrated m Graphs 

5.2.1-5.2.3;
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(d) One of the most interesting results is that the convergence of the control action errors is the 

fastest, next the funding levels and lastly the spread controls, which would be consistent with 

the comments made in the above subsection (i);

(e) The results for the better investment performance (i.e. rj < 5) provides a faster convergence, 

better security and less financial burden, as expected than the most likely expected performance 

(i.e. t|=8); and finally, we would like to end our numerical analysis with the following 

suggestion (f).

(f) Even though this suggestion is likely to be unacceptable in view of the classical actuarial 

approach, we may suggest from the above results (b)~(d) that if the value of the funding level 

produced from the valuation process is approximately 100% but less than 100%, the value of 

the spread parameter is allowed to be negative for the future stability of both funding levels and 

contribution rates; but on the other hand, if the value of the funding level produced from the 

valuation process is approximately 100% but larger than 100%, the value of the spread 

parameter is allowed to be larger than one for the future stability of both funding levels and 

contribution rates: in other words, it may be necessary to adopt more flexibility and allow the 

amortisation period not to be constrained within the interval 0 < kt< l .
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5.5 Dynamic pension funding plan for non-stationarv LQP optimisation problem

We note first that for notational distinction from the previous symbols used in sections 5.3 and 

5.4, the superscript ‘N ’ on the left side of each main symbol (to be introduced in this section) is 

used to indicate that it concerns the non-stationary LQP optimisation problem (to be 

formulated later in section 5.5.3).

5.5.1 Introduction

In sections 5.3 and 5.4, we have studied the stationary' and quasi-stationary control problems 

respectively under a common assumption that the investment market-related parameter, i.e. 8t+i 

(or it+]) involved in the system equation (5.2), is constant for all t. From a practical pomt of 

view, the constancy assumption for 5t+] fails to address the physical reality associated with the 

time-varying economic situation. In this respect, we allow some variations in 5t+] with time t (- 

the variation will be mathematically modelled in the next section 5.5.2); hence, the motions of 

the controlled object governed by the system equation (5.2) is variant for a translation of time, 

so the controlled object with this property shall be is called the non-autonomous (i.e. non- 

stationary and zero-input) controlled object. This section is aimed to illustrate how the spread 

parameter kt is determined to produce the optimal performance of the non-autonomous 

controlled object and thus kt has to be considered as a time-varying controlling parameter.

In general, modelling the time-varying 5t+] would be based on the forecasting of its respective 

mathematical trend curve through the analysis of a related historical data series. Further, their 

respective projections would be somewhat dependent on the perspective of the pension experts 

(especially, the actuary and investment manager) regardmg the future investment market 

movements, showing optimistic, expected and pessimistic scenarios.
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In section 5.5.3, we construct our non-stationary LQP optimisation problem in a similar 

manner to the quasi-stationary LQP optimisation problem in section 5 .4.3. We try to search for 

its optimisation procedure in section 5.5.4 but it turns out to be insoluble. In section 5.5.5, we 

propose an approximate optimisation procedure for this non-stationary control problem as a 

best (nor necessary optimal) approach for its solution and then give some illustrative numerical 

examples. Throughout these sections, we note that the arguments used are an general extension 

of those related to the quasi-stationary LQP control problem investigated in section 5.4.

5.5.2 Non-stationary assumptions and Model construction

We make here the non-stationary assumptions such that 5t+1 and kt each in the system equation 

(5.2) depend on time t. Their respective mathematical specifications are given separately 

below.

(i) Non-stationarv controlling parameter:

In order to respond successfully to the time-varying situations of investment markets, the 

controlling parameter applying over the unit control period [t, t+1), kt, will depends on the 

currently available information as well as on the non-stationality characteristics of our 

controlled object. So, kt can be expressed as a time-varying function of the currently available 

information vector, say NHt, where NHt = (NFRo, NFR,, ..., NFRt, n CRq, NCRt, ..., n CRm ):

kt = kt(NHt) for all t e [0, oo), - - - (5.37)

which can be regarded as the non-stationary version of the quasi-stationary spread parameter 

ki^H,) introduced in section 5.4.1.

(ii) Damped harmonic motion of investment rates of return:

As investigated and fitted by Loades (1992), the historical trend curve of investment rates of 

return could be characterised by a harmonic (or periodic) curve related to a series of
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business/economic cycles. So, the future motions of investment rates of return are here 

modelled as follows: for all te  [0, oo),

exp(5t+I) = (1+it+i) = 1 + ie + sinc(t+l), ie > 0 ---- (5.38)

where

ie = expected long-term rate of return on future investment projected from historical linear trend 

(from the viewpomt of classical actuarial valuations, ie would be often used as the valuation 

interest rate iv); and

sinc(t+l) = sinc-function to apply over a unit control period [t, t+1), defined by the equation 

sinc(t+l) = sin[©-(t+l) + 0] / [©-(t+1) + 0], in which © = the angular frequency = 27i/Tb, Tb > 

0 denoting the period of the business cycle, 0  = the initial phase shift of business cycle and 

[©•(t+1) + 0]"1 = damped amplitude of oscillations in it+i [for more details of sinc-fimction, see 

McGillem & Cooper (1991, section 3.8)]

; hence, this mathematical model presents the damped harmonic variations in it+] around the 

projected linear trend l+ie away from the initial time t=0.

It should be noted that the projected linear trend l+ie coupled with its deviations smc(t+l) can 

be justified on the optimistic assumptions that firstly, the fixed mean ie is a correct assessment 

of the average future investment performance and next, the pension professionals will 

continuously reduce the predictive errors around l+ie, in particular by means of periodically 

conducting fully-detailed post-mortems of their investment performance once all data are 

collected and then securely selecting a broad asset mix to match a series of business cycles. In 

addition, comparing Young and Mature pension schemes (as introduced earlier in section

2.1.4.2), the latter would have more capacity to cope with the investment risk associated with a 

business cycle than the former. In our model, this difference is modelled by the parameter 0 

(i.e. the initial phase shift): in other words, the Mature pension scheme would generally have a 

relatively larger 0 than the Young pension scheme.
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Therefore, adapting the above mathematical models (5.37) and (5.38) to the spread funding 

formula (5.1) and the system equation (5.2), we derive their corresponding equations (5. 39) 

and (5.40): that is,

NCRt = NNRt - kt(NHt) ■ (NFRt-1) = Np(QFRt-l; kt(QHt)), in which

kt(NHt) e {kt(NHt): 0 < kt(NHt) < 1} for all t e [0, oo) - - - (5.39)

; in particular, kt(NHt) shall be called the non-stationary spread parameter, this formula (5.39) 

the non-stationary spread funding formula and Np(.; kt(NHt)) the non-stationary spread funding 

plan (we note that the term 'non-stationary’ is added to emphasise the fact that kt(NHt) depends 

explicitly on tune t and NNRt= QNRt = sNRt); and hence,

FRt+,-1 = % (t)  • (l-kt(NHt)) • (KFRt-l) + Nq2(t) with given NFRo- 1 - - - (5.40)

where Nqi(t) = (l+ ie+sinc(t+l)) / exp(a+p); and q2(t) = [(l+ie+sinc(t+l)) / exp(r|)] -1 

; here, this equation shall be called the non-autonomous (i.e. non-stationary and zero-input) 

system equation, which governs our controlled object.

For the same reason as described at the end of section 5.4.1, the algebraic approach is here 

inapplicable (i.e. kt(Ht) violates Requirement A1 described in section 5.3.4.2); hence, we 

employ the FDP approach as a best alternative mathematical method for our control 

optimisation problem formulated in the next section, as in the quasi-stationary LQP 

optimisation problem.

5.5.3 Non-stationary LQP optimisation problem

Prior to formulating our control problem, it is worth referring back to a clear result of the 

quasi-stationary LQP optimisation problem (5.22) illustrated in section 5.4.4.1 that the FDP
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Section 5.5.4 demonstrates that the optimisation procedure with respect to k0(H0), ki(Ho), 

k2(H2), ... can not be solved. In order to obtain a physically available optimisation procedures, 

we reformulate this control problem (5.42) according to the approximate model proposed for 

the non-autonomous system equation (5.40) (- this will be considered in section 5.5.5).

5.5.4 Control optimisation procedure - an illustration of insolubility

The objective of this section is to provide an insight into the difference between optimising our 

non-stationary control problem (5.42) and optimising the quasi-stationary control problem 

investigated m section 5.4.5. As a result, the optimal spread policy for the non-stationary 

control problem will be non-stationary from the fact that the controlled object governed by 

equation (5.40) and the performance index per unit control period [t, t+1), i.e. e"111 • [0 + (1-0) • 

kt(NHt)~] • [nFR, - l]2) depend explicitly on time t, while as illustrated in section 5.4, the quasi- 

stationary control problem (5.22) has an optimal stationary spread policy defined by the 

equation (5.32). In the practical aspect of computation, the infinite sequence {k\(Ht); t=0, 1, 2, 

...} is not realisable (although we apply the possible spread rule of setting k*t(Ht) = 0 for NFRt 

-1  — 0, see subsection (ii) of section 5.4.3.2), since an infinite number of functions k*,(.) are 

involved because the number of non-zero-valued dynamic states will be infinite because 

Prob[Nq2(t) =0 for all t] = 0.

