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Abstract

A hider publicly commits to the number of seekers and then privately gets involved in a story, which may 
be compromising. Each seeker aims to be the first to learn and report a compromising story. The seekers 
learn the story privately and in continuous time. With more seekers, the hider’s story gets revealed at a 
faster rate, but each seeker gets discouraged and ceases learning more quickly. To reduce the probability 
of a compromising report, the hider may optimally choose infinitely many seekers. Nevertheless, the hider 
unambiguously benefits from making it harder for each seeker to learn her story.
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1. Introduction

It is a widespread belief that transparency is a key to good governance because it ensures that 
the public is well-informed and can hold the authorities accountable for their misdeeds.1 Act-
ing on the presumption that transparency necessarily leads to a well-informed public, numerous 
countries around the world have implemented some form of freedom of information legislation 
that allows the general public to access government-held data. Thus, in the UK, the Freedom of 
Information Act 2000 creates a public “right of access” to information held by public authori-
ties, while the US’s Accountability and Transparency Act of 2006 requires full disclosure of all 
entities receiving federal funds. However, since information collection requires time and effort, 
making information accessible does not necessarily mean that the public learns this information. 
In this paper, we develop this idea and show that open access to government information may 
backfire and hinder learning by the public.

Our model is inspired by the investigation into the COVID-19 lab-leak theory. In agreement 
with the US Accountability and Transparency Act, the information about the US government’s 
funding of gain-of-function experiments at the Wuhan Institute of Virology was in the public do-
main. Yet, after the start of the pandemic, it took some time for the public to learn this. Eventually, 
the public learned the funding information from a report by a group of armchair investigators, 
who pieced it together from various public sources.2 Like any other journalists, these investiga-
tors may have been motivated primarily by the desire to be the first to report a sensational story. 
We argue that, coupled with private learning, the drive to be first may reduce the probability 
that a sensational story gets reported to the public. When information is in open access, each 
investigator who is looking for a sensation quickly becomes pessimistic and stops looking be-
cause he thinks that, had there been anything interesting to uncover, somebody would probably 
have found it already. Consequently, the transparency requirement, instead of furthering public 
interests, benefits the government, which aims to hide the funding information to avoid being 
implicated in a public health emergency.

In our model, a hider, referred to as she, publicly commits to the number of seekers who have 
access to her. For example, the hider can be the government and the seekers can be journalists. 
Upon committing, the hider gets involved in a story that could be one of two types: compromising 
or non-compromising.3 In the lab-leak example, the story is whether the US government funded 
gain-of-function experiments in Wuhan. The story becomes obsolete at some exogenous rate, 
which we refer to as an obsolescence rate, and which acts as a discount rate that is common to 
the hider and the seekers.

After the story takes place, the seekers can undertake costly learning to uncover it. Initially, 
they do not know the story’s type but share a common prior belief that the story is compromising. 
Each seeker, referred to as he, has access to an information source that conclusively reveals the 
hider’s story, together with its type, at an exogenous rate that may depend on the type of the 
story. The seekers’ information sources are independent, conditional on the type of the hider’s 
story. Each seeker observes neither whether other seekers are learning nor the outcomes of their 

1 According to a classic result by Holmstrom (1979), in the principal-agent model, more information about the agent’s 
action benefits the principal. If the principal is the public and the agent is the government, then Holmstrom (1979) implies 
that transparency improves accountability.

2 See the Vanity Fair article.
3 The interpretation of a compromising story does not have to be literal. In our model, information is compromising

whenever its use hurts the hider.
2
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learning. Hence, the seekers’ game is a game of strategic experimentation with private learning. 
Only upon learning the story can a seeker report it. He profits only from reporting a compro-
mising story that is not obsolete and has not been reported yet; that is, the seekers’ game has a 
winner-takes-all payoff structure. All reports are public.

The hider’s goal is to choose the number of seekers to maximize the probability that they will 
fail to report a compromising story before it becomes obsolete. We interpret a higher number of 
seekers as lower information protection or higher transparency. In practice, a government may 
limit the number of people with access to classified information, or a president may choose the 
size of her audience by limiting the size of a press pool with direct access to her.4

The hider can restrict the number of seekers at no cost, but she is bound to give at least one 
seeker access to her. Moreover, we consider a range of parameters wherein each seeker finds at 
least some learning optimal. The restrictions on the hider’s choice and on the parameters make 
perfect protection infeasible, which renders the hider’s problem nontrivial. In applied settings, 
the hider may be able to smoothly trade off the benefit against the cost of information protection. 
By assuming that the cost is lexicographic – that is, the cost is infinite if the hider chooses 
zero seekers and is zero if she chooses any positive number of seekers – we abstract away from 
this trade-off, while acknowledging that technological or legal constraints may preclude perfect 
protection.

Given the optimal behavior of the seekers, the probability that a compromising story will 
be reported depends on the number of seekers with access to the hider. This result highlights the 
role of private learning whereby each seeker does not observe whether other seekers have already 
uncovered a non-compromising story. In our setting, had learning been public, the hider would 
have been indifferent to the number of seekers (see Section 5 for details).

The hider’s optimal choice of the number of seekers is dictated by a combination of direct and 
indirect effects. The direct effect of a higher number of seekers is an increase in the rate at which 
a compromising story is revealed, keeping each seeker’s learning strategy fixed. The direct effect 
hurts the hider. The indirect effect of a higher number of seekers operates through the change 
in each seeker’s learning strategy. More specifically, a higher number of seekers speeds up each 
seeker’s downwards belief updating in the absence of a compromising report, thus discouraging 
him from prolonged learning. The indirect effect benefits the hider.

Theorem 1 shows that for the hider, restricting access to a single seeker is optimal only if 
the obsolescence rate is sufficiently high. When the obsolescence rate is low, the indirect effect 
takes the upper hand over the direct effect, and the open access policy with an infinite number of 
seekers is optimal for the hider. Thus, our model predicts that a fully rational hider, whose sole 
objective is to avoid a compromising report, optimally chooses to endorse transparency and hide 
in plain sight.5

In our model, there are two crucial assumptions: first, the hider’s choice of the number of 
seekers is public; and, second, the hider’s choice cannot depend on the type of her story. If the 
hider’s choice were not publicly observable, she would benefit from surreptitiously deviating to 
a lower number of seekers. If the hider could condition the number of seekers on the type of 

4 By assuming that the hider does not want a compromising story to be revealed, we introduce a sharp conflict of 
interests between the seekers and the hider. In Section 3.5, we discuss applications in which the hider’s interests are 
aligned with the seekers’, and she wants to maximize the probability that a compromising story is revealed.

5 The idea of hiding in plain sight captured the imagination of many fiction writers. For example, in Edgar Allan Poe’s 
“The Purloined Letter,” an unscrupulous blackmailer leaves the stolen letter out in the open, but a careful police search 
fails to find it.
3
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her story, her public choice to restrict access could signal that the hider’s information is indeed 
sensitive, which would only attract seekers’ attention.6 To avoid signaling, in equilibrium, the 
informed hider might optimally choose a large audience size. We show that even in the absence 
of signaling, giving access to infinitely many seekers might be optimal for the hider.

The forces behind our result in Theorem 1 stem from the seekers’ learning dynamics and 
are distinct from the discouragement effect that appears in static settings with a winner-takes-all 
payoff structure. In static settings, faced with numerous competitors, the seekers reduce their 
learning because they think that someone else is likely to beat them in the contest to learn the 
story.7 In our setting, the seekers give up learning because the lack of competitors’ success makes 
them think that there is nothing valuable to learn in the first place; had the seekers known the 
story’s type with certainty, the open access policy would have no longer been strictly optimal.8

In our model, all transparency measures that are unrelated to the audience size are captured 
by the arrival rates of the compromising and non-compromising stories, which the hider can-
not control. We interpret the story arrival rates as exogenous information protection. In practice, 
the arrival rates are determined by regulations that shape the format in which information must 
be presented. If the information is disclosed in a clear format, it is easy to interpret, which 
corresponds to a higher story arrival rate. In the lab-leak example, to uncover the scale of US 
government funding for gain-of-function experiments, the investigators had to examine the tax 
exemption forms filed by the non-profit organization that divvied up the US grant money. The 
format of this information is governed by financial disclosure regulations.

Overall, there are two types of information protection – exogenous protection through the 
story arrival rates and endogenous protection through the audience size. The distinction between 
exogenous and endogenous protection is parallel to the distinction between the opacity and the 
availability of information, respectively. Theorem 2 shows that these two types of information 
protection can be either complements or substitutes. While the substitutability of different types 
of protection is not surprising, the complementarity is also possible and stems from the indirect 
effect. The indirect effect reflects the implicit cost of endogenous protection: stronger endoge-
nous protection – that is, a lower number of seekers – encourages prolonged learning, thus hurting 
the hider. Stronger exogenous protection, by reducing the duration of the seekers’ learning, may 
alleviate the implicit cost of endogenous protection, thus incentivizing the hider to increase the 
endogenous protection, which makes the two types of protection complements.

Theorem 3 shows that the hider always becomes better off when exogenous protection 
strengthens. In light of the interpretation of exogenous protection as the opacity of the disclosed 
information, Theorem 3 implies that the opacity of information helps the government to hide it, 
which is in line with the discussion in Fox (2007), who emphasizes the importance of clarity of 
information for effective transparency.

Our paper makes a substantial technical contribution to the experimentation literature with 
private learning. The analysis of the seekers’ subgame is technically challenging because the 
model features private learning. As a result, in addition to each seeker’s own belief about the 
story’s type, we need to keep track of other seekers’ common equilibrium belief, which means 

6 The phenomenon of triggering interest by publicly censoring information is called the Streisand effect and is formally 
studied by Hagenbach and Koessler (2017).

7 The discouragement effect is well-researched in the contest literature (Barut and Kovenock (1998)). Under some 
assumptions, the discouragement effect in symmetric contests can be so strong that the aggregate effort also decreases 
with the number of competitors (Fang et al. (2020)).

8 See Section 5 for further discussion.
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that the state space of each seeker’s dynamic optimization problem is two-dimensional. The 
technical machinery that we develop allows us to analyze the range of parameters where no 
news is good news. In this case, the seekers’ learning intensities are strategic substitutes and the 
unique symmetric equilibrium involves interior learning intensities. Furthermore, each seeker’s 
equilibrium learning intensity may have a discrete jump from an interior value to full intensity 
(see Lemma 3) – a feature that is novel to the literature, which tends to focus on the case where 
no news is bad news.9

The rest of the paper is organized as follows. This section concludes with a review of the 
relevant literature. Section 2 describes the setup. Section 3 outlines the main results of the pa-
per, provides high-level intuition and describes additional applications of the model. Section 4
contains a full analysis of the model. Section 5 discusses the assumptions and extensions of the 
model.

Related literature

Our paper is related to several strands of the literature. First, it belongs to a diverse literature on 
transparency, which studies the welfare implications of the transparency requirement in various 
settings. Gradwohl and Feddersen (2018) and Fehrler and Hughes (2018) show that in advisory 
committees, transparency may hinder information aggregation. In these models, transparency 
distorts the incentives of the informed party. In contrast, in our model, transparency affects the 
incentives of the uninformed party – the seekers.

On the technical side, our paper draws on the extensive literature on Poisson bandit-based 
games of learning and experimentation, initiated by Keller et al. (2005) and reviewed in Hörner 
and Skrzypacz (2017). More specifically, the seekers’ game belongs to the growing literature 
on strategic experimentation with private learning efforts, payoff externalities, and only partially 
observable learning outcomes. Within this literature, in contrast to the competitive setting of our 
model, Bonatti and Hörner (2011) and Guo and Roesler (2018) study a collaboration model with 
observable exit but unobservable signals and effort levels. Within the competitive setting, Halac 
et al. (2017) study how to encourage, as opposed to discourage, learning efforts in contests. They 
compare different prize-sharing schemes, including the winner-takes-all contest, and allow for 
unobservable successes, as opposed to unobservable failures.

In our model, each seeker’s learning is private and the total amount of learning depends on the 
number of seekers. While in the canonical strategic experimentation model of Keller et al. (2005), 
the total amount of experimentation is invariant to the number of experimenters, the existing 
literature suggests that moving from public to private learning may break this invariance. For 
example, Halac et al. (2017) demonstrate that the invariance featured in the public winner-takes-
all contest disappears in the hidden equal-sharing contest. Another way to break the invariance 
is to assume that an information source does not conclusively reveal the story type. For example, 
Keller and Rady (2010) minimally change the framework of Keller et al. (2005) by assuming that 
the arrival of lump-sum payoffs is no longer fully revealing and in their setting, the total amount 
of experimentation depends on the number of experimenters. Earlier, Bolton and Harris (1999)
demonstrate a similar point in a model where payoffs are governed by Brownian motion.

9 Other papers with private learning in experimentation models, such as Akcigit and Liu (2016) and Cetemen and 
Margaria (2023), assume that unsuccessful learning makes each seeker unambiguously more pessimistic, independent 
of his belief about the learning intensities of other seekers. The unambiguously downward direction of belief updating 
ensures the existence of an equilibrium in which players never use interior learning intensities.
5
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The paper that is closest to ours is Akcigit and Liu (2016). Similar to us, Akcigit and Liu 
(2016) consider a winner-takes-all competition in which learning is private and can result in 
either a good or a bad outcome, and players do not observe each other’s bad outcomes. Players’ 
inability or unwillingness to share bad news is central for Akcigit and Liu (2016) and for us. 
However, unlike us, Akcigit and Liu (2016) focus on two asymmetric players and their model is 
not easy to use to study the effect of changing the number of players.10 A simpler payoff structure 
allows us to work with symmetric players and fully characterize the equilibrium of the seekers’ 
subgame for an arbitrary number of players. Furthermore, Akcigit and Liu (2016) assume that 
the rate of outcome arrival is independent of the outcome type, which implies that no news 
is bad news, and players become progressively more pessimistic over time. The unambiguous 
direction of belief updating guarantees the existence of a simple strategy Bayesian equilibrium in 
which players never use interior learning intensities. In our game, the arrival rate varies with the 
outcome type, and so the direction of the belief updating may depend on the learning strategies of 
others, in which case there is no equilibrium in simple strategies. Solving the seeker’s subgame 
for more general information technology constitutes the technical contribution of our paper.

2. The model

The game is between a hider (she) and antagonistic seekers (he). At the outset of the game, the 
hider publicly commits to the number of seekers, denoted by n, who have access to the hider and 
can learn about her. After committing to the number of seekers, the hider gets involved in a story 
of type θ ∈ {0, 1}, where θ = 1 corresponds to a compromising story and θ = 0 corresponds to a 
non-compromising story.

The seekers know neither the hider’s story nor its type θ but can undertake costly learning to 
uncover it. The seekers share the same prior belief that the story is compromising, p0 ∈ (0, 1).

Each seeker is endowed with an information source and can learn from this source in con-
tinuous time over an infinite time horizon. At each time t , seeker i chooses a learning intensity 
xi
t ∈ [0, 1]. The seeker’s learning reveals to him the story and its type through a Poisson process 

with rate μ1x
i
t if θ = 1 and with rate μ0x

i
t if θ = 0. Learning is associated with a flow cost cxi

t . 
Parameters μ1 > 0, μ0 > 0 and c > 0 are exogenously given.11

Conditional on the story’s type, the seekers’ information sources are independent. The model 
features private learning: the seekers do not communicate with each other and observe neither 
other seekers’ learning intensities nor the outcome of their learning at any given moment in time.

The story becomes obsolete through a public Poisson process with arrival rate ρ ≥ 0. A story 
that has not become obsolete yet is called an up-to-date story. Given the payoff structure that 
we describe below, neither the hider nor the seekers care about obsolete stories, so the game 
effectively ends once the story becomes obsolete. Hence, the obsolescence rate ρ is equivalent 
to a discount rate that is common to all seekers and the hider.

Each seeker has an option to report the story, but only upon learning it. All reports are pub-
lic. The payoff from reporting a story is positive, and normalized to 1, only if the story is an 
up-to-date compromising story that has never been reported before; otherwise, the payoff from 
reporting a story is negative (we do not introduce a parameter for this payoff because it plays no 

10 See Section B.2 in Online Appendix to Akcigit and Liu (2016).
11 We allow μ0 to be arbitrarily close to 0, which captures the possibilities that either there are hardly any non-
compromising stories or that conclusive evidence of a non-compromising story is unlikely to be found. The latter 
possibility is relevant for the lab-leak example from the introduction.
6
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role in the subsequent analysis). The payoff from not reporting anything is zero. Given this pay-
off structure, in equilibrium, upon learning an up-to-date story, each seeker always reports it if it 
is compromising and never reports it if it is non-compromising.12 This asymmetry in reporting 
is crucial for the learning dynamics we study.

The hider’s objective is to choose n to maximize the probability of avoiding the report of a 
compromising story before it becomes obsolete. We interpret n as the strength of information 
protection: higher n means lower protection.

The cost of lowering n is zero, and so it is not included in the hider’s objective. We make this 
assumption to avoid the trivial conclusion that weak protection – that is, high n – is optimal be-
cause information protection is costly. However, we make two assumptions that preclude perfect 
protection. First, we assume that the hider has to give access to at least one seeker; that is, the 
hider can choose any n ≥ 1. Second, we assume

Assumption 1. μ1p0 > c,

which guarantees that each seeker finds at least some learning optimal.

3. Main results

In this section, we preview our main results. We postpone the full equilibrium analysis until 
Section 4.

3.1. Optimal number of seekers

We start the preview with the case in which ρ = 0. This special case provides sharp intuition 
for the main forces that drive our results.

We focus on a symmetric equilibrium in which all seekers use the same learning strategy. Due 
to the winner-takes-all payoff structure, seeker i immediately stops learning when he finds out 
the story either through his own learning or through a public report by another seeker. In the 
absence of a finding, seeker i’s equilibrium belief that the story is compromising, pt , changes 
deterministically according to the law of motion derived from Bayes’ rule:

ṗt = − (nμ1 − μ0) x∗
t pt (1 − pt ) , (1)

where x∗
t is the equilibrium learning intensity of each seeker who has not uncovered the story 

yet.13 Formula (1) shows that, over time, the seeker’s equilibrium belief pt decreases at a speed 
that is proportional to nμ1 − μ0. We refer to nμ1 − μ0 as the speed of learning, which is 
defined as the difference between the learning rates of compromising and non-compromising 
stories. Since the seekers optimally report only compromising stories, the learning rate of non-
compromising stories, μ0, does not depend on the number of seekers n.

