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Abstract
This thesis comprises three essays on multi-factor asset pricing models in finance.

In the first essay, I expand on the work of Borghi et al. (2018) by comparing the in-sample
performance of their proposed ML estimator of time-varying sensitivities, which draws from
Mikkelsen, Hillebrand, and Urga (2019), against the alternative rolling least square estima-
tor. The main finding of my analysis is that the rolling OLS estimator is characterised by a
great degree of instability, which is driven by the interplay between window size and sam-
pling frequency. If one selects the window size arbitrarily the instability in the estimates can
be pronounced, and the benefits of fitting a dynamic model as opposed to an equivalent static-
loadings representation become slim. Overall, the ML estimator of Borghi et al. (2018) domi-
nates the rolling OLS under many aspects.

In the second essay, I expand on the work presented in the first essay in two ways. I com-
pare the explanatory power of the three-factor model of Borghi et al. (2018), that features a
combination of observed and latent factors, against more traditional factors constructed from
firm attributes, and I evaluate the out-of-sample predictive performance of rolling OLS betas
in forecasting future return patterns, accounting explicitly for the window selection problem.
The main finding of my analysis points to a dual role of the rolling least square estimator when
I employ the measures in Kelly, Palhares, and Pruitt, 2021 to gauge the models performance.
While the short-window approach provides the best results in a contemporaneous-equation
setting, for predictive purposes including too little observations for estimation causes the be-
tas to be noisy, which in turn results in forecasts with little predictive power. Out-of-sample,
the trade-off between the length of the window and the variance of the estimator is resolved
around the two-year point, and this is true across all model specifications. I find that the choice
of the window length alone accounts for about ±10% of the factor model’s out-of-sample fore-
casting performance. Analysing the out-of-sample relative performance of alternative model
specifications that include observed factors, I find the performance of Fama French factors de-
teriorates significantly with respect to the in-sample analysis.

The third essay turns to the analysis of factor premia in international sovereign bonds.
I identify the factors with country-style characteristic-based portfolios such as momentum,
value, and low-risk, and study their performance under two dimensions simultaneously, issuer-
and maturity-wise. My analysis reveals substantial variation in the factor premia across the
cross-sections, which does not support the view of Asness, Moskowitz, and Pedersen (2013)
and Frazzini and Pedersen (2014) on their unifying pricing ability across countries and as-
set classes. I find that risk-adjusted returns are decreasing in the maturity of the bonds for
momentum strategies. When analysed across countries, momentum produces consistent sta-
tistically significant Sharpe ratios, however this is not true for value and low-risk. The former
shows low and insignificant returns across countries, while low-risk yields statistically signif-
icant premia only for Euro Area bonds. Contrarily to what reported in previous literature, I
find no supporting evidence for the existence of risk premia for characteristics-based global
portfolios.





1

General Introduction

This introduction gives a broad overview of the thesis, which comprises three essays on multi-
factor asset pricing models in finance. The order of the essays is chronological and thus reflects
my development during the PhD program.

The research objective of this thesis is to investigate the performance of factor models in
modelling international asset returns, in the equity and sovereign bond markets separately.
The research uses a large set of asset-level data to answer questions at the intersection between
asset pricing and applied econometrics. The investigation is mainly empirical, however the
theoretical aspects of the models are also carefully considered due to the complexity of the
econometric techniques employed.

The first research question is on the choice of the relevant pricing factors that drive the cross-
sectional variation in asset returns. In the context of international equities, I compare observed1

factors, that are identified a-priori, against latent2 factors, that are not directly observed and
thus need to be estimated. For sovereign bonds, I identify the factors with characteristic-based
portfolios such as momentum, value, and low-risk, which have been shown in the literature
to capture patterns of cross-sectional variation in the returns, and compare their performance
across various dimensions. The second research question is on the estimation of the time-
varying factor sensitivities3 in international equities. Conditional on the choice of the factors,
I compare two competing methodologies to introduce the time variation in the factor load-
ings, rolling least squares and ML estimation (ie. the Kalman filter). The former is the status
quo in the literature and depends crucially on the choice of the window length, which is often
judgemental and based on past experience. I provide an in-depth analysis on the statistical and
economic properties of the rolling least square estimator for varying window length.

The first two essays, Chapter 1 and 2, study multi-factor asset pricing models in interna-
tional equity returns. Both chapters contribute to the existing literature by providing an alter-
native perspective to analyse higher-frequency patterns in international stock returns, using
asset-level data and country-style factors. I depart from the monthly benchmark commonly
used in the literature, and work with weekly data on a sample spanning several years of recent
history from 2006 to 2019. A further characteristics common to the chapters is that they use

1In this document I use the terms ‘observed’, or ‘observable’ factors to indicate as synonyms.
2In this document I use the terms ‘statistical’, ‘latent’, ‘unobserved’ or ‘unobservable’ factors as synonyms.
3In this document I use the terms ‘sensitivity’, ‘exposure’, ‘loading’, or ‘beta’ as synonyms.
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individual stock returns as base assets, instead of portfolios as customary in the literature. This
implies that my sample size is large in the time-series and cross-sectional dimensions, which
motivates the use of factor structures developed in a high-dimensional framework. The chap-
ters are complementary to each other, although each studies a revised version of the research
questions.

In the first essay, Chapter 1, I expand on the work of Borghi et al. (2018) by comparing
the in-sample performance of their proposed ML estimator of time-varying sensitivities, which
draws from Mikkelsen, Hillebrand, and Urga (2019), against the alternative rolling least square
estimator. I take the factor model of Borghi et al. (2018) as given and, conditional on ex-post
factors, I consider different windows to estimate the factor loadings via rolling OLS, for fixed
sampling frequency. From a statistical perspective, my analysis is supported by a battery of
misspecification tests based on the residual model-implied component, which depends only
on different estimates of time-varying sensitivities. This setup allows to isolate the effects of
the instability in the beta estimates in explaining contemporaneous return patterns, conditional
on the estimated time-invariant factors.

The main finding of my analysis in Chapter 1 is that the rolling OLS estimator is char-
acterised by a great degree of instability, which is driven by the interplay between window
size and sampling frequency. If one selects the window size arbitrarily the instability in the
estimates can be pronounced, and the benefits of fitting a dynamic model as opposed to an
equivalent static-loadings representation become slim. I also find that the rolling OLS estima-
tor based on a large window size enjoy similar properties to the ML estimator. However, from
an economic perspective the rolling OLS estimates based on a large window size are difficult
to interpret, since much of the short-term variation is averaged out. The opposite is true for the
rolling estimates based on a short window size, which capture much of the short-term varia-
tion in asset prices at the expenses of a possibly misspecified model. Overall, the ML estimator
of Borghi et al. (2018) dominates the rolling OLS under many aspects.

In the second essay, Chapter 2, I expand on the work presented in the first essay in two
ways. I compare the explanatory power of the three-factor model of Borghi et al. (2018),
that features a combination of observed and latent factors, against more traditional factors
constructed from firm attributes, and I evaluate the out-of-sample predictive performance of
rolling OLS betas in forecasting future return patterns, accounting explicitly for the window
selection problem. I review the asset pricing literature that uses rolling OLS estimation to in-
troduce the time variation in the factor loadings and discuss the choices taken in relation to
the estimation window, which I vary from as little as 26 observations (half-year) to 520 obser-
vations (ten-year window). I employ a suite of performance measures that evaluate different
aspects of the model fits, and I complement my analysis with an economic interpretation of the
estimates by considering a rich set of global and region-specific financial events.
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The main finding of my analysis in Chapter 2 points to a dual role of the rolling least square
estimator of the factor sensitivities when I employ the measures in Kelly, Palhares, and Pruitt,
2021 to gauge the models performance. While the short-window approach provides the best re-
sults in a contemporaneous-equation setting (in-sample), for predictive purposes including too
little observations for estimation causes the betas to be noisy, which in turn results in forecasts
with little predictive power. Out-of-sample, the trade-off between the length of the window
and the variance of the estimator is resolved around the two-year point, and this is true across
all model specifications considered. I find that the choice of the window length alone accounts
for about ±10% of the factor model’s out-of-sample forecasting performance. The above is true
when I use the measures of Kelly, Palhares, and Pruitt, 2021, but fails to be consistent for stan-
dard MSE and MSA functions. In this case, I find that for nearly all models their explanatory
and forecasting performance is increasing in the window size, with the five- and ten-year win-
dows providing the best results.

Analysing the relative performance of alternative model specifications that include ob-
served factors, in Chapter 2 I find that the in-sample loadings of the FF three-factor model
are on average statistically different from zero across all regions, while the two additional fac-
tors in their five-factor model affect only few of the groups considered. However based on the
out-of-sample analysis I find that their performance deteriorates significantly, to the point that
the average beta estimates constructed for window sizes up to the ten-year mark are not sta-
tistically different from zero for the SMB and HML factors. This is also true for the CMA and
RMW factors in the five-factor model. This result may be due to the fact that the FF factors are
not orthogonal to each other, which implies that they fail to isolate different sources of system-
atic variation in the returns, thus yielding statistically insignificant betas with the addition of
new factors in the regressions, e.g. the redundancy of the HML factor when the CMA is added.

The third essay, Chapter 3, turns to the analysis of international sovereign bond returns.
Similarly to the first two essays, I use asset-level data and higher-frequency returns (from 2010
to 2021) to document my findings, and most importantly I depart from the analysis of stock
returns as customary in the literature and consider a different asset class. I review the litera-
ture on observed factor models in the context of international bond returns and identify the
factors with characteristic-based portfolios such as momentum, value, and low-risk. A key
challenge in modelling returns for a panel of international bond returns is that they feature
two cross-sectional dimensions, issuer (country) and maturity-wise, and often times the litera-
ture neglects one of the two in the empirical applications (e.g. constant-maturity portfolios or
issuer-specific portfolios), which makes it difficult to understand cross-sectional variation in
the factor premia. I discuss the challenges in the portfolio construction phase using asset-level
data and examine the cross-country performance of the factors in relation to the maturity buck-
ets along the issuer-specific curves, thereby simultaneously considering the two dimensions.
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The main finding of my analysis in Chapter 3 is that factor premia on momentum, value,
and low-risk exhibit substantial variation across countries and maturities, which does not sup-
port the view of Asness, Moskowitz, and Pedersen (2013) and Frazzini and Pedersen (2014) on
their unifying relevance and pricing ability across countries and asset classes. I find that risk-
adjusted returns are decreasing in the maturity of the bonds for momentum strategies, with the
highest Sharpe ratios found for portfolios formed on short-maturity bonds (less than 5 years).
For longer-dated securities, momentum does not deliver statistically significant returns. When
analysed across countries, my results reveal that momentum produces consistent statistically
significant Sharpe ratios, however this is not true for value and low-risk. Using value measures
based on past returns as in Asness, Moskowitz, and Pedersen (2013) leads to low and insignif-
icant risk-adjusted returns across countries. Although lower in magnitude than momentum,
low-risk yields statistically significant returns only for Euro Area bonds. Contrarily to what re-
ported in previous literature, I find no supporting evidence for momentum, value and low-risk
when bonds across all countries are considered in a global portfolio.

Understanding return patterns of financial assets internationally is a complex challenge
which requires sophisticated modelling frameworks to account for the variation across asset
classes, cross-section (e.g. country, industry, maturity-wise), and time. Paying tribute to such
complexity, my dissertation includes a suite of empirical analyses and models to enhance our
understanding of factor structures in asset pricing in a large sample context, using asset-level
data at higher-frequency across countries and asset classes. In Section General Conclusion,
I make the concluding remarks of this thesis and summarise further research questions that
expand on the limitations of my analysis.
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Chapter 1

Estimating Time-Varying Betas in
Multi-Factor Asset Pricing Models

Abstract

This chapter expands on the work of Borghi et al. (2018) by comparing the in-sample per-
formance of their proposed ML estimator of time-varying sensitivities against the alternative
rolling least square estimator. I take the factor model of Borghi et al. (2018) as given and, condi-
tional on ex-post factors, I consider different windows to estimate the factor loading via rolling
OLS, for fixed sampling frequency. From a statistical perspective, I find that the rolling OLS
estimator is characterised by a great degree of instability which is driven by the interplay be-
tween window size and sampling frequency. If one selects the window size arbitrarily, the
instability in the beta estimates can be pronounced, and the benefits of fitting a dynamic model
as opposed to an equivalent static-loadings representation become slim. From an economic
perspective the rolling OLS estimates based on a large window size are difficult to interpret,
since much of the short-term variation is averaged out. The opposite is true for the rolling es-
timates based on a short window size, in which much of the short-term variation is captured
at the expenses of a possibly misspecified model. Overall, the ML estimator shows an unam-
biguously better in-sample performance. I document my findings considering a large panel of
weekly stock returns from 40 different countries in the period from January 2006 to May 2019.
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1.1 Introduction

A broad range of asset pricing studies focus on the analysis of contemporaneous return varia-
tion in international equities by employing models with observable pricing factors, and time-
varying sensitivities estimated via rolling least squares, see e.g. Bekaert, Hodrick, and Zhang
(2009), Bekaert et al. (2014), Fama and French (2012), or Fama and French (2017). A central
debate in the literature revolves around the identification of these factors, with the first two
papers advocating for value-weighted country-style portfolios, and the works of Fama and
French using a combination of accounting measures and past-return performance indicators
for their characteristics-based portfolios. The challenge in determining the most influential
pricing factors can be solved empirically via latent factor models, which summarise a large
amount of economic information without a-priori knowledge of the true factor space, see e.g.
Gagliardini and Ma (2019), or Barigozzi, Hallin, and Soccorsi (2019).

Borghi et al. (2018) build on this literature by analysing international stock returns using
a model that features a combination of observable and latent factors, the latter consistently
estimated via PCA, and time-varying sensitivities estimated via ML. Their work draws from
Mikkelsen, Hillebrand, and Urga (2019) who prove consistency of the PC estimator of the un-
known factors, even in the presence of time variation in the loadings, and develop a consistent
ML estimator of the time-varying loadings. The latter are modeled as stationary autoregressive
processes and estimated in a state-space framework using the Kalman filter. From a method-
ological perspective, the contribution of Borghi et al. (2018) provides a competing modelling
framework to existing studies in the international asset pricing literature in relation to estima-
tion of the relevant factors, and estimation of time-varying factor sensitivities.

The main contribution of this chapter is to expand on the work of Borghi et al. (2018)
by comparing the performance of their proposed ML estimator of time-varying sensitivities
against the alternative rolling least square estimator, which is the status quo in the asset pricing
literature. I take the factor model of Borghi et al. (2018) as given and, conditional on ex-post
factors estimated via PCA, I consider different window sizes to estimate the factor loadings via
OLS for fixed sampling frequency. From a statistical perspective, my analysis is supported by
a battery of misspecification tests based on the residual model-implied component, which de-
pends only on different estimates of time-varying sensitivities. This setup allows to isolate the
effects of the instability in the beta estimates in explaining contemporaneous return patterns,
conditional on the estimated time-invariant factors. I also briefly discuss the implications of
changing the sampling frequency on the behavior of the rolling OLS estimator, keeping fixed
the window size.

The secondary contribution of this chapter is to compare alternative identification proce-
dures for the observed factor featured in Borghi et al. (2018). Their model features an observed
financial factor that has an effect on all stocks (i.e. global observed factor), a global unobserved
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factor, and a regional unobserved factor. For the a-priori identification of the financial factor, I
consider four stock market indexes and compare the explanatory power of a model featuring
each candidate index as financial factor against a model in which all three factors are unob-
served. The PCA estimator of the latent factors maximises the share of explained variance by
definition, and as such is the benchmark for my analysis. Among the candidate factors, I iden-
tify the financial factor with the S&P500 Financials index which provides the best results among
the candidate models from a statistical perspective and also eases economic interpretability.

A further contribution of this chapter is to reconcile the model of Borghi et al. (2018), which
is developed in a contemporaneous-equation setup, with the one of Inoue, Jin, and Rossi (2017)
who develop an optimal window selection criterion in rolling out-of-sample forecasting. This
would allow me to have a unifying modelling framework to compare the performance of differ-
ent estimators of time-varying sensitivities, however in Appendix A.1 I show why the optimal-
ity of their criterion fails to hold in a contemporeaneous-equation setting, due to the properties
of conditional expectations. This problem remains an open research question that I leave for
future studies, see Section 1.4.1.

Additionally, I replicate the study of Borghi et al. (2018) on an extended time frame, from
January 2006 to May 2019 instead of from 2002 to 2016, which provides an additional layer of
robustness to their findings in an ‘out-of-sample’ context. Similarly to Borghi et al. (2018), I use
individual stock returns as base assets, instead of stock portfolios as standard practice in the
literature, which necessarily increases the number of test assets under consideration. Without
grouping assets into portfolios, the number of test assets in my analysis is at least two orders of
magnitude greater than what is commonly used in the literature1, which motivates the use of
large-dimensional factor models for the analysis of individual stock returns. Secondly, I depart
from the monthly benchmark popularised by the works of Fama and French, and choose to
consider weekly data as in Bekaert et al. (2014). The regional classification of the stock universe
also follows their framework.

My analysis yields a number of results which point to a superior performance of the ML es-
timator of time-varying loadings in Mikkelsen, Hillebrand, and Urga (2019) with respect to the
rolling OLS estimator. Keeping fixed the sampling frequency of the data to weekly, I find great
variation in the statistical properties of a dynamic-loadings model with respect to an equivalent
static-loadings representation when I use two windows made of the most-recent half- and five-
year observations to estimate the loadings via rolling OLS. This is not the case when the ML
estimator of the time-varying loadings is used in the dynamic-loadings representation, which
dominates the static counterpart under many aspects. Moreover, while the five-year rolling es-
timator enjoys similar properties to the ML estimator, from an economic perspective the rolling

1I consider thousands of stocks coming from 40 different countries, as opposed to 10-50 portfolios that are often
used as test assets in the literature.
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OLS estimates based on a large window size are difficult to interpret, since much of the short-
term variation is averaged out. I find that the opposite is true for the rolling estimates based on
a short window size, in which much the short-term variation in asset prices is captured at the
expenses of a possibly misspecified model.

When I replicate the analysis of Borghi et al. (2018) on an extend time sample, I expand on
several of their initial findings. Firstly, when loadings are estimated via ML, I corroborate the
evidence that the relative importance of the factors is time-varying. When unexpected events
happen globally, stock return co-movements increase, and stocks tend to become marginally
more exposed to financial and global shocks, which I am able to map to relevant macro events.
This is not necessarily true when the loadings are estimated via rolling least squares. In fact,
while the the estimates constructed from a short window have a great degree of variability and
appear to capture changing market conditions similarly to the ML estimator, the variance of
the estimates constructed from a five-year window is too low to allow for a consistent map-
ping of the events. Secondly, replicating the analysis of Borghi et al. (2018) on the relationship
between expected returns and beta parameters, I find no supporting evidence for the existence
of a premium for holding stocks with highly volatile factor exposures. See Appendix A.2 for
further details.

Organisation of the chapter. The remainder of this chapter is organised as follows. Section
1.2 describes the models for the factor extraction procedure, and estimation of time-varying
factor sensitivities via ML and rolling least squares. Section 1.3 presents the data and reports
the bulk of results. I firstly present the results on the estimation of the latent factors via PCA,
and subsequently compare the estimation of time-varying betas via the two methods. Finally,
Section 1.4 makes the closing remarks and details future research developments. The chapter
is accompanied by Appendix A.
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1.2 Methodology

In this section I describe the models for the factor extraction procedure and estimation of time-
varying factor sensitivities. As a starting point I define the benchmark model featuring un-
observed global and regional risk drivers and static factor sensitivities, Section 1.2.1. I then
introduce the factor extraction procedure via PCA, Section 1.2.2, and lastly in Section 1.2.3 I
relax the assumption of static factor betas and present two approaches for the the estimation of
time-varying factor sensitivities, ML estimation via the Kalman filter and rolling OLS estima-
tion.

1.2.1 Baseline Model

I consider an approximate factor model for the analysis of stock returns. This means that I
relax the baseline framework of classical factor models2 and work in a framework in which the
cross-sectional dimension N and the number of time periods T are both large, the idiosyncratic
errors are uncorrelated across i, i = 1, ..., N, but the data are correlated across t, t = 1, ..., T,

N, T → ∞ (1.1)

E[e⊤e] = diag(ψ1, ..., ψN) (1.2)

E[X⊤
t Xt−l ] = ρl,t, l = 1, ..., t (1.3)

with e being the (T × N) matrix of idiosyncratic components, ψi the idiosyncratic variance for
stock i, Xt the N-dimensional vector of t-period log-returns, and ρl,t the N-dimensional vector
of autocorrelation coefficients of asset returns at time t for lag l.

I assume that a ‘small’ number of K unobserved factors captures the systematic variation in
stock returns of N assets over T time periods,

X︸︷︷︸
(T×N)

= F︸︷︷︸
(T×K)

Λ⊤︸︷︷︸
(K×N)

+ e︸︷︷︸
(T×N)

(1.4)

⇐⇒ Xi,t = Ft Λ⊤
i + ei,t (1.5)

where Xi,t is the t-period log-return of stock i, Ft are the K factor realisations at time t, Λi is
the vector of static factor loadings, and ei,t is the stock-specific t-period residual component. In
matrix notation, X is the (T × N) matrix of returns, F the (T × K) matrix of factor returns, Λ

the (N ×K) matrix of factor sensitivities, and e the (T × N) matrix of idiosyncratic components.

2I follow the canonical definition of classical factor models given in namely iid stock-individual idiosyncratic
component, cross-sectional dimension fixed, time periods going to infinity, and normally distributed factors and
stock-individual residual components.
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I also require a strong form of APT to hold, where residual risk has a premium of zero,
E[e|X] = 0N . The key requirement of the APT is that idiosyncratic risk can be diversified away
with a sufficiently large number of assets, an assumption that is common to the asset pricing
literature using portfolios as base assets. For the purpose of this chapter I maintain this as-
sumption and take the factor model as given, being my focus on the estimation of time-varying
loadings (and not on the estimation of the number of factors K). In its weak form in fact, the
ATP implies that the specific number and nature of the factors is unknown and need to be esti-
mated, see for instance the setup of Gagliardini and Ma (2019). Only upon correct specification
of the factor space, residual risk premium is zero and there are no sources of exploitable op-
portunities. In this chapter I use individual stock returns as base assets and rely on a relatively
standard set of assumptions regarding the nature of the factor space. I take the factor model of
Borghi et al. (2018) as given and assume that a fixed number of K factors are uniquely identified
and agreed upon.

Under the APT, investors cannot generate arbitrage profits by trading on publicly avail-
able information since stock returns are fully determined by their exposure to the common risk
factors. I therefore assume no sources of exploitable opportunities conditional on the factors,
which translates into having a model with zero alpha. Additionally, given that the data is de-
meaned prior to the analysis I treat the data matrix as having zero mean, X̄ = E[X] = 0N , an
assumption that is common in the factor model literature, se e.g. Connor and Korajczyk (1986),
or Stock and Watson (2002). It follows that also F̄ = E[F] = 0 given that the factor extraction
procedure is based on de-meaned data, see Section 1.2.2 for further details.

Under the assumption of weak exogeneity between the factors and residuals3, the covari-
ance matrix of stock returns can be decomposed into a systematic and idiosyncratic component

Var(X) = ΛVar(F)Λ⊤ + Var(e). (1.6)

where Var(X) = ΣX = E[X⊤X] is the variance-covariance matrix of returns, similarly Var(F) =
ΣF = E[F⊤F] and Var(e) = Σe = E[e⊤e] are the variance-covariance matrices of factors and
idiosyncratic component respectively.

I follow the framework of Bekaert et al. (2014) and distinguish between Kglob global and Kreg

regional drivers of systematic variation, K = Kglob + Kreg. In particular, I divide the N stocks
into regions R regions, with each region containing Nr securities: ∑R

r=1 Nr = N. The model
could easily accommodate multiple regional risk drivers, but for simplicity I assume that there
is one factor for each region, Kreg = R. The total number of factors is therefore K = Kglob + R.

3Note that in the APT framework where E[e|X] = 0N and factors are correctly specified, it follows implicitly that
there is zero correlation between the factors are residuals, E[X⊤e] = 0N , i.e. weak exogeneity. By the definition of
covariance, Cov(X, e) = E[X⊤e]− E[X]⊤E[e], where E[X⊤e] = EX [Ee[X⊤e|X]] = EX [X⊤E[e|X]] = EX [X⊤0N ] =
0N . Without loss of generality we can assume that also that E[X] = 0N .
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The model for each stock i can be rewritten as

Xi,t = Fglob
t Λglob⊤

i +
R

∑
r=1

λ
reg
i Freg

r,t 1{i∈r} + ei,t (1.7)

where Fglob
t is the (1 × Kglob) vector of systematic global risk drivers at t, Λglob⊤

i the respective
(Kglob × 1) loadings vector, Λglob

i = (λ
glob
1,i , ..., λ

glob
Kglob,i)

⊤, λ
reg
i is the loading on the regional risk

factor for stock i belonging to region r, Freg
r,t is the realisation at time t of the r-th regional factor.

The formulation in (1.4) implies that the (K × N) loading matrix Λ⊤, formed by concate-
nation of the N loading vectors, is sparse given the different regional characteristics of the
stocks, Λ = (Λ1, ..., ΛN)

⊤ . Λi is the K dimensional vector that contains the same number
of non-zero elements across i. Consider for instance the loading vector for the first two eq-
uities which, for illustrative purposes, I assume to belong to two different regions: Λ1 =

(λ
glob
1,1 , ..., λ

glob
Kglob,1, λ

reg
1 , 0, ..., 0) and Λ2 = (λ

glob
1,2 , ..., λ

glob
Kglob,2, 0, λ

reg
2 , 0, ...). Using this logic, the model

for the N stocks grouped in R regions can be written in a more compact form as

Xt = Λglob⊤ Fglob
t + Λreg⊤ Freg

t + et (1.8)

where Xt = (X1,t, ..., XR,t)
⊤ with each Xr,t being Nr-dimensional, Λglob = (Λglob

1 , ..., Λglob
R ) is the

(N × Kglob) matrix of loads for the global factor realisations Fglob
t , grouped by blocks of stocks

in region r, each Λglob
r is (Kglob × Nr). Λreg = (λ

reg
1 , 0, ...)⊤ refers to the (N × Kreg) sparse matrix

of factor sensitivities for the R regional drivers Freg
t . Finally,

Xt = Λ Ft + et (1.9)

with Λ = (Λglob, Λreg)⊤ being the (N ×K) (sparse) matrix of factor loadings and Ft = (Fglob
t , Freg

t )

the K factor realisations at time t.

1.2.2 Principal Component Estimation of the Latent Factors

In the APT, factors and loadings in equation (1.9) are unknown and have to be estimated. Under
a large T and N setup, it is possible to estimate Λ and Ft simultaneously via PCA. In contrast,
classical factor analysis requires the estimation of Λ, under fixed N, and of the covariance ma-
trix of idiosyncratic errors, Σe, which is assumed to be diagonal. Given Λ, Ft is then estimated
at the second stage, however the estimate of Ft is not consistent under fixed N.

Estimators of the latent factors include the asymptotic PCs of Connor and Korajczyk (1986)
who build on the theory of approximate factor models of Chamberlain (1983) and develop an
estimator for the first K eigenvector of the (T × T) cross-product matrix (instead of the (N × N)

covariance matrix of asset returns), showing that in a large N setup, the first K eigenvectors of
this cross-product matrix are consistent estimates of the (K × T) matrix of factor returns. Stock
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and Watson (2002) extend the Connor and Korajczyk (1986) framework to a large N and T setup
and to time-varying factor betas. Recently, Mikkelsen, Hillebrand, and Urga (2019) prove that
the PCs uniformly converge in t when T/N2 → 0 in a high-dimensional factor model with
time-varying loadings, they extend the results of Bates et al. (2013) who prove the average
convergence in t of the PCs to the true factor space. Lettau and Pelger (2020b) employ the
risk-premium PCA estimator to study a large cross section of stock returns, their estimator
generalises PCA by including a penalty on the pricing error in expected returns, and it is de-
veloped under N/T → c setup featuring static factor loads. See Lettau and Pelger (2020b) for
the theoretical results.

The PCA estimator of the latent factors attempts to minimise the residual time-series varia-
tion in the returns by solving the following optimisation problem

min
Λ̂PCA,F̂PCA

RSS(K) (1.10)

with RSS(K) =
1
T

T

∑
t=1

(Xt − Λ Ft)
⊤(Xt − Λ Ft)

Statistical factor analysis conventionally applies PCA to the sample covariance matrix
1
T (X⊤X) − (X̄X̄⊤). Alternatively, asset returns are usually normalised by their standard
deviation so that diag(ΣX) = 1, which is equivalent to PCA applied to the correlation matrix.
In practice, the data matrix X is also demeaned before PCA is applied, so that the objective
function in equation (1.10) does not depend on the means of the test assets, concordant with
the assumption of X̄ = 0. In this framework the estimated factors F̂PCA have zero mean and
unitary variance by construction.

In equation (1.8), factors Fglob
t , Freg

t and the respective sensitivities Λglob⊤, Λreg⊤ are unob-
served. Thus, to disentangle the effect of global and regional risk drivers, I need to impose the
following identifying restrictions to obtain a unique solution:

IR1 T−1 ∑T
t=1(Fglob

k,t )2 = 1 for all k ∈ Kglob, and T−1 ∑T
t=1(Freg

r,t )
2 = 1 for all r ∈ R. Normalising

the estimated factors to have unit length allows me to compare them.

IR2 T−1 ∑T
t=1 Freg

r,t Fglob
k,t

⊤ = 0 for all r ∈ R and k ∈ Kglob. This ensures regional factors are
orthogonal to the global ones.

IR3 ∑T
t=1 Freg

r,t S⊤
r,t > 0, where Sk,t is the biggest country’s stock market index return at time t in

region r. This identifies the sign of the factors by imposing positive correlation with the
most important stock index of the region, whicheliminates the rotation indeterminacy
and allows to interpret the sign of the factor loadings. This assumption is taken from
Breitung and Eickmeier (2015).
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1.2.3 Time-Varying Factor Sensitivities

Conditional on the estimated factor space, I now relax the static-loadings assumption and in-
troduce two approaches for the estimation of time-varying factor betas, rolling OLS estimation
and ML estimation via the Kalman filter.

Rolling OLS Estimation

The rolling OLS estimator is the status quo in the Finance literature to address parameters
instability and is based on the idea of using the most recent observations to estimate the
parameters, instead of using all available observations as in standard OLS regressions. The
choice of how many observations should be used to yield the best predictor is often judgmen-
tal, for instance Fama and French (2012) use a ten-year window to estimate the time-varying
slopes of their three-factor model using monthly data, Bekaert, Hodrick, and Zhang (2009)
rely on half-year window regressions to examine international stock return co-movements
with weekly data, while Armstrong, Banerjee, and Corona (2013) employ a five-year window
in their CAPM framework for US stocks with monthly data. Suppose the sample size is
T and I am choosing to retain W observations. With the number of increments between
successive window being one period (day, week, or month), the data set is partitioned into
TW = T − W + 1 subsamples, each made of W observations. The standard approach in the
literature has been to roll one or more observations ahead and estimate the beta on overlapping
windows.

Given the the wide-spread use in the literature of the rolling OLS estimator of factor
betas, I review the modelling choices underpinning this approach, accounting explicitly for
the window selection problem. To do so I consider the modelling setup of Inoue, Jin, and
Rossi (2017) who develop an optimal window selection criterion in rolling out-of-sample
forecasting, and treats the rolling OLS estimator as nonparametric. This is because in the
OLS framework, the factor sensitivities are assumed to be locally constant4, and as such the
rolling OLS estimator of the factor loadings can be thought as a non-parametric OLS estimator
where the window size plays the role of the bandwidth. The main limitation of reconciling the
approach in Borghi et al. (2018) with Inoue, Jin, and Rossi (2017) lies in the fact that the former
features a contemporaneous-equation setting while the latter is predictive, which makes the
optimal window criterion invalid. In Appendix A I show why this reconciliation is difficult
due to the properties of conditional expectations.

Rewriting model (1.7) using the Inoue, Jin, and Rossi (2017) framework yields

Xi,t = Fglob
t Λglob

i (t/T)⊤ +
R

∑
r=1

λ
reg
i (t/T) Freg

r,t 1{i∈r} + ei,t (1.11)

4The factor betas are assumed to be constant within a given estimation window.
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where Λglob
i (t/T)⊤ is the (Kglob × 1) vector of unknown functions of t which defines the rela-

tionship between the returns of stock i with the vector of global factor realisations, Fglob
t . The

same holds for λ
reg
i (t/T), and the respective regional factor Freg

r,t . The main assumption of this
framework is that the matrices of unknown functions of t that introduce the time variation
in the loadings are defined on an equally spaced grid over the support (0, 1], and the grid be-
comes finer as T −→ ∞. This requirement is common to the non-parametric estimation literature
in which the amount of local information on which an estimator depends increases suitably as
the sample size T increases. Using the most recent W observations, the rolling OLS estimator
of the time-varying factor sensitivities based on the information set at time t = T is given by

Λ̂glob
i,W (1) = Λ̂glob

i,W (T/T) =

(
T

∑
t=TW

Fglob
t

⊤ Fglob
t

)−1( T

∑
t=TW

Fglob
t

⊤ Xi,t

)
(1.12)

λ̂
reg
i,W(1) = λ̂

reg
i,W(T/T) =

(
T

∑
t=TW

(Freg
r,t )

2

)−1( T

∑
t=TW

Freg
r,t Xi,t

)
. (1.13)

Similarly to the conditions required on the full sample, I assume that within each window W
the factor realisations and the data matrix have zero mean.

Maximum Likelihood Estimation

Borghi et al. (2018) propose a two-level factor model with time-varying loadings to investigate
the dynamics of factor betas in the cross-section of a large panel of stock returns. Their work
exploits the modelling approach of Mikkelsen, Hillebrand, and Urga (2019), who develop a
consistent two-step ML estimator of time-varying loadings in a high-dimensional setting. The
loadings are allowed to temporarily depart from their long-run averages and evolve according
to stationary autoregressive processes.

The (N × K) matrix Λt made of the N firm-individual vectors of time-varying factor sensi-
tivities Λt = (Λ1,t, ..., ΛN,t)

⊤ is composed of the Kglob loadings on the global factor, Λglob
i , and

the R factor sensitivities for the regional factors, which for each stock i contains one non-zero
entry only λ

reg
i . In light of equation (1.7), Λi,t is K-dimensional and contains the same number

of non-zero elements across i, due to the different regional characteristics of the stocks. In this
framework, the non-zero elements of Λi,t evolve according to

Λi,t = (1 − Φi)Λ̄i + ΦiΛi,t−1 + ηi,t (1.14)

where Λ̄i = E[Λi,t] = (λ̄
glob
i,1 , ..., λ̄

glob
i,Kglob

, λ̄
reg
i )⊤ is the unconditional mean vector of factor sensi-

tivities, Φi = diag(ϕglob
i,1 , ..., ϕ

glob
i,Kglob

, ϕ
reg
i ) is the persistence parameter matrix, and the character-

istic roots of equation (1.14) lie outside the unit circle. Qi = E[ηi,tη
⊤
i,t] = (qglob

i,1 , ..., qglob
i,Kglob

, qreg
i ) is

the covariance matrix of the innovations ηi,t, which is assumed to be a Gaussian white noise
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process.

Under these conditions, the loadings of stock i on the factors evolve as independent
AR(1) processes, around their respective unconditional means, with AR coefficient ϕ

f
i ,

f ∈ {1, ..., Kglob, 1, ..., R}, and stationarity condition |ϕ f
i | < 1 respected for all f . Stationarity of

the loadings on market factors have been documented, among the many, by Andersen et al.
(2006) and Armstrong, Banerjee, and Corona (2013). Borghi et al. (2018) extend this setting to
the case of global and regional factors.

I now turn to the MLE of Φi, Λi, Qi and ψi for i = 1, ..., N, following the theory developed by
Mikkelsen, Hillebrand, and Urga (2019) on consistent estimation of the unknown parameters in
a two-level factor model analogous to the one I employ. A key result of Mikkelsen, Hillebrand,
and Urga (2019) is that the feasible likelihood function, with unobserved factors replaced by
PCs, converges uniformly to the infeasible one, even in the presence of estimation error in the
principal components and time-variation in the loadings. In the setup of Borghi et al. (2018)
however, global and regional factors can be cross-sectional dependent, considering that the
firms in the universe are partitioned into geographical areas. This feature can potentially
render the ML estimator of the unknown parameters complicated, since I would have to take
into account cross-sectional dependence across idiosyncratic errors in the likelihood function.
To overcome this problem and simplify the estimation procedure, I exploit the fact that the ML
estimator of the unknown parameters Φi, Λi, Qi and ψi remains consistent in the presence of
cross-sectional and temporal dependence in the errors. I refer to Mikkelsen, Hillebrand, and
Urga (2019) for details on the estimation procedure.

Thus, conditional on the factors, one can treat Xi as uncorrelated across stocks and the
likelihood function can be analysed separately for each i. Therefore, if Xi is T-dimensional
vector of time-series observations for stock i, I can rewrite equation (1.9) for the cross-section
of stock returns as

Xi = F̂∗Λ∗
i + ei (1.15)

where F̂∗ = diag(F̂⊤
1 , ..., F̂⊤

T ) is a (T × TK) block-diagonal matrix that stacks the time-series
observations on the estimated factors, with diagonal elements given by the observations of each
factor at time t, F̂t = (F̂glob

1,t , ..., F̂glob
Kglob,t, F̂reg

1,t , ..., F̂reg
R,t )

⊤. Λ∗
i = (Λ⊤

i,1, ..., Λ⊤
i,T) is the TK-dimensional

vector of time-varying loadings for stock i. Under the assumption of normally distributed
idiosyncratic errors, the feasible likelihood function for Xi is Gaussian and conditional on the
estimated factors F̂∗ it can be separated for each stock i

L̂T(Xi|F̂∗; θi) = −1
2

log(2π)− 1
2T

log(|Σi|)−
1

2T
(Xi − E[Xi])

⊤Σ−1
i (Xi − E[Xi]) (1.16)

with parameter vector θi = {Φi, Λi, Qi, ψi}. E[Xi] is the T-dimensional mean vector of Xi,
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which is zero in my setup since the data is de-meaned, and the covariance matrix of Xi is
Σi = Var(Xi) = F̂Var(Λ∗

i )F̂⊤ + ψi IT. Finally, the ML estimator of θi is given by the following
maximisation problem

θ̂i = argmax
θ

L̂T(Xi|F̂∗; θi). (1.17)

In my empirical applications, I interpret equations (1.14) and (1.15) as transition and mea-
surement equations in a linear state-space model, where the factor loadings and their parame-
ters are unobserved stationary states, and the likelihood function is maximised via the Kalman
filter.
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1.3 Data and Model Fit

In this section I describe the data sources for the analysis and present the bulk of results. In
Section 1.3.1 I describe the characteristics of my international stock universe, in Section 1.3.2 I
identify the observed financial factor and report the results of the estimation of the unknown
factors via PCA, and finally in Section 1.3.3 I compare the results on the estimation of time-
varying factor sensitivities via ML and rolling OLS.

1.3.1 Data Description

Stock Universe

A total of 3294 equities entered the national stock market indexes from January 6th 2006 to
May 31st 2019. Among these, I select 2873 tickers with no less than two years of data, and no
more than eight consecutive missing observations. I apply linear interpolation for the missing
data. Throughout the 13-year period considered, there were 1692 stocks that remained part
of the indexes, while the remaining 1181 stocks were de-listed at various points in the sample
period. The main data source is Bloomberg. Stock prices refer to the last transaction of the
week, and balance sheet data is available at quarterly frequency. Prices are expressed in US
dollars, and are ex-dividends and split-adjusted. Returns are defined as the first differences of
the natural logarithm of stock prices, unless stated otherwise. Prior to my analysis, I winsorise
the individual price series at 95% level to avoid the effects of possible data entry errors.

Table 1.1 reports detailed information on my universe of securities, which are listed in 40
different countries. The countries are then grouped into six geographical regions: North Amer-
ica, Latin America, Asia-Pacific, Western Europe, Emerging Europe and Middle-East & Africa
(MEA). I take the geographical classification as given, following the framework of Bekaert et
al., 2014.

[Table 1.1 about here.]

The factor extraction procedure as well as the estimation of time-varying betas using the
Kalman filter are performed on the cross-section of stocks active on the full sample, 1692 eq-
uities. On the other hand, when I estimate the time-varying factor sensitivities using rolling
least squares, I work with an unbalanced panel of stock returns. Figure 1.1 describes the time-
varying composition of the universe. Depending on the chosen window size, I estimate the fac-
tor sensitivities on a restricted time span with respect to the full sample, January 2006 to May
2019. When I employ a window made of the most recent five-year observations, the rolling
beta estimates are available for the period January 2011 to May 2019. On the other hand, in
the short window approach the sub-sample starts on July 2006 and ends on May 2019. For
the rolling window estimation, I select all the equities that entered the national stock indexes
with at least two years of available data on the full sample, and no more than eight consecutive
missing observations.
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[Figure 1.1 about here.]

Summary Statistics

Table 1.2 reports the summary statistics of returns, market capitalisation, total assets and
total debt of the 1692 companies active in the sample period. Following the Bloomberg
10-sector classification structure, I divide stocks in the following groups: Basic Materials,
Communications, Consumer Cyclical, Consumer Non-Cyclical, Diversified, Energy, Financial,
Industrial, Technology and Utilities. In panel 1.2a I report the average pair-wise Pearson
correlation coefficient for the stocks belonging to each sector or region to have an estimate of
the intra-group dependence of the equities. The Middle East & Africa region has the lowest
average value, with a coefficient of 0.184, in line with the economic diversity of this area. The
highest intra-group dependence is found in North America and Western Europe, with an
average correlation of 0.351 and 0.406 respectively. The sector with the highest value is Energy,
with an average linear dependence of 0.351.

In panel 1.2b I report simple averages of the balance sheet information for the retained
stocks. The order statistics appear to be in line with expectations. In fact, North American
and Western European stocks have the highest market capitalisation, together with Energy
stocks. I also notice that Energy, Communications and Utilities companies have highest assets
(Financial stocks excluded), in agreement with the considerable investments in infrastructures
and operations needed for the business. The data filters that I apply can also help prevent
the inclusion of ‘micro-cap’ stocks. Given the requirement for the stocks to remain listed
throughout the 13-year period in the national equity indices, which usually comprise the top
20/50 names in each country, the minimum average market capitalisation across regions is in
fact about 1.5 Billion USD for MEA and Emerging Europe.

[Table 1.2 about here.]

Data Frequency

The frequency of my data is weekly. The choice of data frequency and window size are in-
trinsically related and depend on the assumptions I am prepared to make on the behavior of
the factor betas. Consider for instance the standard monthly benchmark commonly used in
the empirical asset pricing literature, with an estimation window typically made of the most
recent five or ten years of data. As Robertson (2018) reports, if the estimated betas vary slowly
with respect to the sampling frequency then the betas in the immediate future can be approx-
imated with current values. Under this logic, OLS on the most recent data is the candidate
estimation method. The choice of the window length determines how much of the recent
short term-variation in the betas is incorporated into the current-period estimates, for fixed
observation frequency. If I use a relatively short window of six months, the within-window
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constant-loadings assumption underpinning the OLS estimator is more likely to be respected,
at the expenses of estimation accuracy which calls for a sufficiently long history of data for
estimation. Analogously, when I let the observation frequency vary for a fixed window length,
I expect the betas constructed from data sampled at higher frequency (e.g. daily, weekly) to
exhibit less short-term variation with respect to the monthly benchmark. However, if I am in-
terested in studying beta over longer horizons, I have to take into account the possibility of
some longer-run mean-reverting behavior in the beta estimates and in this case the appropri-
ate modelling choice resolves to the stationary VAR model of Mikkelsen, Hillebrand, and Urga
(2019), see equation (1.14).

[Figure 1.2 about here.]

The interplay between sampling frequency and window size determines the properties of
the rolling OLS estimator. Figure 1.2 reports the results of a study that analyses the behavior
of the rolling beta estimates for varying sampling frequency, keeping fixed the window size.
I choose a window made of the most recent half-year observations to capture the short-term
variability in the beta estimates. I then estimate the market beta for the returns on Apple Inc.
over a 13 years span, considering different sampling frequencies (daily, weekly, monthly).

Panels 1.2d and 1.2e report the histogram of the estimated rolling betas, together with the
summary statistics for different frequency. As Robertson (2018) reports, were beta strictly
constant then I should obtain quantitatively similar estimates from daily, weekly and monthly
data. I notice however that the variability of the beta estimates decreases with the sampling
frequency. Over very short horizons (e.g. daily) the estimated betas have a standard deviation
of 0.157, lowering the frequency to weekly shows that the variability of the market factor
sensitivity increases to 0.185, and finally with data sampled every month the variability reaches
0.313, which is almost twice as large as in the daily case. From the summary statistics of the
estimated betas, I find that on average the rolling estimator is centered around a long-run mean
for varying sampling frequency, however from the higher-moment statistics I observe a great
degree of instability, with the distribution of estimated betas becoming progressively skewed
towards negative values and showing increasing evidence of fat tails for lower frequencies.

All things considered, panel 1.2c seems to suggest that a great portion of the high-frequency
variation in the betas is averaged out when considering a monthly benchmark. This might
explain why I see substantial instability in the monthly series of beta estimates, where the ad-
dition of a single month can generate significant variation in the estimated factor sensitivities.
To tackle this problem I depart from the standard monthly benchmark, and opt for the weekly
holding-period returns which allow me to provide a deeper analysis on the time-varying be-
havior of the factor sensitivities, without compromising on the bias induced by market mi-
crostructure at daily frequency5, and on the pronounced instability of the beta estimates at

5The issue is relevant especially in the analysis of a large international panel of stock returns from different
geographical areas due to the asynchronicity on the opening times of the various national stock indexes.
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monthly frequency.

1.3.2 Observed and Unobserved Factors

In this section I identify the observed financial factor with the S&P 500 Financials, and estimate
the latent global and regional factors.

Identification of Financial Factor

In Section 1.2 I considered a framework in which the K factors are unknown, as in APT. I
now proceed to the identification of the global financial factor, which I assume is a source of
risk common to all stocks in my universe. I do so by studying the information content of the
remaining K − 1 (latent) factors when I identify the financial factor with different stock market
indexes.

The number of factors is assumed to be K = 3. My setup closely follows Bekaert et al.
(2014) who show that the market factor plays an important role in explaining the cross-section
of returns together with global and one region-specific (latent) risk drivers. In this study I do
not focus on determining the number of systematic risk factors, thus I take K as given. Several
papers document the superiority of a three-factor model as opposed to a model featuring four
or more factors, e.g. Lettau and Pelger (2020b) shows that for 270 individual stocks PCA with
K = 3 dominates other specifications with K = 5 in terms of unexplained residual variance,
both in-sample and out-of-sample. Gagliardini and Ma (2019) propose a model in which
the number of systematic factors is time-varying and they estimate it via machine learning
methods. Their results indicate that the number of factors fluctuates between two and six
from 1975 to 2015, however their method depends on a number of nuisance parameters, e.g.
bandwidth, penalisation function, which makes the results vulnerable to alternative modelling
choices. The authors suggest that while the number of systematic factors can be considered
time-varying, when results are smoothed the time-variation is limited and the number of
conditional factors ranges between 1 and 2 in most periods. They consider US stock returns at
monthly frequency.

Table 1.3 reports cross-sectional averages of the OLS estimates on the full sample of the fac-
tor betas, for various model specifications. I firstly consider a model featuring three unobserved
factors with Kglob = 2 and Kreg = R, one for each region. I then proceed to the identification
of the first unobserved global factor considering four different candidate stock market indexes,
and study the information content of the remaining two (unobserved) factors.

[Table 1.3 about here.]

I find that the estimation of the second global factor Fglob
2 is problematic, especially when

considering cross-sectional industry averages. This may be due to the fact that standard PCA
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may fail to detect weak factors as Lettau and Pelger (2020b) reports. According to the authors’
definition, ‘strong’ factors affect a large number of assets, e.g. the market portfolio, in contrast
‘weak’ ones affect only a small subset of assets. To address the problem estimating weak
factors, the authors develop an alternative PCA estimator, RP-PCA, which uses information
contained in the first moment of the test assets. Their estimator imposes a penalty on the
residual cross-sectional pricing error of the model and is showed to provide a higher ‘signal-
to-noise’ ratio (in terms of difference between the eigenvalue of the weakest factor and largest
idiosyncratic eigenvalue) which eases the extraction of these factors.

When I identify the financial factor with the four stock market indexes Fglob
1 = F f in, the

estimation of the (uncorrelated) global factor gives more consistent results, with respect to
the full unobserved case. The differences in the relative importance of the global factors in
these instances is driven by the information content of the observed factor. Consider the
case of the S&P 500 Financials, which captures the dynamics of those companies included
in the S&P 500 that are classified as members of the GICS financials sector. I notice that the
loadings on the global (unobserved) factor are consistently higher for all groups with respect
to the case in which the financial factor is the S&P 500. This is because the latter index also
include co-movements which are driven by non-financial stocks. When the observed factors
capture a wide variety of shocks (the S&P 500 for American stocks, and the MSCI World
for global stocks), the loadings on the global factor are consistently lower with respect to
the instances in which the observed factors strictly relate to movements in financial stocks
(S&P 500 Financials and MSCI World Financials). On the other hand, the loadings on the
regional factor do not change significantly for varying model specifications, indicating that
they represent uncorrelated region-specific risk drivers.

Considering all models, the one featuring the S&P 500 Financials as financial factor gives
stronger results in terms of relative importance of the factors. The global factor loadings are
consistently higher in this case with respect to the alternative models, at the expenses of the
financial factor loadings which remains the key driver in regions such as North America and
Western Europe. Excluding the regional factor, the global factor is the predominant source of
systematic risk in regions such as MEA, Emerging Europe and Asia-Pacific - in line with the
economic diversity of the companies operating in these domains.

[Table 1.4 about here.]

Table 1.4 reports the average R2 of the model fit. I expect the model with three unobserved
factor to provide the best fit, since I extract the factors via PCA which by definition maximizes
the share of total variance explained by the factors. The results show that the models featuring
the observed financial factor perform even better than the full unobserved model in some
cases. When it under-performs, the difference is not substantial. This is true especially for the
North America, and Emerging Europe regions in which the models featuring the S&P indexes
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show the best fit. In Latin America, the models with a higher degree of explanatory power are
the ones with the MSCI indexes. For the Asia-Pacific and Western Europe regions, together
with most of the sectors, the full unobserved model still provides the best fit.