We shall focus on proving the insolubility of non-stationary control problem (5.42). Consider 

time te[0, oo). Then, we can rewrite our performance index NIPIe as the sum of two parts in a 

similar manner to QIPIe expressed in equation (5.22),

NIPIe = X  ( e 115- (9 + (1-0) • ks(NHs)2) • (NFRS - l)2 } = NIPIAe + NIPIBe - - - (5.43)
s=0
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where

t - i

NIPIAe -  X  {e'T,s • (0+(l-0)ks(NHs)2) ■ (NFRS-1)2 } and
s=0

CO

NIPIBe ^  X  {e^- (0 +(1-0) • ks(NHs)2) • (NFRS-1)2}

So, IPIAo does not depend on the decisions to be made. i.e. kt(NHt), kt+1(NHt+1), and then

QIPIBe. Furthermore, the second part QIPIB6 can be expressed as a time-varying function of the 

current dynamic state NFRt-l in view of the fact that the sequence of future dynamic states 

{NFRt+i-l, NFRt+2-l, ...} is recursively generated from the current dynamic state NFRt-l by 

way of the non-stationary system equation (5.41) and following the same mathematical 

deduction steps as in the quasi-stationary control problem examined in section 5.4.5, we can 

verify that the dynamic programming approach based on Bellman's principle of optimality 

specifies kt(NHt) as a time-varying function of current state variable NFRt-l (i.e. the knowledge 

of the current dynamic state is enough to substitute for the information history up to time t, 

NHt); that is, kt(NHt) = kt(NFR -l) for all t.

Next, the optimal spread control sequence {k*t(NHt); t=0, 1,2, ...} has to satisfy the following 

infinite number of optimal functional equations: that is, for every te  [0, oo),

minimising NI P I e  with respect to these controlling parameters is equivalent to minimising

n t v n -T ( FRt-1, t) = Min
{ks(NHs); s = t 1+1. t+ 2 ,...}

{ X  e [0 + (1-0) • ks(NHs)2] • [nFRs - l]2 }
s=t

Min { e ”1- [0 + (1-0) • kt(NHt)2] ■ [NFR< - l]2 +
, \

oo

{ks(NH s ) ; s =  t+l .t+2. .. .}
Min {

Min { [0 + (1-0) • kt(NHt)2] • [NFR, - l]2 + Nr f F R t+1, t+1) },
- x
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or alternatively, by letting er,t • Nr ( NF R rl, t) = NJ*(NFRt-l, t) (i.e. converting the minimal future 

cost discounted at time 0 to the minimal future cost discounted at time t), the alternative form 

of the above equation is given, for every te  [0, oo), by

NJ*(NFRt-l, t) -  Min {[0 + (1-0) • k,(NHt)2] ■ [NFRt- l]2 + e”1- NJ*(NFRw, t+1)} - - - (5.44)
kt(NH t)

; this has a similar mathematical form to the time-invariant optimal functional equation (5.28) 

derived in section 5.4.5.1, except for the tune variable t; in this respect, we shall call this 

equation the time-varying optimal functional equation.

Consequently, the optimal spread control sequence {k*t(NHt); t=0, 1, 2, ...} is not available 

from a practical point of view because {k*t(NHt); t=0, 1,2, ...} requires an infinite number of 

optimising computations because as mentioned at the early stage of this section, Prob[the total 

number of non-zero-valued states < oo, over control period [0, oo)] = 0 due to Prob[Nq2(t) =0 for 

all t] = 0. So, we need to develop an approximate model for the non-autonomous system 

equation by reference to the structural characteristics of the sequence {NFR,-1; t=0, 1, 2, ...} in 

order to find a best (not necessary optimal) spread control sequence available in the light of the 

criterion of computational feasibility (- this subject will be considered in the next section 5.5.5). 

The next section consider an approximate optimisation procedure for the non-stationary control 

problem (5.42).

5.5.5 Dynamic pension funding plan for threshold LQP optimisation problem

5.5.5.1 Introduction

As seen in the above section 5.5.4, we noted that the insolubility of our control problem (5.42) 

arose from the non-stationarity property of equation (5.40). In section 5.5.5.2, we propose the
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threshold controlled object as an approximate model to the non-stationary controlled object in 

the light of the criterion of computational feasibility for optimal solutions. Accordingly, we 

construct the threshold LQP optimisation problem as an approximate LQP optimisation 

problem to the non-stationary LQP optimisation problem (5.42) in section 5.5.5.3 and then 

consider its control optimisation procedure in section 5.5.5.4. Finally, we provide a summary 

and numerical illustrations in sections 5.5.5.5 and 5.5.5.6, respectively.

To begin with, we note that the in order to emphasise that each main symbol to be mtroduced in 

this section concerns the threshold LQP optimisation problem, we shall put the superscript ‘T ’ 

on its left side.

5.5.5.2 Threshold controlled object

As a best alternative to the non-autonomous system equation (5.40), we here propose the 

threshold system equation specified as a switching system equation from non-autonomous to 

quasi-autonomous at some fixed point of time. Accordingly, the controlled object governed by 

this threshold system equation shall be called the threshold controlled object; here, the term 

"threshold’ is adopted from ‘threshold autoregressive models’ in the area of time series analysis 

[for details and examples, see Tong & Lim (1980)]. Its mathematical specification takes the 

following approximation steps and finally we derive the threshold system equation (5.49).

Step I . Analysis of time series {exp(8t+1): te[0, cc)}: The non-stationarity property of equation 

(5.41) is completely identified by the time-varying parameter 8t+i. As was shown m section

5.5.2, the time series {exp(5t+i): te[0, co)} governed by model (5.38) is characterised to be 

damped and eventually convergent to its limit value l+ie. Since the value of t required for this 

limit value to be reached will be infinite, we need to find, from an approximation point of view, 

a point of time (denoted by t \  which shall be called the threshold tune value) after which the
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time senes, {exp(St+1): te[0, oo)}, remains relatively unchanged. In this respect, we can set the 

approximation cnterion for determining t*;

Step 2. Approximation criterion for the threshold time value t*: For a chosen allowable 

approximation error value based on the analysis of the time series {exp(8t+i): te[0, oo)} 

(denoted by As > 0), find t*e[0, oo) satisfying |exp(8t+1) - exp(St.+1)| < As for any t = t*+l, t + 2 ,  

t*+3, . . . .  In general, the approximation error value, A s, would be required to be as small as 

possible to represent the appropriateness of the approximation. Further, our infinite control 

horizon can be classified into the two control regimes, i.e. [0, oo) = Regime 1 u  Regime2, where 

Regimel = {0, 1, ..., t*-l} and Regime2 = {t\ t*+l, t*+2, ...}; and then,

Step 3. Parametric approximation assumptions: From an approximation point of view, it 

would be possible to consider dividmg the model (5.38) into different models for the two 

control regimes Regime 1 and Regime2, switching from one to the other when time t has crossed 

the threshold tune value t*. For simplicity, we assume that the sinc-function, i.e. sinc(t+l), is 

identically equal to its limit value of l+ie over Regime2: in other words,

1 + ie + sinc(t+l), ie> 0  for each t e Regimel

exp(St+i) = (l+it+i) = i

1 + ie, Ie > 0  for each t e Regime2 ---- (5.45)

Thus, it would be consistent with the above approximation model (5.45) to reformulate the 

spread parameter function (5.37) in a way that letting the currently available information 

vector at time te[0, oo) under the threshold controlled object as THt = (TFR,. t FR i, ..., Ffy, 

t CRd, t CRi , ..., rCRt_i) with given THo= TFfy, and denoting the indicator function of set S by 

Is, then for each te  [0, oo),
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kt kt( Ht) ' lRegimel k( Ht) * lRegime2- --(5.46)

Therefore, adapting the above parametric approximation model (5.45) and (5.46) to the spread 

funding formula (5.1) and the system equation (5.2), we derive their respective threshold 

versions of the non-stationary spread funding formula (5.39) and non-autonomous system 

equation (5.40): that is, for each t e[0, oo),

TCRt = TNRt - [kt(THt) - lRegimel + k(THt) • lReeme2] • [TF R - 1]

-  V (TFRt-l; kt(THt)-lRegimei + k(THt)-lRegime2) - - - (5.47)

where TNR5 = NNRt = !MR<_ = SNR*

; in particular, kt(THt) ■ lRegime i + k(THt)-lRegime2 shall be called the threshold spread parameter, this 

equation the threshold spread funding formula and Tp(.; kt(THt)-lRegimc] + k(THt)-lRegme2) the 

threshold spread funding plan (here, the term ‘threshold’ is added to indicate that this model 

allows the structural change according to switching from Regime 1 to Regime2); and 

accordingly, the following system equation shall be called the threshold system equation, which 

governs our threshold controlled object: that is, for each te[0, oo),

TFRt+1 - 1 = [Tq,(t) • (1 -kt(THt)) • lRegime 1 + %  • (l-k(THt)) • lRegm=2] • i ' FRt- 1] +

