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Figure 1: “Infection by age” glyph at a high spatial resolution across a region. Turquoise is ‘susceptible” (uninfected), pink is ‘dead’,
see Fig. 3c for others. Each glyph shows the proportion of the population in each age group (younger at top; older at bottom) in each
infection category for days 17, 21 and 25. Temporal lags across the region are apparent as are more deaths for older age groups.
Fainter squares have lower population densities, allowing us to see that the disease is spreading slower to smaller populations.

ABSTRACT

We describe our use of gridded glyphmaps to support development
of a repurposed COVID-19 infection model during the height of the
pandemic. We found that gridded glyphmaps’ ability to interactive
summarise multivariate model input, intermediate results and out-
puts across multiple scales supported our model development tasks
in ways that the modellers had not previously seen. We recount
our experiences, reflect on potential to support more spatial model
development more generally and suggest areas of further work.

Index Terms: Human-centered computing—Visualization—Visu-
alization techniques

1 INTRODUCTION

Spatial models explicitly model spatial processes. As with many
types of model, they can help simulate specific scenarios, but they
can also be used to help understand spatial processes more generally.
They are used in a wide variety of application areas, including
climate modelling, population demographics and epidemiology, and
they operate at increasingly high spatial resolutions.

During the COVID-19 pandemic, there was a scramble to adapt
and develop models capable of helping us understand the nature of
the spread, population-level effects and possible effects of interven-
tions [3]. Model developers need to be able to visually explore the
multivariate inputs, outputs and intermediate results to help develop
a more intuitive understanding of the model dynamics, validate the
outputs and choose suitable model parameters.

We (the authors) worked closely together as one of a number
of specialist modelling groups within the Scottish COVID-19 Re-
sponse Consortium (SCRC) [14, 18] which repurposed, adapted
and developed new models to help understand the COVID-19 pan-
demic at a time when little was known about it. The authors’ group
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comprised Harris and Reeve adapting and further developing their
EcoSISTEM.jl model [8] – originally for simulating the dynamics
of plant species growth, competition and reproduction – working
closely with Slingsby to co-design effective interactive analytical
visualisation to support model development.

Our input data were demographic data classified by gender and in
10-year age bands, spatially resolved at a 1km2 resolution along with
the disease parameters and location of initial infection(s). Our output
data added infection status (see list in Fig. 3c) over a 30 day window
(with a 1-day-timestep). The visual depiction of high-resolution
multivariate spatial data presents visualisation challenges, leading
to model developers often aggregating spatial areas into coarser
(often very coarse) regions, or even producing non-spatial global
summaries and univariate summary statistics [6]. Such aggregation
hides important spatial and multivariate structure that might be help-
ful for model validation. The ability to visually explore multivariate
spatial summaries of model inputs, outputs and intermediate results
became the focus of our work.

Our approach uses “glyphmaps” [20] that can represent spatial
variation in multivariate data. They do this by placing glyphs (mini-
charts) on maps where each glyph represents a multivariate area-
based summary. “Gridded glyphmaps” [15] use a grid-based geo-
graphical discretation, creating grid cells that are the bases for the
areal summaries represented by glyphs. The addition of zoom/pan
interactions enables spatial patterns to be assessed at different scales.

Our contributions are to: (a) make the case for gridded glyphmaps
to support development and validation of a COVID-19 model; (b) de-
scribe and discuss our visual encodings and interaction designs for
helping us achieve this; (c) consider gridded glyphmaps’ wider po-
tential for supporting spatial modelling; and (d) provide open-source
implementation for experimentation.

2 TASKS AND REQUIREMENTS

We started working together just as the first version of the model
was being created and as modeller needs were emerging. High-level
tasks can be summarised in the following:

T1 What is the spatial distribution of the multivariate model

https://observablehq.com/collection/@aidans/covid-19-modelling
https://observablehq.com/collection/@aidans/covid-19-modelling


Comparatively young

Figure 2: Population glyphs showing comparatively young populations
in Edinburgh and Glasgow (young to old from top to bottom).

inputs, (internal) intermediate values and outputs? The
inputs and intermediate values drive the model, so understand-
ing these is important for knowing what to expect from the
outputs. For example, regions with a higher proportion of older
population would expect more severe outcomes.

T2 Which (specific) parameter values are needed for (specific)
model processes to have the expected effect? For example,
the internal “force of infection” parameter needs to be high
enough for COVID-19 infection to spread outside of urban
areas, as observed in the case data.

T3 How do the outputs of different models with different sce-
narios and parameters compare? This can help validate
the model itself (e.g. to study effects of adding, removing
or re-weighting a specific modelling processes, or exploring
parameter spaces) and apply the model operationally; an exam-
ple of the latter is to assess how variations in lockdown rules
affects potential for infection to spread.

