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Abstract — We investigate the use of spherical cross-correlation as a similarity measure of sound radiation
patterns, with potential applications for their study, organization, and manipulation. This work is motivated
by the application of corpus-based synthesis techniques to spatial projection based on the radiation patterns
of orchestral instruments. To this end, we wish to derive spatial descriptors to complement other audio features
available for the organization of the sample corpus. Considering two directivity functions on the sphere, their
spherical correlation can be computed from their spherical harmonic coefficients. In addition, one can search for
the 3-D rotation matrix which maximizes the cross-correlation, i.e. which offers the optimal spherical shape
matching. The mathematical foundations of these tools are well established in the literature; however, their
practical use in the field of acoustics remains relatively limited and challenging. As a proof of concept, we apply
these techniques both to simulated radiation data and to measurements derived from an existing database of
3-D directivity patterns of orchestral instruments. Using these examples we present several test cases to
compare the results of spherical correlation to mathematical and acoustical expectations. A range of visualiza-
tion methods are applied to analyze the test cases, including multi-dimensional scaling, employed as an effi-
cient technique for data reduction and navigation. This article is an extended version of a study previously
published in Carpentier, T. & Einbond, A. (2022). Spherical correlation as a similarity measure for 3D radiation
patterns of musical instruments. 16th Congrés Francais d’Acoustique (CFA), 11-15 Apr 2022, Marseille,
France. https://openaccess.city.ac.uk/id /eprint,/28202/.
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1 Introduction

The directivity properties of sound sources, in particular
musical instruments and voices, have been shown to be a
key factor in the perception of acoustical sources in a rever-
berant environment [1, 2], for the reproduction of sound by
electroacoustic devices [3, 4], and for the realistic synthesis
of sources in auralization and virtual acoustic frameworks
[5-8]. In all these areas of ongoing research, it would be ben-
eficial to formulate a compact way to describe, compare,
and classify sound radiation patterns.

Audio descriptors are widely and successfully used
for the classification of musical and sonic material [9-11].
However, they are primarily evaluated on monophonic
signals and therefore do not capture the complex spatial
patterns of acoustical sources such as musical instruments.
In order to analyze these patterns computationally, we
require a similarity measure for pairwise comparisons,
from which we can derive a multidimensional spatial
description. The primary aim of our study is to investigate

*Corresponding author: thibaut.carpentier@ircam.fr

the cross-correlation of these patterns as a similarity mea-
sure and clustering tool.

1.1 Motivation

This work was initiated during an artistic-research resi-
dency where composer Aaron Einbond sought to extend
corpus-based concatenative synthesis (CBCS) with spatial
features. CBCS [12] is a sound synthesis method where
short sound segments, or units, are automatically selected
from a large database of audio samples and then assembled
(i.e. concatenated) for playback. By re-arranging units from
a corpus of live- or pre-recorded sounds, the technique is
capable of synthesizing rich and musically expressive
materials [13].

In CBCS, a wunit selection algorithm is responsible for
finding the sequence of units that best matches a given tar-
get specifying the sound or phrase to be synthesized. The
selection is performed according to descriptors of the units,
that is, feature characteristics extracted from or attributed
to the source sounds. A multi-dimensional descriptor space
is populated with the sound units and a distance function
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guides the unit selection algorithm to find the optimal
sequence of units to fit the target.

Most often, the descriptors used are acoustical parame-
ters computationally analyzed from the audio signals [14]
and expected to be representative of the acoustical struc-
ture of the sound units. This typically includes temporal,
spectral, harmonic, spectro-temporal, and energetic proper-
ties of the sound events, such as fundamental frequency,
loudness, spectral centroid, etc. However, these descriptors
do not commonly include spatial information, which would
be useful especially when considering audio signals from
acoustic instruments. One initial motivation for our work
is to incorporate spatial descriptors into the CBCS method
as a way to extend and improve our previous experiments
on spatialized CBCS [15-17]. More specifically, we wish to
apply CBCS to a corpus of musical instrument recordings,
taking their radiation patterns into account as supplemen-
tal descriptors for the organization of the database.

1.2 Previous work

To incorporate radiation patterns in the context of
CBCS, as described above, requires a rigorous comparison,
or distance function between patterns. However, radiation
patterns are in essence multidimensional data, and compar-
ing them is therefore not an obvious task.

One way to assess their resemblance is by evaluating
their spatial correlation, defined as follows. A cross-correla-
tion coefficient is a frequency-dependent scalar value that
expresses the similarity between sound pressures at two
given positions in space [18]. This coefficient can then be
integrated over the entire discrete set of measurement sen-
sors for two radiation functions: the result is their spatial
correlation. Looking chronologically at examples of this
technique, Moreau [19, 20] employs such a spatial correla-
tion for the qualitative assessment of a directivity model
of spherical microphone arrays against measured data. Pol-
low [21] (Sects. 3.3.1-3.3.5) uses spatial correlation for the
analysis of instrumental radiation patterns from the Tech-
nical University of Berlin (TU Berlin), discussed in further
detail below. He produces scatter plots of the correlation
values of partial tones radiated by the instruments, similar
to what we present in Section 5 using a different algorithm.
Sridhar et al. [22] use spatial correlation to compare polar
responses of different loudspeakers and assess their invari-
ance over a specified frequency range.

However, spatial correlation presents disadvantages
that motivated us to pursue a more flexible and efficient
method based on spherical harmonics. As radiation pat-
terns are acoustic wave fields evaluated on the surface of
a sphere, they can be conveniently represented by their
spherical harmonic coefficients, using a decomposition of
the angular functions into the orthonormal set of spherical
harmonics [23]. This representation has already proven use-
ful for the analysis [4], reproduction [8], interpolation [24],
extrapolation [25], or auralization [26] of directivity
functions.

The spherical harmonic representation can also be used
to evaluate the correlation of two signals on the sphere; this

will be referred to as spherical correlation. Spherical corre-
lation offers some advantages over spatial correlation as
presented above: (a) it is independent of the acquisition
setup, i.e. from the number and positions of measurement
microphones; this potentially allows for comparisons of data
from different origins. (b) As spherical harmonic expansions
can be easily rotated, spherical correlation can be used to
determine the angular displacement (or lag) needed to align
the two signals on the sphere. This is widely used in the field
of image processing in order to perform 3-D shape-match-
ing, also known as shape registration [27-32]. (c) As spher-
ical harmonic expansion offers the most compact
representation of radiation data for a given resolution,
spherical correlation can be computed efficiently.

