
              

City, University of London Institutional Repository

Citation: Tsiodra, M., Panda, S., Chronopoulos, M. & Panaousis, E. (2023). Cyber Risk 

Assessment and Optimization: A Small Business Case Study. IEEE Access, 11, pp. 44467-
44481. doi: 10.1109/access.2023.3272670 

This is the published version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/31225/

Link to published version: https://doi.org/10.1109/access.2023.3272670

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Received 28 March 2023, accepted 25 April 2023, date of publication 3 May 2023, date of current version 10 May 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3272670

Cyber Risk Assessment and Optimization:
A Small Business Case Study
MARIA TSIODRA 1, SAKSHYAM PANDA 2, (Member, IEEE), MICHAIL CHRONOPOULOS 3,4,
AND EMMANOUIL PANAOUSIS 2
1Business Intelligence, The Open University, MK7 6BJ Milton Keynes, U.K.
2Faculty of Engineering and Science, University of Greenwich, SE10 9LS London, U.K.
3Bayes Business School, City, University of London, EC1Y 8TZ London, U.K.
4Department of Business and Management Science, Norwegian School of Economics, 5045 Bergen, Norway

Corresponding author: Michail Chronopoulos (michalis.chronopoulos@city.ac.uk)

The work of Maria Tsiodra was supported by the European Commission under the H2020 cyberSecurity Platform for vIrtualiseD 5G cybEr
Range services (SPIDER) Project under Grant 833685. The work of Sakshyam Panda and Emmanouil Panaousis was supported in part by
the U.K. National Cyber-Security Centre (NCSC), and in part the Research Institute for Sociotechnical Cyber Security (RISCS) under the
fraMEwoRk to Model and IncenTivise Cyber Security Investment Decisions (MERIT) Project. The work of Michail Chronopoulos was
supported in part by the European Commission under the H2020 SPIDER Project under Grant 833685, in part by the U.K. National
Cyber-Security Centre (NCSC), and in part the Research Institute for Sociotechnical Cyber Security (RISCS) under the MERIT Project.

ABSTRACT Assessing and controlling cyber risk is the cornerstone of information security management,
but also a formidable challenge for organisations due to the uncertainties associated with attacks, the
resulting risk exposure, and the availability of scarce resources for investment in mitigation measures. In this
paper, we propose a cybersecurity decision-support framework, called CENSOR, for optimal cyber security
investment. CENSOR accounts for the serial nature of a cyber attack, the uncertainty in the time required
to exploit a vulnerability, and the optimisation of mitigation measures in the presence of a limited budget.
First, we evaluate the cost that an organisation incurs due to a cyber security breach that progresses in stages
and derive an analytical expression for the distribution of the present value of the cost. Second, we adopt
a Set Covering and a Knapsack formulation to derive and compare optimal strategies for investment in
mitigation measures. Third, we validate CENSOR via a case study of a small business (SB) based on:
(i) the 2020 Common Weakness Enumeration (CWE) top 25 most dangerous software weaknesses; and (ii)
the Center for Internet Security (CIS) Controls. Specifically, we demonstrate how the Knapsack formulation
provides solutions that are both more affordable and entail lower risk compared to those of the Set Covering
formulation. Interestingly, our results confirm that investing more in cybersecurity does not necessarily lead
to an analogous cyber risk reduction, which indicates that the latter decelerates beyond a certain point of
security investment intensity.

INDEX TERMS Cybersecurity, operational research, set covering, knapsack, software weaknesses, control
optimisation.

I. INTRODUCTION
Breakthroughs and advancements in the area of computer
information systems have improved the operational effi-
ciency of critical infrastructures but have also rendered these
substantially more vulnerable to cyber attacks. The cyber risk
exposure and financial consequences these attacks entail for
an organisation can be demonstrated through a range of exam-
ples. Among the most recent breaches is that at Marriott that

The associate editor coordinating the review of this manuscript and

approving it for publication was Moussa Ayyash .

revealed personal details of approximately 5.2 million hotel
guests. Also, the breach at Twitter allowed fraudulent tweets
about Bitcoin generating more than $100, 000 Bitcoin worth,
while the Solarwinds hack managed to compromise multiple
government systems alongwithmany fortune 500 companies,
globally. The latter, resulted in an 8% fall in the share price
of FireEye after it disclosed information about the attack,1

1https://www.cnbc.com/2020/12/08/fireeye-shares-fall-after-security-
company-discloses -cyberattack.html
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and is expected to cost cyber insurers $90 million for incident
response and forensic services.2

This situation becomes more challenging for small busi-
nesses. According to the World Bank,3 small businesses
represent about 90% of businesses and more than 50% of
employment worldwide. With access to sensitive and person-
ally identifiable information, UK small businesses are both
a soft and lucrative target for exploitation by threat actors.
While large organisations are highly likely to have resources
to invest in cyber security activities, small businesses, in most
cases, not only have scarce budgets and time to invest in pro-
tecting themselves but also lack basic cyber security know-
how. Evidently, the Cyber Security Breaches Survey 2022,4

published by the Department for Digital, Culture, Media &
Sport (DCMS), states that almost four in ten businesses (39%)
identified a cyber-attack in the last 12 months, while most of
them do not have the ability to prevent these attacks nor to
undertake any incident response. The same survey identified
that one-third of small businesses in the UK were attacked
at least once a week over the past year and one in five have
suffered losses due to cyber incidents.

These examples demonstrate how cyber security is a crit-
ical defensive manoeuvre as well as a strategic decision that
may increase an organisation’s competitive advantage. Fur-
thermore, they emphasise the increasing need for developing
economic models to assess cyber risk and derive insights on
how to invest in measures to mitigate it. Indeed, although
cyber defence is a standard part of enterprises’ agenda, hack-
ers improve upon their techniques, thereby increasing the
cyber risk levels around the world. Consequently, assessing
cyber risk is not just a necessary process that enterprises must
conduct, but a natural way to realise the exact weaknesses,
threats, and current security level of an organisation towards
mitigating this risk. The existence of several tools that assess
cyber risk and the vast number of papers and textbooks in this
field demonstrate the importance of the cyber risk assessment
domain for both industry and academia, as well as the wide
variety of challenges to be addressed within this domain [1],
[2], [3]. Among the challenges that organisations must tackle
to improve their cyber security posture, are those of gauging
the financial impact of cyber breaches and selecting the opti-
mal set of mitigation measures.

