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Abstract—Function-as-a-Service (FaaS) has become increas-
ingly popular in the software industry due to the implied
cost-savings in event-driven workloads and its synergy with
DevOps. To size an on-premise FaaS platform, it is important
to estimate the required CPU and memory capacity to serve the
expected loads. Given the service-level agreements, it is however
challenging to take the cold start issue into account during the
sizing process. We have investigated the similarity of this problem
with the hit rate improvement problem in Time to Live (TTL)
caches and concluded that solutions for TTL cache, although
potentially applicable, lead to over-provisioning in FaaS. Thus, we
propose a novel approach, COCOA, to solve this issue. COCOA
uses a queueing-based approach to assess the effect of cold
starts on FaaS response times. It also considers different memory
consumption values depending on whether the function is idle or
in execution. Using an event-driven FaaS simulator, FaasSim,
that we have developed, we show that COCOA can reduce over-
provisioning by over 70% under some of the workloads we have
considered, while satisfying the service-level agreements.

Index Terms—Function-as-a-service, serverless computing,
cold start, sizing, layered queueing network

I. INTRODUCTION

Function-as-a-Service (FaaS) platforms, based on the server-

less execution model [1], allow to deploy the codes as indi-

vidual functions without having to manage the underlying in-

frastructure. This facilitates DevOps practices [2] by providing

more flexibility to each development team and increasing the

pace of delivery of code updates. The availability of open

source platforms, like OpenFaaS and OpenLambda, has made

it possible to install an on-premise FaaS platform, which calls

for dedicated sizing and resource allocation methods in order

to meeting service-level agreements (SLAs).

FaaS platforms are designed to implement event-driven

applications, which react to a change of state as a result of

events generated by the environment and execute associated

business logic. In a FaaS platform, this logic is termed as a

function, which is usually packaged as a container. To reduce

resource wastage, FaaS containers are offloaded from the

memory given that they remain idle for specific time period.

When a new request for an offloaded function arrives, the

request is blocked until the function is loaded again. This issue

is known as the cold start issue [1], [3].

During the capacity planning process, the cold start issue

can pose a significant trade-off between latency and memory

allocation optimization. A cold start occurs when a function

is invoked while the corresponding container is not yet loaded

in memory, which adds a delay in sending the response

needed to spin-up the container and the function runtime

dependencies. Despite hurting performance, this mechanism

aims at reducing memory consumption by offloading functions

that are idle for a sufficiently long time. This poses a trade-off

between response time SLAs and available memory to support

concurrent execution of more functions, which needs to be

considered upon sizing an on-premise installation.

To address this issue, we can draw parallels between a FaaS

platform and a Time to Live (TTL) cache. Similar to FaaS, a

TTL caching system periodically offloads its cached objects.

Due to this, the cold start issue resembles the object hit rate

improvement problem in a TTL cache, in which we determine

the optimal time to keep objects in cache [4]. Thus, analysis

methods from TTL cache research, such as characteristic time

approximation [5], may be in principle also applicable to FaaS

sizing for estimating the required memory capacity. However,

from our study we have identified two limitations of such an

approach. First, contrary to TTL cache misses, the latency

incurred by function cold start times can vary widely. Next,

while a large fraction of TTL research considers fixed-sized

objects, a function consumes different amount of memory

depending on whether it is idle or in execution.

In this paper, we present COCOA (COld start aware Capac-

ity planner fOr function-As-a-service), a sizing method that

leverages a stochastic modeling approach based on layered

queueing networks (LQN) [6] and M/G/1-type queueing sys-

tems for capacity prediction. To consider the effect of cold

starts, we have incorporated the probability of experiencing

cold starts, by each function, with the LQN model. These

probabilities are estimated from an M/M/1/setup/delayedoff

model - a variant of M/M/k setup class of models [7] - which

we solve using matrix-analytic methods as a special case of

M/G/1-type system. Setup models can approximate the cold

start probability for a function, taking into account the cold

starts. To predict the required capacity, COCOA follows an

iterative process. It repeatedly solves the LQN model to find a

set of function idle times and a CPU configuration such that the

function response times are just below the SLA. To accelerate

the searching process, we have designed a parallel algorithm,



where each parallel branch utilizes binary search. Once the idle

times and CPU configuration are obtained, COCOA estimates

the CPU utilization value for each function. These estimations

are integrated with a capacity estimation method for TTL

cache [8] to predict the required memory capacity.