[Tq2(t) • 1 Regimei + Tq2 • lReg.1r.e2] vvith given t FRo - 1 - - - (5.48)

where Tqi(t) = Nqi(t) and Tq2(t) = Nq2(t) for each teRegimel, in which both Nqi(t) and Nq2(t) are 

defined m non-autonomous system equation (5.41), while Tq] and Tq2 are their respective 

constant estimates such that Tqi = (l+ ie) ■ exp(-a-P) and Tq2 = (l+ie) • exp(-ri) - 1 for each 

teRegime2; and further, there is no loss of generality in assuming that the value of the starting 

state t FR,*-1 in Regime2 is non-zero because if TFRt*-l = 0, then we can simply redefine the 

threshold time value as t*+l from the viewpoint of the parametric approximation.
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Hence, the threshold controlled object with parameter set {Tqi(t), Tqi, Tq2(t), Tq2, kt(THt), 

k(THt)} has a structural change from the non-stationary controlled object with parameter set 

(Tqi(t), Tq2(t), kt(TH,)} to the quasi-stationary controlled object with parameter set {Tqh Tq2, 

k(THt)} when the threshold time value t* is encountered. As a best (not necessary optimal) 

approximation to the non-stationary LQP optimisation problem (5.22) in view of the 

requirements of physical solubility, we construct the threshold LQP optimisation problem 

designed to control optimally the threshold controlled object in the next section 5.5.5.3.

5.5.5.3 Threshold LQP optimisation problem

In a similar manner to sections 5.4.2 and 5.5.3, we need to ensure the finiteness of the threshold 

performance mdex (denoted by TIPIe) defined by the equation

co

TIPIe = X  i e* - [6 + (1-6) • (kt(THt)-lRegmel + k(THt)-lRegime2)2] • [TF R rl]2 }.
t=o

So, TIPIe will be well-defined as a function value < oo for all t on the following space, since 

Regime 1 is a finite period but Regrme2 is an infinite period, so we do not need to put any 

constraints on a performance index over Regime 1: that is, letting u be some positive real 

number, then for all t e Regime2,

{k(TH): r\ > 0 and 0 < [0 + (1-0) • k(THt)2] ■ [TF R rl]2 < u} - - - (5.49)

; here, this shall be called the threshold controlling parameter space, which has the same form 

as the quasi-stationary controlling parameter space II (5.20).

Finally, we can construct the following approximation version of the non-stationary LQP 

optimisation problem (5.43) (in particular, this shall be called the threshold LQP optimisation 

problem):
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Min
{kt (TH t) ;t  = o, 1.....t*-i}

{ [ X  e 11'- (0 + (1-0) • kt(THt)2) • (TFRt - l)2 ] +
t=0

00

Min
{k(TH , ) ; t  = t*. t*+l. t*+2, ...}

[ X  e”11 ■ (0 + (1-0) • k(THt)2) • (TFRt - l)2 ] }

subject to given 0 e  (0, 1); controlled object is governed by the threshold system equation 

(5.48); and k(THt) e {threshold controlling parameter space (5.49)}.

This control problem would be identified by the characteristics of breaks in control structure 

and switching regimes from Regime 1 to Regime2. The optimisation procedure will then be 

taken separately over the two periods, i.e. Regimel and Regime2, in the next section 5.5.5.4.

5.5.5.4 Control optimisation procedure

As noted earlier in section 5.5.4, the computational insolubility of the non-stationary LQP 

optimisation problem (5.42) comes from the infinite number of optimal functional equations 

established in (5.44). However, the threshold control problem (5.50) can be solved because the 

optimal spread control sequence, say {k’0(H0), k*i(Hi), ..., k*t*.i(Ht».i), k*(Ht*), k*(Ht*+i), 

k*(Ht*-2), ...}, will be produced by solving a finite number of (t* + 1) optimal functional 

equations, as illustrated below in subsection (i); The rigorous optimisation procedure will be 

fully considered in subsection (ii).

(i) Optimal functional equations:

As could be expected from the fact that the threshold control problem can be decomposed into 

two distinct problems - non-stationary control problem over Regimel and quasi-stationary 

control problem over Regime2. the derivation of our optimal functional equations involves the 

principal results obtained previously, such as the time-invariant optimal functional equation

--(5.50)
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(5.28) (for quasi-stationary control optimisation derived in section 5.4.5) and the time-varying 

optimal functional equation (5.44) (for non-stationary control optimisation derived in section 

5.5.4). Using these results, we shall verify the computational solubility of the threshold control 

problem (5.50) by providing the following form of the optimal functional equations (5.51) and 

(5.52) [see Bertsekas (1976; pp274~275)]. In a similar manner to the derivation of equation 

(5.44), we have

Or alternatively, letting TJ (TFRt-l, t) = e111 • Tr ( TFR,-l, t) (i.e. converting the minimal future 

cost discounted at time 0 to the minimal future cost discounted at time t, as in sections 5.4.5 

and 5.5.4), then these equations can be classified into two distinct groups, say time-varying and 

time-invariant: that is,

Gl- Time-varying group: for every t € Regime 1

Y (TFRr 1, t) = Min {(6 + ( 1 -9) • kt(THt)2) • (TFRr 1 )2 + e”1 • TJ*(TFRt+1 -1, t+ 1 )}, ---(5 .51 )
i- n u

which represents the time-varying group of t* equations and expresses, in particular, the 

switching structure from time-varying to time-invariant at time t=t*-l, i.e.

I ( r R r l ,  t) = Min
{ks(TH s ); s = 1 1 + 1 , .... t*-l}

{ [ 2  e ns- (6 + (l-9)-ks(THs)2) • (t FRs - l)2 ] +
s=t

CO

for each t e  Regime 1; and similarly

T ( TF R rl, t) = Min { e nt- (0 + (l-0)-k(THt)2) • (TFRt- l)2 + T fy F R ^ -l, t+1) },
k(TH t )

for each t e Regime2.

k t (TH ,)
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TJ*(TFRt*-i-l, t*-l) = Min {(0 + (1-0) • kt*.](THt*.i)2) • (TFRt*.,-l)2 + e'T| • TJ*(TFRt.-l)}; and 

G2. Time-invanant group: for every1 e  Regime2,

TJ*(TFRr l) =  Min { (0 +  (1-0) ■ k(THt)2) • (TFRt- l ) 2 +  e '11 ■ TJ*(TFRt+1-l) }, - - - (5.52)
k(TH t )

which presents explicitly an infinite number of optimal functional equations but due to the 

time-mvariability of function T (.), it is sufficient to solve the optimal functional equation at 

tune t in order to specify the optimal stationary spread policy k*(.), as considered in the quasi- 

stationary control problem of section 5.4.5 (we note that as assumed m the threshold system 

equation (5.50), the starting state TFRt*-l in Regime2 is set to be non-zero).

Here, the above equations (5.51) and (5.52) shall be called the threshold optimal functional 

equation, which is distinguishable from the time-invariant optimal functional equation (5.28) as 

well as the time-varying optimal functional equation (5.44) especially by the equation at t=t*-l.

(ii) Solution of the threshold optimal functional equation:

As a preliminary to solving the threshold optimal functional equation, it is worth recalling that

(a) the tune-invariant part (5.52) is soluble simply by adjusting the main results (5.28)~(5.32), 

derived by the FDP approach in section 5.4.5, with replacing qi and q2 involved in

(5.28)~(5.32) with q, and Tq2, respectively, and accordingly, we can obtain TJ*(TFR.* -1); and

(b) by using TJ*(TFRt* -1) as a boundary condition of the time-varying part (5.51), it is soluble 

by the BDP approach in a similar manner to solving the finite-horizon deterministic control 

problem (4.5) examined in section 4.3.2: in other words, we may think that the optimal function 

value at the threshold time value t \  i.e. J*(TFRt*-l), provides the conversion from the 

framework of the infinite-horizon threshold control problem to that of the finite-horizon 

threshold control problem.
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Firstly, the solution of time-invariant part (5.52) is a specific case of the main results

(5.28)~(5.32) derived in section 5.4.5: for any non-zero starting state TFRt»-l in Regime2,

TJ*(TFRt»-l) = t Q i • (TFRt* - 1)' + t Q? • (t FR;. - 1) + t Q3 (which plays the role of the boundary 

condition of the time-varying part (5.51)); and

k*(THt*) = k*(TF R ,-l) = [(e-11- Tq,2- TQ,) • (TFRt,-  1) + e”1 • Tq, • ( V  TQ, + TQ2/2)]

/ [((1-0) + e ” • V • t Q,) • (t FR*- 1)] - - - (5.53)

where

TQi = [6 (1-0) + e ’1 • V  • TQi] / [(1-0) + e 11 • Tq,2- TQ,];

t Q2 = [2(1-0) - e 11 -Tq, (Tq2 - t Q i + TQ2/ 2)] / [(1-0) + e ’1- Tq,2- TQ,]; and

t Q3 = [(l-0 )-e ',1.(Tq22- TQ. + Tq2-TQ2+TQ3) + e 211 • Tq,2-(TQ, ■ TQ3- TQ22/4)]

/[(l-0 ) + e T1-Tq12-TQ1].