Addressing these challenges is vital, as, for example, the
General Data Protection Regulation (GDPR) poses fines up
to e20 million, or, in the case of an undertaking, up to 4% of
the total turnover of the preceding financial year, whichever is
higher [4]. Overcoming these challenges requires the devel-
opment of novel techniques that combine risk assessment and
control optimisation in a way that accounts for critical aspects
of the attack itself, the relevant underlying uncertainties,
and constraints associated with the selection of mitigation

2https://www.isaca.org/resources/news-and-trends/industry-
news/2020/top-cyberattacks -of-2020-and-how-to-build-cyberresiliency

3https://www.worldbank.org/en/topic/smefinance
4https://www.gov.uk/government/statistics/cyber-security-breaches-

survey-2022

measures [5], [6], [7], [8]. Examples of key uncertainties
associatedwith an attack are the time required to exploit a vul-
nerability before moving to the next one and the extent of the
associated impact (i.e. financial cost) to the targeted organ-
isation. Indeed, both exploitation time (also called ‘‘exploit
window’’) and impact due to an attack are likely to vary
randomly, as they depend not only on the skills of the attacker
but also on the level of cyber preparedness and response of the
organisation [9]. Therefore, prior to investing in mitigation
measures, it is essential to carry out an in-depth cyber risk
assessment to achieve an accurate evaluation of the organi-
sation’s security posture. Failing to carry out this task may
result in cycles of under- or over-investment, which raises
regulatory risk when corrective policy actions are required,
and lead to denial of cyber insurance claims [10].

Additionally, organisations race to catch up with the
ever-growing cyber threat landscape, as a wide range of
threat actors demonstrate a significantly increasing range of
intelligence-gathering techniques. For example, Advanced
Persistent Threats (APTs) are motivated by political or eco-
nomic reasons, and are origins of considerable cyber risk for
the organisations they are targeting [11]. Typically, an APT
breaches its targets in phases reflecting the process in which
an adversary gradually exploits a series of system-, network-,
or even user-oriented vulnerabilities [12], [13]. APTs are
considered a major threat as they not only attack in multiple
phases but also over a variable time period, also called dwell
time. This denotes the time an adversary remains in a network
undetected or the time required for their attribution [14],
depending on whether we study pre- or post-incident events.
The FireEye M-Trends 2020 Special report found that the
mean dwell time for 2019 in the USA is 60 days and in EMEA
and APAC is 54 days.5

In this paper, we develop a decision-support frame-
work, called CENSOR (CybEr risk assessment and coNtrol
optimiSatiOn fRamework), for optimal cyber security invest-
ment that accounts for the serial nature of a cyber security
breach, the uncertainty in the time required to exploit a
vulnerability (also called ‘‘exploit window’’) and the opti-
misation of mitigation measures in light of scarce financial
resources [15]. Consequently, the contribution of our work
is threefold: First, we incorporate key uncertainties into the
traditional discounted cash flow (DCF) approach, thereby
making it more suitable not only for investment decision-
making but also for risk assessment and management within
a cyber security context. Second, we combine the cyber
risk assessment framework with two different models, based
on Set Covering and Knapsack, for deriving optimal sets
of measures for mitigating cyber risk. Third, we develop a
use case of a small business (SB) to validate and demon-
strate the application potential of our framework in cyber
security investment decision-making. Specifically, we have
used the 2020 Common Weakness Enumeration (CWE)

5https://www.fireeye.com/current-threats/annual-threat-
report/mtrends.html
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top 25 most dangerous software weaknesses and the Center
for Internet Security (CIS) controls version 7.1. This case
study is used to compare our findings to the set of guidelines
for small businesses published by the UK government.6

CENSOR can support high-level governance and man-
agement frameworks and guidelines by providing insights
and recommendations through a scientific risk assessment
methodology. This paper demonstrates how mathematical
models and simulations can be used to estimate the potential
impact of cyber attacks and to identify risks that need atten-
tion, which further leads to effective cyber risk control strate-
gies. CENSOR, in particular, will support decision makers
to better understand their risks and prioritise the implemen-
tation of security controls based on their risk profile, budget
constraint and security objectives. This approach will lead to
informed risk management decisions for organisations seek-
ing to improve their cybersecurity posture using frameworks
like NIST Cyber Security Framework and ISO 27000 series.

The remainder of the paper is organised as follows.
In Section II, we discuss work most relevant to this paper,
and, in Section III, we introduce assumptions and notation.
Next, in Section IV, we begin the analysis by deriving the
analytical expression of the expected present value (PV) of
the first, second and n phases of a cyber attack. This section
further evaluates the selection of the best Security Packages
(set of security controls) using Set Covering formulation and
Knapsack Optimisation. Section V presents the use case and
discusses the results obtained from our framework, while
Section VI concludes this paper by offering future research
directions.

II. RELATED WORK
A strand of the cyber security economics literature draws
on the theory of investment and project valuation under
uncertainty [16], with the main objective to derive the
expected value of investment in cyber security controls along
with the investment threshold price and the probability of
investment within a given time horizon [17], [18]. This
methodology, also known as real options, addresses the
problem of investment under uncertainty while reflecting
the value from embedded managerial discretion. For exam-
ple, [19] extend the framework of [20] by showing that
information-sharing regarding vulnerabilities can decrease
uncertainty about risks, and, in turn, the value of deferment
options. More recently, [17] develop a real options model
to cast the cyber security investment problem as one of
selecting a subset of uncertainty-reducing mitigation mea-
sures, whose availability is controlled by decision-makers
and their size is log-normally distributed. The contribution
of this work is to improve the efficiency of cyber security
investments, by balancing the costs of mitigation against their
incremental uncertainty-reduction impact on cyber security
loss expectancy. In the same line of work, [21] analyse how
uncertainty over both the cost of an attack and the arrival

6https://www.ncsc.gov.uk/collection/small-business-guide

of a control impacts the optimal time of investment in cyber
security.

Although the optimal time of investment in cyber security
controls is an important problem, especially considering the
intensity and irreversibility of this capital expenditure as well
as the various underlying uncertainties, the main limitation
of the aforementioned literature is two-fold: First, decisions
for mitigation of threats and protection of a network must be
taken promptly, and, therefore, the value of waiting, which
real options theory emphasises, may not be as pronounced
as in other industries, e.g. research and development, and
energy. Second, real options models can be used to derive
the expected value of an investment opportunity along with
the investment threshold price, but they do not quantify the
degree to which risk is hedged. The latter problem often fits
within a security planning process, in terms of optimal selec-
tion of countermeasures, yet such models are typically deter-
ministic, as they ignore key uncertainties of cyber attacks.