The spherical correlation formalism is discussed in
depth in the mathematical literature. The state of the art
is introduced in [33], building on the foundation of the
spatial Fourier transform [34]. However, while “conven-
tional” correlation is ubiquitous for the analysis of audio
signals, so far the practical use of spherical correlation in
the field of acoustics remains relatively limited and chal-
lenging [35].

In a chronological review of acoustics applications,
spherical correlation is briefly presented in [4, 36], but
actually unused. It is used by Guillon [37, 38| to compute
similarities between spatial frequency response surfaces
(SFRS), and later to clusterize a dataset of SFRS; by Deboy
and Zotter [39] to perform rotational tracking of a moving
trumpet, for which they address the question of discretizing
the 3-D rotation group; and by Pollow et al. [25] to measure
the quality of range extrapolation of head-related transfer
functions, independent of a possible gain mismatch. In a
recent publication, Pezzoli et al. [40] propose a set of
metrics, including the spherical correlation coefficient, to
compare the sound radiation of several historical violins.
Similar to our study, Hohl and Zotter [41] use spherical
correlation as a similarity measure of radiation patterns of
musical instruments. They examine whether different par-
tials at the same frequency, but originating from different
played pitches, exhibit similar radiation on a given instru-
ment. This is promising work, but their short paper does
not provide much detail.

1.3 Source data and methods

Our study is both motivated and facilitated by the
availability of existing datasets of radiation patterns of
orchestral instruments and voices that have been obtained
by previous researchers. These studies use acoustical mea-
surements, in anechoic conditions, with surrounding circu-
lar or spherical microphone arrays. Instruments are
excited either by human players or, in some cases, by elec-
tromechanical devices such as an artificial mouth for brass
instruments. Many authors have reported such measure-
ments either using synchronous multichannel recordings
[2, 5, 42-52] or repeating the signals and rotating the instru-
ment [48, 49, 53-57]. In the case of a human player or
singer, the reproducibility of the signals is of course a matter
of concern.
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Throughout this article, we use a database published
by TU Berlin [50, 58] that constitutes, to date, one of the
most comprehensive datasets of publicly available 3-D
high-resolution synchronous measurements, with radia-
tion patterns for 41 modern and historical orchestral
instruments.

In the following sections, we review the theory of spher-
ical correlation and expand on the studies reviewed above
to present applications to the analysis of directivity func-
tions. We argue that the spherical correlation coefficient,
as a simple scalar number, is a powerful tool for the compar-
ison and similarity measurement of radiation patterns.
After introducing the mathematical preliminaries (Sect. 2),
we discuss practical considerations for an actual implemen-
tation, in particular with respect to the discretization of the
search space for rotational matching (Sect. 3). In Section 4,
we present numerical simulations to elicit basic properties
of spherical correlation and to validate our implementation.
We then present several visualization techniques, based on
a matrix of cross-correlation values, that can be helpful to
detect similarities among radiation patterns, and we pro-
pose the use of multidimensional scaling to clusterize
radiation data. We apply these tools to several case studies
of measured directivity data of musical instruments
(Sect. 5), and we show that spherical correlation, both with
and without rotational matching, can unveil interesting
radiation similarities across frequencies or partials of a given
instrument, or across multiple instruments.

2 Theoretical background
2.1 Cross-correlation on the sphere

Given two shapes f and g, we wish to find the rotation
that best aligns them. Let f be a square-integrable function
on the unit sphere f € LQ(SZ). In the simple case, let us
assume that g is a rotated version of f, i.e. f = Agr(g) for
some 3-D rotation R. We denote Agr the rotational operator
defined such that VQ € S*

A L3(S?) — I3(S?)
Ar(9)(Q) = g(R7(Q)). (1)

We wish to find the rotation R. In the more general case,
given the two patterns f and g, we wish to find the rotation
that best aligns the two shapes on the sphere. This can be
accomplished by evaluating the cross-correlation between
the two functions

i) = [ f@T@@de, @)

and finding the rotation R that maximizes the above inte-
gral [33]. However, evaluating Cr(f, g) for all possible
rotations in the spatial domain is a time-consuming task.
Instead, we undertake it in the spatial Fourier domain.
Since f and g are square-integrable on the sphere S*, we
can write their Fourier expansions [34]

m=-+n

f@=% > e 3)

n=0 m=-n

Y™ () are the spherical harmonic functions, and f" are the
Fourier coefficients of f. Here we have further assumed that
f and g are bandlimited, with their bandwidth B= (N + 1),
N being the maximum order of the Fourier expansion.

A well-known property of the conventional (Euclidian)
Fourier transform is that a translation in the time domain
is interpreted as a phase shift in the frequency domain.
For the Fourier transform on S?, this property means that
the magnitudes of the Fourier coefficients are invariant
under rotation: writing £, (€) for the nth frequency compo-
nent of f

m=-+n

L) =D fryne), (4)

m=—n

the quantity |f,(€)] is invariant under rotation.

Furthermore, the spherical harmonic basis functions of
each order n transform among themselves under rotation
according to

m'=+n

Ar(Y(Q)) = D V@D, (R), ()

m'=—

where D (R) is the Wigner-D function (see Appendix).
Equation (5) is valid for complex-valued spherical
harmonics. When considering real-valued spherical
harmonics (as typically used in the field of Ambisonics
research), a similar result holds, however involving the
Wigner-d function instead of Wigner-D; details can be
found for instance in [59] (Egs. (16)—(20)).

Now, using equations (3)—(5), it is possible to simplify
equation (2) into:

Cr(f9)=>_ > > f"g,"(-1)" "D, (R). (6)

n=0 |m|<n |m'|<n

A complete demonstration can be found for instance in [33].
Equation (6) allows us efficiently to compute the cross-
correlation by combining the Fourier coefficients of f
and g. From this, we can now search for which rotation
R maximizes Cr(f, g).

In equations (5) and (6), the Fourier coefficients are
rotated by means of the explicit formulae with the
Wigner-D functions (or Wigner-d for real-valued harmon-
ics); in our practical implementation, we rather use recur-
rence relations as this appears to be computationally
more efficient and numerically stable [60-62].