12 Since a compromising story is always publicly reported once one of the seekers learns it, if μ0 = 0, then all learning 
is essentially public. We discuss how our results change when learning is public in Section 5 on page 25.
13 The proof for (1) is standard. By Bayes’ rule, for infinitesimally small �, the ratio of posterior beliefs, pt+�/(1 −
pt+�), is equal to the probability that the story is compromising and it has not been found during the time interval 
[t, t +�), pt (1 −nμ1�), divided by the probability that the story is non-compromising and it has not been found during 
[t, t + �), (1 − pt )(1 − μ0�).
7
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If μ0 > μ1 and the hider chooses a single seeker (n = 1), then, by (1), the seeker becomes 
progressively more optimistic that the story is compromising. Then, the seeker never stops learn-
ing before he uncovers the story, and so the hider has no chance of avoiding a compromising 
report. To reverse the direction of belief updating, in the equilibrium, the hider chooses n greater 
than μ0/μ1 > 1. The above intuition is central in our model – the hider finds the minimal access 
(n = 1) suboptimal because she wants to discourage the seekers from prolonged learning. In fact, 
in Section 4, we show that the desire to discourage learning is so strong that the hider optimally 
chooses the open access policy (n = +∞).

Case μ0 > μ1 provides a very simple intuition for suboptimality of n = 1. In contrast, the in-
tuition for the optimality of n = +∞ is sharper in the opposite case of μ0 < μ1. In the remainder 
of Section 3, unless explicitly stated otherwise, we focus on the case μ0 < μ1.

When μ0 < μ1, the choice of n cannot change the direction of belief updating, and, for any 
n ≥ 1, each seeker becomes progressively more pessimistic that the story is compromising. In the 
absence of a finding, each seeker optimally learns with intensity 1 until he becomes sufficiently 
pessimistic to stop learning.14 The belief threshold p̄ at which each seeker gives up learning does 
not depend on the number of seekers n. Intuitively, once other seekers have stopped learning, 
seeker i behaves as if he is alone, and so the belief threshold at which he optimally stops learning 
is independent of the number of seekers.

Given the seekers’ optimal behavior, the equilibrium probability that the hider avoids the 
report of a compromising story is given by

e−nμ1T (μ1,μ0,c,p0,n), (2)

where

T (μ1,μ0, c,p0, n) = 1

nμ1 − μ0
ln

(
p0(1 − p̄)

(1 − p0)p̄

)
, (3)

with p̄ defined later in (16). Function T defined in (3) is the time that each seeker’s belief pt

takes to reach threshold p̄ from prior p0; that is, T is the maximum duration of unsuccessful 
learning. Expression (3) for T is derived from the belief-updating process (1). Formula (2) is the 
probability that the exponentially distributed waiting time for a compromising report is greater 
than T ; the rate parameter of the exponential distribution is nμ1 because each seeker learns with 
intensity 1, and, thus, the seekers’ learning reveals the compromising story at rate nμ1.

The optimal number of seekers n maximizes (2) and balances two effects. First, n appears 
outside T in the power of the exponent. This occurrence of n reflects the direct effect whereby 
an increase in n increases the probability that the seekers’ learning reveals a compromising story 
during a time interval of fixed length. Second, n creates the indirect effect that reflects the 
change in each seeker’s learning strategy. This effect operates through the belief updating: an 
increase in n increases the speed of learning nμ1 −μ0, thus reducing the duration of unsuccessful 
learning T .

The optimal n maximizes (2), which after substituting T from (3) becomes(
p0(1 − p̄)

(1 − p0)p̄

)− nμ1
nμ1−μ0

. (4)

14 As we show in Section 4, if μ0 > μ1, then, on the equilibrium path, the seekers may learn with intensity lower than 
1. This property of the equilibrium complicates the intuition for some of our results, which, nevertheless, hold for any 
relationship between μ0 and μ1.
8
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In (4), only the exponent depends on n and so the maximization of (4) is equivalent to the mini-
mization of

nμ1

nμ1 − μ0
. (5)

Formula (5) elucidates that our results are driven by the asymmetry in the observability of differ-
ent types of learning outcomes: a finding of a compromising story is publicly observable, while 
a finding of a non-compromising story is only privately observable. If both types of stories were 
publicly observable, the learning rate of non-compromising stories would be nμ0 instead of μ0, 
so that the ratio (5) would become μ1

μ1−μ0
, making probability (4) independent of n.

As n increases, the ratio (5) increases through the numerator, which corresponds to the direct 
effect but decreases through the denominator, which corresponds to the indirect effect. Intuitively, 
the ratio (5) captures the trade-off that, as the number of seekers increases, they learn and report 
compromising stories faster but for a shorter time interval. Indeed, the numerator in (5) is equal 
to the rate at which the seekers report a compromising story while they are still learning – that is, 
while t < T . The denominator in (5) is equal to the speed of learning, which controls the duration 
of unsuccessful learning according to (3).

The ratio (5) decreases in n, which implies that the indirect effect always takes an upper 
hand over the direct effect. In other words, as the number of seekers increases, for the hider, the 
positive effect from the decrease in the duration of unsuccessful learning, T , is stronger than the 
negative effect from the increase in the rate nμ1 at which the seekers report a compromising 
story while they are still learning. Therefore, if there is an arbitrary exogenous upper bound, say 
N , on the number of seekers that the hider can choose, then the optimal n is always equal to N . 
For the sake of parsimony, to avoid carrying an extra parameter, we allow the hider to choose any 
n ≥ 1, effectively setting N = +∞. Then, the optimal n is +∞, which we refer to as the open 
access policy.15

The introduction of the possibility that the story becomes obsolete, i.e., ρ > 0, helps to 
disentangle the direct and indirect effects. Intuitively, if the story quickly becomes obsolete, 
minimizing the probability of a compromising report at the current moment – which is captured 
by the direct effect – is more important for the hider than minimizing the duration of learning – 
which is captured by the indirect effect. In more detail, a positive obsolescence rate ρ triggers 
occasional exogenous termination of the seekers’ unsuccessful learning, thus lowering the prob-
ability that the seekers stop learning because they became too pessimistic to continue. Hence, an 
increase in ρ makes the speed of the seekers’ belief updating less relevant to the actual duration 
of learning and, thus, to the probability that the hider avoids a compromising report. Because the 
indirect effect operates through the seekers’ belief updating, and the possibility of story obsoles-
cence makes the belief updating less relevant to the hider, an increase in ρ weakens the power 
of the indirect effect. Hence, for sufficiently high ρ, the direct effect prevails, making minimal 
access optimal.

Theorem 1 characterizes the optimal n for an arbitrary obsolescence rate ρ and an arbitrary 
relationship between μ0 and μ1. The proof is deferred to Section 4 and Appendix A.7.

15 There is a subtle technical complication with taking n to +∞. For any finite n, the seekers’ collective learning reveals 
a compromising story through a Poisson process with rate nμ1. When n is +∞, the collective learning process explodes 
as its arrival rate becomes +∞. However, we show that the algebraic limit n → +∞ of the probability that none of n
seeker reports a compromising story is well-defined. Hence, the optimality of n = +∞ should be understood as saying 
that if the hider is free to choose any number of seekers n from 1 to N , for sufficiently large but finite N , she would 
choose n = N .
9
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Theorem 1. Under Assumption 1, there exists ρ∗ ∈ (0, +∞) such that open access (n = +∞) is 
optimal for ρ < ρ∗, and minimal access (n = 1) is optimal for ρ > ρ∗.

The optimality of open access in Theorem 1 has an intuitive explanation. With many seekers, 
each individual seeker quickly becomes pessimistic and gives up learning because he thinks that, 
had there been anything valuable to uncover, he or another seeker would most likely have found 
it already. In real life, the very same mechanism can explain persistent survival of various myths 
that can be easily refuted. Thus, social media users are reluctant to perform elementary fact-
checking because they believe that any misinformation would have already been publicly refuted. 
Accomplished liars and imposters successfully rely on a similar mechanism. For example, the 
very public lies of Frank Abagnale, Jr., whose alleged autobiography was published in 1980 
and inspired the 2002 film “Catch Me If You Can,” were ultimately debunked only in 2020.16

Perhaps most astonishingly, Tutankhamun’s tomb – one of the greatest archaeological miracles 
of the 20th century because it was found nearly intact and densely packed with invaluable items 
– was hiding in plain sight for centuries because people were accustomed to thinking that the 
Valley of the Kings had already revealed all its secrets, so they simply stopped looking.

3.2. Comparative statics

Theorem 1 introduces threshold ρ∗, which separates region ρ ∈ (0, ρ∗), where n = +∞ is 
optimal, from region ρ ∈ (ρ∗, +∞), where n = 1 is optimal. The value of threshold ρ∗ depends 
on the parameters of the model – μ1, μ0, c and p0. Theorem 2 characterizes the behavior of ρ∗
with respect to these parameters. The proof of Theorem 2 is in Appendix A.8.

Theorem 2. Suppose that Assumption 1 holds and let ρ∗ be the threshold defined in Theorem 1. 
If μ1 = μ0 = μ, then ρ∗ decreases in μ. If μ0 < μ1, then ρ∗

• increases in μ0, and
• decreases in μ1.

If μ0 > μ1, then ρ∗

• decreases in μ0, and
• decreases in μ1 ∈ (c/p0,M1) and increases in μ1 ∈ (M1,μ0) for some M1 ∈ [c/p0,μ0].

Moreover, ρ∗ increases in the flow cost c and decreases in the prior belief p0.

We interpret the arrival rates of compromising and non-compromising stories, μ1 and μ0, as
exogenous information protection: higher μ1 and μ0 means lower protection. The exogenous 
measures may protect compromising and non-compromising information differently, and, hence, 
we do not insist on μ1 being equal to μ0.

The comparative statics of ρ∗ with respect to μ0 and μ1 illuminate the relationship between 
two types of protection: strengthening protection through decreasing the audience size n and 

16 In his 2020 book “The Greatest Hoax on Earth: Catching Truth, While We Can,” Alan Logan debunks almost every-
thing Frank Abagnale wrote in his autobiography.
10
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strengthening protection through increasing the opacity of the disclosed information – that is, 
through decreasing μ0 and μ1. Intuitively, the two types of protection should be substitutes. 
Indeed, if μ1 and μ0 are equal, then, according to Theorem 2, an increase in exogenous protection 
widens the interval where open access is optimal, implying that the two types of protection are 
substitutes. However, the case of μ1 = μ0 is special. When μ1 is not restricted to be equal to μ0, 
the exogenous information protection can be controlled in various ways – by changing only μ1, 
or only μ0, or both μ1 and μ0 simultaneously according to some rule. Depending on how we 
control the exogenous information protection, it can be either a substitute for or a complement to 
the protection through audience size. We demonstrate the ambiguity of the relationship between 
the two types of protection using two extreme cases – changing μ1 and μ0 separately. The main 
goal of this exercise is to demonstrate that the complementarity of the two types of protection 
stems from the dynamics of the seekers’ belief updating.17

Suppose that exogenous protection is controlled only through μ0. Then, the comparative stat-
ics of ρ∗ depend on whether μ0 < μ1 or μ0 > μ1. If μ0 < μ1, then following an increase in μ0, 
ρ∗ increases, widening the interval where open access is optimal – thus, the two types of protec-
tion are complements. If μ0 > μ1, then the opposite holds and the two types of protection are 
substitutes. The intuition for both cases can be traced back to the speed of belief updating under 
minimal access. This speed is equal to μ1 − μ0 if μ0 < μ1 and μ0 − μ1 if μ0 > μ1. When the 
belief updating speed is exogenously reduced, the interval where open access is optimal widens 
because opening access increases the speed, thus counteracting the exogenous change.

Now suppose that exogenous protection is controlled only through μ1. The intuition in the 
previous paragraph suggests that the comparative statics of ρ∗ with respect to μ1 should mirror 
the comparative statics with respect to μ0. If μ0 < μ1, then an increase in μ1 increases μ1 −μ0, 
the speed of belief updating under minimal access, and so, ρ∗ is expected to decrease, shortening 
the interval where open access is optimal. Similarly, if μ0 > μ1, then an increase in μ1 is ex-
pected to increase ρ∗. However, according to Theorem 2, the comparative statics with respect to 
μ1 defy the expectations in the case of μ0 > μ1. The reason is that the impact of μ1 is not limited 
to the speed of belief updating. An increase in μ1 increases the probability of a compromising 
report in any fixed-length time interval, which makes the open access policy less attractive. Con-
sequently, ρ∗ is expected to decrease as a result of an increase in μ1. If μ0 < μ1, the impact 
of μ1 on ρ∗ through the probability of a compromising report works in the same direction as 
its impact through the speed of belief updating; thus, ρ∗ decreases in μ1, implying that the two 
types of protection are substitutes.18 However, if μ0 > μ1, the two impacts pull ρ∗ in opposite 
directions, making the comparative statics ambiguous.

Theorem 2 also asserts that threshold ρ∗ increases in the flow cost of learning c and decreases 
in the prior belief p0, which is intuitive. If, from the outset, the seekers find learning more at-
tractive – either because learning is cheap, or because they believe that the hider is more likely 

17 In reality, it is hard to image protection measures that affect only μ0 alone. However, the ambiguity of the relationship 
between the two types of protection in the two extreme cases, when μ1 and μ0 change separately, indicates that similar 
ambiguity would prevail in more general cases, when both μ1 and μ0 change simultaneously according to some rule.
18 If μ0 < μ1, μ1 also influences ρ∗ through the belief threshold p̄. An increase in μ1 raises the benefit of learning, 
thus decreasing p̄ and widening the interval of beliefs where the seekers undertake learning. A decrease in p̄ increases 
the probability that the seekers’ learning is terminated as a result of the story becoming obsolete, weakening the indirect 
effect and making the open access policy less appealing to the hider. The described impact of μ1 on ρ∗ through the belief 
threshold works in the same direction as its impact through the probability of a compromising report and through the 
speed of belief updating.
11
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to have something compromising to hide – then the hider is more inclined to restrict access as 
much as possible.

The comparative statics with respect to p0 constitutes one of the testable predictions of our 
model – that governments that have less trust from their citizens are less transparent. This predic-
tion is especially interesting because the existing empirical and experimental literature focuses 
mainly on the causal relationship in the opposite direction and tests whether providing citizens 
with more information increases their trust in the government (see, for example, Grimmelikhui-
jsen et al. (2013), Alessandro et al. (2021)).

3.3. Policy implications

We treat the exogenous information protection parameters μ0 and μ1 as policy instruments. 
Theorem 3 shows that the hider becomes worse off when exogenous information protection 
weakens, either through an increase in μ0 or through an increase in both μ0 and μ1 by the same 
amount.19 We restrict attention to two possibilities, n = 1 and n = +∞, because, according to 
Theorem 1, only such n can be optimal for the hider.

Theorem 3. Suppose that Assumption 1 holds, the hider chooses n = 1 or n = +∞ and the 
seekers behave optimally. Then, the probability that the hider avoids a compromising report 
weakly decreases in μ0, and decreases when both μ0 and μ1 increase by the same amount.

The proof of Theorem 3 is in Appendix A.9 and relies on the analysis in Section 4. Here, we 
provide intuition for Theorem 3 in the case of μ0 < μ1 and n = 1.

An increase in μ0 decreases the speed of learning nμ1 − μ0 and, thus, is equivalent to the 
indirect effect of a decrease in n. Hence, the hider is worse off with a higher μ0.

In contrast, when both μ0 and μ1 increase by the same amount, the speed of learning μ1 −μ0
remains unchanged. Instead, a simultaneous increase in both μ0 and μ1 affects the probability 
that the hider avoids a compromising report in two ways. First, an increase in μ1 increases the 
rate at which a compromising story is revealed to a seeker, thus emulating the direct effect of 
an increase in n. Second, higher μ1 decreases the belief threshold p̄ defined below in (16), 
at which the seekers give up unsuccessful learning. The decrease in p̄ induces the seekers to 
undertake unsuccessful learning longer. Both effects lower the probability that the hider avoids a 
compromising report.

Theorem 3 encapsulates the policy implications of our model. If the society aims to hold the 
hider accountable – which is the case if, for instance, the hider is the government – then the policy 
recommendation is to promote clarity of the disclosed information. In contrast, if the society has 
the hider’s interests at heart – which is the case if the hider is a private individual – then our 
model advocates strong privacy protection laws (see more on this in Section 3.4).

3.4. Other applications: privacy paradox

Taken together, Theorem 1 and Theorem 3 can explain a well-documented privacy paradox. 
According to the privacy paradox, people often claim that they value privacy highly yet behave 

19 If the exogenous information protection weakens through an increase in μ1, then the direction of the change in the 
hider’s welfare is ambiguous. Intuitively, an increase μ1 may make the hider better off because it increases the speed 
of learning. This is the familiar indirect effect that incentivizes the hider to choose the open access policy. A detailed 
account of the impact of μ1 on the hider’s welfare can be found in the Supplementary Material.
12
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as if they value it very little (Norberg et al. (2007)).20 While Theorem 1 rationalizes the hider’s 
potentially privacy-compromising behavior, Theorem 3 predicts that the very same hider prefers 
strong privacy protection.21 At the heart of this discrepancy between behavior and attitude lies 
the difference between the corresponding types of privacy protection. In our model, the hider’s 
behavior affects the size of her audience, while her attitude relates to the arrival rates, which 
determine how easily a single seeker can find the hider’s story. In practice, the hider may choose 
the size of her audience either through forming social connections or through online privacy 
settings that, for example, limit wall post access on social networking sites. In contrast, the 
arrival rates are controlled, for example, by government, through privacy protection laws, or by 
private firms, through the encryption of data by instant messaging services such as WhatsApp. 
Empirical evidence supports the idea that individuals draw a distinction between increasing their 
own visibility and facilitating the use of already disclosed information. For example, Keith et 
al. (2013) documents that, while online users disclose their personal and location data to social 
network applications, they are outraged when an application abuses their trust and makes this 
information easier for other users to find.22

3.5. Alternative objective function for the hider

In the application that we have discussed so far, in line with the model, the hider does not want 
a compromising story to be revealed; thus, she minimizes the probability of a compromising 
report. In this section, we briefly talk about alternative applications in which the hider aims to 
maximize the probability of such a report. These alternative applications are leading examples in 
Akcigit and Liu (2016).

For example, the seekers explore a new technology that can be either good or bad. If the 
technology is bad (good), each seeker gets conclusive evidence that the technology is bad (good) 
at the learning rate μ0 (μ1). The first seeker who discovers that the technology is good patents 
it and temporarily reaps monopoly profits. In contrast, no seeker who obtains evidence that the 
technology is bad reports it, and, hence, such evidence remains hidden from the other seekers. 
The hider is a benevolent social planner who aims to maximize the probability of the discovery 
of a good technology.