3 INTERACTIVE GRIDDED GLYPHMAP APPROACH

Our requirements need a solution that enables multivariate model
inputs and outputs to be summarised spatially and to enables this to
be done at multiple scales from national (Scotland-wide) all the way
down to small towns.

Our solution for visually summarising spatial multivariate data
is to use a “gridded glyphmap” [7, 15, 20] that regularly grids space,
aggregating data within each cell and embedding a multivariate
glyph in each. Regular gridding is a good approach when using a
high-resolution spatial model. Our solution for our comparison
tasks was to design comparison glyphs (Fig. 3d). Our solution
to support exploration at multiple spatial scales is the use of a
kind of semantic zoom [2] in which the spatial scale is interactively
determined by the zoom level. The fixed gridded discretisation of
screen space produces grid cells of fixed screen position and size,
but when the underlying data are zoomed and panned, they are
reaggregated on-the-fly, revealing data at an appropriate spatial scale
for the zoom level, all the way down to the individual 1km2 original
data values. Thousands of data records are summarised as a single
glyph in each cell when zoomed out, whereas at the highest zoom
levels a glyph will represent just one record.

3.1 Glyph designs
Designs are based on our tasks (as recommended by Macguire et
al [10]) and influenced by both Chang et al’s [4] design aspects
and well-known perceptual guidance on visualisation [11]. Popula-
tion size/proportion/comparison is the most important quantitative
variable and is therefore represented by the most effective visual
variable: aligned length. The similarly important ordinal ‘age group’
category is represented by y-position in age order. The 8 nominal
‘infection’ categories are adequately distinguished by hue using Col-
orBrewer [9] and order in the glyph, which also corresponded to
the progression of the disease. Time is represented as animation or
on the x-axis. We keep the same layout for each grid cell so that

Figure 3: Glyphs used in gridded glyphmaps that supported COVID
modelling [5,16] in two versions, one based on counts and one based
on proportions. Opacity indicates population size in the latter, de-
emphasising small sample size proportions. (https://www.staff.
city.ac.uk/˜sbbb717/glyphmaps/covid/).

they are learnable [4]. More visually complex glyphs such as Fig. 3c
and 3d need larger grid cells to be legible, recognising the important
trade-off of spatial precision with legibility.

Population glyphs. Demographics is an important driver of the
model and these glyphs were designed to show the structure of the
population (Fig. 2) used as inputs to the model (a T1 task). Vertical
position indicates the age band and horizontal length indicates the
size of the sub-population.

Infection by age glyph. The glyphs in Fig. 3b show the model
outputs, i.e. the number of people in each infection state and by
age group for a single day, depicted as stacked barcharts. As for
the population glyphs, vertical position encodes the age band, hor-
izontal length indicates size of sub-populations and hue indicates
infection state. These animate though each day (see web link in Fig.
3’s caption), conveying lags in spatial spread from seed locations.
The population proportion version uses a spine plot that encodes
proportions that better indicate the different risks associated with
each age group, supporting T1 and T2 tasks.

Infection timeseries glyph. Since animation is not an effective
way to help discover trends [13], we designed timeseries-based area
charts. To limit glyph complexity we aggregated-out the age-bands.
Horizontal position indicates day from 0 (left) to 30 (right), vertical
height indicates population and hue indicates the infection state. Fig.
3c shows spatial differences in the rate of infection and its effect on
the population over time, supporting T1 and T2.

Infection comparison timeseries glyph. These glyphs encode
the difference between model runs supporting T3 (comparison) tasks
using vertical position above and below the horizontal centre line to
indicate whether there were more or fewer people (respectively) in

https://www.staff.city.ac.uk/~sbbb717/glyphmaps/covid/
https://www.staff.city.ac.uk/~sbbb717/glyphmaps/covid/


time tic-lines for each location cell
on day 9 (where mouse pointer is)

details on demand

Glasgow

Edinburgh

Dundee

infection starting later than
in Edinburgh (day 9)

low population density
faded/faint or no glyphs)

plateau in cases then
rapid increase

Figure 4: Relative version of “infection timeseries” glyphs for the most
populated area of Scotland. Glyphs representing low populations are
faint. Time tick-lines indicating the 9-day position on the x-axes based
on mouse pointer position, helps determine time-lags.

the infection state than the model run used for the baseline. Time
is on the horizontal axis and hue indicates the infection state. The
glyph in Fig. 3d indicates that the two model runs have the same
outcome until about day 10, after which that is a larger infection
peak (above the horizontal centre-line), with lower ‘susceptible‘
(not infected) population (below the horizontal centre-line), though
interestingly, deaths are lower (pink below the line).