2.2 Normalized cross-correlation

The normalized cross-correlation [30, 38, 63] is simply a
variant of equation (2) normalized by the energy of /" and g,
written
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f§2 f(Q)mdQ .
VI lr@Fa@ - [ ]g@)f de

CR(f’ g) =

The numerator of this expression has already been devel-
oped in equation (6). The denominator can be easily calcu-
lated thanks to Parseval’s identity:

m=+n

JRLCIREE SR ®

n=0 m=-n

As expressed above, the cross-correlation coefficient
Cr(f,g) corresponds to a cosine similarity measure. It is
also possible to construct a Pearson correlation coefficient
by replacing f and g withf and g, wheref results from cen-
tering f on its spatial average. In the spherical harmonic
domain, the spatial average is simply given by the Oth-order
component f;. This approach is used, for example, in
[37, 38, 40]. In [64], this is also referred to as the normalized
cross-covariance coefficient.

3 Finding the optimal rotation R

A rotation in R® can be equivalently represented by:
(a) a 3 x 3 rotation matrix, (b) a set of 3 Euler angles
(or alternatively 3 Tait—Bryan angles), (¢) a unit quater-
nion, also known as a versor, or (d) an axis-angle represen-
tation (i.e. a unit vector indicating the direction of an axis
of rotation, and an angle describing the magnitude of the
rotation about the axis). The different properties of these
formalisms — such as compactness, numerical stability, com-
putational cost, singularity or gimbal lock, etc. — can easily
be found in the literature, as well as conversion formulae
from one representation to another [65-67].

We denote as SO(3) the 3-D rotation group, also known
as the special orthogonal group. SO(3) contains all rotations
R about the origin in 3-D Euclidean space: SO(3) =
{R € R*RR’ = Iyand det(R) = —|—1}7 where I is the
3 x 3 identity matrix. In other words, SO(3) is the sub-
group of orthogonal matrices with determinant +1.

We must explore the SO(3) space in order to determine
the rotation R € SO(3) that maximizes equation (6) or
(7). One possibility would be to use a gradient descent tech-
nique, which has been formalized on the SO(3) rotation
group in [68, 69]. However, we have decided not to use this
approach, as it presents several challenges: the procedure
requires approximation of the directional derivatives, with
an adjustable small step size, in order to converge to the near-
est local maximum. It might also be necessary to restart the
algorithm from several initial values, and choosing the opti-
mal step size or the initial value is not a trivial task. There-
fore, in the scope of this paper, we instead proceed with a
sampling-based exploration of the SO(3) space, as this is con-
ceptually simpler and straightforward in its implementation.

3.1 Sampling the rotation group SO(3)

Due to the topology of SO(3), different choices of
parametrization may yield distributions of samples with

various properties or biases. To implement our approach,
we would prefer a uniform and deterministic sampling
scheme. The definition of uniform is subject to interpreta-
tion, but essentially the sampling grid should ensure both
global coverage and local separation. Note that sampling
the SO(3) space is not the same task as uniformly distribut-
ing samples on the sphere S?, which is a well-studied ques-
tion in the field of spherical acoustics processing [70]. In
contrast, the SO(3) sampling problem is examined for
instance in [71-74]. While an extensive analysis is beyond
the scope of this article, in the following subsections we dis-
cuss and evaluate the most relevant approaches.

3.1.1 Parametrization by Euler angles

For the sake of simplicity, we will follow [33, 37] and use
regular sampling in terms of ZYZ Euler angles (o, f3, 7):
n(2k + 1)

D )

2nj
u =7, :Q—Bjandﬂk =
with 0 < j, k < 2B. According to [33], this sampling
scheme is suitable for the analysis of band-limited func-
tions with bandwidth B. In this case, the size of the search
space is 2B x 2B x 2B.

Note that the null rotation (« = # = y = 0) is not part of
the sampling grid. Consequently, correlating a signal
with itself will not yield « = f = y = 0, but rather =
7/(4B). This is counter-intuitive but not problematic. To
circumvent this, it has been proposed [37] first to rotate
one of the patterns, f or g, by —n/(4B) around the y axis.

We should also note that the true rotation R might not
be on the sampling grid. Therefore, we might only find an
approximate solution R that should be close to R. The
notion of distance in SO(3) will be discussed in
Section 3.1.4.

3.1.2 Sampling by Halton sequences

Another sampling strategy is proposed in [74], extend-
ing and improving a probabilistic approach first proposed
in [75, 76] with the use of Halton sequences in the unit
cube. This approach is easy to implement, and allows the
generation of sampling grids with arbitrary numbers of
samples.

3.1.3 Axis-angle visualization

Any 3-D rotation can be represented by an axis-angle
representation. This formalism is useful for visualizing the
projective space in R? [72]: each rotation is drawn as a vec-
tor with direction n (the axis of the rotation) and a magni-
tude corresponding to 3 (the rotation angle). In Figure 1,
we present several sampling grids generated via (a) Euler
parametrization, (b) Halton sequences, or (c) the Hopf
fibration sampling proposed in [72]. The later is another,
more elaborated, deterministic strategy that produces dense
and highly uniform grids. It can be observed graphically in
Figure 1 that Euler sampling is not perfectly uniform, while
the Hopf fibration grid divides the surface of SO(3) into
regions of (apparently) equal volume. However, the Hopf
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Figure 1. Visualization of SO(3) sampling grids using the axis-
angle representation. The color represents the magnitude 9 of
the rotation (from blue to red). (a) Regular sampling of Euler
angles (as in Eq. (9)) with B = 4, leading to (2B)* = 512 samples;
(b) Uniform distribution using Halton sequences [74] with 512
sampling points; (¢) Uniform incremental sampling using the
Hopf fibration [72] with 576 sampling points.

fibration approach is restricted to fixed sequences of
samples, i.e. it cannot generate an arbitrary number of
samples. Therefore, for the remainder of this article, we will
use the basic Euler sampling (Eq. (9)) for its simplicity and
scalability (with respect to B).

3.1.4 Distance measure on SO(3)

Various functions for measuring the “closeness” between
3-D rotations have been proposed in the literature. The
usual (angular) distance between two rotation matrices
R, Q € SO(3) is given by [39, 71, 77] &;(R,Q) =
acos(% (tr(QRT) — 1)) This metric measures the angle of
rotation needed to map the transformation R to the trans-
formation Q, or equivalently the angle of rotation associ-
ated to the transformation QR ™. Alternatively, we can
interpret d;(R, @) as a scaled Froebenius norm, since

4R, Q) = R - Qlly = 2v2 sin (452), where ||- ||,

is the Frobenius norm defined as [|A||, = y/tr(AA"). Sev-

eral other distance functions have also been proposed, pro-
ducing values in different ranges and of different units.
Huynh [78] presents a detailed review and analysis of vari-
ous metrics, and demonstrates that many of them are func-
tionally equivalent. Huynh concludes that the following
metric, based on quaternions, is both spatially and compu-
tationally more efficient:

d(Ra Q) =1- |qR : qQ|7 (10)

where qg is the unit quaternion corresponding to matrix R,
and - denotes the quaternion inner product (scalar inner
product of two 4-D unit vectors). Equation (10) gives
values in the range [0, 1], with 0 denoting that R and Q
are close 73, 78]. This metric will be used for the remainder
of this article.