Examples of models for optimal selection of cyber security
controls include [6], who investigate the challenge of how
to spend a security budget optimally. They propose meth-
ods, such as optimisation algorithms, combinatorial optimi-
sation and the classical Knapsack problem, that can deal with
overlapping safeguards that exhibit non-linear relationships.
Similarly, [9] propose a methodology for investing in CIS
controls, considering a single value for a vulnerability and
a number of implementation levels for each control. The
latter, represent the information security levels proposed in
the seminal work on the economics of information secu-
rity [22]. Also, [7] extend the methodology proposed in [9] to
obtain an optimal set of controls to protect various employee
groups of a healthcare organisation from social engineering
attacks. Additionally, [23] cast the problem of optimal selec-
tion of controls as a Set Covering problem. They first solve a
deterministic version to analyse the incentive to implement
complementary mitigations to reduce supply chain vulner-
abilities, and then extend the deterministic version to allow
for limitations on the choice as well as uncertainty over the
efficacy of the different controls. Building upon [24], [25]
develop a game-theoretic framework to analyse defender-
attacker interactions. The defender chooses a security plan
to minimise its security risk, while the attacker aims to max-
imise it via the most effective attack path. This is modelled
as a min-max optimisation problem, where the attacker max-
imises and the defender minimises in response to the reaction
of the attacker.

A limitation of the aforementioned optimisation models is
that they overlook the serial nature of an attack as well as the
uncertainty over the time it takes to exploit a vulnerability and
the cost that the system incurs once a vulnerability is com-
promised. Consequently, the financial implications of these
uncertainties on an organisation’s assets remain an important
open research question. To assist in the anticipation and
control of the financial impact of attacks [26], [27], our work
builds upon the literature on the valuation of serial projects to
develop quantification tools for assessing the risk associated
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with a security breach that progresses in phases. Specifically,
we first derive the distribution of the PV of the impact of an
attack and then develop methods for minimising the expected
PV of the impact by optimising the selection of controls. Via
a case study, where we cast the optimal selection of controls
as a Knapsack and a Set Covering problem, we find that
the Knapsack formulation provides solutions that not only
are more affordable but also entail lower risk. Also, we find
that greater investment intensity does not necessarily result
in an analogous reduction of risk, which, in turn, implies that
the rate of risk reduction decreases beyond a certain level of
investment intensity.

III. CYBER RISK ASSESSMENT AND CONTROL
OPTIMISATION FRAMEWORK
In this section, we model cyber risk by adopting a
techno-economic approach that couples capital budgeting for
valuation of the financial impact of a serial cyber security
breach with optimisation of mitigation measures. In sum-
mary, this section discusses: i. the underlying system model
with an organisation (e.g. Small and Medium-sized Enter-
prise) that wishes to protect its systems (Defender) and hack-
ers who target the organisation (Attacker); ii. how the dif-
ferent system assets that host vulnerabilities (e.g. CWE) are
linked to each other, and, as a result, how a multi-phase attack
can sequentially compromise these assets causing damage
to the Defender; and iii. how a limited budget poses the
challenge of optimally allocating cyber security controls that
may overlap in terms of the vulnerabilities they patch.

A. SYSTEM MODEL
We assume that the Defender’s infrastructure consists of a
number of systems and networks, referred to as assets, that
the Defender aims to protect from the Attacker. Each asset
i ∈ N has a set of mi ∈ N vulnerabilities, i.e. Vi ={
vi1, vi2, . . . , vimi

}
, that the Attacker may exploit. These vul-

nerabilities are part of software weaknesses, as presented in
the CWE.7 This assumption is aligned with the real-world
behaviour of attackers, who aim to penetrate as deep in a
network as they can to increase their expected return from
the attack. These adversarial interactions are modelled as a
sequence of attack phases, where phase i of an attack refers
to the stage in which the Attacker aims to compromise asset i
by exploiting any of its vulnerabilities vij ∈ Vi, where j =
1, 2, . . . ,mi. We assume that in each phase the Attacker can
compromise only one asset and that successful exploitation
can lead to undesirable privilege escalation or lateral move-
ment within the Defender’s infrastructure [28], [29], which
presents a new set of vulnerabilities that the Attacker may
exploit in order to compromise the subsequent asset.

B. EXPECTED IMPACT
The expected impact from the exploitation of asset i
is denoted by Ki. Utilising the broadly accepted risk

7https://cwe.mitre.org/index.html

assessment formula [30], expected impact = (likelihood of
being attacked) x (probability of being compromised) x
(probable loss), we compute Ki as in (1). This expresses the
impact posed to the Defender with regards to the exploitation
of asset i. In (1):Ai is the value of asset i, also known as Single
Loss Expectancy (SLE) [31]; Ri = (ri1, ri2, . . . , rimi ), where
rij is the likelihood of the Attacker attempting to exploit
vulnerability vij, which expresses the degree of attractiveness
of a vulnerability to the Attacker and is also referred to
as the Annual Rate of Occurrence (ARO) [31]; and Si =
(si1, si2, . . . , simi ), where sij is the probability of the same
vulnerability being successfully breached, thereby reflecting
the current security level associated with the vulnerability.
We denote the likelihood of occurrence of an attack against
asset i as, ⟨Ri, Si⟩, i.e. the inner product between Ri and Si.

Ki = Ai · ⟨Ri, Si⟩. (1)

Ti is the time required to exploit asset i and follows a general
distribution function denoted by 9Ti (·), as shown in Figure 1.
Assuming that a successful attack consists of a number of
phases, each of them compromising an asset, we compute
the aggregate duration of the attack, Wk , as the sum of the
exploitation times required to compromise an asset in each
phase, i.e.Wk =

∑k
i=1 Ti, 1 ≤ k ≤ n.

To determine the distribution of the PV of the impact
associated with the attack, we first express the aggregate
impact, Zn, over n attack phases in (2)

Zn = K1e−ρW1︸ ︷︷ ︸
U1

+K2e−ρW2︸ ︷︷ ︸
U2

+ · · · + Kne−ρWn︸ ︷︷ ︸
Un

=

n∑
i=1

Ui, (2)

whereUi is the PV ofKi and ρ denotes the subjective discount
rate. The PV integrates the concept of discounting into the
calculation of the current value of the impact of an attack that
may require a substantial amount of time to be carried out.
In turn, this supports effective decision-making and facilitates
the development of risk measures to assess the financial risk
exposure of the Defender [32].