3.2 Proportions and denominators
A recurring issue with the visual depiction of population-related data
is that population size varies between spatial units, particularly for
those that are regularly-sized. Expressing counts of ‘infected’ people
alone is often not useful where population size varies markedly be-
tween spatial units. Expressing as proportions of total population is
more informative. However, where overall population sizes are low,
such proportions are not statistically stable. Visvalingam [19] sug-
gested using a chi-squared-based statistic to emphasise proportions
with larger denominators. We do so in Fig. 3 using transparency
to de-emphasise proportions with low population size, separating
proportion (size) and denominator (opacity).

3.3 Interactions
Spatial resolution: Semantic zooming interactively changes the
spatial resolution of data summarised in the grid cell, whilst keeping
the screen-size constant. Analysts can also interactively change the
screen-based size of the cells in which there is a trade-off between
spatial resolution and size of grid cell therefore complexity of sup-
ported glyph [15], an issue that notably applies to the “infection
comparison glyph” as reflected later

Scaling: Analysts can rescale the length, colour and/or opacity
of glyphs based on the maximum value in view (scaling from zero).
This scaling persists with zooming and panning so that magnitudes
can be compared until explicitly rescaled. In addition, analysts can
interactively increase or decrease this value, allowing values at the
lower end of the scale to be explored when required.

Time: Simple mouse movements to scroll through time in the
animated glyphs and time tick-marks in the timeseries glyphs, enable

Figure 5: Top: Timeseries of the internal “force of infection” value
that drives outputs, some of which have double-peaks. Bottom: A
model run where “force of infection” was too low for infection to spread
outside populated areas, contrary to the case data at the time. ‘Sus-
ceptible’ has been hidden on the right, reinforcing this observation.

Comparatively large and
small difference with baseline

Change in rate of difference

Difference in rate of
difference, but the

low opacity indicates
low population, so less

statistically reliable

Figure 6: Comparison between between two model runs.

spatial comparison of temporal lags.
Filtering: Infection categories can be switched on and off. ‘Sus-

ceptible’ is turned off in Fig. 5 so that the other infection categories
can be focused on.

Details on demand: Tooltips indicate data values at the mouse
position in any glyph.

4 USAGE, REACTION AND REFLECTION

Reaction and reflection has been published [5, 17]; we focus on
usage, reactions and reflections that may inform gridded glyphmaps’
use for other spatial modelling.

4.1 Gridded glyphmaps

Spatial model development usually requires outputs to be separately
processed and aggregated to produce static, aggregated and univari-
ate plots [6]. Interactive gridded glyphmaps enabled us to consider
richer and more integrated summaries of outputs across multiple spa-
tial scales making it possible to investigate data and model outputs



more freely to better understand how models function, in ways that
co-authors Harris and Reeve had not previously seen.

4.2 Tasks and usage
T1: Multivariate spatial distribution. Fig. 4 (“infection timeseries”
glyph; time on the x-axis) shows spatial differences in the timeseries
of proportional infection. It is a useful overview of temporal patterns
across space. The time tick-lines which follow the cursor helped
identify time-lags in COVID spread. However, the time animation
in Fig. 1’s “infection by age” glyphs – which can be interactively
“played” using the mouse to move back – helped identify spatiotem-
poral dynamics, particularly at the fine spatial resolution in Fig. 1.
There is scope for designing glyphs that more specifically focus on
small differences in time lags, such as the number of days between
peak infection and the average time of peak infection. The animated
“infection by age” glyphs also reveal differences in infection by
age group – aggregated out of the “infection timeseries” glyphs –
with deaths occurring in older populations in Fig. 1. Using these in
conjunction with the raw demographic glyphs in Fig. 2 helped us
explain spatial differences in how populations responded.

T2: Helping choose appropriate parameter values. In the
early stages of model development, we scrutinised the internal in-
termediate “force of infection” value (Fig. 5; top) that drives model
output [17] to help determine mechanism of operation. Through the
“infection timeseries” glyphs we were able to see that this parameter
needed to be tuned high enough so that COVID-19 infection could
‘escape’ from urban areas into the surrounding countryside (Fig. 5;
bottom); hiding the susceptible make this more obvious) as was
observed by the case data at the time. We then investigated the
inclusion of new data into the model, such as age-specific parame-
ters, age mixing matrices, commuting and pollution data, and the
mechanisms by which to incorporate such data. Our “infection by
age glyph“ was particularly useful for validating differential mix-
ing and death between the different age categories. We found that
more mixing between adults produces a corresponding increase in
infection amongst these categories, or that an increased probability
of death in the older population translated to an increase in those cat-
egories that died from COVID-19. Incorporation of further datasets
increased the complexity of the model considerably. The inclusion
of commuting data and long-distance spread of force of infection
decreased our need for tuning this parameter to escape urban areas.