Overall, we summarize our contributions as follows:

• We investigate in Section II the similarity between a FaaS

platform and TTL cache from the cold start perspective

and illustrate that TTL cache analysis, despite promising,

is alone insufficient for FaaS capacity estimation.

• We present in Section III an LQN-based performance

modeling technique for FaaS platform that captures the

effect of cold starts over function response times, correct-

ing the limitations of TTL cache analysis when applied

to this setting.

• In Section IV we propose COCOA, a sizing method for

on-premise FaaS platforms leveraging our LQN model

and demonstrate its effectiveness in reducing resource

over-provisioning while ensuring response time SLAs.

Last, in Section V we validate our framework against data

from simulation. Sections VI and VII respectively position the

work against the state-of-the-art and conclude the paper.

II. SIMILARITY BETWEEN FAAS AND TTL CACHES

A. Analogy

TTL caches in Content Delivery Networks (CDNs) facilitate

faster page loading and reduce the load at the origin server.

In such caching systems, each cache object is associated with

a TTL, after which the object is evicted [4]. If the cache can

serve the request for an object, it is termed as a cache hit. The

fraction of request served, for a particular period, is called the

hit rate. Longer TTL values can improve the hit rates but are

more costly as they require a larger cache size.

Similar to TTL caches, to reduce the number of cold starts,

a possible solution, from the point of view of the end user, is to

keep the functions in the memory for longer periods. However,

this significantly increases the required memory capacity since

most of the functions always remain loaded. A way around to

this problem is to determine an optimal idle time that ensures

a certain degree of availability and reduce the number of cold

starts to an acceptable limit. We notice the analogy of this

problem with the configuration of TTL caches [4]. In such

systems, the goal is to determine a characteristic time [5],

which is set as the TTL value, that maximizes the cache hit

rates with a space constraint. The hit rate hi for an object i
with a request arrival rate λi is defined by (1), considering its

TTL (Ti) value is reset upon a new request [9].

hi = 1− e−λiTi (1)

This TTL value is similar to the idle time of the functions.

It represents a period for which a object is kept in the cache,

even though no new request is received, which ensures a

certain degree of availability. Similarly for FaaS, an idle time

represent a period where the functions are kept loaded in the
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Fig. 1. Evaluation of an availability-aware approach in estimating the capacity
of a FaaS platform and ensuring the SLA for response time

memory even though they are idle. Therefore, we can use this

concept of TTL to estimate the idle times for the functions.

To realize this, we can simply solve (1) to get a TTL value for

a particular hit rate. This value can be set as the idle time of

the function. It will ensure the needed degree of availability

and reduce the number of cold starts. Consequently, this will

help to satisfy the response time constraints.

B. Example

To illustrate the concept, we have developed a discrete-event

simulator for a FaaS platform, referred to in the rest of the

paper as FaasSim1. Developing FaasSim was necessary since

popular performance modeling tools, like JMT [10], cannot

model the cases we need to consider for FaaS - the cold starts

and modeling both CPU and memory consumption.

In the simulation, we have considered an open workload

model where the requests arrive following a Poisson process.

To introduce popularity among the functions, meaning their

invocation probabilities will be different, we have used the

Zipf distribution [11]. The function service times are set such

that they are at-most half of the SLA value of 2 seconds,

when there is no resource contention. The cold start times

are chosen from a recent study on popular FaaS platforms

[12] that, apart from the platform, also considered factors

like programming languages and deployment sizes, which can

effect the magnitude of cold starts.