C. CYBER RISK CONTROL
After gauging the impact associated with each vulnera-
bility, CENSOR subsequently focuses on optimising the
coverage of vulnerabilities in each asset by determining
an optimal Security Package. The latter refers to the set
of controls that minimise the expected PV of the impact
from an attack. This is done by patching asset vulnera-
bilities, thereby reducing an asset’s attack surface or by
increasing the effort required in successfully breaching
the asset. CENSOR specifically considers that the imple-
mentation of a control will mitigate the expected impact
of an attack by reducing the probability of the latter
being successful. We denote by C = {C1,C2, . . . ,Cg}
the set of available controls and by Eijlℓ the efficacy of
control Cl , l = 1, 2, . . . , g, against vulnerability vij,
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FIGURE 1. Sequential security breach.

implemented at level Lℓ, ℓ = 1, 2, · · · , h. Intuitively,
Eijlℓ reflects the degrees of protection offered by control Cl
for a vulnerability vij.
As the implementation of cyber security controls is not cost

free, the associated direct and indirect costs must be consid-
ered by the Defender. According to [33], the former refers
to the acquisition, deployment, and maintenance costs of a
control, while the latter can be anything else that inflicts loss
to the Defender, such as slowing down essential processes
due to incompatibility of controls and training employees to
get acquainted with the new controls. For the sake of brevity,
we assume that each control Cl comes with a set of costs 4l
associated with each level of implementation, inclusive of the
direct and indirect costs. Table 1 presents a summary of the
notation used in this paper.

IV. ANALYSIS
A. IMPACT ASSESSMENT
The first functionality of CENSOR is to assess the PV of
the impact from an attack. To achieve this, we perform a
phase-wise analysis of an attack to compute: (i) the dis-
tribution and expectation of the PV of Ki at each phase
i = 1, 2, . . . , n; and (ii) the expected impact following the
multi-staged attack.

1) First Phase:We begin with the first of an n-phase attack
that starts at time 0 and stops at time w1 ≡ τ1, which is
a realisation of the random variable W1 ≡ T1. The PV
of K1, denoted by u1, is described in (3), and the effect
of discounting can be interpreted as the reduction in the
impact for the Defender due to the exploit window.

u1 = K1e−ρτ1 (3)

Consequently, the cumulative distribution function
(CDF), 21(·), and probability density function (PDF),
θ1(·), of U1 are given in (4) and (5), respectively (all
proofs can be found in the Appendix).

2U1 (u1) = 1−81

(
ln

(
K1

u1

)
ρ−1

)
(4)

θU1 (u1) =
φ1

(
ln

(
K1
u1

)
ρ−1

)
ρu1

(5)

While (4) and (5) assume a generic distribution for T1,
the CDF and PDF of U1 when T1 ∼ exp(λ1) is

described in (6) and (7), respectively.

2U1 (u1) =
(
u1
K1

) λ1
ρ

(6)

θU1 (u1) =
λ

ρ

(
u1
K1

) λ1
ρ
−1 1

K1
(7)

Having derived the analytical expression of the CDF
and PDF of U1, we can derive the main moments
of the distribution. Specifically, the expression of the
expectation and variance is µ1 =

λ1
λ1+ρ

K1 and σ 2
1 =[

λ1
λ1+2ρ

−

(
λ1

λ1+ρ

)2]
K 2
1 , respectively.

2) Second Phase: We next derive the distribution of the
PV of K2. Therefore, we begin with the distribution
of W2 = T1 + T2 and consider the case in which
T1 ∼ exp(λ1) and T2 ∼ exp(λ2),8 so that W2 follows a
hypo-exponential distribution, i.e.W2 ∼ Hypo(λ1, λ2).
Then, the distribution of the PV of K2 is shown in
Proposition 1.
Proposition 1: If W2 ∼ Hypo(λ1, λ2), then the CDF
and PDF of U2 is described in (8) and (9)

2U2 (u2) =
λ2

λ2 − λ1

(
u2
K2

) λ1
ρ

−
λ1

λ2 − λ1

(
u2
K2

) λ2
ρ

(8)

θU2 (u2) =
λ1λ2

λ2 − λ1

1
ρu2

(
u2
K2

) λ1
ρ

−

(
u2
K2

) λ2
ρ

 .

(9)
We can also derive the main moment of the distribu-
tion of U2, e.g., the mean and the variance are µ2 =

λ1λ2
(λ1+ρ)(λ2+ρ)K2 and σ 2

2 =
λ1λ2

(λ1+2ρ)(λ2+2ρ)
K 2
2 − µ2

2K
2
2 ,

respectively.
3) n-th Phase: Here, we will determine the distribution of

the PV of the impact of the attack in the arbitrary n
phase. Following the same approach as in the case of
i = 1, 2, we assume that Wn ∼ Hypo(λ1, λ2, . . . , λn).
The CDF and PDF of Un is described in Proposition 2.

8To emphasise the implications of differences in asset exploitation,
we may consider the special case where λ1 = λ2 = λ. Under this
assumption, T1 and T2 are i.i.d. random variables, such thatW2 = T1+T2 ∼
Erlang(2, λ) ([34]).
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TABLE 1. List of symbols.

Proposition 2: If Wn ∼ Hypo(λ1, λ2, . . . , λn), then
the CDF and PDF of Un is described in (10) and (11)

2Un (un) =
n∑
i=1

(
un
Kn

) λi
ρ ∏
j̸=i

λj

λj − λi
(10)

θUn (un) =
n∑
i=1

1
ρKn

(
un
Kn

) λi
ρ ∏
j̸=i

λj

λj − λi
. (11)

The mean and variance of Un is described in (12) and
(13), respectively,

µn = Kn
n∑
i=1

λi

λi + ρ

∏
j̸=i

λj

λj − λi
(12)

σ 2
n = K 2

n

n∑
i=1

λi

λi + 2ρ

∏
j̸=i

λj

λj − λi

−

Kn n∑
i=1

λi

λi + ρ

∏
j̸=i

λj

λj − λi

2

, (13)

and, since we have already derived the distribution of
the PV of the impact for each phase, the expected value
of Zn =

∑n
i=1Ui is given in (14).

E[Zn] =
n∑
i=1

E[Ui]

=

n∑
b=1

Kb
b∑
i=1

λi

λi + ρ

∏
j̸=i

λj

λj − λi
(14)

B. SECURITY CONTROLS
The optimisation functionality of CENSOR aims to provide
decision support regarding the budget constrained selection
of controls. This includes: (i) the minimum number of con-
trols required to patch all vulnerabilities (Approach 1); or
(ii) the controls that minimise the expected PV of the impact
(Approach 2).

Regarding Approach 1, the Security Package (i.e. com-
bination of security controls) is derived as a solution to a
Set Covering problem in order to account for the potential
interaction among Security Packages that may overlap in
terms of the vulnerabilities they cover.

Regarding Approach 2, we use the risk assessment compo-
nent of CENSOR alongwith the improvement of the expected
impact when deploying Security Packages. We then derive
the Security Package that maximises the improvement of the
expected PV of the impact subject to a financial budget. The
same function takes into account the cost of each Security
Package, which is subtracted by the improvement. Thus,
CENSOR optimises the return on security investment, which
is defined in [33] as the ratio (benefit of security - the cost of
security) / cost of security.