Further, the stationary' optimal spread control policy k*(.) is not well defined for 100% funding 

level, in which we apply the possible spread rule for the uniqueness of the optimal spread 

control sequence {k*(THt); te  Regime2} [see subsection (ii) of section 5.4.3.2],

Secondly, the non-stationary optimal spread policy {k*t(.); teRegime 1} can be found by 

solving the time-varying group of t* equations with the boundary condition (5.53), that is, for 

each te  Regime 1,

TJ*(TFRt-l, t) -  Min {(0 + (1-0) • k,(THt)2) - (TFRt-l)2 + e'n ■ TJ*(TFR,+1-1, t+1)} with
k,(THt)

TJ*(TFRt*-l) given by equation (5.53). ---- (5.54)

Now, we shall clarify mathematically the above descriptions (a) and (b) in turn.
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The solution of the above equation (5.54) is uniquely determined by the following suggested 

form of quadratic function, subject to some condition (derived later in (5.56)): that is, for each 

t e Regime 1,

TJ*(TFRt-l, t) = t Q i (t) • (t FR, - l)2 + TQ2(t) • (TFRt - 1) + TQ3(t) with the boundary condition 

TQi(t") = t Qi, W )  - TQ2 and t Q3( 0  = t Q3, - - - (5.55)

which can be verified using an mathematical induction argument, as illustrated below.

This form holds clearly for t = t* and then proceeding by mathematical induction, we have for 

each t e Regime 1,

TJ*(TFRt+1-l, t+1) = TQ,(t+l) ■ (TFRt+1 - l)2 + TQ2(t+l) • (TFRt+1 - 1) + TQ3(t+l) with the 

boundary condition TQi(t*) = t Q i, TQ2(t*) = TQ2 and TQ3(t’>) = TQ3.

Introducing the above suggested solution into equation (5.54), we obtain the following form: 

TJ*(TFR rl, t) = M in { TG(kt(THt), t) } for all teRegime 1.
k , ( TH t )

where

TG(kt(THt), t) = { [(1-0) + e '11 ■ Tq,(t)2- TQ,(t+l)] • (TFR;-1)2} • kt(THt)2 +

{ -2 e_ri • [ Tq,(t)2 • TQi(t+l) • (TFR-1)2 + (Tq,(t) • Tq2(t) • TQ,(t+l) + Tq,(t)- 

TQ2(t+1 )/2)-(TFRt-1)] } • kt(THt) + { 0-(rF R -l)2^ e T  [(Tqi(tH TFR,-l) + 

Tq2(t))2- TQ i(t+l)+ (Tq,(t)-(TFR-1) + Tq2(t)) • TQ2(t+l) + TQ3(t+l)] }.

So, TG(k(THt), t) is a strictly convex function of kt(THt), subject to the condition given by .

[(1-0) + e'T Tqi(t)2- TQi(t+l)] ■ (xF R rl)2 > 0 for all t e Regime 1. ---(5 .5 6 )
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Hence, differentiating with respect to kt(THt) under the condition (5.56) and setting the resulting 

derivative equal to zero, we obtain the optimal value of kt(THt) (denoted by kt*( Ht)) specified 

by

kt*(THt) = {e_T1 • [Tq,(t)2-TQ,(t+1 )• (TFRt-1 ) + (Tq,(t)-Tq2(t)-TQ,(t+l) + Tqi(t) TQ2(t+l)/2)]} /

{[(1-0) + e ,1-Tq1(t)2-TQ1(t+l)] • (TFRrl)} - - - (5.57)

; hence, the condition (5.56) corresponds to the uniqueness requirement for the optimal spread 

control sequence {kt*(THt); te  Regime 1}.

For completion, substituting k*(THt) into Min TG(k(THt)) yields

TJ*(TFR rl, t) = TQ,(t) • (TFRt- l)2 + TQ2(t) • (TFRt- 1) + TQ3(t)

= {[0(1 -e)+eT1 -Tq,(t)2 TQ,(t+1 )] / [(l-0)+e" TqI(t)2 TQ1(t+l)]HTFRt-l)2 + 

{e ,,-(l-0)-[2.Tq1(t)-Tq2(t)-TQI(tfl) + Tq,(t)-TQ2(t+l)] /

[( 1 -0)+e’,1-Tqi(t)2-TQ,(t+1 )]}• (t FRc  1 ) + {eT1-(l-0)- [Tq2(t)2-TQ,(t+l) + 

Tq2(t)-TQ2(t+l) + TQ3(t+l)] + e‘2T1 • [Tq,(t)2-TQ,(t+1 )• TQ3(t+1 ) - 

Tq,(t)2-TQ2(t+l)2/4]} / {(l-0>+«-T'.Tq1(t)2.TQ1(t+l)}.

Thus, we complete the mathematical induction argument and find finally that the optimal 

functional equation (5.54) has a solution of the quadratic form (5.55) with TQi(t), TQ2(t) and 

TQ3(t) satisfying the following recurrence relation: for each t e Regime 1,

TQi(t) = [0 (1-0) + e'n-Tqi(t)2-TQ1(t+l)] / [(1-0) + e'T,*Tq1(t)2-TQ,(t+l)];

TQ2(t) = e'11-(l-0)-[2-Tq1(t)-Tq2(t) TQ1(t+l) + Tq,(t)-TQ2(t+l)] / [(l-0)+e^Tq,(t)2-TQ1(t+l)]; and 

TQ3(t) = {eT(l-0). | 1q2(t)2-TQ1(t+l) 4- Tq2(t)-TQ2(t+l) + TQ3(t+l)] + e ^ M W '

TQ,(t+l)-TQ3(t+l) - Tqi(t)2-TQ2(t+1 )2/4]} / {(1-0) + e-TTqi(t)2-TQ,(t+l)}, - - - (5.58) 

starting with their respective boundary conditions TQi(t*)= t Q i , TQ2(t*)- TQ2 and TQ3(t*) = TQ3.
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Since kt*(THt) involves only the parametric functions TQi(t+l) and TQ2(t+l), we need only to 

solve the backward recursive equations associated with TQi(t) and TQ2(t). Further, we have 

proved in Proposition 5.2 m section 5.4.5.1 that TQ, is positive and hence, the sequence 

{TQi(0), t Q i(1), ..., TQi(t*)} is also positive because 1 < 0 < 0. Thus, the umqueness 

requirement (5.56) for {kt*(THt); te  Regime 1} leads to a simplified form that rFR,-l * 0 for all 

te  Regime 1.

As a result, the optimal spread control at time t, i.e. k*t(THt), is expressed as a function of the 

current state variable TFRt-l and the resultmg optimal function value, i.e. TJ*(TFR,-1, t), turns 

out to be quadratic, subject to TFRi-l & 0. Further, the unique optimal spread control sequence 

{k*t(THt); teRegim el} is provided under the assumption that TFRt-l *  0 for all teRegim el.

Remark 5.3: (a) The case of TFRj-l = 0 for some jeRegime 1 violates the uniqueness 

requirement (5.56) because we can determine k*j(Hj) arbitrarily. For attaining a unique optimal 

spread control sequence (k*t(THt); teRegimel}, we will apply our possible spread rule of 

setting k*j(Hj) = 0 [see subsection (ii) of section 5.4.3.2];

(b) However, the parametric recursions (5.58) are no longer applicable, since the optimal 

functional equation at time j is given by TJ*(TFRj-l, j) = e'n- J*(rFRr ,-l, j+1), which leads to, 

due to TFRJ+rl = Tq2(j) (for convenience, assumed here to be non-zero) for TFR, - 1 = 0  from 

the threshold system equation (5.48),

Tr (TFRr i, j) = e M W -  TQ.(j+ i) + Tq2(j) • TQ2(j+l) + TQ3(j+1)]- - - - (5.59)

(c) Hence, letting Regimel’ = {0, 1, 2, ..., j-1}, then the remaining optimal spread policy 

{k\(.); te  Regime 1'} can be found by solving the remaining time-varying group of j equations 

with the new boundary condition (5.59): that is. for each te  Regime 1’
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--(5 .60)

TJ*(TF R rl, t) = Min {(0+( 1 -0)-kt(THt)2) (TFRt-1 )2 + e^ Y fF R w i-l, t+1)} with
k .( THt )

t J*(t F R j- 1) g iven  by  equation  (5 .5 9 ); and

(d) Finally, we can then solve the remaming optimal functional equations (5.60) with a 

suggested solution of the following form in a similar manner to the previous optimisation 

procedures (5.55)~(5.58) for t=j+l, j+2, ..., t*-l: in short, for each te  Regime 1’

TJ*(TFRt-l, t) -  TQ',(t) • (t FR:- l)2 + TQ’2(t) ■ (t FR; - 1) + TQ '3(t) with the boundary condition 

T Q ’ i ( l )  = 0, T Q ' 2( j )  = 0 and TQ’3G) ■ TQ,(j+l) + Tq2G) ■ TQ2(j+l) + TQ3G+1)] in

which t Q iG+1), t Q2G+1) and TQ3G+1) each are proceeded from the parametric recursions 

(5.60); and

(e) As a summary, whenever 100% funding level is encountered during Regime 1, we carry out 

the same optimisation procedure for a unique optimal spread control sequence, as described 

above in (a)~(d). This kind of complementary' optimisation procedure is required because of 

the weakness in the mathematical formula of the Spread method discussed earlier in subsection

(ii) of section 5.4.3.2.