Note that, while a distance metric in SO(3) is useful, it
must be handled with care in the context of this paper: con-
sider for example an axis-symmetric pattern f, for example
a cardioid in the y direction. Rotate f around the z-axis
with Ry = (o, fo, 70) = (7, 0, 0). Rotate f* around the
x-axis with Ry = (ay, f1, 1) = (0, 0, ). Both scenarios
result in the exact same pattern g; however, the two rota-
tions differ, and their distance is d(Rg, Ry) = 1.

L Normalized cross-correlation after rotational matching
i v T T

e
0.98 8
:: 0.96 ]
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Figure 2. Impact of oversampling the SO(3) search space.

4 Numerical simulations

We run numerical simulations on simple test cases in
order to elicit basic properties of spherical correlation and
to validate our implementation.

4.1 Impact of SO(3) sampling

As discussed above (Sect. 3.1), the choice of the
sampling grid for SO(3) might have an influence on the
accuracy and efficiency of the maximization problem equa-
tion (7). For the sake of simplicity, here we consider only
the regular Euler sampling of equation (9). However, we
investigate the use of oversamplingi.e. we use a smaller step
size in discretizing the Euler angles (o, f3, 7). Instead of using
2B samples for each parameter, we use ' > 2B. This seems
relevant as our scenario involves directional functions with
relatively low bandwidth (B = 5 if we consider the radiation
patterns available in the TU Berlin database) compared to
other authors (Kostelec [33] typically presents results with
B = 128 or B = 256). With such low bandwidth (B = 5),
the angular step size is very large (n/B = 36°), and there-
fore high angular misalignment might occur. Of course,
oversampling the search grid results in higher computation
time, but that is not the focus of this paper.

We run the following numerical simulation: (a) generate
a random directional function f with a given bandwidth B;
(b) generate a random rotation matrix [79] R € SO(3) and
compute g = Ar(f), a rotated version of £’ (c) sample SO(3)
and search for the rotation matrix R that maximizes the
cross-correlation; (d) compute the cross-correlation after
rotational matching, i.e. the cross-correlation between g
and Ag(f); (e) repeat the simulation for various samplings
of SO(3), varying the oversampling factor N /(2B);
(f) repeat the simulation for various bandwidths 1 < B <
6. For each test case, we perform 10,000 Monte-Carlo runs.
The results are presented in Figure 2.
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fF=Y(Q) Dirac delta

f=ylQ)

=@ [=Y@Q) [f=Y}Q

Figure 3. Top: polar pattern of elementary functions. Bottom:
auto-correlation of f as a function of the rotational lag o (yaw
angle). Columns (a) to (e): f = Y7(Q) for 0 < n < 4. Column (f):
Dirac delta with N = 4.

For each simulated bandwidth B, it can be observed
that oversampling the search space improves accuracy,
allowing for a higher cross-correlation (closer to 1), and a
smaller distance (closer to 0) between the expected and esti-
mated rotation matrices. For B = 2, the distance criteria
d(R, R) appears bounded: this is due to the non-uniqueness
of the solution, as several matrices R achieve rotational
matching (with normalized cross-correlation values close
to 1), while being “far” from the expected /simulated matrix
R (see concluding remark in Sect. 3.1.4).

As a result of this simulation, we speculate that suffi-
ciently oversampled FEuler schemes yield accuracy compara-
ble to other highly uniform grids (such as Halton sequences
or Hopf fibration).

4.2 Auto-correlation of elementary patterns

We now perform a simulation to highlight some basic
properties of the spherical auto-correlation, i.e. the correla-
tion Cr(f, f) of a signal f with a rotated copy of itself. For
f we use different elementary functions (see legend of
Fig. 3). For the sake of simplicity and visualization, we exam-
ine rotations only around the yaw angle: R = R(a). Figure 3
presents the auto-correlation as a function of the rotational
lag a.

We can make a few simple observations in agreement
with theoretical expectations: (1) the auto-correlation coef-
ficient Cr (f, f) varies in range [—1; 1]; (2) as the omnidirec-
tional pattern Y{(€) is rotationally invariant, its auto-
correlation always equals 1; (3) as all examples of /" are real
functions, the auto-correlation is an even function of o; (4)
the auto-correlation reaches its peak at the origin (o« = 0),
and for any lag o we have: |Cr(f,f)| < Cro)(f,f);
(5) the auto-correlation of a periodic function is, itself,
periodic with the same period; (6) the Dirac distribution
is an eigenfunction of the auto-correlation function, i.e.
the auto-correlation of a Dirac delta is a Dirac distribution
itself. All of these are well-known properties of the auto-
correlation function of time signals, here pertained to spher-
ical auto-correlation of directional signals on S°.

4.3 Comparing two patterns of different shapes

So far, we have assumed that the two patterns f and ¢
are rotated cousins and therefore have the same bandwidth.

=0% =20% = 40% =60% =80% ¢ =100%

ST T T

Figure 4. Polar representation of angular pattern g(Q) for N =
4 and for various values of the directivity factor {. The radial
scale is linear.

In the most general case, we are interested in compar-
ing two arbitrary radiation patterns, potentially with differ-
ent bandwidths. Such a scenario generally yields
|[Cr(f,9)| <1, but the rotational alignment can still be
effective.

As a proof of concept, we investigate the cross-
correlation function of two patterns f and g having different

“shapes”. For f, we choose an Nth-order Dirac delta, i.e. a
maximally directional pattern in direction Qq:
m=+n
() = Z > LYR),
n=0 m=-n (11)
with f" = (N+l 7 Y’”(QO)

For g, we build a “directionally reduced” version of f such
as:

V(mm), G :.f;,m Wn(é’)a (12)

where { € [0-100] is a directivity (or “aperture”) factor,
and w,({) is a spherical harmonics weighting function.
The precise choice of w,({) is not relevant here; we simply
build a weighting function that allows us to generate a
series of patterns with significantly different characteris-
tics. We further impose that { = 100% produces a Dirac
delta, and { = 0% produces an omnidirectional pattern.
In other words, w,({) is used to simulate patterns with
varying bandwidths (see Fig. 4). Techniques for building
such weighting functions have been proposed e.g. in [80].
Finally, we rotate g with a random matrix R € SO(3),
repeating the simulation with 10,000 Monte-Carlo runs.
One example of resulting rotational alignment is pre-
sented in Figure 5.