Alternatively, the seekers are mathematicians who are trying to prove a conjecture. If the con-
jecture is correct, each seeker independently obtains the proof at rate μ1. However, the conjecture 
may be wrong, in which case the rate of finding a counterexample is μ0. The first seeker who 

20 The existing literature tends to explain the apparent inconsistency of attitudes and behavior either through privacy 
calculus or through various cognitive biases (Barth and de Jong (2017), Gerber et al. (2018), Solove (2021)). According 
to the privacy calculus theory, individuals rationally weigh the potential costs and benefits of information disclosure. For 
example, an online user’s laid-back behavior in relation to her privacy settings in a mobile application could be explained 
by the necessity to disclose information to get other benefits from this application. We provide a novel, fully rational 
explanation for the privacy paradox in a setting in which privacy protection is costless and information disclosure does 
not generate any extraneous benefits.
21 In light of Theorem 3, it is not surprising that the public expresses dissatisfaction with existing privacy legislation. 
According to a Pew Research Center survey (Auxier et al. (2019)), in 2019, three quarters of Americans said that there 
should be more privacy regulation. Similarly, according to Ofcom (ICO and Ofcom (2020)), in 2020, more than half of 
adult internet users in the UK expressed support for increased regulation across social media, video sharing and instant 
messaging.
22 As an example, Keith et al. (2013) considers the Girls Around Me app that merged Facebook and Foursquare data 
and layered it over Google Maps with real-time GPS location data to show a user where the nearest single women are.
13
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finds the proof gets the acknowledgment from the academic community; however, unless the 
conjecture is celebrated, a counterexample may not warrant a publication and so may go unno-
ticed. The hider is an editor of a mathematical journal who aims to maximize the probability of 
a successful proof.

In the absence of story obsolescence, maximizing the probability of a report is equivalent 
to maximizing (5). Since expression (5) decreases in n, n = 1 is optimal. This stark result is 
driven by the indirect effect whereby n = 1 maximizes the duration of unsuccessful learning. 
Positive obsolescence rate introduces urgency in the need for a discovery which implies that at 
the optimum n > 1 (but finite).23

4. Full analysis

In this section, we provide the full analysis of the game between the hider and the seekers. 
The game will be solved backwards, starting from the seekers’ game and then proceeding to 
characterize the hider’s optimal choice of the number of seekers n.

4.1. Equilibrium in the seekers’ game

Equilibrium concept
Consider seeker i. His optimal reporting strategy is trivial. Upon uncovering the hider’s story, 

a seeker ceases to learn. He reports the story if and only if the story is compromising and up-to-
date and has not been reported yet.

Let τ i be a random time at which the game effectively ends for seeker i – that is, when the 
story becomes obsolete, when one of the other seekers reports the hider’s story, or when seeker i
himself discovers the story, whichever happens first. Seeker i’s strategy is a deterministic learning 
process {xi

t | t ≥ 0} that terminates at τ i . In what follows, we refer to any seeker i for whom 
t < τ i as an active seeker.

Prior to τ i , seeker i updates his subjective belief qi
t that the hider’s story is compromising on 

the basis of his learning process and his belief about the learning processes of other seekers. Let 
x̃

j
t denote seeker i’s belief about the learning intensity of an active seeker j at time t and X̃−i

t =∑n
j=1
j �=i

x̃
j
t denote seeker i’s belief about the aggregate intensity of all other seekers, conditional 

on all of them being active. Conditional on the story being compromising, all other seekers are 
active, and so seeker i calculates the probability that none of the seekers learns and reports 
the story during an infinitesimal time interval [t, t + �) as 1 − μ1(X̃

−i
t + xi

t )�. Conditional 
on the story being non-compromising, the probability that seeker i does not learn it over time 
interval [t, t + �) is 1 −μ0x

i
t �. This probability does not depend on the belief about the learning 

intensity of other seekers because a non-compromising story is never reported, and so seeker i
does not observe when other seekers uncover a non-compromising story. By Bayes’ rule, the law 
of motion for the subjective belief is

q̇i
t =

(
(μ0 − μ1)x

i
t − μ1X̃

−i
t

)
qi
t

(
1 − qi

t

)
. (6)

We restrict attention to symmetric equilibria in which all seekers use the same strategy {x∗
t |

t ≥ 0}. By definition, in equilibrium, each seeker i correctly anticipates the learning processes 

23 We conjecture that, if ρ > 0, at the optimum, n > 1. We prove the conjecture for the case μ0 < μ1. In this case, in 
Appendix A.7, we show that the probability of no report has a U-shaped form with respect to n, which implies the result.
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of other active seekers, and so X̃−i
t = (n − 1)x∗

t . Then, by (6), the subjective belief of an active 
seeker i evolves according to

q̇i
t =

(
(μ0 − μ1)x

i
t − (n − 1)μ1x

∗
t

)
qi
t

(
1 − qi

t

)
. (7)

On the equilibrium path, no seeker deviates from the equilibrium strategy, and the subjective 
beliefs of all active seekers coincide. Denote by pt the common belief of active seekers. Then, 
with xi

t = x∗
t , (7) gives the common belief evolution (1).

We restrict attention to Markovian strategies in which, at each t , the learning intensity xi
t

depends only on the common belief pt and on the subjective belief qi
t .24 Let x∗ : [0,1] �→ [0,1]

be the intensity function that maps the common belief of active seekers pt into the intensity 
of learning. Let x : [0, 1]2 �→ [0,1] be the optimal strategy of seeker i that maps his subjective 
belief qt and the common belief of all other active seekers pt into the learning intensity of seeker 
i, assuming that all other active seekers use an intensity function x∗. Then, the intensity function 
x∗ is a symmetric equilibrium in Markovian strategies if and only if x∗(p) = x(p, p) for all 
p ∈ [0, 1].

Seeker i’s optimization problem
At each moment, seeker i chooses learning intensity x, which maximizes his expected payoff, 

taking the equilibrium learning strategy of other seekers, x∗(p), as given.
Let V (q, p) be the value function of seeker i; that is, his expected payoff from the optimally 

chosen learning strategy, given subjective belief q and common belief p. Then, the Hamilton-
Jacobi-Bellman (HJB) equation for function V is

ρV (q,p) = max
x∈[0,1]xL (q,p;V ) + x∗(p)L∗ (q,p;V ) , (8)

where

L (q,p;V ) = qμ1 − (qμ1 + (1 − q)μ0)V (q,p) + V1(q,p)(μ0 − μ1)q (1 − q) − c, (9)

L∗ (q,p;V ) = −(n − 1)μ1q (V (q,p) + (1 − q)V1(q,p))

+ V2(q,p) (μ0 − nμ1)p (1 − p) , (10)

and V1 and V2 denote the derivative of V with respect to the first and second argument, respec-
tively. Intuitively, equation (8) states that seeker i’s value V is equal to the marginal change of 
value due to his learning, plus the marginal change of value due to other seekers’ learning, dis-
counted by ρ. Defined in (9), L (q,p;V ) represents seeker i’s marginal benefit of learning net 
of his marginal cost of learning. The cost part is equal to the flow learning cost c. The benefit 
part is equal to the expected discrete change in the payoff, which accrues when seeker i uncovers 
a story – qμ1(1 − V (q, p)) for a compromising story and (1 − q)μ0(0 − V (q, p)) for a non-
compromising story – plus the expected rate of change in the value due to seeker i’s learning. 
Similarly, L∗ (q,p;V ) is equal to the expected discrete change in the payoff accrued when some 
other seeker uncovers a compromising story, (n − 1)qμ1(0 − V (q, p)), plus the expected rate 
of change in the value due to other seekers’ learning. In the terms related to the rate of change, 
((μ0 − μ1)x − (n − 1)μ1x

∗(p)) q (1 − q) and (μ0 − nμ1) x∗(p)p (1 − p) come from the law 
of motion for the subjective belief (7) and for the common belief (1), respectively.

24 If the story never becomes obsolete – that is, ρ = 0 – the restriction to Markovian strategies rules out equilibria in 
which, at some moment, all seekers take a collective coffee break and restart learning at a later date.
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The HJB equation (8) clearly shows that seeker i’s optimization problem is linear in his learn-
ing intensity x and so, for every q and p, has a corner solution x ∈ {0, 1}. Intuitively, x = 1 is 
optimal for high q and x = 0 is optimal for low q because the expected benefit of learning grows 
with q . Hence, we guess that the best response of seeker i takes the cutoff form: x(q, p) = 0 for 
all q < g(p) and x(q, p) = 1 for all q > g(p). On the cutoff curve q = g(p), the seeker is indif-
ferent between learning and not learning and, hence, could optimally choose any x(q, p) ∈ [0, 1]. 
The main challenge is to characterize the cutoff curve q = g(p).

We show that, in equilibrium, this curve takes a simple form using the guess and verify ap-
proach. We guess the optimal cutoff curve and calculate the expected payoff V (q, p) from the 
resulting learning strategy for any given priors (q, p). Then, we verify that function V is the 
value function of seeker i’s optimization problem.

The verification procedure relies on the following lemma:

Lemma 1. A continuous function V : [0, 1]2 �→ R is the value function for seeker i’s optimization 
problem if

1. V (0, p) = 0 for all p ∈ [0, 1];
2. V is non-negative on [0, 1]2;
3. V is continuously differentiable everywhere on [0, 1]2, except on a set M = M ∪ M0, 

where M0 is a countable set of points, and for each (q ′, p′) ∈ M , there exists a hyperplane 
H(q, p) = 0 and a neighborhood B around (q ′, p′) such that V is continuously differen-
tiable on {(q, p) ∈ B : H(q, p) < 0} and on {(q, p) ∈ B : H(q, p) > 0}; and

4. for all points of differentiability, V satisfies the HJB equation (8).

Strategy {xt | t ≥ 0} is optimal if and only if for every t > 0, it satisfies the following two condi-
tions:

L (qt ,pt ;V ) > 0 ⇒ xt = 1, (11)

L (qt ,pt ;V ) < 0 ⇒ xt = 0, (12)

and, moreover,

ρ = 0, x∗(p∞) = 0, x∞ = 0 ⇒ V (q∞,p∞) = 0. (13)

Proof. See Appendix A.1. �
It turns out that, in seeker i’s optimization problem, function V might not be differentiable and 

that additional restrictions are needed for points of non-differentiability. In Lemma 1, condition 3 
encapsulates these additional restrictions and allows us to use the notion of generalized derivative 
and appeal to the change-of-variable formula in Theorem 3.1 in Peskir (2007).25

While Lemma 1 limits the class of admissible functions through condition 3, an alternative, 
more standard approach to limit the class of admissible functions involves viscosity solutions. 
However, off-the-shelf results on viscosity solutions, such as Theorem 4.11 on page 197 in Bardi 

25 Appealing to Theorem 3.1 in Peskir (2007) may seem excessive because, while in our model, all processes are 
piecewise continuous, Peskir’s result is valid for a large class of stochastic processes, namely semimartingales with 
jumps of bounded variation. Therefore, our approach may prove useful in more general settings with, e.g., a Brownian 
component.
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Fig. 1. Phase diagram of (1) and (7) when μ0 < μ1; x∗(p) is defined in (14) and x(q,p) is defined in (15).

and Capuzzo-Dolcetta (1997), are not directly applicable to our setting because in equilibrium, 
function x∗(p) is discontinuous. We view Lemma 1 as a technical contribution which may prove 
useful in other settings with similar discontinuities.26

μ0 < μ1: growing pessimism
When μ0 < μ1, each active seeker who continues to learn becomes progressively more 

pessimistic that the hider’s story is compromising, regardless of the learning strategy of other 
seekers. Formally, (7) shows that q̇t < 0 when xt = 1, regardless of x∗

t .
We look for an equilibrium in the following form:

x∗(p) =
{

1, p > p̄,

0, p < p̄,
(14)

where all seekers learn with intensity 1 at beliefs above some threshold p̄ and learn with intensity 
0 at beliefs below that threshold. Since the seekers do not use interior intensities when they play 
(14), following Keller et al. (2005), we refer to (14) as an equilibrium in simple strategies. As-
suming that the other seekers’ behavior is described by (14), we conjecture that the best response 
of seeker i does not depend on belief p and has the cutoff curve q = p̄:

x(q,p) =
{

1, q > p̄,

0, q < p̄.
(15)

Fig. 1 depicts the evolution of (qt , pt) when x∗(p) is defined in (14) and x(q, p) is defined in 
(15). Lemma 2 gives the optimal threshold p̄, which is pinned down by maximizing seeker i’s 
payoff from strategy x(q, p).

26 Escudé and Sinander (2023) face a similar discontinuity problem. In their model, the endogenous behavior of other 
players causes discontinuities in the player’s flow payoff, while in our model, the discontinuity arises in the state evolution 
equation. Escudé and Sinander (2023) prove the validity of the viscosity approach in their setting; we chose a more direct 
method to deal with the discontinuity problem.
17
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Lemma 2. Suppose that μ0 < μ1. Then, x∗ defined in (14) with

p̄ = c

μ1
(16)

is an equilibrium. This equilibrium is the unique symmetric equilibrium in Markovian strategies.

Proof. See Appendix A.2. �
Because seeker i does not become more optimistic as a result of learning, at threshold p̄, he 

must be indifferent between learning for an additional instant of time and stopping immediately. 
Hence, threshold p̄ equates the flow cost of learning, c, to the expected flow benefit, given by 
p̄μ1, the product of the instantaneous probability of uncovering a compromising story and the 
payoff of 1 from reporting it. Threshold p̄ is the optimal stopping threshold for seeker i, re-
gardless of the learning strategy of other active seekers, which is a sufficient condition for the 
equilibrium of the form (14) to exist.

μ0 ≥ nμ1: growing optimism
When μ0 > nμ1, each active seeker who continues to learn becomes progressively more opti-

mistic that the hider’s story is compromising, regardless of the learning strategy of other seekers. 
Formally, equation (7) shows that q̇t > 0 when xt = 1, regardless of x∗

t .
In this case, an equilibrium in simple strategies does not exist. Towards a contradiction, sup-

pose that there exists an equilibrium in which all seekers learn with intensity 1 at any belief above 
some threshold and undertake no learning at any belief below this threshold. Because seeker i
becomes more optimistic as a result of learning, at the threshold, seeker i must be indifferent 
between learning until the game ends and not learning. If other seekers do not learn, seeker i’s 
indifference condition gives the threshold

p = c (ρ + μ1)

(ρ + μ0)(μ1 − c) + c(ρ + μ1)
. (17)

However, in the conjectured equilibrium, other active seekers learn at a belief just above threshold 
p, and so, the best response of seeker i is no learning. More specifically, if other active seekers 
learn, they learn with intensity 1 until the game ends because by (1), the common belief increases 
when μ0 > nμ1. Conditional on the described behavior of other active seekers, seeker i finds 
learning until the game ends optimal if his subjective belief is above the threshold

p̄ = c (ρ + nμ1)

(ρ + μ0)(μ1 − c) + c(ρ + nμ1)
. (18)

Threshold p̄ reduces to threshold p when n = 1. When n > 1, threshold p is lower than threshold 
p̄ because competition from other seekers, who may find a compromising story before seeker i

does, reduces the expected payoff from learning. Hence, whenever q ∈
(
p, p̄

)
, seeker i strictly 

prefers learning when other seekers do not learn and strictly prefers not learning when all other 
active seekers learn with intensity 1.

The discussion above suggests that there is no equilibrium in simple strategies. Hence, we 
look for an equilibrium in which, at beliefs between the thresholds p and p̄, seekers use an 
interior learning intensity; that is,
18
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Fig. 2. Phase diagram of (1) and (7) when μ0 > nμ1; x∗(p) is defined in (19) and x(q,p) is defined in (20).

x∗(p)

⎧⎪⎨
⎪⎩

= 1, p > p̄,

∈ (0,1), p < p < p̄,

= 0, p < p.

(19)

On the equilibrium path where q = p, the interior learning intensity x∗(p) of other seekers keeps 
seeker i indifferent between learning and not learning on interval (p, p̄). Hence, for the common 

belief p ∈
(
p, p̄

)
, the best response cutoff curve q = g(p) for seeker i must coincide with the 

45-degree line where q = p, as demonstrated in Fig. 2. Formally,

x(q,p) =
{

1, q > g(p),

0, q < g(p),
g(p) =

⎧⎪⎨
⎪⎩

p, p < p,

p, p ≤ p ≤ p̄,

p̄, p > p̄.

(20)

This form of the best response uniquely pins down the optimal learning intensity x∗(p) between 
the thresholds, which we derive in Lemma 3.27

Lemma 3. Suppose that μ0 ≥ nμ1. Then, x∗ defined in (19) with threshold p defined in (17), 
threshold p̄ defined in (18), and intermediate learning intensity

x∗(p) = (1 − c/μ1)(p − p)

(1 − p)(c/μ1 − p)
, p < p < p̄, (21)

27 The existence of equilibrium in pure strategies (albeit with interior learning intensities) is in stark contrast with 
the absence of such equilibrium in the growing optimism model of Bonatti and Hörner (2017) (BH17 thereafter). In 
BH17, the unique symmetric equilibrium involves randomization over stopping times. The difference in the equilibrium 
structures arises due to the difference in players’ motives. In our paper, the winner-takes-all payoff structure creates 
preemption fear, which is absent in BH17. Moreover, since news from others deprives seeker i from his only chance to 
obtain a positive payoff in the game, incentives to free-ride on learning efforts of others are muted in our model. Having 
preemption instead of free-riding motive lowers seeker i’s incentive to backload learning, which is crucial in BH17’s 
argument for the necessity of randomization.
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is an equilibrium. This equilibrium is the unique symmetric equilibrium in Markovian strategies.

Proof. See Appendix A.3. �
Note that x∗(p) from (21) belongs to [0, 1] because p̄ from (18) is less than or equal to c/μ1. 

It is intuitive that x∗(p) is increasing in p ∈
(
p, p̄

)
and is equal to 0 at p = p.