We have run the simulation in three settings with 16, 32

and 48 functions and observed the effect of different hit rates

over the function response times. The function idle times

are set by solving (1) for the specific hit rate. This hit rate

have also been used to estimate the memory capacity. The hit

rate is related to the average runtime memory consumption

(m) as m =
∑

i hiθi, where θi is the memory requirement

of each function [8]. We have used this value of m as the

memory capacity and compared it with the actual memory

consumption value obtained from FaasSim. The findings from

the simulation are presented in Fig. 1.

C. Observations

In Fig. 1a, we plot the response times of each of the 48

functions for different hit rates. We see that even with 95% hit

rate, there are response times that violate the SLA. However,

1The simulator is available at - https://github.com/alimulgias/FaasSim
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for 95% hit rate, more than half of the function response

times are much lower than the SLA. This indicates that all the

functions do not require the same hit rate to ensure the SLA.

In Fig. 1b, we present a comparison between the estimated

memory capacity and maximum consumption for 95% hit

rate. Although the capacity notably increases with the number

of functions, the consumption is less sensitive to it. This is

because memory consumption is primarily dependent on the

workload parameters. In addition, the consumption is not very

high since most of the functions remain idle while resident in

memory, which is not considered during the estimation.

From these observations, it is clear that an availability-aware

approach is not adequate for optimal capacity estimation that

ensures the SLA for response time. Such an approach only

considers the volume of cold starts, whereas we also need

to consider its effect on the response time. For a particular

workload, firstly, we should know the cold start probabilities of

the functions for different idle times. Subsequently, depending

on these probabilities and the severity of cold starts, we need

to approximate the function response times. Thus, we need a

performance model incorporating all these factors. The model

will also help in fine-grained capacity estimation by providing

the resource utilization estimates. In the following section we

present our performance model.

III. MODELING COLD STARTS IN FAAS

A. Estimating Cold Start Probabilities

Unlike commercial FaaS platforms, open source platforms,

like OpenFaaS, allow concurrent function execution in same

container [13]. We focus on this function concurrency ap-

proach. We propose to consider, from a modeling standpoint,

the function as a server of a queueing model, representing

the admission control buffer to the function, and the cold

start delay as the initial setup time of the server before

beginning service. The functions also have an idle time which

is equivalent to the idle server waiting time before it is

shut down. Considering these similarities, a cold start may

be modeled as a M/M/1/setup/delayedoff model, which is a

variant of M/M/k/setup class of models [7]. The M/M/k/setup

models consider a setup cost, usually in the form of a time

delay, when turning the server on. Its “delayedoff” variant

considers an idle time before turning the server off.

Although in [7], the exact solution is provided for an

M/M/k/setup/delayedoff model, this applies when the number

of servers is k ≥ 2. However, in our case we need to

model each function separately. Thus, we have a function

representing a single server, which can be either on or off.

To get different performance indices for such a model, we

may directly solve its underlying Continuous Time Markov

Chain (CTMC).

The CTMC transitions are presented in Fig. 2. Each CTMC

state (i, j) has two parameters: i tracks whether the function

resides in the memory or not (i ∈ {0, 1}), while j tracks the

number of jobs (j ∈ Z
∗) in the admission queue to enter

service in the function. A transition from (i, n) to (i, n + 1)
occurs with rate λ, transition from (i, n + 1) to (i, n) occurs

with rate µ, and transition from (0, j) to (1, j) occurs with rate

α. These rates describe the mean inter-arrival time ( 1
λ
), mean

service time ( 1
µ
) and mean cold start time ( 1

α
) respectively.

There is a special transition from (1, 0) to the initial state (0, 0)
with rate β, which describes the function idle time ( 1

β
). In a

CTMC, all holding times are considered to be exponentially

distributed. However, in a real system the idle time of a

function is set to a deterministic value. To address this issue,

we can use the method of phases and make this transition

Erlang-k distributed with rate kβ. To realize this, we introduce

k − 1 extra states between (1, 0) and (0, 0). The transitions

between all these states occur with a rate kβ. This keeps the

mean identical to the original exponential, 1
β

, but reduces the

variance by k times. Thus, for large enough k, the transition

will display a behavior close to deterministic.