The identification of the financial factor with the S&P 500 Financials index is motivated by
the greater information content in the estimation of the global unobserved factor, supported
by the explanatory power of the model which remains strong, if not stronger, with respect
to the full unobserved framework. Upon identification of the financial factor, the unobserved
factors (global and regional) are estimated from the residual stock returns after orthogonalising
against the S&P 500 Financials index. This ensures orthogonality between the observed and
unobserved global and regional factors.

Global and Regional Factors

Figure 1.3 plots the estimated global factor and regional factors for Asia-Pacific, Emerging Eu-
rope, Latin America, Middle-East and Africa, North America, and Western Europe. The factors
are extracted via PCA from model (1.10) and are rotated to ensure that they are positively cor-
related with the stock market index of the biggest country in the region.

[Figure 1.3 about here.]

Table 1.5 reports the correlation between my set of factors and exogenous variables, such as
the S&P 500 and its financials-only counterpart.

[Table 1.6 about here.]

In panel 1.5b I report the correlation among the six regional factors. As anticipated, the
sparsity assumption on the loadings matrix Λ allows for cross-sectional dependence between
the regional factors, although they do not interact in the model (since each stock belongs to
a specific geographical region). The factors are on average only mildly correlated, with the
highest correlation being the one between Western Europe and North America, 0.23. The
second highest is the one between Latin America and Emerging Europe, 0.13. As Borghi et al.
(2018) report, since the former region includes Brazil and the latter Russia, the connection may
be due to the presence of large oil companies in the stock market indexes of these countries. I
report near-zero (if not negative) correlations for the MEA factor with the other set of factors,
Western Europe and North America excluded. The correlation between MEA and North
America is negative, −0.15, with a similar coefficient but with opposite sign for the Western
Europe region, 0.14.

In panel 1.5a I report the results of a further robustness check in which I calculate the corre-
lation coefficients between the first principal component of the six regional portfolios and the
global PC, together with two exogenous variables. As expected, the first PC extracted from
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the stocks in the North American region correlates almost perfectly with the S&P 500 index
with a coefficient of 0.95, and to a lesser extent with the financials-only counterpart, with a
coefficient of 0.85. The firms in the Western European region also closely mimic the pattern of
the US stock markets, with correlations up to 0.83 with the S&P 500 index. All factors, except
the MEA, are highly correlated with the global factor. Given the variety in the relationships
between the PCs estimated from the regional stock portfolios and the global factor, this pattern
further corroborates the distinction of global and regional shocks in my model.

1.3.3 Time-Varying Factor Sensitivities

In this section, I compare the results on the estimation of time-varying factor betas via rolling
OLS regressions and ML estimation using the Kalman filter. Throughout this chapter, I refer to
the first approach as RW, and to the latter as KF.

Model Fit and Misspecification Tests

In this section I compare the residuals obtained from a multi-level factor model with static
loading, equation (1.9), with those obtained from the model with time-varying loadings,
equations (1.14)-(1.15) and (1.11). Conditional on the estimated factor space, the time-varying
betas are estimated via MLE, and rolling OLS regressions. For the latter, I distinguish between
a ‘long’ estimation window made of the most recent five-year observations, as in Armstrong,
Banerjee, and Corona (2013), and a ‘short’ window of half-year observations, following
Bekaert, Hodrick, and Zhang (2009). To justify the use of time-varying loadings and compare
the MLE and rolling OLS estimation procedures, I extract the firm-individual series of beta
estimates for the K = 3 factors and compute the systematic (model-implied) component of
returns for the three different approaches (ML, and rolling least squares with two different
estimation windows).

The factors are estimated via PCA on the full sample, while factor sensitivities are estimated
on a real time basis. This procedures ensures that the rolling estimates obtained from different
windows are comparable, considering the same set of factors. Most importantly, this setup
allows me to disentangle the effects of the instability in the factor estimation procedure and in
the loadings estimation. To assess the benefits of fitting a dynamic-loadings representation with
respect to a static-loadings equivalent, I also compute the common component for the model
with loadings estimated via OLS on the full-sample and perform a battery of misspecification
tests to compare against.

[Table 1.7 about here.]

In panel 1.6a, I report the statistics on the goodness of fit for model (1.9) with loadings
estimated via OLS on the full-sample, versus its equivalent dynamic-loadings representation
(with Λt instead of Λ) when I use a long estimation window for the RW approach, a short
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window, and the KF. In panel 1.6b I report the average improvement of using time-varying
betas with respect to the static OLS case. For the rolling OLS estimator, I consider TW-averages
of the time-series of R2 from the window-specific regressions. I then average the stock-specific
mean R2s across regions or sectors, and report the results in panel 1.6a. For the static approach
I am given a single figure for the whole sample and in these cases I report the N-average
statistics for the stocks belonging to a particular group. The R2 is calculated as the squared
correlation between the model-implied (T × N) common component and the matrix of returns.
Conditional on the estimated factors, the common component is constructed as the linear
combination of the factors and the vector (static case), or matrix (time-varying case) of beta
estimates.

Across all groups considered, I find that the goodness of fit for the models featuring rolling
betas vary with the window size. With a long window, the figures show a consistently lower
explanatory power of the dynamic model representation with respect to the static benchmark.
The discrepancy is especially relevant for the Emerging Europe region and Energy sector for
which I record a −4% in average explanatory power. With a short window made of the most
recent half-year observations, the figures show a consistently higher explanatory power with
respect to the static benchmark model, although substantially lower than the KF approach.
On average, I find that the latter has a 19% higher goodness of fit with respect to the static
case. The rolling window scheme with a long window yields a 6% average increase, whilst the
short window counterpart results in a 3% loss in average explanatory power, across all groups.
The biggest improvement in explanatory power is found for the Asia-Pacific region, this is
true for the KF, and RW approach with a short window. The stocks belonging to Asia-Pacific
are primarily driven by global and region-specific shocks, rather than financial shocks. This
indicates that the two methodologies are able to better capture the share of co-movements
implied by the unobserved factors with respect to the benchmark. On the other hand, the
groups where the static OLS estimator gives the best results correspond to the regions which
are more integrated (Western Europe and North America). This is in line with the average
pair-wise Pearson correlation reported in panel 1.2a.

Overall, the explanatory power of the model featuring time-varying betas estimated via the
Kalman filter is substantially higher with respect to alternative specifications, and the baseline
model. Comparing the rolling window approaches, I find that using a shorter window for
estimation results in a substantial deterioration in the explained portion of systematic variation
of stock returns, with respect to the a long window of five years.

When I study the explanatory power of the models featuring rolling least squares estima-
tion, I take TW-averages of the window-specific R2s. In figure 1.4 I report the time-series of R2

from the rolling regressions, and I compare it against the R2 calculated using the common com-
ponent from the static model, and from the dynamic model with time-varying betas estimated
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via ML.

[Figure 1.4 about here.]

Considering a five-year estimation window, I find that the benefits of using a static model
representation are lower with respect to rolling scheme featuring time-varying betas, and this
is true especially in the first three or five years in the sample (up to 2014 or 2016). From 2014
onwards, I notice a sharp decay in the average explanatory power for most of the groups
considered, which makes the dynamic representation inferior to the static case. In the North
America and European regions, from mid 2016 onwards, there are substantially lower benefits
of fitting a dynamic model with a long estimation window as opposed to a static model. For
the Asia-Pacific and Latin-America regions this behavior is evident from the end of 2015, and
for the MEA region from the beginning of 2014.

This is also true, although to a lesser extent, for a short estimation window. Across all
groups, I notice a sharp increase in the average goodness of fit of the RW estimator during the
periods early 2009 to the end-of 2011, before rising again from mid-2014 up to the beginning
of 2016. In period 2016-2018, average goodness of fit decreases substantially across all stocks,
before increasing from the end of 2018 up to May 2019. For some regions, the average explana-
tory power of the RW approach is even higher than the share of total variation captured with
the KF approach during the period 2011-2012. This is true especially for the American regions
and Western Europe. The years 2009-2011 can be associated mainly to the global financial
crisis, and from 2011 to 2013 fiscal policy in the Eurozone turned progressively more restrictive
in response to the sovereign-debt crisis.

To justify the use of time-varying factor loadings from a statistical perspective, I perform
a suite of misspecification tests based on the residual component of stock returns. Firstly, I
implement a White-type test under the null of homoscedasticity and estimate the following
auxiliary regression

êi,t = αi + F̂2
i,tΓ

⊤
i + ui,t ui,t ∼ N(0, σ2

u,i)

for i = 1, ..., N stocks, where F̂i,t contains the three factors specific to stock i, estimated by PCA,
and Γi = (γi,1, ..., γi,K)

⊤ is the K-dimensional vector of factor sensitivities for stock i. The test
statistic is equal to the R2 times the sample size T, and is distributed as a χ2 with degrees of
freedom equal to the number of factors in F̂i,t. In this setting, Mikkelsen (2017) proves that
testing for constant variance is equivalent to testing for constant loadings. I refer to his work
for details of the properties of the test.

Secondly, I conduct two tests on the null hypothesis of no serial correlation of the error term
ˆei,t using the Breusch-Godfrey test up to two and five lags. The test statistic is equal to R2 times
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T and is distributed as a χ2 with T − p degrees of freedom, where p is the maximum lag up to
which the test is conducted (two and five in my case).

[Table 1.8 about here.]

Table 1.7 reports the results. For the heteroscedasticity and serial correlation tests, in table
1.7 I report the percentage of stocks for which I reject the null at 95% confidence. I find that
for roughly half of the 1692 equities considered the static-loadings model fail to capture the
volatility pattern of returns. When I allow for time-varying factor loadings, the number of
stocks showing evidence of residual heteroscedasticity decreases. The reduction is substantial
for the rolling OLS estimator with a long window, in which only 270 equities show evidence of
(residual) volatility clustering, and moderate for the remaining two estimation criteria. For the
KF, this percentage of stocks decreases by 16%, from 49% to 33%, and similarly for the rolling
OLS approach with a short window from 49% to 36%.

The results on the serial correlation tests provide an indication on the magnitude of the
induced auto-correlation in the beta estimates, which are estimated on overlapping windows
in the RW approach. Considering a short window, the autocorrelation in the overlapping beta
estimates is passed over to the common component of stock results, which then invalidates
standard residual-based misspecification tests. I find that for the static-loadings model the vast
majority of stocks show evidence of residual autocorrelation, 67% for lags 1-2 and 85% for lags
1-5. Across all model specifications, the RW model with a short window shows the lowest de-
crease in the percentage of stocks showing evidence of residual serial correlation. Surprisingly,
I find that the figure based on the test considering lags up to 5 increase for the latter model,
up to 87%. This is a further indication that the structural instability in the beta estimates
estimated using a short window has a considerable impact on standard misspecifications tests.
I find that when I estimate the beta dynamics via the KF, the share of equities showing evi-
dence of residual autocorrelation is similar to the case in which I employ a long rolling window.

Overall, I find that the model with time-varying loadings has an unambiguously higher per-
formance with respect to the static-loadings specification. When I estimate the time-varying
betas via rolling OLS regressions, the results are highly influenced by the choice of the win-
dow length. Using fewer observations for estimation, e.g. half-year windows, increases the
instability in the beta estimates, however the assumption of constant beta may be more ap-
propriate. When I consider five years of observations for the estimation window, much of the
short-term variability in the beta estimates is averaged out, and the assumption of constant
beta underpinning the rolling OLS estimator may be difficult to defend. Standard residual-
based misspecificaton tests suggest that the trade off between estimation accuracy and beta
instability is mitigated when I consider a long estimation window. However, the improvement
in the average explanatory power with respect to a static-loadings model is negative, implying
that the dynamic model specifications is inferior to the benchmark. Choosing between the two
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methods for the estimation of time-varying betas via rolling least squares, I find that a longer
window provides the best results from a statistical perspective. Altogether, the ML estimator of
the time-varying factor sensitivities remains undoubtedly the best-performing from a statistical
viewpoint.

Static and Dynamic Variance Decomposition

In this section I use variance decomposition methods to study the model-implied co-
movements in the panel of stock returns. This approach is employed extensively in the
literature to analyse the results of different model specifications, as in the static model of
Breitung and Eickmeier (2015), or the dynamic model of Bekaert, Hodrick, and Zhang (2009).
The intuition is that the higher the (average) share of variance explained by the common
factors, compared to the idiosyncratic variance, the higher the level of co-movements. For
static factor models, this method provides one number for the whole dataset, however for
dynamic specifications, the conditional variance decomposition can be performed at each time
t. In what follows, I compare the static and dynamic variance decompositions, and for the
latter I analyse the differences for each estimation method.

Table 1.8 reports the static variance decomposition calculated on the full sample via OLS.
In line with the preliminary correlation analysis of table 1.2, I find that the firms listed in North
America and in Western Europe have the highest level of commonality. On the other hand, the
idiosyncratic component dominates the returns on the equities listed in MEA. For these stocks,
the regional factor appears to describe a much larger portion of total variance compared with
stocks in other regions or sectors.

[Table 1.9 about here.]

With time-varying factor sensitivities, I can calculate the share of variance explained by
each factor at each point in time, which allows to capture shifts in the relative importance of
the factors and map them to macro events. Conditional on the estimated factor loadings, the
variance of stock returns can be decomposed into a systematic and idiosyncratic component

Var(X)t = Λ̂tVar(F)Λ̂⊤
t + Var(e). (1.18)

If the factor model is true, the common factors should explain as much as possible of the vari-
ation in X and the residual variance component should be zero. In small sample this may not
necessarily be the case even if the factor model is correctly specified. Under a strong form
of APT however, the residual variance should tend to zero asymptotically, see Chamberlain
(1983). The variance of the returns on stock i at time t, conditional on the estimated loadings,
can be expressed as

Var(Xi|Λ̂)t = (λ̂
f in
i,t )2 Var(F f in

t ) + (λ̂
glob
i,t )2 Var(Fglob

t ) + (λ̂
reg
i,t )

2 Var(Freg
r,t ) 1{i∈r} (1.19)
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for i = 1, ..., N and t = 1, ..., T, assuming that the factors and the errors are orthogonal.

The factors are normalised to have unconditional variance equal to one. This is done over
the full sample when I estimate the loadings via MLE, and for each window when I use rolling
OLS regressions. The share of total variation explained by the factors is defined as

FVi,t =
(λ̂

f in
i,t )2

Var(Xi|Λ̂)t
Financial

GVi,t =
(λ̂

glob
i,t )2

Var(Xi|Λ̂)t
Global

RVi,t =
(λ̂

reg
i,t )

2

Var(Xi|Λ̂)t
Regional

where FVi,t denotes the share of variance explained by the financial factor at time t, and
similarly GVi,t and RVi,t for the global and regional factors respectively.

Figure 1.5 reports the share of variance explained by each factor during the sample period,
averaged across all N stocks. I repeat the exercise considering three different estimation meth-
ods for the time-varying betas, panel 1.5a reports the results with time-varying betas estimated
via MLE, panel 1.5c shows the results of rolling OLS regressions with a window of half-year,
and panel 1.5b reports the analogous considering a window of five years.

[Figure 1.5 about here.]

Figure 1.5 reports a consistent increase in the exposure of stocks to financial shocks during
the GFC. The estimated exposures are substantially greater in panel 1.5c with respect to the KF
in panel 1.5a. With betas estimated via the KF, I find that at the outset of the crisis in the late
2009 the financial factor reaches an explained variation of more than 16%, whilst it is about
27% in the RW case. For the period from mid-2011 to end-of 2013, which agree with the dates
normally considered for the ESD crisis, I find substantial similarities in the relative importance
of the factors implied by panel 1.5a and 1.5c. Considering half-year rolling estimates, I find
that the share of variance explained by the financial factor spikes to more than 25% at the
beginning of 2012, before declining rapidly. I can reconcile the spike in the financial factor
sensitivities with the EU-IMF bailout of Portugal in May 2011, and the deterioration of the
credit worthiness of Greece. The Greek GDP had its worst decline in the sample period in
2011 with −6.9%. During the course of 2012, due to the successful fiscal consolidation and
implementation of structural reforms in the countries at the highest risk of defaulting, financial
stability in the wide Eurozone improved and contagion risk diminished. This may help explain
the reduction in the financial factor sensitivities towards the end of 2012 in panel 1.5c, with
respect to pre-2010 levels. When I analyse the results of the five-year rolling estimates, panel
1.5b, I find an increased volatility in the financial factor sensitivities for all stocks in mid-2012.
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In contrast, the results in panel 1.5c point to a reduction in volatility for that period.

I report an increase in the financial factor sensitivities at the beginning of 2018 up to the
end of the sample for the five-year estimates, however it is modest for the stocks belonging to
Western Europe, and is difficult to reconcile with macro relevant events. In contrast, when I
restrict the sample from the beginning of 2016 to the end of 2017 in panel 1.5a, I find evidence
of increased co-movements in the period that runs from the week before the Brexit referendum
to the week after. As expected, the results are stronger if I consider equities specific to the
Western Europe region, rather than those in other regions. The spike in explained variance at
the outset of the referendum for the reference region is of roughly 8%, compared to a modest
2% recorded on aggregate. The only region which shows increased level of co-movements is
North America, even though the increment is negligible. I also find a substantial increase in
the global factor sensitivities in panel 1.5c for that period, which is particularly relevant for
stocks belonging to the Western Europe region, concordant with the Brexit referendum.

By partitioning the universe of securities into groups (countries, regions or sectors), I can
evaluate the share of variance explained by each factor, for each group individually. This is
done by taking cross-sectional averages of the quantities defined above for the equities within
a particular group. Figure 1.6 plots the share of variance explained by the free factors for each
region.

[Figure 1.6 about here.]

The increase in stock return comovements at the outset of the GFC varies across regions.
In Western Europe and Asia-Pacific I find that some stocks start to become more sensitive to
global shocks already at the end of 2007, see the panels 1.6g-1.6k and 1.6m-1.6q respectively. I
also find evidence of increased co-movements during the ESD crisis at the end of 2011 in the
Emerging Europe, which includes countries who were at higher risk of defaulting with respect
to more stable economies in Western Europe. In Middle East Africa, I find a strong prevalence
of the regional factor throughout the sample.

The results featuring time-varying betas estimated via five-year rolling OLS regressions are
difficult to interpret. I find a spike in the explained variance share of the financial factor at
the end of 2013 in Western Europe and Emerging Europe (the regions affected the most by the
ESDC), however the share of explained variance by the fianancial factor is steadily decreasing
from the beginning of the sample up to 2018. This is due to the extended time frame, which
necessarily includes too distant and possibly irrelevant information for the estimation of the
current-period betas. For instance, the estimation of the first (time-varying) beta at the begin-
ning of 2011 also include data relevant to the GFC in 2008 and 2009, a period in which the
financial factor explained a substantial portion of co-variations in stock returns (more than any
other factor, in any other time period). I record a significant increase in the share of variance
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of the financial factor in mid 2016, for the Western Europe and North America region, before
declining rapidly at the end of the year. This can be potentially be reconciled with relevant
macro events such as the Brexit referendum or the American elections in the second half of the
year, however the increase is modest and also relevant for regions other than Western Europe
and North America which makes the mapping challenging.

[Figure 1.7 about here.]

Figure 1.7 plots the share of variance explained by the three factors in each sector. The
effects of the oil market shocks at the beginning of 2015 on the equities belonging to the Energy,
Basic Materials and Utilities sectors are captured by the model featuring time-varying loadings
estimated via ML. The share of explained variance increases considerably for the stocks in the
relevant sectors, this is true especially for the global factor. Given the market-wide nature of
these shocks, which are not strictly related to the US financial sector, I expect an increase in
explained variance of the global factor, which is supported by the data. When I consider the
five-year rolling OLS estimates, I find scattered results across comparable sectors.

Model Estimates

In this section I report the aggregating results on the estimation of time-varying loadings via
ML and rolling OLS regressions. Table 1.9 reports the average magnitude of the factor load-
ings, their persistence (AR(1) parameter) and their volatilities, aggregated by either region or
sector. The loading magnitude is estimated via OLS from the static loading model, and as the
sample mean of the beta estimates obtained from the rolling OLS regressions. The volatility
of the loadings is equivalently estimated as the sample standard deviation of the time-varying
sensitivities, which are estimated either via MLE, or rolling OLS regressions. The AR(1) pa-
rameter is estimated via MLE from the dynamic factor model. I also report the number of
stocks with loadings that vary so little that they are indistinguishable from the OLS estimates
on the full sample. The volatility threshold is set to 0.01, under which it is very difficult to
identify the autoregressive parameter. In all these cases I treat the loadings as static. Finally,
I report the number of stocks with large AR(1) coefficients (larger than 0.5), which indicate a
high persistence in the loadings dynamics, hence high predictability.

[Table 1.10 about here.]

I firstly analyse the results by regions. I find that regardless of the estimation method, the
stocks in North America are the ones with highest exposure to the financial factor, followed
by the equities in Western Europe. On average, almost half of the total return variation for
these stocks is explained by the observed S&P 500 Financials factor. As anticipated, the rolling
OLS estimator appears to be centered around a long-run mean which coincides with the OLS
estimate on full sample. However, when I look at the variability of the estimated betas I find
substantially different results. For the five-year estimates, the sample standard deviation is on
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average one order of magnitude lower with respect to the Kalman filter and half-year window.
Among the two, the rolling window estimator consistently yields higher variability. This
may result in the financial factor loadings failing to be identified for some stocks in regions
such as Asia-Pacific, and Emerging Europe. For the former region, the standard deviation
of the half-year rolling betas reaches 0.215, whilst it is 0.181 for the KF, and 0.058 for the
five-year rolling estimates. In Emerging Europe, the standard deviation of the KF estimates is
0.208, and 0.219 for the half-year estimates. On average, the standard deviation of the rolling
estimator of the financial factor betas with a short window is 0.21, as opposed to 0.17 for the KF.

When I analyse the results for the betas on the unobserved factors, I find that the KF
estimator still yields a higher degree of accuracy (i.e. less variability) with respect to the
rolling estimator. In fact, across all regions, the variability of the half-year rolling least squares
estimator of the global and regional factor loadings is 0.19. For comparison, the variability
of the KF estimates is 0.12 and 0.14 respectively. With respect to loadings’ persistence, I find
that the stocks in the North America region are the ones with highest AR(1) parameter of the
financial factor loadings, 0.227, followed by those in Latin America, 0.221, and finally Western
Europe, 0.183. The number of stocks with high AR(1) parameter is greater in Asia Pacific with
a total of 202 stocks over 484, followed by the equities in Western Europe with 177 over 518.
For the global factor, stocks in Western Europe show on average the largest factor exposures
with 0.367, followed by the equities in Emerging Europe. For the North America region I find
that on average the AR(1) parameter on the global factor is negative and close to zero, implying
a low degree of predictability of the global factor betas for the stocks in this region. Moreover,
across all regions the stocks in North America have lowest sensitivity with respect to changes
in the global factor. This is in line with the definition of global factor, which captures (global)
sources of systematic risk uncorrelated with the US financial sectors. I record a significant
level of persistence in the global factor betas for the stocks belonging to Eastern Europe,
with an average AR(1) parameter of 0.227, and for those in the MEA region, which show a
negative coefficient of −0.118. On average, I find that global shocks are characterised by a
modest level of persistence. The regions with the highest number of stocks with autoregressive
parameter on the global factor beta greater than 0.5 are still Asia-Pacific and Western Europe,
with comparable numbers with respect to the financial factor. When I consider the regional
factor sensitivities, stocks in the MEA region are the ones with highest loadings on average,
followed by the equities in the Latin America and Western Europe regions. When I consider
the AR(1) parameter, I find that the regional factor loadings are the most persistent, implying
higher predictability of regional systematic risk compared to financial and global risk, this is
particularly relevant for the Latin and North America regions.

Secondly, I analyse the results by sectors. As expected, when I estimate the loading mag-
nitude via OLS on the full sample, financial firms are the most exposed to the financial factor
followed by the equities in the Energy sector. For the other sectors, I do not find substantial
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variation in the firms’ exposures to the financial factor, on average I report a loading of 0.24. Fi-
nancial firms instead record a loading of 0.357 for the financial factor, similar to the Energy and
Communications sectors. Basic Materials equities have the highest exposures to the estimated
global factor, and similarly Industrial equities to the regional factor.



1.4. Conclusion and Further Research 33

1.4 Conclusion and Further Research

In this chapter, I reviewed and compared two methodologies for the estimation of time-varying
loadings in linear asset Pricing models, MLE via the Kalman filter and rolling OLS estimation.
I leveraged the modelling setup of Borghi et al. (2018) and distinguished between a financial,
global and region-specific risk drivers to estimate the common components in the stock
returns. The financial factor is observed, and I identify it with the S&P 500 Financial index
after careful consideration of alternative stock market indexes. The global and regional factors
are latent and estimated via PCA. Conditional on the ex-post factors, I compare the in-sample
performance of models with time-varying sensitivities estimated using the two methodologies,
from a statistical and economical perspective. I document my findings for a large panel of
1692 international stocks listed in 40 countries with weekly return observations in the period
January 6th 2006 to May 31st 2019.

My analysis yields two main findings. Firstly, I propose a different identification procedure
for the observed financial factor, and let the data suggest which index is best suited to describe
the systematic variation in stock returns due to movements in the (global) financial sector.
I find that the S&P500 Financials yields the best results from a statistical, and economic
standpoint. Upon estimation of the latent factors via PCA, I corroborate the evidence that the
estimated factor space is very similar to the one spanned by the FF factors, which indicates
that the statistical factor model of Borghi et al. (2018) captures to a large degree the risks to
which firms are exposed in a more traditional factor model constructed from firm attributes.

Secondly, I find that estimating time-varying factor sensitivities via rolling OLS regressions
requires careful consideration of the window length and frequency of the data. The rolling
OLS estimator is the status quo in the literature to estimate time-varying loadings, however I
find that the ML estimator provides considerably better results. From a statistical perspective,
I find that when loadings are estimated via rolling OLS regressions with a short window size,
the benefits of fitting a dynamic factor model become slim and a comparable static-loadings
model performs better than the dynamic specification. This is because much of the instability
in the beta estimates is passed over to the common component of stocks returns, which results
in a misspecified model when I perform standard residual-based misspecification tests. On
the other hand when I consider a longer window, I find that the dynamic model is correctly
specified, although it is not able to capture a considerable portion of stock returns variation.
When I analyse the relative importance of the factors via time-varying variance decomposition
techniques, I find that the rolling OLS estimator shows a higher portion of estimated total
variation in stock returns with respect to the MLE case. This is spuriously due to the higher
degree of volatility in the beta estimates that results from the rolling scheme. When I estimate
the loadings via ML, I corroborate the evidence that the relative importance of the factors is
time-varying: when unexpected events happen globally stock return co-movements increase.
In these cases I find that stocks become marginally more exposed to financial and global shocks,
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and I are able to map the relative changes to pertinent macro events. When I consider the rolling
OLS estimates constructed on a long window, I am not able to study the evolution in the relative
importance of the factors over time, despite the model being correctly specified. On the other
hand, when I consider the least squares estimates constructed from a short rolling window, I
find a greater degree of short-term variability which ease the economic interpretation of stock
returns co-movements, despite the model suffering from severe misspecification issues.

1.4.1 Further Research

The analysis in this chapter provides a first overview of the role of time-varying factor
sensitivities in explaining contemporaneous return patterns in international asset pricing,
a research question that I elaborate further in Chapter 2. In particular, I depart from the
contemporaneous-equation framework of Borghi et al. (2018) and forecast the t + 1 return
based on the estimated loadings and factors up to time t. Additionally, I evaluate different
model specifications, such as FF3 and FF5, and compare their out-of-sample performance with
the factor model in Borghi et al. (2018).

Studying how time-varying estimates via rolling OLS can improve the factor model’s
explanatory power (from stock-specific time-series regressions) is a further research question
which I begin to analyse in Appendix A.1, using the framework of Inoue, Jin, and Rossi (2017).
The theory developed in their work provide the conditions for the asymptotic optimality of
their MSFE criterion, so that the error introduced by estimating time-varying betas using the
most recent observations is negligible. When I try to adapt their methodology to consider a
contemporaneous rather than predictive framework, I am not able to prove the unbiasedness
of the rolling OLS estimator due to the properties of conditional expectations. Note that also
Lettau and Pelger (2020b) use out-of-sample forecasting to test the predictive performance
of their RP-PCA estimator of the unknown factors. They estimate factors the loadings based
on a rolling window of 20 years of monthly data (T = 240), and subsequently predict the
t + 1 return and obtain the out-of-sample pricing error. The contributions in the literature that
employ rolling OLS in a contemporaneous-equation setting are many, e.g. Bekaert, Hodrick,
and Zhang (2009), Bekaert et al. (2014), Fama and French (2012), or Fama and French (2017),
and thus far the theory that extend the validity of the optimal window selection criteria
in Inoue, Jin, and Rossi (2017), or Pesaran and Timmermann (2007) to a contemporaneous-
equation framework is scarce, which leaves this research question open to further investigation.

Additionally, in Appendix A.2 I analyse the relationship between magnitude, variance, and
persistence of the factor loadings estimated via the KF with expected returns. I replicate the
analysis of Borghi et al. (2018) for an extended time span and I fail to confirm their evidence of
a premium for holding stocks with highly volatile global factor exposure in an ‘out-of-sample’
context. My results point to an irrelevance of the beta parameters in the cross-section of stock
returns, in contrast to both Borghi et al. (2018), and Armstrong, Banerjee, and Corona (2013)
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who claim that firm-specific uncertainty of factor sensitivities negatively affects expected
returns. A further extension to the analysis in this chapter is to study the relevance of
firm-specific beta characteristics in constructing equity portfolios for asset allocation purposes,
employing a consistent out-of-sample methodology. In fact, although my results are in contrast
to the existing literature, there may exists sample-specific considerations (between 2016 and
2019, the difference in sample between my work and Borghi et al. (2018)) that can affect the
results. I leave this research question open for future studies.

Further research on this chapter include examining the properties of the rolling least
squares estimator of time-varying betas at higher frequencies. As I anticipated, if the estimated
betas are believed to vary slowly with respect to the sampling frequency, then OLS on the
most recent data is the appropriate modelling choice. This may not be the case when I
consider monthly holding-period returns, but it may well be suited for daily data. From
a methodological perspective, a further extension of this study is to change the grouping
structure of the universe. In this chapter I take it as given following the geographical par-
tition in Bekaert, Hodrick, and Zhang (2009) and Bekaert et al. (2014), however the factor
extraction procedure can be adapted to consider group-specific factors such as industry
drivers, regional drivers based on alternative geographical partitions, and other drivers
which affect a specific portion of the whole cross-section of stocks (‘local’ factors). The
geographical classification of the equities in my universe is based on the country in which
their shares are listed, however it can be argued that a more appropriate criteria to classify
stocks is based on the country in which the majority of their business operations are conducted.
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TABLE 1.1: Universe of Securities

The table reports the countries and the respective national stock indexes that are considered for each region. #Stocks
is the number of equities that entered the index in the period from January 6th 2006 to May 31st 2019, #Selected is
the number of stocks with no more than eight consecutive missing observations and at least two years of data, Avg
Active is the average number of index members at the beginning of every month in the sample period.

Ticker Country Region #Stocks #Selected Avg Active

SPTSX60 Canada North America 106 92 60
OEX US North America 179 173 101
MEXBOL Mexico North America 76 69 35
MERVAL Argentina Latin America 87 81 17
IBOV Brazil Latin America 139 123 65
IPSA Chile Latin America 86 80 37
SPBLPGPT Peru Latin America 90 61 34
TPXL70 Japan Asia-Pacific 128 126 70
SSE50 China Asia-Pacific 158 150 50
HSCEI HongKong Asia-Pacific 93 89 41
SENSEX India Asia-Pacific 85 71 30
LQ45 Indonesia Asia-Pacific 122 116 45
KOSPI50 Korea Asia-Pacific 87 63 50
SET50 Thailand Asia-Pacific 107 100 50
NZSE50FG NewZealand Asia-Pacific 96 89 50
AS31 Australia Asia-Pacific 94 83 50
ATX Austria Western Europe 41 39 20
BEL20 Belgium Western Europe 38 37 20
KFX Denmark Western Europe 34 33 20
HEX25 Finland Western Europe 35 34 25
CAC France Western Europe 68 66 40
DAX Germany Western Europe 49 45 30
ISEQ Ireland Western Europe 94 73 51
AEX Netherlands Western Europe 61 49 25
OBX Norway Western Europe 67 59 25
PSI20 Portugal Western Europe 38 37 19
IBEX Spain Western Europe 62 58 35
OMX Sweden Western Europe 43 40 30
SMI Switzerland Western Europe 55 53 21
UKX UK Western Europe 208 191 101
CRO Croatia Emerging Europe 94 89 23
CCTX CzechRepublic Emerging Europe 15 14 9
TALSE Estonia Emerging Europe 23 22 16
BUX Hungary Emerging Europe 33 28 14
RIGSE Latvia Emerging Europe 73 45 28
MALTEX Malta Emerging Europe 33 19 18
VILSE Lithuania Emerging Europe 47 38 27
WIG20 Poland Emerging Europe 45 44 20
ROTXEUR Romania Emerging Europe 25 23 11
CRTX Russia Emerging Europe 49 9 13
BELEX15 Serbia Emerging Europe 26 12 13
XU030 Turkey Emerging Europe 78 64 30
PFTS Ukraine Emerging Europe 45 8 17
MOSEMDX Morocco MEA 82 78 48
Total 3294 2873 1534
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TABLE 1.2: Summary Statistics

The table reports the summary statistics for the 1692 companies that have been part of the 40 national stock indexes
in the sample period, January 2006 to May 2019. Panel 1.2a reports cross-sectional averages of the summary statistics
for the weekly log-returns. Panel 1.2b reports average market capitalisation, total assets and debt. Min and Max refer
to the absolute minimum and maximum, considering all stocks within a specific group. The remaining statistics are
N-averages of the relevant measures: Mean, Med are cross-sectional averages of mean and median, Std, Skew and
Kurt are the average standard deviation, skewness and kurtosi, ρ(1) is the OLS estimate of the first autocorrelation
coefficient, and ADF is the Augmented Dickey-Fuller test statistics, which is run with a constant, time trend and
one lag. The critical value at 95% significance is -3.41, with the null hypothesis being the presence of a unit root.
Lastly, Pearson is the average pair-wise Pearson correlation of the stocks in the relevant group. Ex-dividend data.

(A) Stock Returns

Mean Med Min Max Std Skew Kurt ρ(1) ADF Pearson N

North America 0.045 0.083 -34.779 25.051 4.758 -0.695 15.31 -0.049 -18.798 0.353 232
Latin America 0.024 -0.023 -38.657 31.297 5.896 -0.258 11.136 -0.022 -18.208 0.274 218
Asia-Pacific 0.092 0.021 -32.67 27.957 5.425 -0.238 9.773 -0.024 -18.605 0.254 484
Western Europe -0.017 0.059 -35.167 25.921 5.232 -0.715 12.189 -0.054 -18.94 0.406 518
Emerging Europe -0.102 -0.026 -46.169 41.612 6.57 -0.389 18.041 -0.012 -18.055 0.294 208
MEA 0.053 -0.001 -19.9 21.471 4.074 0.142 7.9 -0.069 -19.749 0.184 32

Basic Materials 0.001 -0.01 -38.224 33.055 6.374 -0.205 9.764 -0.009 -18.194 0.268 176
Communications -0.049 0.017 -36.051 32.294 5.51 -0.32 11.689 -0.047 -18.701 0.24 124
Energy -0.052 0.01 -38.458 30.092 5.937 -0.522 10.455 -0.032 -18.839 0.351 113
Consumer, Cyclical 0.046 0.039 -35.349 30.479 5.628 -0.279 10.101 -0.028 -18.465 0.24 212
Financial -0.001 0.023 -39.145 30.062 5.489 -0.695 17.126 -0.047 -18.657 0.294 338
Technology 0.05 0.08 -30.681 27.182 5.244 -0.305 9.846 -0.023 -18.736 0.234 67
Industrial -0.003 0.027 -38.28 28.619 5.583 -0.559 13.967 -0.027 -18.473 0.271 263
Consumer, Non-cyclical 0.102 0.058 -30.852 24.089 4.672 -0.457 11.246 -0.048 -18.891 0.209 282
Utilities 0.026 0.031 -31.081 24.05 4.703 -0.507 10.53 -0.054 -19.078 0.24 108
Diversified 0.014 0.003 -35.098 39.071 5.822 0.016 11.966 0.004 -17.964 0.271 9

(B) Balance Sheet

Market Cap ($B) Tot Assets ($B) Tot Debt ($B)

North America 50.933 110.676 28.591
Latin America 5.392 17.414 5.78
Asia-Pacific 9.465 38.578 9.665
Western Europe 18.938 106.493 30.504
Emerging Europe 1.687 7.269 1.629
MEA 1.439 3.963 0.779

Basic Materials 7.893 13.646 3.478
Communications 25.611 30.007 9.36
Energy 23.201 41.433 8.377
Consumer, Cyclical 11.528 18.958 6.538
Financial 17.016 229.052 61.98
Technology 40.871 22.197 4.702
Industrial 10.09 14.947 4.478
Consumer, Non-cyclical 20.931 15.82 4.222
Utilities 9.701 27.226 9.518
Diversified 5.355 22.738 5.946

N = 1692
T = 700 (6th Jan 2006 - 31st May 2019)
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TABLE 1.4: Identification of Financial Factor

The table reports the cross-sectional average R2s for the model with K = 3 factors, Kglob = 2 and Kreg = R, one
for each region. Unobserved Factors reports the average goodness of fit for the model featuring two unobserved
global factors, both estimated via PCA. The remaining columns report the R2 for the model featuring one observed
financial factor, which I identify with four different stock indexes, and two unobserved factors, the global and the
region-specific driver. In bold I highlight the best model(s) for each region or sector.

Unobserved Factors (%) MSCI World (%) MSCI World Financials (%) S&P 500 (%) S&P 500 Financials (%)

North America 36 36 37 38 38
Latin America 28 30 30 29 29
Asia-Pacific 28 26 26 26 26
Western Europe 42 41 41 41 41
Emerging Europe 26 27 26 27 27
MEA 25 25 25 25 25

Basic Materials 35 35 35 36 35
Communications 30 29 29 29 29
Energy 36 36 36 39 36
Consumer, Cyclical 31 31 31 31 31
Financial 39 38 38 38 39
Technology 31 31 31 31 30
Industrial 36 35 35 35 35
Consumer, Non-cyclical 27 26 26 26 26
Utilities 29 29 29 29 29
Diversified 33 33 32 32 32

N = 1692
T = 700 (6th Jan 2006 - 31st May 2019)
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TABLE 1.5: Correlation Between Factors and Exogenous Variables

Panel 1.5a reports the correlation between the regional factors (each estimated by the first PC of a portfolio of the
relevant stocks) and a global factor, the S&P500 and S&P500 Financials indexes. Panel 1.5b reports the correlation
matrix of the six estimated regional factors.

(A) PC1

Glob PC S&P 500 S&P 500 Fin

North America 0.923 0.964 0.846
Latin America 0.866 0.697 0.588
Asia-Pacific 0.882 0.68 0.568
Western Europe 0.971 0.834 0.738
Emerging Europe 0.88 0.665 0.597
MEA 0.412 0.211 0.163

(B) Correlation Between Regional Factors

(1) (2) (3) (4) (5) (6)

North America (1) 1
Latin America (2) 0.077 1
Asia-Pacific (3) -0.064 0.077 1
Western Europe (4) 0.231 -0.006 -0.117 1
Emerging Europe (5) 0.091 0.125 -0.006 0.076 1
MEA (6) -0.149 0.005 0.001 0.137 -0.055 1

N = 1692
T = 700 (6th Jan 2006 - 31st May 2019)
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TABLE 1.6: Goodness of Fit

The table reports the statistics on the goodness of fit of the dynamic factor model with loadings estimated via MLE,
and via rolling OLS regressions, compared with a static model where the loadings are estimated using OLS on
the full sample. For the rolling OLS estimator I consider the TW -averages of the time-series of R2 from the OLS
regressions as a measure of fit, I then average these in each group and report the results below. In panel 1.6a I report
the average R2 of the four model specifications, whilst in panel 1.6b I report the improvement in the explanatory
power with respect to the static OLS case. For the rolling window scheme I consider a long window made of the
most recent five-year observations (RW-5), and a short window of six months (RW-H).

(A) Goodness of Fit

R2
KF(%) R2

RW−5(%) R2
RW−H(%) R2

OLS(%)

North America 58.02 36.11 43.87 37.94
Latin America 43.46 27.18 35.3 29.22
Asia-Pacific 51.11 23.51 33 26.25
Western Europe 60.36 37.8 45.89 41.28
Emerging Europe 48.04 22.46 32.83 26.56
MEA 39.8 19.92 29.9 24.52

Basic Materials 54.21 31.18 40.35 35.23
Communications 48.9 26.26 35.25 29.18
Energy 53.6 31.76 41.66 36.29
Consumer, Cyclical 52.08 26.81 36.79 30.63
Financial 59.79 36.53 43.73 38.6
Technology 49.22 28.64 36.33 30.48
Industrial 53.7 31.25 40.45 35.05
Consumer, Non-cyclical 49.86 24.46 33.05 26.18
Utilities 49.41 26.83 36.26 29.44
Diversified 52.97 30.33 37.17 32.13

(B) Improvement

∆KF(%) ∆RW−5(%) ∆RW−H(%)

North America 20.08 -1.83 5.93
Latin America 14.24 -2.04 6.08
Asia-Pacific 24.86 -2.74 6.75
Western Europe 19.08 -3.48 4.61
Emerging Europe 21.47 -4.11 6.26
MEA 15.28 -4.6 5.38

Basic Materials 18.98 -4.05 5.12
Communications 19.72 -2.92 6.07
Energy 17.31 -4.53 5.37
Consumer, Cyclical 21.45 -3.82 6.16
Financial 21.18 -2.07 5.13
Technology 18.74 -1.83 5.85
Industrial 18.65 -3.8 5.4
Consumer, Non-cyclical 23.69 -1.72 6.87
Utilities 19.97 -2.6 6.83
Diversified 20.84 -1.8 5.04

N = 1692
T = 439 (five-year, 7th Jan 2011 - 31st May 2019)
T = 674 (half-year 7th Jul 2006 - 31st May 2019)
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TABLE 1.7: Misspecification Tests

The table reports the aggregated results of the misspecification tests, firstly using the standardised returns matrix,
secondly the residual matrix from a static factor model (OLS), and thirdly the residuals from the dynamic model
specifications. The latter include the residuals from the model featuring loadings estimated via MLE (KF), and via
rolling OLS regressions (RW) with two different window sizes. The tests are: White, the percentage of stocks for
which I reject the null at 95% confidence level using the White’s test, BG 1-2 and BG 1-5, the percentage of stocks
that exhibit residual serial correlation, using the Breusch and Godfrey test, up to lag two and five respectively.

White (%) BG 1-2 (%) BG 1-5 (%)

Returns
Static loadings (OLS) 49 67 85

TV loadings (KF) 33 51 74
TV loadings (RW five-year) 16 48 72
TV loadings (RW half-year) 36 63 87

N = 1692
T = 700 (full-sample, 6th Jan 2006 - 31st May 2019)
T = 440 (five-year, 7th Jan 2011 - 31st May 2019)
T = 674 (half-year, 7th Jul 2006 - 31st May 2019)
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TABLE 1.8: Static Variance Decomposition

The table reports the average share of variance explained by the common factors (financial, global and regional) in
the sample period, grouped by region or sector.

Fin (%) Glob (%) Reg (%) Residual (%)

North America 24.42 7.94 5.56 62.08
Latin America 8.53 11.45 9.21 70.81
Asia-Pacific 6.22 11.35 8.65 73.78
Western Europe 20.33 14.16 6.76 58.75
Emerging Europe 6.72 11.88 7.94 73.46
MEA 0.56 4.99 18.94 75.51

Basic Materials 11.65 15.24 8.31 64.8
Communications 13.15 10.11 5.9 70.84
Energy 12.74 17.45 6.06 63.75
Consumer, Cyclical 12.57 10.34 7.69 69.4
Financial 18.38 12.06 8.13 61.43
Technology 15.21 7.9 7.34 69.55
Industrial 14.91 11.9 8.21 64.98
Consumer, Non-cyclical 9.26 9.52 7.38 73.85
Utilities 7.82 10.85 10.73 70.59
Diversified 9.69 11.46 10.95 67.9

N = 1692
T = 700 (6th Jan 2006 - 31st May 2019)
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FIGURES 45

FIGURE 1.1: Unbalanced Panel of Stock Returns

The figure plots the number of index members at the beginning of each month that are considered for the rolling
OLS scheme, aggregated by region. Panel 1.1a reports the number of stocks that entered the indexes in the period
from January 2011 to May 2019, when I employ a long window made of the most recent five-year observations.
Panel 1.1b reports the analogous considering a longer time span from July 2006 to May 2019, which corresponds to
a shorter half-year window. I select all the equities that entered the national stock indexes with at least two years of
available data, and no more than eight consecutive missing observations on the full sample.

(A) Five-Year

(B) Half-Year

T = 439 (five-year, 7th Jan 2011 - 31st May 2019)
T = 674 (half-year, 7th Jul 2006 - 31st May 2019)
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FIGURE 1.2: Rolling OLS Betas and Data Frequency

The figure plots the rolling OLS beta estimates on the S&P500 for the returns of Apple Inc. from July 2006 to May
2019 using a fixed window of six months, with varying sampling frequency. Panel 1.2a reports the daily OLS
estimates, panel 1.2b the weekly estimates, and panel 1.2c the monthly estimates. In each panel, I also report
the OLS estimate on the full sample as a black solid horizontal line. Finally, panels 1.2d and 1.2e compare the
empirical distribution of the estimated betas for varying sampling frequency. Stocks and market factor returns are
standardised to have zero mean and unit variance.

(A) Daily (B) Weekly (C) Monthly

(D) Histogram of Estimated Betas

(E) Summary Statistics

Frequency Mean Min Median Max Std Skew Kurt N

Daily 0.562 -0.105 0.582 0.813 0.157 -0.706 2.879 3249
Weekly 0.538 -0.146 0.561 0.865 0.185 -0.774 3.993 674
Monthly 0.512 -0.468 0.577 0.918 0.313 -1.007 3.57 155

T = 3249 (daily, 7th Jul 2006 - 31st May 2019
T = 674 (weekly, 7th Jul 2006 - 31st May 2019)
T = 155 (monthly, 1st Jul 2006 - 1st June 2019)
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FIGURE 1.3: Estimated Global and Regional Factors

The figure plots the estimated global factor, and the regional factors for Asia-Pacific, Emerging Europe, Latin Amer-
ica, Middle-East Africa, North America and Western Europe. Together with the estimated factors, I also plot a
double-sided two-month moving average. The factors are estimated by PCA from the model with static loadings
in equation (1.9). The factors are rotated to ensure that they are positively correlated with the stock market index of
the biggest country in the region.

(A) Global

(B) North America (C) Latin America (D) Asia-Pacific

(E) Western Europe (F) Emerging Europe (G) MEA

N = 1692
T = 700 (6th Jan 2006 - 31st May 2019)



48 FIGURES

FIGURE 1.4: Time-Varying R2 from Rolling OLS Regressions by Region

The figure plots, for every region, the time-series of R2 from the rolling OLS regressions with a five-year window.
I also report the R2 calculated using the common component from the static model in red, and the R2 from the
dynamic model with time-varying betas estimated via MLE, black line.

(A) North America - Five-Year (B) Latin America - Five-Year

(C) North America - Half-Year (D) Latin America - Half-Year

(E) Emerging Europe - Five-Year (F) Western Europe - Five-Year

(G) Emerging Europe - Half-Year (H) Western Europe - Half-Year

(To be continued)
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(Continued)

(I) Asia-Pacific - Five-Year (J) MEA - Five-Year

(K) Asia-Pacific - Half-Year (L) MEA - Half-Year

N = 1692
T = 700 (full-sample, 6th Jan 2006 - 31st May 2019)
T = 439 (five-year, 7th Jan 2011 - 31st May 2019)
T = 674 (half-year, 7th Jul 2006 - 31st May 2019)
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FIGURE 1.5: Time-Varying Variance Decomposition

The figure plots the time-varying variance decomposition based on the estimated factor betas. Panel 1.5a shows the
cross-sectional average share of variance explained by each factor, with time-varying betas estimated via MLE (KF).
Panel 1.5b reports the analogous for the time-varying betas estimated via rolling least squares with a fixed window
of five years (Five-Year). Finally, panel 1.5c reports the rolling OLS results considering a window made of the most
recent half-year observations (Half-Year). The blue line represents the share of variance explained by the financial
factor, yellow and orange lines represent the regional and global factors, respectively.

(A) KF

(B) Five-Year

(C) Half-Year

N = 1692
T = 700 (6th Jan 2006 - 31st May 2019)
T = 440 (five-year, 7th Jan 2011 - 31st May 2019)
T = 674 (half-year, 7th Jul 2006 - 31st May 2019)
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FIGURE 1.6: Time-Varying Variance Decomposition by Region

The figure plots, for every region, the time-varying variance decomposition based on the estimated
factor betas. The panels report the cross-sectional average share of variance explained by each factor,
with time-varying betas estimated via MLE (KF), rolling OLS with a five-year window (Five-Year), and
rolling OLS with a half-yer window (Half-Year). The blue line represents the share of variance explained
by the financial factor, yellow and orange lines represent the regional and global factors, respectively.

(A) North America - KF (B) Latin America - KF

(C) North America - Five-Year (D) Latin America - Five-Year

(E) North America - Half-Year (F) Latin America - Half-Year

(To be continued)
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(Continued)

(G) Western Europe - KF (H) Emerging Europe - KF

(I) Western Europe - Five-Year (J) Emerging Europe - Five-Year

(K) Western Europe - Half-Year (L) Emerging Europe - Half-Year

(To be continued)
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(Continued)

(M) Asia-Pacific - KF (N) MEA - KF

(O) Asia-Pacific - Five-Year (P) MEA - Five-Year

(Q) Asia-Pacific - Half-Year (R) MEA - Half-Year

N = 1692
T = 700 (full-sample, 6th Jan 2006 - 31st May 2019)
T = 440 (five-year, 7th Jan 2011 - 31st May 2019)
T = 674 (half-year, 7th Jul 2006 - 31st May 2019)
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FIGURE 1.7: Time-Varying Variance Decomposition by Sector

The figure plots, for every sector, the time-varying variance decomposition based on the estimated factor
betas. The panels report the cross-sectional average share of variance explained by each factor, with
time-varying betas estimated via MLE (KF), rolling OLS with a five-year window (Five-Year), and rolling
OLS with a half-yer window (Half-Year). The blue line represents the share of variance explained by the
financial factor, yellow and orange lines represent the regional and global factors, respectively.