(iii) Conclusion:

The control optimisation procedure with respect to k,(THt) • lRegimei + k(TH,) • lRegime2 is classified 

into two parts together with our possible spread rule - designing optimally the non-stationary 

optimal spread control policy kt*(.) over Regime 1 and the stationary optimal spread control 

policy k*(.) over Regime2. These two spread control policies are commonly well defined m 

terms of the unfunded ratio (i.e. TFRt- le R 1-{0} for all t e[0, oo)) as seen in formulae (5.53) 

and (5.57). Here, we are concerned about formulae (5.53) and (5.57).

Then, substituting k*t(THt) and k*(THt) defined in (5.53) and (5.57) into equation (5.47) yields 

the optimal threshold spread funding formula given, for each te  [0, oo), by
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following assumptions given in subsection (i). All the observations fall into two groups - 

observations in Regimel and observations in Regime2. Since the latter case has been illustrated 

in section 5.4.5.4, we here concentrate on the observations in Regimel. Due to the constraints 

of time and space, we are concerned only with the case of 0 = 10%, in accordance with the 

comment on a suitable value of 0 (described in subsection (i) of section 5.5.5.4) (- the other 

suitable values of 0 would provide similar results as in subsection (iii) of section 5.5.5.4). All 

the numerical illustrations are given in graphical form in Appendix 5B.5.

(i) Assumptions:

(Al) All actuarial assumptions are the same as given in section 5.4.5.4 (in short, exp(a) = 

1.03, exp(P) = 1.02 and exp(r|) = 1.06);

(A2) Projection assumptions:

- infinite control horizon: t e [0, oo);

- determined value of 0 = 10%;

- given initial value FRo = 50%;

- exp(5t+1) is governed by equation (5.44) where ie = 0.06, Tb = 12, 0  = 8 71; and

- the threshold time value: t* = 200 (and hence Regimel = {t: 0, 1, 2, ..., 199} and Regime2 =

{t: 200, 201, 202, ...}).

(iii) Illustrative numerical results:

The projections of optimal threshold spread funding plan governed by formula (5.61) are 

presented in Graph 5.3 (composed of Graphs 5.3.1-5.3.4) of Appendix 5B.5.

The important observations are described below:

(a) The damped harmonic motion of real rates of return, illustrated in Graph 5.3.1, dominates 

the controlled overall motions as illustrated in Graphs 5.3.2-5.3.4: broadly,
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- the pattern of {xFR*t-l; t e  Regime 1} has a similar but proportional cycle to that of real 

rates of return, while the pattern of {TCRfft-TNRft; t e Regime 1} has a similar but adverse 

cycle to that of the real rates of return. This implies that there is a trade-off between the control 

errors and control action errors over Regime 1, as we know from comparing Graphs 5.3.3 and 

5.3.4;

- each peak and trough in Graph 5.3.2 corresponds to a pomt crossing the 100% funding target 

m Graph 5.3.3, except for the first peak point, (which seems to be not clearly illustrated in 

Graphs 5.3.2 and 5.3.3 but is clearly presented in our numerical experiments);

- the non-stationary spread control pattern of {k*t(THt); t e Regimel} can then be thought of as 

a series of control patterns similar to that in the turmoil stage of the optimal quasi-stationary 

spread control mechanism (described in section 5.4.5.4), except for the initial time periods [0, 

5] prior to improving the initial given (unfunded) ratio 50% up to about 95% which 

corresponds to the introduction stage of the optimal quasi-stationary spread control 

mechanism; and

- as a result, under cyclical economic circumstances, it would be necessary to respond 

somewhat abruptly to the movements in the investment market in order to maintain both 

funding levels and contribution rates around their respective targets, so it is necessary to extend 

to some degree the typical spread parameter space {kt: 0 < kt < 1 for all t}; and

(b) In addition, we note the following results associated with our model of (damped harmonic) 

business cycle without giving any numerical illustrations (- these are based on our intuition in 

relation to the numerical results of the quasi-stationary control problem given in section

5.4.5.4):

- increasing the initial phase shift 0  reduces both the solvency and contribution rate risks 

because the larger 0  yields the more stationary investment performance: in other words,
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although Mature and Young pension schemes faces commonly a series of peaks and troughs in 

the investment market, a Mature pension scheme is likely to control investment risk in a more 

secure direction than a Young pension scheme due to having relatively more capacity for 

maintaining reasonably well-diversified portfolios as well as improving the investment risk 

assessment (- in our model, this kind of a investment risk control capacity would be represented 

by a larger 0 ,  see the end part of subsection (ii) in section 5.5.2); and

- increasing the business cycle period Tb reduces both the solvency and contribution risks, 

which is quite understandable in view that a stationary economy can be thought of as a case of

Tb —> oo.

5.6 Conclusion

Even though dealing with an infinite-horizon control problem seems to be academic and 

impractical, we believe that our three different optimisation procedures for stationary, quasi- 

stationary and non-stationary (including threshold) provide a fundamental insight into the 

finite-horizon control problem.

According to the mathematical and numerical results derived in this chapter, we can make some 

general conclusions about how to control the value of the unknown spread parameter on a long-

term basis for reducmg both the solvency and contribution rate risks:

(a) Under a stationary economic and demographic circumstances, we may recommend both the 

algebraic and dynamic programming (DP) approaches. If their respective requirements are met 

(i.e. Requirements A1 ~ A3 described in section 5.3.4.2 and Requirements B1 ~ B3 described 

in section 5.4.5.2), the algebraic approach provides a solution within the typical spread 

parameter space, while the DP approach provides a distinct control pattern under an investment
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performance which is better than expected (i.e. 5 > r|). The control pattern is characterised by 

four consecutive stages, introduction, turmoil, stabilising and maturity stages; and

(b) Under a non-stationary economic and demographic circumstances, the algebraic approach 

is inapplicable but the dynamic programming approach is suitable from the viewpoint that it 

provides a time-related response to the dynamic situation and then enables us to maintain the 

funding level and contribution rate around their respective control targets.

Finally, we shall finish this chapter with our suggestion about the typical spread parameter 

space {kt: 0<kt<l for all t}. As illustrated numerically in sections 5.4.5.4 and 5.5.5.6, we need 

to modify/extend the typical constraint of kt. The formula CRt-NR; = -kt • (FR,-1) with 0<kt<l 

is designed to focus on the currently processed unfunded ratio (i.e. FRt * 100%) due to the 

constraint 0<kt<l. But it does not have a sufficient capacity to reflect (a priori) the more or less 

predictable future valuation outcomes for the future stability of both the funding levels and 

contribution rates and hence it is likely to lead to a potential risk of instability under a dynamic 

economic and demographic situation. In this respect, we would like to suggest a modification of 

the spread parameter space, e.g. -1 < kt < 2 (here, the negative values take an optimistic 

perspective for the future on the current under-funded state, i.e. FRt < 100%, and a pessimistic 

perspective for the future on the current over-funded state, i.e. FRt > 100%: in particular, if the 

actual value of FRt is approximately fully funded, i.e. FRt = 100%, we may allow a larger 

space as suggested in subsection (iii) of section 5.4.5.4.
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Appendix 5A Equilibrium state and Zero-input stability

A.l Introduction

The objective of this Appendix is to present some of the fundamental concepts of equilibrium 

state and its stability as discussed in Chapter 5. So, we concentrate on the so-called zero-input 

stability for a dynamic system governed by the zero-input linear first-order difference equation 

formulated in the following section A. 2. In the application to pension funding, these concepts 

provide certain conditions for the actuarial (economic and demographic) parameters suitable 

for designing a stable pension scheme.

As a result, the stability of pension schemes will be a feature attractive to the trustees/members, 

advising actuary and sponsoring employer from the viewpoint of a long-term pension fund 

valuation.

First of all, we need to take into account the equilibrium state so as to study the zero-input 

stability concepts (- these are defined and commented on in section A.2). The concept of zero- 

input stability concerns the stability of the equilibrium state obtained from a dynamic system 

equation without input or equivalently from a dynamic system equation with a given input (e.g. 

a given form of controlling variable specified by the spread funding formula, see the dynamic 

system equation (3.25) in section 3.4.4), since there is no distinction between them in the light 

of mathematical modelling. The stability concepts and definitions that has been developed on a 

continuous-time domain are primarily due to Lyapunov (1892) and are concisely presented on a 

discrete-time domain in section A.3.

The concepts and definitions given below in sections A.2 and A.3 are based on Willems (1968; 

Ch.7) and Callier & Desoer (1991; Ch.7d).
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A.2 Equilibrium state

Let us start by considering the zero-input linear first-order difference equation given by: for 

each t = to, to+1, to+2, and L eR 1,

Xt+i = a(t) • Xt + b(t) with the prescribed initial condition X(to)=xo ---- (A-l)

where

X(t) = state variable representing the state of the dynamic system at time t; 

a(t) and b(t) denotes the system parameters to apply between time t and t+1.