The effects of cold starts vary depending on the sequence of

request arrivals. If a request arrives when the function is being

loaded into memory due to a recent request, its response time

will be affected to some extent. The severity of the queueing

overhead will depend on the residual cold start time of the

previous request. However, this does not need to be modeled

explicitly thanks to the memoryless property of the exponential

distribution. Considering this, as shown in Fig. 2, it is clear

that the cold start states are (0, j), ∀j. We can calculate the

cold start probability of the functions from the stationary

distribution (π) of their CTMC. We indicate with πi,j the

probability of state (i, j), then the cold start probability is

defined as
∑

j π0,j . We can get the stationary distribution by

solving the CTMC. This can be done efficiently using the

matrix-analytic method, since the CTMC sparsity structure

makes it equivalent to a M/G/1-type process [14]. The latter

is analyzed using the MAMSolver [15], [16].

B. Predicting Response Time

Solving the CTMC we can get the cold start probabilities for

each of the functions. However, our eventual goal is to predict

the response time of each function considering the cold starts.

For that purpose, beside the cold start probabilities, we need

a performance model of the functions, typically running in

containers, contending for the CPU. Each of these functions

contend for CPU times to execute two types of jobs, the

regular tasks when the function is warm and service restarting

when the function is cold. To ensure scalability of the model

analysis [17], we use LQNs as reference modeling formalism.
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Fig. 3. The LQN model for a FaaS platform

The proposed LQN model2 is presented in Fig. 3. The model

has two main building blocks - the tasks and the processors. In

LQN models, tasks translate into different system resources,

usually the software resources. They carry out different opera-

tions which are defined by their entries. The tasks are executed

on the processors, which represent the physical entity, like the

CPU, that carries out the physical executions. Although each

of the functions is a software resource, we defined them by the

entries rather than the tasks. The reason behind this choice is

twofold. Firstly, it makes the LQN model more compact and

manageable. Secondly, it reduces the model solving delay as

the number of function increases.

Since each function has two types of jobs, we use two tasks,

ColdPool and WarmPool. The entries in the ColdPool define

the cold jobs for all the functions. Similarly, the entries in

the WarmPool define the warm jobs. Since every cold job is

followed by a warm job, there is a call from the cold entries

to the warm entries. The proportion of cold and warm jobs

is controlled by the Dispatcher task based on the cold start

probabilities. This is done by setting the cold start probability

of each function to the call mean value from its Dispatcher

entry to the ColdPool entry. The percentage of calls to each

function, based on their popularity, is modeled using the

reference task Client by setting the percentage value as the

call mean from the Client entry to the Dispatcher entry.

The LQN model requires two parameters, namely the ser-

vice demands of the activities and the multiplicities of the

modeling constructs. The service demand for a job is the

total service time across all visits when there is no resource

contention. Each function has different service times for its

cold and warm jobs. The service times of the cold and warm

jobs are defined by the cold start rate (α) and the service

2For details about the notation, please see the LQN user manual available
at http://www.sce.carleton.ca/rads/lqns/LQNSUserMan-jan13.pdf

TABLE I
SIMULATION PARAMETERS FOR MODEL VALIDATION

N Number of functions 16, 32, 64, 96, 128
η Zipf parameter 0.6, 1.0, 1.4
λ Arrival rate 0.2, 0.5, 0.8
µ Service rate [1, 2]
α Cold start rate [0.037, 0.5]
β Idle lifetime rate [0.00083, 0.00556]

rate (µ) respectively. The service demands should be set in the

activities of the corresponding entries. The multiplicities trans-

late into different system entities depending on the modeling

constructs. The multiplicity of the reference task indicates the

number of clients present in the system, considering the system

as a closed network [18]. However, we can also consider the

system as open like our FaasSim simulator. To do so, we have

adapted the think time Z as K/λ, where K and λ represents

the total number of clients and the open arrival rate [19].