In Figure 6, we present the cross-correlation of the func-
tions f and g for varying values of {. As expected, we
observe that the spherical correlation coefficient decreases
when ( tends towards 0, i.e. when g becomes more omnidi-
rectional. When { = 0%, the correlation value is not 0, but
the curve is bounded by 0.2. Indeed, when g reduces to the
omnidirectional pattern, it is easy to show that Vf :

fO
CR( 7g): N m= -%(—)n

S5 e

n=0 m=-—n

(13)

When f is a Dirac delta, this further simplifies to
Cr(f, g) = 4, which equals 0.2 in our example. The actual
shape of the CR( ,g) curve (Fig. 6) depends on the chosen
weighting functions w,({). Similarly, the distance between
the estimated and expected rotation matrix significantly
increases as { gets smaller.
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—90° +90°

~135°

+180°

Figure 5. Example of rotational alignment of two patterns
with different bandwidths. In magenta, the original pattern f
(Dirac delta with N = 4); in black, the rotated and directionally
reduced pattern g (with { = 40%); in red, pattern f after
rotational alignment with the estimated matrix R. We observe
that the rotation matching is still effective, although the main
lobes of the patterns are not perfectly aligned (d(R,R) ~ 107).
The correlation coefficient is Cr(f, g) =~ 0.5.

These results suggest that the spherical correlation
coefficient can be a relevant indicator of similarity between
patterns of different shapes/bandwidth. As with any corre-
lation measure, this essentially allows for qualitative inter-
pretation; a quantitative analysis of the correlation
coefficient depends on the context and purposes.

5 Application to measured data

We now apply the approaches presented in the previous
sections to measured data. As mentioned in the introduc-
tion, our source is the acoustic instrumental radiation data-
base, containing 41 modern and historical orchestral
instruments, made available by TU Berlin [50, 58]. This
database contains single-tone recordings at two dynamic
levels (pp and ff). For our processing, we use the ff data
due to its better signal-to-noise ratio.

In the TU Berlin database, radiation patterns were mea-
sured by a surrounding spherical array of 32 microphones
with a radius of 2.1 m. The database is published with
spherical harmonic coefficients calculated for the first 10
partials of each played note, and third-octave band-aver-
aged patterns are also provided [81]. Methods to obtain
the spherical harmonic coefficients from such measurements
are not discussed here; readers can refer e.g. to [4, 8, 23, 36,
54]. In our work, we directly exploit the precomputed spher-
ical harmonic coefficients for the order N = 4 (25 coeffi-
cients) as provided by the TU database authors. An
acoustic source centering algorithm [82, 83] has also been
applied, by the TU researchers, to these spherical harmonic
coefficients (below 1 kHz) in order to align the acoustic cen-
ter of the sound source to the geometrical center of the
microphone array, and to account for the resulting phase
shifts at the microphone positions. This source re-alignment
procedure is known to be particularly important for direc-
tivity functions that model the complex sound pressure
(as is the case in the TU database), with significant impact
on the spherical harmonic coefficients; when only the
absolute values (sound pressure levels) are considered, the

Nogmalized cross-correlation between spatial Dirac f and directionally reduced g
T T T T T T T T T

0.8+ i
S0.6) .
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0.2 4

0 L L L L L I I L L
0 10 20 30 40 50 60 70 80 90 100
¢

100 Distance between expected and estimated rotation matrices

T T T T T T T T T
107!
=~
- —2
5 10
=]
107\5

1074 L L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100

Figure 6. Numerical simulation of correlation between Dirac
delta f and directionally reduced ¢, as a function of the
directivity factor {, for N = 4. Top: Normalized cross-correlation
(after rotational matching) between f and g. Bottom: Distance
d(R, R) between expected and estimated rotation matrices.

impact of displaced sources might be less severe [84, 85].
The TU database includes both uncentered and centered
data, and we have used the latter to minimize the influence
on our calculations of changes to instrument alignment.
The practical setup used in the collection of the TU data
exhibits a spatial aliasing frequency of approximately
1.1 kHz [58, 82]. Observations made above this frequency
should therefore be interpreted cautiously.

Finally, let us emphasize that our aim in this section is
not to provide a thorough analysis of the TU database, but
rather to exemplify the qualitative results that can poten-
tially be obtained through spherical correlation. More
in-depth discussions about the TU data can be found e.g.
in [21, 58, 86-88].

5.1 Similarities over frequencies

In Figure 7, we propose scatter plots to visualize the
matrix of cross-correlation values, i.e. the normalized
cross-correlation of all pairs of partial tones of a given
instrument, for four different instruments. The color code
depicts the magnitude of the correlation coefficient (its
absolute value), from blue (low correlation) to red (high
correlation). The z and y axes represent the frequency on
a logarithmic scale. The size of the scatter dots is slightly
adjusted with frequency in order to avoid overlapping dots
and to improve readability. This visualization is similar to
what is proposed in [21, 89]. Such a diagram allows the com-
pact combination of a significant amount of information:
the number of dots is equal to (N, x N;)* where N, is the
number of played tones and N, the number of partials for
each tone. In the TU dataset, N, = 10. As the matrix of
cross-correlation values is persymmetric, so is the scatter
diagram. The cross-correlation values presented here
have been calculated without rotational alignment. When
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Figure 7. Matrix of cross-correlation values for all recorded
tones, including all partials, organized by frequency. Results are
presented for clarinet in Bb, cello, tuba, and double bass.

applying rotational alignment, the scatter diagrams (not
shown here) do not exhibit significant differences, suggest-
ing the musicians did not rotate dramatically during the
recording session.