1) SET COVERING FORMULATION
Here, we cast the problem of optimal selection of mitigation
measures as a Set Covering problem [35]. The objective is
to determine the minimum number of controls that offer a
baseline coverage of the network’s vulnerabilities based on
a budget constraint and the desired level of efficacy resulting
from each patch. This optimisation is described in (15), where
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xlℓ is a binary variable indicating whether a specific level ℓ of
a security control Cl is applied. Constraint (16) ensures that
each vulnerability is covered by at least one control, while
(17) is the budget constraint. Finally, constraint (18) ensures
that the choice of controls offers a minimum coverage of all
vulnerabilities at a desired level of efficacy, ê.

min
g∑
l=1

xlℓ (15)

s.t.
∑

l:Eijlℓ>0

xlℓ ≥ 1, xlℓ ∈ {0, 1}, ∀i, j ∈ N (16)

g∑
l=1

xlℓξlℓ ≤ B (17)

Eijlℓ > ê, ∀i, j ∈ N, ê ∈ (0, 1) (18)

Algorithm 1 Set Covering Problem With Cost and
Control Efficacy Constraints

Input: Vi, C, 4l, Eijl, ê
Output:Minimum set of controls with budget and

efficacy bound
Function SetCoverEfficacy(Vi, C, 4l, Eijl, ê):

for Cl in C do
price← ξlℓ/len(Cl ∩ V)
if price < cost and Eijlℓ > ê then

cost ← price
cover ← Cl

return (cover, cost)
while len(Vi) ! = 0 and Budget ! = 0 do

(cover, cost)←
SetCoverEfficacy(Vi, C, 4l)
Vi← Vi − cover
Budget ← Budget−cost

In its basic implementation, the Set Covering problem is
appropriate when the underlying controls are related to patch-
ing vulnerabilities, as the degree of their effectiveness is 1,
meaning that either the vulnerability is patched or not. How-
ever, this implementation does not account for the expected
impact of the security breach. Indeed, the solution obtained
via (15)-(18) ensures the minimisation of the number of
controls, but does not consider whether the proposed controls
minimise the expected impact of the attack. Furthermore,
when we study preventative controls (e.g. firewalls), we must
take into account the degree of a control’s efficacy against a
vulnerability. In a quantitative approach, the control efficacy
falls within the interval (0, 1). Algorithm 1 presents the Set
Covering implementation with cost and control efficacy con-
straints.

2) KNAPSACK FORMULATION
The challenge of optimal budget allocation in cyber security
can be addressed through combinatorial optimisation [9].

Unlike Section IV-B1, the objective here is to select the
controls that minimise the expected PV of the impact,
as expressed in (14). Based on the selection of a con-
trol at a particular level, indicated through xlℓ ∈ {0, 1},
the probability of exposure can be expressed as εj =∏

l,ℓ

(
1− xlℓEijlℓ1{vij∈Cl}

)
. Notice how εj is a strictly

decreasing function of xlℓ, so that the inclusion of a control
will reduce the likelihood of exposure. Thus, CENSOR solves
the following Knapsack problem:

min
xlℓ

l=1,2,...,g
ℓ=1,2,...,h

n∑
i=1

{{ g∏
l=1

h∏
ℓ=1

(
1− xlℓEijlℓ

) }
· E[Zi]

}
, (19)

∀i, j ∈ N

s.t.
g∑
l=1

h∑
ℓ=1

xlℓξlℓ ≤ B (20)

h∑
ℓ=1

xlℓ = 1, xlℓ ∈ {0, 1}, ∀l = 1, · · · , g, (21)

where E[Zi] is a dependent variable obtained from eq (14).
The optimal efficacy matrix O is constructed iteratively for
all the cost values within the Budget, and for each value
the problem is solved considering all the available levels of
a control within that cost. The optimal aggregated efficacy
valueO[l, cost] depends on the control level selected for the i-
th cost. For a detailed analysis of 0-1 Knapsack Optimisation
using dynamic programming refer to [36].

Algorithm 2 Dynamic Programming Based 0-1
Knapsack Optimisation
Input: Vi, C,Ll, 4l, Eijl
Output: Optimal set of controls and total cost
Function
KnapsackOptimisation(Vi, C,Ll, 4l, Eijl):

for Cl in C do
for cost in Budget do

O[Cl, cost]← O[Cl − 1, cost]
for ℓ in Ll do

if cost ≥ ξlℓ then
O[Cl, cost]←
max{O[Cl, cost], (O[Cl −
1, cost − ξlℓ]+ (1− Eijlℓ)}

V. USE CASE
This section presents our case study to implement our
methodology using a sample network topology of an SB.
Let the network architecture consists of three layers. Each
layer of the architecture signifies the importance of the asset
to the organisation. A weakness can lead to a number of
vulnerabilities that the Attacker could exploit to compromise
an asset in a layer and move to the next layer.
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As each organisation is likely to have different assets and
value each one differently, defining the direct financial value
of an asset to the organisation is a challenge. To tackle this,
we assume that all assets in a layer have the same value.
Thus, based on the location of an asset in the architecture we
define the value of an asset, Ai, as a categorical value, where
A1 = 500, A2 = 1000 and A3 = 1500 in the three layers,
respectively. Additionally, we have used ρ = 0.3, while
the cost and efficacy for a control is determined using ran-
dom uniform distribution. For the purpose of this case study,
we consider the 2020 top 25 CWEs9 and rank them based on
their easiness to find and exploit. We obtain the CWEs from
the Common Vulnerabilities and Exposure (CVE) data found
within the National Institute of Standards and Technology
(NIST) National Vulnerability Database (NVD)10 for the
years 2018 and 2019. The CVE data includes a description,
Common Vulnerability Scoring System (CVSS) base scores,
vulnerable product configuration, and weakness categorisa-
tion information on each vulnerability identified during a
specific year.

We primarily utilise the CVSS metrics to acquire para-
metric values required for CENSOR. CVSS is a publicly
available framework that details the characteristics and sever-
ity of software vulnerabilities and is built upon three core
metric groups: Base, Temporal, and Environment. The Base
metric represents the intrinsic qualities of a vulnerability that
remain unchanged over time and across user environments.
The Temporal metric reflects the characteristics of a vulner-
ability that can change over time, while the Environmental
metric reflects qualities of a vulnerability that are unique to a
user’s environment. This case study uses the Base metrics to
extract the CENSOR parameters, but the rest of the metrics
could be potentially used by experts to personalise the values
to fuse specific characteristics of CVEs. Table 6 presents
the top 25 CWEs for the year 2020 with their number of
associated CVEs, CVSS v3 metrics,11 and the Time required
to exploit a CWE used in this case study, where:

Frequency: It projects the number of times a CWE is the
root cause of a vulnerability. The NVD data for the years
2018 and 2019 consists of 31501 CVEs (excluding ones
without a CVSS score) that are associated with one or more
CWEs. To determine the frequency of a CWE, we calculate
the number of times a CWE is mapped to a CVE in the NVD.
We then filter the records based on the top 25 CWEs of the
year 2020.