The multiplicities of the processors indicate the number of

available CPU cores. Since we do not consider the Dispatcher

a bottleneck, we assume it executes separately from the func-

tions, on a single CPU core. The multiplicities of the ColdPool

and WarmPool indicate the number of process threads available

for the function containers. Container platforms like Docker

allow this on a container basis, which means that we can put a

limit on how many threads a container can create3. However,

in LQNs entries do not have a multiplicity property, which

we are using to model the functions. Thus, in the model, we

consider that the functions share two thread pools for cold and

warm jobs. This assumption does not significantly affect the

performance estimates if the number of threads, in both pools,

are sufficiently large to start processing a job immediately.

C. Model Validation

We have used the LINE modeling language [20] to build our

models, which are solved by the LQNS solver [6]. The results

are validated with the FaasSim simulator. The simulation

parameters are presented in Table I. Here, we consider more

large-scale settings, compared to Section II, that include up

to 128 functions. The function popularity is controlled by

different values of the Zipf parameter that are common in

cache based studies [21]. We consider all combinations of

number of functions (N ), Zipf parameter (η) and arrival rate

(λ). For each of those combinations, we have generated 30

models. In each of the models, we have chosen the service

(µ), cold start (α) and idle lifetime (β) rates for the functions

randomly from the given range. The range for service and

cold start rates are same as Section II. The idle lifetime rates

are chosen from [12] such that it can trigger cold starts. The

service demand of the Dispatcher is set to a negligible value

since we do not consider it as a bottleneck.

Since cold start affects the response time, we are concerned

that how accurately our model captures that affect and estimate

the response time of each function. Thus, we have considered

3Such limits are put to prevent unnecessary thread creation causing memory
leaks. However, the limits are never too small to affect the concurrency.



TABLE II
PERCENT ERROR IN ESTIMATING THE RESPONSE TIME OF EACH

FUNCTION–ACROSS ALL THE ZIPF PARAMETERS IN TABLE I

N
λ = 0.2 λ = 0.5 λ = 0.8

avg 95p max avg 95p max avg 95p max

16 1.24 2.08 2.38 0.87 1.57 2.2 0.91 1.48 1.65

32 1.25 2.01 2.3 1.17 1.87 2.21 1.15 1.75 2.16

64 0.85 1.7 2.06 1.21 1.87 2.15 1.27 1.72 2.09

96 0.82 1.36 1.98 1.11 1.57 1.83 1.25 1.7 2.05

128 0.92 1.31 1.71 1.11 1.51 1.95 1.29 1.7 2.1
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Fig. 4. An overview of the COCOA approach

the percent error in estimating the function response times.

We present the results in Table II. From the table, we see that

the increase of the number of functions has a negligible effect

over the error. The maximum error across all the parameters

is 2.38%. The maximum average error and 95th percentile of

the error is 1.29% and 2.08% respectively. Such errors are

not significant and thus we conclude that the LQN model

can accurately estimate the response time for each function

considering cold starts. We leverage this model in our method,

COCOA, which we present in the following section.

IV. COLD START AWARE CAPACITY PLANNING

A. Overview

COCOA provides resource allocation decisions for a FaaS

platform in terms of its memory and CPU configurations. It

also provides the function idle times that can ensure the SLA

given the suggested configuration is applied. These idle times

allows to control the magnitude of cold starts, which in turn

aids in governing the response times. The configurations can

be applied both on the hardware level or on the software

level. This means that the memory and CPU constraints can

be applied on the physical server or the container platform

like Docker. COCOA has multiple components each focusing

on a particular tasks and expecting different inputs, which are

illustrated in Fig. 4.

Since COCOA is a model-based approach, we need a set

of parameters to instantiate its model. Firstly, we need the

service demands of the functions. These can be estimated in

a test environment, when the functions are being developed,

using state-of-the-art methods [22]. The workload parameters

like the arrival rate and function popularity can be estimated

from performance requirements or historical data. Once the

parameters are estimated they are passed to the component

LQN Model Generator. The Model Generator also requires

the architecture of the FaaS platform, particularly containing

the information about how the functions communicate.

Based on these inputs, the CTMC and LQN model is

generated and forwarded to the next component, the Optimal

Strategy Generator. It utilizes the models to provide memory

and CPU configurations. It needs the SLAs for function re-

sponse times and both the memory requirements when they are

idle and in execution. The generator then searches for the idle

times, under different CPU configurations, that do not violate

the SLA with minimal memory consumption. These idle times

are used to estimate the maximum memory consumption,

based on which the memory capacity is suggested.