(A) Basic Materials - KF (B) Energy - KF

(C) Basic Materials - Five-Year (D) Energy - Five-Year

(E) Basic Materials - Half-Year (F) Energy - Half-Year

(To be continued)
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(Continued)

(G) Consumer, Cyclical - KF (H) Consumer, Non-cyclical - KF

(I) Consumer, Cyclical - Five-Year (J) Consumer, Non-cyclical - Five-Year

(K) Consumer, Cyclical - Half-Year (L) Consumer, Non-cyclical - Half-Year

(To be continued)
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(Continued)

(M) Industrial - KF (N) Technology - KF

(O) Industrial - Five-Year (P) Technology - Five-Year

(Q) Industrial - Half-Year (R) Technology - Half-Year

(To be continued)
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(Continued)

(S) Financial - KF (T) Utilities - KF

(U) Financial - Five-Year (V) Utilitie - Five-Year

(W) Financial - Half-Year (X) Utilities - Half-Year

N = 1692
T = 700 (full-sample, 6th Jan 2006 - 31st May 2019)
T = 440 (five-year, 7th Jan 2011 - 31st May 2019)
T = 674 (half-year, 7th Jul 2006 - 31st May 2019)
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Chapter 2

The Role of Rolling Betas in the
Cross-Section of Stock Returns

Abstract

In this chapter I examine the out-of-sample predictive performance of conditional asset pricing
models of stock returns. My models feature time-varying factor sensitivities, which are esti-
mated on a real-time basis using rolling least squares, and static unobserved factors, that are
estimated via PCA on the full sample. Conditional on the estimated factor space, I evaluate
the out-of-sample predictive ability of time-varying loadings to explain patterns in expected
future returns. I analyse the results using different measures to document the relative perfor-
mance of the least square estimator for various choices of the window size. Considering from
as little as 26 observations up to 520, I find a trade-off between window size and out-of-sample
R2, with a window made of two years of weekly data (104 observations) being optimal out-
of-sample. Across model specifications, I find that the candidate model of Borghi et al. (2018)
that combines observed and latent factors performs better from a statistical viewpoint than the
commonly used CAPM and FF models under all measures. My findings are based on a large
panel of stock returns coming from 40 different countries in the period January 2006 to May
2019.
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2.1 Introduction

Rolling estimation is one of the most popular methods in out-of-sample forecasting as it
provides a simple way to update the sample information based on the assumptions that the
underlying model parameters are time-varying. In asset pricing this approach was popularised
by the work of Ferson and Harvey (1991) and Fama and French (1997) who use rolling least
squares to estimate the time-varying factor betas in their predictive models for stocks and
bonds returns. Their methodology is based on the standard five-year window pattern with
data sampled at monthly frequency, and a short one-period ahead forecasting horizon. Despite
its widespread use in the literature, few studies have examine the properties of the rolling OLS
estimator in predicting future return patterns.

The goal of this chapter is to study in isolation the role of time-varying factor sensitivities
in explaining contemporaneous return patterns and predicting future stock returns. To do so
I adopt a conditional factor model featuring static (ex-post) factors and dynamic (real-time)
factor sensitivities. My modelling setup is inspired by Kelly, Moskowitz, and Pruitt (2021)
and Kelly, Palhares, and Pruitt (2021) who propose a conditional factor model featuring
time-varying betas and latent factors to study the cross section of corporate bonds and stocks
returns respectively. In their framework, factors and loadings are jointly estimated from a rich
set of observable asset characteristics which drive the dynamics of the model. I modify their
framework in two ways: firstly I only require the loadings to be time-varying, and secondly I
only use information contained solely in the asset returns for their estimation. In this setup,
the dynamics of systematic risk are driven exclusively by conditional factor exposures (and
not by the combination of factors and betas), which are estimated via rolling least squares
regression. The choice of the window size determines the characteristics of the conditioning
set available at each time for the estimation of the factor exposures, which in turns shapes the
dynamics of systematic risk in my model.

The answer to the question on how many observations should be used for the estimation
of the factor sensitivities has often been judgemental and based on past experience. The
five-year benchmark with monthly observations was pioneered by Fama and MacBeth (1973)
two-pass methodology, similarly Ferson and Harvey (1991) study the cross-section of US
stocks and bonds with factor sensitivities estimated every 60 months, and Fama and French
(1997) also conform to the monthly rolling window scheme. The work of Fama and French
(1997) differs from previous studies because it explicitly acknowledges the possibility of using
a shorter window made three and four years of past returns to tackle the instability in the
slope estimates. They find that for both the CAPM and three-factor model the quality of the
one-period ahead forecasts is not sensitive to the length of the regression estimation period:
averages of the forecast errors are similar for three-, four-, and five-year estimation periods,
which in turn are similar to those produced on the full-sample. For the three-factor slopes the
authors find some evidence of mean-reversion in the industry loadings on the MKT, SMB, and
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HML factors, however this result is true for short-term forecasts of less than two years, after
which the full-period constant-slope regressions are superior to the rolling regressions, and
does not appear to be consistent across the group of stocks considered (industry-wise).

Petkova and Zhang (2005) also follow to the FF framework and use portfolios as test assets
to investigate the dynamics of value-minus-growth strategies. They present their empirical
findings using a standard 60-month window, and find similar results using 24-, 36-, 48-month
rolling windows. The paper of Petkova and Zhang (2005) is related to the work of Lewellen
and Nagel (2006)[LN thereafter] who test the unconditional CAPM and explore the idea of us-
ing short-window regressions to estimate time-varying alphas and betas. The key assumption
is that beta is fairly stable during a month or quarter, so that each short-window regression
can treat it as constant. LN estimate quarterly betas using daily returns, semi-annual betas
using daily and weekly returns, and annual betas using monthly returns. From a statistical
perspective, they find their short-window regressions capture nearly all of the impact of
time-varying betas in their asset pricing tests. Their paper is considered to be one of the
first to use higher-frequency data other than monthly to examine the explanatory ability of
time-varying factor betas in the cross-section of stock returns.

In a similar fashion, the estimation methodology of time-varying betas via rolling OLS in
Ang, Chen, and Xing (2006) is based on the use of short one-year samples using daily data
(rather than using a single long sample of monthly data). Their approach also leverages higher
frequency data to characterise the time-variation in the betas over shorter samples, and it is a
key reference in the literature studying factor models with returns sampled at daily frequency.
Similarly to LN and Ang, Chen, and Xing (2006), Bekaert, Hodrick, and Zhang (2009) also
employs a short-window framework made of half-year of weekly observations in their ‘time-
varying beta’ model to study international stock return comovements. Throughout this chapter
I adopt a more flexible approach and estimate the factor sensitivities using a short-window
approach (W = 26, and 52 weekly observations), but also consider longer (sub-) sample sizes
(W = 104, 260, and 520 weekly observations). Table 2.1 reports a summary of the key features
of the papers in the literature that I review.

[Table 2.1 about here.]

In my analysis I examine asset pricing models for individual stock returns featuring factors
that are ad hoc pre-specified, as well as latent drivers that are estimated via PCA on the full
sample. I use individual stock returns as base assets and include tickers listed in more than 40
countries. Given the international composition of my universe, I differentiate between global
(strong) factors that load on all stocks, and local (weak) factors that affect only a portion of
the cross-section of returns. The focus of this chapter is on the regional classification of stocks,
which is taken from Bekaert et al. (2014). I partition my universe into five world regions and
let the local factors represent region-specific sources of variation in the returns. This choice is
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motivated by Bekaert, Hodrick, and Zhang (2009) who find little evidence for the relevance
of industry- versus regional-style factors in explaining international stock return comovements.

PCA treats the loadings as constant over time and I use it to extract the latent factors
considering the information contained in the asset returns on the full sample. Standard
PCA theory assumes that the latent factors have zero mean by construction, a feature which
would not allow me to study the ability of statistical factor models to predict future return
patterns based on the models’ expected return decomposition. To overcome this problem, I
propose an alternative rotation of the latent factors that recovers the information in the asset
means and allow my factors to have non-zero prices of risk. This approach is inspired by
the recent developments in the literature such as Lettau and Pelger (2020a) and Lettau and
Pelger (2020b) who modify the standard PCA objective function and include a penalty based
on the unexplained cross-sectional pricing errors (alphas). Their RP-PCA methodology has the
advantage of recovering factors that are relevant both for the time-series, as in standard PCA,
and the cross-section of asset returns, due to the imposed pricing penalty. The extension that
I propose effectively imposes a mapping of the latent drivers to their observed counterparts.
In particular, I estimate the risk premium of the global factor as the ex-post return on the
equally-weighted portfolio comprised of all stocks in the universe, and equivalently for the
local factors I estimate their premia as the realised return on the 1/N portfolio made of the
stocks domiciled in a specific region.

The observed factor models against which I compare are taken from the international asset
pricing literature and include the global CAPM model that features a single ‘stock market’
factor that loads on all assets in the universe, the region-specific Fama and French (2012)[FF3
thereafter] three-factor model, and the updated Fama and French (2017)[FF5 thereafter]
five-factor specification. The candidate statistical factor model, ‘Regional model’, is taken from
Borghi et al. (2018) and features one observed source of systematic variation, the financial
factor, and two latent factors.

Conditional on the factor space, I estimate the time-varying sensitivities of the relevant
factors via rolling least squares in an out-of-sample framework, and I use a suite of perfor-
mance measures to assess the models’ explanatory and predictive ability. The diagnostics
that I use are adapted from Kelly, Palhares, and Pruitt (2021) and examine different aspects
of the models’ performance. I differentiate between in-sample (IS) measures, which track
the performance in explaining contemporaneous stock returns based on the exposures to the
common factors, out-of-sample (OOS) measures, which isolate the ability in predicting future
stock returns, conditional (COND) measures which are inspired by the conditional MSFE
function featured in Inoue, Jin, and Rossi (2017), and finally I also assess the performance
of the models via predictive (PRED) measures, which quantify the error in predicting future
return patterns based the factor models’ expected return decomposition. These indicators



2.1. Introduction 63

are asset- and time- specific, and I construct R2-based performance metrics similar to Kelly,
Palhares, and Pruitt (2021), as well as canonical MEA and MSE metrics to aggregate the results
across dimensions.

The time span for my analysis is January 2006 to end-of May 2019 (T = 700 weeks). This
period includes financial and macro events that had an impact on virtually all stocks in my
universe, as well as events that are relevant to the equity markets of specific world regions. To
ease the economic interpretation of my results I use an economic calendar that distinguishes
global and local turmoil periods in each region. These events include the global financial crisis
(GFC), the European sovereign debt crisis (ESDC), the US presidential elections in 2012 and
2016, and the 2015-2016 Chinese stock market crash. My sample includes N = 1686 tickers
listed in 40 different countries with sufficiently long price history.

I analyse my findings on different dimensions. Firstly I compare the information content of
the factors across models, with a focus on assessing the differences between statistical factors
and the benchmark observed factors. Secondly, I compare the results of the full-sample OLS
beta estimates across models as a basis to interpret the dynamic-loadings analysis that follows.
I analyse the statistical properties of the rolling beta estimates for varying window size, and I
describe the findings on the models’ in-sample and out-of-sample performance based on the
metrics that I define. Finally, I also try and find an economic interpretation of my results based
on the financial and macro events listed in my economic calendar.

Benchmark factors. Based on rolling correlation analysis, I corroborate the evidence in
Fama and French (2015) that the value factor becomes redundant for describing average return
patters with the addition of the profitability and investment factors. I also find that the CMA
investment factor offers a modest level of protection against market-wide drops in all regions
considered, this is true especially during the GFC. Investing into the RMW portfolio would
have also protected a US-based investor during the Debt crisis, although the this does not
apply during market turmoil periods in other markets, such as the Chinese stock market crash
in early 2015 (Asia-Pacific region).

Statistical factors. A key difference of the FF factors with respect to the ones featured in the
Regional model is that the former are not orthogonal to each other, which implies that they do
not effectively isolate different sources of systematic variation in the returns. In the candidate
model, the financial factor is identified with the S&P500 Financials equity index, which tracks
the performance of the biggest US financial tickers, and the orthogonal global factor isolates
sources of variation in the excess returns that are linked to financial and macro events that had
a world-wide impact. For instance, the post-2009 rebound in the equity markets of all regions
appears to be reflected in the series of returns of the global factor, which recovered much more
quickly than the financials-only index after the GFC. Similarly, the returns on the global factor
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turned progressively negative during the 2015-2016 period, which coincides with the Oil glut
and the Chinese stock market crash, while the financial factor dynamics appear to be little
affected. The third set of factors featured in the Regional model include region-specific drivers
that are closely related to the dynamics of an equity index proxy constructed with the relevant
stocks of the region (which is also related to the first PC of all stocks in the group). This is
true especially in developing markets such as MEA, Latin America, Asia-Pacific and Emerging
Europe, which are less influenced by US-specific dynamics tracked by the financial factor.

Static factor exposures. I find that the model of Borghi et al. (2018) featuring latent factors
dominates the benchmark models based on industry- and region-specific averages of the
individual R2s from the pricing equations, and t-statistics of the estimated loadings. The
single-factor model’s performance in explaining contemporaneous stock returns is positive in
developed market regions such as North America and Western Europe, while it deteriorates
in the developing markets. When I compare the results of the three-factor models, I find that
the loadings on the SMB and HML factors in FF3 are on average one order of magnitude lower
than the ones featured in the Regional model (and similarly for t-stats). I also find that the
estimated loadings on the MKT factor of FF3 are all greater than the ones on the observed
financial factor for the Regional model. In the latter specification, the global and regional
factors are the predominant drivers of systematic variation in the stock returns for 9 out of
the 17 groups (regions and industries), at the expenses of the local ‘market’ factor. This is true
especially in the Asia-Pacific region where the improvement in average explanatory power
is the highest across regions (about 9% increase in the average R2). Adding the RMW and
CMA factors to FF3 also does not appear to bring substantial benefits in terms of explained
variation in the cross-section of returns. In fact, I notice that the average t-statistics on the
HML factor for the developing Asia-Pacific region drop significantly from FF3 to FF5, a further
corroboration of the redundancy of the HML factor in the FF5 framework. This is true for
most of the regions and sectors, and to a lower extent in North America which maintain the
highest (average) t-stat and magnitude of the value factor betas across all groups. I find that
the RMW and CMA factors load negatively on financials stocks, with a statistically significant
beta coefficient. The loadings on the CMA factor are negative and significant across virtually
all industries and regions.

Dynamic factor exposures. Comparing the magnitude of the full-sample estimates with the
time-varying counterparts suggests that the former tend to be higher, even when including as
much as 520 weekly observations in the estimation window. This is true across all models and
factors with the exception of the RMW factor. In fact, in FF5 the magnitude of the time-varying
betas on the RMW factor is substantially higher than the corresponding full-sample estimate,
indicating that the relevance of the robustness factor in the cross-section of returns becomes
more pronounced when I allow for time variation in the loadings. However, the RMW beta
estimates remain far from being statistically significant on average for all the stocks. Overall,
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I find that the sensitivities on the FF factors show little evidence of significant time-series
variation, which suggest that their role may be negligible out-of-sample. Compared to the FF
models, the estimates of the time-varying factor sensitivities on the Regional model’s factors
are statistically significant driver of stock return variation for all window sizes. This is true
also for the loadings on the MKT model’s factor. According to the average R2s from the rolling
time-series regression, I find that for all specification except the MKT model a short window
made of as little as half-year observations provides the best performance.

Model performance. Based on the R2 measures of Kelly, Palhares, and Pruitt (2021),
I find that the models’ performance to explain and predict future return patterns share a
peculiar relation with the size of the estimation window. If I am interested in describing
contemporaneous variation in stock returns, the short-window approach of Lewellen and
Nagel (2006) has much to recommend. However, for predictive purposes including too little
observations for estimation causes the conditional betas to be noisy, which in turn results in
forecasts that show little predictive power. The trade-off between the length of the estimation
window and the variance of the estimator is resolved around the two-year mark, this is true
across all models. The choice of the window length alone accounts for about ±10% of the factor
model’s out-of-sample forecasting performance (R2). Comparing across models, I find that
FF5 maximises the in-sample R2 with 46%, followed by the Regional model with R2 = 42%.
The predictive performance of the MKT model based on the out-of-sample R2 is about 20%,
followed by the FF3 and FF5 models with approximately 25%. The model that is best suited
to predict future return patterns is the candidate model with an out-of-sample R2 of 29%.
Based on the MSE and MSA measures, I find that for nearly all models the explanatory and
forecasting performance is increasing in window size, with the five- and ten-year windows
yielding the best results. My results are in line with the optimal window criteria of Inoue,
Jin, and Rossi (2017), which features the COND MSE function and yields an average optimal
window of about four years of weekly observations, but at odds with the measures of Kelly,
Palhares, and Pruitt (2021). This leaves the research question open to further contributions, see
Section 2.6.

Economic interpretation. When I interpret economically the beta estimates for the factors
featured in the Regional model, I find that the loadings on the global factors (financial and
global) tend to increase during turmoil periods. During the GFC and ESDC, for nearly all
regions the loadings on the global factors increase considerably. The stocks belonging to the
North America region started becoming more sensitive to changes in the financial factor at
the start of 2007, and reached a peak towards the end of the GFC in mid 2009. In North
America, I show that the sensibility of stock returns to changes in the financial factor increased
in the weeks preceding the US presidential election in late 2016. Moreover, during the months
corresponding to the US-China trade war, my results suggest that a meaningful decrease in
the financial factor loadings in late 2018, at the expenses of the global factor whose loadings
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increase during the same period. Excluding the US-China trade war, the only other period in
which the loadings on the financial factor are comparable in magnitude to the others is at the
outset of the Chinese stock market crash in mid-2015. Some of the events considered for the
stocks listed in North America are also relevant for those domiciled in the Asia-Pacific region,
where I find a material increase in the (latent) global factor loadings during the Chinese stock
market crash of 2015-2016, and in the weeks leading to the US presidential election in 2016. In
the dates corresponding to the oil market crash, I find that the loadings on the regional factor
increase notably at the start of 2015 for the equities in MEA, and similarly that the loadings
on the global (latent) factor dominate the others in magnitude in Emerging Europe and Latin
America during this period. In Western Europe, I find that in the weeks leading to the Brexit
referendum of 2016 the loadings on the regional factor start to increase consistently, while aver-
age sensitivity of the stocks in this region to shocks to the financial and global factors decreases.

Organisation of the chapter. The remainder of this chapter is organised as follows. Sec-
tion 2.2 reviews the properties of the baseline model featuring time-varying sensitivities and
static factors, describes the benchmark models from the literature against which I compare, and
presents the candidate model for the analysis together with the factor extraction procedure via
PCA. Section 2.3 describes the methodology that I use to forecast future stock returns for each
model, and details the various metrics I adopt to assess the model’s explanatory and forecast-
ing performance. Section 2.4 describes the data, and examine the factor spaces implied by the
different model specifications. Section 2.5 provides the results of the rolling least squares esti-
mation of the time-varying betas based on a variety of sample sizes, and assess each model’s
statistical performance. Finally, Section 2.6 provides the closing remarks and details future
research developments. The chapter is accompanied by Appendix B.
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2.2 Models

This section comprises two parts. In the first part, Section 2.2.1, I review the properties of
the baseline model featuring time-varying sensitivities and static factors, which I use to assess
the out-of-sample predictive ability of factor betas in the cross-section of stock returns. I then
examine different specifications of the baseline model in Section 2.2.2. In particular, in Section
2.2.2 I consider three models from the empirical Asset Pricing literature as benchmarks in my
analysis, and in Section 2.2.2 I describe the properties of the candidate model from Borghi et al.
(2018) that disentangles global and local sources of systematic variation in the stock returns via
PCA. I introduce a modification of their PC estimator which allow the factors to have non-zero
risk premia.

2.2.1 Baseline Model

To investigate whether beta predictability account for the average excess return patterns at
horizon h for stock i ∈ (1, N), with information up to period t ∈ (1, T), I analyse a generic
conditional factor model featuring time-varying factor sensitivities of the form

ri,t+h = β⊤
i,t ft+h + ϵi,t+h, Et[ri,t+h] = β⊤

i,t λ (2.1)

where ri,t+h is the h-period excess return on stock i, βi,t is the (K × 1) vector of time-varying
factor loadings, and ft+h is the (K × 1) vector of relevant factors. In this framework, conditional
expected returns are driven by time-varying factor exposures, βi,t, and unconditional factor risk
premia, λ := E[ f1:T], with f1:T denoting the (T × K) matrix of relevant factors in the sample
period. Similarly to the setup in Chapter 1, I also require a strong form of arbitrage pricing
theory (APT) to hold, so that residual risk has a premium of zero. In cross-sectional form, the
model reads

rt+h = βt ft+h + ϵt+h (2.2)

where rt+h = [r1,t+h, ..., rN,t+h]
⊤ is the (N × 1) vector of excess stock returns in period t + h,

βt = [β⊤
1,t, ..., β⊤

N,t]
⊤ is the (N × K) matrix of factor sensitivities for N test assets and K common

factors, and ft+h is the (K × 1) vector of future-period factor realisations. I work with a panel
in which number of cross-sectional observations N is very large compared the number of
time-series observations T, T ≪ N.

This modelling setup closely follows Kelly, Moskowitz, and Pruitt (2021) and Kelly, Pal-
hares, and Pruitt (2021) who propose a conditional factor model featuring time-varying betas
and latent factors to study the cross-section of corporate bond and stock returns respectively.
In their framework, factors and loadings are jointly estimated from a rich set of observable
asset characteristics which drive the dynamics of the model, motivated by the findings on the
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strong association between asset-level characteristics and future market betas.

My goal is to study the contribution of time-varying factor betas in predicting future
excess returns and, contrarily to Kelly, Moskowitz, and Pruitt (2021) and Kelly, Palhares, and
Pruitt (2021), in my setup factors are assumed to be ‘static’. They incorporate information
contained solely in the returns data on the full sample T (i.e. ‘ex-post’ factors), and feature
unconditional first and second moments. On the other hand, factor exposures are assumed
to be time-varying and embody information contained in the most-recent asset return obser-
vations (i.e. ‘real-time’ betas). In this framework, the dynamics of systematic risk are driven
exclusively by conditional factor exposures, and I employ a rolling regression framework to
introduce the time-variation in betas, see Section 2.3 for details on the forecasting methodology.

In rolling out-of-sample forecasting, once the betas are estimated using the most-recent W
data points, I roll one observation forward and re-assess the predictive ability of the model.
This procedure is repeated TW times until all observations T in the sample are considered1,
TW = (T − W − h) + 1 for (T − W − h) > 1. If I denote with t∗ the time index corresponding
to the end of each estimation window, model (2.2) can be evaluated out-of-sample as

rt∗+h = βt∗ ft∗+h + ϵt∗+h, t∗ = 1, ..., TW (2.3)

with rt∗+h being the (N × 1) vector of excess returns for period t∗ + h, βt∗ is the (N × K) matrix
of factor sensitivities conditional on the information up to (and including) period t∗, and ft∗+h

is the K-dimensional vector of future-period factor realisations. Model (2.3) entails the expected
return decomposition

Et∗ [rt∗+h] = β⊤
t∗ λ, t∗ = 1, ..., TW (2.4)

where Et∗[rt∗+h] is the (N × 1) vector of expected future returns in period t∗, and λ is the
K-dimensional vector of unconditional risk premia. In appendix B.1 I present an extension of
my model to analyse what is the role of time-varying betas in shaping the temporal evolution
of the co-movements structure implied by the factor model in (2.2). The peculiarity of this
setup is that the time-variation in the first- and second- moments of future excess returns
is driven only by conditional factor exposures, which extends the Kelly, Moskowitz, and
Pruitt (2021) and Kelly, Palhares, and Pruitt (2021) framework to the analysis of covariances.
The emphasis of this chapter is on how time-varying betas can forecast future asset returns,
equation (2.2), and their first moments, equation (2.4), for various choices of W. I leave the
analysis on the second moments for future research, see Section 2.6 for details on further
research developments.

1The last observation T will always be considered for forecasting purposes only (and not for estimation). More-
over if the quantity (T − W − h) is lower than zero the choice of W and h is infeasible given T observations. If
(T − W − h) = 1, then Tw = 1.
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I denote with W the choice of the window size, which determines the characteristics of
the conditioning set available at each time t∗ for the calculation of the factor exposures. Con-
trarily to Kelly, Moskowitz, and Pruitt (2021) and Kelly, Palhares, and Pruitt (2021) who use
information beyond asset returns to derive the dynamics of systematic risk, in my model the
conditioning set Ω∗

t only includes information stored in the returns of the observed factors and
test assets. This implies that I am assuming that I am able to accurately forecast factor be-
tas at any given future horizon h given the information content of the most-recent W returns
observations2

E[βt∗+h | Ωt∗ ] = βt∗ , t∗ = 1, ..., TW . (2.5)

This assumption may be restrictive if I am interested in forecasting beta over longer horizons
(where h may be a few months), whilst it may be appropriate if I believe that beta varies slowly
over time (relative to the sampling frequency) and I am interested in short-horizon forecasts,
as Robertson (2018) reports. In Section 2.3.1 I discuss how the choice of h, W and the sampling
frequency of the data is intrinsically related to the assumptions I are prepared to make on the
time-series evolution of βt∗ , which in turn determine the preferred estimation procedure.

2.2.2 Factor Space

In this section I examine different specifications of the baseline model in equation (2.2). I start
by considering three benchmark models from the empirical asset pricing literature in Section
2.2.2, and then describe the candidate model of Borghi et al. (2018) that features latent factors
estimated via PCA in Section 2.2.2. The test assets comprise equities listed in multiple countries
and as such I differentiate between global and local (region-specific) factors.

Benchmark Observable Factors

I consider the following benchmark models:

• MKT model. I construct my own stock market factor as the equal-weighted average of
the excess stock returns in my data, considering the complete universe of stocks.

ft = [ MKTt ] (2.6)

This model is motivated by Harvey (1991) and Fama and French (1998) who modify the
local CAPM framework originally designed for me stocks to include international assets
for the calculation of the global market factor. The specification in (2.6) is the most parsi-
monious among the benchmarks and includes just one factor, K = 1.

2I use W and Ωt∗ interchangeably throughout this chapter. W refers to the fixed number of observations that
are used for the calculation of conditional factor exposures in each period t∗, which coincides with the information
set Ωt∗ in the rolling out-of-sample framework. I drop the subscript t∗ from the notation Wt∗ to indicate that the
window size is fixed. However, shifting the estimation window one period forward clearly implies a different
conditioning set for the calculation of the betas, thus the notation Ωt∗ .
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• FF3 model. I consider the three-factor model of Fama and French (2012) that augments
the CAPM model with two factors: SMB, the difference between the returns on a di-
versified portfolios of small stocks and big stocks, and HML, the difference between the
returns on a diversified portfolio comprised of high book-to-market (value) stocks and
low book-to-market (growth) stocks.

ft = [ MKTr,t SMBr,t HMLr,t] (2.7)

The subscript r in (2.7) indicates that the set of factors is region-specific. In fact, FF3 use
model (2.7) to study international stock returns and construct the local portfolios for four
different world regions: North America, Japan, Asia-Pacific and Europe. In this chapter
I partition my universe into five world regions and Japan is excluded. Thus, to ease the
comparison across models I report the results for the FF3 model for three regions only,
North America, Asia-Pacific, and Western Europe3. The total number of factors for the
model is therefore K = 9.

• FF5 model. I also examine the five-factor model of Fama and French (2017)[FF5 there-
after] which features two additional factors with respect to FF3, RMW and CMA, that
represent sources of variation in the returns associated to stock-specific profitability and
investment patterns respectively.

ft = [ MKTr,t SMBr,t HMLr,t RMWr,t CMAr,t ] (2.8)

Similarly to FF3, model (2.8) is tested using a large panel of stocks listed in different
countries. The classification structure is identical to the one in FF3 and as such I report
the results considering three different regions. The total number of factors is K = 15.

Candidate Model

The candidate model is taken from Borghi et al. (2018) and includes two global sources of
systematic variation, an observed financial factor and a latent global factor, and one regional
latent driver. Throughout this chapter I refer to this model as ‘Regional model’.

ft = [Ft Gt Rr,t]. (2.9)

Ft is the time-t value of the financial factor, Gt is the global latent factor, and Rr,t is the time-t
value of the regional factor for stock i belonging to region r ∈ (1, R).

The peculiarity of the model in Borghi et al. (2018) is that it disentangles global and local
sources of systematic variation of stock returns. The total number of factors is K, and includes
Kglob factors that are relevant for all stocks, and Kloc factors that affect only a specific portion of

3Details on the regional classification of the stock universe are given in Section 2.4.1.
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the cross-section according to a pre-determined pooling criterion, K = Kglob + Kloc. Let R be
the total number of clusters that I use to partition the cross-section of N stocks, ∑R

r=1 nr = N,
then the number of local factors is Kloc = R, assuming for simplicity that a single statistical
factor is the main driver of returns belonging to a particular cluster4.

The focus of my analysis is on the regional classification of the stocks based on the company
domicile, thus the local factors conform to region-specific drivers of systematic variation. An
alternative would be to classify stocks based on the industry in which they operate and build
the local factors accordingly, however Bekaert, Hodrick, and Zhang (2009) find that country-
dominate industry-style factors in a model with time-varying weights applied to international
stock returns. I leave the analysis on the importance of country versus industry factors for
future research, see Section 2.6. The country-region composition that I adopt in this chapter
is taken from Bekaert et al. (2014) who partitions their universe into six world regions, thus
R = 6. Further details on the regional classification of my universe are given in Section 2.4.1.

The two-level factor structure in Borghi et al. (2018) is inspired by the work of Breitung and
Eickmeier (2014) and Breitung and Eickmeier (2015) who study comprehensively the prob-
lem of modelling and estimating block structures in dynamic approximate factor models. The
advantage of adopting a two-level structure is that the assets belonging to cluster r are not
influenced by the shocks that are specific to other clusters, a situation that is common in an
international context in which I expect certain factors (global) to link all variables in the model,
whereas others (local factors) to be associated to some subgroups of assets. In Breitung and
Eickmeier (2014) the authors employ a model that imposes zero restrictions on the factor load-
ings, with factors that are unrestricted, whilst in Breitung and Eickmeier (2015) they inter-
change the role of the factors and the loadings and impose blocks of zero restrictions on the fac-
tor matrix, with time-constant loadings. Concordant to the assumptions of my baseline model,
I choose to test the model of Borghi et al. (2018) that leverages the two-level factor structure of
Breitung and Eickmeier (2014), and imposes sparsity conditions on the factor loadings matrix
as follows
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where rr,·t+h is the (nr × 1) vector of future-period excess returns on the nr stocks in cluster
r, β

f
r,·t, β

g
r,·t and βr

r,·t are the (nr × 1) vectors of time-t loadings on the financial, global and

4The model can accommodate multiple local risk drivers, for simplicity I limit my analysis to just one per cluster.
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regional factors respectively. In total, the number of factors is K = 8, with Kglob = 2 and R = 6,
and Ki = 3 for each stock.

In this chapter, I use PCA to extract the global and latent factors considering information on
the full sample T. In conventional factor analysis, the PC estimator of the latent factors treats
the loadings as static over time, and attempts to minimise the residual time-series variation in
the returns by solving the following optimisation problem, see Stock and Watson (2002),

argmin
β̂PCA, f̂ PCA

1
NT

N

∑
i=1

T

∑
t=1

(
(ri,t − r̄i)−

(
β⊤

i ( ft − λ)
))2 (2.11)

with β̂PCA being the (N × K) matrix of estimated static factor sensitivities, and f̂ PCA the
(T × K) matrix of latent factors. The theoretical framework underpinning PCA is characterised
by at least three features which in practice make the estimation of the latent factors problem-
atic. The first is the assumption of time-invariant factor loadings, which is in sharp contrast
with the conditional framework that I adopt in my baseline model. The second relate to the
technical challenge that lies in estimating the relevant factors in a multi-level structure as in
(2.10), and to take into account the zero restrictions imposed on the factor loadings matrix. The
third is that the objective function in (2.11) depends on estimates of the first moments of asset,
r̄i, and factor returns, λ, two quantities that are crucial for assessing the pricing ability of the
factor models considered. In what follows I will assess each problem separately and provide
further details on the factor extraction procedure.

Minimising the sum of squared residual in (2.11) is equivalent to maximising the log-
likelihood function in the standard Gaussian framework. In fact, the theory of PCA is
developed under the assumption of time-invariant loadings, and independent normally
distributed idiosyncratic errors er,·t+h, across all dimensions i ∈ (1, nr), r ∈ (1, R), and
t, h ∈ (1, T). Two assumptions that are difficult to defend in empirical applications5. However
as Breitung and Eickmeier (2014) report, the assumption of independent normally distributed
idiosyncratic errors is used to obtain a simple quasi-likelihood function, and it is not strictly
necessary for consistent estimation of the latent factors. In their paper, they leverage the
results of Wang (2008) who prove that the PC estimator remains consistent if the errors are
heteroskedastic and autocorrelated6. PCs also remain a consistent estimator of the unknown
factors in the presence of time-varying loadings, provided that the panel is sufficiently large
with N, T −→ ∞, see Bates et al. (2013). More recently, Mikkelsen, Hillebrand, and Urga (2019)
prove average uniform consistency in t if T/N2 −→ 0 is satisfied. As anticipated earlier in
Section 2.2.1, in this chapter I take an ex-post view of the factors and consider the information

5Formally, E[e2
r,·t+h] = σ2 for i ∈ (1, nr), r ∈ (1, R), and t, h ∈ (1, T).

6It is important to recognise that although the estimator of the latent factors in Breitung and Eickmeier (2014) is
consistent in the case of heteroskedastic errors, asymptotic efficiency may still be improved by using a generalised
least squares approach as in Breitung and Tenhofen (2011)
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contained on the full sample T for their estimation - assuming constant loadings. Conditional
on the factor space (with factors either estimated via PCA or constructed from observable
characteristics as in the benchmark models), I then introduce time variation in the factor
loadings via rolling window regressions, see Section 2.3 for further details. This procedure
allow me to study in isolation the role of time-varying betas and compare the benchmark
models with the candidate model.

The technical challenge of estimating the relevant factors in model (2.10) is to take into
consideration the zero restrictions on the factor loadings matrix, and in this chapter I employ
the the sequential least square (LS) algorithm of Breitung and Eickmeier (2014) for this
purpose. To ensure that the iterative algorithm converges quickly to the global minimum, I
initialise the algorithm with the first PC of all stocks (for the global factor), and the first PC
of each group of stocks clustered by region (for the regional factor), as in Borghi et al. (2018).
The main difference of my factor extraction procedure with respect to Borghi et al. (2018) and
Breitung and Eickmeier (2014) is the normalisation that I impose on the estimated factors to
ensure that they can be effectively compared with the benchmark factors in terms of pricing
ability.

The objective function in (2.11) depends on the means of the test assets, r̄i, as well as on the
factor risk premia, λ, however as Lettau and Pelger (2020b) reports the data matrix is usually
demeaned before PCA is applied. This implies that the standard PCA estimator does not
consider information contained in the asset means, resulting in factors that have zero mean
by construction. This setup would effectively rule out any possibility of assessing the pricing
ability of the candidate factor model against the benchmark models. In this chapter, I propose
an alternative procedure to rotate the PCA factors and recover the information in the asset
means. In particular, I firstly apply PCA to the standardised matrix of stock returns, and extract
the unit-variance zero-premia global and local factors. The factors are estimated consistently
up to some arbitrary rotation, and as in Breitung and Eickmeier (2014) I impose a positive
correlation between the latent factors and the stock market index proxies constructed as the
equally-weighted portfolios made of the selected stocks (full universe for the global factor,
and region-specific equities for the regional drivers). I then estimate the ex-post full-sample
risk premia of these portfolios, and require the factors to have mean equal to the estimated
quantities (see IR3 below)7. This procedure maps the regional factors to local stock market
indeces, and the global factor to the stock market factor in the global CAPM model in equation
(2.6), and allows me to resolve the rotation indeterminancy of the PCA factors while easing
their economic interpretation.

7Applying PCA to a matrix of stock returns suggests that the first PC is highly correlated to the 1/N portfolio
formed with the relevant tickers.
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In summary, I impose the following idenfitying conditions to obtain a unique solution to
the minimisation problem in (2.11):

IR1 T−1 ∑T
t=1(Gk,t)

2 = 1 for all k ∈ Kglob, and T−1 ∑T
t=1(Rr,t)2 = 1 for all r ∈ R. Normalising

the latent factors to have unit length allows me to effectively compare them.

IR2 T−1 ∑T
t=1 R⊤

r,t Gk,t = 0 for all r ∈ R and k ∈ Kglob. This ensures that local factors are
orthogonal to the global ones.

IR3 ∑T
t=1 R⊤

r,t Sr,t > 0 ∧ E[Rr] = E[Sr], where Sr,t is the return on the equally-weighted
portfolio made of the relevant tickers in group/cluster r. This condition identifies the
sign of the local factors by imposing a positive correlation with the most important source
of systematic variation of the relevant group, and normalises the local factors to have
mean equal to the one of the equity index proxy. The same applies to the global factor,
considering the full stock universe.

Note that I do not need to assume orthogonality of regional factors as in standard factor anal-
ysis, T−1 ∑T

t=1 R⊤
r,t Rr,t = IR, thus local drivers can be correlated with one other. This suggests

that the model-implied co-movements structure of returns is determined only by the covari-
ance between the local shocks, being orthogonal to the global universe-wide drivers. Refer to
Section 2.4.2 for the results on the factor extraction procedure.
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2.3 Forecasting Methodology

In this section I describe the methodology that I use to forecast future stock returns based on
the models outlined earlier. In Section 2.3.1 I provide an in-depth discussion of the rolling
least squares estimator of conditional betas which drives the dynamics in my model. Firstly, I
review the choices that are made in the literature on the selection of the estimation window size
W, the sampling frequency, and the forecasting horizon h, and secondly I describe the MSFE-
based optimal window selection criteria of Inoue, Jin, and Rossi (2017). In Section 2.3.2 I report
the statistical performance measures that I use to evaluate the in-sample and out-of-sample
performance of the conditional factor models.

2.3.1 Rolling Least Squares

Conditional on the ex-post factor realisations for the models outlined in Section 2.2.2, I intro-
duce the time-variation in the factor loadings via rolling least squares

β̂i,t∗ =

(
t∗

∑
s=t∗−W

f̂ 2
s

)−1( t∗

∑
s=t∗−W

f̂s ri,s

)
(2.12)

t∗ = 1, ..., TW ,

where f̂t is the time-t realisation of a generic factor k ∈ K for each model (i.e. the MKT
model, the FF3 model, the FF5 model and the Regional model, see Section 2.2.2), and β̂i,t∗

is the respective loading estimated in period t∗, which comprises W observations at a given
frequency.

It is important to recognise that the behavior of the rolling OLS estimator is driven by the
choice of the parameter W, which in turns depends on the sampling frequency of the data and
the forecasting horizon. As Robertson (2018) reports, the choice of W is intrinsically related
to the assumptions that I am prepared to make on the dynamics of the beta parameters. If I
am interested in forecasting betas over short horizons with data sampled at high frequency
(intra-daily, daily, and weekly) then the rolling OLS approach is a valid solution. This is
because in the out-of-sample rolling OLS framework, conditional on the appropriate choice
of W, I am implicitly assuming that the next-period betas are consistently estimated by the
current-period betas, see equation (2.5). On the other hand, if I am interested in longer-term
forecasts I have to take into account the possibility of a mean-reverting behavior in the beta
parameters, and this is similar to the modelling approach that I follow in chapter 1 where I
explicitly define the equations for the dynamics of the beta process.

In this chapter, I a adopt a non-parametric approach and study the behavior of the rolling
OLS estimator for various choices of W. In fact, similar to the techniques found in the literature
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on realised volatility8, I model βt∗ as a function of the estimation window alone and treat the
OLS estimator as being locally (within-window) constant, where the estimation window plays
the role of the bandwith.

Crucially, the amount of local information on which the estimator depends increases suit-
ably as the sample size W increases. Standard OLS theory assumes that the factor loadings
remain constant in the sample size T, and that the variance of the beta estimator decreases with
T. The idea is that, if beta is constant within each window, a simple OLS regression would pro-
duce an unbiased estimate of the true conditional beta. However in practice the assumption
of constant loadings is difficult to defend especially when T comprises several years of data.
Including too distant observations in the estimation of current-period betas results in estimates
that are not representative of the present economic conditions, and possibly mis-specified due
to the presence of structural breaks in the series. On the other hand, including few recent data
points ease the economic interpretation of the (short-term) estimates, but necessarily increases
the variance of the OLS estimator. In this chapter, I let the sample size for the estimation of the
beta parameters vary by including as little as 26 observations (half-year window), up to 520
data points (five-year window). To isolate the role of W in shaping the dynamics of the fac-
tor loadings, I fix the sampling frequency to weekly and the forecasting horizon to one-period
ahead, h = 1.

Individual Optimal Window

In the individual window selection approach, I estimate the optimal window size Wi for each
stock following the methodology in Inoue, Jin, and Rossi (2017), which draws from Pesaran and
Timmermann (2007). The optimal window criterion in Inoue, Jin, and Rossi (2017) is achieved
by minimising the conditional MSFE at the end of the sample, t = T

argmin
Ŵi

ET[ (ri,T+h − β⊤
i,T fT+h)

2 ] (2.13)

with fT+h being the K-dimensional vector of factor realisation at time T (excluding constant),
and βi,T the respective time-varying factor sensitivities considering information up to time
t = T. I estimate the time-varying betas via rolling least squares regressions using the last
Wi observations, and replace the unknown parameter βi,T with the OLS estimate β̂i,W

argmin
Ŵi

ET[ (β̂i,W − βi,T)
⊤ fT+h f⊤T+h (β̂i,W − βi,T) ] (2.14)

Inoue, Jin, and Rossi (2017) suggest replacing the unknown βi,T with the local linear estimate
β̂i,W0 computed on a pilot window that considers the most recent W0 observations. The pilot
window is calculated according to the cross-validation method in Pesaran and Timmermann

8See for instance the seminal contribution of Andersen et al. (2006) who is one of the first to provide a theoretical
framework to analyse the dynamics of conditional betas estimated using non-parametric techniques.
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(2007), which is originally designed for forecasting models conditioned on structural breaks in
a discrete settings. On the other hand, the framework of Inoue, Jin, and Rossi (2017) assumes a
smooth variation of the parameters over time, concordant with the assumptions underpinning
the rolling OLS estimator of the factor betas9.

Theorem 2 in Inoue, Jin, and Rossi (2017) provides the conditions for the asymptotic opti-
mality of their MSFE criterion, so that the error introduced by replacing βi,T with the sample
counterpart β̂i,W0 is negligible. This allows me to quantify the bias induced by the rolling OLS
estimator using the most recent W observations. In this framework, the minimisation problem
is independent of the unknown parameter βi,T, replaced by the pilot window estimate β̂i,W0 ,
and of the unknown error ei,T+h, which does not enter the equation due to the property of
conditional expectations. The feasible criterion reads

argmin
Ŵi

ET[ (β̂i,W − β̂i,W0)
⊤ fT+h f⊤T+h (β̂i,W − β̂i,W0) ] (2.15)

with Ŵi being the estimated optimal window for stock i. I report the results on the estimated
optimal window in Section 2.5.2.

2.3.2 Performance Measures

I document the performance of the factor models with respect to three main features: describ-
ing the contemporaneous variation in stock returns, predicting future stock return patterns at
horizon h, and predicting future stock returns based on the model’s conditional expected re-
turn decomposition. For this purpose I define the following error measures that that draw from
Kelly, Palhares, and Pruitt (2021):

• In-Sample error: the measure quantifies a model’s success in describing contemporane-
ous stock excess returns based on the conditional betas estimated in period t∗ and ex-post
contemporaneous factor realisations, f̂t.

IS errori,t∗ = ri,t∗ − β̂⊤
i,t∗ f̂t∗ (2.16)

• Out-of-Sample error: the measures quantifies a model’s success in predicting future ex-
cess return patterns based on the conditional betas estimated in period t∗, conditioning on
future ex-post factor realisations, f̂t+h. This metric isolates the ability of the time-varying
betas in forecasting excess stock returns at horizon h.

OOS errori,t∗ = ri,t∗+h − β̂⊤
i,t∗ f̂t∗+h (2.17)

9Pesaran and Timmermann (2007) consider a discrete breaks framework to accommodate recursive least squares
regressions. They develop a suite of alternative window selection criteria based on a combination of rolling- and
recursive- OLS (out-of-sample) forecasts.



78 Chapter 2. The Role of Rolling Betas in the Cross-Section of Stock Returns

• Conditional error: the measure is inspired by the conditional MSFE criterion in Inoue, Jin,
and Rossi (2017), which is best suited to describe the model’s ability in predicting future
excess returns with factor betas estimated in period t∗, conditioning on contemporaneous
ex-post factor realisations, f̂t.

COND errori,t∗ = ri,t∗+h − β̂⊤
i,t∗ f̂t∗ (2.18)

• Predictive error: the measure quantifies a model’s ability in predicting future excess re-
turns based on the conditional expected return process, Et∗ [rt∗+h] = β⊤

t∗ λ. In my frame-
work, the time-variation in expected returns is driven by the conditional factor exposures
estimated in period t∗, with static ex-post factor risk premia, λ̂.

PRED errori,t∗ = ri,t∗+h − β̂⊤
i,t∗ λ̂ (2.19)

The error measures defined above are time- and asset- specific, and in order to study the
models’ performance in the cross-section of asset returns I consider three classes of objective
functions that aggregate the results differently:

• Mean-Squared Error: I construct mean-squared error measures for the quantities defined
above by taking TW-averages of the asset- specific squared errors, and then N-averages:

MSE =
1
N

N

∑
i=1

(
1

TW

TW

∑
t∗=1

error2
i,t∗

)
(2.20)

• Mean-Absolute Error: I calculate the deviation of the model-implied common component
from the realised return in absolute value, and similarly to MSE I firstly take Tw-averages
and then N-averages:

MAE =
1
N

N

∑
i=1

(
1

TW

TW

∑
t∗=1

|errori,t∗ |
)

(2.21)

• R2: the suite of R2-based measures that I adopt for performance evaluation is taken from
Gu, Kelly, and Xiu (2020) and Kelly, Palhares, and Pruitt (2021). The intuition behind
the metric is to quantify the model’s explained panel covariation with respect to the total
variance proxied by the squared-return process.

R2 = 1 −
∑i,t∗ error2

i,t∗

∑i,t∗ r 2
i,t∗·

(2.22)

The notation ∑i,t∗ denotes aggregation over time and assets, with r 2
i,t∗· being the squared

realised return either at time t∗, for the case of IS error, or at time t∗ + h for the forward-
looking error measures (OOS, COND, and PRED error). I follow Gu, Kelly, and Xiu (2020)
and calculate the denominator in (2.22) as the sum of squared returns without demeaning.
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They find that historical averages severely underperform a naive zero benchmark in out-
of-sample fits using single-name stocks, resulting in estimates of the time-varying alphas
that are so noisy to unduly inflate the R2.

error ∈ {IS, OOS, COND, PRED}

The performance measures are calculated for all out-of-sample periods, t∗ = 1, ..., TW , and
in the notation above, N may include equities belonging to a particular region, GICS industry
group, or potentially the full cross-section.
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2.4 Data and Factors

This section is split into two parts. In the first part, Section 2.4.1, I describe the data sources and
report the summary statistics on the panel of weekly excess (log-) returns. In the second part,
Section 2.4.2, I examine the factor space implied by the models outlined in Section 2.2, which
include the three benchmark models (MKT, FF3 and FF5), as well as the candidate Regional
model featuring latent factors. Further details on the data cleaning procedure as well as on the
regional classification of my stock universe are found in Appendix B.3.

2.4.1 Data Description

The data source is Bloomberg. We download end-of-week (Friday) closing prices for all the
tickers that entered the 48 national stock market indeces at some point during the sample
period, January 2006 to end of May 2019. Historical member composition of the stock market
indeces is available at monthly frequency. All prices are expressed in US dollars, are adjusted
for splits, and include dividend payments. The emphasis in this chapter is on the regional
classification of stocks, and we follow Bekaert et al. (2014) who partition their universe into
six regions based on the company’s domicile: North America, Latin America, Asia-Pacific,
Western Europe, Emerging Europe, and Middle East & Africa.

Table 2.2 reports the countries that are considered for each region, and for each country it
shows the total number of tickers that entered the index in the sample period, column #Stocks,
the number of stocks with complete price series, at least one year of weekly data and no more
than 12 consecutive missing observations, column #Selected, as well as the tickers that remain
listed in the stock market indeces during the entire sample, column #Full. The total number
of tickers with complete price series in the 13-year sample is N = 1686, and throughout this
chapter I present the results only for this cross-section of stocks. In the rolling out-of-sample
forecasting framework, the cross-sectional dimension is assumed to be time-varying, Nt∗ with
t∗ = 1, ..., TW , and reflects the composition of the index members during the W weeks that make
up each window. However, to ease the comparison across models and window sizes I keep N
fixed and present a portion of my results (which are available for a much larger cross-section
of 2905 tickers, see column #Selected).

[Table 2.2 about here.]

I calculate week-on-week log-returns for all stocks in excess of the USD overnight index
swap rate. Unless stated otherwise, throughout this chapter I refer to returns as the ratio of
consecutive log-prices in excess of the risk free rate proxy. The latter is available in annualised
terms, and I divide it by 52 (number of weeks in a fiscal year) to obtain an equivalent weekly
figure. Once the ‘raw’ week-on-week excess returns are computed for the observed factors
(local FF factors, MKT factor, and the S&P500 Financials) and stocks, I winsorise the individual
time series at 99% level.
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[Table 2.3 about here.]

Table 2.3 reports N-averages of the summary statistics based on the weekly stock returns,
together with cross-sectional averages of market capitalisation, total assets and total debt, val-
ues in $B. I present the results region- and industry-wise, using the 11 GICS industry groups
for the latter10. Throughout the sample, the stocks in the Asia-Pacific region have returned an
average of 12bp a week, followed by the MEA, and North America stocks with 10.78bp and
7.17bp respectively. The average excess return for the stocks in the Emerging Europe region
is the lowest with −7.2bp. In Section 2.4.2 I describe how these figures determine the risk
premia of the regional latent factors, which are assumed to have zero mean in standard PCA
theory. Looking at the median estimates, the stocks with the highest median weekly return
are found on average in developed markets such as North America and Western Europe, with
9.6bp and 7.5bp respectively. For the stocks listed in the Latin America, Asia-Pacific, and
Emerging Europe region I report the highest volatility figures, which is expected given the
higher risk-return profile of the tickers operating in emerging market regions. Based on the
estimated intra-group dependencies, Pearson, I also find that the stocks belonging to developed
markets such as Western Europe and North America are more integrated and show a high
correlation level, while the lowest figures are found in the developing Asia-Pacific and MEA
regions.