Definition 1 (Equilibrium state): Consider the dynamic system governed by equation (A-l). A 

constant value xe is called an equilibrium state for this dynamic system if xe satisfies the 

equilibrium equation xe = a(t) • xe + b(t).

Comment 1: the equilibrium state has the following properties (P1)~(P4):

(PI; zero equilibrium state): In the case that either a(t) or b(t) is a time-varying parameter (i.e. 

in the case of a non-autonomous dynamic system) or a(t)=l for all t, there exists no equilibrium 

state because xe = b(t) / (l-a(t)) is not constant for all t and is not defined for a(t)=l. However, 

if b(t)=0 for all t, there exists only a zero equilibrium state, i.e. xe = 0;

(P2; equilibrium solution): In the case that both a(t)=a^l and b(t)=b are constant for all t (i.e. 

in a case of an autonomous dynamic system), there exists a unique equilibrium state xe = b / (1- 

a) and another point to be noted is that the constant solution Xt = xe is a particular solution to 

equation (A-l) irrespective of the initial condition. In this case, the definite solution to equation 

(A-l) can be represented as Xt = (x0 - xe) • a* ‘ *° + xe in which we notice that if x0= xe, then 

X, = X, xe and the constant solution Xt = xe with X, = xe is often referred to
Lq  +  I l 0
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as the equilibrium solution (which means that a solution that passes through xe at some time 

(say, txe > to) remains at this value of xe for all t > txe);

(P3; moving equilibrium state): In the case that a(t) = 1 and b(t) = b for all t, the definite 

solution to equation (A-l) is Xt = xo + b-(t-to), which shows that with nonzero xo, there will be 

a constant deviation xo from b-(t-to) for each t. From this point of view, the motion is invariant 

for a translation of tune, i.e. b-(t-ty), which can be thought of as a moving equilibrium state (not 

equilibrium state). In this case, the time-varying solution X, = b-(t-ty) is also a particular 

solution to equation (A-l) irrespective of the initial condition; and

(P4; the economic meaning of equilibrium): The economic meaning of equilibrium would be 

referred to Machlup (1958) expressed that an equilibrium is “a constellation of selected 

interrelated variables so adjusted to one another that no inherent tendency to change prevails in 

the model which they constitute.”

A.3 Zero-input stability

Three most useful definitions for the zero-input stability will be discussed in this section: 

stability in the sense of Lyapunov, asymptotic stability and geometric stability (which will be 

described in turn). Let us restrict our attention to the zero-input linear dynamic system 

governed by equation (A-l). All of these definitions commonly specify whether or not the state- 

related behaviour of this dynamic system relative to its particular solution (including its 

equilibrium state and moving equilibrium state) is stable over the interval [ty, oo).

To begm with, we should note the fact that the stability of any particular solution to a non- 

homogeneous linear system can always be reduced to the stability of the zero equilibrium state 

of the corresponding homogeneous linear system. In our application, letting PSt be a given
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particular solution to equation (A-l), i.e. PSt+] = a(t) • PS, + b(t) with the initial 

condition PS t = s0, and then using the change of variable technique such as the one-to-one

transformation from X, to a new variable Y, = X, - PS, for any t, then we have the following 

equation: for all t, substituting Xt = Yt + PSt into equation (A-l) yields Yt+i + PStn = a(t) ■ [Y, 

+ PSJ + b(t) with the initial condition Yt + PSt[ = xo, which leads to

Y,+i = a(t) • Y, with the initial condition Yt = yo (= x0 - s0). ---- (A-2)

So, the equilibrium state of the dynamic system governed by equation (A-2) (denoted by ye) is 

zero, i.e. ye=0. Here, we concentrate on the stability of this zero equilibrium state instead of the 

stability of a particular solution to equation (A-l) for the reasons that

firstly, dealing with the stability problem of zero equilibrium state is more convenient than 

dealing with that of any other particular solution because there are, in general, infinitely many 

particular solutions of equation (A-l), while the equilibrium state ye is the value of a particular 

solution of equation (A-2) and is uniquely given by a linear system [see properties P 1 and P2 in 

A5.5.2];

secondly, the deviation of the definite solution to equation (A-l) about its particular solution 

PSt, Xt - PSt, is identical to the deviation of the definite solution of equation (A-2) about its 

zero equilibrium state, i.e. Yt - ye; and then

lastly, it is valid that the stability of ye is equivalent to the stability of any particular solution to 

equation (A-l) (and hence speaking of the stability of equation (A-2) is equivalent to speaking 

of the stability of equation (A-l)).

Definition 2 (Stability' in the sense of Lyapunov): The zero equilibrium state ye is said to be 

stable (or attracting) in the sense of Lyapunov iff, for any given to and any positive number s, 

there exists a positive number 5(a, to) which may depend on s  and possibly the initial time to as
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well, such that |y0| < 5(s, to) implies |Yt| < s for all t. Otherwise, ye is said to be unstable (or 

repelling).

Comment 2: the above Definition 2 means that if a dynamic system is initially perturbed within 

an 8-open interval with centre at ye, then all subsequent state-related behaviour {Yt; t=to+l, 

to+2, ...} stays within an s-open interval with centre at ye. However, this does not say that {Yt; 

t = to+1, to+2, ...} tends to ye after a small perturbation from ye and further there is no 

restriction on the size of the s-open interval (and hence s can be taken to be considerably larger 

than 8). From these points of view, this definition provides a very weak concept of zero-input 

stability.

Definition 3 (asymptotic stability): the zero equilibrium state ye is said to be asymptotically 

stable iff (a) ye is stable in the sense of Lyapunov and (b) ye is convergent (i.e. there exists a 

positive number P(to) for all to, whose value may depend on to, such that |y0| < P(t3) implies 

limYt = 0).
t—>co

Comment 3: Besides the stability in the sense of Lyapunov, asymptotic stability has the 

additional property that all subsequent state-related behaviour {Yt: t=to+l, to+2, ...} converges 

eventually to the zero equilibrium state ye after an initial small perturbation P(to). Further, 

another point to be noted is that the condition (b) dominates the condition (a) because any 

subsequent state-related behaviour on any finite period, say {Yt: t=to+m, to+m+1, ..., to+n, with 

m and n positive integers and m < n}, is finite whenever the initial perturbation is finite.

Definition 4 (geometric stability): The zero equilibrium state ye is geometrically stable iff there 

exist C, e (0, 1] and h > 0 such that for all (to, yo)eR'xR', |Yt| < h • (1-Q* " *° for all t > to. 

Comment 4: This definition states that the subsequent state-related behaviour {Yt: t=to+l, to+2, 

...} should be characterised by decreasing geometric progression with a constant rate C,, i.e.
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^  " to depending only on the elapsed time t-to: in other words, a uniform boundedness with the

bound h and a uniform convergence to ye, no matter what the initial time to. This fact illustrates 

not only the aptness of the name ‘geometric stability’ but also a stronger form of zero-input 

stability than the other two described above. The constant rate £ is sometimes referred to as 

geometric damping rate. Another point to be noted is that (1-Q e  [0, 1) can be transformed mto 

an exponential form: in other words, there exists a positive rate p such that (1-Q = exp(-p), in 

which p is sometimes referred to as the exponential damping rate. For this reason, geometric 

stability is normally called exponential stability but in our study, we shall use the term 

'geometric’ rather than the term ‘exponential’ on the grounds that the former term is the 

discrete-time analogue of the latter term (which is associated with a continuous-time domain) 

and we emphasise that we are dealing with the stability problem on a discrete-time domain.

A.4 Summary

We have explored the concepts of the equilibrium state and the zero-input stability, associated 

with the state-related motion of a zero-input first-order linear difference equation (A-l) (- this 

system equation corresponds to a general form of the zero-input, 100%-target solvency level 

growth equation (3.25) derived by using the given spread funding formula (3.22) in section

3.4.4). As noted in A5.5.1, the equilibrium state xe is the value of a constant solution (as a 

particular solution) to equation (A-l) irrespective of a given initial value xo at an initial time to: 

m particular, if xe = xo, then the constant solution is called the equilibrium solution, i.e. Xt = xe 

constant for all t.

If continuous improvement in the stability of a pension scheme is its management goal, the 

preference ranking among the stability concepts described in A5.5.2 is clearly
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‘stability in the sense of Lyapunov’ -< ‘asymptotic stability’ -< ‘geometric stability’

where the preference notation -< unplies that the nght-hand side is preferred to the left-hand

side.

Therefore, we may classify a pension scheme into four different groups in accordance with the 

above stability preference relation:

- the ideal pension scheme would be a pension scheme under control characterised by the 

qualitative properties of geometric stability;

- the quasi-ideal pension scheme would be a pension scheme under control characterised by the 

qualitative properties of asymptotic stability;

- the threshold pension scheme would be a pension scheme under control characterised by the 

qualitative properties of stability in the sense of Lyapunov; and

- the chaotic pension scheme would be a pension scheme out of control (that is, an unstable 

pension scheme).