B. Problem Statement

We consider a system of N functions. These functions are

executed on a multi-core CPU with C cores. Every function

fi has two different memory usage, one is while in execution

(θon
i ) and the other is while being idle (θoff

i ) Considering a

request for function fi, if the function is not in the memory, a

cold start occurs. Due to this cold start, a request experiences

an extra delay. This extra delay is incurred to load the function

in the memory. When a function is loaded in the memory, it

is associated with a timeout value Ti. While the function is

still in the memory, for each new request, the timeout is reset

to the original value. A function is removed from the memory

if it reaches the timeout limit.

We focus on two specific costs, the cost of CPU and cost

of the memory. We define the per unit CPU and memory cost

as τc and τm respectively. Thus, the cost for the CPU will be

B = τcC. The memory cost is calculated based on maximum

memory consumption. To estimate this, we incorporate the

idea of a different memory usage, when the function is idle,

with the estimator for TTL cache [8]. Based on this, given the

function CPU utilization is ρi, the average memory consump-

tion (m) may be estimated as m =
∑

i hi(ρiθ
on
i +(1−ρi)θ

off
i ).

The system’s memory capacity should be adequate when

there is a spike in memory consumption. This occurs when

there is a surge in requests within a short period. This increases

the memory consumption because more functions starts execu-

tion, for which the memory requirement is much higher than

being idle. It is sufficient to consider this increase in memory

consumption by the functions in execution. Considering the

memory consumption by the functions in execution is U , the

expectation is E[U ] =
∑

i hiρiθ
on
i . We can approximate the

maximum consumption as v = κE[U ]. The value of κ is

calculated, using Markov’s inequality, [23] such that the upper-

bound of P (U ≥ v) is a negligible value ǫ. Based on this, we

define the approximation for maximum memory consumption

(mmax) as mmax =
∑

i hi(κρiθ
on
i + (1− ρi)θ

off
i ), so that the

memory cost may be defined as A = τmmmax.

Considering these cost functions A and B, our objective

function, z, is defined in (2). Here, our goal is to find T , a



vector including the idle times Ti of all the functions, and C,

the number of CPU cores, that minimizes a weighted sum of

normalized memory and CPU cost.

z = min
(T,C)

ωAÂ+ ωBB̂ (2)

subject to:

C ≤ Cmax (3)

Wi(T,C) ≤ W ∗, ∀i (4)

T ∈ R
N
+ , C ∈ Z+

The constraints for the objective function are provided in (3)

and (4). The first constraint in (3) is regarding the maximum

number of allowed CPU cores. This applies when the CPU

constraint is imposed on the software level and the total

physical CPU capacity is not accessible. The second constraint

in (4) addresses the SLA for response time. Here, Wi is a

function of T and C which returns the response time for a

platform function fi. This response time should be less than

the limit W ∗ mentioned in the SLA.

C. Optimal Strategy Generation

Using the objective function in (2), COCOA suggests an

optimal strategy that includes the required memory and CPU

capacity and the function idle times (T ). It starts searching

for an optimal strategy with an initial instance of T . This is

obtained by a characteristic time approximation technique for

CDN cache [5]. It requires to solve m =
∑

i hi, where hi is

defined in (1), for a particular value of m. However, as we

have a large pool of functions, it is sufficient to estimate a

single value T ∗ for all the functions instead of approximating

Ti ∈ T, ∀i [24]. Thus, here we have used a second definition

of hi, replacing Ti with T ∗ in (1).

After the initialization, COCOA fine-tunes the idle times,

such that the function response times are just under the SLA

limit, to ensure minimal memory consumption. For this, it

solves the LQN model in iteration, upon adjusting the idle

times, to observe its effect on the response time. The idle

times are adjusted using the concept of binary search. It starts

with an initial searching interval, (0 T ∗], for each Ti and

reduces the length of the interval by half on each iteration. The

endpoints of the intervals are adjusted depending on whether

the response time constraint is satisfied or not. The value of Ti

is updated with the midpoint of the searching interval. For this

process to work, the initial value, T ∗, should be sufficiently

large so that there is no cold starts and thus the response time

is not affected. For this purpose, we have solved m =
∑

i hi

by setting m to a value close to N .