Average CVSS: It details the severity of a CWE, and is
represented by the average CVSS base score of all the CVEs
that map to a particular CWE.

Average Exploitability Score: It details the ease and the
technical means by which the weakness can be exploited
by an attacker, and is the normalised average of the CVSS
Exploitability metric of all CVEs that maps to a particular

9https://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html
10https://nvd.nist.gov/vuln/data-feeds
11https://www.first.org/cvss/v3.1/specification-document

CWE. For example, the average exploitability score of all
the 3848 vulnerabilities associated with CWE-79 (Rank 1,
Tabl. 6) is 2.520, which when normalised gives a score
of 0.433. For normalisation, we have used NormalisedX =
X−Xmin

Xmax−Xmin
where X is the entity being normalised. We inter-

pret the Exploitability metric with the probability of a
vulnerability being targeted by the attacker (rij).

Average Complexity Score: It details the conditions
beyond the Attacker’s control that must exist to exploit a
vulnerability. This may include conditions that require the
collection of additional information about the target and/or
vulnerability, or additional resources, such as computational
power. We assign a categorical value of 1 for ‘‘LOW’’ and 2
for ‘‘HIGH’’ attack complexity. The average complexity
value is the normalised average of the CVSS complexity
metric of all the CVEs that maps to a particular CWE. Similar
to the average exploitability score, the average complexity
score of all the 3848 vulnerabilities associated with CWE-
79 is 1.004, which, when normalised, gives a score of 0.004.
We interpret the Complexity metric with the probability of a
vulnerability being compromised on an attack, sij.
Average Privileges Required: It details the level of privi-

leges an attack requires to exploit the vulnerability, success-
fully.We assign a categorical value of {1, 2, 3} unit of time for
{NONE,LOW ,HIGH} privileges required to exploit a CVE,
respectively. It is then calculated as the average of the CVSS
Privileges Required metric of all the CVEs that map to a
particular CWE.

Average User Interaction: It details whether an addi-
tional human user’s participation, apart from the attacker,
is required to successfully exploit the vulnerability. We asso-
ciate a categorical value of 0 for ‘‘NONE’’ and 1 unit of time
for ‘‘REQUIRED’’ user interaction. It is then calculated as
the average of the CVSS User Interaction metric of all the
CVEs that maps to a particular CWE.

Time: It refers to the time required to exploit asset i. In our
simulations, each layer is associated with a set of unique
CWEs and each of them has a number of CVEs. We have
computed the average time required to exploit each CWE
by using CVSS metrics for all the CVEs under a CWE.
ACVE requiring higher privileges and higher user interaction
will demand more time from the attacker. Thus, we define,
for each CWE the sum of Average Privileges Required and
Average User Interaction metrics required to exploit a CVE
in asset i, and assume that E[Ti] = 1

λi
, where λi is the rate

parameter which is considered as inversely proportional to
the average exploitation time for attack phase i.
Next, we develop a knowledge base between the 2020 top

CWEs and the CIS critical security controls version 7.1.12

The CIS controls are a set of prioritised, globally recognised,
and supported security actions that organisations can take to
assess and improve their cyber security. For example, control
9.4 specifies the use of host-based firewalls or port filtering
tools on end systems tomanage communication on networked

12https://www.cisecurity.org/controls/
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TABLE 2. Case study control family and controls distribution.

devices, while control 17.6 mentions that organisations need
to train the workforce on how to identify different forms of
social engineering attacks, such as phishing attack, phone
scams, and impersonation calls/emails. Table 2 presents the
control family and number of controls per family from the
CIS controls list that are used in this case study.

The knowledge base defines a binary relation between
these basic cyber hygiene controls that every enterprise
should apply to protect against the most common attacks and
the CWEs. The mapping is shaped considering the scope of
impact and possible mitigation detailed against each CWE.
The scope of impact reflects the application security areas
that is violated if an attacker successfully exploits this weak-
ness. For example, an attacker can impact the Confidential-
ity, Integrity, Availability and Access Control mechanisms
by exploiting CWE-79.13 Environment hardening controls
such as Firewalls, implementing secure configurations, and
installing the latest stable version of security updates can
be used to mitigate the impact and reduce the likelihood
of an attack. A control can provide a variety of types of
mitigation, and the distribution used in this use case can be
seen in Table 3. The definition of control efficacy against a
vulnerability detailed in CVSS does not support CENSOR for
optimal cyber security spending. Thus, we have redesigned
the efficacy of a control against each CWE and spread the
efficacy between the levels.

As the same weakness can appear at different assets of a
layer, we assume that the implementation of a control miti-
gates all occurrences of that weakness. Otherwise, the secu-
rity of a network would not increase as it is as strong as the
weakest link in the network. For a control, we have assumed
two different implementation levels: Level L and Level H.
Level L refers to the minimal configuration/integration of a
safeguard with lower cost and lower efficacy against a weak-
ness. On the contrary, Level H refers to a better configura-
tion/integration of a safeguard, which, generally, is expensive
but provides higher protection against attacks. The cost of a
control is considered to be the most important factor guiding
the cyber security strategy of an organisation. Unlike [7]
and [9], where authors have separately considered the direct
cost and indirect cost of a control, this case study considers

13https://cwe.mitre.org/data/definitions/79.html

the aggregated cost of a control. Our consideration acknowl-
edges the fact that the cost of implementation of a control
can vary across organisations. For example, integration of
security software for a skilled employee might require less
effort compared to a trainee. Furthermore, the indirect costs
such as training and maintenance associated with a control
could also be different across organisational teams. The CIS
controls mapping, the CENSOR code, along with the rest of
the data and analysis results can be accessed from the Github
repository.14

A. RESULTS ANALYSIS
In this section, we present the results obtained from applying
CENSOR to determine the optimal Security Package and
compare it against the set of cyber security guidelines pub-
lished by the UK’s National Cyber security Centre (NCSC)
for SBs to improve their cyber security and protect them-
selves from common attacks.15 The controls considered in
the guidelines focus on malware protection, secure mobile
devices, data backup, passwords to protect data and to avoid
phishing attacks. The results are obtained using a number
of testing conditions that represent different cyber security
investment strategies. We begin with a demonstration of the
risk assessment functionality of CENSOR as this is formu-
lated in Propositions 1 and 2. Specifically, Figur. 2 illustrates
the distribution of the PV of the impact for each phase, and
each panel illustrates the analytical and simulated PDF of the
PV as well as the 95-th percentile, indicating the worst-case
scenario.