Balance sheet data show that the companies listed in the Western Euorpe and North
America regions have highest market capitalisation, total assets and total debt. Similarly to
Chapter 1, the issue of micro-cap stocks does not seem to be relevant in my universe given the
a minimum average market capitalisation across regions of about 1.5 Billion USD, for MEA
and Emerging Europe.

Industry-wise, my results show that the companies operating in sectors such as Energy and
Financials are the ones with the highest intra-group correlation figures. Macro factors such
as fluctuations in interest rates and commodity prices tend to have a wide-spread impact on
the equities operating in these sectors. Excluding Financials, the companies in the Energy,
Communication Services and Utilities sectors have highest assets and debt, in line with the
level of infrastructures needed for the businesses.

2.4.2 Estimated Factor Space

I now examine the factor space implied by the specifications described in Section 2.2, and com-
pare the benchmark observed factors of the MKT, FF3 and FF5 models against the set of ob-
served and latent factors of the Regional model.

10From the industry-wise results I exclude 4 tickers with missing industry classification.
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Benchmark Observed Factors

MKT model. The benchmark observed factor that I examine first is the equal-weighted average
portfolio of all stocks in my universe, which serves as an ad-hoc proxy of the ‘stock market
factor’ for the panel of international stock returns. Figure 2.1 shows the cumulative returns
of the global 1/N portfolio and reports the estimated summary statistics based on the full
sample. Mapping the cumulative factor returns to the financial and macro events listed in the
economic calendar reveals that the MKT factor responds negatively to the GFC of 2008-2009,
and the ESDC of 2011-2013, see the grey bands in panel 2.1a. A further set of events that
appears to affect the market portfolio is the crash of the Chinese stock market in mid-2015,
with cumulative factor returns turning negative for the first time after the GFC, together with
the oil glut initiated at the end of 2014. From the end of 2016 factor returns enjoyed positive
momentum, reaching a peak at the beginning of 2018. However, throughout 2018 the world
stock markets suffered one of the worst years due to escalation of the trade war between China
and the me, a major slowdown in global economic growth, and mounting concerns that the
Federal Reserve was raising interest rates too quickly. Investing in the (ex-post) global 1/N
portfolio since 2006 yields an average yearly return of 1%.

[Figure 2.1 about here.]

FF models. I now analyse the dynamics of factor returns for the FF3 model, featuring the
MKT, SMB, and HML factors, as well as for the FF5 model with the additional robustness,
RMW, and profitability, CMA, factors. Results are region specific, and details on the FF regional
classification are found in Appendix B.3. Figure 2.2 shows the cumulative returns on the FF
factors, and reports the estimated in-sample summary statistics based on the weekly excess
(log-) returns.

[Figure 2.2 about here.]

North America. In the North America region, the MKT factor cumulative returns turn
progressively negative at the beginning of 2009, recovering to pre-crisis levels only in early
2014. Returns on a portfolio of small-minus-large stocks together with the value-minus-growth
portfolio enter a downward spiral during the GCF, albeit to a lower extent than the MKT factor.
Investing into the RMW profitability portfolio would have hedged against the market-wide
drop at the outset of the crisis in 2008, before following the bear market in the first half of
2009. On the other hand, the CMA investment value factor would have protected a me-based
investor during the entire two-year period. During the ESDC, returns on the MKT and SMB
factors turn progressively negative, while returns on the HML and CMA portfolios enjoy
positive momentum. In the weeks prior the presidential me elections of 2016 returns on the
MKT, SMB and RMW portfolios enter a downward phase, while the benefits of investing into
stocks with high book-to-market ratios and stocks with a conservative investment approach
(relative to the low B/M and aggressive investment style counterparts) increase significantly.
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Overall, I find a negative relationship in the sample period between the cumulative returns of
the MKT and the RMW portfolios (−0.82), confirming the role of the latter in hedging against
market-wide fluctuations. On the other hand, the CMA investment value factor appears to be
redundant with respect to the HML book-to-market value factor, with the correlation between
cumulative factor returns yielding 0.83 in the sample period.

From the estimated risk premia, I find that the MKT factor’s average return in the sample
period is 8% annualised, which is in line with the figures commonly reported in the asset
pricing literature. The RMW factor is the second-best factor in terms of average annualised
returns, 3%, followed by CMA with a near-zero value, while the SMB and HML factors earn
negative lambdas of −1% and −3% respectively. The variance of the factor is normalised to
unity in the sample period, and I analyse the higher moments of the returns distribution to
gauge the risk profile of each factor. The HML and CMA factors are the only ones showing
evidence of positively skewed return distributions, with the MKT factor being the one with the
most negative value among the five. Between the HML and CMA factors, the former appears
to be the riskier in terms of estimated fourth moments. I find that the MKT and the HML
factors show evidence of heavy tails in their return distribution, with a sample kurtosis near
4.5. I also notice that the returns of the SMB and the RMW factors are normally distributed in
the sample period according to the JB test, p-values of 0.19 and 0.15 respectively.

Asia Pacific. Moving on to set of FF factors for the Asia-Pacific region, I find that the MKT
and SMB factors share similar dynamics from the beginning of the sample up to mid-2012.
From the outset of the Chinese stock market crash, I find that the value-minus-growth portfolio
starts to track the performance of the MKT factor up to mid-2018, which marks the start of
the trade war between the me and China. Similarly to the case of North America, the CMA
factor returns are negatively correlated with the market-wide factor returns, with a Pearson
correlation coefficient of −0.65 in the sample period. The CMA factor returns show a 0.41
Pearson correlation with the returns on the HML portfolio, and the RMA factor returns are
negatively correlated with the HML portfolio gains, with an estimated in-sample coefficient of
−0.55. Investing into the small-minus-big portfolio at the outset of the Chinese stock market
crash would have effectively protected against the market-wide drop, as well as against the
loss realised on the RMW portfolio. While the hedging potential of the RMW factor is strong in
the North America region, for the equities listed in the Asia-Pacific region this is not apparent.
During the period mid-2015 to mid-2016 the only portfolio outperforming the market is the
small-minus-large stocks portfolio.

The estimated risk premium on the MKT is similar to the figures reported for the North
America region, however the HML risk premium yields 4% annual, while it is negative in
North America. This indicates that investing in value stocks would have outperformed an
equivalent investment into growth stocks in the Asia-Pacific region. The returns on the HML
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factor are also the ones which are influenced the least among the FF3 factors by extreme
swings, with an in-sample kurtosis of 3.6. The excess return on the RMW portfolio is on
average 2% yearly, and both the HML and RMW portfolios show evidence of little deviation
from the Gaussian pattern in terms of third and fourth moments. The CMA investment factor
yields a premium similar to the HML factor, but has fatter tails in the returns distribution,
indicating a higher risk profile. Similarly to the North America case, the CMA factor returns
are positively skewed with a coefficient of 0.25.

Western Europe. The MKT factor dynamics for the equities listed in the Western Europe
region are in line with what reported earlier for North America and Asia-Pacific. After the
GCF, the MKT factor recovers much quicker in the European region than in North America,
and at the outset of the ESDC it suffered more in the European region with respect to the others.
Similarly to the case of North America and Asia-Pacific, the returns on the CMA investment
factor increased in mid-2009, providing an hedge against market-wide fluctuations. During
the ESDC the RMW profitability portfolio is the best performer among all five, and this is also
true at the outset of the Chinese market slowdown in 2015 when the returns on the RMW factor
consistently increase throughout the turmoil phase. I also find that in the weeks preceding the
Brexit referendum the CMA and RMW cumulative factor returns increase, while the SMB and
HML factors entere a downward phase.

In the Western Europe region the average market premium is 5% annualised, similar to the
excess returned earned on the RMW profitability portfolio. In this region the value premium
is negative with a coefficient of −2%, which indicates little benefits in investing into stocks
with a high B/M ratio. In Western Europe, factors other than the MKT share a similar risk
profile based on the estimated in-sample kurtosis of 3.4 (RMW) and 3.9 (SMB, HML, CMA).
In Western Europe the MKT factor follows closely the performance of the HML portfolio in
the sample period, with a correlation coefficient of 0.48 between returns and a similar figure
for the cumulative returns. The RMW factor returns are negatively correlated with the HML
returns with a Pearson coefficient of −0.72, and of −0.80 between the respective cumulative
series.

Overview. To summarise, the key takeaways from the analysis of the region- and factor- spe-
cific results for the FF models are as follows.

• During the GCF, the returns on the MKT, SMB and HML portfolios turn progressively
negative with respect to pre-2008 levels in all regions. In North America and Asia-Pacific,
investing into the HML value portfolio would have provided a moderate level of pro-
tection against the market-wide drop at the beginning of 2009. Notably, the returns on
the CMA investment factor increase significantly during this period across all regions. In
the North America region, the CMA factor returns also enjoy positive momentum during
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the ESDC, following the performance of the HML factor (only in this region). At the out-
set of the Chinese stock market crash, in the Asia-Pacific region CMA and SMB factors
are the only ones hedging against market-wide fluctuations. In-sample correlations be-
tween the MKT and CMA factor returns are all negative, respectively −0.26 for the North
America, −0.56 for Asia-Pacific, and −0.27 for Western Europe. This finding suggests
that investing into a portfolio that sorts stocks based on total asset growth (better per-
formance for companies with low total asset growth, ‘conservative’, with respect to the
the high- growth counterparts, ‘aggressive’) would have protected a me-based investor
against the market-wide drop in the GFC, and to a lesser extent also in the ESDC.

• The RMW factor provides an hedge against market turmoil of the GFC in the North
America region. In the midst of the ESDC, the returns on RMW factor also increase for
the stocks domiciled in North America, together with those in the Western Europe region.
In the latter, all factors other than the RMW enter a downward phase during this period.
Overall, I find that for the developed markets, a portfolio that sorts stocks based on the
company’s operating profitability (better performance for companies with a higher prof-
itability, ‘robust’, with respect to the low- profitability counterparts, ‘weak’) would have
protected a me-based investor during the Debt crisis. This does not apply to the de-
veloping Asia-Pacific equity markets, where the RMW factor returns turn progressively
negative during the Chinese stock market crash in early 2015.

• The FF factors are not orthogonal to each other, which implies that they do not effectively
isolate different sources of systematic variation in the excess returns. Based on the esti-
mated in-sample correlations, in the North America region the HML and CMA factors
share very similar dynamics, with estimates of 0.83 between the cumulative returns, and
0.46 between the weekly returns. In Asia-Pacific the figures drop to 0.58 and 0.41 respec-
tively, but are still the highest across all factor pairs for the region. In Western Europe, the
correlation between the HML and CMA factor returns yields a modest 0.21 coefficient,
the lowest figure across all regions. This finding is in line with Fama and French (2015)
who report that with the addition of profitability and investment factors, the HML value
factor becomes redundant for describing average return patterns.

Contrarily to the set of FF factors, the factor extraction procedure that I use to identify the
financial factor and estimate the latent factors (for the Regional model of Borghi et al. (2018))
imposes orthogonality among the factors. By construction, the latent factors estimated via
PCA are orthogonal to each other and maximize the share of explained covariation in the ex-
cess stock returns. In Section 2.4.2, I study how the identification of the ‘stock market factor’
with different equity indeces plays a crucial role in determining the information content of the
estimated factor space. I present the factor extraction results in Section 2.4.2.



86 Chapter 2. The Role of Rolling Betas in the Cross-Section of Stock Returns

Observed Financial Factor

I identify the financial factor Ft of model (2.9) with the S&P500 Financials. My procedure exam-
ines the information content of the residual matrix of returns, after orthogonalisation against
Ft, to determine which index is best suited to represent the broad ‘stock market factor’. Figure
2.3 reports the results.

[Figure 2.3 about here.]

Panel 2.3a shows the time-series plot of the cumulative factor returns during the sample
period. At the outset of the GFC, the Financials indeces have a steeper decline with respect to
the others, while the MSCI World and the EW factors are the best performer given their diverse
(global) composition. In panel 2.3b I report the ratio of consecutive eigenvalues estimated via
PCA based on the (T × N) matrix of excess returns after orthogonalisation against each of the
candidate factors. In standard PCA theory, the largest eigenvalues of the in-sample covariance
matrix of asset returns are driven by the factors, which motivates the use of PCA for factor
extraction purposes11. Traditional factor models as in Stock and Watson (2002) are based on
the assumption that all factors are ‘strong’, in the sense that the strength of systematic factors
is given by their corresponding eigenvalue. Following the interpretation of Lettau and Pelger
(2020b), weak factors can be thought as either factors with only a weak effect on many assets,
or factors with a strong effects on a few assets. In their paper, the authors analyse the empirical
spectrum of the eigenvalues extracted from equity (portfolio) data, and find that the first
eigenvalue of the sample covariance matrix is usually very large, while the second and third
eigenvalues have only magnitude around twice or three times of the average of the residual
spectrum (i.e. the eigenvalues of e). I adopt a similar approach to Lettau and Pelger (2020b)
and report the ratio of consecutive eigenvalues estimated from the residuals of a regression of
the excess returns matrix against the candidate equity indeces, see panel 2.3a.

I find that when I identify the financial factor with the S&P500 Financials, which tracks
the performance of me Financials stocks, the evidence for the existence of a latent dominant
factor in the residual matrix is strong, with a ratio between the first and second eigenvalues
of 4.5. This is true to a lesser extent for the S&P500 index, which is confined to represent the
performance of the regional me stock market despite including companies belonging to sectors
other than Financials. When I move to the MSCI indeces, due to their global composition,
the magnitude of the first eigenvalue drops to 1.5 to 2 times the one of the second characteristic
root. My results suggest that the identification of the financial factor with the S&P500 Financials
index eases the estimation of the global latent factor, which is considered to be a ‘strong’ factor
affecting all stocks in the panel. For economic interpretation, this allows me to isolate sources of
systematic variation in the stock returns that are not related (linearly) to the American financial

11In the equivalent static-loadings version of equation B.1, Appendix B.1, the eigenvalues of cov(r1:T) are driven
by the relevant factors.
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sector’s performance. In the next section, I describe in detail the factor extraction procedure of
the global and regional factors.

Latent Factors

In this section, I report the results of the factor extraction procedure for the global latent factor
and the six regional factors featured in the Regional model. Figure 2.4 reports the results.

[Figure 2.4 about here.]

After orthogonalisation against the S&P500 Financials, I estimate the global latent factor
via PCA. Panel 2.4a shows the time-series plot of the cumulative global factor returns during
the sample period. The global factor dynamics are influenced by the financial and macro
events that I consider in my economic calendar. During the GFC, global factor returns turn
progressively negative from the second half of 2008 up to the beginning of new year, and by
the end of 2009, the rebound in equity markets is significant for most of the regions considered.
In Europe, the FTSE saw its biggest annual gain since 1997, rising 22% over the course of
the year, Germany’s DAX rose 23%, while France’s CAC added 22%. In Asia, the Shanghai
Composite jumped by a staggering 80% year-on-year, and the broad me stock market also
enjoyed a strong performance. The global factor isolates sources of variation in the excess
stock returns that are not linked to the performance of American financials stocks, thus given
the broad composition of my universe the rally is in line with my expectation. At the outset of
the ESDC, both the financial and global factors enter a downward phase, however the former
rebounds much quicker than the latter during the two-year period from mid 2011 to the
beginning of 2013. The most relevant drop in the global factor returns is experienced during
the period mid-2015 to end of 2016, which coincides with a major slowdown in economic
growth, the Chinese stock market crash and the oil glut. Towards June of the same year, the
events linked to UK’s exit from the EU system appear to influence negatively the performance
of the global factor, while the returns on the financial factor enjoy positive momentum. Finally,
during 2018 global factor returns dip amid the uncertainty related to the me-China trade war,
a fear that continued interest rate increases could trigger a recession, and the slowest growth
figures in China since the global financial crisis.

Moving on to the region-specific factors, panel 2.4b reports the cumulative returns of the
six estimated local factors, and panel 2.4c shows the in-sample summary statistics. In-sample
variances are normalised to one, and I refer to the sample kurtosis figures to gauge the risk
profile of the factors. The factors with returns showing evidence of fat tails are the ones corre-
sponding to to emerging market regions such as Latin America, Emerging Europe, MEA and
Asia-Pacific, listed in descending order. The risk premia are estimated as the realised return on
an equally-weighted portfolio made of all stocks in the relevant region, I plot the time-series of
this portfolio which I refer to as ‘index proxy’ in figure 2.5. The local factors are estimated via
PCA based on the matrix of orthogonal returns with respect to the financial and global factors,
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and are calculated as the first principal component of the region-specific matrix of (orthogonal)
excess returns. In the same exhibits, I also calculate the rolling correlations between the factor
and index proxy returns to interpret the results economically. The regional factor dynamics are
related to the performance of the index proxies, and I analyse how their (linear) relationship
changes over time.

[Figure 2.5 about here.]

North America. I start with panel 2.5a that reports the results for North America. During
the GFC, the correlation between the factor and index proxy drops significantly to near zero
territory, and even turns negative in the first half of 2009, indicating that the regional factor
is effectively pricing a different source of systematic variation in the returns other than the
market. Looking at the cumulative factor returns, I find that they turn progressively positive
during this period, while the broad North American market factor experiences a significant
drop. This behavior is similar to the one of the RMW factor for the same region and, across
all FF factors, the North America regional factor returns has an in-sample correlation of 0.35
with the RMW returns, the highest across all factor pairs. From mid-2008 up to mid-2009, the
North America regional factor and the RMW portfolio share very close dynamics, indicating
that the estimated factor is effectively mimicking the performance of the robust-minus-week
(profitability) factor. Similarly, at the outset of the ESDC the correlation between the factor and
index proxy turns gradually negative, and the North America regional factor starts to track the
returns on the HML portfolio. From the end of the ESDC up to the start of 2016, the regional
factors performance follows the one of the index proxy before dropping consistently in the
months leading to the US presidential elections, this represents the biggest drop in cumulative
factor returns in the sample period.

Latin America. Panel 2.5b shows the results for the Latin America region, where I find
that the in-sample correlation between the between the returns of the latent factor and index
proxy is the highest across all regions, with 0.51. During the GFC, the returns on the equally-
weighted portfolio made of all tickers in the regions turn progressively negative, while the
factor returns are stable. The correlation between the two drops to a low of −0.01 in mid-2009,
indicating that the behavior of the factor was not related to the one of the (regional) market in
this period. From the end of GFC, the latent factor starts to mimic closely the performance of
the equity index proxy, this can be seen from the short-term correlation estimates using one
and two years of the most recent data. I highlight in red the dates corresponding to the oil
price crisis in panel 2.5b, and I find that during this period the correlations between the factor
and index proxy drop significantly. Latin America as a region is an important contributor to
the world supply of petroleum 12, which is why I focus on the impact of the oil price turmoil
in this region. I notice a diverging behavior of the index proxy and the regional factor, with

12Brazil is currently estimated to be among the top top countries for oil production, Argentina is at the 26th place
and Peru at the 41th place
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the returns on the latter increasing consistently during the period while the market index is
affected by the drop in oil prices. This behavior is similar to the one reported for the CMA
factor in the other regions, i.e. showing hedging potential against market-wide drops, however
a direct comparison with the FF framework is not possible due to the limitation in the stock
universe considered. See Appendix B.3 for further details.

Emerging Europe. In the Emerging Europe region, panel 2.5d, the correlation between the
factor and the index proxy returns drops to negative territory at the end of 2009, a behavior
which is similar to the one of Latin America. The post-crisis rebound in economic activity can
be seen from the factor and index proxy returns enjoying positive momentum up to the start
of the ESDC, when I find again that the index proxy and the factor de-correlate. This is also
true during the oil price crisis, when the index returns enter a downward spiral and the factor
returns increase consistently. The in-sample correlation between the cumulative returns of
the Emerging Europe factor and the Western Europe-specific RMW factor (the ‘closest’ region
against which I can compare my estimates) yields 0.73, indicating that a similar role of the
latent factor for this region with respect to the profitability portfolio of FF5.

Western Europe. Panel 2.5c reports the results for Western Europe. During the ESDC, factor
returns turn progressively positive after a serious drop in the series of cumulative returns at
the outset of the crisis in late 2011. In the months that follow, the correlation between the
proxy and the factor returns is the highest in the sample period, reaching 0.8 in late 2013.
This indicates that the latent factor is tracking the performance of the broad stock market
index for the region during this period. At the beginning of 2015, the factor starts to price a
different source of systematic variation, which is not captured by the market performance.
While the latter decrease from the highs of mid 2014, the regional factor returns enjoy positive
momentum, reaching an high at the beginning of 2016. The correlations between the factor
and the proxy drop by more than 0.7 in absolute value in the period 2015-2016. I also find that
the factor returns are negatively influenced by the outcome of the Brexit referendum in the
summer of 2016, and this is also true for the index proxy. In the weeks preceding the vote, the
factor returns closely follow the performance of the stock market index.

Asia Pacific. I analyse the set of results related to the Asia-Pacific region in panel 2.5e.
Similarly for all the other regions, during the GFC the correlation between the factor and the
index proxy peaks and drops to near zero (and even negative) territory by the beginning of the
following year. In the year 2009, the estimated factor rebounds quicker than the index proxy in
the Asia-Pacific region, but enter a downward phase which continues up to the beginning of
2015. On the other hand, the post-crisis performance of the index proxy is positive throughout
this period. During the Chinese stock market turmoil, the factor returns follow market
dynamics and this can be seen from the short-term estimates of linear relationship between
the two. After 2016, the factor and index proxy’s trajectory are similar. Throughout the whole



90 Chapter 2. The Role of Rolling Betas in the Cross-Section of Stock Returns

sample, the OLS estimate of linear relationship between the two is the third-highest across all
regions, 0.44, indicating a strong mapping between the latent factor and the observed index
proxy.

MEA. For the MEA region, panel 2.5f, the correlation between the index proxy and the
factor is 0.86 during the sample. This case is peculiar to the composition of the region, which
includes just one country and as such the factor extraction procedure yields a latent factor (first
PC) that has a strong correlation with the broad stock market index for the region.

To complement the time-varying analysis on the relationship between the latent factors
and the observed index proxies, I calculate the in-sample correlations between the regional
index proxies and the latent factors. By construction, the regional factors can be correlated
with one another and as such they shape the comovement structure implied by the Regional
model13. Table 2.4 reports the results.

I observe on average high correlations among the returns on the 1/N portfolios, the most
prominent being the one between the two developed markets in my sample, North America
and Western Europe, with a in-sample coefficient of 0.89, highlighted in black in table 2.4. I also
find a strong (linear) relationship between the returns of the equity indeces of Western Europe
and the neighbouring Emerging Europe regions, 0.82, followed by the figure specific for the
Latin and North America factors, 0.77. These values are highlighted in blue in table 2.4. On
the other hand, I see little evidence of market integration between the equities belonging to the
North America and MEA regions, with the correlation between the two being the lowest across
all pairs, highlighted in red in the table reporting the estimates for the equity index proxies.
In panel 2.4a I report the statistically significant Pearson correlation estimates for the regional
factors14. I find that for North America, all correlations with respect to the other five regional
factors are different from zero, the highest being the one with Western Europe, 0.24, and the
lowest with MEA, −0.15. The level of commonality between the regional factor returns of the
neighboring Latin and North America region is 0.08, the latter also includes Mexico, a coun-
try that has strong link with the economies in the southern American continent. I also find a
negative correlation between the returns of the North America and Asia-Pacific factors, −0.06,
although significant only at 10% level. A similar case is for the Western Euorpe region, which
show statistically significant links with all the other regions, Latin America excluded. The ex-
post factor returns of the Western Europe factor are negatively correlated with the Asia-Pacific
returns and mildly correlated with the Emerging Europe region. The second-highest correla-
tion estimates are the ones between emerging economies. For instance Emerging Europe and
Latin America show a 0.13 coefficient, similarly Western Europe and MEA due to the proxim-
ity of Morocco to southern European countries such as Spain and France, and in general to its

13On the other hand, the financial and global factors are orthogonal to each other and to each of the local factors
- see the sparsity conditions imposed on the block-diagonal matrix of the factor loadings in (2.10).

14This corresponds to the quantity cov( f1:T) in equation (B.1).
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special partnership status with the EU.

[Table 2.4 about here.]
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2.5 Model Comparison

In this section, I compare the results of the rolling beta estimates using different statistical
measures that examine the models’ ability to explain and predict excess equity returns. I firstly
present the results of OLS beta estimates on the full sample, Section 2.5.1, and then analyse the
properties of the rolling least squares estimator in Section 2.5.2. I estimate the out-of-sample
rolling betas considering the historical member composition of the national indeces, which
effectively makes the dimension N time-varying. However, to ease the comparison across
models, in what follows I report the results only for the 1686 unique tickers with complete
price series in the 13-year sample considered15. Moreover, before estimation I winsorise the
data (factors and single stock returns) at 99% level, and standardise them to have unit variance
and zero mean in the sample period. Figures on the goodness of fit of the models, and on the
relative statistical significance of the factor betas are not affected by this normalisation.

It should be noted that while one of the advantages of my setup is that I am able to isolate
the relative error from the rolling estimation of time-varying betas for different window size,
when I take the factor returns of the Regional model as given I am implicitly conditioning on
future knowledge. The estimation of global and regional factors via PCA is in fact conducted
using data on the full sample. The bias in the performance measures becomes relevant when
I compare other models against the Regional model for a given window size. However when
I compare the performance of Regional model across window sizes I am conditioning on the
same set of factor returns at time t∗ and the relative error in the factors be considered constant.
The results for the MKT model and the FF models are not influenced by the look-ahead bias
since the factors are observed, and not estimated.

2.5.1 Static Loadings

I analyse the results of the least square beta estimates on the full sample by model specification
and report aggregate statistical measures across regions and industries. For each factor, I report
the average beta magnitude, and the average absolute value of the t-statistic, and for each
region and industry I show the N-average R2 for the stocks in the relevant group. Table 2.5
shows the results for the single-factor MKT model, panel 2.5b, the three-factor Regional model,
panel 2.5a, and panels 2.5c and 2.5d for the FF models.

[Table 2.5 about here.]

MKT model. I start by analysing the most parsimonious model. With a single factor con-
structed as the 1/N portfolio of all the stocks in the universe, the static-loadings MKT model

15As I anticipated earlier, the FF factors are region-specific, and are constructed using a classification criterion
that closely matches the one in Bekaert et al. (2014). In their original work, FF3 and FF5 limit their analysis to three
distinct world regions. I use their factors as benchmarks in my analysis, and as such I can only report the results
for the cross-section of companies belonging to the North America, Asia-Pacific, and Western Europe regions. The
number of stocks considered is reduced from 1686 to 1232. Details on the country-region classification against which
I compare are found in Appendix B.3. Overall the grouping in FF is very similar to the one I consider.
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is able to explain a substantial portion of the contemporaneous returns in the developed
European region, R2 = 37%. The estimated beta parameter is on average 20 times larger than
its corresponding error, t-stat = 20.6, and the average beta magnitude is substantially higher
in this region, β̂mkt = 0.595. In terms of average goodness of fit, I find that the MKT model
performs best in developed markets such as Western Europe and North America compared
to all other regions. Sector-wise, I find that nearly 30% of stock returns comovements are
explained by exposures to the market factor in the Financials, Energy and Materials sectors.
I also record the highest beta magnitude and t-stats for these groups. The performance of
the companies operating in these sectors tend to follow the business cycle on the economy.
For instance, Financials stocks are negatively affected by a low-interest rate environment, a
situation typical of recessionary phases, while their valuation increases with rising interest
rates. Similarly, demand for energy and basic materials tend to be cyclical, which may help
explain why I see a better performance of the single-factor model in these sectors. As I
anticipated in Section 2.4.2, the equally-weighted portfolio of all stocks (EW) appears to be
among the best-suited to represent wide cross-sectional variation of stock returns for my
panel. Figure 2.3b shows that the ratio of consecutive eigenvalues estimated from the data
matrix after orthognalisation against the 1/N portfolios is one of the lowest, together with the
MSCI World index. Due to their composition, these indeces are less prone to fluctuations in
regional market performances, and are highly correlated with the first PC of all stocks, which
by definition maximises the share of explained co-variation in the stock returns.

Regional model. The candidate model of Borghi et al. (2018) features three factors, two of
which are latent. Stocks with a relatively higher sensibility to shocks to the financial factor,
proxied by the S&P500 Financials, are found in regions such as North America, and Western
Europe. I estimate an average factor beta of β̂ f in = 0.485, and 0.456 respectively. The average
t-stats for the loadings on these factors are the highest across all regions considered, 17.4
for North America, and 16.9 for Western Europe. For the three countries that make up the
North America region (Canada, USA, and Mexico) I find that only 31 of the 231 companies are
classified as Financials using the GICS convention, effectively ruling out the possibility of my
results being explained by the peculiar industry composition of the region. A similar result is
found in Western Europe as well, in which 16% of all stocks analysed operate in the financial
sector. For the other regions, I find considerable improvements in the average goodness of
fit (R2) with respect to the single-factor model, the biggest being the one in the MEA region
of about 20%, followed by Latin America and Asia-Pacific with a 10% increase, and finally
Emerging Europe with roughly 8%. Across all regions, the loadings on the observed financial
factor for the developing regions listed above are on average the lowest. The latent global
factor dominates the other two factors in terms of average beta mangnitude and t-stat in these
regions, similarly the regional factor becomes a substantial driver of stock return variation
and complements the role of the observed financial factor. In fact, the financial factor isolates
shocks peculiar to the US financial sector, while the local factor tends to follow the aggregate
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performance of the national equity indeces that make up each region. The role of the regional
factor is similar to the one of the financial factor in the Latin America region, this can be seen
from the estimated beta magnitudes and t-stats of respectively β̂reg = 0.239 and t-stat= 8.2,
and β̂ f in = 0.288 and t-stat= 9.5. The equities domiciled in this region share close trade links
with the neighbouring North America, and are in general influenced by the performance
of the dollar-denominated stock market. However, there are also peculiar characteristics
for the tickers operating in this region that call for the addition of a factor able to represent
region-wide cross-sectional differences. In Asia-Pacific I find a similar case as the one for Latin
America, the stock returns load with an average β̂ f in = 0.227 coefficient on the financial factor,
and β̂reg = 0.182 on the regional factor.

Industry-wise, I find the biggest increases in the R2 with respect to the benchmark MKT
model in the Utilities sectors, with a delta of 12% on average, followed by Financials and
Industrials, with an increase of 10%, and by the Materials sector with a 9% gain. Interestingly,
the biggest gain in R2 across all groups is the one in the Utilities sector, which is commonly
referred to as a ‘defensive sector’ because of its anti-cyclical behavior. Companies in this sector
tend to offer investors with a stable and consistent dividend flow, and are also less prone to
price volatility with respect to other industry groups. This is also confirmed by the average
estimated standard deviation of the returns in table 2.3a being the lowest across all regions
and industries considered. The case for Utilities is peculiar because it is one of the few groups
in which the global and regional factor loadings play a bigger role than the observed factors, in
terms of average beta magnitude and t-stat. In fact, the betas on the global factor for Utilities
are the highest in magnitude with a β̂glob = 0.314 coefficient, followed by the regional and
financial factor with β̂reg = 0.265 and β̂ f in = 0.264. This ranking is analogous considering
t-stats.

FF models. Across all groups of stocks, the FF3 model explains a substantial portion of the
contemporaneous variation in the returns of the stocks domiciled in the North America and
Western Europe regions, R2 = 0.34 and 0.41, and of stocks operating in industries such as
Financials, Industrials, and Materials, with an average goodness of fit of R2 = 0.42, 0.33, and
0.32 respectively. Compared to the MKT model, the gain in performance in the Asia-Pacific
region is negligible, with about a 1% increase in the R2, indicating that the ‘local’ FF3 model is
not able to accurately explain the variation in stock returns for this region. Industry-wise, the
R2s of the FF3 model are on average 5% bigger than the corresponding figures for the MKT
model, the biggest gain is found for Financial stocks, with a delta of 11%. For the latter group
I find that the estimated betas on the size factor are on average statistically insignificant at 5%
level, with a t-stat of 1.9, and that average beta magnitude of the value factor β̂HML = 0.126
dwarf the beta estimates across all other groups. In fact, across all groups with the exception of
the value factor for Financials, the loads on the SMB and HML factors are at least one order of
magnitude lower with respect to the ones for the MKT factor. Average statistical significance
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of the estimated parameters is also one order of magnitude lower. The highest figures for the
SMB factor loadings are the ones corresponding to the Materials and Consumer Staples sectors,
t-stat= 2.8, followed by Western Europe, Health Care, and Industrials with a t-stat on the size
factor of about 2.7. For the HML factor with the exception of Financials, the highest t-stats
are the ones in Health Care, t-stat= 2.9, and Western Europe. I find a statistically significant
average negative loading of β̂SMB = −0.015 on the size factor in North America, which sug-
gests that the benefits of investing into small-cap stocks with respect to the highly capitalised
counterparts are slim in this region. Negative loadings on the SMB factor are also found in
typical ‘defensive’ sectors such as Consumer Staples, and Health Care, which tend to protect
an investor against downside risk and offer a lower volatility profile than other industries. In
table 2.3a I record the lowest standard deviation of weekly returns for these sectors. Load-
ings on the value factor for sectors such as Consumer Staples and Health Care are also negative.

Comparing the FF3 model with FF5 suggests that the addition of the profitability and
investment factors does not bring substantial gains in terms of average goodness of fit. Across
all groups, the improvement in R2 is about 1 to 2%. The RMW factor appears to be a statistical
significant driver of stock returns only for few groups, namely North America with a t-stat
of 2.2 and Financials with t-stat= 3. The CMA factor yields t-stats greater than 2 only for the
developed North America and Western Europe regions, and the Energy and Financials sectors.
For these regions, the loadings on the CMA factor, albeit relatively small compared to the
HML factor, are all negative. This result builds on the empirical evidence presented earlier on
the anti-cyclical behavior of the CMA factor returns during market turmoils. I corroborate the
evidence that the HML factor is redundant with the addition of the RMW and CMA factors.
Across all groups, the decline in the magnitude of the estimated beta parameters with respect
to their standard errors (t-stats) is apparent for the HML factor, when moving from the FF3
to the FF5 specification. In the FF5 specification the average t-stat on the HML factor for
Financials drops significantly from 5.2 (the highest across all groups for FF3) to 3.1. The North
American region is one of the few exception, together with Energy stocks, with β̂HML and its
relative t-stat increasing from FF3 to FF5. The loadings on the value factor for these group of
stocks are about 1/5th of the magnitude of the corresponding MKT factor laoads, and are the
highest across groups for all non-market factors (SMB, HML, RMW and CMA).

Overall, I find that the FF models’ performance decreases considerably in the Asian region
with respect to the others by a factor of 15 to 20%, in terms of average R2. My results are in line
with Kubota and Takehara (2018) who test the FF5 model in Japan and find little relation of
average returns with profitability and investment patterns, suggesting that the model cannot
be an adequate benchmark for the country in the sample period from 1978 to 2014. Among
the 484 stocks classified in the Asia-Pacific region, almost 1/4th of the stocks are domiciled
in Japan, followed by 90 domiciled in China. In Asia-Pacific, the addition of the RMW and
CMA factors makes the HML factor redundant (average t-stat), while the HML factor remains
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statistically significant in the FF3 specification. My results are also related to Guo et al. (2017)
who test the FF5 model for the Chinese stock market and find strong profitability patterns
in average returns, and weak investment patterns. They corroborate the evidence that the
significance of the HML factor is weakened in the more recent part of their sample (1997 to
2014), although they find that the value factor is non-redundant out-of-sample.

In the next section, I examine the results on the out-of-sample analysis on the beta loadings
for the models and I complement the static loadings analysis.

2.5.2 Dynamic Loadings

I now examine the dynamics of the estimated time-varying factor betas for varying window
size. I firstly compare the results from a statistical viewpoint by referring to the suite of perfor-
mance measures defined in Section 2.3.2, and then interpret the estimates economically.

Performance Evaluation

[Figure 2.6 about here.]

MKT model. I start by analysing the benchmark MKT model. Figure 2.6 shows N-averages
of the performance measures for the rolling OLS betas estimated with varying window sizes.
Based on the in-sample estimates, I find that a window made of the most recent five-year
observations gives the lowest MSE and MAE, IS MSE = 22.9%% and IS MAE = 2.9%, while
the R2-based measure of Kelly, Palhares, and Pruitt (2021) is maximised using a short window
made of as little as 26 weekly observations, IS R2 = 26.8%. The out-of-sample estimates
suggest that in order to predict future return patterns a window size of two years maximises
the out-of-sample R2, OOS R2 = 20.1% in panel 2.6c. However, the MSE and MAE measures
indicate that a much longer window is needed to minimise the out-of-sample errors, OOS
MSE = 23.2%% with a five-year window, and OOS MAE ≈ 2.9% for the five- and ten-year
windows. Based on the MSE and MAE functions, I find that the five-year window pattern
finds strong support from the data. Contrarily, if I analyse the estimates from the R2 measures,
a clear pattern emerges. If I am interested in explaining contemporaneous-return variation, a
short-window approach is to be recommended, and this is very much in line with the results
of Lewellen and Nagel (2006). In a short-horizon forecasting settings (with h = 1 week), I
find support for the existence of a trade-off between length of the estimation window and
predictive power, based solely on the properties of time-varying rolling betas. In fact, panel
2.6c suggests that the OOS R2s are increasing in window size up to the two-year mark, before
deteriorating considerably with a longer estimation window. Based on the R2 measures, the
choice of the window length alone accounts for about ±10% of the model’s performance (the
difference between the R2s for the two- and ten-year windows).
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Based on the summary statistics of the estimated MKT betas, panel 2.6d, I find that the
magnitude of the loadings on the MKT factors is increasing with the window size, and that
their variance decreases with the sample size. This result is partly in line with standard OLS
theory, i.e. the variance of the beta OLS estimator is in fact decreasing in T as I anticipated
in Section 2.3.1, however the average beta value should not vary considerably. With steadily
increasing beta magnitude for longer sample sizes, the t-stats are also increasingly higher
and almost one order of magnitude apart at the extremes (half- and ten-year windows).
Choosing the window size based on the ‘strength’ of the beta signal leads to the use of
an-ever increasing window size, however the use of a long sample size can sometimes lead
to estimates that are not representative of current market conditions, due to the presence
of breaks in the times series. In panel 2.6d I also report the figures based on TW-averages
of the R2s from the time-series (rolling) regressions at varying window size16. The results
are mixed and do not suggest that the existence of a trade-off between average goodness of
fit of the regressions (in the estimation phase) and window length. I find support for the
use of a short half-year window (second-best alternative), but a ten-year window performs
better. The average R2 from the short-window regressions is 25.6% (comparable to the five-
year benchmark, R2 = 25.4%), while the one for the ten-year regressions is the highest at 26.6%.

I now analyse the role of time-varying MKT betas in predicting future return patterns
based on the conditional and predictive error measures defined in Section 2.3.2. For the
calculation of the IS and OOS measures, I condition on the contemporaneous (time t∗) and
future (time t∗ + h) factor realisations respectively. I do so to isolate the channel through which
the estimation error of the time-varying betas influences the model’s ability to explain or
predict future return patterns. In the conditional error measures (COND), I take into account
the possibility of forecasting future return patterns based on the time-t∗ factor realisations
(ex-post), and on the time-t∗ betas.

The difference between a model’s OOS and COND measures quantifies the error from as-
suming that no change occurs in the evolution of the relevant factors from time t∗ to t∗ + h.
This difference is higher for a short window size, accounting for a 57% change in MSEs in rela-
tive terms, while it is minimised when a long window is employed, 24% change17. This result
suggests that even in a short-horizon forecasting framework (h = 1 week), the assumption of
constant factor realisations from period t∗ to t∗ + h is responsible for a substantial portion of
the model’s forecasting error, and this is exacerbated with the use of a short estimation sample.
In a conditional out-of-sample forecasting framework as in Inoue, Jin, and Rossi (2017), I expect

16Note that this measure does not quantify the forecasting ability of time-varying betas, rather the average good-
ness of fit of the time-series rolling regressions.

17The difference between the COND and OOS MSEs for the half-year window, ‘delta’, is about 15%%, considering
the MAE measures it is approximately 1%. Compared to the OOS measures, the COND measures are inflated by a
factor of 57% for the MSE, and by 30% for the MAE (half-year window case). Similarly for the ten-year window, the
COND measures are greater than the OOS counterparts by a factor of 24% for the mean-squared errors, and 20%
for the mean-absolute errors.
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their objective function (COND MSE) to be minimised with the use of a longer estimation sam-
ple. Based on the COND MSE and MAE measures, I find that a ten-year window minimises the
out-of-sample conditional error measure with COND MSE= 26.8%% and COND MAE= 3.2%.
In relative terms, this represents a 28% decrease in the COND MSEs, and a 20% decrease in the
COND MAEs, due solely to the different window size. Moving on the PRED measures, I find
that based on the expected return process the MKT model’s forecasting performance is higher
the longer the sample. The MSE and MAE are minimised with the use of a ten-year window.
Based on the difference between PRED and OOS measures (with window fixed), I find that
using the model’s pricing equation is always recommended over the expected return equation
for forecasting purposes. Interestingly, I find that using the model’s expected return process
with time-varying betas estimated every ten-year provides a similar forecasting performance
as using the model’s pricing equation with a short estimation window.

[Figure 2.7 about here.]

Regional model. I now analyse the performance of the candidate model. Based on the
in-sample measures, I find strong support for the use of a short estimation window with as
little as 26 observations. The MSE is minimised with a half-year estimation window, IS MSE
= 19.5%%, while the MAE is the third lowest and comparable to the five-year figure (the
MAE is minimised with a ten-year window). Contrarily to the MKT model, the IS R2 agrees
with the MSE and hints at the use of a short half-year estimation to explain contemporaneous
return patterns. The IS R2 is highest across windows with ≈ 42%. The out-of-sample estimates
suggest the existence of a pattern between average explained variation and window size,
and similarly to the MKT model I find that the OOS R2 is increasing in window size up
to the two-year mark, before decreasing sharply with longer time samples. The OOS MSE
indicate that a five-year window is the best suited, OOS MSE= 21.1%%, while the OOS MAE
is minimised with the longest window. All in all, I find strong support for the use of a short
estimation window in a contemporaneous-equations setting (in-sample), and for the two-year
window in a forecasting exercise (out-of-sample). Based on the R2 measures, the choice of
the window length alone accounts for about ±11% of the model’s out-of-sample forecasting
performance (the difference between the OOS R2s for the two- and ten-year windows, panel
2.7c).

From the summary statistics of the estimated factor betas, panel 2.7d, I find that the
magnitude of the loadings on all factors tend to increase with the sample size, and this is
true especially for the loadings on the observed factor. For the latent factors, I notice that the
average beta value across all stocks does not show evidence of a positive (monotonic) relation
with window size. On the other hand, I corroborate the evidence that the variance of the
beta OLS estimator is decreasing in T, and this is true for the loadings on the observed and
latent factors. Looking at the summary statistics, I find that although the half-year window
size provides the best forecasting performance according to the R2, the average t-stats of the
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betas indicate a slim margin of significance. For instance, the regional factor appears to be on
average not statistically significant at 5% level with a short estimation window. The t-stats of
the estimated loadings on the global factors fluctuate approximately around ≈ 1.9. In panel
2.7d I report the R2 figures based on TW-averages of the R2s from the time-series (rolling)
regressions at varying window size, and I find support for the existence of a trade-off between
average goodness of fit of the regressions (in the estimation phase) and window length. The
estimated betas are more volatile with a short estimation window, causing the t-stat to decline.
In this context I find that the choosing the optimal window based on the ‘strength’ of the beta
signal leads to the use of an-ever increasing window size, which contradicts the performance
measures. The average R2 from the short-window regressions is 40%, which is considerably
higher than all the other window size alternatives, and it is comparable in absolute value to
the in-sample R2-based error measure of Kelly, Palhares, and Pruitt (2021).

I analyse the role of time-varying betas on the financial, global and regional factors in
forecasting future return patterns based on the conditional and predictive error measures.
Taking an ex-post view of the factors (estimated on the full sample), the OOS measure uses
knowledge of the next-period ‘exact’ factor realisation (time t∗ + h) to quantify the error in the
beta estimates. Contrarily, if I condition on the current-period factor realisation (time t∗), the
COND measure gives me a comparable estimate to assess the error that occurs in assuming
time-invariant factor realisations.

The difference between a model’s OOS and COND measures is much higher in relative
terms than in the MKT model, and it is again minimised when a long estimation window is
employed. The ‘delta’ between the model’s OOS and COND errors is approximately 80% for
the MSEs and 40% for the MAEs, with a short half-year window observations, while it is much
lower with the use of a ten-year window18. The COND mean-squared-error function is also
featured in Inoue, Jin, and Rossi (2017), and based on my results in panels 2.7a and 2.7b I expect
their criterion to be minimised with the use of a long estimation window. The pooled COND
MSE for all stocks is minimised with the a ten-year window, with COND MSE = 32.1%% and
COND MAE = 3.6%, and similar results are achieved with a five-year window, which is the
second-best alternative, COND MSE = 34.3%% and COND MAE = 3.8%.

[Table 2.6 about here.]

In table 2.6 I report the results of the estimated optimal windows according to the criteria
of Inoue, Jin, and Rossi (2017), panel 2.6b, and Pesaran and Timmermann (2007), panel 2.6a.
For each stock, the estimate from the latter is an input of the objective function in Inoue, Jin,
and Rossi (2017). Across all stocks, the average estimated window size with the Pesaran and
Timmermann (2007) criterion is 5.1 years, while it is roughly 4 years of the most recent data

18Half-year window ‘delta’= 21%% for the MSE measures and ‘delta’= 1.3%. Compared to the OOS measures,
the COND mesures are inflated by a factor of 80% for the MSE and 40% for the MAE. For the ten-year window, the
COND measures are greater than the OOS ones by a factor of 41% for the MSE and 33% for the MAE.
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in Inoue, Jin, and Rossi (2017). The corresponding median values are 3.6 and 2.9 respectively.
Looking at the measures on the cross-sectional dispersion, I notice that for virtually all groups
the distribution of estimated optimal windows is heavily skewed to to the spectrum of long
window sizes. The 95% quantile in the distribution of the optimal windows is usually associ-
ated to the ten-year window mark, while the 5% conforms to the two-year window. The results
are broadly in line with my expectations, and suggest that a relatively long estimation window
(three to five-years of weekly data) minimises the conditional forecasting MSE. Moving on the
PRED measures, I find that based on the expected return process, the Regional model’s fore-
casting performance is higher the longer the sample. Similarly to the MKT model, the PRED
MSE and PRED MAE are minimised with the use of a ten-year window. Comparing PRED and
OOS measures (with window fixed), I find that using the model’s pricing equation is always
recommended over the expected return equation for forecasting purposes. The PRED MSEs
are comparable for the five- and ten-year windows with ≈ 27%%, which is also equal to the
OOS MSE with a half-year estimation window. Thus, using the model’s expected return pro-
cess with time-varying betas estimated every ten-year provides a similar performance as using
the model’s pricing equation with a short estimation window.

[Figure 2.8 about here.]

[Figure 2.9 about here.]

FF models. I now analyse the performance of the FF3 model, figure 2.8, and the FF5 model,
figure 2.9. Based on the MSE and MAE, the in-sample performance of both models is
maximised with the a long estimation window. For the FF3 model, the MSEs for the five-
and ten-year window patterns are the lowest, IS MSE≈ 17.5%%, followed by the the MSE
corresponding to the half-year window, IS MSE = 18.4%%. With the addition of the prof-
itability and investment factors, the MSE is minimised with a ten-year estimation window, IS
MSE= 25.9%%, although the in-sample mean-squared error is higher by a factor of 50% with
respect to the three-factor model. On the other hand, the variation in the in-sample MAEs
between the two FF models is minimal for the preferred window size (ten-year). Focusing on
the R2 measures, I corroborate for the FF models as well the evidence of a trade-off between
sample size and the model’s performance in explaining contemporaneous return patterns.
The short half-year window size maximises the share of explained return variation. The IS
R2 of the FF5 is highest across all model specifications, IS R2 = 45.9%, while the IS R2 of
the FF3 model is lower than the figure corresponding to the Regional model, FF3 IS R2 = 39.1%.

Analysing the out-of-sample performance of the FF models, I find similar results as to
what reported earlier. The OOS MSE is minimised with a long estimation window (five-year
window for FF3 is the optimal one, while it is ten-year for the FF5 model), and the R2

measures of Kelly, Palhares, and Pruitt (2021), OOS R2, are increasing in window size up to
the two-year mark, which is the optimal window size. Similarly to the MSE, the MAE also
points to the use of a long estimation sample for forecasting purposes. The variation in the



2.5. Model Comparison 101

metrics for different window sizes is certainly greater for the R2-based measures than the
mean- squared or absolute errors. Based on the former suite of measures, I corroborate the
evidence on the use of a short estimation window in a contemporaneous-equations setting
(in-sample), and for the two-year window in a forecasting setting (out-of-sample). This is
true for all models considered. Based on the R2 measures, the choice of the window length
alone accounts for about ±10% of the FF3 forecasting performance (the difference between the
OOS R2s for the two- and ten-year windows, panel 2.8c) and for about 15% of the FF5 per-
formance (the difference between the OOS R2s for the two- and half-year windows, panel 2.9c).

Based on the summary statistics of the estimated factor betas, panels 2.8d for FF3 and
panel 2.9d for FF5, I find that the magnitude of the loadings on factors other than the MKT
is not increasing in window size. On average, the estimated loadings on these factors at
all frequencies are at least one order of magnitude lower than the MKT factor sensitivities.
Moving from the FF3 to FF5 specification, I notice that the loadings on the SMB and HML
factors are consistently higher in magnitude, although not statistically significant at the 5%
level except for the HML factor loadings estimated with a ten-year window. Overall, from
the average t-stats I find little evidence of significant variation in the time-varying loadings
of factors other than the (local) MKT. The loadings on the SMB factor are not on average
statistically significant at the 5% level for both models, while the loadings on the HML, RMW,
and CMA factors are only significant when a ten-year rolling estimation window is employed.
Although for all factors I find that the the variance of the beta OLS estimator is decreasing
in T, the magnitude is so low that the t-stats are considerably smaller than the figures for
the Regional and MKT model. Looking at the R2s in panels 2.8d and 2.9d, I corroborate
the evidence on the improved in-sample performance of the models with betas estimated
with a half-year window. For both models in fact, the average average goodness of fit of the
regressions (in the estimation phase) is higher with the use of the shortest estimation window.
The average R2 from the half-year window regressions is 36% for the FF3, and 44% for the FF5.