COCOA runs this fine-tuning process for different CPU

configurations (CPU cores). Although the number of CPU

cores can be any integer, practically we only need to consider

some common options, like multiples of 2 with 32 as the

limit. This accelerates the analysis process. In addition, for

each configuration, this process is run in parallel, making

it even faster. For each run, if a T is found, that does not

violate the SLA, it is considered as a candidate solution.
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Fig. 5. Comparing the memory capacity predicted by COCOA and the
availability-ware approaches for λ = 0.5 and η = 1.0

After completing the process, the optimal solution is selected

by comparing the memory and CPU cost. Its corresponding

CPU configuration and idle times are suggested just the same.

However, the memory capacity is suggested by considering the

value min(mmax,
∑

i θ
on
i ) as an upper-bound and calculating

the aggregated size of required number of RAM modules4.

V. EVALUATION

A. Experimental Setup

We have evaluated COCOA using the FaasSim simulator.

Here, we consider 64, 96 and 128 functions varying in terms

of their popularity (η), service time ( 1
µ

) and cold start time ( 1
α

)

according to the parameters in Table I. However, the idle times

( 1
β

) from Table I are not used because we want to estimate

these with COCOA such that the response times constraints

are satisfied with minimal memory and CPU capacity. We have

set the functions memory requirement following the limits

in AWS Lambda [25]. The percentage (0-1) of idle function

memory consumption is considered to be log-normally dis-

tributed with a desired mean of 0.2. From the experiments,

we aim to answer the following research questions:

• RQ1: Can COCOA reduce memory over-provisioning

compared to availability-aware approaches?

• RQ2: Can COCOA predict the required memory capac-

ity that meets the maximum demand?

• RQ3: Can COCOA predict the memory and CPU

capacity to satisfy the SLA for response time?

B. Results

To answer RQ1, we have compared COCOA and the

availability-aware approach with two hit rates, 0.8 and 0.95.

We present the result for a single experiment in Fig. 5. We can

see that the required memory capacity estimated by COCOA is

much lower than the other two approaches. The results for all

the parameters are presented in Table III. In all the cases, the

estimates from COCOA is much less compared to the other

two approaches. Considering the 95% hit rate, the capacity

estimated by COCOA is 51-74% less. The reason is easy to

understand - COCOA can take “well-informed” decisions by

leveraging its performance model, which is not possible for

the availability-aware approaches.

4We have considered that each of the memory module is 8GB but this is
configurable depending on the availability of RAM modules.



TABLE III
COMPARING THE PREDICTED MEMORY CAPACITY OF DIFFERENT APPROACHES - AVERAGED ACROSS THE ZIPF PARAMETERS FROM TABLE I

N
λ = 0.2 λ = 0.5 λ = 0.8

COCOA 80% h.r. 95% h.r. COCOA 80% h.r. 95% h.r. COCOA 80% h.r. 95% h.r.

64 32 88 104 45.3 80 93.3 42.7 85.3 101.3

96 40 128 152 58.7 125.3 146.7 48 120 141.3

128 48 157.3 184 58.7 157.3 184 64 168 197.3
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Fig. 7. Illustrating that COCOA can meet the maximum memory demand for
different percentage of memory consumption while the functions are idle