Curiously, at p = p̄, x∗(p) has a discrete jump. The size of the jump at p = p̄ can be heuristi-
cally derived from seeker i’s indifference between learning until the game ends and not learning 
at all at subjective belief q just below p̄. Suppose that other seekers share seeker i’s belief p = q; 
they learn with intensity x for an infinitesimally short time interval � and, subsequently, learn 
with intensity 1 until the game ends. Then, period length � and the initial belief q are connected 
through

p̄ = q + (μ0 − nμ1)xq(1 − q)�. (22)

Condition (22) emerges from common belief updating equation (1) evaluated at p = q and p +
dp = p̄. The last condition ensures that after time interval �, other seekers behave as if they 
are on the equilibrium path and start using intensity 1 when their common belief coincides with 
threshold p̄. Then, seeker i’s expected payoff from learning with intensity 1 until the game ends 
is

(qμ1 − c)�︸ ︷︷ ︸
payoff in period of length �

+{1 − (qμ1 + (1 − q)μ0 + q(n − 1)μ1x + ρ)�}︸ ︷︷ ︸
probability the game continues

×
{

expected payoff

from reporting︷ ︸︸ ︷
q ′μ1

ρ + nμ1
−c

expected duration of the game︷ ︸︸ ︷(
q ′

ρ + nμ1
+ 1 − q ′

ρ + μ0

)}
︸ ︷︷ ︸

continuation payoff

, (23)

where, by the law of motion (7),

q ′ = q + (μ0 − μ1 − (n − 1)μ1x)q(1 − q)�. (24)

Substituting q from (22) into (23), omitting terms of order higher than � and equating the result 
to the expected payoff from not learning, which is equal to zero, we get that seeker i is indifferent 
between learning and not learning at belief q if and only if

x = (n − 1)μ1

μ0 − μ1
, (25)

which coincides with (21) at p = p̄. The difference between 1 and (25) is positive and constitutes 
the jump in the learning intensity at p̄. Thus, to keep seeker i indifferent between learning until 
the game ends and not learning at all, the learning intensity of other seekers must have a jump as 
the common belief approaches p̄.28

28 Similar discontinuity in experimentation intensity also appears in Section 5 of Klein and Rady (2011) which ana-
lyzes a public experimentation game with exponential bandits of imperfectly negatively correlated types. We thank the 
Associate Editor for pointing this out.
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Fig. 3. Phase diagram of (1) and (7) when μ1 < μ0 < nμ1; x∗(p) is defined in (19) and x(q,p) is defined in (20).

μ1 ≤ μ0 < nμ1: mixed case
When μ1 < μ0 < nμ1, whether seeker i who learns with intensity 1 becomes progressively 

more optimistic or more pessimistic depends on the learning strategy of other seekers. In partic-
ular, equation (7) shows that when seeker i learns with intensity 1, q̇t < 0 if the intensity x∗(p)

is above threshold μ0−μ1
(n−1)μ1

and q̇t > 0 if x∗(p) is below that threshold.
By law of motion (1), in equilibrium, all seekers become weakly more pessimistic – that is, 

p weakly decreases. From the growing pessimism case, we know that with decreasing beliefs, 
seekers optimally learn with intensity 1 until threshold p̄, defined in (16). Suppose that at q = p̄, 
all other seekers stop learning entirely. Then, seeker i behaves as if he is alone and so would 
optimally learn at any q > p, where p is defined in (17). In particular, seeker i strictly prefers to 
learn at q = p̄ because it is greater than p.

Consequently, the equilibrium in simple strategies does not exist, and we must look for an 
equilibrium with interior learning intensities of the form (19), with (16) replacing (18). Lemma 4
formalizes this intuition. Fig. 3 depicts the evolution of beliefs q and p in this equilibrium.29

Lemma 4. Suppose that μ1 ≤ μ0 < nμ1. Then, x∗ defined in (19) with threshold p defined in 
(17), threshold p̄ defined in (16), and intermediate intensity defined in (21) is an equilibrium. 
This equilibrium is the unique symmetric equilibrium in Markovian strategies.

Proof. See Appendix A.4. �
In contrast to the growing optimism case, learning intensity x∗(p) does not have a jump at 

p = p̄ because the common belief approaches p̄ from above.30

29 The structure of the equilibrium is very similar to the symmetric Markov perfect equilibrium in Bolton and Harris 
(1999), Keller et al. (2005) and Keller and Rady (2010). The similarity is not surprising: both in our model and in the 
public strategic experimentation games of the above-mentioned papers, the equilibrium intensity is a function of a single 
state variable – common belief p and a public belief, respectively.
30 In contrast to the growing optimism case in our paper, the growing-optimism public experimentation game of Keller 
and Rady (2015) does not feature discontinuities in experimentation intensities. This contrast may be reconciled by 
21



T. Mayskaya and A. Nikandrova Journal of Economic Theory 212 (2023) 105699
As the common belief approaches p, the learning intensity x∗(p) in (21) gradually diminishes 
to 0. The learning slows down so quickly that the common belief p does not reach threshold p
in finite time, as stated in Corollary 1.

Corollary 1. On the equilibrium path where q = p, starting from a prior belief above p, the 
common belief p never reaches threshold p.

Proof. See Appendix A.5. �
Summary of the equilibrium in the seekers’ game

In sum, the seekers’ equilibrium behavior is characterized by learning intensity x∗(p) and 
belief thresholds p̄ and p, described in Lemmas 2, 3 and 4. For ease of reference, we extend the 
definition p to ensure that this threshold is well-defined for all parameter ranges. When μ0 ≥ μ1, 
threshold p is defined in (17). When μ0 < μ1, we define p to be equal to p̄ = c/μ1:

p = c (ρ + μ1)

(ρ + max{μ0,μ1})(μ1 − c) + c(ρ + μ1)
. (26)

Fig. 4 illustrates the evolution of the common belief (1) on the equilibrium path. Assump-
tion 1 sets the lower bound of c/μ1 on the seekers’ common initial belief p0. In the growing 
pessimism case, starting from p0, the seekers learn with intensity 1 until their common belief 
falls to threshold p = p̄ = c/μ1 where all learning ceases (see the top display in Fig. 4). In the 
growing optimism case, threshold p̄, defined in (18), is less than c/μ1; hence, the common be-
lief drifts up from p0 > p̄, and so the seekers learn with intensity 1 until the game ends (see 
the middle display in Fig. 4). In the mixed case, the seekers start learning with intensity 1 until 
their common belief falls to p̄ = c/μ1, but they continue learning at lower intensity after p̄ for 
all beliefs above p (see the bottom display in Fig. 4). As the common belief p decreases, the 
learning intensity x∗(p) in (21) gradually diminishes to 0; by Corollary 1, p never reaches p, 
and so no seeker ceases learning entirely before the game ends.31

4.2. Optimal number of seekers

The hider takes the equilibrium behavior of the seekers as given and chooses the number 
of seekers n ≥ 1 to maximize the probability of avoiding the report of a compromising story, 
denoted by P .

Lemma 5 derives the expression for P in the growing optimism case.

Lemma 5. Under Assumption 1, if μ0 ≥ nμ1, then the hider avoids the report of a compromising 
story with probability

P(μ1,μ0, c,p0, n,ρ) = ρ

ρ + nμ1
. (27)

Proof. See Appendix A.6. �
the observation that in Keller and Rady (2015), the equilibrium intensity is nonincreasing, which means that the belief 
trajectory never moves from the intermediate intensity region to the full intensity region.
31 Fig. 4 does not cover the case of μ0 = nμ1, in which the common belief does not change and the seekers learn with 
intensity 1 until the game ends. If μ0 = μ1 and n > 1, then the belief dynamics are described in the top display in Fig. 4.
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Fig. 4. Phase diagram of (1). The arrows indicate the belief trajectory that starts at p0.

It is intuitive that P in (27) is decreasing in 1 ≤ n ≤ μ0/μ1. Since, as illustrated in Fig. 4, 
each seeker learns with intensity 1 until his game ends, adding more seekers increases the rate 
at which a compromising story is revealed (direct effect) but does not affect the duration of the 
seekers’ learning (no indirect effect).

When ρ = 0, P in (27) is zero. Intuitively, if the hider chooses n ≤ μ0/μ1 and the story never 
becomes obsolete, the seekers never stop learning before one of them uncovers the story, and so 
the hider has no chance of avoiding a compromising report.

Lemma 6 derives the expression for P in the growing pessimism case.

Lemma 6. Under Assumption 1, if μ0 < μ1, then the hider avoids the report of a compromising 
story with probability

P(μ1,μ0, c,p0, n,ρ) = ρ

ρ + nμ1

(
1 − e−(ρ+nμ1)T (μ1,μ0,c,p0,n)

)
+ e−(ρ+nμ1)T (μ1,μ0,c,p0,n), (28)

where T (μ1, μ0, c, p0, n) is defined in (3).

Proof. See Appendix A.6. �
The hider avoids a compromising report in two cases: when the story becomes obsolete while 

the seekers are still learning; and when the seekers terminate unsuccessful learning while the 
story is still up-to-date. These cases correspond to the two terms in the right-hand side of (28). 
The first term in the right-hand side of (28) corresponds to interval (p̄, p0), where the seekers 
learn with intensity 1, and is equal to the probability that the story becomes obsolete before 
being reported and before the common belief reaches p̄. The second term in (28) describes the 
probability that the common belief reaches p̄, where all seekers give up learning.

Equation (28) generalizes (2) to an arbitrary obsolescence rate ρ ≥ 0. Indeed, when ρ = 0, 
the first term in (28) is equal to 0 and the second term becomes (2). Note that story obsolescence 
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does not affect the duration of unsuccessful learning T because the stopping threshold p̄ defined 
in (16) and the belief updating process (1) do not depend on ρ.

Probability P , defined in (28), depends on the number of seekers n in several ways. As dis-
cussed in the results preview on page 8, the overall effect of n can be decomposed into direct and 
indirect effects:

∂P (μ1,μ0, c,p0, n,ρ)

∂n
= Direct + Indirect. (29)

The direct effect corresponds to the term ρ + nμ1 in (28), which is equal to the rate at which 
a compromising story either is found or becomes obsolete. Higher n increases the rate at which a 
compromising story is found, which hurts the hider. Formally, the sign of this effect is negative:

Direct = − μ1ρ

(ρ + nμ1)2

(
1 − e−(ρ+nμ1)T (μ1,μ0,c,p0,n)

)
− e−(ρ+nμ1)T (μ1,μ0,c,p0,n)

(
1 − ρ

ρ + nμ1

)
μ1T (μ1,μ0, c,p0, n) < 0. (30)

The indirect effect is reflected in the speed of learning nμ1 −μ0 in T defined in (3). Higher n
reduces the duration of unsuccessful learning T , which benefits the hider. Formally, the sign of 
this effect is positive:

Indirect = −e−(ρ+nμ1)T (μ1,μ0,c,p0,n)nμ1
∂T (μ1,μ0, c,p0, n)

∂n
> 0 (31)

because T is decreasing in n.
In the mixed case, in which μ1 ≤ μ0 < nμ1, the expression for P(μ1, μ0, c, p0, n, ρ) takes 

a form similar to (28). The second term, which corresponds to beliefs below p̄, is multiplied by 
P(μ1, μ0, c, p̄, n, ρ), the probability that the hider avoids a compromising report, conditional 
on the common belief reaching p̄. In the growing pessimism case, this probability is equal to 
1 because the seekers stop learning at p̄. In contrast, in the mixed case, P(μ1, μ0, c, p̄, n, ρ) is 
less than 1 because, upon reaching p̄, the seekers continue to learn with diminishing intensity on 
belief interval (p, p̄). The general expression for P(μ1, μ0, c, p̄, n, ρ) is relatively complicated 
and relegated to Appendix A.6.

In the special case in which ρ = 0, the expression for P(μ1, μ0, c, p̄, n, 0) takes the simple 
form of enμ1T (μ1,μ0,c,p,n), where −T (μ1, μ0, c, p, n) > 0 measures the cumulative intensity re-
quired to move the common belief from p̄ to p. The formula is simple because, when ρ = 0, 
P(μ1, μ0, c, p̄, n, 0) does not depend on the temporal allocation of the cumulative learning in-
tensity. The overall expression for P(μ1, μ0, c, p0, n, 0) is presented in Lemma 7, which extends 
equation (2) to μ1 ≤ μ0 < nμ1.

Lemma 7. Under Assumption 1, if μ1 ≤ μ0 < nμ1 and ρ = 0, then the hider avoids the report 
of a compromising story with probability

P(μ1,μ0, c,p0, n,0) = e
−nμ1

(
T (μ1,μ0,c,p0,n)−T (μ1,μ0,c,p,n)

)
with p defined in (17),

(32)

where T (μ1, μ0, c, p, n) is defined in (3).

Proof. See Appendix A.6. �
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As before, in the mixed case, the overall effect of n on P(μ1, μ0, c, p0, n, ρ) can be decom-
posed into direct and indirect effects, but function P(μ1, μ0, c, p̄, n, ρ) amends (30) and (31)
with additional terms.

Theorem 1 derives the optimal number of seekers by maximizing P(μ1, μ0, c, p0, n, ρ). The 
direct and indirect effects of n on P work in opposite directions. As discussed in Section 3, when 
ρ = 0 and μ0 < μ1, the probability that the hider avoids a compromising report is increasing 
in n; that is, the indirect effect always takes an upper hand over the direct effect. For a positive 
obsolescence rate ρ, the probability P derived in Lemma 6 has a U-shape: it decreases in n for 
small n and increases in n for large n (the proof is in Appendix A.7). The U-shape of P leads to 
the bang-bang solution for the optimal number of seekers in Theorem 1.32

5. Discussion and concluding remarks

In our model, the hider controls the number of seekers. Each seeker is associated with one 
information source, and the seekers’ sources are conditionally independent. Hence, by control-
ling the number of seekers, the hider also controls the number of information sources. In a more 
general model, the information sources can be conditionally correlated. For example, when all 
journalists talk to the same expert, their information sources are perfectly correlated – that is, they 
learn from the same information source. As our model assumes that the information sources are 
conditionally uncorrelated, it is closer to a situation in which each journalist covertly undertakes 
an Internet search.

In the case of private learning from perfectly correlated information sources, on the equilib-
rium path of a symmetric Markov equilibrium, learning is essentially public, and it is as if all 
seekers learn from a single source and stop learning at the same time. As the number of seekers 
increases, the informativeness of the source does not change. At the same time, the benefit of 
learning decreases in the number of seekers and is equal to 1/n because once the information 
source reveals a compromising story, the seekers toss a coin to decide who reports it and gets the 
payoff of 1. Hence, increasing n raises the belief threshold at which the seekers cease learning, 
which reduces the duration of the seekers’ learning and benefits the hider. Consequently, with 
perfectly correlated information sources, open access – that is, n = +∞ – is always optimal.

If learning is public and information sources of the seekers are conditionally independent, in a 
symmetric Markov equilibrium, all seekers observe when others find a non-compromising story, 
and it is as if all seekers learn from a single source and cease learning at the same time. Unlike 
the setting with perfectly correlated sources, here, the informativeness of the source increases 
linearly with n, and the story arrival rate is nμθ . At the same time, more-intense competition still 
reduces each seeker’s benefit of learning to 1/n. Overall, as n increases, higher informativeness 
of the source cancels out the reduction in the benefit of learning, making the hider indifferent 
to the number of seekers when ρ = 0 (as we argued more formally in the discussion following 
formula (5) in Section 3.1). When ρ > 0, the hider strictly prefers n = 1 because with lower 
number of seekers there is a higher chance that the story becomes obsolete before they uncover it.

In our model, the discouragement effect familiar from the contest literature does not arise. 
According to the discouragement effect, a higher number of seekers reduces the marginal ben-
efit from learning, thus diminishing each seeker’s incentives to learn. In a dynamic model with 
Poisson information sources, at every instant [t, t + �) before the end of the game, the seeker’s 

32 In the mixed case, the proof of Theorem 1 is more direct and does not fully characterize the shape of P .
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marginal benefit from learning is independent of n because it is equal to the product of the in-
stantaneous probability of uncovering a compromising story, qtμ1�, times the payoff of 1 from 
reporting it. Thus, there is no discouragement effect.33 Instead, the optimality of open access 
policy hinges purely on the dynamics of the seekers’ belief updating. In Appendix B.2, we show 
that in a static analog of our model, the open access policy is also optimal, yet, in contrast to the 
dynamic model, there is no belief updating and the result is driven purely by the discouragement 
effect. Thus, even though the open access policy may be optimal both in static and in dynamic 
models, the forces that deliver this optimality are distinct.

An alternative way to model information protection is to allow the hider to control μ1, the 
rate of arrival of a compromising story. As we briefly touched upon in Section 3.3, in addition 
to the direct and indirect effects extensively discussed in this paper, a change in μ1 also affects 
threshold p̄ at which the seekers cease learning. Nevertheless, the qualitative insights of our 
model carry over to such an alternative setting, and the hider optimally chooses protection that 
might be laxer than the strongest feasible.34
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Appendix A. Proofs

A.1. Proof of Lemma 1

The value function describes the maximum expected payoff conditional on the story being up-
to-date and not reported. In order to use Itô’s formula (A.1), which is the key element of the proof, 
we need to incorporate the story status ∈ {irrelevant, found, ∅} into the argument of a function. 
To this end, denote W(q, p, ∅) = V (q, p); W(q, p, found) = 1, the payoff when seeker i finds 
a compromising story; W(q, p, irrelevant) = 0, the payoff when seeker i cannot benefit from 
reporting the story – that is, when either some other seeker reports a compromising story or the 
story becomes obsolete. We also need to introduce notions Nc

t for the Poisson process that reveals 
a compromising story for seeker i; Nnc

t for the Poisson process that reveals a non-compromising 
story for seeker i; Np

t for the Poisson process that reflects public reports of other seekers; and 
No

t for the Poisson process that reveals when the story becomes obsolete. By definition, τ i is the 
first time any of the four Poisson processes jumps. If no jump occurs, τ i = +∞.