Inspecting these diagrams, as well as those of other
instruments not displayed here for brevity, we can draw
several general observations. The results are consistent with
the categorization of the TU database into three groups of
instruments, as proposed by Shabtai et al. [58]: those with
one expected radiation point, such as brass instruments;
those with several expected radiation points, such as wood-
wind instruments, with sound radiated by the bell, the fin-
gering holes, and the mouthpiece; and those with a full body
radiating sound, such as string instruments. For brass
instruments (tuba in Fig. 7), the cross-correlation values
vary slowly with frequency, and the diagonal in the matrix
has a wide “spread”. This suggests that the radiation pat-
terns evolve smoothly over frequency. In other words,
nearby frequencies produce similar directivity patterns.
For woodwind instruments (clarinet in Fig. 7), there is
greater correlation of all partials for low frequencies,
approximately below 300 Hz. With increasing frequencies,
the correlation values exhibit abrupt changes, manifested
by vertical and horizontal “stripes’” and “clusters” in the
depicted matrix containing the cross-correlation values.
These discontinuities are likely related to changes of finger-
ing, for example using the register key. For string instru-
ments (cello and double bass in Fig. 7), the cross-
correlation is relatively large in the low frequency region
(for wavelengths larger than the dimensions of the instru-
ment), but drops sharply at higher frequencies, suggesting
greater variations in their radiation patterns. For further
interpretations see e.g. [21, 46, 89).

Cello modern et ff

Clarinet modern et ff

partials of notes ranging from E2 to E3

Ist 2nd 3rd  dth  5th 6th  7th 8th 9th 10th
partials of notes ranging from C4 to C5

Ist 2nd 3rd 4th 5th 6th  7th 8th  9th 10th
partials of notes ranging from E2 to E3

Tuba modern et ff Double bass modern et ff
-

g

10th

of notes ranging from C1 to C2

partials of notes ranging from C2 to C3

Ist 2nd  3rd th  5th  Gth T7th S8th  9th 10th
partials of notes ranging from C2 to C3

I1st 2nd 3rd 4th 5th 6th 7th  8th 9th 10th
partials of notes ranging from C1 to C2

Figure 8. Matrix of cross-correlation values (for all partial
tones of one chromatic scale), organized by partial tones.

5.2 Similarities over partials

Following an idea from Hohl and Zotter [41, 46], we now
plot the matrix of cross-correlations organized by partials
rather than by frequencies. In other words, we generate a
2-D color-coded diagram, similar to the one presented in
the previous section, but with z and y axes now organized
by partial tones instead of frequencies. The matrix is orga-
nized in blocks each containing a chromatic scale, with each
successive block representing a different partial for each
played note. Black dashed lines separate each partial index,
for ease of readability. This sorting makes the comparison of
cross-correlation between partials more evident. With this
matrix arrangement, partials with matching frequency are
located on the secondary diagonals. Figure 8 illustrates
examples of results for the same four instruments as in
Figure 7.

For the tuba, it can be observed that most partials at
the same frequency exhibit strongly correlated radiation,
regardless of the played pitch from which they originate.
This is in line with the observations made in Section 5.1.
Similar results can be observed for other brass instruments
(not shown here). For the clarinet, however, the diagram is
less regular. Along the diagonal, a checkered pattern
appears, revealing that partial tones with similar or nearby
frequencies radiate differently. More precisely, pitches from
C to G# are strongly correlated, but differ significantly
from pitches A to B. The abrupt change between these
two blocks corresponds to the transition between the first
and second registers of the Bb clarinet. This suggests that
the addition of the register key, and consequently discontin-
uous change in fingerings, strongly impacts the radiation
pattern. For string instruments such as the cello and double
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bass, except for a few narrow diagonal red lines, the overall
similarities between partials are low. Each partial seems to
have its own radiation pattern, uncorrelated with the other
partials, suggesting that the directivities of these instru-
ments are rather complex. The diagrams presented in
Figure 8 are qualitatively comparable to ones obtained by
Hohl and Zotter with another database of instrument
recordings. Further analysis can be found in [41, 46].

5.3 Visualization with multidimensional scaling

Another motivation for this work is to classify the TU
Berlin database for subsequent manipulation with corpus-
based synthesis techniques: by organizing instrumental
samples according to their directional characteristics, the
resulting low-dimensional representation can be used, along
with other audio descriptors, to navigate the sample corpus.
With an approach to pairwise spherical correlation in place,
we can now examine applications to classify and navigate
larger collections of 3-D radiation patterns by using multi-
dimensional scaling (MDS) [90]. MDS is used to translate
information about the pairwise distances (or dissimilarities)
among a set of p objects into a configuration of p points
mapped onto an abstract Cartesian space. MDS is therefore
a means of visualizing the level of similarity of samples
within a dataset.

We apply MDS analysis, using a dimensionality of 2 for
simplicity of visualization and interpretation, to measured
radiation patterns of different instruments for the funda-
mental frequency of various played pitches. Examples of
MDS for two different pitches are presented as scatter plots
in Figure 9. The color code corresponds to the three cate-
gories of instruments cited above [58]: in red, instruments
with one expected radiation point such as brass; in blue,
instruments with several expected radiation points, such
as woodwinds; and in black, instruments with a complex
radiation pattern, such as strings. The MDS plots for these
two pitches, as well as for others not shown for brevity,
show groupings among instruments of these three cate-
gories. Further sub-classes of instruments of similar con-
struction appear to cluster together: for example, the
cylindrical-bore brass instruments in the trombone family,
which are separated from conical-bore French horn and
tuba. Members of the single-reed clarinet and saxophone
families cluster together, as do members of the double-reed
bassoon and dulcian family. As expected, historical instru-
ments are positioned near their modern counterparts.
Therefore we observe that MDS based on spherical correla-
tion allows us efficiently to segregate and organize the
instruments in accordance with their predicted categories.

The examples presented in Figure 9 were evaluated with
pitches performed at dynamic ff. When both dynamic levels
pp and ffare included in the MDS analysis, the correspond-
ing points (not shown for clarity) are mapped closely in the
MDS space, indicating that the played dynamic level does
not substantially affect the clustering operation.

Rotational matching has not been applied to these
examples in order better to visualize the distinctions
between instrument categories — as, by definition, rotational
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Figure 9. 2D MDS map of radiation patterns of the pitches B3
(a) and E3 (b) for various brass (red), woodwind (blue), and
string instruments (black).

alignment always yields higher correlations. We examine
the effects of rotational matching in the following section.

5.4 Exploring rotational matches

We now show that rotational matching can be a conve-
nient tool to explore the database further and search for
similarities, regardless of the orientation of the instruments.
The following analyses refer to the radiation coefficients
averaged over third-octave bands [58]. While both pp and
ff dynamics have been analyzed, the results are presented
only for ff data for the sake of readability.