T3: How do different model outputs compare? The “infection
comparison timeseries“ glyphs show differences between model
runs. In particular, we explored the incorporation of environmental
variables into COVID-19 dynamics in the model development stage,
including weather and pollution. Pollution – especially particulate
matter which enters the lungs – is thought to play a role in increased
susceptibility and severity of the disease and involved a substantial
re-write of the model with new mechanisms. Our comparisons were
of runs where we varied a parameter that controlled the impact of
pollution on processes like death and hospitalisation. Initial visuali-
sations using the comparison glyphs indicated that these mechanisms
were not functioning as intended and flagged this for bug fixing.

4.3 Glyphs and interactions
Developers and users of spatial models tend to focus on highly
aggregated univariate summaries [6]. The ability to interact and in-
terrogate the rich multivariate data associated with spatial models is
relatively new to spatial modelling. Not compromising on either the
time or space dimensions allowed us to include both at varying scales
and resolutions. This allowed both the interpretation of ‘big picture’
dynamics and individual small scale variations. The animated glyphs
included an option to scroll through time using the mouse to look at
the changing course of the epidemic in the simulation. In addition to
the elements that inspired ease of use and interpretation of complex
data, there were also interactions that aided the user in focusing on

particular aspects of the model inputs and outputs. This included an
option to fade data according to their relative population sizes and
filtering for specific infection categories. We found this particularly
useful during the model comparisons, for which we may want to
focus on specific categories according to the parameter being varied,
e.g. death, and to concentrate upon differences that are relatively
large in comparison to the population size.

5 ISSUES, REFLECTIONS AND FURTHER WORK

Glyph complexity and spatial resolution tradeoff. Larger grid
cells help make visually-complex glyphs legible (e.g. the “infection
comparison” glyphs) but at the expense of spatial resolution. Inter-
active techniques for changing the screen resolution (grid size) and
changing the geographical resolution (zooming) enables us appro-
priately trade these off during visual analysis.

Background map. Overlaid administrative boundaries provide
visual spatial reference with minimal interference. The subsequent
Javascript implementation (below) uses multiscale mapping tiles but
adequate gaps between glyphs and/or transparency are necessary.
A simple map tile design reduces interference and helps produce
visual spatial reference at multiple scales.

Heterogeneity within grid cells. Grid cells may aggregate quite
diverse distributions. The high geographical resolution in Fig. 1, re-
veals nuance that is aggregated out of coarser scale views. Although
this is by design, designing glyphs that convey the heterogeneity
within cells could alert analysts where to inspect at a finer resolu-
tion, for example, showing the data by quartile. Glyphs designs and
interactions for investigating this is good further work.

Spatial anomalies. Anomalies might be averaged out by area-
based gridding. Designing glyphs that identify buried anomalies
would be very useful, if we know how to quantify them. Anoma-
lies often depend on spatial or temporal context, so values that are
different from expected based on locally/geographically/temporally
weighted statistics or models [1] may be useful anomalies. For ex-
ample, we might be interested unusually high death rates for age
groups given the local average or what happened in previous days.

Modifiable Areal Unit Problem (MAUP). Imposed regular grid-
ding is that arbitrary and does not respect geographical context,
potentially splitting important populations and leading to the Mod-
ifiable Areal Unit Problem [12]. The repeated reaggregation of
gridded glyphmaps makes them particularly vulnerable to this. It
is particularly problematic when there is an arbitrariness about the
aggregation (the case with regular gridding) and that aggregation is
retained. Glyph stability when interactively panning gives a visual
indication of the impact of MAUP. There is scope for further work
in quantifying this and depicting the effects through glyphs.

Model mechanisms. Spatial models model spatial processes.
They may be particular ‘tipping points’ that govern which process
dominates. There is scope future work to design glyphs that sum-
marise the spatial distribution of details of model mechanisms.

Implementation. The original Java implementation is
available at https://www.staff.city.ac.uk/˜sbbb717/
glyphmaps/covid/. We subsequently produced an open-source
Javascript implementation within an Observable notebook environ-
ment (https://observablehq.com/collection/@aidans/
covid-19-modelling). This can be to explored and experimented
with for these and other spatial datasets.

6 CONCLUSION

We demonstrate a case for interactive gridded glyphmaps for sup-
porting the development of spatial models through our COVID-19
modelling case study. We have discussed visual coding and inter-
action designs that supported our model development tasks. This
demonstrates the utility gridded glyphmaps for the development of
spatial model more generally. Our implementations can be used to
experimentation and we have suggested lines of future research.

https://www.staff.city.ac.uk/~sbbb717/glyphmaps/covid/
https://www.staff.city.ac.uk/~sbbb717/glyphmaps/covid/
https://observablehq.com/
https://observablehq.com/collection/@aidans/covid-19-modelling
https://observablehq.com/collection/@aidans/covid-19-modelling
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