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We exactly solve a quantum Fermi accelerator model consisting of a time-independent non-Hermitian Hamil-
tonian with time-dependent Dirichlet boundary conditions. A Hilbert space for such systems can be defined
in two equivalent ways, either by first constructing a time-independent Dyson map and subsequently unitarily
mapping to fixed boundary conditions or by first unitarily mapping to fixed boundary conditions followed by the
construction of a time-dependent Dyson map. In turn this allows to construct time-dependent metric operators
from a time-independent metric and two time-dependent unitary maps that freeze the moving boundaries. From
the time-dependent energy spectrum, we find the known possibility of oscillatory behavior in the average energy
in the PT-regime, whereas in the spontaneously broken PT-regime we observe the new feature of a one-time de-
pletion of the energy. We show that the PT broken regime is mended with moving boundary, equivalently to
mending it with a time-dependent Dyson map.

INTRODUCTION

Classical versions of Fermi accelerators were originally
proposed by Fermi [1] more than seventy years ago as a possi-
ble explanation for the high energies observed in cosmic radi-
ation. The simplest classical Fermi accelerator model consists
of a free particle moving between two walls simulating mag-
netic fields, with one of them fixed and the other moving in
time, with the collisions between the particle and the walls
being perfectly elastic. Besides predicting features of cosmic
rays in the spirit of the original motivation, such as the max-
imum energy that particles can reach is proportional to the
strength of the magnetic field and the size of the acceleration
region, the models were also found to exhibit classical chaotic
behavior [2–4]. The latter is due to the fact that the description
in phase-space of consecutive scatterings between the walls
and the particle leads to nonlinear maps, which in their sim-
plest version, corresponding to the so-called Ulam maps. For
a recent overview of the latest experimental observations of
ultra-high energy cosmic rays, see for instance [5].

Quantum versions of Fermi accelerator models are set up
in a similar fashion, described by the Schrödinger equation
with Dirichlet boundary conditions. They allow us to study
quantum chaos [6, 7] and other interesting phenomena [8–13],
such as the possibility of an energy gain in the time-dependent
spectrum. Here the purpose is to investigate such a system
with the starting Hamiltonian taken to be non-Hermitian, but
PT -symmetric/pseudo-Hermitian. In the broken PT -regime
we observe the previously unseen non-periodic nature of the
average energy over time.

Our starting point is to consider a time-independent PT -
symmetric/pseudo-Hermitian [14, 15] Hamiltonian H̃ =

− ℏ2

2m∂
2
x + Ṽ (x), where Ṽ (x) is a non-Hermitian potential.

The Schrödinger equation with Dirichlet boundary condition

is given by

iℏ
∂

∂t
ψ̃(t, x) = H̃(x)ψ̃(t, x), ψ̃(t,±ℓ) = 0, (1)

where ℓ > 0. The Hilbert space of the system consists
of square-integrable functions in the interval [−ℓ, ℓ], i.e.,
ψ̃(t, x) ∈ L2([−ℓ, ℓ]). This Hamiltonian is said to be PT -
symmetric if the Hamiltonian and the wave functions are sym-
metric under an anti-linear transformation, such as p → p,
x→ −x, and i→ −i, in our case.

The standard procedure in PT -symmetric quantum me-
chanics is to map the non-Hermitian Hamiltonian (1) to a
Hermitian Hamiltonian with a Dyson map η such that H̃ =
ηh̃η̃−1 ̸= H̃†, h̃† = h̃. Recall that the Dyson map η is gener-
ally non-unique. Extensive discussion on the uniqueness of
η can already be found in [16], where the authors demon-
strated that η is uniquely fixed by demanding the irreducibility
of some set of operators. In the case of the Swanson model
[17], it was equivalently shown in [18] that the uniqueness of
η can be ensured by requiring the Hamiltonian and one other
operator (e.g. position, momentum, or number operator) to
correspond to their Hermitian counterpart.