Take any initial beliefs (q0, p0) and any strategy {xt | t ≥ 0} of seeker i. Suppose that V is 
continuously differentiable along the trajectory (qt , pt ). Then, the classical Itô’s formula can be 
applied:

33 The absence of the discouragement effect in our model can also be seen in that the belief threshold p at which 
learning stops is independent of n.
34 Details can be found in Supplementary material.
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W(qτi ,pτ i , statusτ i ) = W(q0,p0,∅)

+
τ i∫

0

∂W(qt ,pt ,∅)

∂q

(
(μ0 − μ1)xt − (n − 1)μ1x

∗(pt )
)
qt (1 − qt )dt

+
τ i∫

0

∂W(qt ,pt ,∅)

∂p
(μ0 − nμ1) x∗(pt )pt (1 − pt)dt+

τ i∫
0

(W(0,pt ,∅) − W(qt ,pt ,∅))dNnc
t

+
τ i∫

0

(W(1,pt , found) − W(qt ,pt ,∅))dNc
t +

τ i∫
0

(W(1,pt , irrelevant) − W(qt ,pt ,∅))dNp
t

+
τ i∫

0

(W(qt ,pt , irrelevant) − W(qt ,pt ,∅))dNo
t (A.1)

because qt and pt move according to (7) and (1) as long as the story remains undiscovered. By 
definition of W , (A.1) is equivalent to

W(qτi ,pτ i , statusτ i ) = V (q0,p0)

+
τ i∫

0

∂V (qt ,pt )

∂q

(
(μ0 − μ1)xt − (n − 1)μ1x

∗(pt )
)
qt (1 − qt )dt

+
τ i∫

0

∂V (qt ,pt )

∂p
(μ0 − nμ1) x∗(pt )pt (1 − pt)dt+

τ i∫
0

(V (0,pt ) − V (qt ,pt ))dNnc
t

+
τ i∫

0

(1 − V (qt ,pt ))dNc
t +

τ i∫
0

(0 − V (qt ,pt ))dNp
t +

τ i∫
0

(0 − V (qt ,pt ))dNo
t . (A.2)

By condition 3 of the lemma, formula (A.2) holds even if V is not continuously differentiable 
along the entire belief trajectory. Indeed, when the trajectory meets a point in M0 and moves 
further in the belief space, it immediately leaves set M0 because M0 is a countable set of points. 
Hence, set M0 can be ignored because V is continuous. When the trajectory (qt , pt ) moves along 
set M , (A.2) holds by Theorem 3.1 in Peskir (2007), with the caveat that we write ∂V (q,p)

∂q
and 

∂V (q,p)
∂p

for the generalized derivatives defined as

∂V (q,p)

∂q
:= 1

2

(
∂V (q,p)

∂q

∣∣∣∣
H(q,p)<0

+ ∂V (q,p)

∂q

∣∣∣∣
H(q,p)>0

)
, (A.3)

∂V (q,p)

∂p
:= 1

2

(
∂V (q,p)

∂p

∣∣∣∣
H(q,p)<0

+ ∂V (q,p)

∂p

∣∣∣∣
H(q,p)>0

)
. (A.4)

Taking conditional expectations and using the boundary condition 1 of the lemma, V (0, p) =
0, and
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IE
[
dNnc

t | qt ,pt

]= (1 − qt )μ0xt dt, IE
[
dNc

t | qt ,pt

]= qtμ1xt dt, (A.5)

IE
[
dNp

t | qt ,pt

]= qt (n − 1)μ1x
∗(pt )dt, IE

[
dNo

t | qt ,pt

]= ρ dt, (A.6)

we get

IE
[
W(qτi ,pτ i , statusτ i ) | q0,p0

]= V (q0,p0)

+ IE

⎡
⎢⎣

τ i∫
0

{
(L (qt ,pt ;V ) + c) xt +L∗ (qt ,pt ;V )x∗(pt ) − ρV (qt ,pt )

}
dt | q0,p0

⎤
⎥⎦, (A.7)

where L and L∗ are given in (9) and (10), respectively, and the derivatives in L and L∗ are taken 
in the generalized sense of (A.3) and (A.4).

The HJB equation (8) holds for all points of differentiability and, in particular, for both sides 
of each hyperplane of non-differentiability, H(q, p) = 0. Hence, (A.7) becomes

V (q0,p0) = IE

⎡
⎢⎣W(qτi ,pτ i , statusτ i ) − c

τ i∫
0

xt dt | q0,p0

⎤
⎥⎦

+ 1

2
IE

⎡
⎢⎣

τ i∫
0

{(
max

x∈[0,1]xL− (qt ,pt ;V )

)
− xtL− (qt ,pt ;V )

}
dt | q0,p0

⎤
⎥⎦

+ 1

2
IE

⎡
⎢⎣

τ i∫
0

{(
max

x∈[0,1]xL+ (qt ,pt ;V )

)
− xtL+ (qt ,pt ;V )

}
dt | q0,p0

⎤
⎥⎦, (A.8)

where L− and L+ are equal to L with the derivative ∂V (q,p)
∂q

taken from the H(q, p) < 0 side 
and from the H(q, p) > 0 side of the hyperplane, respectively.

The second and the third terms of (A.8) are non-negative for an arbitrary strategy {xt | t ≥ 0}
and equal to 0 if and only if {xt | t ≥ 0} satisfies conditions (11) and (12).

The first term of (A.8),

IE

⎡
⎢⎣W(qτi ,pτ i , statusτ i ) − c

τ i∫
0

xt dt | q0,p0

⎤
⎥⎦, (A.9)

is greater than or equal to the expected payoff from strategy {xt | t ≥ 0}, with equality achieved 
if and only if the strategy satisfies condition (13). If seeker i’s game ends with statusτ i ∈
{irrelevant, found}, then, by construction, W(qτi , pτi , statusτ i ) is equal to seeker i’s payoff at 
τ i . Otherwise, seeker i’s game ends with statusτ i = ∅, and there are two options.

First, the game could end due to seeker i finding a non-compromising story, in which case 
his subjective belief q jumps to 0. By the boundary condition 1 of the lemma, W(qτi , pτi , ∅) =
V (0, pτi ) = 0 is seeker i’s payoff at τ i .

Second, the game could last forever – that is, τ i = +∞. In that case, seeker i’s payoff at τ i is 
0, which is less than or equal to V (qτ i , pτi ) by condition 2 of the lemma. Hence, (A.9) is greater 
than or equal to the expected payoff from strategy {xt | t ≥ 0}. For the strategy {xt | t ≥ 0} that 
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satisfies condition (13), the equality is achieved because V (qτ i , pτi ) = 0 with probability 1 and 
V (qτ i , pτi ) is bounded (as it is a continuous function on a compact domain [0, 1]2).

To see that V (qτ i , pτi ) = 0 with probability 1, consider four cases. First, ρ > 0. Then τ i =
+∞ is a zero-probability event because the time of the first jump of the Poisson process No

t is 

finite with probability 1. Second, seeker i never stops learning entirely – that is, 
τ i∫
0

xt dt = +∞. 

This is a zero-probability event because the time of the first jump of the compound Poisson 

process Nc
t + Nnc

t is finite with probability 1. In the remaining two cases, 
τ i∫
0

xt dt < +∞, which 

implies that xτ i = 0. If x∗(pτ i ) > 0, then by evolution of q̇t , (7), seeker i’s subjective belief qt

converges to 0 – that is, qτ i = 0 – and by the boundary condition 1 of the lemma, V (0, pτi ) = 0. 
If x∗(pτ i ) = 0, then V (qτ i , pτi ) = 0 by condition (13).

In sum, V (q0, p0) is greater than or equal to the expected payoff from strategy {xt | t ≥ 0}, 
with equality achieved if and only if the strategy satisfies conditions (11)-(13). In other words, 
V is the value function and {xt | t ≥ 0} is the optimal strategy if and only if it satisfies conditions 
(11)-(13).

A.2. Proof of Lemma 2

A.2.1. Construction
Assuming that the other seekers’ behavior x∗(p) is described by (14), we conjecture that the 

best response of seeker i x(q, p) is defined in (15). Then, seeker i’s expected payoff function is 
0 for q ≤ p̄ and satisfies the HJB equation

ρV (q,p) = L (q,p;V ) + x∗(p)L∗ (q,p;V ) (A.10)

for q > p̄. Equation (A.10) gives us the payoff function up to a univariate function, which we 
calculate from the continuity of the payoff function along the belief trajectory.

If q > p̄ ≥ p, then x∗(p) = 0 and (A.10) becomes

ρV (q,p) = L (q,p;V ) . (A.11)

The family of solutions to the differential equation (A.11) is

V (q,p) = q (μ1 − c)

μ1 + ρ
− c (1 − q)

μ0 + ρ
+ q

(
1 − q

q

) ρ+μ1
μ1−μ0

W1(p), (A.12)

where W1 is some arbitrary function. Fig. 1 shows that the relevant belief trajectory leads to the 
line q = p̄, at which the payoff function is equal to 0. Hence, W1 in (A.12) can be pinned down 
by the continuity of the payoff function along q = p̄:

V (q,p) = q (μ1 − c)

μ1 + ρ
− c (1 − q)

μ0 + ρ
+ q

p̄

(
p̄ (1 − q)

(1 − p̄) q

) ρ+μ1
μ1−μ0

(
c (1 − p̄)

μ0 + ρ
− p̄ (μ1 − c)

μ1 + ρ

)
.

(A.13)

Maximizing (A.13) with respect to p̄ yields (16).
If q > p̄ and p > p̄, then x∗(p) = 1 and (A.10) becomes

ρV (q,p) = L (q,p;V ) +L∗ (q,p;V ) . (A.14)
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The family of solutions to the differential equation (A.14) is

V (q,p) = q (μ1 − c)

nμ1 + ρ
− c (1 − q)

ρ + μ0
+ q

(
1 − q

q

) ρ+nμ1
nμ1−μ0

W2

(
(1 − p)q

p (1 − q)

)
, (A.15)

where W2 is an arbitrary function.35

If p ≥ q > p̄, then the relevant belief trajectory leads to the line q = p̄, at which the payoff 
function is equal to 0. Hence, W2 in (A.15) is pinned down by the continuity of the payoff 
function along q = p̄:

V (q,p) = q (μ1 − c)

nμ1 + ρ
− c (1 − q)

μ0 + ρ
+ q

p̄

(
p̄ (1 − q)

(1 − p̄) q

) ρ+nμ1
nμ1−μ0

(
c (1 − p̄)

ρ + μ0
− p̄ (μ1 − c)

nμ1 + ρ

)
.

(A.16)

Maximizing (A.16) with respect to p̄ yields (16).
If q > p > p̄, then the relevant belief trajectory leads to line p = p̄, at which the payoff 

function is defined in (A.13). Hence, W2 in (A.15) is pinned down by continuity along p = p̄:

V (q,p) = q (μ1 − c)

nμ1 + ρ
− c (1 − q)

μ0 + ρ
+ q

p̄

(
p̄ (1 − p)

(1 − p̄)p

) ρ+nμ1
nμ1−μ0

×
⎛
⎝ (n − 1)μ1 (μ1 − c) p̄

(nμ1 + ρ) (μ1 + ρ)
+
(

p (1 − q)

(1 − p)q

) ρ+μ1
μ1−μ0

(
c (1 − p̄)

ρ + μ0
− p̄ (μ1 − c)

μ1 + ρ

)⎞⎠ . (A.17)

A.2.2. Verification
Function V (q, p) is equal to 0 for q ≤ p̄; it is defined in (A.13) for q > p̄ ≥ p, in (A.16) for 

p ≥ q > p̄, and in (A.17) for q > p > p̄; threshold p̄ is defined in (16). To prove that this is the 
value function and that strategy (15) is optimal, it is sufficient to verify conditions in Lemma 1.

Function V (q, p) is continuous by construction and can be verified to be continuously differ-
entiable everywhere except on the line p = p̄.36 Hence, condition 3 of Lemma 1 holds with M0
being the empty set and M containing all points of the line p = p̄.

By construction, V (q, p) is equal to 0 where x = 0 – that is, for q ≤ p̄. This implies condi-
tion 1 of Lemma 1 and condition (13).

The non-negativity condition 2 of Lemma 1 holds because V (q, p) = 0 for q ≤ p̄, V (q, p)

is continuously differentiable with respect to q ≥ p̄, V (p̄, p) = 0, V1(p̄, p) = 0, and the second 
derivative is positive for all q > p̄:

V11(q,p) =
(

c(1 − q)

q(μ1 − c)

) ρ+μ1
μ1−μ0 μ1 − c

(1 − q)2q(μ1 − μ0)
> 0 for p < p̄ < q, (A.18)

V11(q,p) =
(

c(1 − q)

q(μ1 − c)

) ρ+nμ1
nμ1−μ0 μ1 − c

(1 − q)2q(nμ1 − μ0)
> 0 for p̄ < q < p, (A.19)

35 The argument (1−pt )qt
pt (1−qt )

of W2 does not change with time t . This can be verified using (1) and (7). Hence, 

W2

(
(1−p)q
p(1−q)

)
is indeed constant along any belief trajectory.

36 Differentiability along q = p̄ follows because p̄ is optimally chosen; differentiability along the diagonal follows from 
direct computations.
30



T. Mayskaya and A. Nikandrova Journal of Economic Theory 212 (2023) 105699
V11(q,p) =
(

p(1 − q)

q(1 − p)

) ρ+μ1
μ1−μ0

(
c(1 − p)

p(μ1 − c)

) ρ+nμ1
nμ1−μ0 μ1 − c

(1 − q)2q(μ1 − μ0)
> 0

for p̄ < p < q. (A.20)

It remains to establish that V (q, p) satisfies the HJB equation (8) and that x(q, p) satisfies 
(11) and (12). By construction, V (q, p) satisfies

ρV (q,p) = x(q,p)L (q,p;V ) + x∗(p)L∗ (q,p;V ) , (A.21)

which becomes the HJB equation when x(q, p) satisfies (11) and (12). Conditions (11) and 
(12) hold because L (q,p;V ) is negative when x(q, p) = 0 – i.e., q < p̄ – and positive when 
x(q, p) = 1 – i.e., q > p̄. The negativity of L (q,p;V ) when q < p̄ is easily verified as p̄ = c

μ1
and

L(q,p;V ) = qμ1 − c < 0 for q <
c

μ1
. (A.22)

To see that L (q,p;V ) is positive for q > p̄, note that the sign of L is the same as the sign of 
L/q . Function L/q is continuous with respect to q because V is continuously differentiable with 
respect to q . Furthermore, L/q is equal to 0 at q = p̄ and is increasing for q > p̄ because

∂

∂q

(L (q,p;V )

q

)
= c

q2(ρ + μ0)
(ρ − L) , where (A.23)

L = ρ

(
p̄(1 − p)

p(1 − p̄)

) ρ+μ0
nμ1−μ0

(
p(1 − q)

q(1 − p)

) ρ+μ0
μ1−μ0

< ρ, p̄ < p < q; (A.24)

L =
(

ρ − (n − 1)μ1(ρ + μ0)

nμ1 − μ0

)(
p̄(1 − q)

q(1 − p̄)

) ρ+μ0
nμ1−μ0

< ρ, p̄ < q < p; (A.25)

L = ρ

(
p̄(1 − q)

q(1 − p̄)

) ρ+μ0
μ1−μ0

< ρ, p < p̄ < q. (A.26)

A.2.3. Uniqueness
We first derive an upper bound on seeker i’s equilibrium payoff V (q, p). The expected payoff 

of each seeker is bounded above by the payoff in the seekers’ game in the absence of competition, 
that is, when x∗

t = 0 for all t . Indeed, while a public report of another seeker informs seeker i
about the story type, it also ends the game depriving seeker i of any positive payoff. Formally, 
for fixed strategies of seekers, the payoff of seeker i is equal to

q

+∞∫
0

exp

⎛
⎝−ρt − (n − 1)μ1

t∫
0

x∗
τ dτ − μ1

t∫
0

xτ dτ

⎞
⎠ (μ1 − c) xt dt

− (1 − q)c

+∞∫
0

exp

⎛
⎝−ρt − μ0

t∫
0

xτ dτ

⎞
⎠xt dt, (A.27)

which is decreasing in other seekers’ learning intensity x∗
t .

In the growing pessimism case, if x∗(p) = 0 for all p, then seeker i’s value function is equal to 
(A.13) for q > p̄ (with p̄ defined in (16)) and 0 for q < p̄, which can be verified using Lemma 1. 
Thus, V (q, p) is bounded above by 0 for all q < p̄ and (A.13) for all q > p̄.
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Using the derived upper bound on V (q, p), we first prove that in any equilibrium, x∗(p) = 0
for all p < p̄. We then show the uniqueness of equilibrium for p > p̄.

While for q < p̄, V (q, p) is bounded above by 0, V (q, p) is also trivially bounded below by 0 
because seeker i can guarantee himself this payoff by undertaking no learning. Thus, V (q, p) = 0
for all q < p̄.

We argue that V (q, p) = 0 for all q < p̄ implies that x(q, p) = 0 for all q < p̄, which, in turn, 
implies that, in any equilibrium, x∗(p) = 0 for all p < p̄. Towards a contradiction, suppose that 
starting at some q < p̄, seeker i plans to learn for nontrivial amount of time. Then, as we can see 
from (A.27), V (q, p) increases in q: as q increases, even if seeker i does not optimally adjust 
his strategy, his expected payoff (A.27) increases because both integrals in (A.27) are positive. 
However, this contradicts that V (q, p) = 0 for all q < p̄.

We now turn to the region where p > p̄.
If x∗(p) = 0 for some p, then the common belief does not move and so, since we focus on 

equilibria in Markovian strategies, x∗
t remains equal to 0 for the duration of seeker i’s game. 

Hence, for seeker i the relevant part of the state space shrinks to a line on which p is constant. 
Along this line, seeker i’s value function is equal to (A.13) for q > p̄ and 0 for q < p̄, which can 
be verified using Lemma 1. Thus, x(p, p) = 0 only if p < p̄ and so, in any equilibrium, x∗(p)

must be positive for all p > p̄.
We now argue that the value of x∗(p) for p > p̄ can be uniquely pinned down. The argument 

follows backward induction, moving from lower to higher beliefs.37

Assume that the uniqueness of x∗(p) has already been proved for all p ≤ p̃ for some p̃ ≥ p̄. 
In region p ≤ p̃, the expression for V is as derived in Section A.2.1 because p is non-increasing, 
which means that for seeker i the relevant part of the state space shrinks to the region p ≤ p̃. 
Consider p just above p̃. Since x∗(p) > 0, by (1), the belief trajectory immediately travels into 
the region where p ≤ p̃. Thus, at p just above p̃, the optimal best response of seeker i is defined 
by the sign of L(q, p; V ) evaluated at V defined as in Section A.2.1. At such V , as we showed 
in Section A.2.2, L(q, p; V ) > 0 for all q > p̄. Thus, at p just above p̃, the unique best response 
of seeker i is x(q, p) = 1 for q > p̄, which means that x(p, p) = x∗(p) = 1, in any equilibrium.

A.3. Proof of Lemma 3

A.3.1. Construction
We conjecture that the seeker i’s best response to (19) is (20). Then, seeker i’s expected payoff 

function is V (q, p) = 0 when q ≤ g(p).
If q > p̄ and p > p̄, then x∗(p) = x(q, p) = 1 and V (q, p) satisfies (A.14). If μ0 > nμ1, 

then the family of solutions is given in (A.15), and any belief trajectory leads to point q = p = 1, 
where the payoff function must be bounded. The boundedness of the payoff function uniquely 

determines W2

(
(1−p)q
p(1−q)

)
= 0, and (A.15) becomes

V (q,p) = q (μ1 − c)

nμ1 + ρ
− c (1 − q)

ρ + μ0
. (A.28)

If μ0 = nμ1, then qt and pt do not change over time and the unique solution to (A.14) is also 
given by (A.28). If p̄ is defined in (18), then V (p̄,p) = 0, and V (q, p) is continuous along the 
line q = p̄ for p > p̄.

37 A similar argument is used, for example, in Keller and Rady (2015).
32



T. Mayskaya and A. Nikandrova Journal of Economic Theory 212 (2023) 105699
If q > p and p < p, then x∗(p) = 0, x(q, p) = 1 and V (q, p) satisfies (A.11). If μ0 > μ1, 
then the family of solutions is given in (A.12), and any belief trajectory leads to q = 1, where the 
payoff function must be bounded. The boundedness of the payoff function uniquely determines 
W1(p) = 0, and (A.12) becomes

V (q,p) = q (μ1 − c)

μ1 + ρ
− c (1 − q)

ρ + μ0
. (A.29)

If μ0 = μ1, then qt and pt do not change over time, and so the unique solution to (A.11) is also 

given by (A.29). If p is defined in (17), then V
(
p,p

)
= 0, and V (q, p) is continuous along the 

line q = p for p < p.
If p < p < p̄ and p < q , then x(q, p) = 1 and V (q, p) satisfies (A.10). For an arbitrary in-

tensity x∗(p), the solution to the differential equation (A.10) is not immediately obvious; hence, 
we use a workaround.