I now discuss the results in relation to the conditional and predictive error measures. The
COND MSE measures for both models suggest a significant gain in forecasting performance
with the use of a long estimation window (five to ten years) with respect to a shorter one (two
years or less). The COND MSEs and COND MAEs are minimised for both models when a
ten-yer estimation window is used. Similarly to the Regional and MKT models considered
earlier, the ‘delta’ between the FF models’ OOS and COND errors is substantial even with
the use of ten-year window, approximately 40% considering the MSEs and 28% for the MAE.
Similarly to the benchmark models, the PRED MSE and PRED MAE are minimised with the
use of a ten-year window. Comparing PRED and OOS measures (with window fixed) for FF3
and FF5, I corroborate the evidence that using the models’ expected return equations with
time-varying betas estimated every ten-year provides a similar forecasting performance as
using the pricing equations with a short estimation window.
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Overview. The performance measures defined in Section 2.3.2 help me study the contribu-
tion of rolling betas in forecasting future stock return patterns, and the key takeways from the
performance analysis are as follows.

• Based on the R2 measures of Kelly, Palhares, and Pruitt (2021), I find that the models’
performance to explain and predict future return patterns share a peculiar relation with
the size of the estimation window. If I am interested in explaining contemporaneous re-
turn patterns, a short estimation window made of as little as 26 (weekly) observations
provides the best performance out-of-sample. On the other hand, in a short-horizon
forecasting framework (h = 1) I find evidence for the existence of a trade-off between
performance and window length, with the optimal window being the one made with
104 observations (two-year). The choice of the window length alone accounts for about
±10% of the factor model’s out-of-sample forecasting performance, this is true for all
specifications considered. Comparing across models, I find that the model that performs
best in-sample is FF5, with IS R2 = 46%, followed by the Regional model with R2 = 42%.
The third-best performing model is FF3 with IS R2 = 39%, and the worst performer is
the single-factor MKT model with IS R2 = 27%. The predictive performance of the MKT
model based on the OOS R2 is about 20%, followed by the FF3 and FF5 models which
show a similar average OOS R2 of about 25% for the three-factor model, and 24% for the
five-factor counterpart. The model that shows the best capabilities in predicting future
return patterns is the candidate model with OOS R2 = 29%.

• If I analyse the MSE and MAE measures, I find that for nearly all models the explanatory
and forecasting performance is increasing with window length, the longest (ten-year)
window minimises these error functions and a similar performance is achieved with the
five-year window. The exception is the Regional model, in which the IS R2 agrees with
the IS MSE and hints at the use of a short estimation window (half-year). Comparing the
models’ performance according to the MSE measures, I find that the in-sample (explana-
tory) mean-squared error of the MKT model is 22.9%% (five-year window), followed by
IS MSE = 25.9%% for FF5 (ten-year window), and finally the Regional model’s IS MSE
= 19.5%% (half-year window), and FF3 model with IS MSE = 18.4%% which is the best
performer. Out-of-sample, I find that the FF models show better forecasting performance
with respect to the other models. In fact, in decreasing order I find the MKT model,
OOS MSE = 23%% (five-year window), the regional model with OOS MSE = 21.1%%
(five-year window), and finally the FF3 and FF5 with similar figures of ≈ 17%% using a
five-year window as well. The COND MSEs and MAEs are also minimised with a long
estimation window, ten years. My results are broadly in line with the optimal window
criteria of Inoue, Jin, and Rossi (2017), which features the COND MSE function and yields
an average optimal window of about four years of weekly data. Based on the distribu-
tion of estimated optimal windows, I find that it is heavily skewed to the spectrum of
longer (ten-year) windows. To quantify the cross-sectional dispersion in the estimates I
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calculate the 5% and 95% quantiles of the distribution of individual optimal windows,
and find that the lower quantile conforms to the two-year benchmark while the upper
one to the ten-year window. The median value is about 3 years. Moreover, based on the
difference between the models COND and OOS measures, I find that the assumption of
constant factor realisations from t∗ to t∗ + h is more justified with models featuring solely
observed factors (MKT, FF3, and FF5), than with models such as the Regional one with
latent and observed factors.

• For all factor models featured in this chapter I also study the ability of time-varying factor
sensitivities to explain future return patterns based on the expected return decomposi-
tion. The latter features static (ex-post) prices of risk, λ in equation (2.4), and dynamic
factor betas which are estimated using a variety of window sizes. In Section 2.3.2 I define
the PRED error measure to evaluate the forecasting performance based on the models’
expected return equations. The metric is taken from Kelly, Palhares, and Pruitt (2021).
Based on the mean-squared prediction error (PRED MSE), I find that using the models’
expected return equations with time-varying betas estimated every ten-year provides a
similar forecasting performance as using the pricing equations with betas calculated on
a short estimation window (which is not preferred). The FF models perform best with
PRED MSEs of approximately 20.1%%, while the Regional model performance is similar
to the MKT model with PRED MSEs ≈ 26.7%%, indicating that the risk premia on the
global and regional latent factors estimated using the factor rotation (IR3) proposed in
Section 2.2.2 do not improve the model’s forecasting performance.

Economic Interpretation

I proceed to examine the rolling beta estimates for the FF3 and Regional models and study
how their time-series evolution is related to the financial and macro events defined in the
economic calendar. The focus of this section is on the comparison of the loading dynamics for
the competing three-factor models, fixing the estimation window. I report the estimates for
the short half-year window, which maximises the in-sample R2, and for the two-year window,
which gives the best performance out-of-sample.

Regional model. Figure 2.10 shows the rolling factor sensitivities for the Regional model esti-
mated using a half-year and a two-year window. I focus on the analysis of the short-window
estimates which are the most volatile and help me better map the changes in the factors’
relative significance to macro events that are sometimes short-lived. Using the two-year
estimates for economic interpretation is difficult because most of the time-series variation in
the betas is averaged out.

During the GFC and ESDC, I find that for nearly all regions the loadings on the global
factors (financial and global) increase considerably. From 2009 to mid 2011 the loadings on
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the financial and global factors decrease, this is apparent from the two-year window estimates
in figure 2.10, before increasing rapidly at the outset of the ESDC. In fact, in mid 2011 I
find a substantial change in the trajectory of the financial factor loadings for regions such as
North America, Western and Emerging Europe, and somewhat surprisingly Latin America as
well. Referring to the region-specific events in North America, I show that the sensibility of
stock returns to changes in the financial factor increase in the weeks preceding the election
of us presidential elections in late 2016. Moreover, during the months corresponding to the
US-China trade war, my results suggest that a meaningful decrease in the financial factor
loadings (in late 2018), at the expenses of the global factor whose loadings rise during the same
period.

In North America, there are few events that are responsible for a substantial decrease in
the relative importance of the financial factor with respect to the global and regional ones.
Excluding the US-China trade war, the only other period in which the loadings on the financial
factor are comparable in magnitude to the others is at the outset of the Chinese stock market
crash in mid-2015. Some of the events considered for the stocks listed in North America are
also relevant for those domiciled in the Asia-Pacific region, where I find a material increase
in the global factor loadings during the Chinese stock market crash of 2015-2016. Similarly to
the behavior observed for the North American equities, at the outset of the US-China trade
war the loadings on the global and financial factors decrease considerably, and stocks became
equally sensitive to regional factor shocks.

Another event that I include in my calendar is the oil market crash initiated in late 2014,
which I assume runs throughout the year 2015. The start and end dates are shaded in red
for the Latin America, Emerging Europe and MEA regions. I find that the loadings on the
regional factor increase at the start of 2015 for the equities in MEA, while the global factor
dominates the others in terms of magnitude for the stocks listed in Emerging Europe and Latin
America. Moving on to the Western Europe region, I find that in the weeks leading to the
Brexit referendum of 2016 the loadings on the regional factor start to rise consistently, while
the average sensitivity of the stocks in this region to shocks to the financial and global factors
decrease significantly. This is true up until the start of November, which coincides with the
month of the 2016 US presidential elections, after which I notice a reversal in the the relative
significance of the factors, with the loadings on the global and financial factors growing from
an average of 0.3 to more than 0.5 by the end of 2017.

[Figure 2.10 about here.]

FF3 model. Figure 2.11 shows the time-series plots of the rolling factor sensitivities for the FF3
model. For each region, I report the estimates using a half-year window, left panels, and a two-
year window, right panels. Compared to the Regional model, I notice that the the loadings on
the observed HML and SMB factors are materially lower that the ones on the MKT factor, which
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dominate in all regions in terms of average magnitude and statistical significance. As reported
in panel 2.8d, the loadings on factors other than the MKT do not show evidence of statistically
significant changes over time (all windows), and in fact I notice from figure 2.11 that they tend
to fluctuate around the zero mark and often fall into negative territory. During the Chinese
stock market crash of 2015 in the Asia-Pacific region, I find that the sensitivities of the stocks
to all factors increase considerably, which implies greater covariance estimates using the factor
model variance decomposition (ceteris paribus), a phenomenon which is in line with stylised
factors in the literature (i.e. during turmoil periods stock co-movements increase). Overall, I
find that when I allow for time-varying factor sensitivities in the FF3 model, the loadings on the
SMB and HML factors are not on average statistically different from zero, and are difficult to
interpret economically. In terms of average magnitude, I do not find any evidence of substantial
changes in the relative importance of the three factors over time for the stocks domiciled in the
North America, Asia-Pacific and Western Europe regions.

[Figure 2.11 about here.]
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2.6 Conclusion and Further Research

In this chapter, I studied how the choice of the estimation window influences the explanatory
and predictive power of conditional asset pricing models of stock returns. I used a model
inspired by Kelly, Moskowitz, and Pruitt (2021) and Kelly, Palhares, and Pruitt (2021) that
features static factors known ex-post and dynamic betas estimated out-of-sample via rolling
least squares. I use single stocks as test assets, including more than 1500 of the biggest
companies listed in 40 different national stock indeces in the period January 2006 to end-of
May 2019. I use various factor models from the literature as benchmarks in my analysis, and
I also review the properties of the model in Borghi et al. (2018) that features a combination of
observed and latent factors. Conditional on the ex-post factors, I estimate the real-time betas
for varying window sizes and compare the models’ in- and out-of-sample performance based
on a variety of measures.

The main results of my analysis can be summerised as follows. In relation to the factor
space, a key difference of the FF factors with respect to the combination of observed and
latent factors in the model of Borghi et al. (2018) is that the former are not orthogonal to each
other, which implies that they do not isolate different sources of systematic variation in the
returns. This results in factor loadings that fail to be statistically relevant out-of-sample in the
cross-section of stock returns. For instance, while the full-sample estimates suggest that the
loadings on the SMB and HML in FF3 are on average statistically different from zero across all
regions (and for the vast majority of the industries), based on the out-of-sample analysis I find
that their performance deteriorates significantly, to the point that the average beta estimates
constructed for window sizes up to the ten-year mark are not statistically different from zero.
In FF5, the in-sample loadings on the RMW and CMA are statistically significant only in few
of the groups considered, and out-of-sample they fail to be relevant for virtually all groups. I
corroborate the evidence in Fama and French (2015) that for stocks listed in North America
(which includes the United States) the HML factor becomes redundant with the addition of
the RMW and CMA factors, and extend their results internationally.

In the candidate model of Borghi et al. (2018), the financial factor is identified with the
S&P500 Financials equity index, which tracks the performance of the biggest US financial
tickers, and the orthogonal global factor isolates sources of variation in the excess returns
that are linked to financial and macro events that have a world-wide impact. The third set of
factors featured in the model include region-specific drivers that I find to be closely related to
the dynamics of an equity index proxy constructed with the relevant stocks of the region. The
loadings on these factors remain statistically significant out-of-sample for the combination of
different window sizes.

Secondly, with respect to the estimation of rolling betas in linear asset pricing models, I
find a dual role of the rolling least square estimator in the cross-section of stock returns. The
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short-window approach of Lewellen and Nagel (2006) (half-year of weekly data) has much to
recommend if I am interested in describing contemporaneous stock return variation, however
for predictive purposes including too little observations for estimation causes the betas to be
noisy, which in turn results in forecasts from the factor model that show little predictive power
according to the R2-based measures in Kelly, Palhares, and Pruitt (2021). Out-of-sample, the
trade-off between the length of the estimation window and the variance of the estimator is
resolved around the two-year benchmark, and this is true across all models considered. The
choice of the window length alone accounts for about ±10% of the factor model’s out-of-sample
forecasting performance (R2). On the other hand, based on the MSE and MSA measures, I find
that for nearly all models the explanatory and forecasting performance is increasing in window
size, with the five- and ten-year windows yielding the best results. My results are in line with
the optimal window criteria of Inoue, Jin, and Rossi (2017), which features the COND MSE
function and, when applied to my data, yields an average optimal window of about four years
of weekly observations. Rolling estimates of the time-varying betas constructed using a short
estimation window (which maximise the in-sample R2) help us map the changes in the factors’
relative significance to macro and financial events. Despite their statistical properties, using
the two-year estimates (which maximise the out-of-sample R2) for economic interpretation is
difficult because most of the time-series variation in the betas is averaged out. I extend the in-
sample results of Borghi et al. (2018) and consider a rich set of region specific and global macro
events, corroborating their evidence that during turmoil periods stocks tend to become more
sensitive to changes in the financial and global factors.

2.6.1 Further Research

The analysis in this chapter provides a further contribution to the understanding of how factor
models with time-varying rolling betas can explain future return patterns in international asset
prices, and complements the work in Chapter 1 which focuses on the analysis of contempora-
neous return patterns.

In this study I focus on explaining expected stock returns, however the setup outlined in
Section 2.2 can also be used to study the contribution of time-varying betas in shaping the
comovements structure implied by the factor model. The peculiarity of the factor model that
I employ is that the time-variation in the first- and second- moments of (excess) stock return
is driven solely by conditional factor exposures, which extends the Kelly, Moskowitz, and
Pruitt (2021) and Kelly, Palhares, and Pruitt (2021) framework to the analysis of covariances.
In Appendix B.1 I expand on this idea and present a preliminary modelling framework. I leave
this research question for future studies.

Further research on this chapter include examining alternative objective functions to study
the models’ performance. In fact, while I find the existence of a trade-off between window
length and predictive power (two-year window), this depends on the choice of the objective
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function. The R2 metrics inspired by Kelly, Palhares, and Pruitt (2021) do not agree with the
commonly-used mean- and absolute-squared measures, even when they are constructed from
the same ‘errors’, as per definition in Section 2.3.2. MSE functions are also used in optimal
window selection criteria such as Inoue, Jin, and Rossi (2017) and Pesaran and Timmermann
(2007) and my findings suggest that these objective functions tend to agree with the use
of a longer window (about four years of recent data) when applied to my dataset. This
remains an open research question. Additionally, a key limitation of my study is that I only
let the window size vary, for fixed sampling frequency, which excludes a simultaneous anal-
ysis of the two as in Lewellen and Nagel (2006). I leave this research question for future studies.

The benchmark models against I compare include the local FF models and the global
CAPM, however I exclude competing alternatives in the asset pricing literature such as four-
factor model of Carhart (1997), which augments the FF3 specification with the momentum
factor, and the q-factor model of Hou, Xue, and Zhang (2014), which features a market factor,
a size factor, an investment factor, and a profitability factor. The latter approach is similar to
excluding HML with respect to FF5, which I show to be redundant with respect to the CMA
investment factor.

Finally, further research based on a more recent time frame is needed to assess the impact
of the COVID-19 outbreak on the dynamics of factor sensitivities. This is also true for the US-
China trade conflict, which I am able to consider up to stage four19, thereby excluding the phase
from February 2020 to today (stage five) in which tariffs between the two countries remain
elevated, above pre-conflict levels although lower than what I analyse in stages one to four. In
regards to the COVID-19 outbreak, I expect the loadings on the global factor in the model of
Borghi et al. (2018) to increase, probably more than the ones on the observed financial factor,
due to the world-wide impact of the event which does not affect only US financial stocks.
Similarly, I expect stocks to be relatively more exposed to region-specific shocks during the
period, due to the variety of the containment measures adopted across countries.

19Source: Peterson Institute for International Economics.

https://www.piie.com/research/piie-charts/us-china-trade-war-tariffs-date-chart
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TABLE 2.1: Rolling Window in the Literature

The table summarises the characteristics of the papers in the finance literature that I review with respect to the
choices of the window size, W, sampling frequency, Frequency, and forecasting horizon, h. I also report if portfolios
or individual securities are used as test assets in the empirical studies of the papers, Test Asset. The table shows the
focus asset class, Asset Class, the complete time span of the rolling analysis (without considering any sub-samples),
Time Span, and finally the regions considered, Region.

Fama and French (1997): multiple forecasting horizons (one month, and one to five years) as well as rolling
window sizes (three to ten years) are considered in the paper, in the table below I only report the set of parameters
for which the results are shown.

Lewellen and Nagel (2006): contemporaneous analysis thus h = 0. Short-window regressions based on
quarterly betas with daily observations (W = 63, Frequency=Daily), semiannually using daily (W = 126,
Frequency=Daily) and weekly returns (W = 26, Frequency=Weekly), and annually using monthly returns
(W = 12, Frequency=Annually).

Ang, Chen, and Xing (2006): multiple forecasting horizons (from one to 12 years), all at yearly frequency.
The standard approach is one year of daily data, (W = 250, Frequency=Daily) however results are also checked
against using intervals of 24 months with weekly frequency (W = 104, Frequency=Weekly).

Paper Test Asset Asset Class Time Span Region Frequency h W W (Years)

Ferson and Harvey, 1991 Portfolios Stocks, Bonds 1964-1986 US Monthly 1 60 5
Fama and French, 1997 Portfolios Stocks 1968-1994 US Monthly 1 36, 48, 60* 3, 4, 5*

Petkova and Zhang, 2005 Portfolios Stocks 1927-2001 US Monthly 1 36, 48, 60 3, 4, 5
Lewellen and Nagel, 2006 Portfolios Stocks 1964-2001 US Multiple 0 Multiple Multiple
Ang, Chen, and Xing, 2006 Securities Stocks 1963-2001 US Daily 1* 250* 1
Bekaert, Hodrick, and Zhang, 2009 Portfolios Stocks 1980-2005 World Weekly 0 26 0.5
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TABLE 2.2: Universe of Securities

The table reports the countries that are considered for each region, and for each country it reports the following
variables: #Stocks is the number of companies that entered the index during the period from January 6th 2006 to May
31st 2019, Avg Active is the average number index of members at the beginning of every month in the sample period,
#Selected is the number of stocks with complete price series that are considered for the out-of-sample analysis. These
tickers have no more than 12 consecutive missing observations, and at least one year of weekly data. Finally, #Full is
the number of equities with complete price series that remained listed in the national indexes throughout the entire
sample period.

Index Country Region #Stocks AvgActive #Selected #Full

SPTSX60 Canada North America 106 60 98 64
OEX US North America 179 101 174 129
MEXBOL Mexico North America 76 35 72 38
MERVAL Argentina Latin America 87 17 83 62
IBOV Brazil Latin America 139 65 126 53
IPSA Chile Latin America 86 37 80 64
SPBLPGPT Peru Latin America 90 34 60 38
TPXL70 Japan Asia-Pacific 128 70 126 104
SSE50 China Asia-Pacific 158 50 154 90
HSCEI HongKong Asia-Pacific 93 41 90 56
SENSEX India Asia-Pacific 85 30 71 0
LQ45 Indonesia Asia-Pacific 122 45 116 70
KOSPI50 Korea Asia-Pacific 87 50 63 0
SET50 Thailand Asia-Pacific 107 50 107 64
NZSE50FG NewZealand Asia-Pacific 96 50 87 45
AS31 Australia Asia-Pacific 94 50 89 55
ATX Austria Western Europe 41 20 40 23
BEL20 Belgium Western Europe 38 20 36 26
KFX Denmark Western Europe 34 20 32 26
HEX25 Finland Western Europe 35 25 33 26
CAC France Western Europe 68 40 65 48
DAX Germany Western Europe 49 30 44 37
ISEQ Ireland Western Europe 94 51 80 22
AEX Netherlands Western Europe 61 25 50 29
OBX Norway Western Europe 67 25 60 28
PSI20 Portugal Western Europe 38 19 34 21
IBEX Spain Western Europe 62 35 61 33
OMX Sweden Western Europe 43 30 42 36
SMI Switzerland Western Europe 55 21 53 43
UKX UK Western Europe 208 101 195 119
CRO Croatia Emerging Europe 94 23 86 38
CCTX CzechRepublic Emerging Europe 15 9 14 6
TALSE Estonia Emerging Europe 23 16 20 7
BUX Hungary Emerging Europe 33 14 29 16
RIGSE Latvia Emerging Europe 73 28 43 20
MALTEX Malta Emerging Europe 33 18 19 11
VILSE Lithuania Emerging Europe 47 27 39 14
WIG20 Poland Emerging Europe 45 20 44 27
ROTXEUR Romania Emerging Europe 25 11 21 10
CRTX Russia Emerging Europe 49 13 9 0
BELEX15 Serbia Emerging Europe 26 13 11 7
XU030 Turkey Emerging Europe 78 30 67 49
PFTS Ukraine Emerging Europe 45 17 8 0
MOSEMDX Morocco MEA 82 48 74 32

Total 3294 1534 2905 1686
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TABLE 2.3: Summary Statistic

The table reports the summary statistics for the 1686 tickers that are part of the national stock indexes in the sam-
ple period, January 2006 to May 2019. Panel 2.3a reports cross-sectional averages of the summary statistics for
the weekly log-returns, and panel 2.3b reports average market capitalisation, total assets and debt. Mean is the
cross-sectional average weekly return (in basis points) for the stocks belonging to a particular region or sector,
analogously Med is the average median return (in bp), Min the most-negative weekly return for the cross-section,
and Max the highest weekly return. Std is the average weekly standard deviation, Skew and Kurt are the average
skewness and kurtosis. ρ(1) is the average OLS estimate of the first autocorrelation coefficients, and ADF is the
Augmented Dickey-Fuller test statistics, which is run with a constant, time trend and one lag. The critical value at
95% significance is -3.41, with the null hypothesis being the presence of a unit root. Lastly, Pearson is the average
pair-wise Pearson correlation of the stocks in the relevant group.

(A) Stock Returns

Group Mean (bp) Med (bp) Min Max Std Skew Kurt ρ(1) ADF Pearson N

North America 7.17 9.6 -0.335 0.252 0.047 -0.62 13.953 -0.049 -18.799 0.357 231
Latin America 6.06 -2.29 -0.386 0.313 0.059 -0.237 11.219 -0.022 -18.166 0.278 217
Asia-Pacific 12.57 2.95 -0.325 0.28 0.054 -0.222 9.745 -0.023 -18.586 0.257 484
Western Europe 2.64 7.5 -0.344 0.26 0.052 -0.649 11.726 -0.054 -18.923 0.415 517
Emerging Europe -7.2 -2.85 -0.455 0.413 0.065 -0.351 18.066 -0.012 -18 0.301 205
MEA 10.78 -0.23 -0.193 0.214 0.04 0.218 7.861 -0.073 -19.807 0.187 32

Communication Services -0.09 1.83 -0.322 0.265 0.052 -0.381 9.973 -0.047 -18.716 0.259 114
Consumer Discretionary 5.11 4.49 -0.392 0.338 0.058 -0.311 14.121 -0.024 -18.442 0.238 167
Consumer Staples 11.71 3.82 -0.301 0.257 0.047 -0.26 10.973 -0.049 -18.933 0.199 158
Energy -1.58 1.15 -0.381 0.319 0.061 -0.39 10.099 -0.027 -18.749 0.339 119
Financials 3.13 2.84 -0.384 0.302 0.054 -0.56 15.428 -0.046 -18.677 0.317 259
Health Care 15.82 9.2 -0.284 0.223 0.045 -0.496 9.798 -0.049 -18.845 0.245 91
Industrials 3.88 4.58 -0.356 0.284 0.055 -0.426 11.78 -0.029 -18.469 0.27 293
Information Technology 9.54 7.88 -0.316 0.269 0.052 -0.359 10.773 -0.027 -18.677 0.23 86
Materials 5.09 0.39 -0.369 0.314 0.061 -0.24 9.613 -0.014 -18.182 0.279 212
Real Estate 7.52 5.93 -0.42 0.337 0.059 -0.863 19.658 -0.047 -18.573 0.244 71
Utilities 8.57 4.88 -0.304 0.235 0.046 -0.47 10.261 -0.053 -19.055 0.254 112

(B) Balance Sheet

Group Mkt Cap ($B) Tot Assets ($B) Tot Debt ($B) N

North America 51.15 111.148 28.712 231
Latin America 5.416 17.494 5.807 217
Asia-Pacific 9.465 38.578 9.665 484
Western Europe 18.968 106.694 30.563 517
Emerging Europe 1.711 7.378 1.653 205
MEA 1.439 3.963 0.779 32

Communication Services 22.194 29.212 9.476 114
Consumer Discretionary 12.231 18.36 6.3 167
Consumer Staples 19.912 15.729 4.395 158
Energy 22.567 40.136 8.129 119
Financials 20.872 290.629 78.226 259
Health Care 32.402 22.542 5.397 91
Industrials 9.555 18.319 5.797 293
Information Technology 37.387 22.336 4.553 86
Materials 7.593 12.977 3.401 212
Real Estate 4.459 8.483 3.37 71
Utilities 9.438 26.522 9.308 112

N = 1686
T = 700 (6th Jan 2006 - 31st May 2019)
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TABLE 2.4: Mapping Local Factors Correlations

The table reports the in-sample correlation matrix of the estimated regional factors, panel 2.4a, and of the 1/N
equity index proxies for the regions, panel 2.4b. I test the significance of the estimated parameters using a t-statistic
with T − 2 degrees of freedom based on a transformation of the correlation coefficient. The transformation is exact
when the variables are normally distributed. * denotes significance at 10% level, ** at 5% level, and *** at 1% level.

(A) Regional Factors

North America Latin America Asia-Pacific Western Europe Emerging Europe MEA

North America 1
Latin America 0.08** 1
Asia-Pacific -0.06* 0.08** 1
Western Europe 0.24*** 0 -0.12*** 1
Emerging Europe 0.1** 0.13*** 0 0.08** 1
MEA -0.15*** 0 0 0.13*** 0 1

(B) Index Proxies

North America Latin America Asia-Pacific Western Europe Emerging Europe MEA

North America 1
Latin America 0.77*** 1
Asia-Pacific 0.71*** 0.72*** 1
Western Europe 0.89*** 0.75*** 0.72*** 1
Emerging Europe 0.75*** 0.74*** 0.72*** 0.82*** 1
MEA 0.29*** 0.36*** 0.35*** 0.41*** 0.46*** 1

N = 1686
T = 700 (6th Jan 2006 - 31st May 2019)
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TABLE 2.5: Static Loadings Estimation

The table reports cross-sectional averages of the OLS beta estimates on the full sample for the models considered. In
particular, for each factor I report the average beta magnitude and the average absolute value of the t-statistic, and
for each region and industry I show the N-average R2 for the stocks in the relevant group. Before estimation, stock
and factor returns are winsorised at 99% level and then standardised to have unit variance and zero mean. Panel
2.5a reports the results for three-factor Regional model, and panel 2.5b for single-factor MKT model. To ease the
comparison across models, I report the estimates only for the 1686 companies that remain listed in the respective
national equity indeces during the 13 years considered. Panel 2.5c shows the results for the FF3 model, and panel
2.5d for the FF5 model. The results on the FF models are available only for the cross-section of companies belonging
to the North America, Asia-Pacific, and Western Europe regions, 1232 tickers among the 1686.

(A) Regional Model

Financial Global Regional

Group β f in t-stat βglob t-stat βreg t-stat R2 N

North America 0.485 17.4 0.242 8.4 0.193 6.8 0.39 231
Latin America 0.288 9.5 0.327 10.6 0.239 8.2 0.31 217
Asia-Pacific 0.227 7.3 0.319 10.1 0.182 6.4 0.28 484
Western Europe 0.456 16.9 0.365 13.3 0.245 9.1 0.43 517
Emerging Europe 0.264 9.2 0.316 10.6 0.152 7.2 0.28 205
MEA 0.074 2.3 0.213 6.7 0.42 13.3 0.25 32

Communication Services 0.339 11.3 0.312 10.1 0.194 6.6 0.3 114
Consumer Discretionary 0.343 11.8 0.294 9.8 0.197 7.2 0.32 167
Consumer Staples 0.27 8.6 0.294 9.2 0.196 6.5 0.25 158
Energy 0.354 12.2 0.404 13.9 0.169 6.1 0.38 119
Financials 0.428 16.6 0.32 11.8 0.218 8.9 0.43 259
Health Care 0.291 9.2 0.253 7.8 0.192 6.3 0.25 91
Industrials 0.357 12.8 0.324 11.2 0.237 8.9 0.37 293
Information Technology 0.353 11.7 0.265 8.6 0.227 7.8 0.31 86
Materials 0.33 11.8 0.369 12.8 0.211 7.6 0.37 212
Real Estate 0.311 10.6 0.329 10.9 0.165 6.4 0.32 71
Utilities 0.264 8.8 0.314 10.3 0.265 9.3 0.32 112

(B) MKT Model

Market

Group βmkt t-stat R2 N

North America 0.51 16.3 0.27 231
Latin America 0.441 13.5 0.21 217
Asia-Pacific 0.389 11.8 0.18 484
Western Europe 0.595 20.6 0.37 517
Emerging Europe 0.416 12.7 0.2 205
MEA 0.207 5.6 0.05 32

Communication Services 0.466 14.5 0.23 114
Consumer Discretionary 0.46 14.7 0.24 167
Consumer Staples 0.399 12 0.18 158
Energy 0.528 17.2 0.3 119
Financials 0.537 18.1 0.31 259
Health Care 0.392 11.7 0.17 91
Industrials 0.494 16.1 0.27 293
Information Technology 0.451 13.9 0.22 86
Materials 0.499 16.5 0.28 212
Real Estate 0.454 14.3 0.23 71
Utilities 0.418 12.8 0.2 112

(To be continued)
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(Continued)

(C) FF3 Model

MKT SMB HML

Group β f in t-stat βglob t-stat βreg t-stat R2 N

North America 0.547 16.9 -0.015 2.3 0.048 3.5 0.34 231
Asia-Pacific 0.414 11.3 0.06 2.2 0.035 2.1 0.19 484
Western Europe 0.621 17.5 0.042 2.7 0.022 2.9 0.41 517

Communication Services 0.491 13.3 0.013 2 0.025 1.9 0.27 88
Consumer Discretionary 0.518 14.3 0.046 2.1 0.022 2.2 0.29 124
Consumer Staples 0.476 12.6 -0.009 2.8 -0.027 2.3 0.23 103
Energy 0.542 15.5 0.067 2.6 0.056 2.5 0.32 92
Financials 0.568 17.8 0.008 1.9 0.126 5.2 0.42 173
Health Care 0.465 12.4 -0.007 2.7 -0.074 2.9 0.23 81
Industrials 0.564 16.2 0.071 2.7 0.038 2.3 0.33 222
Information Technology 0.526 14.8 0.04 2.5 -0.024 2.3 0.29 76
Materials 0.534 15.3 0.086 2.8 0.043 2.5 0.32 150
Real Estate 0.505 13.9 0.051 2.3 0.029 1.9 0.28 57
Utilities 0.452 12.2 -0.01 2.6 0.03 2.1 0.25 63

(D) FF5 Model

MKT SMB HML RMW CMA

Group βMKT t-stat βSMB t-stat βHML t-stat βRMW t-stat βCMA t-stat R2 N

North America 0.548 15.8 -0.009 2.1 0.065 3.6 0.03 2.2 -0.01 2.7 0.36 231
Asia-Pacific 0.415 9.7 0.059 2.1 0.038 1.4 0.012 1.4 -0.004 1.4 0.2 484
Western Europe 0.604 15.4 0.041 2.7 0.039 2.2 0.004 1.6 -0.033 2.2 0.42 517

Communication Services 0.508 12.4 0.019 1.9 0.017 1.5 0.011 1 0.029 2 0.28 88
Consumer Discretionary 0.501 12.4 0.051 2.1 0.056 2 0.032 1.3 -0.037 2 0.3 124
Consumer Staples 0.494 11.8 0.004 2.4 -0.021 1.7 0.041 1.6 0.039 1.9 0.24 103
Energy 0.51 13.1 0.062 2.3 0.108 3.2 0.041 1.8 -0.076 2.5 0.34 92
Financials 0.548 15.5 -0.005 2.1 0.113 3.1 -0.055 3 -0.054 2.5 0.44 173
Health Care 0.489 11.7 -0.006 2.5 -0.107 2.8 -0.023 1.5 0.051 2 0.24 81
Industrials 0.555 14.2 0.074 2.6 0.055 1.8 0.022 1.4 -0.016 1.6 0.34 222
Information Technology 0.524 13.3 0.043 2.2 -0.016 1.8 0.014 1.1 -0.01 1.6 0.29 76
Materials 0.514 13.1 0.084 2.6 0.074 2.3 0.028 1.3 -0.05 1.8 0.33 150
Real Estate 0.498 12.1 0.053 2.3 0.049 1.3 0.023 1.6 -0.025 1.7 0.29 57
Utilities 0.467 11.3 -0.003 2.3 0.031 1.1 0.028 1.9 0.034 1.7 0.26 63

N = 1232
T = 700 (6th Jan 2006 - 31st May 2019)
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TABLE 2.6: Individual Optimal Window

The table reports the results of the individual optimal selection criteria of Inoue, Jin, and Rossi (2017), panel 2.6b,
and Pesaran and Timmermann (2007), panel 2.6a, for the Regional model. The figures are expressed in years, and the
frequency of the data is weekly. For each group, I report the N-average estimated window size, Mean, the median
window size, Median, and estimates of the cross-sectional dispersion calculated as the 5% and 95% quantiles of the
distribution of individual optimal windows.

(A) Pesaran and Timmermann (2007)

Group Mean 5% Med 95% N

North America 5.7 2.1 3.8 10.8 231
Latin America 5.2 2 3.6 11.2 217
Asia-Pacific 5.2 2.1 3.7 11.1 484
Western Europe 4.8 2 2.9 10.9 517
Emerging Europe 5.4 2 3.8 11.4 205
MEA 4.5 2.1 2.8 10.7 32

Communication Services 5.3 2 3.6 10.8 114
Consumer Discretionary 5.5 2 3.8 11 167
Consumer Staples 5.4 2 3.8 11 158
Energy 4.7 2 3.4 10.8 119
Financials 5.6 2 3.8 11 259
Health Care 5.2 2 3.8 11.2 91
Industrials 5 2 3.7 11.3 293
Information Technology 4.8 2 3.4 11.1 86
Materials 5 2 3.5 11.1 212
Real Estate 5.1 2.1 3.5 11 71
Utilities 4.5 2 3.3 11.2 112

Total 5.1 2 3.6 11 1686

(B) Inoue, Jin, and Rossi (2017)

Group Mean 5% Med 95% N

North America 4.3 2.2 3.1 9.7 231
Latin America 5 2 3.1 10.9 217
Asia-Pacific 3.5 2.1 2.8 7.5 484
Western Europe 3.7 2.2 2.8 7.4 517
Emerging Europe 4.9 2.1 3.6 10.4 205
MEA 4.7 2 3.1 11.3 32

Communication Services 3.9 2.1 2.9 7.5 114
Consumer Discretionary 3.9 2.1 2.9 9.1 167
Consumer Staples 4.5 2.1 3.1 10.3 158
Energy 3.9 2.2 2.9 10 119
Financials 3.7 2.1 2.7 7.5 259
Health Care 5 2.2 3.6 10 91
Industrials 4.2 2.2 3.1 10.1 293
Information Technology 4.5 2.3 3.3 10.2 86
Materials 3.6 2.1 2.7 9 212
Real Estate 3.2 2.3 2.8 6.4 71
Utilities 4.6 2 2.8 10.5 112

Total 4.1 2.1 2.9 9.9 1686

N = 1686
T = 700 (6th Jan 2006 - 31st May 2019)
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FIGURE 2.1: MKT Model

The figure shows the cumulative returns of the equally weighted portfolio formed by all stocks in my universe,
panel 2.1a, and reports summary statistics for the factor’s weekly log- returns, panel 2.1b. λ̂ refers to the (an-
nualised) estimated risk premium based on the factor’s weekly excess returns in the sample period. Skew is the
sample skewness, Kurt the sample kurtosis, and JB is the p-value of a Jarque-Bera test for normality. Factor returns
are winsorised at 99% and normalised to have unit variance in the sample period. All 1686 tickers contribute to the
calculation of the MKT factor. The grey bands refer to the GFC of 2007-2009 and the ESDC of 2011-2013, respectively
in chronological order. The light red bars isolate the start and end dates corresponding to region-specific financial
events. Details on the economic calendar are found in Appendix B.2.

(A) MKT

(B) Summary Statistics

Factor λ̂ (%) Skew Kurt JB N

MKT 1 -0.58 5.2 0 1686

N = 1686
T = 700 (6th Jan 2006 - 31st May 2019)
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FIGURE 2.2: FF Models

The figure shows the cumulative returns and summary statistics of the MKT, SMB, HML factors of the FF3 model,
together with the two additional factors, RMW, and CMW, featured in the FF5 model. Results are region-specific.
Panels 2.2a and 2.2b refer to the North America region, panels 2.2c and 2.2d to the Asia-Pacific region, and finally
panels 2.2e and 2.2f to Western Europe. In the summary statistics tables, λ̂ indicates the (annualised) estimated risk
premium based on the factor’s weekly excess returns in the sample period. Skew is the sample skewness, Kurt the
sample kurtosis, and JB is the p-value of a Jarque-Bera test for normality. Factor returns are winsorised at 99% and
normalised to have unit variance in the sample period. The grey bands refer to the GFC of 2007-2009 and the ESDC
of 2011-2013, respectively in chronological order. The light red bars isolate the start and end dates corresponding to
region-specific financial events. Details on the economic calendar are found in Appendix B.2.

(A) North America (B) Summary Statistics

Factor λ̂ (%) Skew Kurt JB

MKT 8 -0.58 4.5 0
SMB -1 -0.16 3 0.19
HML -3 0.41 4.4 0
RMW 3 -0.07 3.3 0.15
CMA 0 0.26 3.5 0

(C) Asia-Pacific (D) Summary Statistics

Factor λ̂ (%) Skew Kurt JB

MKT 7 -0.67 5.4 0
SMB -3 -0.62 5.1 0
HML 4 -0.08 3.6 0.01
RMW 2 0 3.4 0.08
CMA 4 0.25 5.2 0

(E) Western Europe (F) Summary Statistics

Factor λ̂ (%) Skew Kurt JB

MKT 5 -0.49 4.3 0
SMB 0 -0.33 3.9 0
HML -2 -0.11 3.9 0
RMW 5 -0.1 3.4 0.05
CMA 1 0.16 3.9 0

T = 700 (6th Jan 2006 - 31st May 2019)
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FIGURE 2.3: Financial Factor Identification

The figure reports the results of the identification procedure of the observed financial factor Ft of model (2.9). Panel
2.3a shows the time-series plot of the cumulative factor returns during the sample period, January 2006 to May
2019, before winsorisation. The candidate factors include the S&P500 index, its Financials-only counterpart, the
S&P500 Financials, two broad global indeces of stock market performance, MSCI World and MSCI World Finan-
cials, together with the equally-weighted portfolio of all stocks in my universe, EW. Panel 2.3b reports the ratio of
consecutive eigenvalues estimated from the matrix of excess return after orthogonalisation against the candidate
equity indeces. Finally, panel 2.3c reports the estimated summary statistics of the candidate market indeces, before
winsorisation. λ̂ indicates the (annualised) estimated risk premium based on the factor’s weekly excess returns in
the sample period. Skew is the sample skewness, Kurt the sample kurtosis, and JB is the p-value of a Jarque-Bera
test for normality.

(A) Candidate Factors

(B) Ratio of Consecutive Eigenvalues

(C) Summary Statistics

Index λ̂ (%) Skew Kurt JB

S&P500 Fin 2 -0.17 17 0
S&P500 8 -0.98 12.1 0
MSCI World Fin -2 -1.06 14.9 0
MSCI World 3 -1.42 15.1 0
EW 1 -2.08 20.4 0

T = 700 (6th Jan 2006 - 31st May 2019)
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FIGURE 2.4: Regional Model

The figure reports the results of the factor extraction procedure via PCA for the latent factors of the Regional model.
Panel 2.4a shows the time-series plot of the cumulative returns during the sample period of the financial factor
and the orthogonal global factor. Panel 2.4b shows the analogous considering the six estimated local factors, one
for each world region. Panel 2.4c reports the estimated in-sample summary statistics of all factors featured in the
Regional model, K = 8. The risk premia of the latent factors are estimated as the in-sample means of the 1/N proxy
portfolios formed by all stocks in the universe (global factor), and by the region-specific stocks (local factors) - see
IR3 in Section 2.2.2 for further details. The grey bands refer to the GFC of 2007-2009 and the ESDC of 2011-2013,
respectively in chronological order. The light red bars isolate the start and end dates corresponding to region-
specific financial events. Details on the economic calendar are found in Appendix B.2.

(A) Global factors

(B) Regional factors

(C) Summary Statistics

Factor λ̂ (%) Skew Kurt JB N

Financial 2 -0.4 5.5 0
Global 3 -0.44 6.4 0 1686

North America 4 -0.27 4.4 0 231
Latin America 3 -0.4 6.5 0 217
Asia-Pacific 7 -0.15 4.9 0 484
Western Europe 1 -0.06 4.7 0 517
Emerging Europe -4 -0.78 6.2 0 205
MEA 6 -0.18 5.5 0 32

T = 700 (6th Jan 2006 - 31st May 2019)
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FIGURE 2.5: Mapping Regional Factors to Equity Indeces

The figure reports the results of the mapping exercise of the estimated latent local factors to the equity index proxies
constructed as the 1/N portfolios of all stocks in the relevant region. For each of the six world regions considered,
the upper panels show the cumulative in-sample returns of the factors and the index proxy, and the lower panels
report the estimated rolling correlations for varying window size. In this exhibit I report the results for North
America, panel 2.5a, Latin America, panel 2.5b, Western Europe, panel 2.5c, and Emerging Europe, 2.5d, Asia-
Pacific, panel 2.5e, and MEA, panel 2.5f. Panel 2.5g reports the estimated average correlations and their significance
based on the time-varying estimates, together with the full-sample OLS estimates of linear dependence. * denotes
significance at 10% level, ** at 5% level, and *** at 1% level.

(A) North America (B) Latin America

(C) Western Europe (D) Emerging Europe

(To be continued)
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(Continued)

(E) Asia-Pacific (F) MEA

(G) Summary Statistics

Window Size North America Latin America Asia-Pacific Western Europe Emerging Europe MEA

Half-Year 0.34 0.54** 0.49** 0.41 0.37 0.85***
One-Year 0.34** 0.55*** 0.48*** 0.4** 0.37 0.86***
Two-Year 0.32** 0.53*** 0.47*** 0.38** 0.35** 0.86***
Five-Year 0.31*** 0.5*** 0.44*** 0.39*** 0.31*** 0.86***
Ten-Year 0.27*** 0.48*** 0.42*** 0.33*** 0.27*** 0.85***

OLS 0.27 0.51 0.44 0.32 0.31 0.86

N = 1686
T = 700 (6th Jan 2006 - 31st May 2019)
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FIGURE 2.6: Performance Measures - MKT Model

The figure reports N-averages of the performance measures for the estimated rolling OLS betas of the MKT model,
considering five different windows made of the most-recent half-, one-, two-, five- and ten-years of data. The
performance measures are asset- and time-specific and I report the aggregate results across time first, and then
assets. Panel 2.6a shows the bar plots corresponding to the in-sample, out-of-sample, conditional, and predictive
MSE measures (respectively from left to right) for different window lengths. The blue bars refer to the half-year,
the green to the one-year, the yellow to the two-year, the purple to the five-year, and the green to the ten-year
window-specific results. Similarly, panel 2.6b reports the MAE measures, and panel 2.6c the R2 measures based
on Kelly, Palhares, and Pruitt (2021). Finally, panel 2.6d shows the estimated beta magnitude, standard deviation
and absolute value of the t-statistics for the estimates at varying sampling frequency. The statistics in this panel are
calculated from the results of the time-series regressions for varying window sizes and are thus TW -specific (out-
of-sample). The last row in panel 2.6d shows the respective in-sample OLS results. To ease the comparison across
model specifications, I report the performance measures only for the 1686 tickers with complete price series in in
the 13 years considered.

(A) Mean-Squared Error (B) Mean-Absolute Error

(C) R2

(D) Summary Statistics

Market

Window Size βmkt Std t-stat R2

Half-Year 0.435 0.21 2.8 0.2562
One-Year 0.445 0.162 4.0 0.2476
Two-Year 0.457 0.127 5.8 0.2502
Five-Year 0.468 0.084 9.3 0.2543
Ten-Year 0.485 0.021 13.7 0.2655

OLS 0.475 0.033 15.3 0.2529

N = 1686
T = 700 (6th Jan 2006 - 31st May 2019)
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FIGURE 2.7: Performance Measures - Regional Model

The figure reports N-averages of the performance measures for the estimated rolling OLS betas of the regional
model, considering five different windows made of the most-recent half-, one-, two-, five- and ten-years of data.
The performance measures are asset- and time-specific and I report the aggregate results across time first, and then
assets. Panel 2.7a shows the bar plots corresponding to the in-sample, out-of-sample, conditional out-of-sample,
and predictive MSE measures (respectively from left to right) for different window lengths. The blue bars refer to
the half-year, the green to the one-year, the yellow to the two-year, the purple to the five-year, and the green to the
ten-year window-specific results. Similarly, panel 2.7b reports the MAE measures, and panel 2.7c the R2 measures
based on Kelly, Palhares, and Pruitt (2021). Finally, panel 2.7d shows the estimated beta magnitude, standard
deviation and absolute value of the t-statistics for the estimates at varying sampling frequency. The statistics in this
panel are calculated from the results of the time-series regressions for varying window sizes and are thus TW -specific
(out-of-sample). The last row in panel 2.7d shows the respective full-sample OLS results. To ease the comparison
across model specifications, I report the performance measures only for the 1686 tickers with complete price series
in in the 13 years considered.

(A) Mean-Squared Error (B) Mean-Absolute Error

(C) R2

(D) Summary Statistics

Financial Global Regional

Window Size β f in Std t-stat βglob Std t-stat βreg Std t-stat R2

Half-Year 0.305 0.224 1.9 0.309 0.204 1.9 0.211 0.199 1.4 0.4042
One-Year 0.308 0.163 2.8 0.312 0.143 2.8 0.212 0.137 2 0.367
Two-Year 0.318 0.122 4.3 0.313 0.101 4 0.212 0.095 2.9 0.3565
Five-Year 0.319 0.08 6.9 0.303 0.057 6.3 0.209 0.052 4.5 0.3484
Ten-Year 0.343 0.022 10.5 0.314 0.021 9.3 0.21 0.016 6.5 0.3536

OLS 0.342 0.03 12 0.321 0.03 10.9 0.211 0.03 7.5 0.3433

N = 1686
T = 700 (6th Jan 2006 - 31st May 2019)
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FIGURE 2.8: Performance Measures - FF3 Model

The figure reports N-averages of the performance measures for the estimated rolling OLS betas of the FF3 model,
considering five different windows made of the most-recent half-, one-, two-, five- and ten-years of data. The
performance measures are asset- and time-specific and I report the aggregate results across time first, and then
assets. Panel 2.8a shows the bar plots corresponding to the in-sample, out-of-sample, conditional out-of-sample,
and predictive MSE measures (respectively from left to right) for different window lengths. The blue bars refer to
the half-year, the green to the one-year, the yellow to the two-year, the purple to the five-year, and the green to the
ten-year window-specific results. Similarly, panel 2.8b reports the MAE measures, and panel 2.8c the R2 measures
based on Kelly, Palhares, and Pruitt (2021). Finally, panel 2.8d shows the estimated beta magnitude, standard
deviation and absolute value of the t-statistics for the estimates at varying sampling frequency. The statistics in this
panel are calculated from the results of the time-series regressions for varying window sizes and are thus TW -specific
(out-of-sample). The last row in panel 2.8d shows the respective full-sample OLS results. To ease the comparison
with the Regional and MKT models, I report the performance measures for 1232 (out of 1686) tickers with complete
price series that remain listed the national equity indeces making up the North America, Asia-Pacific and Western
Europe regions. Details on the regional classification of FF are found in Appendix B.3.

(A) Mean-Squared Error (B) Mean-Absolute Error

(C) R2

(D) Summary Statistics

MKT SMB HML

Window Size βMKT Std t-stat βSMB Std t-stat βHML Std t-stat R2

HalfYear 0.475 0.241 2.7 0.009 0.207 1 -0.005 0.214 1.1 0.3692
OneYear 0.481 0.17 3.8 0.006 0.133 1 -0.008 0.144 1.2 0.3308
TwoYear 0.501 0.123 5.7 -0.002 0.087 1.2 -0.008 0.099 1.5 0.3242
FiveYear 0.527 0.073 9.5 -0.008 0.044 1.5 0.002 0.057 2 0.3315
TenYear 0.551 0.021 14.3 -0.004 0.016 1.8 0.01 0.02 2.7 0.3496

OLS 0.526 0.037 15 0.038 0.034 2.4 0.032 0.034 2.7 0.3117

N = 1232
T = 700 (6th Jan 2006 - 31st May 2019)
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FIGURE 2.9: Performance Measures - FF5 Model

The figure reports N-averages of the performance measures for the estimated rolling OLS betas of the FF3 model,
considering five different windows made of the most-recent half-, one-, two-, five- and ten-years of data. The
performance measures are asset- and time-specific and I report the aggregate results across time first, and then
assets. Panel 2.9a shows the bar plots corresponding to the in-sample, out-of-sample, conditional out-of-sample,
and predictive MSE measures (respectively from left to right) for different window lengths. The blue bars refer to
the half-year, the green to the one-year, the yellow to the two-year, the purple to the five-year, and the green to the
ten-year window-specific results. Similarly, panel 2.9b reports the MAE measures, and panel 2.9c the R2 measures
based on Kelly, Palhares, and Pruitt (2021). Finally, panel 2.9d shows the estimated beta magnitude, standard
deviation and absolute value of the t-statistics for the estimates at varying sampling frequency. The statistics in this
panel are calculated from the results of the time-series regressions for varying window sizes and are thus TW -specific
(out-of-sample). The last row in panel 2.9d shows the respective full-sample OLS results. To ease the comparison
with the Regional and MKT models, I report the performance measures for 1232 (out of 1686) tickers with complete
price series that remain listed the national equity indeces making up the North America, Asia-Pacific and Western
Europe regions. Details on the regional classification of FF are found in Appendix B.3.