The first set of tests presents scenarios that account for the
requirement of having controls that mitigate all 25 CWEs.
The methodology proposed in Section IV-B1 is used to
identify the minimum set of controls required to address
all 25 CWEs under different budget and control efficacy
bounds. The second set of tests utilises the Knapsack opti-
misation methodology presented in Section IV-B2 to identify
a set of controls that minimises the PV of the impact of an
attack given a budget limit.

Case A shown in Table 4 presents the scenario, where
any of the controls selected must be implemented at the

14https://github.com/SakshyamPanda/CENSOR
15https://www.ncsc.gov.uk/collection/small-business-guide
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TABLE 3. Case study control and mitigation distribution.

FIGURE 2. Distribution of present value of the expected impact for attack phase 1 (left panel), 2 (middle panel) and 3 (right panel) in case A
(top panels) and in case F (bottom panels).

TABLE 4. Case study results with set covering formulation.

highest level, while the budget considers the highest level
of investment. The Set Covering solution suggests imple-
menting controls associated with all nine mitigations listed
in Tabl. 3. In addition to the mitigation controls, the solution
suggests four out of five focus areas outlined in the SB
cyber security guide. Even though the solution is the most
expensive, it does not suggest the implementation of controls
for Security Awareness and Training, which predominantly
mitigates social engineering attacks.

When a budget constraint is added to support cost-effective
decisions, we see that the solution in cases B and C for
controls with levels L and H, respectively, cover four out of
five focus areas. However, these solutions include controls for

Security Awareness and Training to cover phishing attacks
instead of controls for Administrative Privileges, which
means that awareness and training of staff must be given a
higher priority. Also, when the budget is insufficient for case
C, the advanced software asset inventory management tool
could potentially be replaced with a standard software asset
management tool together with training staff on causes of
unintentional data exposure. Similarly, cases D and E present
alternative solutions with an option to select controls that are
effective against all CWEs by at least a given threshold. Here,
case D presents controls with level L that are at least 10%
effective against the CWEs, while case E presents controls
with level H with the efficacy of at least 30%.
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TABLE 5. Case study results with Knapsack formulation.

FIGURE 3. Control section using Knapsack optimisation with budget £5100.

As investing in cyber security is not always straightfor-
ward, decision-makers seek ways to invest such that the
overall risk is maximally reduced. The solution in Table 5
highlights that controls for Email and Web Browser Protec-
tion, Malware Defences, Secure Configuration for Network
Devices, and Security Awareness and Training are necessary
to reduce the risk exposure of an organisation. In terms of
the SB cyber security guidelines, results indicate that con-
trols to cover phishing attacks and malware defences should
be prioritised to reduce the number of social engineering-
based attacks. Case F3 presents the solution which covers
all five areas of the SB cyber security guide for a cost of
£7,371.64. Besides controls to cover SB cyber security guide,
the solution recommends implementing Wireless Access
Control, which operates to cover additional vulnerabilities
and strengthen boundary defences.

The first result that can be observed by comparing
Tables 4 and 5 is that the Knapsack optimisationmethodology
provides solutions that entail a greater reduction of expected
impact and lower cost when compared to the solutions of the
Set Covering approach. This means that, by implementing the
suggested solution in Tabl. 5, we achieve a better reduction of

expected impact and better chances to gain a positive return
on the security investment.

Second, results indicate that investing more in security
does not necessarily lead to an analogous reduction of risk,
as illustrated in Figure 3. Finally, notice that the 95-th
percentile corresponding to the solutions obtained via the
Knapsack optimisation, in most cases, is lower than that
corresponding to the solutions obtained via the Set Cover-
ing formulation. This emphasises how the former approach
is more suitable for providing solutions for better con-
trol of risk within a specified budget. The results further
elicit that practitioners must consider methods that opti-
mise their security investment decisions, with respect to
return and risk reduction, rather than having a cyber secu-
rity strategy just as a compliance exercise. Apart from the
expected PV of the impact of an attack, other objectives
could also be implemented within eq (20), e.g. the value
at risk (VaR) and the conditional VaR (CVaR), which ren-
ders this approach suitable for both risk-neutral and risk-
averse decision-makers. However, the latter is not within
the scope of the current paper and is left for future
work.
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TABLE 6. 2020 Top 25 software weaknesses from CWE labelled with relevant characteristic metrics used in the case study.

VI. CONCLUSION
Efficient cyber security risk management relies on manage-
rial strategies responsive to various uncertainties associated
with attacks. The need for such strategies becomes particu-
larly pronounced considering the critical impact attacks may
have on organisations and the limited time to make execu-
tive decisions. Hence, risk management within the area of
cyber security is a considerably delicate task. The presence of
uncertainties raises the incentive to postpone decisions and,
in turn, the value of waiting, which is often a luxury that
cannot be afforded. In this paper, we take into account the
serial nature of the attack and the uncertainty in the time

required to exploit a vulnerability and develop a decision
support framework to evaluate the risk exposure of an organ-
isation and propose an optimal set of mitigation measures.

We develop a real-world use case using the 2020 CWE top
25 most dangerous software weaknesses and the CIS Con-
trols to evaluate our framework. Our methodology provides
security effective and cost-efficient solutions to counteract
the most common attacks. We believe our work can assist
cyber-security managers to select controls to optimally mit-
igate risk within a budget, given underlined uncertainties on
a cyber-security breach. To the best of our knowledge, our
framework is the first that adopts a discounted cash flow
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approach to model and assess cyber risk for multi-phase
attacks taking into account the uncertainty in the duration of
each phase and proposes risk mitigation measures in the form
of cyber-security controls to patch the identified weaknesses
in the assets.

We aim to use the work presented in this paper to support
attack models, such as [37] and [38], considering the strate-
gic aspect of cyber-security interactions. This model would
capture the interaction between the defender and the attacker
as a non-cooperative game to determine the best responses
against strategic attackers. From an application point of view,
future work could extend the analysis to obtain recommen-
dations against known threat actors by including adversarial
information from CAPEC andMITREATT&CK framework.