Lastly, we note that in the application of the spread funding plan (e.g. a funding plan governed 

by the spread funding formula (3.22) in section 3.4.4), the stability of a pension scheme is an 

essential consideration of a long-term pension fund valuation, together with the scheme’s 

security. This is in view of the fact that designing the spread funding plan in the direction of 

reducing the contribution rate risk has much to do with the state-related stability of the pension 

scheme because the spread funding formula can be expressed as a linear function of the state 

variable [see paragraph (b) of section 5.1],
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Appendix 5B.1: Solutions of Biquadratic Equation (5.13) [see, Upensky (1948, Ch. 5)]

Applying Ferran’s method, the biquadratic equation (5.13) has the following roots fj(k), j= l, 2, 

3 and 4 (note that any real-valued fj(k)’s are applied to Procedures 2 or 3 established in section

5.3.4.1):

{fj(k);j=l, 2, 3, 4} = {[h,(y) ± V(h,(y)2 + 8h2(y))] / 4, [h3(y) ± V(h3(y)2 + 81u(y))] / 4} 

where

hi(y) = V(c,2 - 4c 2 + 4y) - c ,  h2(y) = V(y2 - 4c4) - y, h3(y) = W(c,2 - 4c2 + 4y) - c, and ^(y) = 

-V(y2 - 4c4) - y, in which hj(y) is a function of any root y satisfying the following cubic 

resolvent of the biquadratic equation (5.12), that is,

y3 - c2y2 + (cic3 - 4c4)y + (4c2c4 - c i2c4 - c32) = 0.

This cubic equation produces roots, i.e. yi, y2 and y3, by Cardan’s method, that is,

s
yi = c 2/3 + u i + u2, y2 and y3 = c2/3 - (ui + u2)/2 ± — (ui u2), in which

i = ^ I , U! and u2 = [c23/27 + (c i2c4+ c32)/2 - (cic2c3 + 8c2c4)/6 ±
and

- -  H e r e

We note finally that w will be positive, zero or negative: if w > 0, then yi is real-valued but y2 

and y3 are complex conjugates, so yi is chosen for y and then the roots fj(k) each are simply 

computable; on the contrary, if w < 0, then y,, y2 and y3 are all real-valued, so y,, y2 and y3 

each can be chosen for y and then the roots fj(k) are to be calculated for yu y2 and y3 each.
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Appendix 5B.2: Numerical illustrations for stationary LQP optimisation problem (5.8)

A l. (Comparison with respect to 5, 0 and FRo)

Table 5.1

Optimal value of k (denoted by k*)

exp(5) = exp(ri) = 1.06 exp(ô) = 1.08, exp(ri) = 1.06

e FRo = 1.0 FRo = 0.5 Tl ii O ©

OIIe?Ph FRo = 0.5 & ll o o

100%' 1.0' 1.0' 1.0' 1.0' 1.0' 1.0'

90% 1.0 0.956498 0.956477 1.0 0.961861 0.961662

80% 1.0 0.932877 0.932806 1.0 0.940839 0.940506

70% 1.0 0.920467 0.920332 1.0 0.929514 0.929088

60% 1.0 0.914384 0.914181 1.0 0.923643 0.923156

50% 1.0 0.911622 0.911356 1.0 0.920554 0.920032

40% 1.0 0.910190 0.909864 1.0 0.918482 0.917944

30% 1.0 0.908880 0.908496 1.0 0.916453 0.915903

20% 1.0 0.907226 0.906781 1.0 0.914183 0.913611

10% 1.0 0.905243 0.904733 1.0 0.911741 0.911134

0%+ 0.056603+ 0.056603+ 0.056603+ 0.0566034 0.056603+ 0.056603+

Note that x' and x+ for a real number x are approximately equal to x but are smaller and larger 

than x, respectively; here, 0.056603+ = 1- exp(-r)).
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Appendix 5B.3: Diagrammatical illustrations for computational infeasiblity of quasi-stationary 

LQP optimisation problem (5.22) subject to [Constraints set I]

Decision tree

(Basic structure for the FDP approach)

Stage 0 : 

Stage 1:

E ven ti

4

Stage 2 : QJ2(QFRt- l ,  t; E v en ti)

4

k2(QFRt- l ;  E v en ti)

4

E v en ti Event2 Event3

4 4 4

QJ0(QFRt- l ,  t) = 0 (given starting condition)

4

QJ](QFRt- l ,  t)

4

k ,(QFRt- l )

4

Event2

4

QJ2(QFRt- l ,  t; Event2)

4

k2(QFRt- l ;  Event2)

4

E v en ti Event2 Event3

4 4 4

Event3

4

QJ2(QFRt- l ,  t; Event3)

4

k2(QFRt- l ;  Event3)

4

E ven ti Event2 Event3

4 4 4

Note that three disjoint and exhaustive events each are given by Event 1 = {kk: 0 < kk < 1}, 

Event2 = {kk: kk < 0} and Event3 = {kk: kk > 1}, and further, the above decision tree 

demonstrates that the number of possible decisions at stage n, i.e. kn(QFRt-l; Event j) where j = 

1, 2 or 3 and n = 1, 2, 3, is up to 3n'’ (and hence leading to a significantly intractable 

problem of computational dimensionality as n —» oo).
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Appendix 5B.4: Numerical illustrations for quasi-stationary LQP optimisation problem (5.22)

subject to [Constraints set II]

Graph 5,1

Projections of optimal quasi-stationary spread funding plan governed by formula (5.33) under 

the situation of the most likely expected investment performance (i.e. 8 = p)

Graph 5.1.1. The time path of optimal spread controls: kl = {k*(QHt) = 0.265734; t = 0, 1, 2, 

... under 0 = 10%} and k2 = { k * ^ )  = 0.247557; t = 0, 1, 2, ... under 0 = 1%}.

Graph 5.1.2. The time path of optimal funding levels: FR1 = {FR*t; t = 0, 1, 2, ... under 0 =

10%} and FR2 = {FR*t; t = 0, 1, 2, ... under 0 = 1%}.

Notice that FR*t>47 = T for 0 = 10%; and FR*t>51 = T for 0 = 1%, where T denotes to be 

approximately equal to 1 but smaller than 1.
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-------CNR1
—-  CNR2

Graph 5.1.3. The time path of optimal control action errors: CNR1 = { 'C R 'V  QNRft; t = 0, 1, 

2, ... under 9 = 10%} and CNR2 = ^CR**,- QNRft; t = 0. 1, 2, ... under 0 = 1%}.

Notice that QCRf> G47t - QNRftt47 = 0+ for 9 = 10%; and °CRf* e5, - = 0+ for 0 = 1%,

where 0+ denotes to be approximately equal to 0 but larger than 0.
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Graph 5.2

Projections of optimal quasi-stationary spread funding plan (5.33) under the better investment 

performance than most likely expected (i.e. 5 > q)

Graph 5.2.1. The time path of optimal spread controls: kl = {kY'Th): t = 0, 1, 2, ... under 9 

= 10%} and k2 = { k * ^ ) ;  t = 0, 1, 2, ... under 0 = 10%}.

Notice that for 0 = 10%, kYH-is) -  -74.685113, k*(QHt=i6) = 14.659166 and k*(QHe69) = 

3.567606; and for 0 = 1%, k'C'YW) = -94.099515, k"(QHt̂ iS) = 6.885535 and k’ (QHte66) = 

1.781531.
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FR1
FR2

Graph 5.2.2. The time path of optimal funding levels: FR1 = {FR*t; t = 0, 1, 2, ... under 9 = 

10%} and FR2 = {FR*t; t = 0, 1, 2, ... under 9 = 1%}.

Notice that for 9 = 10%, FR*t=15 = 0.999773, FR\=16 = 1.001185 and FR*«« = 1.005184; 

and for 9 = 1%, FR*t=,4 = 0.999832, FR*t=15 = 1.002399 and QSR*t>48 = 1 010462.

CNR1
CNR2

Graph 5.2.3. The time path of optimal control action errors: CNR1 = {qCR'V QNRft; t = 0, 1, 

2, ... under 9 = 10%} and CNR2 = {‘W f  QNRf,; t = 0, 1, 2, ... under 9 = 1%}.

Notice that for 9 = 10%, QCRf*t=6- QNRft=6 = 0.004639, QCRf*t=7- °NRft=7 = -0.001399 and 

QCRf* t>32 - QNRfG32 = -0.018487; and for 9 = 1%, QCRf"t=7 - QNRfl=7 = 0.000679, QCRf*t=8 - 

^ R ^  = -0.003988 and ^ R * * ^ - QNRftag = -0.018635.
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A ppendix 5B .5 : N um erical illustrations for threshold LQ P optim isation problem  (5.50)

Graph 5,3

Projections of optimal threshold spread funding plan (5.61)

Graph 5.3.1. The time path of projected real rates of return

Graph 5.3.2. The time path of optimal spread controls
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Graph 5.3.3. The time path of optimal control errors: (QFR t-l; t=0, 1, ..., 5) = (-0.5, 

-0.367567, -0.260195, -0.173442, -0.106452, -0.060117).