(A) Mean-Squared Error (B) Mean-Absolute Error

(C) R2

(D) Summary Statistics

MKT SMB HML RMW CMA

Window Size βMKT Std t-stat βSMB Std t-stat βHML Std t-stat βRMW Std t-stat βCMA Std t-stat R2

HalfYear 0.488 0.275 2.4 0.023 0.225 0.9 0.017 0.316 1 0.043 0.27 1 0.019 0.289 1 0.4466
OneYear 0.492 0.185 3.5 0.018 0.137 1 0.014 0.198 1.1 0.043 0.166 1 0.015 0.185 1.1 0.3774
TwoYear 0.511 0.13 5.2 0.01 0.088 1.1 0.016 0.131 1.3 0.042 0.108 1.2 0.011 0.125 1.3 0.3561
FiveYear 0.536 0.076 9 0.004 0.044 1.3 0.028 0.069 1.7 0.047 0.052 1.5 0.006 0.061 1.8 0.3525
TenYear 0.56 0.022 13.3 0.007 0.016 1.7 0.041 0.022 2.4 0.052 0.021 2.1 -0.003 0.024 2.1 0.3659

OLS 0.519 0.041 13.2 0.039 0.035 2.3 0.044 0.046 2.1 0.012 0.042 1.6 -0.017 0.039 2 0.3212

N = 1232
T = 700 (6th Jan 2006 - 31st May 2019)
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FIGURE 2.10: Dynamic Loadings - Regional Model

The figure shows the estimated rolling factor sensitivities for the Regional model using a half-year window, pan-
els 2.10a-2.10f, and a two-year window, panels 2.10g-2.10l. For each region, I report the time series evolution of
the loadings of the financial factor, blue line, global factor, red line, and regional factor, yellow line. The shaded
horizontal lines indicate OLS full-sample estimates of the loadings. The grey bands refer to the GFC of 2007-2009
and the ESDC of 2011-2013, respectively in chronological order. The light red bars isolate the start and end dates
corresponding to region-specific financial events. Details on the economic calendar are found in Appendix B.2.

(A) North America - Half-Year (B) Latin America - Half-Year

(C) Western Europe - Half-Year (D) Emerging Europe - Half-Year

(E) Asia-Pacific - Half-Year (F) MEA - Half-Year

(To be continued)
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(Continued)

(G) North America - Two-Year (H) Latin America - Two-Year

(I) Western Europe - Two-Year (J) Emerging Europe - Two-Year

(K) Asia-Pacific - Two-Year (L) MEA - Two-Year

N = 1686
T = 674 (half-year, 30th Jun 2006 - 31st May 2019)
T = 596 (two-year, 28th Dec 2007 - 31st May 2019)
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FIGURE 2.11: Dynamic Loadings - FF3 Model

The figure shows the estimated rolling factor sensitivities for the FF3 model using a half-year window, left panels,
and a two-year window, right panels. For each region, I report the time series evolution of the loadings of the
MKT factor, blue line, SMB factor, red line, and HML factor, yellow line. The shaded horizontal lines indicate OLS
full-sample estimates of the loadings. The grey bands refer to the GFC of 2007-2009 and the ESDC of 2011-2013,
respectively in chronological order. The light red bars isolate the start and end dates corresponding to region-
specific financial events. Details on the economic calendar are found in Appendix B.2. To ease the comparison with
the Regional and MKT models, I report the estimates for 1232 (out of 1686) tickers with complete price series that
remain listed the national equity indeces making up the North America, Asia-Pacific and Western Europe regions.
Details on the regional classification of FF are found in Appendix B.3.

(A) North America, Half-Year (B) North America, Two-Year

(C) Asia-Pacific, Half-Year (D) Asia-Pacific, Two-Year

(E) Western Europe, Half-Year (F) Western Europe, Two-Year

N = 1232
T = 674 (half-year, 30th Jun 2006 - 31st May 2019)
T = 596 (two-year, 28th Dec 2007 - 31st May 2019)
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Chapter 3

Factor Investing in the Sovereign Bond
Market

Abstract

In this chapter I study the performance of factor-based investment strategies such as momen-
tum, value, and low-risk in the government bond market. My universe comprises bonds is-
sued by nine developed countries in the period January 2010 to end of October 2021, with data
available at daily frequency. I examine the cross-country characteristics of the factors, and how
these change with respect to the maturity buckets along the issuer-specific curves. My analysis
reveals that momentum yields high and statistically significant Sharpe ratios across most coun-
tries only when short-dated bonds (less than five years) are included. On the other hand, using
value measures based on past returns as in Asness, Moskowitz, and Pedersen (2013) leads to
low and insignificant risk-adjusted returns across countries. Although lower in magnitude than
momentum, low-risk yields statistically significant returns only for Euro Area bonds. Contrar-
ily to what reported in previous literature, I find no supporting evidence for momentum, value
and low-risk when bonds across all countries are considered in a global portfolio.
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3.1 Introduction

The literature on factor investing1 has focused primarily on examining the performance of
traditional style factors, such as momentum, value, and low-risk, in explaining future return
patterns in the equity and credit markets. Asness, Moskowitz, and Pedersen (2013)[AMP13
thereafter] use a consistent approach across asset classes and draw from the equity literature,
e.g. De Bondt and Thaler (1985), Fama and French (1996a), to define momentum and value.
Momentum factors benefit from the continuation of short-term trends in the market prices of
securities, and are usually constructed using past-return performance measures, while value
factors aim to profit from long-term deviations of asset prices relative to their ‘fair value’, the
calculation of which is based on accounting figures in the equity market, or yield curve spreads
in the credit market. Frazzini and Pedersen (2014)[FP14 thereafter] also follow a consistent
approach across asset classes, and define low-risk2 as the ability for assets with safer and more
consistent return streams, measured by the market beta in stocks or duration in bonds, to
deliver higher risk-adjusted performance.

To date, relatively less attention has been given to analyse the characteristics of traditional
style factors in the sovereign bond market. AMP13 is one of the first in the literature to do so,
and find consistent evidence of return premia for the factors individually, as well as significant
diversification benefits when combined in a multi-factor portfolio. They consider a sample
of ten countries, with data at monthly frequency, and report their results on aggregate across
all countries. FP14 follow an analogous approach but test their low-risk factor only in the US
sovereign bond market, for which they report statistically significant risk-adjusted returns.
More recently, several contributions have been made to study factor premiums in global
government bond markets, eg. Baltussen, Martens, and Penninga (2021), Kunz and Mazzoleni
(2018), and Brightman and Shepherd (2016), and I build on this literature by questioning
two key features of these studies. Firstly, they report results on aggregate across countries or
maturity buckets, which makes it difficult to understand how the factors’ performance change
in the cross-section (country- or maturity-wise). This is mainly due to the fact that these studies
use portfolios as primitive assets, which inevitably leads to information being averaged-out
across one dimension (global portfolios for the country dimension, and constant-maturity
portfolios for the maturity dimension). Secondly, they all employ data sampled at monthly
frequency, which raises questions on the validity of their results at higher frequencies such as
daily.

In this chapter I aim to bridge this gap by analysing the cross-country and -maturity
differences in the performance of style factors formed on bond-level data at daily frequency,
from nine developed countries. I follow AMP13 to construct cross-sectional momentum and

1The term ‘factor investing’ is a used as a synonym for ‘style investing’, similarly for (style) ‘factors’ and ‘port-
folios’.

2Also know as ‘defensive’ or ‘quality’ factor.
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value factors for each country and maturity combination, and test alternative measures based
on shorter estimation windows to capture fluctuations in the bonds’ prices at daily frequency.
Similarly for low-risk, I follow FP14 as baseline and compare maturity- versus duration-based
measures. Conditional on a given measure, I compare the factors’ performance under different
dimensions. I test global factors that allocate capital internationally, i.e. aggregating results
across countries as customary in the literature, against the country-specific counterparts. I
test factors that invest in bonds with different maturity profiles, i.e. long- vs short-dated, and
factors that are build under different investment constraints, i.e. long-only vs long-short.

My results indicate a high degree of variability in the factors’ performance across countries
or maturity buckets. I find that by using canonical momentum measures as in AMP13, the
resulting portfolio returns are decreasing in the maturity of the bonds, with the highest
Sharpe ratios found for portfolios formed on short-dated bonds (less than 5-year maturity).
For longer-dated securities, momentum does not deliver statistically significant portfolio
returns. Comparing across countries, my results reveal that momentum produces consistent
statistically significant Sharpe ratios, however this is not true for value and low-risk. Reversal
value measures of AMP13 fail to produce portfolios that have positive performance across
countries and maturity buckets, while low-risk yields the best results when bonds issued by
Euro Area countries are considered for portfolio formation.

I find an unambiguously better performance of factors constructed as long-short over long-
only portfolios, with the latter often yielding negative statistically significant Sharpe ratios (in
particular for momentum). Similarly, when I allow portfolios to allocate capital internationally,
I find that for all factors this leads to a substantially lower performance with respect to the
country-specific counterparts. This result is in contrast to what is commonly reported in the
literature, and suggests that style factor premia vary substantially across markets when bonds
are used as primitive assets. Although this phenomenon is well understood in the equity, e.g.
Fama and French (2012), and credit markets, e.g. Bekaert and De Santis (2021), to the best of
my knowledge my study is the first to document the performance of local (country-specific)
style factors in the sovereign bond market. Based on my findings, I argue that aggregating
results across countries, as it is customary in the literature, can lead to biased and inaccurate
results as much of the cross-country variability is averaged out.

When I analyse the cross-factor relationships in each country from October 2018 to October
2021, I find limited support for the advocated diversification benefits of momentum and
value. Although not negative as reported in AMP13, my results show that their returns are
not linearly related in the sample period. However, when I examine duration profile of these
portfolios I argue that this result may be spurious, and can arise as a consequence of duration
risk being unhedged during portfolio formation. Using the measures of AMP13 and a similar
methodology, I show how long-short portfolios can have negative net maturity (or duration)
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in a given sample period, which indicates that the portfolio is positioned to benefit from rising
yields, as opposed to a portfolio with positive net maturity that profits in a declining yields
scenario. Brightman and Shepherd (2016) also acknowledges that the procedure of AMP13
can lead to net long or net short positions at any point in time, although they argue that ‘those
exposures mostly average out over time’, which is contrast to what I report. Across countries,
value appears to be uncorrelated also with low-risk, suggesting that it is an unlikely duration
proxy. Low-risk portfolios tend to have negative net maturity and negative correlation with
momentum, and this is true across most countries. The only exceptions are global and Euro
Area country portfolios, in which the correlation between momentum and low-risk is high
and positive. For the global factor in particular, I find the highest correlation estimate, which
suggests that momentum may be considered a duration proxy rather than an anomaly (or
premia), due to the fact that low-risk is constructed as a portfolio that invests in bonds with
lowest duration (or maturity) in the cross-section at any time.

My study contributes to the recent body of literature on factor investing in the sovereign
bond market under many aspects. I expand the approach of Durham (2015), who analyse
how cross-sectional momentum change in the duration buckets of a single issuer’s curve,
to other factors (value and low-risk) and across countries. A key reference for my study is
Baltussen, Martens, and Penninga (2021) who examine value, momentum, and low-risk in the
sovereign bonds of 16 developed countries, using a sample that spans more than 200 years of
data. While I employ similar factor construction techniques, my study extends their analysis
to data sampled at higher frequency, and examines global factor premia internationally and
across maturities. My contribution also differs from existing studies by considering bonds
as base assets, instead of portfolios, which allows me to compare the impact of different
constraints during portfolio formation in relation to the returns, risk, and duration of the
resulting portfolios.

Overall, based on the evidence in this chapter, I find little support for employing unifying
factor measures across countries and maturities in the sovereign bond market. However, the
limitations of my study are many and in Section 3.5.1 I propose alternative procedures that
expand on this study and can help to better understand global factor premia in sovereign
bonds.

Organisation of the chapter. The remainder of this chapter is as follows. Section 3.2 de-
scribes the the factor replication procedure using bonds as base assets. Section 3.3 provides the
details on the cross-country and -maturity composition of my international bond universe, and
Section 3.4 reports the results. In the latter, I firstly study the characteristics of the factors in-
dividually, and then collectively for each country. Section 3.5 concludes my study and discuss
further research. The chapter is accompanied by Appendix C.
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3.2 Methodology

In this section I firstly present the baseline framework to study the cross-section of government
bond returns, Section 3.2.1, and subsequently in Section 3.2.2 I detail the factor construction
procedure and review alternative approaches from the literature.

3.2.1 Baseline Framework

My aim is to study the cross-section of N bonds issued in the sample period, t ∈ [1, T], by C
national governments, c ∈ [1, C] and i ∈ [1, N]. I denote with ri,t the end-of-day return from
t − 1 to t on bond’s i clean price P(c)

i,t , ri,t = (P(c)
i,t /P(c)

i,t−1) − 1, excluding any accrued interest

from the most-recent coupon payment up to period t3. P(c)
i,0 is bond’s i issue price, and P(c)

i,Ti
its

price at maturity. I work in a framework in which T > N, although the data matrix r is sparse
given the different characteristics (issue date and maturity) of the bonds. This means that the
cross-sectional dimension is time-varying, and Nt refers to the number of outstanding bonds at
the end of each day in the sample.

r
(T×N)

=



r1,1 0 0 . . . 0
r1,2 r2,1 0 . . . rN,1

... r2,2 r3,1 . . . rN,2

r1,T1

...
... . . .

...

0 r2,T2 r3,T3 . . .
...

... 0 0 . . .
...

...
...

... . . . rN,T



I group the bonds Nt into four maturity buckets depending on their term-to-maturity
∆Ti,t = t − Ti. My partition follows Brooks and Moskowitz (2017) who examine a set of trade-
able bonds covered in the JP Morgan Government Bond Index made of the the most liquid
securities across 13 developed markets.4 Bucket 0 comprise bonds that have less than one year
remaining before maturity, bucket 1 from one to five years, bucket 2 from five to ten years, and
bucket 3 the bonds with more than 11 years until maturity (up to a maximum of 30 years),
B ∈ {0, 1, 2, 3}. In total the number of on-the-run bonds at time t is given by Nt = ∑C

c ∑B
b Nt,c,b

where Nt,c,b is the bucket- and country-specific total number of securities available.

3Similarly to dividend gains in the analysis of single stock returns, I exclude any gains earned from the accumu-
lated interest on each bond, and focus solely on the movements in bond prices related to interest rate changes.

4Differently to Brooks and Moskowitz (2017), I also include securities that have less than one year remaining
until maturity (bucket 0).
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3.2.2 Factor Construction

I construct factor-based investment portfolios following a procedure similar to that used by
AMP13, FP14, and Koijen et al. (2018). For any bond i = 1, ..., Nt at time t with signal Si,t, I take
a position equal to the signal rank minus the cross-sectional average rank of that signal

wLS
i,t = zt

(
rank(Si,t)−

Nt + 1
2

)
(3.1)

with zt being a scaling factor such that the overall portfolio is scaled to one dollar long and one
dollar short. The weights across all bonds at time t sum to zero, representing a dollar-neutral
long-short portfolio. In a similar fashion I construct long-only (smart-beta) portfolios based on
the signal rank as follows

wL
i,t = zt rank(Si,t) (3.2)

where positions for all assets sum to one at each time t. For the country-style portfolios5 I use
as base assets the bucket-b bonds trading at time t in each market c, i = 1, ..., Nt,c,b, and for the
global portfolio I consider bonds across issuers, i = 1, ..., ∑C

c Nt,c,b for bucket b.

To account for the different maturities of the bonds in the country-bucket portfolios, I adjust
the weights wi,t ∈ {wLS

i,t , wL
i,t} by the term-to-maturity ∆Ti,t, delivering another set of weights

w̄i,t = wi,t/∆Ti,t. This is equivalent to a strategy that down-weights bonds with a relatively
high maturity within each country-bucket portfolio, and up-weights bonds with low matu-
rity, in a similar spirit to low-risk in FP14. Especially for buckets 0, 1, and 2, this adjustment
does not lead to substantially different allocations with respect to the signal-based weights
wi,t since the bonds can have at maximum a 5-year maturity difference. On the other hand,
it is more substantial for bucket 3 bonds that can have a 19-year difference, and in this case
it helps me prevent the impact of signals from bonds with extremely high residual maturity
on my allocations. The adjusted weights are normalised to respect the dollar-neutrality and
fully-investment conditions for long-short and long-only portfolios respectively. f (c,b)

t is the
country-bucket portfolio return at time t, built as a linear combination of asset asset returns ri,t

with w̄i,t,

f (c,b)
t =

Nt,c,b

∑
i

w̄i,t ri,t. (3.3)

My approach draws from Durham (2015), who study how momentum patterns change on
the duration buckets of a single issuer, and from AMP13, who examine value and momentum
for the cross-section of country bond returns (isolating winners and losers across countries,
disregarding the maturity dimension). Durham (2015) argues that the allocations in AMP13

5In practice, I require a minimum of five bonds to be traded at each time t for the construction of the country-
bucket portfolios, Nt,c,b ≥ 5.
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expose investors to duration risk, as average duration differs among the markets that make
up the global portfolio, and constructs long-only portfolios duration-neutral indeces for each
of the six maturity buckets considered (1-3, 3-5, 5-7, 7-10, 10-20, and 20-30 years). Differently
to AMP13, the portfolio construction procedure in Durham (2015) does not feature discrete
rankings of the individual asset, rather it is the allocation across the six buckets that yields the
greatest past return under two constraints. The first is long-only fully-invested portfolios, and
the second is that the optimal weights produce portfolios with the same contemporaneous
weighted-average duration as the benchmark. The latter is the overall US Treasury index
formed by all on-the-run bonds at each time t.

From a methodological perspective, my study differs from Durham (2015) under several
aspects: I use bonds as base assets, instead of constant-maturity bond portfolios, I rank
bonds based on their cross-sectional signal ranks (issuer- and maturity-wise), and I do not
duration-match my portfolios against a benchmark. This last feature is particularly relevant
for my long-short portfolios, as they can show negative net duration at any time t in my setup.
Although the weights w̄LS

i,t sum to zero, with ∑
Nt,c,b
i w̄LS

i,t I(w̄LS
i,t > 0) = 1 ∀t for the long leg and

similarly ∑
Nt,c,b
i w̄LS

i,t I(w̄LS
i,t < 0) = −1 ∀t for the short leg, the bonds that make up the latter can

have higher average duration than those of the long leg (at any point in time). This results in
a portfolio that ‘over-hedges’ its long exposure by selling higher-duration securities, and thus
increases in value when interest rates rise, or in a portfolio with net positive duration, which is
positioned to benefit from falling interest rates, with its long leg having higher duration than
the short leg.

In my study I work only with traded bond data, which makes it difficult to construct
duration-hedged portfolios due to lack of available securities across maturity buckets for
each issuer at any point in time, see Section 3.3 for further details on the data used. An
alternative approach is to bootstrap the issuer-specific spot curves and price the synthetic
coupon bonds for all (continuous) maturities, however, due to the variety in the characteristics
of the sovereign bonds issued in the sample period across countries (e.g. day-count, reset and
payment frequency, coupon rates, etc. ), this requires an accurate pricing engine, a research
topic that I leave for future studies, see Section 3.5.1. Although I acknowledge that duration
risk is not accounted for in my factor construction procedure, I construct style factors across
all available maturity buckets (for each issuer) and examine their relative performance. For
long-short portfolios, the factor measures can lead to imbalances in the duration profile of
the bond portfolios and I compare against long-only benchmarks (with net positive duration)
that feature the same securities for each country-maturity combination, conditional on a given
measure.

To tame the effect of passage of time on bond prices, I exclude the securities that mature in
less than 30 days for the construction of all portfolios at each time t. This choice is motivated by
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the work of Brusa, Gu, and Liu (2014), who show that as premium (discount) bonds approach
maturity their prices will move lower (higher) over time, and this decrease (increase) will
accelerate as they due date gets closer. The relationship between coupon-yield and level of
interest rates determine if a bond is trading at premium, discount, or par, and it is time-varying.
Based on their results one can argue that sorting bonds based on their deviation to par price
at time t can be a candidate risk factor, especially for the securities that are relatively ‘close’ to
maturity, a research question that I leave for further studies, see Section 3.5.1.

In what follows I describe the definitions of the signals Si,t that I use to construct the cross-
sectional factors: momentum, value, and low-risk.

Momentum

My definition of momentum follows AMP13, who use the past 12-month cumulative asset’s
return, skipping the most-recent month, 12-1M. The choice of the window length in mo-
mentum strategies has been the subject of numerous studies in the asset pricing literature
that analyse stock returns’ anomalies. See for instance De Bondt and Thaler (1985), who
find that losers (poor past performance) tend to have high future returns and winners (high
past performance) low future returns, when portfolios are formed on long-term (3- to 5-year)
past returns. Jegadeesh and Titman (1993) study the relative performance of 16 momentum
strategies with 3- to 12-month horizons from 1965 to 1985, and find evidence of persistence
positive returns when portfolios are formed on short-term (up to a year of) past returns: past
losers tend to be future losers, and past winners future winners. Similarly, Fama and French
(1996a) confirm the strong continuation of short-term returns in the period 1963 to 1993, and
find that average returns for the month after portfolio formation are near-zero for the stocks
with the worst short-term past performance (measured from 12 to 2 months before portfolio
formation), and about 1.3% annualised for the (decile of the) stocks with highest short-term
past return. They also corroborate that average returns tend to reverse when momentum
portfolios are formed considering long-term returns from 60 to 13 months prior the date of
formation. This is particularly relevant in the 1930-1961 period, which approximately matches
the sample of De Bondt and Thaler (1985) from 1932 to 1977, but fails to be consistent in the
1963-1993 period. During this time, long-term reversal (i.e. low past performance leads to
high future returns) is observed only when the year prior to portfolio formation is skipped in
ranking stocks. When the preceding year is included, short-term continuation (i.e. low past
performance leads to low future returns) prevails over long-term reversal, and past losers tend
to have lower future returns than past winners for portfolios formed using a long window (up
to four years of past data).

Although continuation of momentum strategies is shown to be particularly relevant
in the short-term (less than 12-month returns), Fama and French (1996a) always skip the
preceding two months prior to the portfolio sorts, arguing that this procedure reduces the
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bid-ask bounce. This choice is motivated by Jegadeesh (1990), who find statistically significant
negative first-order serial correlation in monthly stock returns in the period 1934-1987, and
Jegadeesh and Titman (1993), who report that holding period returns for their portfolios are
‘slightly higher’ when there is a 1-week lag between the formation and holding periods. Both
papers attribute this phenomenon to poor liquidity conditions or market microstructure biases,
an interpretation that finds widespread support in the literature analysing stock returns. In the
same spirit of AMP13, in this study I maintain a simple approach that is consistent across asset
classes, and I leave the problem of adapting existing measures commonly used in the equity
market to the fixed-income literature for future studies. This includes the calculation of the
exclusion window between signal calculation and investment phase, which I keep fixed at one
month. Let aside any explanation of this phenomenon in the government bond market, which
is surely less liquid compared to equity market in which trading is regulated by a centralised
exchanged, skipping a month in forming the portfolios improves the out-of-sample reliability
of the signal measure and reduces potential instabilities in short-term (less than one month)
returns, a logic that is also shared by Grinblatt and Moskowitz (2004).

Additionally, Brightman and Shepherd (2016) study global momentum strategies using
10-year futures from eight developed markets6 and the past 12-month return as signal
measure. Their momentum portfolios are built as time-series factors in which each contract
is compared with its own history, and the strategies invest in bonds with positive past return
measure and short those with a negative one. This is different to my setup in which I calculate
the time-series momentum signals of each asset considering its own history, but use the
relative rank of these signals for the issuer- and bucket-specific bonds at each time t to form
the cross-sectional portfolios. Brightman and Shepherd (2016) report an average momentum
portfolio return of 2.9% and a Sharpe ratio of 0.7 in the period from January 1989 to June
2016 (monthly frequency), and find evidence of a negative relationship between value and
momentum factors (-0.18) as in AMP13, and a positive relationship between momentum and
carry (0.2).

Brooks and Moskowitz (2017) study momentum across countries using level, slope, and
curvature portfolios. The latter are defined respectively as the portfolios formed by the 10-year
bond in each country, the 10-year minus 2-year bonds (duration-adjusted), and the 5-year
bond minus an equal-duration weighted average of the 2- and 10-year bonds. They then
define momentum signals using the past 12-month return on these portfolios, and find that
they deliver statistically significant alphas in the cross-sectional regression of level portfolio
(excess) returns on the first three principal components of the yield curve. This results indicate
that momentum is not related to the cross-section of country-level returns (i.e. it does not affect
any of the PCs calculated from the yield curve), contrarily to value and carry that are captured

6Brightman and Shepherd (2016) consider a cross-section of countries that is the same as ours with the exception
of Spain which is excluded in their study.
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respectively by PC1 and PC2. Since principal components are not sufficient to explain the vari-
ation in momentum, Brooks and Moskowitz (2017) add two macroeconomic variables (growth
in industrial production and inflation of each country) in their cross-sectional regressions of
portfolio excess returns, and find insignificant negative coefficients on the added regressors.
Their sample period of runs from December 1971 to March 2016 (monthly frequency), and
they use country-bucket portfolios as base assets, for which total returns, duration, average
time-to-maturity, and yield-to-maturity are available from the data source.

Similarly to AMP13, Brooks, Palhares, and Richardson (2018) define momentum as each
country’s own 12-month average excess returns, and use the same dataset of Brooks and
Moskowitz (2017) featuring country-maturity portfolios as base assets. Brooks, Palhares, and
Richardson (2018) also study the relationship of style bond portfolios (momentum, carry,
value, and low-risk) with macroeconomic factors, and conclude that they have less sensitivity
to macro shocks than common sovereign bond indeces. They corroborate the evidence of
AMP13 on the negative relationship between value and momentum in government bonds,
and also find substantial diversification benefits when carry and quality are included in their
multifactor portfolios. They report similar figures to those of Brightman and Shepherd (2016),
with in-sample correlation between momentum and value of around −0.2.

In Section 3.4.1 I present the results of the replication procedure for the momentum factor
defined in AMP13. I use a 12 month window for the signal calculation as in the original defini-
tion, 12-1M, as well as shorter 6- and 3-month windows to study shorter-term reversal effects
in the daily bond returns. I denote these strategies as 6-1M and 3-1M respectively.

Value

Value is a widely known equity market factor and in short is defined as the tendency for
relatively cheap assets to outperform relatively expensive assets, Brooks, Palhares, and
Richardson (2018). AMP13 extend its definition from the equity market to government bonds
using the 5-year change in the yields of 10-year bonds in each country, a measure similar
to the negative of the past 5-year return which is shown to have a high correlation with the
book-to-market (value) factor in equity markets, see Fama and French (1996b). As reported
earlier, this choice is motivated by De Bondt and Thaler, 1985 who study the phenomenon
of long-term reversal in individual stocks and use past return measures to document these
patterns. AMP13 find that among US stocks the correlation between the returns formed from
the negative of the past 5-year return and the returns from book-to-market sorts is 0.83. This
relationship is also documented for the UK, Europe and Japan stocks, as well as for the global
stock portfolio. AMP13 also analyse alternative measures such as real bond yield and term
spread, the latter is often used as a sorting variable in carry factor definitions. Real yield is
calculated as the 10-year bond yield minus the 5-year forecast in inflation7, while the term

7Using investment bank analysts’ estimate complied by Consensus Economics.
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spread is the bond yield minus the short rate. AMP13 find that the alternative measures
produce statistically significant Sharpe ratios of 0.73 and 0.55 respectively (real yield and term
spread), and when analysed collectively (average of all three measures) the results are even
stronger with a portfolio Sharpe ratio greater than 1.

Brightman and Shepherd (2016) use real bond yield as value measure, and build cross-
sectional portfolios by taking an equally-weighted long position in the top third of the futures
across countries, and similarly an equally-weighted short position in the bottom third of the
contracts. They report a modest return of 0.5% with a 0.27 Sharpe ratio, the lowest figures
among the three factors, and find a positive relationship with value strategies in other asset
classes (currencies and equities).

Brooks and Moskowitz (2017) and Brooks, Palhares, and Richardson (2018) also employ
the real bond yield as value measure using maturity-matched CPI inflation forecasts, and
implement portfolios that are long assets with high deviations from fundamental levels, like
expected inflation, and short those with low deviations. Brooks and Moskowitz (2017) find
that excess returns of level portfolios across countries load positively (and significantly) on
the value factor, even when carry and momentum are added as regressors. Value remains
significant when principal components are included as well, at the expenses of PC1 that fails to
be statistically relevant in the portfolio expected return equation. They study the information
content of value and find that it absorbs the pricing information from the first principal
component of the yield curve, but also provides additional explanatory power for expected
returns due to the level of yields being related to some fundamental anchor (e.g. inflation).
This procedure is in contrast with the 5Y reversal strategy of AMP13 that considers only the
absolute level of past yields. Finally, Brooks and Moskowitz (2017) corroborate the evidence in
AMP13 and Brightman and Shepherd (2016) on the positive relationship of the value factor in
level portfolios with value strategies in other asset classes.

Supporting evidence of this finding is also reported in Kunz and Mazzoleni (2018) who use
two different measures of value for their bond portfolio sorts, real bond yield as in AMP13 and
the term spread. Contrarily to Brooks and Moskowitz (2017) they find that the value factor
measured as the real yield delivers negative returns (−0.7% in their sample period 1989 to
2017), while the term spread is the preferred measure with a 3.4% return and a 0.47 Sharpe
ratio. Their value measures are constructed using 10-year Treasury bonds and the short-term
3-month cash rate. Kunz and Mazzoleni (2018) further decompose the return of their term
spread portfolio into carry and spot returns, with the former defined as in Koijen et al. (2018),
and find that roughly half of the term spread’s total return (1.4% out of 3.4%) is due to the
carry factor and not to long-term reversal, and that the real yield portfolio takes consistent
negative carry bets that erode potential returns.
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I replicate the value measure of AMP13, 5Y reversal, for the bonds in each country and for
the global bond portfolio. Similarly to the momentum factor, I also use an alternative 3-year
window to calculate the change in the yields of all bonds within each country-bucket portfolio,
3Y Reversal. Contrarily to AMP13, I calculate these changes for all on-the-run bonds at each
time t, and not only for the 10-year securities. The results are reported in Section 3.4.1.

Low-Risk

Frazzini and Pedersen (2014) employ a beta-based strategy (BAB) to construct their low-risk
factor on the US Teasury curve. Their hypothesis is that high-risk assets offer lower returns
compared to low-risk counterparts when adjusted for risk, and they go long assets with low
beta and short the high-beta securities. Their risk measure is the beta from a OLS regression of
asset returns on the market factor, which is constructed as the equal-weighted portfolio of all
the bonds in the benchmark index over a 36-month period. They find that their BAB portfolio
delivers a significant Sharpe ratio of 0.81 in the period 1952 to 2012, which remains almost
unchanged when time-varying exposures are included in the regression analysis. Frazzini and
Pedersen (2014) argue that BAB bond portfolios are subject to investors funding constraints, as
the portfolios maintain market neutrality by targeting a specific risk target. As reported earlier,
in this study I do not target any ex-ante duration, maturity, or volatility value, and I construct
my cross-sectional factors considering bonds across maturity buckets for each issuer. However,
contrarily to momentum and value which are normally constructed as cross-sectional country
factors, low-risk is a cross-sectional maturity (or duration) factor and as such I calculate one
single factor for each country.

Brooks, Palhares, and Richardson (2018) employ effective duration as their measure and
construct the low-risk factor as a global bond portfolio that bets on shorter duration assets
against longer duration ones, across all countries. I follow an analogous approach for my
global low-risk factors, however I use both duration and term-to-maturity as signal measures.
A crucial difference between Brooks, Palhares, and Richardson, 2018 approach and ours is that
I use maturity rather than duration-adjusted weights in the portfolio sorts, a feature which
does not take into account the different coupons of the bonds that are trading at each time t in
each country (local) or across countries (global portfolio)8. I leave this topic for future research,
see Section 3.5, but analyse the differences in performance of low-risk for the two measures.
I take as given the series of modified duration from the data source which cover 55% of the
total bond universe, see Section 3.3 for further details on the data. The long-short defensive
portfolio of Brooks, Palhares, and Richardson (2018) produces a significant alpha when its
excess returns are regressed on traditional market risk premia, and exhibits a low positive

8Long-dated bonds that were issued at the beginning of my sample tend to have consistently higher coupon
rates with respect to those that were issued more recently. Consider for instance a situation in which a 30-year
bond issued in 2012 with a relatively high coupon has the same time-to-maturity of a shorter dated bond that may
be issued recently with a lower coupon. The former might have lower duration that the latter due to the role of
coupons in discounting future cash flows in the duration calculation.
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correlation with value and carry (0.21 and 0.15), whilst it is negatively correlated with momen-
tum (−0.22). Thus, the low-risk portfolio can provide diversification benefits when combined
with style (country-selection) factors such as value and momentum in a multifactor framework.

I replicate the low-risk factor of Brooks, Palhares, and Richardson (2018) using duration,
Dur, and I compare the results against a benchmark measure that uses the bond’s time-to-
maturity, strategy TTM. The results are reported in Section 3.4.1.
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3.3 Data and Summary Statistics

In this section I describe the data used in my analysis, Section 3.3.1, and discuss the summary
statistics and stylised facts of my bond universe, Section 3.3.2.

3.3.1 Data Description

The sample period of my analysis runs from the beginning of January 2010 to the end of Oc-
tober 2021, and most of my data is available at the end of each trading day in the respective
national calendars. I consider nine developed countries: Australia, Canada, Japan, the United
Kingdom, the United States, and for the Euro Area I include France, Germany, Italy, and Spain.
The main source is Bloomberg, from which I download CUSIP-level data for the bonds is-
sued in the sample period by the nine national governments. I include bonds with maturity
greater than 2 and up to 30 years, option-free, bullet and zero-coupon bonds. I exclude green
bonds, international bonds, and in general all bonds with non-standard characteristics (e.g. re-
tail, exchange-traded, when-issued bonds etc.). The total number of securities with complete
series of end-of-day clean prices is N = 972, this figure drops to 788 if I consider the series of
dirty prices9. Further details on my dataset can be found in AppendixB.3.

[Figure 3.1 about here.]

In figure 3.1 I show the time-varying composition of the bond universe by issuer and matu-
rity. At the end of each month I count the number of outstanding securities with available price
data, which are less than 100 at the beginning of the sample (2010-2011) and, as new bonds are
issued, grow to about 700 by the end of the sample. On average, the number of outstanding
securities each month is 362 across countries. Issuer-wise, United States Treasuries make up
about 40% of the total number of bonds in the sample period, followed by Euro Area bonds
with 28%, Japanese bonds with 19%, and Canadian bonds with 6%. Maturity-wise, the share
of bonds maturing in 10 years from their issue date is 23% of the universe, 16% for the 5-year,
14% for the 7-year, and 13% for the 30-year bonds.

3.3.2 Summary Statistics

Using historical price series and CUSIP-level information, I report summary statistics on differ-
ent aspects of the bonds such as issue price, issue volume, and daily returns. Table 3.1 reports
country-specific summary statistics, and figure 3.2 shows the time-series of generic yields for
each issuer considering four key points in the yield curve (2-, 5-, 10-, and 30-year maturities),
as well as the relevant policy rates.

[Table 3.1 about here.]

[Figure 3.2 about here.]
9In total the number of bonds with complete series of end-of-day yields-to-maturity (based on the clean prices) is

717, 706 for yields on the dirty prices, 540 bonds with historical dollar duration series, and 288 bonds with complete
Z-spread daily values.
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Issue Price

One of the key results in the fixed income literature is that the price of a bond approaches its face
value as the bond matures, which calls for a distinction between premium and discount bonds.
I make this distinction at the beginning of the bond’s lifetime (on the issue date), although
the direction and speed of convergence of the day-t price to the bond’s face value vary with
the bond’s age, see Brusa, Gu, and Liu (2014) for further details. I use the coupon-yield ratio =

(ci/yi,t)− 1 from their paper to determine if bonds are trading at premium (ratio > 0), discount
(< 0) or par (= 0). I count 624 discount bonds (65% of the universe), 295 premium bonds (30%),
and only 14 par bonds (1%)10 . All countries with the exception of Japan and Germany issued
most of their bonds at premium in the sample period, which is expected given the persistent
negative rates environment in the two countries from 2016 up to the end of the sample for all
maturities below 10 years in Japan, and from 2015 to the end of the sample for the maturities
below 5 years in Germany (and from 2019 for the 10 year point as well). See figure 3.2 for the
details. In table 3.1 I also report the N-average coupon (annualised, in %) of each sovereign
issuer. Japan and Germany have the lowest figures across all countries with about 85bp and
65bp per annum, while the coupon earned on the Australian debt is the highest on average
with 2.81%, followed by Italy with 2.13%, and Spain with 2.09%.

Issue Volume

I report summary statistics on the volume of debt sold by the issuers in the sample period.
In particular, column Sold in table 3.1 shows the N-average amount of debt sold (in billions
of local currency) to market participants through syndications, auctions, and tap issues. The
sale process of newly created debt securities can take place via syndication or actions. In their
annual sovereign borrowing report11, the OECD finds that the principal issuing procedure in
use among countries is auctions, with 88% of the sovereigns (28 countries) issuing short-term
debt, and 84% (27 countries) longer-term debt. Syndicated bond offerings are also found to
be common in 23 OECD countries, they are mostly used for the first-time issuance of new
instruments (in countries such as Australia, France, and Germany), and for longer-dated
bonds (e.g. Australia, Italy and France). Although there are country-specific characteristics
that influence the choice on the issuance process of new debt, syndications are generally used
for ad-hoc procedures12 , whilst auctions are the most common way for governments to raise
debt on a consistent basis through regular auction calendars.

10Missing information on the issue price for 39 out of 972 bonds, which are unclassified.
11Source: OECD Sovereign Borrowing Outlook 2016
12Syndications are likely to lead to higher placing certainty in difficult market conditions. If the investors’ demand

for bonds is not substantial to fill the available supply, only part of the bonds on offer attract bids, which results
in a failed auction. Although this phenomenon has been rare in the recent years, by the nature of the syndication
model the issuers benefit from the intermediation of the dealer banks, that place orders on behalf of their clients
(investors) to buy the newly issued debt. In the 2021 ECB Advisory Report on Debt Issuance, large European public
issuers are found to pay between 7bp and 25bp of the total issuance amount to the syndicate banks, according to a
standard fees schedule (the longer the maturity of the bond, the higher the fee).

https://www.oecd-ilibrary.org/content/publication/sov_b_outlk-2016-en
https://www.ecb.europa.eu/paym/groups/pdf/dimcg/ecb.dimcg210415_item3.1..en.html
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For each security I also gather data on the cumulative amount of debt issued from its pricing
date up to the end of the sample, this amount includes taps and re-openings. Column Issued
reports N-average of these figures. Due to lack of bond-specific information on the dates of the
re-openings, I use the difference between the amount of debt sold and issued (cumulative for
that line up as of October 2021) to gauge weather the bonds were part of a new issuance13, or
reopening. In particular, I classify bonds as being part of new issuances if the difference Sold -
Issued is within ±10% of the cumulative amount of debt issued for that line (Issued), including
re-openings. On the other hand, all bonds whose amount sold is a fraction of the amount
of debt issued as of end-of October 2021 are classified as tap issues (ie. bonds issued at the
prevailing market prices using the terms of a past issue). Among the 972 securities considered
in the sample period, 209 bonds (22%) are part of new debt offerings, the vast majority being
2-year Japanese Government Securities (15), and 2- (18), 3- (39), 5- (46), and 7-year (77) US
Treasuries. The remaining 763 bonds belong to tap issues.

[Figure 3.3 about here.]

In figure 3.3 I report country-specific statistics on the yearly issue volume from 2010 to
2021. At the end of each year I calculate the amount of debt sold using bond-level data for each
issuer, this includes bonds that were newly issued and those part of a re-opening (tap). The
figures are calculated considering the cross-section of 972 bonds for which I have complete
price series, and thus are only a fraction of the total amount of debt issued in the sample
period by the national governments. For instance, when I compare my results with official
data sources for the United States14 I find that the trend in the gross amount of debt issued
differs from what I report. The increase in the amount of debt issued in 2018 is 20%, versus
the estimated 60% in panel 3.3a, which is lower than the 33% in 2020 officially reported, and
comparable to the 2012 figure of 29%. My estimates are 14% and −32% respectively for 2020
and 2012. Overall, my results confirm that the pace of issuance in 2020 increase considerably
across countries in response to the COVID-19 pandemic, this phenomenon is apparent when I
look at the aggregate figures for the countries in the Euro Area that almost double their issue
volumes from 2019 to 2020 (with the exception of France). I also find that with the exception of
2011 and 2012, the amount of debt sold through market participants by the US Department of
the Treasury is always increasing on a yearly basis. The same holds for Japan from 2016 up to
the end of the sample.

The summary statistics help me better understand the macro events that drove an increase
in the supply of newly issued bonds, which are included in my universe. For instance, I find
that 25% of Spanish bonds were issued in the period 2012-2014 following an injection of cash

13New issuances can be either syndications or auctions. With my data I are not able to uniformly differentiate the
two across countries, mostly due to the different definitions and uses of each issuer. For a detailed survey refer to
OECD Sovereign Borrowing Outlook 2016.

14The Securities Industry and Financial Markets Association (SIFMA) provides detailed statistics on the US Trea-
sury market issuance, and I look at the YoY change in total gross issues of US Treasury Securities considering notes
(2-, 3-, 5-, 7-, 10-year), and bonds (20, and 30-year).

https://www.oecd-ilibrary.org/content/publication/sov_b_outlk-2016-en
https://www.sifma.org/resources/research/us-treasury-securities-statistics/
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from the ECB for bank recapitalisation, and similarly in 2020-2021 to tackle the COVID-19 pan-
demic (20% of the bonds). In July 2012 the Eurogroup agreed a financial assistance programme
of up to 100 eB (for the following 18 months) aimed at stabilising the Spanish banking system,
which came under pressure due to a combination of low growth, high unemployment, and
inflated property prices. From the official sources15, in 2012 the Spanish government issued a
total of 97eB, and 74eB in 2013, which are the highest figures in the sample (2010-2021), to-
gether with the 110eB in 2020. This pattern is consistent with my data, panel 3.3a shows the
highest figures in the period 2013-2014 and in 2020-2021.

Daily Returns

In table 3.1 I report summary statistics on the bonds’ simple daily returns, calculated using
the time series of clean prices. Column Pearson shows the N-average pair-wise correlation
of the bonds in each country (across all maturities, considering the time-series of returns),
which gives me a snapshot of the intra-group dependence. For instance, I find that Japanese
bonds tend to behave less uniformly, and across all groups are the ones that show the lowest
correlation estimates, 0.69. Contrarily, the bonds in countries such as the United Kingdom
and Italy tend to have similar price trajectories from a time-series perspective, 0.84 and 0.87
respectively. I also report the minimum daily return recorded, column Min, the maximum
daily return in the sample period, Max, and N-averages (in %, annualised16) of the bonds’
standard deviations and premia, calculated using the available time-series (from the issue date
to maturity, or up to the end of the sample for the bonds that are on-the-run as of October 2021).
The bonds that carry the highest premium on average are found in Italy, 1.15% estimated on
a sample of 98 bonds with an average maturity of 7 years, and Spain, 0.78% considering 59
securities with a similar maturity profile. Australia (6.19%, 32 securities with average maturity
of 12 years), the United Kingdom (5.82%, 35 bonds with maturity of 12), and Italy (5.66%)
dominate the statistics on the average risk profile of the bonds, whilst Canada (1.99%, 62 bonds
with 4.6 maturity), Germany (2.31%, 72 bonds with 6 years maturity), and Japan, (3.14%, 184
bonds with the highest average maturity of 15.7 years) have the lowest figures.

To better understand the statistics on market-driven changes in bond prices, for each issuer
and maturity bucket I calculate the N-average return and standard deviation (of the returns)
using the series of clean prices. I consider the lifespan of each bond from issuance up to ma-
turity for off-the-run bonds as of October 2021, and up to the end of the sample for on-the-run
bonds. These figures are equivalent to the average returns earned by investing in equal portion
in the bonds of each issuer during the sample period (ex-post), by maturity bucket. I report the
results in figure 3.4.

15Source: 2021 Funding Strategy, amount net of redemption.
16Let r̂ be the in-sample daily average return of an asset (or portfolio) and ˆstd(r) its standard deviation, I annualise

the measures as Avg = (1 + r̂)T − 1 and Std = ˆstd(r)
√

T where T is the number of daily time-series observations.
This applies to all summary tables in this chapter unless noted otherwise.

https://www.tesoro.es/sites/default/files/estrategia/Strategy_EN.pdf
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[Figure 3.4 about here.]

I find that for short-dated securities (buckets 1 and 2), Italian and Spanish bonds yield on
average the highest return across countries, with the highest volatility figures. On the other
hand, when I consider longer-dated securities US Treasury bonds dominate the risk-return
statistics. For most countries, the return on bonds with maturity of less than 11 years (buckets 1
and 2) is on average negative, while it is positive for the bonds in bucket 3. The only exceptions
are Germany and the United Kingdom, whose bonds yield negative or near-zero returns across
all maturity buckets. My calculations give a snapshot of the term-premium for each issuer,
the amount by which the yield on a long-term bond is greater than the yield on a shorter-
term bond. From a maturity-selection perspective, for the same issuer the returns earned by
an investor who bears higher risk in the form of higher sensitivity to interest-rate changes
(duration) should be higher than the returns earned by investing into low-duration bonds. My
data confirms that for each issuer the average return and standard deviation are increasing
in the buckets (average maturity of the portfolios)17. For instance, the return differential for
US Treasuries in the first and last buckets is about 3% annualised, and the standard deviation
increases from 1.4% in bucket 1 to 14.68% in bucket 3. In the scatter plot of panel 3.4a I also
report the risk-return profile of Japan versus US -issued bonds by maturity bucket. JP1 is the
point that corresponds to the 1/N long-only portfolio of Japanese bonds with 1 to 5 year-
maturity, JP2 considers the bonds in bucket 2, and JP3 those in bucket 3. Similarly for US
Treasury bonds, US1, US2, and US3. A cross-issuer and -maturity analysis of US and Japanese
bonds reveals that the risk profile of JP2 is similar to US1, with both yielding near-zero average
returns. Japanese bonds have the lowest in-sample (average) standard deviation of returns
across issuers and within each bucket.

17With the exception of the buckets for which I have a low number of bonds.
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3.4 Results

In this section I report the results on the performance of momentum, value, and low-risk in-
dividually, Section 3.4.1, and examine the factors collectively by country and maturity bucket,
Section 3.4.2.

3.4.1 Factor Replication

Following the methodology outlined in Section 3.4.1, I construct my cross-sectional bond fac-
tors using the standard definitions from the literature, and compare their performance against
alternative measures. I now analyse the results for each factor individually.

Momentum

Table 3.2 reports summary statistics on the estimated momentum factors, considering the
issuer-specific bonds for the country portfolios, and all bonds for the global portfolio. I use the
canonical 12-1M definition of AMP13, panels 3.2a-3.2b, and alternative measures with shorter
estimation windows of 6 and 3-month past returns, panels 3.2c-3.2d for the 6-1M measure and
3.2e-3.2f for 3-1M. For each measure I report the results of the long-only and long-short port-
folios. I require a minimum of five bonds to be traded at each time t per maturity bucket, and
a minimum of three years of data. Frequency is daily. Column Start indicates the start date
of the time-series of factor returns, Avg is the estimated average return per annum in %, Std
the annualised standard deviation, SR is the Sharpe ratio18, t-Stat is its t-statistic19, and ∆T is
the time-series average of the portfolio term-to-maturity in the relevant sample, expressed in
years. I indicate with an asterisk if at any time in the sample period the portfolio net term-
to-maturity turns negative (only for long-short portfolios). Finally T refers to the number of
time-series observations (in days), and N to the number of bonds considered in the whole sam-
ple for the country-bucket portfolios. All factors are estimated up to October 29th 2021, unless
noted otherwise.

[Table 3.2 about here.]

I begin by analysing my results considering the canonical 12-1M long-short measure as
baseline, and compare the performance of the factors across countries (in local currency terms),
and across maturities. For all countries, momentum strategies deliver high statistically signif-
icant Sharpe ratios when short-term bonds are included, up to 5-year maturity. When bucket
3 bonds are considered, 11 to 30-year maturity, the effectiveness of these strategies decreases
considerably and they fail to produce statistical significant Sharpe ratios. The global portfolio
delivers low and statistically insignificant Sharpe ratios since 2011 for all maturity buckets,
while Euro area countries dominate the rankings, with France’s and Spain’s momentum

18Assuming a zero risk-free rate.
19I measure the t-statistic as t-Stat =

√
T SR following Lo (2002) where T is the length of the portfolio return

series in years, and SR its annualised Sharpe ratio.
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portfolios yielding about 4.0 annualised risk-adjusted performance from 2012/2013 to 2021.
On the other end of the spectrum, Canadian and Japanese bond portfolios have the lowest
figures with about 1.3 and 1.6.

Compared to long-only portfolios, average returns on the long-short counterparts are con-
sistently higher, which does not come at the cost of increased volatility. However, for virtually
all long-short momentum strategies, the portfolio net duration always turns negative in the
sample period, which carries additional costs related to open and maintain short positions
in government bonds. One of the main limitations of my study is that I do not incorporate
such costs in my performance calculations, since I do not rebalance my portfolios to match
a desired duration target. This implies that the performance measures of my long-short
portfolios are less conservative and require further investigation, see Section 3.5.1 for the
details. Considering the 12-1M measure and bucket 1 bonds, I find that long-only portfolio
sorts in countries such as France, Germany, and Japan deliver negative statistically significant
Sharpe ratios from 2013, 2012, and 2014 respectively. For all other countries, the Sharpe ratios
are near zero.

Overall, I find that the performance of the long-short momentum portfolios is robust to
the choice of the estimation window, with the longer 12-month window providing slightly
better results. Using the alternative measures, panels 3.2c-3.2d for 6-1M and panels 3.2c-3.2d
for 3-1M, I corroborate the evidence that long-short portfolios deliver consistently superior
performances than the long-only counterparts, across countries and maturity buckets, and
achieve higher returns when shorter-term bonds are included.