From Table III, we see that, in two cases, COCOA predicts

a higher capacity for λ = 0.5 than λ = 0.8, which is counter-

intuitive. This is because we have used a different upper-bound

of P (U > v) to estimate κ for λ = 0.8. For λ = 0.8 it is 0.1
but for λ = 0.2 and 0.5 it is 0.05. The reason is, for high arrival

rates, the spike in memory consumption from the expectation

is less than low arrival rates. Here, κ is the coefficient to

represent this extent. A larger upper-bound of P (U ≥ v) will

result in a smaller value of κ. So for higher arrival rates, to

reduce over-provisioning, κ should be approximated with a

larger upper-bound of P (U ≥ v).
To answer RQ2, we have compared the memory con-

sumption values from the simulation with the values from

COCOA. From Fig. 6a, we can see that the average memory

consumption values from the simulation agrees with analytical

approximation from COCOA. From Fig. 6b, we see that the

memory capacity also meets the maximum demand. From all

the experiments, we observe only 5 cases where there is a

memory deficit greater than 0.5 GB with a maximum value of

3.2 GB. We have also done a sensitivity analysis changing the

desired mean of percentage of memory consumption by idle

functions. We used two settings with 64 and 128 functions

with λ = 0.8 and η = 1.0. As seen from Fig. 7, in both cases,

COCOA can satisfy the maximum demand.

To answer RQ3, we have investigated the response time

of each of the functions. We have seen that across all the
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Fig. 9. Response time and hit rate distribution of 128 functions with a target
SLA of 1.5 seconds for λ = 0.8 and η = 1.0

parameters, COCOA can ensure the SLA for response time.

We present the response time of each function, for a single

experiment, in Fig. 8. The SLA in this case is 2 seconds

and COCOA satisfies it for all the functions with hardly any

variance. On the other hand, even 95% hit rate has violations.

The violations are even more, 45% or 57 out of 128 functions,

when the SLA is 1.5 seconds.

To illustrate how COCOA ensures the SLA without over-

provisioning, we have investigated the hit rates of each func-

tion obtained from the simulation. In Fig. 8b and 9b, we have

plotted the hit rates, which correspond the experiments from

Fig. 8a and 9a. As expected, we see that the hit rates are fixed

for 80% and 95% hit rates. However, COCOA adjusts the idle

times of the functions such that the hit rates are just sufficient

to satisfy the SLA. This reduces the memory consumption

when the functions are idle and thus COCOA suggests a much

lower memory capacity. For a 2 seconds SLA, the lowest

hit rate a function has is 46%. However, COCOA can also

increase the hit rates, if required, as seen in Fig. 9b. Here

the hit rates for some functions are even higher than 95% to

satisfy a stricter SLA of 1.5 seconds.

VI. RELATED WORK

FaaS platforms, leveraging serverless computing, has gained

the attention of many researchers. Here, we particularly focus

on the works involving cost, resource management or cold



starts as such works are more relevant in our context. From

the perspective of cost, researchers have focused on various

issues. In [26], the authors present a technique that predicts

the cost of function workflows. The authors in [27] propose

an algorithm that optimizes the cost of function workflow

through function fusion and placement. In [28] the authors

have identified different operation regimes that optimizes the

cost of both customer and provider. From the perspective of

resource management, researchers have mainly focused on

runtime CPU allocation considering the QoS [29], [30].

The authors in [1] and [3] are among the firsts to investigate

function latency considering cold and warm states. In recent

works, researchers are also proposing different solutions to

this problem. In [31], the authors have addressed cold starts

from the end user perspective and mitigated it by periodically

sending low cost service requests. The authors in [32] have

pre-initialized resources, like networking elements, and asso-

ciated them with containers as required. In [33], the authors

have provisioned containers in advance by leveraging function

composition knowledge. The authors in [34] propose a window

based approach to load or unload functions by analyzing their

invocation patterns. However, none of these works modeled

function memory consumption and response time, making

them inapplicable in capacity planning.

VII. CONCLUSION AND FUTURE WORK

We have presented COCOA, a cold start aware sizing

method for on-premise FaaS platforms. COCOA leverages

an LQN model and M/M/k setup models to obtain different

performance estimates and consequently, predict the required

system capacity. We have illustrated the improvements yielded

by COCOA with multiple experiments, showing that COCOA

can help in provisioning FaaS systems that satisfy SLAs.

A future research direction could be incorporating burstiness

in the workload that triggers more resource intensive actions

and dealing with autoscaling scenario where multiple function

replicas need to be instantiated.
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