Let us denote the new wave function ϕ̃(t, x) = η̃ψ̃(t, x)
where the non-Hermitian operator η̃ is time-independent.
Therefore the Schrödinger equation and the boundary condi-
tion (1) are simply mapped to

iℏ
d

dt
ϕ̃(t, x) = h̃(x)ϕ̃(t, x), ϕ̃(t,±ℓ) = 0. (2)

In PT -symmetric quantum mechanics inner product in the
Hilbert space needs to be redefined. Accordingly, the av-
erage energy of the non-Hermitian Hamiltonian is given by
⟨E⟩η =:

∫ ℓ

−ℓ
dxψ̃ρ̃H̃ψ̃, where the Hermitian positive definite

metric is defined as ρ̃ := η̃†η̃. This can be rewritten in terms
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PT -symmetric PT -broken
Time-independent boundary ⟨E⟩η ∈ R ⟨E⟩η ∈ C
Time-dependent boundary ⟨E⟩η ∈ R ⟨E⟩η ∈ R

TABLE I. The average energy ⟨E⟩η defined in Eq. (3) is com-
pared for two PT -regimes with time-dependent/independent bound-
ary conditions. In both cases there is a phase transition in the dynam-
ical behavior of ⟨E⟩η between PT broken/unbroken regimes. The
detail is presented in section .

of the Hermitian Hamiltonian as

⟨E(t)⟩η :=

∫ ℓ

−ℓ

dxψ̃†ρ̃H̃ψ̃ =

∫ ℓ

−ℓ

dxϕ̃†h̃ϕ̃. (3)

The common characteristic of the non-Hermitian system is
that the above equality only holds when the non-Hermitian
Hamiltonian and the wave function are PT -symmetric. The
average energy of H̃ acquires complex conjugate eigenval-
ues in the PT -broken regime. However, we will show that
when the boundary ℓ is time-dependent, the average energy
is defined above square real energy, even in the PT -broken
regime.

It has been established that real-valued average energies can
be obtained in all regimes when the non-Hermitian Hamil-
tonian or the Dyson map are time-dependent [19]. See also
the review of the time-dependent non-Hermitian quantum me-
chanics [20]. In this work, we demonstrate that real-valued av-
erage energies can also be attained in the PT -broken regime
of the Swanson model by introducing time-dependence to the
boundary condition ℓ, instead of the Hamiltonian or Dyson
map. Moreover, we establish the equivalence of our approach
with a previous method [19], where the Dyson map’s time-
dependence was used to mend the PT -broken regime. Our
two primary findings are summarized in Table I and Fig. 1.
We will provide the explicit derivation of the scheme in Fig.
1 in the next section.

EQUIVALENCE OF TIME-DEPENDENT BOUNDARY AND
DYSON MAP

Let us assume that the boundary is time-dependent, i.e.,
ℓ = ℓ(t), then, the wave functions ψ̃(t, x) and ψ̃(t′, x) be-
long to two different Hilbert spaces for t ̸= t′. Therefore, the
time derivative of the wave function does not belong to any
Hilbert space for any time slice, which implies that the above
Schrödinger equation is not well-defined. However, in [21],
the problem was resolved by formally embedding the system
into a larger domain L2(R) = L2([−ℓ, ℓ])⊕ L2((−∞,−ℓ) ∪
(ℓ,∞)), where extended Hamiltonian is H̃(x) ⊕ 0. This em-
bedding implies that the integration contour of the average en-

ergy (3) can be understood as

⟨E(t)⟩η =

∫ ∞

−∞
dxψ̃†ρ̃

[
H̃(x)⊕ 0

]
ψ̃

=

∫ ℓ(t)

−ℓ(t)

dxψ̃†ρ̃
[
H̃(x)

]
ψ̃. (4)

To remove the time dependence of the boundary from the
Hilbert space, a time-dependent unitary operator U(t) is in-
troduced as

U : L2(R) → L2(R)
f(t, x) →

√
ℓ(t)f (t, ℓ(t)x) ,

(5)

which maps all wave functions in L2(R) to L2(R) =
L2([−1, 1])⊕L2((−∞,−1)∪ (1,∞)), thereby removing the
time dependence of the boundary from the Hilbert space. The
factor

√
l(t) is necessary to ensure the transformation is uni-

tary. The Hamiltonian is mapped to UH̃U† ⊕ 0. For the rest
of the paper, we will drop the 0 component of the extended
operators for brevity.