5.4.1 Across instruments

In Figure 10, we examine the cross-correlation between
all instruments in a single frequency band, before and after
applying rotational matching. The axes are organized
according to the expected three main categories of radiation
characteristics, separated by black lines (“brass-like”, “wood-
wind-like”, and “string-like”, as discussed in Sect. 5.3).
Within each category, instruments are presented in alpha-
betical order without presupposing any finer categorization.
White spaces indicate instruments for which no data is
present in the chosen frequency band (timpani, flutes,
and oboes in Fig. 10). As the matrix of cross-correlation
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Figure 10. Matrix of cross-correlation values between instruments for the third-octave band centered at 198 Hz. Lower triangle:
without rotational matching; Upper triangle: after rotational matching.

values is persymmetric, only half of it is shown: instead, radiation but oriented in different directions. To a les-
in the upper and lower triangles we present the correla- ser extent, the “string-like” instruments show a signif-
tion values with and without rotational alignment, icant improvement in correlation following rotational
respectively. matching, which again fits the observation that sev-

We can make a number of observations, ranging from eral of these instruments feature a similar construc-
more general to more specific: tion but oriented in different directions (for example

1. The upper triangle has higher values than the lower violin, viola, cello, and guitar). In these cases, there-
triangle, by definition of rotational matching. fore, the similarities among instruments are most

2. In the upper triangle, nearly all correlation values are clearly revealed when they are rotated.
greater than 0.5, indicating some degree of similarities 4. A few instruments visually emerge as “outliers”,
across most instruments. This is somewhat expected: exhibiting a line (vertical or horizontal) with strik-
in this relatively low frequency band, most instru- ingly low correlation values, both with and without
ments have energy concentrated in the lower spherical rotational matching. In particular, this is the case
harmonic orders, and they behave roughly like first- for the double action harp, pedal timpani, French
order functions, with cardioid- or dipole-like patterns. horn, and to a lesser extent dulcian. Indeed, it appears
The concentration of energy within the lower orders is that these instruments have significant energy in

also, partly, a consequence of the acoustic centering higher orders (N > 1), and consequently their radia-
process that has been applied [82]. tion patterns are dissimilar to other instruments. We

3. The three “diagonal blocks”, representing correlation can propose several hypothetical explanations: (a)
among instruments of the same category, show overall These instruments are also outliers in terms of their
higher correlation than the other blocks, comparing c0n§truction and performance techniqug, Wit}{ few
instruments of unlike categories. This is observed both obvious correlates in the database: the timpani and

before and after rotational matching, but with several harp are percussion instruments that are only provi-
nuances: for example, the “brass-like” instruments sionally grouped with “strings” due to their full-body
show a particularly large increase in correlation after radiation. The horn, while technically a brass instru-
rotational matching, which is consistent with the ment, has historically been acknowledged as an excep-
assumption that they each have a single point of tional member of that group due to its timbre and
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directivity [1]: it is the only instrument whose bell is
oriented behind the performer, with the performer’s
hand mediating the output. Its directional character-
istic is therefore expected to be more complex (of
higher order) than other brass instruments performed
with open bells. While the dulcian may be expected to
correlate with other members of the bassoon family, it
is an outlier as the oldest instrument of the database
by nearly a century (ca. 1600) [50] and we hypothesize
that its unusual directivity is consistent with histori-
cal trends favoring more focused directivity as instru-
ments have modernized. (b) Consistent with these
observations, the presence of higher order components
may be caused by the contribution of large, spatially
extended, excitation sources (i.e. the absence of a
unique natural acoustic center) and/or by off-center
sound sources and aliasing errors; this seems especially
plausible for the harp and timpani, as they are among
the largest instruments in the database. We hypothe-
size that the performance of the centering algorithm
might be degraded for these instruments (in spite of
the relatively low frequency). (¢) When measuring
harp and timpani, “a relatively small-area floor was
used” to support the instrument [83]; for the wave-
length of interest, this might have contributed to
undesired reflections or scattering (based on the avail-
able pictures, this floor was covered with absorptive
materials for the timpani only). (d) Finally, the
timpani are unique in the database as only one played
pitch was recorded for each (historical and modern);
this could explain differences from the other instru-
ments, due to relatively fewer data for the third-
octave averaging.

. As already noted in Section 5.3, modern instruments
and their historical counterparts usually exhibit high
correlation values, even without rotational matching.
The best rotational alignment is typically achieved
with a relatively small angular displacement (not
shown here for brevity), suggesting that the difference
between modern and historical instruments might be
essentially due to slight changes in the performer’s
orientation and instrument construction. It is, how-
ever, not obvious why modern and historical viola
exhibit low correlation values in this particular fre-
quency band.

. Double bass exhibits only moderate correlation with
other members of the string quartet; this bias is possi-
bly an effect of its large size relative to the frequency
band being considered: we have noted in Section 5.1
that, for string instruments, partial tones within a
small frequency interval show low correlation values
for wavelengths smaller than the size of the instru-
ment; consequently, the averaged directivity pattern
of Double bass in the frequency band centered at
198 Hz is questionable.

. While it is surprising there is not higher correlation
between French horn and natural horn, the latter
may be anomalous because relatively few performed
pitches in the natural harmonic scale leave sparse data
for third-octave averaging in this register (similar to
timpani as mentioned above).

8. We observe high correlation between several unex-
pected pairs of instruments before rotational match-
ing, such as trumpet and historical violin, tuba and
historical violin, or trumpet and clarinet. There is
not space to analyze every example in this paper; how-
ever, spherical correlation and the proposed visualiza-
tion strategies appear as promising tools for further
research. For brevity we also have not systematically
discussed here the specific angle of rotation that pro-
duces the optimal rotational alignment; again, this
would be a fruitful topic for further study.

5.4.2 Across frequencies

As mentioned in observation 3, rotational alignment is
especially relevant for brass, so we will focus on the tenor
trombone as one particular representative. Still considering
its data in the 198 Hz-centered band, we present in
Figure 11 its cross-correlation with all other instruments
in all available frequency bands.

Before rotational matching, we observe high correlation
values with the other trombones at the same frequency
(historical tenor trombone, modern and historical bass
trombone), but also with the bass trombone in nearby fre-
quency bands (99 Hz and 157 Hz). This expected affinity
between all trombones in nearby frequencies is further
increased after applying rotational alignment. There is also
some correlation with the trumpet in the 314 Hz band,
where the shift to higher frequencies could be reasonably
explained by the trumpet’s smaller dimensions.