Graph 5.3.4. The time path of optimal control action errors: ^ C R ^ -^ R u  t=0, 1, ..., 5) 

(0.124376, 0.087490, 0.060336, 0.042133, 0.031298,0.025711).
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Chapter 6 Conclusions

In the thesis, we have applied the optimisation instruments/tools of optimal control theory, 

especially the method of dynamic programming (DP), m order to find a sensible pension 

funding plan that can be implemented for defined benefit pension schemes. The distinctiveness 

of the thesis arises from its demonstration of the usefulness and applicability of the control- 

theoretical approach to this problem by way of matching conceptually and mathematically a 

general framework for optimal control theory with a general mechanism for the funding of 

defined benefit pension schemes. We shall briefly review the main concepts and/or results of 

each of the previous Chapters 1~5 together with some suggestions for future research as an 

extension to the thesis.

In Chapter 1, we have asserted that the sponsoring employer and trustees of a defined benefit 

pension scheme have conflicting viewpoints on its pension funding plan due to their respective 

best interests, i.e. stability and security.

Chapter 2 has discussed how to define mathematically the solvency risk (as a measure for the 

security concept) and contribution rate risk (as a measure for the stability concept) and how to 

bring the concepts of optimal control theory into the field of the funding of defined benefit 

pension schemes. According to these discussions, we introduce and define the dynamic pension 

funding plan as a feedback funding mechanism characterised by controlling sequentially and 

optimally the solvency and contribution rate risks at the same time and adjusting these two 

risks, as time progresses, by means of processing the available information, updated with time.

In Chapter 3, we have constructed several linear dynamic system models representing a reduced 

structural model of the real financial structure of defined benefit pension schemes; in particular,
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the modified solvency-level growth equation and zero-input, 100%-target solvency-level growth 

equation These equations are treated as a dynamic system equation governing a controlled 

object.

In Chapter 4, we have formulated three distinct finite-horizon control optimisation problems, 

designed for a short-term, winding-up valuation with contribution rates unconstrained by any 

pre-determined funding plans - deterministic, stochastic with complete state information and 

stochastic with incomplete state information (note that the incomplete state information case 

allows for a one-unit time delay in the availability of current state information, reflecting, for 

example, the time needed for the background accounting and auditing work). Their respective 

solutions (derived by using the DP approach) are defined as our dynamic pension funding plan. 

A large portion of this chapter is devoted to the mathematical comparison between the dynamic 

pension funding plan and the spread funding plan and to suggestions for reducing the risk of 

insolvency. Thus, we reach the following conclusions:

(a) We believe that the following funding formula (specifying the dynamic pension funding 

plan) is suitable for balancing the conflicting interests of the employer and trustees:

DCt = NCt + pet - UVt + act

where

DCt = dynamic contribution rate applying between time t and t+1 (i.e. recommended 

contribution rate provided by the application of optimal control theory to pension funding);

NCt = normal cost applying between time t and t+1 (i.e. a regular cost provided by a chosen 

primary funding method, such as Projected Unit or Entry Age methods);

UVt = undesirable valuation outcome at time t (e.g. SLt-Ft for a solvency valuation, i.e. short-

term, winding-up valuation, or ALt-Ft for a classical actuarial valuation, i.e. long-term and 

going-concern valuation);
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pc, = proportional controlling parameter applying between t and t+1 e (0, 1); and 

ac, = additive controlling parameter applying between t and t+1.

Here, we note that the proportional and additive terms are specified by the optimal funding 

control procedure and the additive term is distinct from the spread funding formula and hence 

this formula can be thought of as a dynamic version of the spread funding formula.

(b) In order to strengthen the confidence in the financial soundness of defined benefit pension 

schemes, the actuary should employ one or a combination of the three distinct options - placing 

more emphasis on the solvency risk than on the contribution rate risk, increasing the solvency 

or funding target and using a more conservative valuation basis than the best estimate valuation 

basis.

(c) The performance comparison measure, based on the concept of mean-squared error, seems 

to be a useful measure for comparing the incomplete state information control problem with the 

corresponding complete state information control problem.

Chapter 5 is mainly devoted to investigating how the spread funding plan is optimally designed 

with respect to the spread parameter in the application of optimal control theory. Different to 

Chapter 4 (considering the situation of a short-term, winding-up valuation), this chapter 

considers the situation of a long-term, going-concern valuation from the viewpoint that the 

spread funding plan is designed and adapted primarily for dealing with such a valuation. In this 

respect, we have formulated four distinct infinite-horizon deterministic control optimisation 

problems, designed for a long-term, going-concern valuation under contribution rates 

constrained by the spread funding plan - stationary, quasi-stationary, non-stationary and 

threshold. We note that the formulation of the infinite-horizon control problems may appear 

unrealistic but has been made on grounds that dealing with infinite-horizon control problems 

could provide an analytically convenient approximation for optimising the value of the spread
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parameter under finite but long-term control problems. The main concepts and results are as 

follows:

(a) The stationary, quasi-stationary, non-stationary and threshold control problems each are 

characterised by how to treat the spread parameter kt. Thus, denoting the currently available 

information vector by Ht, then kt is considered to be a constant function in the stationary 

control problem (i.e. kt = k), a time-invariant function of Ht in the quasi-stationary problem (i.e. 

kt = k(Ht)), a time-varying function of Ht in the non-stationary control problem (i.e. kt = kt(Ht)) 

and a function of Ht switching from time-varying over an initial finite period Regime 1, to time- 

invariant over the last infinite period Regime2, in the threshold control problem (i.e. kt = 

kt(Ht) l Regime 1 k(Ht) • l Regime2-

(b) The stationary control problem is soluble by means of an algebraic approach, while the 

others are soluble by means of the DP approach, in particular the forward DP approach.

(c) For a systematic and unique optimisation procedure with respect to the spread parameters 

(except for the stationary control problem), it is necessary to set up a rule suitable for dealing 

with the case of encountering 100% funding levels over the control horizon - this rule is termed 

the possible spread rule: that is, if the funding level is 100% at some time in a process of 

sequential optimisation, then we set the optimal value of the corresponding spread parameter to 

be zero. This is needed because the spread funding formula has a weakness in its mathematical 

formulation for the case of a 100% funding level in the light of optimal control theory.

(d) The larger the number of strong boundary constraints on the spread parameter and the 

longer the control horizon, the higher is the potential risk that the sequential optimisation 

procedure can not be carried on (owing to the problem of computational dimensionality).

(e) Due to the computational insolubility of the non-stationary control problem; the threshold 

control problem is suggested as a best approximate alternative.
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(f) Finally, a possible extension of the typical spread parameter space {kt: 0<kt<l} to, say, {kt: 

-1 < kt < 2} is suggested in order to reflect somewhat the unpredictable (optimistic or 

pessimistic) nature of the future financial status of the scheme. This is believed to lead to an 

improvement m the stability and security of the spread funding plan, especially in a more 

realistic environment allowing for dynamic economic and demographic changes.

I would like to finish the thesis by restating some interesting and useful subjects for future 

research as possible extensions to the thesis, which have been mentioned in the thesis, except 

for (e):

(a) We have not sufficiently/satisfactorily discussed how to design (not necessary optimally) 

the supplementary performance criterion as an additional means for improving the performance 

of the primary performance criterion in the light of the pace of funding and/or the progress of 

solvency (or funding) levels in relation to their respective target values. This subject would 

involve a variety of numerical and/or mathematical comparisons between all suitable types of 

supplementary performance criteria (as noted in section 4.2.3.2).

(b) We have suggested three distinct ways of reducing the potential risk of insolvency but there 

will be some other available options. So, we need to analyse each of these options in tandem 

with all possible combinations in order to set a best (not necessary optimal) policy for this 

problem. Following the result (observed in Chapter 4) that an improved level of protection 

against insolvency requires an additional funding burden on the employer, the analysis should 

take into account the magnitude/volatility of the extra financial burden on the employer with 

respect to the improvement m the solvency of the scheme.

(c) All dynamic system models in the thesis are constructed on a simplified financial structure 

of the defined benefit pension scheme. In the real world, the financial structure of the scheme 

may be characterised by non-linearity and complexity. In this respect, the stochastic models for
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investment returns and benefit outgoes represented by IID normal random variables need to be 

modified by using, say, ARIMA type introduced by Box and Jenkins (1976) (as in Haberman 

(1994)) and then some rigorous approximation procedure is required for solvmg our stochastic 

control problem due to its insolubility for a general ARIMA model (as mentioned in 4.4.1).

(d) It would be possible to generalise our incomplete state information control problem with 

one-unit tune delay by way of introducing a b-unit time delay (b > 1) (as in Zimbidis & 

Haberman (1993)).

(e) Further, it would be possible to generalise the frequency of valuations with the inter-

valuation period being n time units, n bemg an positive integer (as in Haberman (1993)) - note 

that in the thesis we have assumed that valuations are performed every one time unit.

(f) Finally, it would be possible to allow specifically for MFR type minimum rules with 

liabilities calculated on a prescribed basis different from that used for a going-concern 

valuation basis (as discussed in Greenwood & Keogh (1997)).
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