Let us define the unitary transformed wave function as
U(t)ψ̃(t, x) =: ψ(t, x). The time-dependent Schrödinger
equation (1) is also mapped by the unitary operator as

iℏ
∂

∂t
ψ(t, y) =

(
UH̃(x)U† + iℏU∂tU†

)
ψ(t, y)

=

[
H̃(y) +

∂tℓ

2ℓ
{y, iℏ∂y}

]
ψ(t, y)

=: H(t, y)ψ(t, y) (6)

where y = ℓx ∈ [−1, 1].

Alternatively, assuming pseudo-Hermiticity, the time-
independent non-Hermitian Hamiltonian (1) can be mapped
to a Hermitian Hamiltonian via Dyson map H̃ = ηh̃η̃−1,
h̃† = h̃. Note that when we consider the PT -broken regime,
the pseudo-Hermicity is broken and the Hamiltonian h̃ be-
comes non-Hermitian. However, we will show that even in
such a case, the average energy (3) is real due to the time-
dependent boundary. Let us denote the new wave function
ϕ̃(t, x) := η̃ψ̃(t, x) where the non-Hermitian operator η̃ is
time-independent. Therefore the Schrödinger equation and
the boundary condition (1) are simply mapped to

iℏ
d

dt
ϕ̃(t, x) = h̃(x)ϕ̃(t, x), ϕ̃(t,±ℓ) = 0. (7)

Then the above procedure to remove the boundary time de-
pendence can be applied to the mapped Hermitian system, and
one obtains

iℏ
d

dt
ϕ(t, y) =

(
uh̃u† − iℏu∂tu†

)
ϕ(t, y)

=

[
h̃(y) +

∂tℓ

2ℓ
{y, iℏ∂y}

]
ϕ(t, y)

= h(t)ϕ(t, y), (8)
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where uϕ̃(t, x) = ϕ(t, y) and u is also defined in a same way
as Eq. (5).

It has been shown that in the time-dependent case [22], the
Dyson map between non-Hermitian and Hermitian operators
is given by

H(t) := η(t)h(t)η(t)−1 + iℏ
∂η

∂t
η−1, (9)

where the Dyson map η(t) is a time-dependent non-Hermitian
operator. We summarise the relation between Eqs.(1), (6), (7)
and (8) in the Fig. 1. Note that by requiring the scheme in
Fig. 1 to be commutative, we find the relation between two
similarity transformations and the two Dyson maps

η(t) = u(t)η̃U†(t), (10)

which leads to the equivalence between the non-Hermitian
time-dependent boundary problem (1) and the non-Hermitian
time-dependent Hamiltonian problem with a time-dependent
metric (6) discussed in [19].

Once we obtain the time-dependent Hermitian Hamilto-
nian, the average energy (3) can be calculated. Using the re-
lations in Fig. 1 and the Eq. (10), one can write down four
alternative formulations of the average energy (3).

⟨E(t)⟩ =

∫ ℓ(t)

−ℓ(t)

dxψ̃†ρ̃H̃ψ̃ =

∫ ℓ(t)

−ℓ(t)

dxϕ̃†h̃ϕ̃ (11)

=

∫ 1

−1

dxϕ†
(
h− iℏutu†

)
ϕ (12)

=

∫ 1

−1

dxψ†η†η
[
H + iℏ

(
u†η

)−1
∂t

(
u†η

)]
ψ. (13)

The operator inside the square brackets in Eq. (13) is called
the energy operator. It was initially introduced in Ref. [22],
serving as an isospectral operator in relation to the Hermitian
operator procured through the time-dependent Dyson map-
ping of a non-Hermitian Hamiltonian. The implementation
of this operator addresses the non-isospectral characteristic of
the non-Hermitian Hamiltonian and its Hermitian counterpart,

a discrepancy that arises due to the time dependence of the
Dyson map.

We will apply these general relations to a specific example
that we choose to be the Swanson model in the next section.

SWANSON MODEL: MENDING PT -BROKEN REGIME
VIA MOVING BOUNDARY

Typically, finding the exact Dyson map poses a substantial
challenge, given that it necessitates solving an operator-valued
algebraic equation. The Swanson model [17] is one of the rare
cases wherein multiple metrics have been found [18], even in
the time-dependent case [22]. Exploiting this characteristic,
we will compute the average energy corresponding to three
distinct metrics, showing the energy spectrum is, indeed, real
in all three instances.