Rotational matching additionally reveals high similari-
ties with certain woodwind instruments, such as the bass
clarinet and bassoons, in slightly lower frequency regions.
In Figure 11b, the highest correlation values (>0.95) are
observed for: bass trombone (99 Hz and 198 Hz), bassoon
(79 Hz), contrabassoon (63 Hz), bass clarinet (99 Hz),
and historical bass trombone (99 Hz).

The three instruments that “benefit” the most from rota-
tional alignment are contrabassoon, bass clarinet, and his-
torical bass trombone. One hypothesis is that these
instruments have a relatively similar size, but are performed
with their bells oriented in different directions: the trom-
bone points forwards in front of the performer, while the
bassoon and contrabassoon bells point upwards, and the
bass clarinet bell is located at the bottom of the instrument
but pointing upwards. This is partially confirmed by Shab-
tai et al. [58] (Figs. 8a and 9a) in their measurements of
acoustic source centers, where they observe that both trom-
bone and bassoon have strong excitation sources at their
bells, but with different spatial orientations. Therefore it
is plausible that a suitable rotation would produce a high
correlation between the radiation patterns of these
instruments.

More surprisingly, there is also noticeable correlation,
before and after rotational matching, with a few strings
instruments (violas, basses, historical cello, and acoustic
guitar) in certain frequency bands. As in Section 5.4.2,
observation 2, this could be due to the relatively low-order
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Figure 11. Matrix of cross-correlation values between tenor trombone in the third-octave band centered at 198 Hz, and all available
instruments. (a) Without rotational matching; (b) After rotational matching.

radiation patterns of all instruments in low frequency
bands.

In summary, beyond the expected correlations with
other brass, Figure 11 reveals that rotational matching
can capture less obvious similarities with different instru-
ment categories, such as some woodwinds and strings, in
different frequency regions. Nevertheless, a much more

systematic study would be required to confidently relate
these observations to the instruments’ construction and
performance technique.

Now focusing on one of the above examples, in Figure 12
we graphically represent the radiation patterns for tenor
trombone and contrabassoon in the respective frequency
bands centered at 198 Hz and 63 Hz, where rotational
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Figure 12. Example of 3-D rotational matching. (a) and (b):
tenor trombone for the third-octave band centered at 198 Hz. (c)
and (d): contrabassoon for the third-octave band centered at
63 Hz. (e): contrabassoon after rotational matching. (f) black
curve: tenor trombone; similar to (b). (f) solid red curve:
contrabassoon after rotational matching. (f) dashed red curve:
similar to solid curve, scaled to match the overall energy of the
tenor trombone. Left: visualization of sound pressure (in dB) on
the sphere. Right: restriction to the horizontal plane (radial scale
is in dB).

alignment induced a large increase in cross-correlation. As
the normalized cross-correlation is used here, it is possible
to detect similarities regardless of differences in overall ener-
gies of the two instruments, as already noted by Pollow [21]
(Sect. 2.3.7). The contrabassoon radiation pattern shown in
Figure 12c is essentially a vertical dipole, consistent with
the vertical orientation of the instrument, as compared to
the horizontal orientation of the trombone. However, after
rotating the contrabassoon radiation pattern, in Figure 12f
we can observe that the 2-D polar patterns align nicely.
This is not always the case: indeed, maximizing the 3-D
shape alignment does not necessarily imply strong similar-
ity on the horizontal plane.

Beyond acoustical analysis, such high correlations
suggest clear applications from an artistic perspective in
the case of CBCS, as discussed in the introduction. By
concatenating instrumental samples according to spherical
correlation, smooth transitions can be made between radia-
tion characteristics of disparate instruments, with or with-
out rotational alignment, suggesting a novel approach to
corpus-based spatial sound synthesis.

6 Conclusion

In this paper, we discussed the use of cross-correlation
on the sphere as a similarity measure for the classification
of 3-D radiation patterns. We showed that this tool can
facilitate thorough analysis of directivity pattern similari-
ties across partials of one instrument or between different
instruments. We have presented several visualization tools
that allow the compact organization and examination of
multidimensional data, revealing or confirming the radia-
tion behavior or categorization of instruments. Multidimen-
sional scaling, in particular, appears to be a powerful
approach to clusterize instruments based on their radiation
characteristics, with potential applications to the creative
exploration of the corpus. We have also discussed some
challenges regarding the implementation of rotational align-
ment, and demonstrated that rotational matching can be
useful to detect similarities among different categories of
instruments, or different frequency bands, by mitigating
the effects of differing instrument construction and
orientation.

As a consequence, spherical correlation presents promis-
ing possibilities for human or machine navigation of a data-
base of radiation patterns. We have already applied CBCS
to computer improvisation based on audio features, in par-
ticular using timbral descriptors to structure sequences of
complex sounds with an audio oracle algorithm [91]. These
CBCS sequences can be synthesized spatially using spheri-
cal harmonic coefficients derived from the TU database
[17] and projected with a compact spherical loudspeaker
array such as the IKO [92] to approximate the dynamic
radiation patterns of acoustic instruments, as implemented
in Einbond’s composition Prestidigitation for percussion
and 3-D electronics in 2022. A further step will be to use
an MDS visualization of the TU database to train the
computer improvisation agent directly on spherical correla-
tion distances themselves, allowing for direct learning and
continuation of spatial gestures.

Future work will investigate other spatial descriptors for
the classification of the 3-D database of orchestral instru-
ments as well as other metrics recently proposed in [40].
Finally, we will examine whether spherical correlation can
be useful to detect or correct possible rotational misalign-
ment of a human performer across multiple measurements,
thereby improving reproducibility.
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Appendix
A.1 Wigner-D function

Considering Euler angles with the ZYZ convention, the
rotation matrix R can be expressed as a rotation of « about
the z axis, followed by a rotation f about the y axis, and
finally a rotation y about the z axis:

Rz;z((xv ﬁ, V) = Rz(a) Ry(ﬁ) RZ(‘V) (14)
with:

cosae —sina 0

R.(2) = | sina cosa 0 |, (15)
0 0 1
cosf 0 sinf

R, () = o 1 o |, (16)
—sinff 0 cosf
cosy —siny 0

R.(y)=| siny cosy 0 |, (17)
0 0 1

and 0 < o,y < 2w and 0 < f < n. With this convention,
the Wigner-D function D! (R), required to rotate com-

mm’

plex-valued spherical harmonics, is written
D (o, B,y) = e ™ d" (B)e ™, (18)

where d' () is the Wigner-d function [33, 93|.
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