Additionally, governments advise organisations to get
cyber-security compliance certifications to demonstrate com-
pliance with prescribed guidelines. For example, the UK
government demands organisations to get certified for Cyber
Essentials,16 which is a government-backed scheme aimed
to protect organisations from a range of most common
attacks. To be certified, organisations have to satisfy a list
of requirements that cover five technical control themes:
firewall, secure configuration, user access control, malware
protection, and security update management. The Set Cover-
ing approach could be a comparable method used to identify
controls to meet these requirements. However, as highlighted
from the results, this is a basic method that provides ideas on
how to invest in cyber-security and does not deal with cyber
risk minimisation. On the other hand, the Knapsack Optimi-
sation method could be used to overcome the inefficacy of
the Set Covering method to identify controls that minimise
cyber risk.

Besides its novel contributions to the field of cyber risk
management, the proposed framework exhibits some lim-
itations, which can admittedly become the basis of future
work. First, the framework can be utterly improved by taking
a more multifaceted approach where three types of cyber
risk assessment are employed; threat-based, vulnerability-
based, and control-based risk assessment. Such a direction
will ultimately introduce new research challenges. These will
entail the lack of online numeric data, besides the CVSS one,
that will adequately facilitate the establishment of a use case
to validate this novel framework in the most realistically way
possible. Arguably, we believe that the lack of such datasets
can act as a catalyst for researchers to pursue more practical
paths to encounter organisations, interview them, and gather
data about previous cyber incidents suffered. This collective
information can be turned into an apt use case for attaining
the requisite validation of the new framework.

To innovate towards this direction is to consider the
MITRE ATT&CK framework as the source of data about
APT groups, attack tactics, techniques, procedures and mit-
igation, in the context of cyber forensics [39], [40] and to
determine optimal security countermeasures against the APT

16https://www.ncsc.gov.uk/cyberessentials/overview

groups [13]. Future work may also consider the strategic
interactions between the Defender and the Attacker, as it has
been previously studied within the literature of game theory
as applied to cyber-security.

To effectively apply CENSOR in the real world, it is neces-
sary to integrate it within existing cyber risk assessment tools,
which typically require a high level of cybersecurity maturity.
These tools identify Common Vulnerabilities and Exposures
(CVEs), which can be used as input to CENSOR and lead to
the instantiation of its model. However, such tools may not
be readily available to small businesses due to the associated
costs of implementation and maintenance. This represents a
limitation of CENSOR when it comes to creating an impact
in real-world scenarios.

It is worth noting that the choice of a small business use
case was intended to facilitate the assessment of the frame-
work, and was a proof-of-concept implementation for the
purpose of the paper. However, it should be noted that the
application of CENSOR is not limited to small businesses,
and organisations of any size could potentially use it to opti-
mise their cybersecurity risk level.

With regards to the effectiveness of CENSOR in real-world
scenarios, a key challenge is the validation of the efficacy
of the different cybersecurity controls [9], [41]. This is an
ongoing industrial challenge,17 which can be addressed by
assessing the degree of improvement in the cybersecurity
posture of an organisation before and after the deployment of
controls. Overall, the efficacy of cybersecurity controls can
be assessed through measuring and tracking security-related
data over time, such as the number of security incidents or
the time taken to detect and respond to an incident. This most
likely involves using a team of internal or external security
experts to simulate an attack on a system and evaluate the
effectiveness of existing controls.

An important direction for further research would be to
combine the risk assessment and optimisation framework
presented in this paper with the game-theoretic frameworks
such as [25], [38], [42], and [43], to explore how strategic
interactions impact the optimal choice of controls and support
cyber security decisions. Additionally, the optimisation func-
tionality of CENSOR could be extended in terms of its scope
to allow for different objective functions, reflected in risk
measures, such as the VaR and the CVaR. This will facilitate
the analysis of the implication of risk preferences for the
optimal selection of controls, and, specifically, how the latter
may depend of the level of the decision-maker’s risk aversion.

APPENDIX
The general expression of the CDF of the PV is described
in (A-1).

2U1 (u1) = P
(
K1e−ρT1 ≤ u1

)
= P

(
T1 ≥

1
ρ
ln

(
K1

u1

))
= 1−8W1

(
1
ρ
ln

(
K1

u1

))
(A-1)

17https://www.mckinsey.com/capabilities/risk-and-resilience/our-
insights/the-risk-based-approach-to-cybersecurity
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Note that we can insert the expression for any CDF
of W1 into (A-1) in order to obtain the CDF of U1.
If W1 ∼ exp(λ1), then the CDF and PDF of the PV is
indicated in (A-2) and (A-3), respectively.

2U1 (u1) = 1−
[
1− e

−
λ1
ρ

ln
(
K1
u1

)]
=

(
u1
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) λ1
ρ

(A-2)

θU1 (u1) =
λ1

ρ
K
−

λ1
ρ

1 · u
λ1
ρ
−1

1 (A-3)

Next, having derived the analytical expression for the dis-
tribution of U1, we can proceed with the derivation of its key
characteristics, e.g. the mean and variance.
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Proof of Proposition 1: Here, we want to determine the dis-
tribution of the PV of the phase 2 attack, which is expressed
as U2 = K2e−ρW2 . We can obtain the expression of the CDF
of U2 for a generic distribution function ofW2, 8W2 (·).
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In the special case where W2 ∼ Hypoexp(λ1, λ2) the
expression of the CDF ofW2 is:

8W2 (w2) = 1−
λ2

λ2 − λ1
e−λ1w2 +

λ1

λ2 − λ1
e−λ2w2 (A-7)

Consequently, the CDF and PDF ofU2 is indicated in (A-8)
and (A-9), respective.
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□
Proof of Proposition 2: Next, we determine the CDF ofUn =
Kne−ρWn , where Wn = T1 + T2 + · · · + Tn. The expression
of the CDF ofU2 for a general distribution function 8Wn (wn)
is:

2Un (un) = 1−8Wn

(
1
ρ
ln

(
Kn
un

))
(A-10)

Depending on the distribution ofWn, we can derive a specific
expression for the distribution of the Un. Here, we assume
that Wn ∼ Hypo(λ1, λ2, . . . , λn) and the CDF and PDF of
Wn are described in (A-11) and (A-12), respectively.

8Wn (wn) =
n∑
i=1

[
1− e−λiwn

] ∏
j̸=i

λj

λj − λi
(A-11)

φWn (wn) =
n∑
i=1

λie−λ1wn
∏
j̸=i

λj

λj − λi
(A-12)

Hence, the CDF Un is obtained by setting wn = 1
ρ
ln

(
Kn
un

)
in (A-11) and then substituting (A-11) into (A-10).

2Un (un) = 1−
n∑
i=1

1−
(
un
Kn

) λi
ρ

 ∏
j̸=i

λj

λj − λi
(A-13)

θUn (un) =
n∑
i=1

λi

ρ

(
un
Kn

) λi
ρ
−1 1

Kn

 ∏
j̸=i

λj

λj − λi
(A-14)

□
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