Any belief trajectory from a point (q0,p0) such that p < p0 < p̄ and p0 < q0 leads to the 
line p = p̄. Let T be the time at which the relevant belief trajectory reaches the line p = p̄. 
Let W(t, q0, p0) be the expected payoff at time t ∈ [0, T ], given the starting point q = q0 and 
p = p0.

The time-domain analog of the HJB equation (8) gives us the differential equation for 
W(t, q0, p0):

c = qtμ1 + Wt(t, q0,p0) − (qtμ1 + (1 − qt )μ0 + qt (n − 1)μ1x
∗(pt ) + ρ)W(t, q0,p0),

(A.30)

where Wt(t, q0, p0) denotes the derivative with respect to the time argument. The law of motion 
for the subjective belief (7) becomes

q̇t = (μ0 − μ1 − (n − 1)μ1x
∗(pt )

)
qt (1 − qt ) , (A.31)

which allows us to express x∗(pt ) in terms of q̇t and qt . Substituting the resulting expression 
into (A.30) yields

c = qtμ1 + Wt(t, q0,p0) −
(

ρ + μ0 − q̇t

1 − qt

)
W(t, q0,p0). (A.32)

The solution to the differential equation (A.32) is

W(t, q0,p0) = e(ρ+μ0)t (1 − qt )

⎛
⎝ W(T,q0,p0)

e(ρ+μ0)T (1 − qT )
+

T∫
t

qτμ1 − c

e(ρ+μ0)τ (1 − qτ )
dτ

⎞
⎠ .

(A.33)

The law of motion for the subjective belief (A.31) gives

qt = q0

q0 + (1 − q0)e(n−1)μ1X(t,p0)+(μ1−μ0)t
, t ∈ [0, T ], (A.34)

where

X(t,p0) =
t∫
x∗(pτ )dτ (A.35)
0
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is the total learning intensity on [0, t], given the initial belief p0. The law of motion for the 
common belief (1) gives

pt = p0

p0 + (1 − p0)e(nμ1−μ0)X(t,p0)
, t ∈ [0, T ]. (A.36)

By construction, we have pT = p̄, and (A.36) gives us the total learning intensity on [0, T ]:

X(T ,p0) = 1

μ0 − nμ1
ln

(
p̄(1 − p0)

(1 − p̄)p0

)
. (A.37)

Substituting (A.37) into (A.34) for t = T gives us the subjective belief at moment T :

qT = q0

q0 + e(μ1−μ0)T (1 − q0)
(

p̄(1−p0)
(1−p̄)p0

) (n−1)μ1
μ0−nμ1

. (A.38)

Continuity along the line p = p̄, together with (A.28), implies that

W (T ,q0,p0) = qT (μ1 − c)

nμ1 + ρ
− c (1 − qT )

ρ + μ0
. (A.39)

Substituting (A.39) and (A.38) into (A.33) and using (A.34) for qτ inside the integral, we get

W(0, q0,p0) = q0(μ1 − c)

⎛
⎝e−(ρ+μ1)T

ρ + nμ1

(
(1 − p̄)p0

p̄(1 − p0)

) (n−1)μ1
μ0−nμ1

+
T∫

0

e−(ρ+μ1)τ−(n−1)μ1X(τ,p0) dτ

⎞
⎠− c(1 − q0)

ρ + μ0
. (A.40)

Since V (q, p) = 0 when q ≤ g(p), continuity on the diagonal requires that W(0, p0, p0) =
0 for every p0 ∈

(
p, p̄

)
. Hence, dW(0,p,p)

dp
= 0, which allows us to pin down the equilibrium 

intensity x∗(p).
To derive dW(0,p,p)

dp
, note that time T is a function of p0, and the law of motion for the 

common belief (1) gives

dT (p0)

dp0
= − 1

(μ0 − nμ1)x∗(p0)p0(1 − p0)
. (A.41)

By definition (A.35),

X(t,p0) = X(�,p0) + X(t − �,p�) (A.42)

for any � ∈ [0, t]. As the left-hand side of (A.42) is independent of �, the derivative of the 
right-hand side of (A.42) with respect to � must be equal to zero. Hence, setting � → 0, and 
substituting Xt(0, p0) = x∗(p0) and ṗ0 from (1), we get the derivative of X(t, p0) with respect 
to p0:

∂X(t,p0)

∂p0
= Xt(t,p0) − x∗(p0)

(μ0 − nμ1)x∗(p0)p0(1 − p0)
. (A.43)

Differentiating (A.40) and using (A.41), (A.43) and (A.37), we get
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dW(0,p,p)

dp
= ρ + μ1 + (μ0 − μ1 − p(μ0 − nμ1))x

∗(p)

(μ0 − nμ1)x∗(p)p(1 − p)
W(0,p,p)

+ c(μ0 − μ1)

p(ρ + μ0)(μ0 − nμ1)

(
1 − (pμ0 + ρ)(μ1 − c) − (1 − p)μ1(c + ρ)

c(1 − p)(μ0 − μ1)x∗(p)

)
. (A.44)

Substituting W(0, p, p) = dW(0,p,p)
dp

= 0 into (A.44) gives us

x∗(p) = (pμ0 + ρ)(μ1 − c) − (1 − p)μ1(c + ρ)

c(1 − p)(μ0 − μ1)
, (A.45)

which is equivalent to (21).
For any given initial beliefs (q0, p0) in the middle region p < p0 < p̄, q0 > p0, the expected 

payoff V (q0, p0) is equal to the right-hand side of (A.40). Time T is completely determined by 
the motion of the common belief and, therefore, does not depend on the subjective belief q0. 
Hence, V (q0, p0) is a linear function of q0:

V (q,p) = qF(p) + G(p). (A.46)

Substituting (A.46) into (A.10) gives us the differential equations for F(p) and G(p):

c + (ρ + μ0)G(p) = (μ0 − nμ1)x
∗(p)(1 − p)pG′(p), (A.47)(

ρ + μ1 + (n − 1)μ1x
∗(p)

)
(F (p) + G(p)) − (ρ + μ0)G(p) − μ1

= (μ0 − nμ1)x
∗(p)(1 − p)pF ′(p). (A.48)

The expected payoff along the line p = p̄ is defined in (A.28), which gives us the boundary 
conditions:

F(p̄) = c

ρ + μ0
+ μ1 − c

ρ + nμ1
, G(p̄) = − c

ρ + μ0
. (A.49)

Given the boundary condition (A.49) for G(p̄), the unique solution to the differential equation 
(A.47) is

G(p) = − c

ρ + μ0
, p < p < p̄. (A.50)

Given (A.50), the boundary condition (A.49) for F(p̄), and the expression (18) for p̄, we 
uniquely identify function F(p):

F(p) = c

p(ρ + μ0)
, p < p < p̄. (A.51)

Not surprisingly, F(p) = −G(p)/p because V (p, p) = W(0, p) = 0 by construction of the 
learning intensity (A.45).38 In sum,

V (q,p) = c(q − p)

p(ρ + μ0)
. (A.52)

38 An alternative way to get the equilibrium intensity is to use condition F(p) = −G(p)/p. Substituting 
F(p) = −G(p)/p and F ′(p) = G(p)/p2 − G′(p)/p into (A.48) and comparing it with (A.47), we get G(p) =

μ1p−c
(μ0−μ1)(1−x∗(p))(1−p)

. Substituting this expression for G(p) into (A.47) gives us the differential equation for x∗(p). 
The boundary condition for x∗(p̄) comes from (A.49). It is straightforward to verify that (A.45) satisfies this boundary 
condition and the derived differential equation for x∗(p).
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A.3.2. Verification
Function V (q, p) is equal to 0 for q ≤ g(p); it is defined in (A.28) when q > p̄ and p > p̄, 

in (A.29) when q > p and p < p, and in (A.52) when p < p < p̄ and p < q; thresholds p and 
p̄ are defined in (17) and (18). To prove that this is the value function and that strategy (20) is 
optimal, it is sufficient to verify conditions in Lemma 1.

Function V (q, p) is continuous by construction and continuously differentiable everywhere 
except for the lines R1 = {(q, p) : q = p, p ≤ p}, R2 = {(q, p) : q = p̄, p ≥ p̄}, R3 =
{(q, p) : q = p, p ≤ p ≤ p̄}, R4 = {(q, p) : p = p̄, q ≥ p̄} and R5 = {(q, p) : p = p, q ≥ p}. 
Hence, condition 3 of Lemma 1 holds with M0 being the set with two points, q = p = p and 
q = p = p̄, and M containing all points of the lines R1, R2, R3, R4 and R5, except for the two 
points from M0.

By construction, V (q, p) is equal to 0 where x = 0 – that is, for q ≤ g(p). This implies 
condition 1 of Lemma 1 and condition (13).

The non-negativity condition 2 of Lemma 1 holds because V (q, p) is continuous, equal to 0 
for q ≤ g(p) and increasing in q for q > g(p).

It remains to establish that V (q, p) satisfies the HJB equation (8) and x(q, p) satisfies (11)
and (12). By construction, V (q, p) satisfies (A.21), which becomes the HJB equation when 
x(q, p) satisfies (11) and (12). Conditions (11) and (12) hold because L (q,p;V ) is negative 
when x(q, p) = 0 – i.e., q < g(p) – and positive when x(q, p) = 1 – i.e., q > g(p). The negativ-
ity of L (q,p;V ) when q < g(p) follows from g(p) ≤ c/μ1 and inequality (A.22), which holds 
in this case. The positivity of L (q,p;V ) when q > g(p) follows by direct computations:

L(q,p;V ) =
c
(
g(p)(q − p)ρ + q(g(p) − p)μ1

)
g(p)p(ρ + μ0)

> 0 for q > g(p) ≥ p. (A.53)

A.3.3. Uniqueness
The argument for the equilibrium uniqueness is similar to the one in Section A.2.3, with two 

differences.
The first difference is in the upper bound for V (q, p). In the growing optimism case, if 

x∗(p) = 0 for all p, then seeker i’s value function is equal to (A.29) for q > p (with p de-
fined in (17)) and 0 for q < p, which can be verified using Lemma 1. Thus, V (q, p) is bounded 
above by 0 for all q < p and (A.29) for q > p. Then, following the argument in Section A.2.3
yields that, in any equilibrium, x∗(p) = 0 for all p < p and x∗(p) > 0 for all p > p.

The second difference is that because now the common belief is non-decreasing, in the back-
ward induction argument, we move from higher to lower beliefs.

In any equilibrium, x(q, p) = 1 for sufficiently high q because V (1, p) is bounded above by 
(μ1 − c)/(ρ + μ1), the expression (A.29) evaluated at q = 1, and, thus, L(1, p; V ) = μ1(1 −
V (1, p)) − c > 0. Thus, for sufficiently high p, x∗(p) = 1 in any equilibrium.

To argue that the value of x∗(p) for any p > p can be uniquely pinned down, we assume that 
the uniqueness of x∗(p) has already been proved for all p ≥ p̃ for some p̃ > p. In region p ≥ p̃, 
the expression for V is as derived in Section A.3.1 because p always increases when x∗(p) > 0, 
which means that for seeker i the relevant part of the state space shrinks to the region p ≥ p̃. 
Consider p just below p̃. Since x∗(p) > 0, by (1), the belief trajectory immediately travels into 
the region where p ≥ p̃. Thus, at p just below p̃, the optimal best response of seeker i is defined 
by the sign of L(q, p; V ) evaluated at V defined as in Section A.3.1. At such V , as we showed 
in Section A.3.2, L(q, p; V ) < 0 for all q < g(p) and L(q, p; V ) > 0 for all q > g(p). Thus, at 
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p just below p̃, the unique best response of seeker i is x(q, p) = 0 for q < g(p) and x(q, p) = 1
for q > g(p).

Suppose p̃ > p̄, so that point p, which is just below p̃, is also greater than p̄. Then, p >

g(p) = p̄ and, thus, x(p, p) = 1. Thus, x∗(p) = 1 for all p > p̄.
Suppose p̃ ≤ p̄, so that at p just below p̃ we have g(p) = p. Then, for all q < p, the unique 

best response of seeker i is not to learn, and so, V (q, p) = 0 (seeker i will never learn in the 
future because once p increases to p̃, the trajectory enters the region where we conjecture that 
the equilibrium is unique and, thus, we know the behavior of seeker i). By continuity of V , 
V (q, p) = 0 at q = p. Then, since V (p, p) = 0, x∗(p) is uniquely pinned down as (A.45), as we 
show in Section A.3.1.

A.4. Proof of Lemma 4

A.4.1. Construction
We conjecture that the seeker i’s best response to (19) is (20). His expected payoff is 

V (q, p) = 0 when q ≤ g(p); it is given by (A.29) when q > p and p < p; it is given by (A.16)
when p ≥ q > p̄.

If p < p0 < p̄ and p0 < q0, then the expected payoff is given by W(0, q0, p0), defined in 
(A.33). The expression (A.34) for the subjective belief simplifies the integral in (A.33) and gives

W(0, q0,p0) = (1 − q0)

(
W(T,q0,p0)

e(ρ+μ0)T (1 − qT )
− c

(
1 − e−(ρ+μ0)T

)
ρ + μ0

)

+ q0(μ1 − c)

T∫
0

e−(ρ+μ1)τ−(n−1)μ1X(τ,p0) dτ. (A.54)

The relevant belief trajectory leads to qT = 1 and pT = p because if it approaches the diagonal 
qT = pT , it immediately bounces off it to the region q > p: the laws of motion (7) and (1) give

q̇t − ṗt = (μ0 − μ1)(1 − x∗(pt ))pt (1 − pt ) > 0 (A.55)

under the assumptions qt = pt and xt = 1. Moreover, the trajectory never reaches the point 
(qT , pT ) = (1, p), meaning that T = +∞. Taking the limit T → +∞ in (A.54) gives us

W(0, q0,p0) = q0(μ1 − c)

T∫
0

e−(ρ+μ1)τ−(n−1)μ1X(τ,p0) dτ − c(1 − q0)

ρ + μ0
(A.56)

because

lim
T →+∞ e(ρ+μ0)T (1 − qT )

(A.34)= lim
T →+∞

e(ρ+μ1)T (1 − q0)

q0e−(n−1)μ1X(T ,p0) + (1 − q0)e−(μ0−μ1)T
= +∞,

(A.57)

and W(T, q0, p0) must be bounded. Differentiating (A.54) and using (A.43), we get (A.44). 
Continuity on the diagonal requires W(0, p, p) = 0; hence, (A.45) must be true. For any given 
initial beliefs (q0, p0) in the middle region p < p0 < p̄, q0 > p0, the expected payoff V (q0, p0)

is equal to the right-hand side of (A.54). Hence, V (q0, p0) is a linear function of q0, and V (q, p)

can be expressed as (A.46). Since the expression for x∗(p) is the same, the differential equations 
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for F(p) and G(p) are (A.47) and (A.48). The expected payoff along the line p = p is defined 
in (A.29), which gives us the boundary conditions:

F(p) = c

ρ + μ0
+ μ1 − c

ρ + μ1
, G(p) = − c

ρ + μ0
. (A.58)

Given the boundary condition (A.58) for G(p), the unique solution to the differential equation 
(A.47) is (A.50). Given (A.50), the boundary condition (A.58) for F(p), and the expression (17)
for p, we get (A.51). In sum, V (q, p) is defined in (A.52).

If q > p > p̄, then V (q, p) satisfies (A.15), where function W2 is pinned down by the conti-
nuity of the payoff function along p = p̄:

V (q,p) = q (μ1 − c)

nμ1 + ρ
− c (1 − q)

μ0 + ρ
+ q

p̄

(
p̄ (1 − p)

(1 − p̄)p

) ρ+nμ1
nμ1−μ0

(
c (1 − p̄)

ρ + μ0
− p̄ (μ1 − c)

nμ1 + ρ

)
.

(A.59)

A.4.2. Verification
Function V (q, p) is equal to 0 for q ≤ g(p); it is defined in (A.16) when p ≥ q > p̄, in (A.59)

when q > p > p̄, in (A.29) when q > p and p < p, and in (A.52) when p ≤ p ≤ p̄ and p < q; 
thresholds p and p̄ are defined in (17) and (16). To prove that this is the value function and that 
strategy (20) is optimal, it is sufficient to verify conditions in Lemma 1.

Function V (q, p) is continuous by construction and continuously differentiable everywhere 
except for the lines N1 = {(q, p) : q = p, p ≤ p}, N2 = {(q, p) : q = p, p ≥ p} and N3 =
{(q, p) : p = p, q ≥ p}. Hence, condition 3 of Lemma 1 holds with M0 being the set with one 
point, q = p = p, and M containing all points of the lines N1, N2 and N3, except for one point 
from M0.

By construction, V (q, p) is equal to 0 where x = 0 – that is, for q ≤ g(p). This implies 
condition 1 of Lemma 1 and condition (13).

The non-negativity condition 2 of Lemma 1 holds because V (q, p) is continuous, equal to 
0 for q ≤ g(p) and increasing in q > g(p), as we now show. For q > p, V (q, p) is defined in 
(A.29), (A.52) and (A.59); all three expressions are linear in q with positive slope. For q < p, 
V (q, p) is defined in (A.16); the first derivative with respect to q is equal to 0 at q = p̄; the 
second derivative is equal to (A.19) and, therefore, positive for all q > p̄.

It remains to establish that V (q, p) satisfies the HJB equation (8) and x(q, p) satisfies (11)
and (12). By construction, V (q, p) satisfies (A.21), which becomes the HJB equation when 
x(q, p) satisfies (11) and (12). Conditions (11) and (12) hold because L (q,p;V ) is negative 
when x(q, p) = 0 – i.e., q < g(p) – and positive when x(q, p) = 1 – i.e., q > g(p). The negativ-
ity of L (q,p;V ) when q < g(p) follows from g(p) ≤ c/μ1 and inequality (A.22), which holds 
in this case. The positivity of L (q,p;V ) when q > g(p) and p ≤ p̄ follows from inequality 
(A.53), which holds in this case. The positivity of L (q,p;V ) when q > g(p) and p > p̄ follows 
from

L(q,p;V ) =
c
(
p̄(q − p)ρ + q(p̄ − p)μ1

)
p̄p(ρ + μ0)

+ qμ1(μ1 − c)(nμ1 − μ0)

(ρ + μ0)(ρ + nμ1)

⎛
⎝1 −

(
(1 − p)p̄

(1 − p̄)p

) ρ+nμ1
nμ1−μ0

⎞
⎠> 0, for q > p > p̄; (A.60)
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L(q,p;V ) = q(μ1 − c)

ρ + μ0

(
μ0 − μ1 + μ1(nμ1 − μ0)

ρ + nμ1

)⎛⎝1 −
(

(1 − q)p̄

(1 − p̄)q

) ρ+nμ1
nμ1−μ0

⎞
⎠

+ ρμ1(q − p̄)

ρ + μ0
> 0, for p > q > p̄. (A.61)

A.4.3. Uniqueness
The argument for the equilibrium uniqueness is similar to our arguments in Sections A.2.3

and A.3.3.
As in the growing optimism case in Section A.3.3, we argue that in the mixed case, V (q, p)

is bounded above by 0 for all q < p and (A.29) for q > p. Hence, in any equilibrium, x∗(p) = 0
for all p < p and x∗(p) > 0 for all p > p.