The figures for the global momentum factor in panel 3.2b are in line with AMP13 who report
an average return of 1.0% and standard deviation of 5.8% between 1982 to 2011. My bucket 1
portfolio statistics are 1.7% and 5.8% respectively, between 2011 and 2021. The results remain
consistent when I employ the 6-1M and 3-1M measures, the average return of the 3-1M and
6-1M bucket 1 portfolios are 1.3% and 0.98%, and the respective standard deviations 5.09% and
5.04%. The average term to maturity of these portfolios range from 6.4 (3-1M) to 7.8 (12-1M)
years.

Value

Similarly to before, table 3.3 reports summary statistics on the estimated value factors, consid-
ering the issuer-specific bonds for the country portfolios, and all bonds for the global portfolio.
Panels 3.3a-3.3b show the results for the canonical 5Y Reversal of AMP13, and panels 3.3c-3.3d
for the alternative 3Y Reversal with a shorter look-back window. As usual, I require a mini-
mum of five bonds to be traded at each time t per maturity bucket, and a minimum of three
years of data. With respect to the momentum factor, the number of countries for which I have
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complete series of value factor returns is lower, due to the longer estimation window needed
to produce the signals.

[Table 3.3 about here.]

I begin by analysing my results for the 5Y Reversal long-short portfolios. From July 2018
up to October 2021, the US value factor returned an average 1.5% per annum with a Sharpe
ratio of 0.5. Its average net duration is slightly negative at −0.7 years, indicating that it was
positioned to benefit from the rising interest rates environment up to early 2019, but suffered
from the consecutive interest rate cuts in 2020 and 2021 in response to the COVID-19 pandemic.
Comparing across buckets and measures, bucket 1 with the 3Y Reversal and bucket 3 with the
5Y Reversal, I find that the risk-adjusted return on the value factor tends to be higher when
longer-dated bonds are included. This is true in particular for Japanese bucket 3 bonds from
2016, in which the value strategy delivers the highest Sharpe ratio across groups, about 0.8.
When I analyse the results of the global portfolio for bucket 3 bonds, I find that its return is
negative and the average term-to-maturity is −12.8 years. Similarly to momentum, I find less
support for global rather than local value factors. Compared to long-only portfolios, average
returns on the long-short counterparts are consistently higher and less volatile. This is true in
particular for Japan in which the returns of long-only sorts are negative across all buckets, and
then become positive when short selling is allowed.

When I use a shorter look-back window of three years, the Sharpe ratios of the long-short
portfolio of France and Germany (bucket 1) are the only ones that become statistically
significant across countries, contrarily to the 5Y Reversal portfolios that all show evidence
of statistically insignificant Sharpe ratios. The return on the 3Y Reversal German portfolio
from September 2016 is 1.9% annualised, with a 1.3 Sharpe ratio, and the return on France’s
portfolio is 2.3% from June 2018, with a 1.2 Sharpe ratio. Similarly to 5Y Reversal, the return
of the global portfolio is negative and its Sharpe ratio insignificant for all maturity buckets.
Perhaps interestingly, I find supporting evidence for a reversal in Germany’s bond returns
when I employ long-only 3Y Reversal strategies: −1.53% is the average return of the long-only
portfolio with a maturity of 6 years, versus the long-short one with 1.9% and maturity of 3
years.

Compared to AMP13, who report an average return of 0.5%, standard deviation of 6.4%
and Sharpe of 0.07 from 1982 to 2011, the average returns of my global value factors in panel
3.3b are considerably higher. When I employ the 3Y Reversal measure my figures are more in
line with AMP13. The average return on bucket 1 global portfolio is 0.6% from November 2013,
standard deviation of 6.93% and Sharpe of 0.07, and similarly the bucket 2 portfolio with 0.86%,
5.55% and 0.15 respectively The average term to maturity of these portfolios range from 2.5 (3Y
Reversal long-short global bucket 1) to 5.5 (5Y Reversal long-short global bucket 2) years.
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Low-risk

Table 3.4 reports the results on the construction of the low-risk factor, I use duration, panels
3.3a-3.3b, and the term-to-maturity, panels 3.3c-3.3d.

[Table 3.4 about here.]

FP14 report a Sharpe ratio of 0.81 and a 2.43% volatility for their low-risk factor on US
Treasury bonds from 1952 to 2012, which is line with my estimates of 0.35 and 2.49% respec-
tively using the bonds’ term-to-maturity from February 2014, see panel 3.4d. My US low-risk
portfolio has an average ∆T of 1.3 years which is always positive in the sample period. This
is an exception across countries and measures, with all the other low-risk factors constructed
as long-short portfolios, panels 3.3b and 3.4d, having net negative duration at some point
from 2010 to 2021. When I consider ∆T as baseline, I find that the highest Sharpe ratios across
countries are the ones on France and Germany’s bonds with about 1.2 to 1.3 for the long-short
portfolios, and 0.78 and 0.45 for the long-only counterparts. When I use duration as measure,
which takes into account the role of coupons in discounting future cash flows, my results
remain consistent and the highest Sharpe ratios are the ones of the Euro Area countries.

Overall, the differences in performance of the low-risk portfolios using the bonds’ term-
to-maturity or duration are numerically relevant, contrarily to what FP14 reports. For the US,
the TTM long-short portfolio has a Sharpe ratio of 0.35 from 2010, versus 0.13 for the duration
portfolio from 2014. This difference is less pronounced for the Euro Area countries and the
UK, and reverses for Japan, in which the duration portfolio’s Sharpe ratio is 0.58 from 2014,
versus 0.19 for the TTM portfolio from 2010. Comparing long-short versus long-only weights,
I corroborate the findings of momentum and value factors also for low-risk. Ceteris paribus,
the performance of long-only portfolios is inferior to the long-short counterparts, although I do
not account for rebalancing and duration matching in my performance calculation.

3.4.2 Multi-Factor Results

In this section I analyse the factors collectively for each country and maturity bucket. To facili-
tate the comparison, I focus only on bucket 1 (2- to 5-year) and bucket 3 (11- to 30-year) bonds
and exclude countries with only one available factor. I also fix the measures for factor con-
struction, 12-1M for momentum, 5Y and 3Y Reversal for value (bucket 3 and 1 respectively),
and duration for low-risk. As highlighted in the previous section, the differences in the char-
acteristics of factors constructed under long-only or long-short constraints are relevant, and I
present my results separately. This choice is also justified by the constraints that each investor
faces, e.g. duration-matching in long-only, and -hedging in long-short portfolios, which results
in portfolios with very different risk-return (and duration) profiles. Section 3.4.2 reports the
results considering all available data for each factor, country, and bucket combination, and
Section 3.4.2 reports the results on a restricted time span, from October 2018 to October 2021.
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Unrestricted Sample

Table 3.5 presents the multi-factor results considering all available data for each factor, country,
and bucket combination.

[Table 3.5 about here.]

For a long-only investor, panel 3.5a, the benefits of factor investing in the sovereign bond
market appear to be slim, with most factors returning negative or low Sharpe ratios across
countries and buckets. For bucket 1 US bonds, the momentum factor has a Sharpe ratio of
-0.22 and the value factor of 0.18, with the the duration of the latter being considerably higher
than the one of momentum. Value has a duration profile similar to that of the low-risk, with
about 16 years. For Germany, momentum and value factors show evidence of statistically
significant Sharpe ratios, both of which are negative. Similarly, for France and Japan bucket
1 bonds momentum yields near −1 Sharpe ratios. The highest Sharpe ratios are the ones of
momentum on bucket 3 Japanese bonds, 0.54 from 2011, and value on US bucket 3 bonds, 0.51
from 2018. The low-risk factors show evidence of statistically insignificant Sharpe ratios across
all countries.

For a long-short investor, panel 3.5b, I find that all three factors have positive and statis-
tically significant Sharpe ratios in France and Germany (bucket 1), and similarly in Italy and
Spain for momentum and low-risk. For bucket 3 bonds, none of the factors have statistically
significant Sharpe ratios across countries.

Restricted Sample

To further assess the relative performance of the factors across countries, in the this section I
calculate the summary statistics on a restricted time span, from October 2018 to October 2021.
Table 3.6 reports the results.

[Table 3.6 about here.]

For a long-only investor I corroborate the evidence on the poor performance of the momen-
tum factor across countries and buckets, this is true in particular Japan and Germany (bucket 1)
that have negative statistically significant Sharpe ratios of −1.3320. The only other factor with
statistically significant risk-adjusted performance is low-risk for Italy, with 1.19. The highest
figures across countries are the ones for bucket 3 US bonds, in which the momentum factor
yields a 0.63 Sharpe, value 0.77 and low-risk 0.48. When I consider bonds from all countries for
my portfolio construction procedure, I find that none of the factors have statistical significant
Sharpe ratios. However, with respect to most of the country-specific portfolios, the global one
tends to deliver higher risk-adjusted returns for momentum and value (bucket 1).

20For Japan only, the value factor is available from October 2019 to April 2021.
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For a long-short bond investor, I find evidence of positive and statistical significant returns
on the momentum and low-risk factors only for certain country-factor combinations. For
momentum, this is true only for bucket 1 bonds, with factors constructed using longer-dated
securities delivering insignificant albeit positive Sharpe ratios. For euro area countries, the
momentum factors performs well in the sample period with Sharpe ratios ranging from 3.62
for Germany to 11.46 in Spain, and similarly for low-risk with 0.94 and 1.89 respectively. Value
appears to have a statistically significant positive risk premia in Germany alone, with a Sharpe
ratio of 1.48.

To better understand the dynamics of the three factors in each country, in figure 3.5 I report
time-series of cumulative returns (left panels), together with the relevant summary statistics
(right panels), from October 2018 to October 2021. I report the results only for the countries in
which all three factors are available, and focus on bucket 1 long-short portfolios for value and
momentum.

[Figure 3.5 about here.]

I start by analysis my results for the US, the issuer with the highest number of securities
in my universe. Although not negative as reported in AMP13, I find a low correlation of 0.04
between my momentum (12-1M) and value (3Y Reversal) factors. This may be due to the
fact that the value portfolio’s net term-to-maturity is negative, −8 years, which indicates that
is positioned to deteriorate in a declining-yield scenario (usually associated with economic
contraction). Although the anti-cyclical behavior of the value factor can be important for
multi-factor investing, my findings suggest that this may be due to the way in which long-
short signal-based portfolios are constructed. As in AMP13, I do not rebalance the portfolios
to match a desired duration target, which exposes investors to duration risk, and in general
does not take account of the costs associated to maintain open short positions. This implies
that the returns on the value factor can be even lower than what reported, which casts doubt
on its potential in the US sovereign bond market (and internationally too). On the other hand,
I find that low-risk is negatively correlated to momentum, −0.23, and uncorrelated to the
value factor. Its Sharpe ratio is 0.11 and its maturity −1.4 years, which can partly offset the net
positive maturity of 0.9 years on momentum. For US Treasury securities, the low-risk factor
appears to be a better candidate for inclusion in a multi-factor portfolio than value. My figures
are in line with Brooks, Palhares, and Richardson (2018) who find a negative correlation of
about -0.22 between momentum and low-risk, although their results are presented for a global
portfolio of 13 countries (from 1996 through 2017).

When I consider factors that allocate capital internationally, panel 3.5c, I find that the
information content of momentum and low-risk is similar, with their in-sample correlation
being 0.91. This suggests that momentum may be considered a duration proxy rather than an
anomaly, since low-risk is constructed by investing in bonds with lowest dollar duration in
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the cross-section at any time t. Perhaps interestingly, I find that momentum and value have a
negative near-zero correlation in the sample period, −0.09, only for the global factor. AMP13
also use global portfolios for their factors and estimate a −0.18 correlation from 1989 to 2016 at
monthly frequency.

For Japan, I find evidence evidence of near-zero or negative cross-factor relationships in
the sample period. The correlation between momentum and value is 0.05, −0.13 between
momentum and low-risk, and −0.05 between value and low-risk. In line with my expectations,
I find that all factors enjoyed a positive return in the sample period, although only momentum
produces statistically significant Sharpe ratios. From October 2018 to the beginning of 2021
the value factor returned approximately 3.5%, however its net term-to-maturity is the highest
across factors with about 6.4 years, which results in higher volatility. This can be seen
from the time-series plot in panel 3.5a, that shows how during the period from August to
end-of-September 2019 the factor almost doubled in value (from 2.5% to about 5% cumulative
return) before erasing all the gains towards the end of the year. At its 30 July meeting, board
members of the Bank of Japan decided to keep its monetary policy unchanged, with the
shot-term policy rate charged to financial institutions’ deposits at the Bank at −0.1%. During
the same period the FED decided to lower the benchmark rate by 25bp, citing ‘implications of
global developments for the economic outlook as well as muted inflation pressures’21. In this
study I do not establish contagion effects across country factors, a topic that I leave for future
research, however this particular period offers a precedent for the analysis due to the fact
that also the ECB decided to keep its rates unchanged22. During the same period (August to
end-of-September 2019), I observe substantial volatility for most of the factors across countries,
see for instance low-risk in Germany or Italy that profited the most from the events by the end
of the summer, from 0.5% to 2.5% and from 4% to 8% cumulative return respectively. Overall,
given the low (or negative) correlation estimates and positive risk-adjusted returns, I find
more support for the three factors in Japan rather than in the United States.

Moving on to Euro-area countries, panels 3.5d - 3.5f, I notice that the cross-factor corre-
lations remain somewhat stable across countries. In fact, the value factor is uncorrelated with
both low-risk and momentum, while the latter has a numerically relevant correlation with low-
risk, ranging from 0.37 in France to 0.76 in Italy. For Italy, this is also reflected in the estimated
Sharpe ratios on the two factors, which are statistically significant and numerically high. From
the time-series plots I can see how cumulative returns on momentum follow an upward steady
path in the sample period, in line with the decline in interest rates (the yield on Italian 10-year
bonds went from 3% at the beginning of 2019 to 1% on October 2019, see figure 3.2). For pe-
ripheral countries such as Italy and Spain, the momentum factor fares particularly well with
the highest risk-adjusted returns across all countries, followed by the returns on momentum

21Source: FED Press Release July 2019.
22Source: ECB Press Release July 2019.

https://www.federalreserve.gov/newsevents/pressreleases/monetary20190731a.htm
https://www.ecb.europa.eu/press/pressconf/2019/html/ecb.is190725~547f29c369.en.html
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factors of semi-core countries such as France, and Germany (core). This result is in line with
the relative level of yields across countries, and thus their perceived risk by market participants
(default risk). The dynamics on momentum are somewhat different to low-risk, with the latter
showing higher volatility in the sample period due to its duration being always greater than
the one of momentum. For the value factor I can see that it follows an anti-cyclical behavior for
France and Italy, due to its negative net duration in the sample period. This is in contrast with
the results for Germany that show how, despite being uncorrelated with momentum, value has
a net positive duration and its Sharpe ratio is statistically significant.
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3.5 Conclusion and Further Research

In this chapter I studied factor premiums in global government bond markets using CUSIP-
level data at daily frequency from the beginning of January 2010 to the end of October 2021. I
constructed cross-sectional style factors (momentum, value, and low-risk) as country-maturity
portfolios that allocate capital proportional to relative rank of each asset’s signal in the
cross-section. I used the definitions of AMP13 for momentum and value, and FP14 for
low-risk, and for each measure I constructed long-only and long-short portfolios to examine
the relative performance of the factors across various dimensions, countries, maturity buckets,
and investment constraints.

My analysis reveals a number of findings that do not support the view of consistent factor
premia across countries, or maturity buckets. Using 12-1M as momentum measure, I find that
risk-adjusted returns are decreasing in the maturity of the bonds, with the highest Sharpe
ratios found for portfolios formed on short-maturity bonds (lower than 5 years). For longer-
dated securities, momentum does not deliver statistically significant portfolio returns. When
analysed across countries, my results reveal that momentum produces consistent statistically
significant Sharpe ratios, however this is not true for value and low-risk. Comparing across
factors, I find that standard reversal measures of value as in AMP13, the 3- and 5-year change
in bond yields, produce portfolios with statistically insignificant risk-adjusted performance.
The only exception is Germany, for which the value factor has a positive and significant Sharpe
ratio from October 2019 to October 2021. Low-risk yields statistically relevant results only in
Euro Area countries.

I find an unambiguously better performance of long-short rather than long-only portfolios,
with the latter often yielding negative statistically significant Sharpe ratios (in particular for
momentum). Similarly, when I allow portfolios to allocate capital internationally, I find that for
all factors this leads to a substantially lower performance with respect to the country-specific
counterparts. This result is in contrast to what is commonly reported in the literature, and
suggests that premia on style factors in the sovereign bond market vary substantially across
countries.

Using data from October 2018 to October 2021, I analyse the cross-factor relationships in
each country, which show how standard results in the literature for global style factors fail to
be consistent locally. For the United States, I find that the returns on value and momentum are
not linearly related, which may be due to the fact that value portfolio’s net term-to-maturity is
negative (contrarily to momentum). From a methodological perspective, I corroborate the evi-
dence that the approach of AMP13 expose investors duration risk, which may help explain why
they report a negative correlation between momentum and value. Using their definitions and
a similar methodology, I show how long-short portfolios can have negative net maturity (or
duration) in a given sample period, which indicates that the portfolio is positioned to benefit in
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periods of economic expansion (usually associated with rising yield), as opposed to a portfolio
with positive net maturity that profits in a declining yield scenario (usually associated with de-
clining yields). For the United Sates, value is also uncorrelated with low-risk, suggesting that
it is an unlikely duration proxy, and the latter has negative net maturity and shows a negative
correlation with momentum. This pattern is somehow stable across countries, with the excep-
tion of global and Euro Area countries portfolios in which the correlation between momentum
and value is high and positive. For the global factor in particular, I find the highest correlation
estimate, which suggests that momentum may be considered a duration proxy rather than an
anomaly (or premia), due to the fact that low-risk is constructed as the portfolio that invests in
bonds with lowest duration (or maturity) in the cross-section at any time t.

3.5.1 Further Research

In this chapter I make a series of assumptions and methodological choices that help study
global factor premia using bond-level data at daily frequency. In this section I address the
main limitations that arise from making such choices and propose further research.

From a methodological perspective, the main limitation of my study is to rely on pre-
determined measures and standard factor construction techniques that are adapted from the
equity literature. As discussed in Section 3.2, I leave the problem of finding new measures
or modifying existing ones to study the cross-section of sovereign bond returns for future
research. Based on my findings this is particularly relevant for value, which fails to generate
statistically significant risk-adjusted returns using past return measures, i.e. in the same spirit
of momentum factors, which are constructed based on each asset’s own history. In the same
section, I saw how recent literature tends to depart from AMP13’s definitions of value by
considering deviations from a fundamental anchor, e,g. inflation expectations as in Brooks and
Moskowitz (2017) and Brooks, Palhares, and Richardson (2018), or carry-based strategies, see
Koijen et al. (2018). In Appendix C.2 I report the details on the implementation of the carry
factor extraction procedure in Koijen et al. (2018) for my framework.
I also briefly comment on reconciling the results from studies using portfolios as base assets
with my setup that features individual securities.

The key limitation of the methodology in my study is that I do not rebalance the portfolios
to match a desired duration target. While this choice allows me to compare style factors across
maturity buckets, it exposes investors to duration risk. The procedure above can be also be
used to ensure that the signal-based weights are adjusted to match a desired duration target, a
topic which I briefly comment in Appendix C.2 and leave for future studies .

Another extension of my study is be to test the theory of Brusa, Gu, and Liu (2014),
who argues that time decay has an impact on bonds’ price trajectories proportional to the
coupon-yield ratio = (ci/yi,t)− 1. Based on their findings, one can test the performance of a
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strategy that goes long bonds trading at discount that are close to maturity and shorts those
trading at premium. Since the speed of convergence to the bond’s face value is proportional the
coupon-yield ratio, one can use the latter as signal for portfolio sorts. Note that this requires
taking into account the bond’s accrued interest, and not only the clean price as I do in my study.

Moreover, in this chapter I focused solely on momentum, value, and low-risk, and exclude
other sources of price variation, such as liquidity, which have been shown to be important
determinants to explain contemporaneous return variation. Although I consider only bonds
issued by developed countries, which are more liquid than those issued by emerging market
economies, studying the supply of bonds issued by the national government is of crucial
importance. In this regard, I propose to use data on the Federal Reserve System Open Market
Account (SOMA), which are available from my data source (only for the United States). This
is particularly relevant in light of the FED’s declining balance sheet, which means that more
bonds that are held at the Bank will likely be available in the secondary market, thus increasing
the supply. The data is available at CUSIP-level, which allow me to assess also which portion
of the curve is more affected, ie. short-, medium-, or long-dated securities.

Finally, in this study I not analyse the performance of my factors in explaining contempo-
raneous returns or forecast future ones, a topic which I leave for future research. Although I
report high and statistically significant Sharpe ratios for some of the factors, I am not able to
accurately assess their pricing performance and how it changes in relation to macroeconomic
and financial events.
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TABLE 3.2: Momentum

The table reports the results on the construction of the momentum factor, considering the issuer-specific bonds
for the country portfolios, and all bonds for the global portfolio. I use the canonical 12-1M definition of Asness,
Moskowitz, and Pedersen (2013), panels 3.2a-3.2b, and alternative measures with shorter estimation windows of 6
and 3-month past returns, panels 3.2c-3.2d for the 6-1M measure and 3.2e-3.2f for 3-1M. For each measure I report
the results of the long-only and long-short portfolios. I require a minimum of five bonds to be traded at each
time t per maturity bucket, and a minimum of three years of data. Frequency is daily. Column Start indicate the
start date of the time-series of factor returns, Avg (%) is the estimated average return per annum in %, Std (%) the
annualised standard deviation, SR is the Sharpe ratio, t-Stat is its t-statistic, and ∆T(yr) is the time-series average of
the portfolio term-to-maturity in the relevant sample, expressed in years. I indicate with asterisk if at any time in
the sample period the portfolio net term-to-maturity turns negative (only for long-short portfolios). Finally T refers
to the number of time-series observations (in days), and N to the number of bonds considered in the whole sample
for the country-bucket portfolios. All factors are estimated up to October 29th 2021.

(A) 12-1M Long-only

Start Avg (%) Std (%) SR t-Stat ∆T (yr) T N

Australia
Bucket 2 24-Apr-2017 0.52 4.81 0.11 0.23 11.4 1140 13
Bucket 3 01-Apr-2015 1.82 10.32 0.18 0.44 24.1 1525 18

Canada
Bucket 1 08-May-2012 0.27 1.38 0.2 0.53 3.8 1811 43
Bucket 2 02-Aug-2016 -0.24 4.92 -0.05 -0.1 11.2 1028 10

Japan
Bucket 1 01-Aug-2014 -0.66 0.58 -1.14 -2.97 4.5 1759 56
Bucket 2 03-Oct-2011 0.55 1.95 0.28 0.87 10.7 2528 66
Bucket 3 01-Jul-2011 2.73 5.05 0.54 1.7 27.8 2582 87

United Kingdom
Bucket 1 16-Sep-2015 -0.93 1.58 -0.59 -1.23 4.5 1135 18

United States
Bucket 0 02-Oct-2015 -0.63 0.18 -3.5 -8.37 0.8 1488 152
Bucket 1 02-Feb-2012 -0.39 1.76 -0.22 -0.68 4.5 2449 232
Bucket 2 27-May-2011 1.05 4.5 0.23 0.73 9.2 2624 146
Bucket 3 29-Feb-2012 3.19 13.91 0.23 0.7 37.8 2435 45

France
Bucket 1 08-Aug-2013 -0.82 0.95 -0.86 -2.42 4.1 2052 29
Bucket 2 24-Oct-2013 1.73 3.68 0.47 1.3 10.7 2000 22

Germany
Bucket 1 08-May-2012 -1.01 1.03 -0.98 -2.96 4 2365 52
Bucket 2 10-Sep-2012 1 3.76 0.27 0.8 10.6 2278 27

Italy
Bucket 1 01-May-2012 -0.16 3.51 -0.05 -0.15 3.9 2321 66
Bucket 2 18-Mar-2013 3.25 6.96 0.47 1.35 10.3 2154 39
Bucket 3 07-Feb-2018 4.71 12.93 0.36 0.64 21.8 828 10

Spain
Bucket 1 18-Sep-2012 -0.5 1.48 -0.34 -0.97 3.7 2099 38
Bucket 2 04-Jun-2014 1.79 4.64 0.39 1.04 10.7 1848 24

Global
Bucket 0 22-Dec-2014 1.11 3.99 0.28 0.72 9.3 1718 213
Bucket 1 27-May-2011 0.37 3.98 0.09 0.28 10.2 2591 390
Bucket 2 26-May-2011 0.73 2.49 0.29 0.91 10.3 2580 221
Bucket 3 01-Jul-2011 2.59 4.19 0.62 1.95 22.1 2572 199

(To be continued)
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(Continued)

(B) 12-1M Long-Short

Start Avg (%) Std (%) SR t-Stat ∆T (yr) T N

Australia
Bucket 2 24-Apr-2017 1.21 2.02 0.6 1.26 2.6 1140 13
Bucket 3 01-Apr-2015 1.35 3.08 0.44 1.07 5.3* 1525 18

Canada
Bucket 1 08-May-2012 0.79 0.57 1.39 3.67 0.3* 1811 43
Bucket 2 02-Aug-2016 0.23 2.57 0.09 0.18 4.7 1028 10

Japan
Bucket 1 01-Aug-2014 0.65 0.41 1.59 4.14 1.2* 1759 56
Bucket 2 03-Oct-2011 1.13 0.84 1.35 4.21 2.3* 2528 66
Bucket 3 01-Jul-2011 1.33 2.15 0.62 1.95 6.9* 2582 87

United Kingdom
Bucket 1 16-Sep-2015 2.63 0.79 3.33 6.96 1.3* 1135 18

United States
Bucket 0 02-Oct-2015 0.62 0.12 5.17 12.37 0.3* 1488 152
Bucket 1 02-Feb-2012 0.97 0.68 1.43 4.39 0.7* 2449 232
Bucket 2 27-May-2011 0.52 0.58 0.9 2.86 0.5* 2624 146
Bucket 3 29-Feb-2012 1.38 2.72 0.51 1.56 5.5 2435 45

France
Bucket 1 08-Aug-2013 2.8 0.68 4.12 11.57 1.1* 2052 29
Bucket 2 24-Oct-2013 2.9 1.68 1.73 4.8 2.4 2000 22

Germany
Bucket 1 08-May-2012 1.81 0.67 2.7 8.14 1.1* 2365 52
Bucket 2 10-Sep-2012 1.97 1.95 1.01 2.99 3.3 2278 27

Italy
Bucket 1 01-May-2012 2.4 0.79 3.04 9.08 0.5* 2321 66
Bucket 2 18-Mar-2013 2.03 1.34 1.51 4.35 1.4* 2154 39
Bucket 3 07-Feb-2018 2.02 3.12 0.65 1.16 6.8 828 10

Spain
Bucket 1 18-Sep-2012 3.41 0.83 4.11 11.68 0.1* 2099 38
Bucket 2 04-Jun-2014 3.22 1.72 1.87 4.99 2 1848 24

Global
Bucket 0 22-Dec-2014 2.03 5.38 0.38 0.98 6.4* 1718 213
Bucket 1 27-May-2011 1.74 5.78 0.3 0.95 7.8 2591 390
Bucket 2 26-May-2011 0.74 3.21 0.23 0.72 1.1* 2580 221
Bucket 3 01-Jul-2011 0.72 2.96 0.24 0.75 5.7* 2572 199

(To be continued)
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(Continued)

(C) 6-1M Long-only

Start Avg (%) Std (%) SR t-Stat ∆T (yr) T N

Australia
Bucket 1 23-Nov-2015 -0.84 1.33 -0.63 -1.12 4.3 829 14
Bucket 2 24-Apr-2017 0.42 4.86 0.09 0.19 11.4 1140 14
Bucket 3 24-Sep-2014 3.74 10.36 0.36 0.94 23.2 1785 19

Canada
Bucket 1 31-Oct-2011 0.06 1.39 0.04 0.12 3.8 2253 50
Bucket 2 03-Jun-2016 -0.65 4.95 -0.13 -0.3 11.4 1360 11

Japan
Bucket 1 27-Jan-2014 -0.55 0.57 -0.96 -2.58 4.5 1885 68
Bucket 2 29-Mar-2011 0.87 2.02 0.43 1.37 11.2 2655 68
Bucket 3 27-Dec-2010 2.77 5.17 0.54 1.74 28.5 2712 91

United Kingdom
Bucket 1 09-Sep-2015 -0.68 1.66 -0.41 -0.86 4.7 1157 19
Bucket 2 04-Jun-2014 2.55 4.87 0.52 1.3 10.8 1632 21

United States
Bucket 0 02-Oct-2015 -0.62 0.18 -3.44 -8.23 0.8 1487 152
Bucket 1 02-Sep-2011 -0.35 1.78 -0.2 -0.63 4.5 2552 273
Bucket 2 19-Nov-2010 1.15 4.84 0.24 0.78 9.6 2753 154
Bucket 3 23-Aug-2011 3.89 14.6 0.27 0.85 38.3 2565 49

France
Bucket 1 27-Aug-2012 -0.46 1.13 -0.41 -1.19 4.4 2203 31
Bucket 2 22-Apr-2013 1.57 3.97 0.4 1.14 11.1 2130 25

Germany
Bucket 1 31-Oct-2011 -0.47 1.27 -0.37 -1.15 4.3 2494 56
Bucket 2 06-Mar-2012 1.54 4.24 0.36 1.1 11.2 2408 28

Italy
Bucket 1 24-Oct-2011 1.05 4.53 0.23 0.71 4.2 2501 69
Bucket 2 06-Sep-2012 4.23 7.29 0.58 1.72 10.8 2282 41
Bucket 3 02-Aug-2017 5.55 12.54 0.44 0.89 22.4 1055 12

Spain
Bucket 1 14-Mar-2012 -0.1 2.93 -0.03 -0.09 4 2401 40
Bucket 2 25-Nov-2013 3.22 4.96 0.65 1.79 11.2 1978 27

Global
Bucket 0 16-Apr-2014 0.74 3.62 0.2 0.54 9.5 1880 267
Bucket 1 05-Dec-2011 0.61 4.91 0.12 0.37 13.1 2456 471
Bucket 2 29-Mar-2011 1.14 3.2 0.36 1.15 11.8 2646 328
Bucket 3 27-Dec-2010 2.11 3.81 0.55 1.77 21.3 2703 189

(To be continued)
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(Continued)

(D) 6-1M Long-Short

Start Avg (%) Std (%) SR t-Stat ∆T (yr) T N

Australia
Bucket 1 23-Nov-2015 2.55 1.18 2.16 3.86 0.7* 829 14
Bucket 2 24-Apr-2017 0.9 2.01 0.45 0.94 2.5 1140 14
Bucket 3 24-Sep-2014 1.65 2.23 0.74 1.94 3.3* 1785 19

Canada
Bucket 1 31-Oct-2011 0.8 0.55 1.45 4.27 0* 2253 50
Bucket 2 03-Jun-2016 0.6 2.52 0.24 0.55 4.7 1360 11

Japan
Bucket 1 27-Jan-2014 0.72 0.42 1.71 4.6 1.2* 1885 68
Bucket 2 29-Mar-2011 1.23 0.89 1.38 4.41 2.7* 2655 68
Bucket 3 27-Dec-2010 1.39 2.29 0.61 1.97 7.3* 2712 91

United Kingdom
Bucket 1 09-Sep-2015 2.7 0.89 3.03 6.39 1.5* 1157 19
Bucket 2 04-Jun-2014 2.91 2.15 1.35 3.38 3.3* 1632 21

United States
Bucket 0 02-Oct-2015 0.58 0.12 4.83 11.55 0.3* 1487 152
Bucket 1 02-Sep-2011 0.99 0.76 1.3 4.07 0.8* 2552 273
Bucket 2 19-Nov-2010 0.68 0.77 0.88 2.86 0.9* 2753 154
Bucket 3 23-Aug-2011 1.26 2.81 0.45 1.41 5.6 2565 49

France
Bucket 1 27-Aug-2012 3.02 0.89 3.39 9.87 1.5* 2203 31
Bucket 2 22-Apr-2013 2.98 1.89 1.58 4.52 2.8 2130 25

Germany
Bucket 1 31-Oct-2011 2.04 0.84 2.43 7.53 1.1* 2494 56
Bucket 2 06-Mar-2012 2.22 2.11 1.05 3.2 3.7* 2408 28

Italy
Bucket 1 24-Oct-2011 3.07 1.21 2.54 7.88 0.9* 2501 69
Bucket 2 06-Sep-2012 2.05 1.5 1.37 4.06 1.7* 2282 41
Bucket 3 02-Aug-2017 2.16 2.98 0.72 1.45 7.2* 1055 12

Spain
Bucket 1 14-Mar-2012 3.23 1.19 2.71 8.24 0.7* 2401 40
Bucket 2 25-Nov-2013 3.6 2.09 1.72 4.74 2.7 1978 27

Global
Bucket 0 16-Apr-2014 -1.14 4.34 -0.26 -0.7 4.3* 1880 267
Bucket 1 05-Dec-2011 0.98 5.04 0.19 0.58 7.2* 2456 471
Bucket 2 29-Mar-2011 0.64 4.43 0.14 0.45 3.1* 2646 328
Bucket 3 27-Dec-2010 -0.25 3.07 -0.08 -0.26 7.9* 2703 189

(To be continued)
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(Continued)

(E) 3-1M Long-only

Start Avg (%) Std (%) SR t-Stat ∆T (yr) T N

Australia
Bucket 1 23-Nov-2015 -0.69 1.35 -0.51 -0.91 4.4 830 14
Bucket 2 24-Apr-2017 0.48 4.81 0.1 0.21 11.4 1140 15
Bucket 3 24-Mar-2014 3.78 10.26 0.37 0.99 23 1863 20

Canada
Bucket 1 23-Aug-2011 0.08 1.47 0.05 0.15 3.8 2401 51
Bucket 2 11-Feb-2016 -1.14 4.89 -0.23 -0.53 11.3 1373 22

Japan
Bucket 1 08-Nov-2013 -0.54 0.56 -0.96 -2.62 4.6 1932 71
Bucket 2 12-Jan-2011 0.91 2.07 0.44 1.42 11.4 2705 69
Bucket 3 12-Oct-2010 2.36 5.27 0.45 1.47 28.8 2763 92

United Kingdom
Bucket 1 09-Sep-2015 -0.82 1.66 -0.49 -1.03 4.6 1157 20
Bucket 2 20-Mar-2014 1.77 4.78 0.37 0.97 10.7 1788 21

United States
Bucket 0 02-Oct-2015 -0.62 0.18 -3.44 -8.23 0.8 1487 152
Bucket 1 21-Jun-2011 -0.09 1.86 -0.05 -0.16 4.6 2603 281
Bucket 2 08-Sep-2010 1.1 4.97 0.22 0.72 9.7 2805 158
Bucket 3 09-Jun-2011 5.19 14.89 0.35 1.11 38.6 2617 51

France
Bucket 1 13-Jun-2012 -0.37 1.23 -0.3 -0.89 4.5 2304 31
Bucket 2 05-Feb-2013 1.96 4.04 0.49 1.42 11.1 2182 31

Germany
Bucket 1 17-Aug-2011 -0.3 1.49 -0.2 -0.63 4.4 2546 58
Bucket 2 19-Dec-2011 1.71 4.39 0.39 1.2 11.4 2460 30

Italy
Bucket 1 10-Aug-2011 0.98 4.64 0.21 0.66 4.3 2553 69
Bucket 2 04-Sep-2012 4.59 7.33 0.63 1.87 10.8 2284 44
Bucket 3 21-Nov-2016 5.67 12.44 0.46 0.95 22.1 1116 21

Spain
Bucket 1 28-Dec-2011 0.3 3.09 0.1 0.31 4.2 2453 40
Bucket 2 29-Oct-2013 3.3 5.04 0.65 1.8 11.3 1996 29

Global
Bucket 0 21-Nov-2012 0.49 3.07 0.16 0.47 8.8 2211 306
Bucket 1 13-Apr-2011 1.9 4.11 0.46 1.46 11.1 2616 560
Bucket 2 29-Oct-2010 1.23 3.64 0.34 1.1 11.5 2733 374
Bucket 3 12-Oct-2010 1.82 3.75 0.49 1.59 20.6 2753 186

(To be continued)
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(F) 3-1M Long-Short

Start Avg (%) Std (%) SR t-Stat ∆T (yr) T N

Australia
Bucket 1 23-Nov-2015 2.67 1.2 2.23 3.98 0.9* 830 14
Bucket 2 24-Apr-2017 1.25 1.89 0.66 1.38 2.4 1140 15
Bucket 3 24-Mar-2014 1.54 2.04 0.75 2.01 2.7* 1863 20

Canada
Bucket 1 23-Aug-2011 0.85 0.6 1.42 4.32 0.1* 2401 51
Bucket 2 11-Feb-2016 0.5 2.36 0.21 0.48 4.1* 1373 22

Japan
Bucket 1 08-Nov-2013 0.7 0.44 1.59 4.33 1.3* 1932 71
Bucket 2 12-Jan-2011 1.28 0.9 1.42 4.58 2.9* 2705 69
Bucket 3 12-Oct-2010 1.32 2.37 0.56 1.83 7.4* 2763 92

United Kingdom
Bucket 1 09-Sep-2015 2.83 0.84 3.37 7.11 1.4* 1157 20
Bucket 2 20-Mar-2014 2.5 1.86 1.34 3.51 2.7* 1788 21

United States
Bucket 0 02-Oct-2015 0.59 0.12 4.92 11.77 0.3* 1487 152
Bucket 1 21-Jun-2011 1.28 0.92 1.39 4.4 0.9* 2603 281
Bucket 2 08-Sep-2010 0.69 0.88 0.78 2.56 1.1* 2805 158
Bucket 3 09-Jun-2011 1.15 2.84 0.4 1.27 5.7 2617 51

France
Bucket 1 13-Jun-2012 3.07 0.95 3.23 9.62 1.5* 2304 31
Bucket 2 05-Feb-2013 2.81 1.93 1.46 4.23 2.7* 2182 31

Germany
Bucket 1 17-Aug-2011 2.27 0.93 2.44 7.64 1.2* 2546 58
Bucket 2 19-Dec-2011 2.32 2.19 1.06 3.26 3.8* 2460 30

Italy
Bucket 1 10-Aug-2011 2.94 1.2 2.45 7.68 1.1* 2553 69
Bucket 2 04-Sep-2012 2.03 1.54 1.32 3.91 1.8* 2284 44
Bucket 3 21-Nov-2016 0.98 2.77 0.35 0.73 6.1* 1116 21

Spain
Bucket 1 28-Dec-2011 3.35 1.18 2.84 8.72 0.9* 2453 40
Bucket 2 29-Oct-2013 3.52 2.14 1.64 4.54 2.8* 1996 29

Global
Bucket 0 21-Nov-2012 -0.53 3.9 -0.14 -0.41 5.3* 2211 306
Bucket 1 13-Apr-2011 1.31 5.09 0.26 0.82 6.4 2616 560
Bucket 2 29-Oct-2010 0.35 4.85 0.07 0.23 1.7* 2733 374
Bucket 3 12-Oct-2010 -0.36 4.74 -0.08 -0.26 9.4* 2753 186

T = 2696 (15th Jan 2010 - 29th Oct 2021)
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TABLE 3.3: Value

The table reports the results on the construction of the value factor, considering the issuer-specific bonds for the
country portfolios, and all bonds for the global portfolio. I use the canonical 5Y Reversal definition of Asness,
Moskowitz, and Pedersen (2013) (i.e. the negative of the 5-year change in the bond yields), panels 3.3a-3.3b, and an
alternative measure with a shorter look-back window of 3 years, panels 3.3c-3.3d. For each measure I report the
results of the long-only and long-short portfolios. I require a minimum of five bonds to be traded at each time t per
maturity bucket, and a minimum of three years of data. Frequency is daily. Column Start indicate the start date of
the time-series of factor returns, Avg (%) is the estimated average return per annum in %, Std (%) the annualised
standard deviation, SR is the Sharpe ratio, t-Stat is its t-statistic, and ∆T(yr) is the time-series average of the portfolio
term-to-maturity in the relevant sample, expressed in years. I indicate with an asterisk if at any time in the sample
period the portfolio net term-to-maturity turns negative (only for the long-short portfolios). Finally T refers to the
number of time-series observations (in days), and N to the number of bonds considered in the whole sample for the
country-bucket portfolios. All factors are estimated up to October 29th 2021.

(A) 5Y Reversal Long-only

Start Avg (%) Std (%) SR t-Stat ∆T (yr) T N

Japan
Bucket 1 30-Jan-2017 -0.28 2.53 -0.11 -0.2 18.9 896 16
Bucket 3 20-May-2016 -1.23 3.52 -0.35 -0.8 23.4 1346 28

United States
Bucket 3 13-Jul-2018 3.59 7.05 0.51 0.91 17.3 832 15

Global
Bucket 1 20-May-2016 -0.45 3.7 -0.12 -0.27 14.2 1348 75
Bucket 2 14-Jun-2017 0.21 4.85 0.04 0.08 13.3 1007 53
Bucket 3 02-Sep-2015 -0.85 2.15 -0.4 -0.97 10.5 1524 101

(B) 5Y Reversal Long-Short

Start Avg (%) Std (%) SR t-Stat ∆T (yr) T N

Japan
Bucket 1 30-Jan-2017 0.81 1.13 0.72 1.34 1.8* 896 16
Bucket 3 20-May-2016 0.78 1 0.78 1.77 2.8* 1346 28

United States
Bucket 3 13-Jul-2018 1.5 3.02 0.5 0.89 -0.7* 832 15

Global
Bucket 1 20-May-2016 1.65 5.2 0.32 0.73 0.2* 1348 75
Bucket 2 14-Jun-2017 4.31 7.19 0.6 1.18 5.5* 1007 53
Bucket 3 02-Sep-2015 -1.57 4.64 -0.34 -0.82 -12.8* 1524 101

(To be continued)
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(C) 3Y Reversal Long-only

Start Avg (%) Std (%) SR t-Stat ∆T (yr) T N

Japan
Bucket 1 23-Sep-2015 0.71 3.85 0.18 0.42 21.9 1387 21
Bucket 3 29-Apr-2014 1.65 4.76 0.35 0.93 25.1 1855 34

United States
Bucket 0 05-Jul-2016 1.69 5.07 0.33 0.63 11.2 945 53
Bucket 1 20-Sep-2013 1.52 5.96 0.26 0.73 16.3 2039 76
Bucket 3 23-Jun-2015 1.58 5.81 0.27 0.67 15.6 1600 25

France
Bucket 1 30-May-2018 -0.04 3.05 -0.01 -0.02 8.9 823 10

Germany
Bucket 1 07-Sep-2016 -1.53 1.8 -0.85 -1.87 6.1 1264 19

Italy
Bucket 1 03-Nov-2017 1.5 6.46 0.23 0.45 8.5 975 17

Global
Bucket 0 04-Sep-2015 0.13 6.11 0.02 0.04 17.8 1057 72
Bucket 1 05-Nov-2013 1.76 5.02 0.35 0.96 17 1966 162
Bucket 2 03-Oct-2013 0.05 4.07 0.01 0.03 12.6 2004 126
Bucket 3 06-Aug-2013 0.56 2.61 0.21 0.59 13.3 2036 130

(D) 3Y Reversal Long-Short

Start Avg (%) Std (%) SR t-Stat ∆T (yr) T N

Japan
Bucket 1 23-Sep-2015 1.06 1.55 0.68 1.57 4.4* 1387 21
Bucket 3 29-Apr-2014 0.36 1.12 0.32 0.85 2.4* 1855 34

United States
Bucket 0 05-Jul-2016 0.03 5.75 0.01 0.02 -7.3* 945 53
Bucket 1 20-Sep-2013 -0.24 4.21 -0.06 -0.17 -5* 2039 76
Bucket 3 23-Jun-2015 1.61 4.05 0.4 0.99 2.1* 1600 25

France
Bucket 1 30-May-2018 2.34 2 1.17 2.08 0.2* 823 10

Germany
Bucket 1 07-Sep-2016 1.9 1.44 1.32 2.91 3* 1264 19

Italy
Bucket 1 03-Nov-2017 1.17 3.14 0.37 0.72 -1.8* 975 17

Global
Bucket 0 04-Sep-2015 1.85 7.04 0.26 0.52 1.3* 1057 72
Bucket 1 05-Nov-2013 0.6 6.93 0.09 0.25 2.5* 1966 162
Bucket 2 03-Oct-2013 0.86 5.55 0.15 0.42 4.4* 2004 126
Bucket 3 06-Aug-2013 -1.82 4.66 -0.39 -1.09 -15.8* 2036 130

T = 2696 (15th Jan 2010 - 29th Oct 2021)
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TABLE 3.4: Low-risk

The table reports the results on the construction of the low-risk factor, considering the issuer-specific bonds for the
country portfolios, and all bonds for the global portfolio. I use duration (Dur) as in Frazzini and Pedersen (2014),
panels 3.3a-3.3b, and the bonds’ term-to-maturity (TTM), panels 3.3c-3.3d. For each measure I report the results
of the long-only and long-short portfolios. I require a minimum of five bonds to be traded at each time t, and a
minimum of three years of data. Frequency is daily. Column Start indicate the start date of the time-series of factor
returns, Avg (%) is the estimated average return per annum in %, Std (%) the annualised standard deviation, SR
is the Sharpe ratio, t-Stat is its t-statistic, and ∆T(yr) is the time-series average of the portfolio term-to-maturity in
the relevant sample, expressed in years. I indicate with an asterisk if at any time in the sample period the portfolio
net term-to-maturity turns negative (only for the long-short portfolios). Finally T refers to the number of time-
series observations (in days), and N to the number of bonds considered in the whole sample for the country-bucket
portfolios. All factors are estimated up to October 29th 2021.

(A) Dur Long-only

Start Avg (%) Std (%) SR t-Stat ∆T (yr) T N

Canada
All Buckets 22-Jul-2015 0.95 3.23 0.29 0.71 7.2 1543 35

Japan
All Buckets 21-Mar-2014 2.09 5.12 0.41 1.09 25.2 1839 61

United Kingdom
All Buckets 04-Aug-2016 2.37 7.5 0.32 0.71 17.1 1280 27

United States
All Buckets 19-Feb-2014 2.38 6.39 0.37 0.97 15.7 1795 231

France
All Buckets 10-Feb-2015 1.74 4.56 0.38 0.96 12.6 1652 27

Germany
All Buckets 20-Jan-2015 0.54 3.34 0.16 0.4 8.5 1649 45

Italy
All Buckets 17-Jun-2014 3.84 7.44 0.52 1.36 11.5 1781 61

Spain
All Buckets 05-Mar-2015 2.41 5.4 0.45 1.13 12.5 1626 34

Global
All Buckets 17-Oct-2013 2.13 5.6 0.38 0.94 15.3 1601 539

(To be continued)
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(B) Dur Long-Short

Start Avg (%) Std (%) SR t-Stat ∆T (yr) T N

Canada
All Buckets 22-Jul-2015 1.64 2.53 0.65 1.58 2.1* 1543 35

Japan
All Buckets 21-Mar-2014 1.01 1.73 0.58 1.54 2.9* 1839 61

United Kingdom
All Buckets 04-Aug-2016 3.54 5.66 0.63 1.4 10.5* 1280 27

United States
All Buckets 19-Feb-2014 0.24 1.91 0.13 0.34 -2.2* 1795 231

France
All Buckets 10-Feb-2015 2.28 2.2 1.04 2.62 3.3* 1652 27

Germany
All Buckets 20-Jan-2015 1.08 1.19 0.91 2.29 0.1* 1649 45

Italy
All Buckets 17-Jun-2014 2.78 2.42 1.15 3.01 2.9* 1781 61

Spain
All Buckets 05-Mar-2015 2.48 2.47 1 2.5 4* 1626 34

Global
All Buckets 17-Oct-2013 -0.48 5.76 -0.08 -0.2 1.1* 1601 539

(C) TTM Long-only

Start Avg (%) Std (%) SR t-Stat ∆T (yr) T N

Australia
All Buckets 28-Oct-2011 3.58 8.21 0.44 1.36 16.9 2491 32

Canada
All Buckets 14-Dec-2010 0.81 2.64 0.31 1 6 2680 62

Japan
All Buckets 28-Apr-2010 1.67 3.9 0.43 1.4 21.4 2747 184

United Kingdom
All Buckets 09-Mar-2012 2.24 6.2 0.36 1.09 14.1 2378 35

United States
All Buckets 16-Mar-2010 2.04 6.13 0.33 1.06 13.3 2706 385

France
All Buckets 26-Jan-2011 3.32 4.26 0.78 2.49 11.2 2647 45

Germany
All Buckets 27-Sep-2010 1.67 3.75 0.45 1.45 8.7 2703 72

Italy
All Buckets 30-Sep-2010 2.46 7.32 0.34 1.09 9.9 2677 98

Spain
All Buckets 10-Nov-2010 3.13 6.52 0.48 1.54 10.7 2683 59

Global
All Buckets 17-Feb-2010 1.53 5.06 0.3 0.88 12.4 2258 972

(To be continued)
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(D) TTM Long-Short

Start Avg (%) Std (%) SR t-Stat ∆T (yr) T N

Australia
All Buckets 28-Oct-2011 3.9 4.87 0.8 2.48 7.8* 2491 32

Canada
All Buckets 14-Dec-2010 1.25 1.6 0.78 2.5 1.5* 2680 62

Japan
All Buckets 28-Apr-2010 0.35 1.84 0.19 0.62 4.3* 2747 184

United Kingdom
All Buckets 09-Mar-2012 2.75 4.23 0.65 1.97 1* 2378 35

United States
All Buckets 16-Mar-2010 0.88 2.49 0.35 1.13 1.3 2706 385

France
All Buckets 26-Jan-2011 3.14 2.48 1.27 4.05 4.1* 2647 45

Germany
All Buckets 27-Sep-2010 2.74 2 1.37 4.42 3.6* 2703 72

Italy
All Buckets 30-Sep-2010 3.38 2.84 1.19 3.82 3.3* 2677 98

Spain
All Buckets 10-Nov-2010 3.53 2.51 1.41 4.53 3.4* 2683 59

Global
All Buckets 17-Feb-2010 -0.12 5.45 -0.02 -0.06 -2.5* 2258 972

T = 2696 (15th Jan 2010 - 29th Oct 2021)
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TABLE 3.5: Multi-Factor Results - Unrestricted Sample

The table reports the multi-factor results considering all available data for each factor, country, and bucket combi-
nation (unrestricted sample). The information content of this table is equivalent to tables 3.2, 3.3, and 3.4 combined,
considering only bucket 1 and bucket 3 bonds for value and momentum. Panel 3.5a shows the results for long-
only portfolios, and panel 3.5b for long-short ones. Column Start indicate the start date of the time-series of factor
returns, SR is the Sharpe ratio, and ∆T is the time-series average of the portfolio term-to-maturity in the relevant
sample, expressed in years. I indicate an with asterisk if at any time in the sample period the portfolio net term-
to-maturity turns negative (only for the long-short portfolios). Sharpe ratios in bold have a t-stat greater than 1.96,
indicating significance at 5% level. All factors are estimated up to October 29th 2021.