Furthermore, we will show that a time-dependent boundary
can lead to real average energy in both PT -symmetric and
broken regimes. Let us consider the Swanson Hamiltonian
[17]

H̃ =
ω−
2
p2 +

ω+

2
x2 +

i

2
A{x, p}, iℏ∂tψ̃ = H̃ψ̃, (14)

where p = −iℏ∂x, ω± := ω ± (α + β) and A := α − β.
According to [18], the Hamiltonian (14) can be mapped via a
similarity transformation to a harmonic oscillator, which cor-
responds to the top-right corner of the commutative diagram
in Fig. 1

η̃iH̃η̃
−1
i = Ai(α, β)p

2 +Bi(α, β)x
2 =: h̃i, (15)

η̃iψ̃ = ϕ̃i, iℏ∂tϕ̃i = h̃iϕ̃i, (16)

where the index i labels the non-unique choices of the Dyson
maps. The specific forms of the parameters Ai(ω, α, β) and
Bi(ω, α, β) are fixed by assuming at least two operators to be
mapped to their Hermitian counterparts [16]. Below we list
three examples taken from [18]

A1 =
ω − 2

√
αβ

2ω
, B1 =

ω
(
ω + 2

√
αβ

)
2

: η̃iHη̃
−1
i = h̃i, η̃iNη̃

−1
i = N, (17)

A2 =
ω − α− β

2ω
, B2 =

ω

2

ω2 − 4αβ

ω − α− β
: η̃iHη̃

−1
i = h̃i, η̃ixη̃

−1
i = x, (18)

A3 =
ω2 − 4αβ

2ω (ω + α+ β)
, B3 =

ω (ω + α+ β)

2
: η̃iHη̃

−1
i = h̃i, η̃ipη̃

−1
i = p, (19)

where N is a number operator.

The average energy (3) of the Hamiltonian is computed to

⟨E⟩ = (n+ 1/2)
√
ω2 − 4αβ = (n+ 1/2)

√
A2 + ω+ω−

for n ∈ N. The PT symmetry of the Swanson model is bro-
ken when ω2−4αβ = A2+ω+ω− < 0. Therefore in the PT -
broken regime, the average energy becomes complex. This is
a common feature of PT -symmetry quantum mechanics. We
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ih̄ ∂
∂t ψ̃(t, x) = H̃ ψ̃(t, x)

ih̄ ∂
∂tψ(t, x) = H(t)ψ(t, x)

Uψ̃(t, x) = ψ(t, y)

ih̄ ∂
∂t ϕ̃(t, x) = h̃ ϕ̃(t, x)ϕ̃ = η̃ ψ̃

h̃ = η̃ H̃ η̃−1

ih̄ ∂
∂tϕ(t, x) = h(t)ϕ(t, x)ϕ = η ψ

H(t) = UH̃U−1 + ih̄∂tU U−1 h(t) = uh̃u−1 + ih̄∂tu u
−1

h(t) = ηHη−1 + ih̄∂tη η
−1

ψ̃(t,±ℓ) = 0 ϕ̃(t,±ℓ) = 0

ϕ(t,±1) = 0ψ(t,±1) = 0

uϕ̃(t, x) = ϕ(t, y)

Figure 1: Caption

1

FIG. 1. Commutative scheme, showing the relations between two time-independent Schrödinger equations with time-dependent boundary
conditions on the top row, and two time-dependent Schrödinger equations with time-independent boundary conditions on the bottom row.

will consider the time-dependent boundary to mend this com-
plex energy analog to [19].

The Schrödinger equation (15) can be transformed by
the unitary map (5) to give the time-dependent Hermitian
Schrödinger equation iℏ∂tϕi = hϕi corresponding to the bot-
tom right corner of the commutative diagram in Fig. 1. The
explicit form of the time-dependent Hermitian Hamiltonian is

hi(t, x) :=
ℓt
2ℓ

{x, iℏ∂x} −
ℏ2Ai

ℓ2
∂2x +Biℓ

2x2. (20)

for i = 1, 2, 3. The corresponding Schrödinger equation is
simplified by performing a further unitary transformation of
the form ϕj = c1exp

(
i ℓℓt
4Ajℏx

2
)
φj(t, x), which reduces the

equation to

0 = i4ℏAjℓ
2(φj)t + ℏ24A2

j (φj)yy

−ℓ3(4AjBjℓ+ ℓtt)y
2φj , (21)

with cj denoting the normalization constant. It is useful to
notice that the combination of two parameters 4AjBj = ω2−
4αβ =: Ω takes the same form for all three examples (17) -
(19).