As in the growing pessimism case in Section A.2.3, in the backward induction argument for 
the mixed case, we move from lower to higher beliefs. However, the presence of the diagonal in 
the cutoff curve g(p) in the mixed case makes us borrow some elements of the proof from the 
growing optimism case in Section A.3.3, where the cutoff curve also contains the diagonal.

To argue that the value of x∗(p) for p > p can be uniquely pinned down, we assume that 
the uniqueness of x∗(p) has already been proved for all p ≤ p̃ for some p̃ ≥ p. Then, by the 
argument analogous to the argument in Section A.2.3, at p just above p̃ for all q < p, the unique 
best response of seeker i is x(q, p) = 0 for q < g(p) and x(q, p) = 1 for q > g(p). As in 
Section A.3.3, we consider cases p̃ < p̄ and p̃ ≥ p̄ separately. If p̃ < p̄, then V (p, p) = 0, 
which implies that x∗(p) is uniquely pinned down as (A.45), as we show in Section A.4.1. If 
p̃ ≥ p̄, then x(p, p) = x∗(p) = 1.

A.5. Proof of Corollary 1

On the interval p ∈ (p, p̄), the evolution of belief p follows (1) with x∗
t = x∗(pt ) defined in 

(21). Solving this differential equation yields

pt = p +
p
(
p0 − p

)
p0

(
exp

(
tp(nμ1−μ0)(1−c/μ1)

(c/μ1−p)

)
− 1

)
+ p

, (A.62)

which does not reach p in finite time.

A.6. Expression for P(μ1, μ0, c, p0, n, ρ) (Proof of Lemmas 5, 6 and 7)

When the story never becomes obsolete – that is, ρ = 0 – the probability that one seeker fails to 

uncover a compromising story during time interval [0, t] is exp
(
−μ1

∫ t

0 x∗(pτ )dτ
)

. Hence, the 
probability that none of n seekers uncovers a compromising story during time interval [0, +∞)

is

P(μ1,μ0, c,p0, n,0) = exp

⎛
⎝−nμ1

+∞∫
0

x∗(pt )dt

⎞
⎠ . (A.63)

When the story becomes obsolete at rate ρ > 0, the probability that none of n seekers uncovers 
a compromising story during time interval [0, t] and that this story becomes obsolete exactly at 
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time t is exp
(
−nμ1

∫ t

0 x∗(pτ )dτ
)

× exp (−ρt)ρ dt. Hence, the hider avoids the report of a 
compromising story with probability

P(μ1,μ0, c,p0, n,ρ) =
+∞∫
0

exp

⎛
⎝−nμ1

t∫
0

x∗(pτ )dτ − ρt

⎞
⎠ρ dt . (A.64)

When μ0 ≥ nμ1, conditional on the story being compromising, all seekers learn with intensity 
1 until either the story is reported or the story becomes obsolete. Hence, (A.63) becomes 0 and 
(A.64) becomes

P(μ1,μ0, c,p0, n,ρ) =
+∞∫
0

exp (−nμ1t − ρt)ρ dt = ρ

ρ + nμ1
, (A.65)

which proves Lemma 5.
When μ0 < nμ1 and ρ = 0, the law of motion for the common belief, given in (1), allows 

changing the variable of integration in (A.63) from time t to belief p:

P(μ1,μ0, c,p0, n,0) = exp

⎛
⎜⎝−nμ1

p∫
p0

1

(μ0 − nμ1)p(1 − p)
dp

⎞
⎟⎠

=
(

(1 − p)p0

p(1 − p0)

)− nμ1
nμ1−μ0

= e
−nμ1

(
T (μ1,μ0,c,p0,n)−T (μ1,μ0,c,p,n)

)
with p defined in (26),

(A.66)

where T (μ1, μ0, c, p, n) is defined in (3). When μ1 ≤ μ0, (A.66) proves Lemma 7. If μ0 < μ1, 
p = p̄ and so T (μ1, μ0, c, p, n) = 0, which proves Lemma 6 for ρ = 0.

When μ0 < nμ1 and ρ > 0, (A.64) becomes

P(μ1,μ0, c,p0, n,ρ) =
T (μ1,μ0,c,p0,n)∫

0

exp (−nμ1t − ρt)ρ dt

+
+∞∫

T (μ1,μ0,c,p0,n)

exp

⎛
⎜⎝−nμ1T (μ1,μ0, c,p0, n) − nμ1

t∫
T (μ1,μ0,c,p0,n)

x∗(pτ )dτ − ρt

⎞
⎟⎠ρ dt,

(A.67)

where T (μ1, μ0, c, p0, n) is the time that the common belief takes to reach the upper threshold 
p̄ from p0. The first integral in (A.67) corresponds to the interval (p̄, p0) and is equal to

T (μ1,μ0,c,p0,n)∫
0

exp (−nμ1t − ρt)ρ dt = ρ

ρ + nμ1

(
1 − e−(ρ+nμ1)T (μ1,μ0,c,p0,n)

)
. (A.68)

The second integral in (A.67) corresponds to the interval (p, p̄) and could be rewritten as

e−(ρ+nμ1)T (μ1,μ0,c,p0,n)P (μ1,μ0, c, p̄, n,ρ), (A.69)
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where

P(μ1,μ0, c, p̄, n,ρ)

=
+∞∫

T (μ1,μ0,c,p0,n)

exp

⎛
⎜⎝−nμ1

t∫
T (μ1,μ0,c,p0,n)

x∗(pτ )dτ − ρ(t − T (μ1,μ0, c,p0, n))

⎞
⎟⎠ρ dt (A.70)

describes the probability with which the hider avoids a compromising report after the common 
belief has reached p̄. Combining (A.68) and (A.69), we get

P(μ1,μ0, c,p0, n,ρ) = ρ

ρ + nμ1

(
1 − e−(ρ+nμ1)T (μ1,μ0,c,p0,n)

)
+ P(μ1,μ0, c, p̄, n,ρ)e−(ρ+nμ1)T (μ1,μ0,c,p0,n). (A.71)

The seekers learn with intensity 1 for beliefs in (p̄,p0). The law of motion (1) gives the 
differential equation for pt . Solving this equation, we get

pt = p0

p0 + e(nμ1−μ0)t (1 − p0)
. (A.72)

By definition of time T (μ1, μ0, c, p0, n), pt is equal to p̄ at that time. Hence, (A.72) gives (3).
If μ0 < μ1, then interval (p, p̄) is degenerate, so that the seekers’ learning intensity x∗(pt )

is zero for all t , and expression (A.70) is equal to 1. Then, substituting P(μ1, μ0, c, p̄, n, ρ) = 1
into (A.71) proves Lemma 6 for ρ > 0.

A.7. Proof of Theorem 1

We consider cases μ1 > μ0 and μ1 ≤ μ0 separately.

Proof for μ1 > μ0. Substituting T from (3) into (28), we get the expression for P :

P(μ1,μ0, c,p0, n,ρ) = ρ

ρ + nμ1
+ nμ1

ρ + nμ1

(
p0(1 − p̄)

p̄(1 − p0)

)− ρ+nμ1
nμ1−μ0

with p̄ defined in (16). (A.73)

We proceed in two steps.

STEP 1. We differentiate (A.73) with respect to n > 1:

∂P (μ1,μ0, c,p0, n,ρ)

∂n
= nμ2

1(ρ + μ0)

(nμ1 − μ0)(ρ + nμ1)2 g (y,λ) , (A.74)

where

y =
(

p0(1 − p̄)

p̄(1 − p0)

)− ρ+nμ1
nμ1−μ0

, λ = ρ(nμ1 − μ0)

nμ1(ρ + μ0)
, (A.75)

and g(y, λ) = −y lny − (1 − y)λ. Expressions (A.75) for y and λ belong to the interval (0, 1)

because nμ1 > μ1 ≥ μ0 and the seekers start at belief p0 no lower than p̄ (by Assumption 1).
As a function of y, g is increasing for 0 < y < eλ−1 and decreasing for y > eλ−1:
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∂g(y,λ)

∂y
= λ − 1 − lny. (A.76)

Given that

lim
y→0

g(y,λ) = −λ < 0, g(1, λ) = 0,

(A.77)

0 y1

−λ

g(y,λ)

eλ−1Y(λ)

we conclude that for any λ ∈ (0, 1), the solution Y(λ) ∈ (0, 1) to g(Y, λ) = 0 exists and is unique. 
Moreover, g(y, λ) < 0 when y < Y(λ) and g(y, λ) > 0 when y > Y(λ). Hence, P increases in n
if y − Y(λ) > 0 and decreases in n if y − Y(λ) < 0.

STEP 2. Define

h(μ1,μ0, c,p0, n,ρ) ≡ y − Y(λ), with y and λ defined in (A.75), (A.78)

so that P increases in n if h > 0 and decreases in n if h < 0. We differentiate h with respect to n:

∂h(μ1,μ0, c,p0, n,ρ)

∂n
= μ1(ρ + μ0)

(−(1 − λ)λY ′ (λ) − y lny
)

(nμ1 − μ0)(ρ + nμ1)
, (A.79)

with y and λ defined in (A.75).
The derivative of Y(λ) can be found from g(Y, λ) = 0 using the implicit function theorem and 

substituting λ from g(Y, λ) = 0:

Y ′ (λ) = (1 − Y)2

Y − 1 − lnY
, (A.80)

where we write Y = Y(λ) for short.
Substituting λ from g(Y, λ) = 0 and Y ′(λ) from (A.80) into (A.79), we get

∂h(μ1,μ0, c,p0, n,ρ)

∂n
= μ1(ρ + μ0)

(nμ1 − μ0)(ρ + nμ1)

((
r1(Y )

r2(Y )
+ 1

)
Y lnY − y lny

)
,

(A.81)

where

r1(Y ) = 2(1 − Y) + (1 + Y) lnY, r2(Y ) = Y − 1 − lnY. (A.82)

Function r1(Y ) is negative for all Y ∈ (0, 1) because r ′′
1 (Y ) = − 1−Y

Y 2 < 0, r ′
1(1) = r1(1) = 0. 

Function r2(Y ) is positive for all Y ∈ (0, 1) because r ′
2(Y ) = − 1−Y

Y
< 0, r2(1) = 0. Equation 

(A.81) implies that at h = 0, where Y = y the derivative of h w.r.t. n is positive:

∂h(μ1,μ0, c,p0, n,ρ)

∂n

∣∣∣∣
h=0

> 0. (A.83)

Hence, as a function of n, h crosses 0 from below (if ever).
Consequently, there exists n∗ ≥ 1 (possibly infinite) such that for all n < n∗, h < 0 and, thus, 

P decreases; and for all n > n∗, h > 0 and, thus, P increases. Hence, as claimed on page 25, P
has a U-shape and reaches its maximum at either n = 1 or n = +∞.
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Substituting n = 1 and n = +∞ into (A.73), we get that the minimal access (n = 1) yields

P(μ1,μ0, c,p0,1, ρ) = ρ

ρ + μ1
+ μ1

ρ + μ1

(
p̄(1 − p0)

p0(1 − p̄)

) ρ+μ1
μ1−μ0

with p̄ defined in (16), (A.84)

while open access (n = +∞) yields

P(μ1,μ0, c,p0,+∞, ρ) = p̄(1 − p0)

p0(1 − p̄)
with p̄ defined in (16). (A.85)

If (A.84) is higher than (A.85), then n = 1 is optimal; if (A.85) is higher, then n = +∞ is optimal.

COMPARATIVE STATICS WITH RESPECT TO ρ.
The derivative of the difference P(μ1, μ0, c, p0, +∞, ρ) − P(μ1, μ0, c, p0, 1, ρ) with re-

spect to ρ > 0 is:

∂

∂ρ
(P (μ1,μ0, c,p0,+∞, ρ) − P(μ1,μ0, c,p0,1, ρ)) = μ1 (y(1 − lny) − 1)

(ρ + μ1)2 , (A.86)

where y = z
ρ+μ1
μ1−μ0 and z = p̄(1−p0)

p0(1−p̄)
. By Assumption 1, p0 > p̄ and, thus, z and y both belong to 

(0, 1). Then, expression (A.86) is negative because function y(1 − lny) − 1 is negative for all 
y ∈ (0, 1). At ρ = 0, the difference P(μ1, μ0, c, p0, +∞, ρ) −P(μ1, μ0, c, p0, 1, ρ) is positive:

P(μ1,μ0, c,p0,+∞,0) − P(μ1,μ0, c,p0,1,0) = z − z
ρ+μ1
μ1−μ0 > 0. (A.87)

At ρ = +∞, the difference P(μ1, μ0, c, p0, +∞, ρ) − P(μ1, μ0, c, p0, 1, ρ) is negative:

P(μ1,μ0, c,p0,+∞,+∞) − P(μ1,μ0, c,p0,1,+∞) = z − 1 < 0. (A.88)

Hence, there exists ρ∗ such that open access is optimal for ρ < ρ∗ and the minimal access is 
optimal for ρ > ρ∗.

Proof for μ1 ≤ μ0. For 1 ≤ n ≤ μ0/μ1, the expression for P is given in (27). Substituting T
from (3) into (A.71), we get the expression for P when n > μ0/μ1:

P(μ1,μ0, c,p0, n,ρ) = ρ

ρ + nμ1
+
(

P(μ1,μ0, c, p̄, n,ρ) − ρ

ρ + nμ1

)

×
(

p0(1 − p̄)

p̄(1 − p0)

)− ρ+nμ1
nμ1−μ0

with p̄ defined in (16). (A.89)

Expression (A.89) includes function P(μ1, μ0, c, p̄, n, ρ); for expositional convenience, we ex-
plore properties of this function separately in Lemma 11 in Appendix B.1.

To prove that P(μ1, μ0, c, p0, n, ρ) reaches its maximum at either n = 1 or n = +∞, we 
need to show that for all n > 1,

max {P(μ1,μ0, c,p0,1, ρ),P (μ1,μ0, c,p0,+∞, ρ)} > P(μ1,μ0, c,p0, n,ρ), (A.90)

where P(μ1, μ0, c, p0, +∞, ρ) ≡ lim
n→+∞P(μ1, μ0, c, p0, n, ρ).

By (27),

P(μ1,μ0, c,p0,1, ρ) = ρ
. (A.91)
ρ + μ1

43



T. Mayskaya and A. Nikandrova Journal of Economic Theory 212 (2023) 105699
By (A.89) and by (B.1) in Lemma 11,

P(μ1,μ0, c,p0,+∞, ρ) = ρ + μ1

ρ + μ0

p̄(1 − p0)

p0(1 − p̄)
with p̄ defined in (16). (A.92)

It is immediate to see that P(μ1, μ0, c, p0, n, ρ) is decreasing in 1 ≤ n ≤ μ0/μ1. Hence, 
(A.90) holds for all 1 < n ≤ μ0/μ1. Consider n > μ0/μ1. Expressions (A.89), (A.91) and (A.92)
allow us to rewrite condition (A.90) as

F

(
μ1,μ0, c,

p̄(1 − p0)

p0(1 − p̄)
, n,ρ

)
> 0, (A.93)

where

F(μ1,μ0, c, y, n,ρ) = max

{
ρ + μ1

ρ + μ0
y,

ρ

ρ + μ1

}
− ρ

ρ + nμ1

−
(

P(μ1,μ0, c, p̄, n,ρ) − ρ

ρ + nμ1

)
y

ρ+nμ1
nμ1−μ0 . (A.94)

Argument y belongs to [0, 1] because by Assumption 1, the seekers start at belief p0 no lower 
than p̄. Define point

y∗ ≡ ρ(ρ + μ0)

(ρ + μ1)2 , (A.95)

where the arguments in the maximum in (A.94) are equal. Then, if y < y∗, function F is de-
creasing in y:

∂F (μ1,μ0, c, y, n,ρ)

∂y
= − ρ + nμ1

nμ1 − μ0

(
P(μ1,μ0, c, p̄, n,ρ) − ρ

ρ + nμ1

)
y

ρ+nμ1
nμ1−μ0 < 0,

(A.96)

and if y > y∗, function F is concave in y:

∂2F(μ1,μ0, c, y, n,ρ)

∂y2 = − (ρ + μ0)(ρ + nμ1)

y2(nμ1 − μ0)2

×
(

P(μ1,μ0, c, p̄, n,ρ) − ρ

ρ + nμ1

)
y

ρ+nμ1
nμ1−μ0 < 0 (A.97)

because, by (B.2) in Lemma 11, P(μ1, μ0, c, p̄, n, ρ) > ρ
ρ+nμ1

. Hence, on y ∈ [0, 1], F achieves 
minimum at y = 1 if y∗ ≥ 1, and at either y = 1 or y = y∗ if y∗ < 1.

Substituting y = 1 into (A.94) gives

F(μ1,μ0, c,1, n,ρ) = max

{
ρ + μ1

ρ + μ0
,

ρ

ρ + μ1

}
− P(μ1,μ0, c, p̄, n,ρ)

≥ ρ + μ1

ρ + μ0
− P(μ1,μ0, c, p̄, n,ρ). (A.98)

By (B.2) in Lemma 11, the right-hand side in (A.98) and, hence, also F(μ1, μ0, c, 1, n, ρ) are 
positive. Substituting y = y∗ into (A.94) gives
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F
(
μ1,μ0, c, y

∗, n,ρ
)= ρ

ρ + μ1
− ρ

ρ + nμ1

−
(

P(μ1,μ0, c, p̄, n,ρ) − ρ

ρ + nμ1

)(
ρ(ρ + μ0)

(ρ + μ1)2

) ρ+nμ1
nμ1−μ0

. (A.99)

By (B.4) in Lemma 11, F (μ1,μ0, c, y
∗, n,ρ) defined in (A.99) is positive because condition 

(B.3) is equivalent to y∗ < 1. Hence, F(μ1, μ0, c, y, n, ρ) > 0 for all y ∈ [0, 1], which proves 
that (A.93) and, consequently, (A.90) hold.

Hence, P(μ1, μ0, c, p0, n, ρ) reaches its maximum at either n = 1 or n = +∞. If
P(μ1, μ0, c, p0, 1, ρ) given in (A.91) is higher than P(μ1, μ0, c, p0, +∞, ρ) given in (A.92), 
then n = 1 is optimal; if P(μ1, μ0, c, p0, +∞, ρ) is higher, then n = +∞ is optimal.

COMPARATIVE STATICS WITH RESPECT TO ρ.
The difference P(μ1, μ0, c, p0, +∞, ρ) − P(μ1, μ0, c, p0, 1, ρ) is positive if and only if

z ≡ p̄(1 − p0)

p0(1 − p̄)
>

ρ(ρ + μ0)

(ρ + μ1)2 ≡ g(ρ). (A.100)

By Assumption 1, p0 > p̄ and, thus, z belongs to (0, 1). At ρ = 0, open access is optimal because 
g(0) = 0 < z. At ρ = +∞, the minimal access is optimal because g(+∞) = 1 > z. If 2μ1 ≥ μ0, 
then function g(ρ) is increasing for ρ ∈ (0, +∞); if 2μ1 < μ0, then function g(ρ) is increasing 

for ρ ∈
(

0,
μ0μ1

μ0−2μ1

)
and decreasing for ρ ∈

(
μ0μ1

μ0−2μ1
,+∞

)
:

g′(ρ) = μ0μ1 + ρ(2μ1 − μ0)

(ρ + μ1)3 . (A.101)

Hence, there exists ρ∗ > 0 such that g(ρ) < z for ρ < ρ∗ and g(ρ) > z for ρ > ρ∗.

A.8. Proof of Theorem 2

By Theorem 1, ρ∗(μ1, μ0, c, p0) is defined as the unique solution to

F(μ1,μ0, c,p0, ρ) = 0, (A.102)

where we define

F(μ1,μ0, c,p0, ρ) = P(μ1,μ0, c,p0,+∞, ρ) − P(μ1,μ0, c,p0,1, ρ). (A.103)

By the implicit function theorem, for any variable x ∈ {μ1, μ0, c, p0},
∂ρ∗(μ1,μ0, c,p0)

∂x
= −∂F (μ1,μ0, c,p0, ρ)

∂x

/
∂F (μ1,μ0, c,p0, ρ)

∂ρ

∣∣∣∣
ρ=ρ∗(μ1,μ0,c,p0)

.

(A.104)

We consider cases μ1 > μ0 and μ1 ≤ μ0 separately.

Proof for μ1 > μ0. Expression for P(μ1, μ0, c, p0, 1, ρ) is given in (A.84), expression for 
P(μ1, μ0, c, p0, +∞, ρ) is given in (A.85). Hence,

F(μ1,μ0, c,p0, ρ) = p̄(1 − p0)

p0(1 − p̄)
− ρ

ρ + μ1
− μ1

ρ + μ1

(
p̄(1 − p0)

p0(1 − p̄)

) ρ+μ1
μ1−μ0

with p̄ defined in (16). (A.105)
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The derivative of F with respect to ρ is calculated in (A.86) and is shown to be neg-
ative. Hence, by (A.104), the sign of ∂ρ∗(μ1, μ0, c, p0)/∂x coincides with the sign of 
∂F (μ1, μ0, c, p0, ρ)/∂x at point ρ = ρ∗(μ1, μ0, c, p0).

Denote

y ≡
(

p̄(1 − p0)

p0(1 − p̄)

) ρ+μ1
μ1−μ0

with p̄ defined in (16). (A.106)

By Assumption 1, p0 > p̄ and, thus, y < 1.
Differentiating (A.105) with respect to p0 yields

∂F (μ1,μ0, c,p0, ρ)

∂p0
= −μ1p̄ (1 − μ0/μ1 − y)

(1 − p̄)p2
0(μ1 − μ0)

(A.107)

Lemma 8. If ρ is equal to ρ∗(μ1, μ0, c, p0), 1 − μ0/μ1 − y > 0, where y is defined in (A.106).

Proof. 1 − μ0/μ1 − y > 0 evaluated at ρ = ρ∗(μ1, μ0, c, p0) is equivalent to

ρ∗(μ1,μ0, c,p0) − ρ̂(μ1,μ0, c,p0) > 0, (A.108)

where

ρ̂(μ1,μ0, c,p0) = (μ1 − μ0) ln

(
1 − μ0

μ1

)/
ln

(
p̄(1 − p0)

p0(1 − p̄)

)
− μ0. (A.109)

Hence, it is sufficient to prove (A.108).
Function ρ̂ is decreasing in p0 because

∂ρ̂(μ1,μ0, c,p0)

∂p0
= (μ1 − μ0) ln

(
1 − μ0

μ1

)/(
p0(1 − p0)

(
ln

p̄(1 − p0)

p0(1 − p̄)

)2
)

< 0.

(A.110)

By (A.107), the sign of ∂ρ∗(μ1, μ0, c, p0)/∂p0 coincides with the sign of −(1 − μ0/μ1 − y); 
and the sign of 1 − μ0/μ1 − y coincides with the sign of the left-hand side of (A.108). 
Hence, if the left-hand side of (A.108) is negative, its derivative ∂ρ∗(μ1, μ0, c, p0)/∂p0 −
∂ρ̂(μ1, μ0, c, p0)/∂p0 is positive. Thus, to prove (A.108), it is sufficient to prove that (A.108)
holds for the lowest admissible value of p0. By Assumption 1, the lowest admissible value of p0
is p̄.

As p0 approaches p̄, the sign of the left-hand side of (A.108) is not immediately clear because 
both ρ∗ and ρ̂ approach +∞, and so, additional analysis is required. Since ρ = ρ∗(μ1, μ0, c, p0)

solves F(μ1, μ0, c, p0, ρ) = 0 and function F(μ1, μ0, c, p0, ρ) is decreasing in ρ, to show that 
(A.108) holds as p0 approaches p̄, it is sufficient to show that F(μ1, μ0, c, p0, ρ) is positive 
at point ρ = ρ̂(μ1, μ0, c, p0) as p0 approaches p̄. The limit p0 → p̄ of F(μ1, μ0, c, p0, ρ) at 
point ρ = ρ̂(μ1, μ0, c, p0) is 0, and so, to determine whether F approaches 0 from below or 
from above, we divide F by p0 − p̄. The limit p0 → p̄ of F(μ1, μ0, c, p0, ρ)/(p0 − p̄) at point 
ρ = ρ̂(μ1, μ0, c, p0) is equal to

− μ1

(1 − p̄)p̄(μ1 − μ0) ln (1 − μ0/μ1)

(
μ0

μ1
+
(

1 − μ0

μ1

)
ln

(
1 − μ0

μ1

))
, (A.111)

which is positive because x + (1 − x) ln(1 − x) > 0 for all x ∈ (0, 1). Hence, F approaches 0 
from above, and so, (A.108) holds as p0 approaches p̄. �
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Lemma 8 implies that (A.107) is negative, and so, ∂ρ∗(μ1, μ0, c, p0)/∂p0 is negative.
Differentiating (A.105) with respect to c yields

∂F (μ1,μ0, c,p0, ρ)

∂c
= (1 − p0) (1 − μ0/μ1 − y)

(1 − p̄)2p0(μ1 − μ0)
, (A.112)

which is positive by Lemma 8, and so, ∂ρ∗(μ1, μ0, c, p0)/∂c is positive.
Differentiating (A.105) with respect to μ0 yields

∂F (μ1,μ0, c,p0, ρ)

∂μ0
= − μ1y ln(y)

(ρ + μ1)(μ1 − μ0)
> 0, (A.113)

and so, ∂ρ∗(μ1, μ0, c, p0)/∂μ0 is positive.
Differentiating (A.105) with respect to μ1 yields

∂F (μ1,μ0, c,p0, ρ)

∂μ1
= ζ(μ1,μ0, c,p0, ρ)

(μ1 − μ0)2(ρ + μ1)p0(1 − p̄)μ1

+
(

ρ

μ1(ρ + μ1)
− ρ + μ1

(1 − p̄)μ1(μ1 − μ0)
− (ρ + μ0) ln(y)

(ρ + μ1)(μ1 − μ0)

)
F(μ1,μ0, c,p0, ρ),

(A.114)

where

ζ(μ1,μ0, c,p0, ρ) =
(

μ1 − μ0

1 − p̄
+ μ1 ln

(
p̄(1 − p0)

p0(1 − p̄)

))
(ρ + μ0)

× (p̄μ1(1 − p0) − (p0 − p̄)ρ) − ρp̄(μ1 − μ0)
2. (A.115)

By (A.102), the second term in (A.114) is 0 at point ρ = ρ∗(μ1, μ0, c, p0). Hence, the 
sign of ∂ρ∗(μ1, μ0, c, p0)/∂μ1 coincides with the sign of ζ(μ1, μ0, c, p0, ρ) at point ρ =
ρ∗(μ1, μ0, c, p0).

To determine the sign of ζ(μ1, μ0, c, p0, ρ) at point ρ = ρ∗(μ1, μ0, c, p0), we need two ad-
ditional lemmas.

Lemma 9. If ρ is equal to ρ∗(μ1, μ0, c, p0), then p̄μ1(1 − p0) > (p0 − p̄)ρ.

Proof. Inequality p̄μ1(1 − p0) > (p0 − p̄)ρ∗(μ1, μ0, c, p0) is equivalent to

ρ∗(μ1,μ0, c,p0) < ρ̂(μ1,μ0, c,p0) ≡ p̄μ1(1 − p0)

p0 − p̄
. (A.116)

Since ρ = ρ∗(μ1, μ0, c, p0) solves F(μ1, μ0, c, p0, ρ) = 0 and function F(μ1, μ0, c, p0, ρ) is 
decreasing in ρ, to show that (A.116), it is sufficient to show that F(μ1, μ0, c, p0, ρ) is negative 
at point ρ = ρ̂(μ1, μ0, c, p0).

By definition (A.105),

F(μ1,μ0, c,p0, ρ) = p̄(1 − p0)

p0(1 − p̄)
− ρ

ρ + μ1
− μ1

ρ + μ1
y <

p̄(1 − p0)

p0(1 − p̄)
− ρ

ρ + μ1

= (p0 − p̄)
(
ρ̂(μ1,μ0, c,p0) − ρ

)
p0(1 − p̄)(ρ + μ1)

, (A.117)

where the inequality holds because y > 0. Hence, F(μ1, μ0, c, p0, ρ) < 0 at ρ = ρ̂(μ1, μ0, c, p0).
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Lemma 10. If ρ is equal to ρ∗(μ1, μ0, c, p0), then p̄μ0(1 − p0) < (p0 − p̄)ρ.

Proof. Rearranging and using definition (A.105),

(p0 − p̄)ρ − p̄μ0(1 − p0) = p̄μ1(1 − p0)

(
1 − μ0

μ1
− y

)
− (1 − p̄)p0(ρ + μ1)F (μ1,μ0, c,p0, ρ). (A.118)

By (A.102) and Lemma 8, the right-hand side of (A.118) is positive at point ρ =
ρ∗(μ1, μ0, c, p0). �

Now we are ready to determine the sign of ζ(μ1, μ0, c, p0, ρ) at point ρ = ρ∗(μ1, μ0, c, p0). 
If

μ1 − μ0

1 − p̄
+ μ1 ln

(
p̄(1 − p0)

p0(1 − p̄)

)
(A.119)

is non-positive, then ζ(μ1, μ0, c, p0, ρ) at point ρ = ρ∗(μ1, μ0, c, p0) is negative by Lemma 9. 
To determine the sign of ζ(μ1, μ0, c, p0, ρ) when (A.119) is positive, we rewrite (A.115) as

ζ(μ1,μ0, c,p0, ρ)

= −p̄μ1(1 − p0)(μ1 − μ0)
2
(

−μ0

μ1
− ln

(
1 − μ0

μ1

)
+ ln

(
1 − μ0/μ1

y

))

−
(

p̄(μ1 − μ0)
2

1 − p̄
+
(

μ1 − μ0

1 − p̄
+ μ1 ln

p̄(1 − p0)

p0(1 − p̄)

)
(ρ + μ0)

)
× ((p0 − p̄)ρ − p̄μ0(1 − p0)) . (A.120)

If (A.119) is positive, then (A.120) at point ρ = ρ∗(μ1, μ0, c, p0) is negative because −x −
ln(1 − x) > 0 for all x ∈ (0, 1), ln

(
1−μ0/μ1

y

)
> 0 by Lemma 8 and (p0 − p̄)ρ − p̄μ0(1 −

p0) > 0 by Lemma 10. Consequently, ζ(μ1, μ0, c, p0, ρ) is always negative at point ρ =
ρ∗(μ1, μ0, c, p0), and so, ∂ρ∗(μ1, μ0, c, p0)/∂μ1 is negative.

Proof for μ1 ≤ μ0. Expression for P(μ1, μ0, c, p0, 1, ρ) is given in (A.91), expression for 
P(μ1, μ0, c, p0, +∞, ρ) is given in (A.92). Hence,

F(μ1,μ0, c,p0, ρ) = ρ + μ1

ρ + μ0

p̄(1 − p0)

p0(1 − p̄)
− ρ

ρ + μ1
with p̄ defined in (16). (A.121)

The derivative of F with respect to ρ is equal to

∂F (μ1,μ0, c,p0, ρ)

∂ρ
= −F(μ1,μ0, c,p0, ρ)

ρ + μ0
− p0 − p̄

(1 − p̄)p0(ρ + μ0)
− μ1(μ0 − μ1)

(ρ + μ0)(ρ + μ1)2 ,

(A.122)

which is negative at point ρ = ρ∗(μ1, μ0, c, p0) where F(μ1, μ0, c, p0, ρ) = 0. Hence, by 
(A.104), the sign of ∂ρ∗(μ1, μ0, c, p0)/∂x coincides with the sign of ∂F (μ1, μ0, c, p0, ρ)/∂x

at point ρ = ρ∗(μ1, μ0, c, p0).
Differentiating (A.121) with respect to p0 yields

∂F (μ1,μ0, c,p0, ρ)

∂p
= − p̄ (ρ + μ1)

(1 − p̄)p2(ρ + μ )
< 0, (A.123)
0 0 0
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and so, ∂ρ∗(μ1, μ0, c, p0)/∂p0 is negative.
Differentiating (A.121) with respect to c yields

∂F (μ1,μ0, c,p0, ρ)

∂c
= (1 − p0) (ρ + μ1)

(1 − p̄)2p0μ1(ρ + μ0)
> 0, (A.124)

and so, ∂ρ∗(μ1, μ0, c, p0)/∂c is positive.
If μ1 = μ0 = μ, then (A.102) has the explicit solution

ρ∗(μ,μ, c,p0) = p̄(1 − p0)μ

p0 − p̄
= c(1 − p0)

p0 − c/μ
. (A.125)

It is clear that ρ∗(μ, μ, c, p0) is decreasing in μ.
Differentiating (A.121) with respect to μ0 yields

∂F (μ1,μ0, c,p0, ρ)

∂μ0
= − p̄(1 − p0)(ρ + μ1)

(1 − p̄)p0(ρ + μ0)2 < 0, (A.126)

and so, ∂ρ∗(μ1, μ0, c, p0)/∂μ0 is negative.
Differentiating (A.121) with respect to μ1 yields

∂F (μ1,μ0, c,p0, ρ)

∂μ1
= −F(μ1,μ0, c,p0, ρ)

ρ + μ1
+ p̄(1 − p0) (2(1 − p̄)μ1 − μ1 − ρ)

p0(1 − p̄)2μ1(ρ + μ0)

(A.127)

By (A.102), the first term in (A.127) is 0 at point ρ = ρ∗(μ1, μ0, c, p0). Hence, the sign of 
∂ρ∗(μ1, μ0, c, p0)/∂μ1 coincides with the sign of

ρ̂(μ1,μ0, c,p0) − ρ∗(μ1,μ0, c,p0), (A.128)

where we define

ρ̂(μ1,μ0, c,p0) = 2(1 − p̄)μ1 − μ1 = μ1 − 2c. (A.129)

If (A.128) is equal to 0, then ∂ρ∗(μ1, μ0, c, p0)/∂μ1 = 0 by (A.127), and so, as a function of 
μ1, (A.128) is increasing in μ1. Thus, if function (A.128) crosses 0, it does so from below, which 
means that there exists M1 such that (A.128) is negative for μ1 < M1 and positive for μ1 > M1.

A.9. Proof of Theorem 3

To prove the theorem, we need to show that ∂P (μ1,μ0,c,p0,1,ρ)
∂μ0

≤ 0 and dP(μ0+δ,μ0,c,p0,1,ρ)
dμ0

< 0
for any fixed δ such that μ1 = μ0 + δ satisfies Assumption 1.

We consider cases μ1 > μ0 and μ1 ≤ μ0 separately.

Proof for μ1 > μ0. If n = 1, then P is given in (A.84). Let y < 1 be defined in (A.106). Then,

∂P (μ1,μ0, c,p0,1, ρ)

∂μ0
= μ1y ln(y)

(ρ + μ1)(μ1 − μ0)
< 0, (A.130)

and

d P(μ0 + δ,μ0, c,p0,1, ρ)

d μ0
= −ρ (1 − y) − μ1y ln(y)

(ρ + μ1)
2 − y

(1 − p̄) (μ1 − μ0)
< 0

with μ1 = μ0 + δ and p̄ defined in (16), (A.131)
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where inequalities follow because 0 < y < 1.
If n = +∞, then P is given in (A.85). Then,

∂P (μ1,μ0, c,p0,+∞, ρ)

∂μ0
= 0, (A.132)

and

d P(μ0 + δ,μ0, c,p0,+∞, ρ)

d μ0
= − c

(
1 − p̂0

)
p0 (μ0 + δ − c)2 < 0. (A.133)

Proof for μ1 ≤ μ0. If n = 1, then P is given in (A.91). Then,

∂P (μ1,μ0, c,p0,1, ρ)

∂μ0
= 0, (A.134)

and
d P(μ0 + δ,μ0, c,p0,1, ρ)

d μ0
= − ρ

(ρ + μ0 + δ)2 < 0. (A.135)

If n = +∞, then P is given in (A.92). Then,

∂P (μ1,μ0, c,p0,+∞, ρ)

∂μ0
= − ρ + μ1

(ρ + μ0)2

p̄(1 − p0)

p0(1 − p̄)
< 0 with p̄ defined in (16),

(A.136)

and

d P(μ0 + δ,μ0, c,p0,+∞, ρ)

d μ0
= − (ρ + μ1)

2 + (μ0 − μ1) (c + ρ)

μ1 (ρ + μ0)
2

p̄(1 − p0)

p0(1 − p̄)2 < 0

with μ1 = μ0 + δ and p̄ defined in (16). (A.137)

Appendix B. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /
j .jet .2023 .105699.
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