The above equation can be reduced further into the effective
Harmonic oscillator if we consider the solution to the equa-
tion ℓ3(Ωℓ + ℓtt) = κ2 where κ is some constant. This is
an Ermakov-Pinney equation [23, 24], which can be solved
exactly. One of the solutions is

ℓ2j (t) =
κ

AjBj
sin2

(
2
√
AjBjt

)
+ κ cos2

(
2
√
AjBjt

)
+
2(κ− 1/4)√

AjBj

sin
(
2
√
AjBjt

)
cos

(
2
√
AjBjt

)
.

(22)

Introducing the new time variable τ =
∫ t

1/ℓ2, we find the
effective Harmonic oscillator

i4ℏAj(φj)τ + ℏ24A2
j (φj)yy − κ2y2φj = 0. (23)

Let us consider the Ansatz φn
j = exp

(
−iϵnj τj/Ajℏ

)
χn
j (y).

Then the above effective harmonic oscillator is reduced to a
Sturm-Liouville eigenvalue problem

−∂yyχn
j +

κ2

4ℏ2A2
j

y2χn
j = ϵnj χ

n
j . (24)

where there exist odd and even solutions are given in terms of
hypergeometric functions

χodd
n
j (y) = e

− 1
2

κy2

2ℏAj

( √
κy√

2ℏAj

)
1F1

[
3

4
−

1

4

2ℏAj

κ
ϵnj ,

3

2
,
κy2

2ℏAj

]
,

χeven
n
j (y) = e

1
2

κy2

2ℏAj 1F1

[
1

4
+

1

4

2ℏAj

κ
ϵnj ,

1

2
,
−κy2

2ℏAj

]
.

Therefore we found the solution to the effective Schrödinger
equation corresponding to the bottom right corner of the com-
mutative diagram shown in Fig. 1

ϕnj (t, x) = cjne
i

ℓℓt
4Ajℏ

x2−i 1
Ajℏ

ϵnj τjχn
j (x). (25)

where the constants cjn are fixed by normalisation 1 =

⟨ϕnj |ϕnj ⟩ =⇒ c−2
n =

∫ 1

−1
dyχ†

nχn.

The solution (25) can be mapped back to ϕ̃ by use of an
inverse mapping with the unitary transformation u†ϕ(t, x) =
ϕ(t, x/ℓ(t))/

√
ℓ(t), which gives

ϕ̃nj (t, x) =
cjn√
ℓ(t)

e
i

ℓℓt
4Ajℏ (

x
ℓ(t) )

2−i 1
Ajℏ

ϵnj τjχn
j (x/ℓ(t)) . (26)
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Using this solution together with the Hamiltonian (15), one
can calculate the average energy (11).

Average energy

The quantum Fermi accelerator commonly refers to the
quantum harmonic oscillator with a time-dependent boundary
condition. It was first introduced in [25] and one of its charac-
teristics is its infinite increase of the average energy over time
[7]. It was later shown that with some specific oscillation of
the boundary condition [11], the average energy shows peri-
odic gain and loss but zero net increase. We will show in this
section that in the PT -symmetric case, the behavior of the
average energy coincides with the result of [11], and in the
PT -broken case, we observe a new behavior of the average
energy where the periodicity of the average is lost.

Let us plot the average energy (11) for three different Dyson
maps (17) - (19) in the PT -symmetric (Ω > 0) and the PT -
broken (Ω < 0) regimes.

In the PT -symmetric regime shown in Fig. 2 panel (a) and
(b), the average energy exhibits the periodic structure with
T = nπ/2

√
AjBj , n ∈ Z for all three metrics (17)-(19).

This is because the average energy’s periodicity is inherited
from the boundary function (22), where the combinationAiBi

is equal for all metrics. This finding leads us to the same con-
clusion as in [26], indicating that although the average energy
experiences time-dependent fluctuations, it remains periodic
with no net gain or loss over a long time.

In the PT -broken regime, the real-valued average energy
is consistent with previous observations [19]. In Figs. 2 (c)
and (d), we observe a new behavior of the quantum Fermi ac-
celerator, where the average energy loses its periodic structure
in this regime due to the non-periodic behavior of the bound-
ary function (22), which hyperbolically diverges with time.
Despite the divergent nature of the boundary function, the av-
erage energy remains constant over time and only experiences
gain and loss near the origin.

Furthermore, we observe a novel behavior of the non-
Hermitian system where the probability density is infinitely
spreading as the boundary moves away, which ensures the
conservation of the probability even in the PT -broken regime
as demonstrated in Fig. 3. This behavior is similar to that
observed in single-particle open quantum systems [27], but
it differs from the context considered here in time-dependent
pseudo-Hermitian non-Hermitian systems, where the non-
Hermitian term does not result from environmental effects, as
in [27].

SWANSON MODEL: EQUIVALENCE OF
TIME-DEPENDENT BOUNDARY AND DYSON MAP

This section illustrates the commutativity of the diagram
shown in Fig. 1.

Let us begin with the Swanson model (14). Performing the
unitary transformation (5), the time-dependent non-Hermitian
Hamiltonian is given in (6), where its explicit form is found to

iℏ∂tψ = −ω−ℏ2

2ℓ2
ψyy +

ω+ℓ
2

2
y2ψ

+ℏAyψy +
ℏA
2
ψ +

ℓt
2ℓ

{y, iℏ∂x}ψ (27)

Similar to the previous section, one can perform further uni-
tary transformations by ψ = exp(iℓ∂tℓ/2ℏω−y2)φ(t, y) to
the above equation. Let us consider the following Dyson map

η = e
− 1

2ℏω−
Aℓ2y2

(28)

ηψ = ηe
1

2ℏω−
iLLty

2

ψ(t, y)

= e
1

2ℏω− (−AL2+iLLt)y2

φ(t, y), (29)

which maps the non-Hermitian Hamiltonian to Hermitian
Hamiltonian

i2ℏω−ℓ
2φt + ℏ2ω2

−ϕyy − ℓ3 (Ωℓ+ ℓtt) y
2ϕ = 0. (30)

Rescaling the variable as y =
√
ω−/2Aiz, the above equa-

tion is mapped to the effective Hamiltonian (21), rendering
the equivalence of two approaches.

CONCLUSION

Our main finding is that time-dependent boundary condi-
tions can be simulated with time-dependent metric operators
and vice versa. In turn, this implies that the spontaneously
broken PT regime can be mended, in the sense of acquiring
real energies, not only by a time-dependent metric but equiva-
lently also with time-dependent boundaries. We demonstrated
our assertions for the exactly solvable pseudo-Hermitian
Swanson model. For this model, the time-dependent bound-
ary functions are restricted by the Ermakov-Pinney equation.
The characteristic behavior of this function, which is periodic
in time or divergent, is inherited by the time-dependent aver-
age of the energy function. These restrictions may be relaxed
at the cost of the model no longer exactly solvable.

In the PT -symmetric regime, we find an oscillatory behav-
ior of the average energy similar to the one found in [11] for
the harmonic oscillator with time-dependent coefficients. Dif-
ferent types of metric operators distinguish between whether
this function has well-localized minima or maxima. In the
spontaneously broken PT -regime, the average energy is no
longer periodic and develops only one well-localized mini-
mum, irrespective of the choice of the metric.
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c) d)
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FIG. 2. Average energy for the PT -symmetric/broken regimes over time for the first metric (17) in panels (a) and (c), respectively. The results
computed with the second metric (18) for PT -symmetric/broken regimes are shown in panels (b) and (d), respectively. The case involving the
third metric (19) is omitted as it is almost identical to the first metric with a slight scale difference.

FIG. 3. Showing the infinite spreading of the probability density ϕ̃†ϕ̃
of the wave function (26) with time in PT -broken regime. The verti-
cal line is the boundary ℓ(t), which is found by solving the Ermakov-
Pinney equation. In the PT -symmetric regime, the boundary moves
periodically with a similar spreading of the probability density.
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