(A) Long-only

Momentum Value Low-risk

Start Measure SR ∆T Start Measure SR ∆T Start Measure SR ∆T

Canada
Bucket 1 08-May-2012 12-1M 0.2 3.8
All Buckets 22-Jul-2015 Dur 0.29 7.2

Japan
Bucket 1 01-Aug-2014 12-1M -1.14 4.5 23-Sep-2015 3Y Rev 0.18 21.9
Bucket 3 01-Jul-2011 12-1M 0.54 27.8 20-May-2016 5Y Rev -0.35 23.4
All Buckets 21-Mar-2014 Dur 0.41 25.2

United Kingdom
Bucket 1 16-Sep-2015 12-1M -0.59 4.5
All Buckets 04-Aug-2016 Dur 0.32 17.1

United States
Bucket 1 02-Feb-2012 12-1M -0.22 4.5 20-Sep-2013 3Y Rev 0.26 16.3
Bucket 3 29-Feb-2012 12-1M 0.23 37.8 13-Jul-2018 5Y Rev 0.51 17.3
All Buckets 19-Feb-2014 Dur 0.37 15.7

France
Bucket 1 08-Aug-2013 12-1M -0.86 4.1 30-May-2018 3Y Rev -0.01 8.9
All Buckets 10-Feb-2015 Dur 0.38 12.6

Germany
Bucket 1 08-May-2012 12-1M -0.98 4 07-Sep-2016 3Y Rev -0.85 6.1
All Buckets 20-Jan-2015 Dur 0.16 8.5

Italy
Bucket 1 01-May-2012 12-1M -0.05 3.9 03-Nov-2017 3Y Rev 0.23 8.5
Bucket 3 07-Feb-2018 12-1M 0.36 21.8
All Buckets 17-Jun-2014 Dur 0.52 11.5

Spain
Bucket 1 18-Sep-2012 12-1M -0.34 3.7
All Buckets 05-Mar-2015 Dur 0.45 12.5

Global
Bucket 1 27-May-2011 12-1M 0.09 10.2 05-Nov-2013 3Y Rev 0.35 17
Bucket 3 01-Jul-2011 12-1M 0.62 22.1 02-Sep-2015 5Y Rev -0.4 10.5
All Buckets 17-Oct-2013 Dur 0.38 15.3

(To be continued)
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(B) Long-Short

Momentum Value Low-risk

Start Measure SR ∆T Start Measure SR ∆T Start Measure SR ∆T

Canada
Bucket 1 08-May-2012 12-1M 1.39
All Buckets 22-Jul-2015 Dur 0.65 2.1*

Japan
Bucket 1 01-Aug-2014 12-1M 1.59 1.2* 23-Sep-2015 3Y Rev 0.68 4.4*
Bucket 3 01-Jul-2011 12-1M 0.62 6.9* 20-May-2016 5Y Rev 0.78 2.8*
All Buckets 21-Mar-2014 Dur 0.58 2.9*

United Kingdom
Bucket 1 16-Sep-2015 12-1M 3.33 1.3*
All Buckets 04-Aug-2016 Dur 0.63 10.5*

United States
Bucket 1 02-Feb-2012 12-1M 1.43 0.7* 20-Sep-2013 3Y Rev -0.06 -5*
Bucket 3 29-Feb-2012 12-1M 0.51 5.5 13-Jul-2018 5Y Rev 0.5 -0.7*
All Buckets 19-Feb-2014 Dur 0.13 -2.2*

France
Bucket 1 08-Aug-2013 12-1M 4.12 1.1* 30-May-2018 3Y Rev 1.17 0.2*
All Buckets 10-Feb-2015 Dur 1.04 3.3*

Germany
Bucket 1 08-May-2012 12-1M 2.7 1.1* 07-Sep-2016 3Y Rev 1.32 3*
All Buckets 20-Jan-2015 Dur 0.91 0.1*

Italy
Bucket 1 01-May-2012 12-1M 3.04 0.5* 03-Nov-2017 3Y Rev 0.37 -1.8*
Bucket 3 07-Feb-2018 12-1M 0.65 6.8
All Buckets 17-Jun-2014 Dur 1.15 2.9*

Spain
Bucket 1 18-Sep-2012 12-1M 4.11 0.1*
All Buckets 05-Mar-2015 Dur 1 4*

Global
Bucket 1 27-May-2011 12-1M 0.3 7.8 05-Nov-2013 3Y Rev 0.09 2.5*
Bucket 3 01-Jul-2011 12-1M 0.24 5.7* 02-Sep-2015 5Y Rev -0.34 -12.8*
All Buckets 17-Oct-2013 Dur -0.08 1.1*

T = 2696 (15th Jan 2010 - 29th Oct 2021)
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TABLE 3.6: Multi-Factor Results - Restricted Sample

The table reports the multi-factor results from October 2018 to October 2021 for each factor, country, and bucket
combination. The number of time series observations is T = 677 days. Panel 3.6a shows the results for long-only
portfolios, and panel 3.6b for long-short ones. Column SR is the Sharpe ratio, and ∆T is the time-series average of
the portfolio term-to-maturity in the relevant sample, expressed in years. I indicate an with asterisk if at any time
in the sample period the portfolio net term-to-maturity turns negative (only for the long-short portfolios). Sharpe
ratios in bold have a t-stat greater than 1.96, indicating significance at 5% level.

(A) Long-only

Momentum Value Low-risk

Measure SR ∆T Measure SR ∆T Measure SR ∆T

Canada
Bucket 1 12-1M 0.4 4.1
All Buckets Dur 0.85 6.8

Japan
Bucket 1 12-1M -1.33 4.3 3Y Rev -0.09 23
Bucket 3 12-1M 0.12 27 5Y Rev -0.01 22.9
All Buckets Dur 0.17 20.3

United Kingdom
Bucket 1 12-1M -0.41 4.5
All Buckets Dur 0.56 19.5

United States
Bucket 1 12-1M 0.8 4 3Y Rev 0.9 13.7
Bucket 3 12-1M 0.63 36.1 5Y Rev 0.77 16.7
All Buckets Dur 0.48 11.9

France
Bucket 1 12-1M -1.04 4.4 3Y Rev 0.04 8.7
All Buckets Dur 0.44 11.1

Germany
Bucket 1 12-1M -1.33 4.2 3Y Rev -0.65 6.2
All Buckets Dur 0.11 7.9

Italy
Bucket 1 12-1M 0.51 4.1 3Y Rev 1.03 8
Bucket 3 12-1M 0.81 22
All Buckets Dur 1.19 10.6

Spain
Bucket 1 12-1M -0.97 3.9
All Buckets Dur 1.11 12.7

Global
Bucket 1 12-1M 0.6 8.1 3Y Rev 0.65 14.8
Bucket 3 12-1M 0.38 18 5Y Rev -0.2 9.6
All Buckets Dur 0.33 11.9

(To be continued)
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(B) Long-Short

Momentum Value Low-risk

Measure SR ∆T Measure SR ∆T Measure SR ∆T

Canada
Bucket 1 12-1M 0.47 0*
All Buckets Dur 1.18 0.6*

Japan
Bucket 1 12-1M 1.79 2.5 3Y Rev 0.78 6.4*
Bucket 3 12-1M 0.85 10.6 5Y Rev 1.03 4.5*
All Buckets Dur 0.71 -0.8*

United Kingdom
Bucket 1 12-1M 3.09 1.7*
All Buckets Dur 0.79 11.9*

United States
Bucket 1 12-1M 1.22 0.9 3Y Rev -0.05 -8*
Bucket 3 12-1M 0.69 8.5 5Y Rev 0.84 -2.1*
All Buckets Dur 0.11 -1.4*

France
Bucket 1 12-1M 4.58 1.7* 3Y Rev 1.1 -0.4*
All Buckets Dur 1.36 2.5*

Germany
Bucket 1 12-1M 3.62 1.7 3Y Rev 1.48 3.5
All Buckets Dur 0.94 1.8*

Italy
Bucket 1 12-1M 5.22 0.5* 3Y Rev 0.38 -2.8*
Bucket 3 12-1M 0.9 6.6*
All Buckets Dur 1.59 2.7*

Spain
Bucket 1 12-1M 11.46 -0.1*
All Buckets Dur 1.89 5.5*

Global
Bucket 1 12-1M 1.07 3.3 3Y Rev 1.04 2.5*
Bucket 3 12-1M 0.74 -9* 5Y Rev 0.53 -9.2*
All Buckets Dur -0.02 -0.4*

T = 677 (31st Oct 2018 - 29th Oct 2021)
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FIGURE 3.1: Bond Universe

The figure shows the time-varying composition of the bond universe by country, panel 3.1a, and by maturity (in
years), panel 3.1b. At the end of each month I count the number of bonds with available clean prices and group the
figures by issuer, or maturity at issuance. The total number of bonds issued in the sample period is 972.

(A) Issuers

(B) Maturities

T = 98 (monthly, 31st Mar 2010 - 30th Sep 2021)
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FIGURE 3.2: Market Data

The figure shows the time series of the constant-maturity generic (benchmark) yields for the 2 year (blue), 5 year
(red), 10 year (yellow) and 30 year (purple) points for each issuer in the sample period, together with EUR swap
rates. The dashed line is the relevant monthly policy rate for each country.

(A) Australia (B) Canada

(C) United Kingdom (D) United States

(E) Euro Area (F) Japan

(G) France (H) Germany

(I) Italy (J) Spain

T = 2696 (15th Jan 2010 - 29th Oct 2021)
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FIGURE 3.3: Issue Volume

The figure shows country-specific summary statistics on the yearly issue size from 2010 to 2021, using bond-level
data. Panel 3.3a reports the year-on-year change (in %) in the amount of debt sold via syndications, issuances and
tap issues, considering the bonds of each issuer in the sample period. In panel 3.3b I show the time-series of the
total amount of debt issued (in local currency). I report the results for all issuers in panel 3.3b and I exclude Canada
and Australia in panel 3.3a.

(A) Yearly Change

(B) Total Amount

FR GE IT SP AU CA JP UK US
Year (eB) (A$B) (C$B) (¥T) (£B) ($B)

2010 17 37 33 23 2 22 31 12 627
2011 18 30 31 22 5 13 32 7 451
2012 23 20 33 11 4 9 27 7 308
2013 16 25 34 31 11 15 35 9 438
2014 18 25 39 30 16 9 19 7 648
2015 22 25 33 28 10 6 22 3 797
2016 21 35 31 19 19 22 15 8 851
2017 12 23 33 31 24 22 17 5 1038
2018 11 26 37 22 16 22 22 8 1670
2019 16 26 47 24 3 17 23 6 1716
2020 19 52 73 55 99 44 32 47 1959
2021 10 39 61 30 26 53 26 2337

T = 11 (yearly, 15th Jan 2010 - 29th Oct 2021)
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FIGURE 3.4: Risk-Return Profile of the Bonds

The figure shows the risk-return profile of the 972 bonds in the sample period by maturity bucket. In panel 3.4a
I report the ex-post average return (y-axis) and standard deviation (x-axis) of each security, colored by maturity
bucket as issuance. Bucket 1 (red) includes bonds with 1 to 5 years of maturity, bucket 2 (blue) 6-10 years, and
bucket 3 (grey) 11-30 years. Results are in % and annualised. Panel 3.4b reports the summary statistics of the
equally-weighted country- and maturity-style portfolios. In panel 3.4a I also include the risk-return profile of the
bonds for the two biggest contributors to the universe, Japan (JP) and the United States (US), by maturity bucket.
JP1 is the point that corresponds to the risk-return profile of the 1/N long-only portfolio of Japanese bonds with 1
to 5 year-maturity, JP2 considers the bonds in bucket 2, and JP3 those in bucket 3. Similarly for US Treasury bonds:
US1, US2, and US3.

(A) Risk-Return

(B) Summary Statistics

Bucket 1 Bucket 2 Bucket 3

Issuer Avg (%) Std (%) N Avg (%) Std (%) N Avg (%) Std (%) N

Australia -0.44 1.73 7 -1.06 2.9 4 0.71 8.3 21
Canada -1.41 1.28 49 -2.36 4 4 0.56 4.95 9
Japan -0.28 0.39 38 0.01 1.71 53 1.4 5.07 93
United Kingdom -1.66 1.41 4 -0.34 3.49 20 -0.22 11.67 11
United States -0.35 1.4 170 -0.03 3.76 162 3.32 14.68 53
Euro Area
France 0.02 1.41 15 0.51 3.43 20 1.33 5.99 10
Germany -0.51 1.07 40 0 3.71 30 -1.81 6.24 2
Italy 0.31 3.24 46 1.18 6.62 36 3 10.44 16
Spain 0.09 2.33 27 0.9 4.87 23 2.57 7.7 9

T = 2696 (15th Jan 2010 - 29th Oct 2021)



178 FIGURES

FIGURE 3.5: Long-Short Bucket 1 Factors by Country

The figure shows the time-series of cumulative returns on the three factors (left panels), together with the relevant
summary statistics (right panels) in the sample period, October 2018 to October 2021 (daily). I report the results only
for the countries in which all three factors are available, focusing on bucket 1 long-short sorts. In the time-series
plots, blue refers to momentum, red to value, and yellow to low-risk. On the right panels, I report the estimated
factor correlation matrix, the Sharpe ratio, row SR, and the average portfolio term-to-maturity, row ∆T, expressed
in years. Sharpe ratios in bold have a t-stat greater than 1.96, indicating significance at 5% level. If at any time in
the sample period the portfolio net term-to-maturity turns negative, I report the figure with an asterisk. All factors
are estimated up to October 29th 2021, unless noted otherwise.

(A) Japan

Mom Val Low
Mom 1
Val 0.05 1
Low -0.13 -0.05 1

SR 1.79 0.78 0.71
∆T 2.5 6.4* -0.8*

(B) United States

Mom Val Low
Mom 1
Val 0.04 1
Low -0.23 0 1

SR 1.22 -0.05 0.11
∆T 0.9 -8* -1.4*

(C) Global

Mom Val Low
Mom 1
Val -0.09 1
Low 0.91 -0.16 1

SR 1.07 1.04 -0.02
∆T 3.3 2.5* -0.4*

(To be continued)
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(Continued)

(D) France

Mom Val Low
Mom 1
Val 0.1 1
Low 0.37 -0.01 1

SR 4.58 1.1 1.36
∆T 1.7* -0.4* 2.5*

(E) Germany

Mom Val Low
Mom 1
Val 0.01 1
Low 0.46 0.01 1

SR 3.62 1.48 0.94
∆T 1.7* 3.5 1.8*

(F) Italy

Mom Val Low
Mom 1
Val 0.02 1
Low 0.76 0.04 1

SR 5.22 0.38 1.59
∆T 0.5* -2.8* 2.7*

T = 677 (31st Oct 2018 - 29th Oct 2021)
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General Conclusion

In this section I make the concluding remarks of this thesis and summarise further research
questions that expand on the limitations of my analysis.

In this thesis I studied international stock returns via factor models featuring time-varying
factor sensitivities, Chapters 1 and 2, and international factor premia in government bond
returns for momentum, value, and low-risk factors, Chapter 3. The findings of my analysis
are based on large panels of individual securities from different countries with historical data
from 2010 to 2021. The data is sampled at a relatively higher frequency with respect to most
contributions in international asset pricing, which provides a further perspective to interpret
existing results in the literature and document new patterns in the higher-frequency returns of
asset prices.

The main results of this thesis can be summarised as follows. Firstly, I compare the
in-sample performance of the maximum-likelihood estimator of the time-varying betas in
Borghi et al. (2018) against the rolling least square estimator, which suffers from severe mis-
specification issues when the window size is chosen arbitrarily. Comparing dynamic-loadings
models versus static counterparts, I find that the latter dominates the former when the variance
of the rolling betas is pronounced, which coincides with a relatively short estimation window.
Although the maximum-likelihood estimator provides the best in-sample performance from
a statistical perspective, my analysis needs to be validated out-of-sample, a research question
which remains open.

Secondly, I document how the explanatory and predictive power of time-varying sensitivi-
ties estimated via rolling least squares in linear asset pricing models of stock returns changes
solely with respect to the window size. I find that the ability of the models to forecast future
returns can improve by about 10%, in terms of out-of-sample R2 by keeping the sampling
frequency fixed, when the window contains about two years of recent information. This is
because there appears to be a trade-off between statistical accuracy, which calls for a larger
window size, and economic relevance of the estimates, which decreases with the window size.
However, my results are not consistent when I employ standard mean-squared or -absolute
error functions, which are minimised when a substantially larger window size is used for
estimation. This suggests that a more comprehensive review of alternative objective functions
is needed to gauge the models performance for varying window sizes, a research question that
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remains open. Moreover, I do not analyse how the models performance change for varying
sampling frequency and look-ahead windows, keeping the estimation window (rolling) fixed.
Although I briefly explain how the sampling frequency interacts with the distribution of
time-varying estimates for a single stock and factor, this topic remains relatively unexplored
in the literature and as Robertson (2018) reports, the behavior of rolling betas depends on the
interplay between window size and sampling frequency.

Thirdly, I examine international risk premia in sovereign bonds by replicating
characteristics-based portfolios such as momentum, value, and low-risk from asset-level data
of nine developed countries. My analysis reveals a substantial variation in the factor premia in
the cross sections, country- (issuer) and maturity-wise, which does not support the evidence of
Asness, Moskowitz, and Pedersen (2013) and Frazzini and Pedersen (2014) on their unifying
pricing ability across countries and asset classes. Contrarily to what reported in the literature,
see e.g. Baltussen, Martens, and Penninga (2021), I find no supporting evidence for the exis-
tence of statistically significant positive risk premia for characteristics-based global portfolios
that include bonds from all countries. Additionally, I find that momentum produces consistent
statistically significant Sharpe ratios only for short-dated securities, while the performance of
value and low-risk is mixed, and seem to be relevant only for bonds issued by specific coun-
tries. My analysis of risk premia on bond returns is only a first step to bridge the gap in the
literature with the studies that use factor models for the analysis of stock returns (locally and
internationally), which are the vast majority. In particular, I believe that further research is
needed to understand how characteristic-based factors can help explain cross-sectional return
patterns, as well as the potential of unobserved factors. These topics remain relatively unex-
plored in the context of international sovereign bonds, and in this thesis I paid tribute to the
complexity of such question by focusing on the construction of three observed pricing factors
and on their realised performance in the cross sections.
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Appendix A

Chapter 1

This appendix contains two sections. Section A.1 analyse the problem of reconciling the
rolling out-of-sample forecasting methodology in Inoue, Jin, and Rossi, 2017 with the
contemporaneous-equation framework of Borghi et al. (2018). Section A.2 studies the rela-
tionship between expected returns and beta parameters (such as variance, persistence, and
magnitude), a topic which is discussed also in Armstrong, Banerjee, and Corona (2013) and
Borghi et al. (2018).

A.1 Predictive Framework

In this appendix I analyse the problem of reconciling the rolling out-of-sample forecasting
methodology in Inoue, Jin, and Rossi, 2017 with the contemporaneous-equation framework
of Borghi et al. (2018). Assumption 4 of Inoue, Jin, and Rossi, 2017 provides the condition to
approximate the parameter functions in (t/T), equation (1.11), via Taylor expansions up to the
second order, which allows to model stock returns as an explicit function of the selected es-
timation window W. For simplicity, consider a predictive framework as in model (1.11) that
features K factors, without disentangling global and regional risk drivers.

Xi,t+h = Ft Λi(t/T)⊤ + ei,t+h. (A.1)

I can approximate the function Λi,W(t/T), with W indicating the window size, by

Λi,W(t/T) = λi(1) + λ
(1)
i (1)

( t − T
T

)
+

λ
(2)
i (c)
2!

( t − T
T

)2
(A.2)

where c = ϕ t
T + (1 − ϕ) T

T for ϕ ∈ (0, 1), λ
(j)
i (.) denotes the jth derivative of Λi,W(.). By substi-

tuting equation (A.2) into (A.1), I obtain

Xi,t+h = Ft λi(1)⊤ + Ft λ
(1)
i (1)⊤

( t − T
T

)
+ Ft λ

(2)
i (c)⊤

( t − T
T

)2
+ ui,t+h

= Ft λi(1)⊤ + Ft λ
(1)
i (1)⊤

( t − T
T

)
+ ϵi,t+h (A.3)
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where ϵi,t is a composite error term made of ei,t+h and the second order terms in equation (A.2).

Inoue, Jin, and Rossi, 2017 suggest replacing the unknown functions in λi(1) (together with
their respective first-order derivatives) via OLS estimates using the most recent W0 data, where
W0 is a given pilot window size for the local linear regression (from timmerman). Theorem 2 in
Inoue, Jin, and Rossi, 2017 provides the conditions for the asymptotic optimality of their MSFE
criterion, so that the error introduced by replacing λi(1) with the sample counterpart λ̂i(1) is
negligible. This allows to quantify the bias induced by the rolling OLS estimator using the most
recent W observations, which should be considered carefully. The rolling OLS estimator for the
unknown functions λi(1) and λi(1)(1) in (A.3) is given by

[
λ̂i(1)

λ̂i(1)(1)

]
=

 ∑ F⊤
t Ft ∑ F⊤

t Ft

(
t−T

T

)
∑ F⊤

t Ft

(
t−T

T

)
∑ F⊤

t Ft

(
t−T

T

)2

−1

×

 ∑ F⊤
t Xi,t+h

∑ F⊤
t Xi,t+h

(
t−T

T

) (A.4)

with the summation ∑ going from t = T − W0 + 1 up to T − h.

The MSFE criterion in Inoue, Jin, and Rossi, 2017 can also be adapted to contemporaneous
(explanatory) regressions, and in this case I am selecting the optimal window size Ŵ based on
the minimisation of the MSE at the end of the sample T, with Xi,T describing the return of stock
i with factors and loadings estimated up to T. When I consider a a contemporaneous regression
framework, the population MSE at the end of the sample is defined as

ET[(Xi,T − FT Λi(1)⊤)2] (A.5)

with ET(.) being the conditional expectation based on the information set at T. The feasible
MSE replaces Λi(1) with the estimated parameter Λ̂i,W(1) based on the last W observations in
the sample. I then choose the window size W that minimises

ET[(Xi,T − FT Λ̂i,W(1)⊤)2] = ET[(FT λi(1)⊤ + FT λ
(1)
i (1)⊤

(T − T
T

)
+ ei,T − FT Λ̂i,W(1)⊤)2]

= ET[(FT λi(1)⊤ + ei,T − FT Λ̂i,W(1)⊤)2]

= ET[e2
i,T]− 2ET[FT (λi(1)− Λ̂i,W(1))⊤ ei,T] + ...

... + ET[FT (λi(1)− Λ̂i,W(1))⊤(λi(1)− Λ̂i,W(1))F⊤
T ]. (A.6)

Minimising the above expression is equivalent to minimising

ET[(Xi,T − FT Λ̂i,W(1)⊤)2] = ET[FT (λi(1)− Λ̂i,W(1))⊤(λi(1)− Λ̂i,W(1)) F⊤
T ] + ...

... − 2ET[FT (λi(1)− Λ̂i,W(1))⊤ ei,T] (A.7)

since the variance of the idiosyncratic error ET[e2
i,T] is independent of W. However,
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equation (A.7), developed in a contemporaneous-equation framework, is not feasible be-
cause it depends on the unknown error ei,T. In Inoue, Jin, and Rossi, 2017, the term
2ET[FT (λi(1) − Λ̂i,W(1))⊤ ei,T] does not enter the equation due to the predictive feature of
their model.

When I consider a predictive framework, with factors and loadings estimated up to time T,
I aim to minimise the MSFE at the end of the sample, and equation (A.5) reads

ET[(Xi,T+h − FT Λi(1)⊤)2]. (A.8)

Due to the properties of conditional expectations, the true but unknown error of the predictive
equation for the returns at horizon T + h, ei,T+h, falls outside the information set at T and in
this case the minimisation problem resolves to

ET[(Xi,T+h − FT Λi(1)⊤)2] = ET[FT (λi(1)− Λ̂i,W(1))⊤(λi(1)− Λ̂i,W(1)) F⊤
T ]. (A.9)

Inoue, Jin, and Rossi, 2017 suggests replacing the unknown λi(1) with the local linear estimate
λ̂i(1) computed on a pilot window that considers the most recent W0 observations. In their
framework, the minimisation problem does not depend on the unknown parameter λi(1), re-
placed by the sample counterpart λ̂i(1), and on the unknown error term ei,T+h, which does not
enter the equation due to the property of conditional expectations. The optimal window size
W thus minimises

Ŵ = min{ET[FT (λ̂i(1)− Λ̂i,W(1))⊤(λ̂i(1)− Λ̂i,W(1))F⊤
T ]}. (A.10)

A.2 Relationship with Expected Returns

In this appendix I test the claim of Armstrong, Banerjee, and Corona (2013) that firm-specific
uncertainty of factor sensitivities negatively affects expected returns. They employ a CAPM
model for US stocks with time-varying factor sensitivities that are estimated via rolling OLS
regressions, and Borghi et al. (2018) extend their analysis internationally to global and regional
factors, with time-varying loadings estimated via MLE. The results of Borghi et al. (2018)
indicate a premium for holding stocks with highly volatile exposure to global systematic risk
(financial and global factors), implying an additional source of priced risk in the cross-section
of returns. Their results are at odds with Armstrong, Banerjee, and Corona (2013) who report
a negative relationship between variance of the loadings and expected returns. To expand on
their work, I repeat the analysis of Borghi et al. (2018) considering an extended sample from
January 2006 to May 2019, and I fail to confirm their evidence in an ‘out-of-sample’ context.
In fact, I do not find evidence of a monotonic relationship between expected returns and beta
parameters (magnitude, variance and persistence), considering all three factors, My results
point to an irrelevance of the beta parameters in the cross-section of stock returns, in contrast
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to both Borghi et al. (2018) and Armstrong, Banerjee, and Corona (2013).

To document my findings I compute the T-average arithmetic return over the full sample
for each stock (cum-dividend data, no standardised), obtaining a vector of N (weekly)
expected returns. I then estimate the empirical quantiles for three beta parameters (variance,
persistence, magnitude) and plot the median within-quantile values of the variable in question
(expected returns) against the quantile number, I do so for each beta parameter. Financial
stocks are excluded, together with the equities with non-identifiable time-varying betas.
Figure A.1 reports the results.

[Figure A.1 about here.]
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FIGURE A.1: Relationship with Expected Returns

The figure reports the average weekly arithmetic returns from January 2006 to May 2019 expressed in basis points,
ordered by factor loadings variance (Panel A.1a), persistence (Panel A.1b) and magnitude (Panel A.1c). At the end
of the sample, stocks are sorted in quantiles of either loading variance, persistence, or magnitude. Quantile five
contains the largest value. Then, for each quantile I calculate the median return, and I plot it against the quantile
number. Financial stocks are excluded, as well as those stocks with loadings that vary so little that I consider them
constant.

(A) Variance

(B) Persistence

(C) Magnitude
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Appendix B

Chapter 2

This appendix contains three sections. Section B.1 reports an extension of the benchmark model
described in Section 2.2 that allows to analyse the contribution of time-varying betas with re-
spect to the estimation of co-movements. Section B.2 reports further details on the financial
events that I consider for the economic interpretation of the time-varying factor betas in Sec-
tion 2.5.2. Finally, Section B.3 provides further details on the data cleaning procedure, and on
the regional composition of the FF factors.

B.1 Model-Implied Covariance Structure

In this appendix I report an extension of the benchmark model described in Section 2.2 that
allows me to analyse the contribution of time-varying betas in shaping the co-movements
structure implied by the factor model in (2.2). Similarly to the case of expected returns,
I assume that factors have a static covariance structure that is estimated considering the
information on the full sample T, which allows to study in isolation the role of time-varying
betas in explaining stock return co-movements.

Under the assumption of weak exogeneity between factors and error terms1, the covariance
matrix of stock returns can be decomposed into a systematic and idiosyncratic component. Let
r1:T denote the (T × N) matrix of excess asset returns with observations up to period T, then

1Standard factor models assumption include:

• Stationarity of factor realisations f1:T with unconditional moments given by

E[ f1:T ] = λ

cov( f1:T) = E[ f⊤1:T f1:T ]− λ λ⊤.

• Weak exogeneity between the factors and error terms

cov( fk,t, ϵi,t) = 0, for all i, k, and t.

• Error terms are serially uncorrelated and contemporaneously uncorrelated across assets

E[ϵ⊤1:T ϵ1:T | f1:T ] = diag(σ2
1 , ..., σ2

N).
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the associated covariance decomposition of model (2.2) reads

covT(r1:T+h) = βT cov( f1:T) β⊤
T + cov(ϵ1:T+h) (B.1)

where covT(r1:T+h) is the (N × N) variance-covariance matrix of future-period excess returns
conditional on the T-period factor loadings βT, cov( f1:T) = E[ f⊤1:T f1:T]− λ λ⊤ is the (K × K)
unconditional variance-covariance matrix of factor returns, and cov(ϵ1:T+h) = diag(σ2

i , ..., σ2
N)

is the (N × N) diagonal matrix of idiosyncratic error covariances.

I can then evaluate the out-of-sample model’s ability to predict future (expected) covari-
ances, given the conditional beta estimates in the sub-sample t∗ = 1, ..., TW (each of length W),
as

covt∗(rt∗+h) = βt∗ cov( f1:T) β⊤
t∗ + cov(ϵt∗+h), t∗ = 1, ..., TW (B.2)

where covt∗(rt∗+h) is the (N × N) variance-covariance matrix of future excess returns consider-
ing information in period t∗, and cov(ϵt∗+h) is the (K × K) unconditional covariance matrix of
factor realisations. In a similar spirit as in Kelly, Palhares, and Pruitt (2021), I can evaluate the
performance of the time-varying beta estimator in predicting future covariances by considering
a variety of error measures. For instance, equation (2.17) can be adapted to

OOS errort∗ = Ŝt∗+h − (β̂t∗ ̂cov( f1:T) β̂⊤
t∗), t∗ = 1, ..., TW (B.3)

where Ŝt∗+h can be the sample covariance matrix of stock returns estimated in sub-sample t∗

that also includes the h-period ahead observations, and ̂cov( f1:T) the estimated factor covari-
ance matrix on the full sample. Note that this approach is similar to Bekaert, Hodrick, and
Zhang (2009) who use a mean squared error criterion defined as the time-series mean of a
weighted average of squared errors (from individual stock covariances). I leave this extension
for future studies.

B.2 Economic Calendar

In this appendix I report further details on the financial events that I consider for the economic
interpretation of the time-varying factor betas in Section 2.5.2. I differentiate between events
that have a world-wide impact, and events that are relevant to the equity markets of specific
world regions.

The former set includes two periods of declining economic activity across the major world
economies.

1. Global Financial Crisis (GFC). I follow the the NBER Business Cycle Dating Committee
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2 that identifies the dates of peaks and troughs that define the economic recessions and
expansions in the me economy. The emphasis on the NBER’s definition of recession is on
the severity of the decline in economic activity that is spread across the whole economy,
and on the duration of this contraction. The determination of the months of peaks and
troughs is based on a range of monthly measures of aggregate real economic activity
published by the federal statistical agencies, the peak month of the GFC is estimated to
be on December 2007 and the through on June 2009. A recession is the period between a
peak of economic activity and its subsequent trough, or lowest point. On the other hand,
the economy is in an expansion between trough and peak dates. According to the NBER
chronology, after the through in June 2009 the US economy enjoyed an expansionary
phase up until the most recent peak, which occurred in February 2020. The most recent
trough occurred in April 2020. The analysis in this chapter is based on a 13-year sample
from January 2006 to May 2019, and as such it includes only one recessionary phase, the
GFC, as per NBER’s definition. In Section 2.6 I highlight that further research based on
an extended time frame is needed to assess the impact of the COVID-19 outbreak on the
dynamics of factor sensitivities. Based on the ample evidence of spill-over effects from
the US economy to other world regions during the GFC, I assume that this event has an
impact on the equity prices of the firms listed in all six regions considered, thus I highlight
the peak and through dates in most of the time-series charts in this chapter to ease the
economic interpretation of my estimates.

2. European Sovereign Debt Crisis (ESDC). I consider the peak and through dates of eco-
nomic recessions in the EU-wide area published by The Conference Board 3 which builds
on the NBER’s convention for the US economy. The Conference Board uses a business cy-
cle dating algorithm based on Bry and Boschan (1971), and Harding and Pagan (2002) and
analyses the turning points in the economic activity of four major European economies
(France, Germany, Spain and the UK) as well as for the Euro Area. For countries like
Spain, the estimates indicate a peak date on June 2010, while for the Euro Area the peak
date is shifted almost one year forward to July 2011. In fact, in 2010 the level of Spain
public debt relative to GDP was only 60%, more than 20% less than Germany, France or
the US, and more than 60% less than Italy or Greece, effectively being one of the low-
est among advanced economies prior to the crisis. The thorough for the Euro Area is in
line with the through dates of France and Spain, while it is assumed that no recession
occurred in Germany during the same period, and only partly in the UK (from August
2010 to December 2011). The ESDC originated in Europe and the detailed causes of the
crisis vary from country to country. Throughout this chapter I assume that the crisis has a
major impact on the equities listed in the Western and Emerging Europe, as well as those
in the North America regions. When I present the aggregate results for these regions, I
highlight the peak and through dates of the ESDC in the time-series charts.

2Source: NBER Busines Cycle Dating.
3Source: The Conference Board Business Cycle Indicators.

https://www.nber.org/research/business-cycle-dating
https://conference-board.org/data/bci.cfm
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During the 13-year period considered, I also analyse the financial events that I believe have
a significant impact on the equity markets of specific world regions4, but do not necessarily
spread to the whole economy, or to multiple countries/regions. Some of the events have a
very concise time span, like the United States presidential elections, while others span multiple
years and included sub-periods of significant market turmoil, like the 2014-2016 oil crash, or
the 2015-2016 Chinese stock market crash. The dates that I consider are based on a variety of
sources including major news outlets as well as Bloomberg.

1. 2012 US Presidential Election. On November 6 2012 President Obama is officially re-
elected with 51% of the popular vote. Early voting began at the end of September 2012
in 12 states, followed by October which featured three presidential debates roughly one
week apart from each other. Given the forward-looking nature of financial markets, I
analyse the performance of factor sensitivities starting from September 2012 and ending
on November 2012 (end-of-month). I follow the same approach for the subsequent pres-
idential election in 2018, and decide not to include the 2008 elections given the peculiar
regime in which the economy was at that time. In the 10 subsequent days following elec-
tion day, the S&P500 dropped −2.8% overall, with a peak of −5% (daily). The region
affected by the presidential elections is North America (which includes Canada, the US,
and Mexico).

2. 2014-2016 Oil Crash. From September 2014 to January 2016 the Brent price of crude oil
experienced a 53% decline that rivalled only the 73% drop occurred during the GCF, from
July 2008 to the end of the year. Up until 2014, oil prices were primarily driven by the in-
crease in demand of China and other emerging economies, following years of significant
sustained growth. Adding on the demand side, by that time also hydraulic fracturing in
the US and oil production in Canada rose, which ultimately contributed to an increase
in global oil production. In the middle of 2014 however, price started declining due to
increase supply, and simultaneously slowing demand in the emerging countries. During
2014-2015, OPEC members consistently exceeded their production ceiling, at the same
time US oil production increased further which led to a plunge in US oil import require-
ments and a high volume of oil inventories in storage across the world, causing the oil
price to collapse. The oil glut, spurred a sharp downward spiral in the price of the com-
modity that reached its peak at the end of January 2016, when oil was below the 30$ mark.
During this period, oil and gas companies faced high risks of bankruptcy worlwide due
to low output costs. Following my regional classification, I assume that the oil crash has
a significant impact on emerging markets in Europe, and in the Middle East & Africa
regions.

3. 2015-2016 Chinese Stock Market Crash. From the beginning of June 2015 to early Febru-
ary 2016, the Chinese stock market experienced a major decline which led to a third of

4Throughout this chapter, the emphasis is on the regional classification of stocks based on the company’s domi-
cile. Although I acknowledge that certain events may be also confined to specific sectors of the economy, I present
most of the cross-sectional results region-wise.
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the value of local-currency-denominated shares on the Shanghai Stock Exchange being
erased within one month of the event. Major aftershocks occurred around July 27th
(−7%) and August 24th ‘Black Monday’ (−8.9%). By the beginning of July 2015, the stock
market fell more than 30% over the three preceding weeks, with almost 1, 500 companies
(more than half of those listed) filing for trading halts in an attempt to prevent further
losses. The Chinese government intervened by imposing a series of bans that prevented
investors owning more than 5% of a company’s stock to short-sell the shares. Given the
peculiar composition of the Chinese stock market, the Government also provided cash to
brokers to buy shares, backed by central-bank cash, in an attempt to boost demand for
the securities. For this event, I assume that only the Asia-Pacific region is affected.

4. 2016 US Presidential Election. On November 8 2016 the American citizen were asked
to vote for the new President after President Obama’s second mandate. During the pre-
ceding month, candidate Hilary Clinton for the Democratics and Donald Trump for the
Repulicans engaged in a series of presidential debates which received substantial media
coverage. By 2.45 m Eastern time on election day, Donald Trump appears to be the pro-
jected winner of election, effectively becoming President-elect. In the 10 subsequent days
following election day, the S&P500 entered a steady bull phase topping +2.96% overall,
with modest peaks (+1%) at the end of each day trading session. Similarly for the 2012
presidential election, I study the performance of factor sensitivities of North American
stocks from September 2016 up to the end of November 2016.

5. 2016 Brexit Referendum. On June 23rd 2016 the UK asked the electorate whether the
country should remain a member of, or leave, the European Union. The referendum
resulted in a slim victory for the ‘leave’ side (51.9% of the votes cast), and although the
referendum was legally non-binding, the government of the time promised to implement
the measures. Share prices of the five largest British banks fell an average of 21% in the
morning session after the referendum. All of the major credit rating agencies reacted
negatively to the vote. Standard & Poor’s cut the British credit rating from AAA to AA,
Fitch Group cut from AA+ to AA, and Moody’s cut the UK’s outlook to negative. On the
morning of June 24th, the pound sterling fell to its lowest level against the US dollar since
1985. The drop over the day was 8%, making it the biggest one-day fall in the currency
since the introduction of floating exchange rates at the end of the Bretton Woods in 1971.
The region affected by the referendum is Western Europe, which includes the major EU
economies as well as the UK, and I analyse the dynamics of factor sensitivities from the
beginning of May to the end of July 2016.

6. 2018-2019 Trade War. During the course of 2018 under the Presidency of Donald Trump,
the US and China engaged in a series of import restrictions and increased tariffs which
shaped the so-called ‘US-China Trade War’. During the first half of 2018, the increase in
tariff was moderate. In the months of July thorough September 2018 both sides increased
tariffs: US average tariffs increased from 3.8% to 12%, and China’s ones from 7.2% to
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18.3%5. During the same period the S&P500 increased by 7.2 percentage points. After an
8-month period (September 2018 to June 2019) of little change in tariffs, June to Septem-
ber 2019 saw another set of trade tariffs increases being implemented. The dataset for
my analysis ends on May 2019, and I am not able to analyse the effects of stage five of
the trade deal on the dynamics of factor loadings. I leave this for future research, see
Section 2.6. In the same months that saw the trade war escalating, the US stock mar-
ket experienced periods of sustained market volatility due to geopolitical tensions with
North Korea, as well as uncertainty on the monetary policy, and I acknowledge that it
can be difficult to accurately isolate the impact of single events on the factor sensitivities
for this period. I focus on the months of July through October 2018 (included) which saw
the steepest increase in trade tariffs during the trade escalations. The regions affected by
these shocks are North America and Asia-Pacific.

Table B.1 reports a summary of the relevant dates for the events listed above.

[Table B.1 about here.]

B.3 Data Cleaning

In this appendix I provide further details on the data cleaning procedure, as well as on the
regional composition of the local FF factors.

Data Cleaning. In table 2.2 I report the summary statistics on the country-region composition
of my universe, and based on the figures in column #Full I end up excluding from my analysis
some of the countries due to data quality issues. Before estimation, I apply a conservative
screen to delete the tickers with no more than 12 consecutive missing observations and at least
one year of data, and I also delete the dually-listed tickers. To facilitate the comparison of my
results across window sizes, I fix the cross-sectional dimension to N = 1686, which comprise
the tickers that remain listed in the national equity indeces throughout the entire sample. For
some of the countries there are no equities that remain listed for the entirety of the T = 700
weeks, and as such are excluded from the analysis. These countries are India, Korea, Russia,
and Ukraine. Weekends are non-trading days as per the NYSE calendar are excluded.

FF Factors. I download the FF36 and FF57 factor returns at daily frequency from Kenneth
French’s web site at Dartmouth. I firstly synchronise the daily series to my weekly (end-of-
Friday) benchmark, and similarly to the other observed factors I winsorise the data at 99% level.
The factors are region specific and B.2 reports the details on the regional classification employed
by FF. They analyse the returns for the companies listed in 23 countries and partition their

5Source: Peterson Institute for International Economics.
6Source: Kenneth R. French Data Library.
7Source: Kenneth R. French Data Library.

https://www.piie.com/research/piie-charts/us-china-trade-war-tariffs-date-chart
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/f-f_3developed.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/f-f_5developed.html
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universe into four regions: Europe, which closely matches my classification for the Western
Europe region, North America, which includes only the me and Canada, and Asia Pacific ex
Japan, which includes Australia, Hong Kong, New Zealand and Singapore. In table B.2 I denote
with ✓the countries in FF that are also included in my universe. Only three countries are
analysed in FF but not in my study, Greece, Italy, and Singapore. On the other hand, I include
Mexico in the North America region, as well as Thailand, Indonesia and China in the Asia-
Pacific region. Japan is treated as a separate region in FF while I include it in Asia-Pacific.
Overall the partition in FF closely matches the one in Bekaert et al. (2014) which is the reference
in my study.

[Table B.2 about here.]



200 TABLES

TABLE B.1: Economic Calendar

The table reports the relevant dates of the financial events that I consider for the economic interpretation of the
time-varying factor betas in Section 2.5.2. Panel B.1a shows the peak and through dates of the two major crises that
I believe have a wide-spread impact on the major global equity markets, while panel B.1b reports the region-specific
events. NA stands for North America, LA for Latin America, AP for Asia-Pacific, WE for Western Europe, EE for
Eastern Europe, and MEA for Middle East & Africa.

(A) Global Crises

Event Peak Through Regions Affected

Great Financial Crisis Dec 2007 June 2009 All
European Sovereign Debt Crisis July 2011 Feb 2013 WE, EE, NA

(B) Region-Specific Events

Event Start End Regions Affected

2012 me Presidential Election Sep 2012 Nov 2012 NA
Oil Crash Sep 2014 Jan 2016 LA, EE, MEA
Chinese Stock Market Crash June 2015 Feb 2016 AP
2016 me Presidential Election Sep 2016 Nov 2016 NA
2016 Brexit Referendum May 2016 July 2016 WE, EE
2018-2019 Trade War July 2018 Oct 2018 NA, AP
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TABLE B.2: Fama-French Regional Classification

The table reports details on the regional classification employed by FF for the construction of their factors. Column
FF indicates if the country is also considered part of the corresponding FF regions (North America, Europe, and
Asia Pacific ex Japan).

Index Country Region FF #Full

SPTSX60 Canada North America ✓ 64
OEX US North America ✓ 129
MEXBOL Mexico North America x 38

TPXL70 Japan Asia-Pacific x 104
SSE50 China Asia-Pacific x 90
HSCEI HongKong Asia-Pacific ✓ 56
LQ45 Indonesia Asia-Pacific x 70
SET50 Thailand Asia-Pacific x 64
NZSE50FG NewZealand Asia-Pacific ✓ 45
AS31 Australia Asia-Pacific ✓ 55

ATX Austria Western Europe ✓ 23
BEL20 Belgium Western Europe ✓ 26
KFX Denmark Western Europe ✓ 26
HEX25 Finland Western Europe ✓ 26
CAC France Western Europe ✓ 48
DAX Germany Western Europe ✓ 37
ISEQ Ireland Western Europe ✓ 22
AEX Netherlands Western Europe ✓ 29
OBX Norway Western Europe ✓ 28
PSI20 Portugal Western Europe ✓ 21
IBEX Spain Western Europe ✓ 33
OMX Sweden Western Europe ✓ 36
SMI Switzerland Western Europe ✓ 43
UKX UK Western Europe ✓ 119

Total 1232
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Appendix C

Chapter 3

This appendix contains two sections. Section C.1 reports further details on CUSIP-level data
and describes the data cleaning procedure. Section C.2 propose an adaptation of the carry
factor construction procedure of Koijen et al. (2018) to my framework.

C.1 Data Cleaning

The sample period of our study runs from the beginning of January 2010 to the end of October
2021, and most of the data is available at the end of each trading day in the respective national
business calendars. To syncrhonise the data across countries, I take the perspective of a
US investor and select the observations that match the dates of the official New York Stock
Exchange calendar1. In the United States, the number of trading days in a year averages
260. This procedure inevitably discards observations in countries other than the US due to
non-overlapping holidays, however it is necessary to produce a data set with no look-ahead
bias at the end of each day across markets2.

Once the data is syncrhonised, I apply the following screens that help identify entry er-
rors or bad data in general. This approach is inspired by Baltussen, Swinkels, and Van Vliet
(2021) who apply a series of data quality checks to produce a high-quality historical dataset
for four asset classes (equities, bonds, commodities, and FX) spanning more than 100 years.
I build upon their framework based on end-of-month observations and modify it to mydaily
frequency. The adjustments that I perform are the following (in order).

1. I drop the observations recorded as integers (including negative values). Data on the
country-specific deposit rates is available with 4 decimal places (in %), swap rates, generic
yields are recorded in % with 3 decimals, and real yields with 2 decimals (also in %). Bond
prices (clean and dirty) are recorded with 3 decimal places and are expressed with respect
to a par price of 100 (in local currency), and bond yields are recorded with 3 decimal
places (in %).

2. I drop consecutive repeated (identical) observations.

1Source : NYSE Calendar.
2I assume that the effects of overlapping trading hours across markets within a given day are negligible.

https://www.nyse.com/markets/hours-calendars
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3. Finally, I drop the observations that belong to a month in which less than 75% of data is
available. This filter is inspired by the ‘zero return screen’ in Baltussen, Swinkels, and Van
Vliet (2021) which leaves out observations with more than one zero or missing spot in the
past 12 months. In their work, the threshold for the portion of missing data within a year
(monthly observations) is set to 8.3% (1/12). In my case (daily observations), I allow a
maximum of 5 non-consecutive missing observations within a month, which corresponds
to about 23% of missing data in a business year (60/260). This adjustment is particularly
relevant for the bonds’ daily price series since it can be taught of as a screen for reduced
liquidity. The idea of using the incidence of zero returns (same consecutive price) in
the sample as a proxy of liquidity dates back to Lesmond, Ogden, and Trzcinka (1999),
who develop a model for transaction costs based solely on equity price data, and was
leveraged by Bekaert, Harvey, and Lundblad (2007) on emerging markets data.

The screens introduce missing data points in the series, and for each country I select the
data that has no more than maxdays consecutive missing observations (in days), and no more
than miss missing points in the sample (in %). These figures differ for each data type (swap
rates, bond prices etc.) and are reported below, table C.1. For asset-level data I consider the
lifespan of each bond to calculate the statistics on the data quality (and not the entire sample
as for market data). Once the data series are selected, I replace the missing observations with a
5-day moving average, for a maximum of maxdays consecutive missing days.

[Table C.1 about here.]

Table C.2 reports a summary of the available data for each country after the cleaning proce-
dure. I differentiate between market- and bond-level data. For the former, I report a blue tick
under the column IRS if there is sufficient data on the time-series of swap rates (for the different
maturities), and on the underlying (float leg) deposit rate. A black tick indicates unavailable
data on the time-series of deposit rates, but sufficient data on the swap rates. Similarly for the
other data types I indicate with a tick if the data is available after the screens, and with a cross
otherwise. In the bond panel, I count the number of bonds that have complete time-series of
clean and dirty prices (P), the corresponding yields to maturity (y), dollar duration (DV01), and
z-spread (Z). I adopt a bottom-down approach and out of a total of 20 countries I select nine
that have a sufficiently large cross-section of bonds with available data, and complete market
data. The countries include: Australia, Canada, Japan, the UK, the US, and France, Germany,
Italy, and Spain for the Euro Area.

[Table C.2 about here.]

I now I report further details on bond-level data. For my universe I only consider bonds
that were issued by the national governments from January 1st 2010 up to the end of October
2021 and that match certain characteristics. In particular, I exclude inflation-linked bonds,
green bonds, international bonds (those issued in a foreign currency), retail, exchange-traded,
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when-issued, sinkable, and funged bonds, as well as certificates of deposits. I only include
bonds with standard characteristics (i.e. option-free, non bullet bonds) with a maturity of 2 to
30 years.

For each bond I gather from Bloomberg the following data series (field in brackets):

• Clean price (PX_LAST): the last price received from the pricing source (BGN). For all
bonds this coincides with the clean price, expressed per 100 face value (not in currency
terms).

• Dirty price (PX_DIRTY_MID): the mid price of the bond that includes the accrued interest
that the seller is entitled to receive, dirty price ≥ clean price.

• Yield conventional (clean) (YLD_CNV_LAST): conventional yield computed from the
clean price (in %).

• Yield annual (dirty) (YLD_ANNUAL_MID): using the dirty price, the yield of the bond
(in %), Yield annual ≥ yield conventional.

• Dollar duration (RISK_MID): the dollar value of a basis point change in mid yield times
100.

• Z-spread (Z_SPRD_MID): the spread (in bp) that must be added to the spot curve so that
the bond’s discounted cashflows equals its mid price (dirty), with each dated cashflow
discounted at its own rate.

The total number of securities with complete series of end-of-day clean prices is 972, 788 if I
consider the series of dirty prices, 717 and 706 for yields on the clean and dirty prices respec-
tively, 540 bonds with historical dollar duration series, and 288 bonds with complete Z-spread
daily values.

C.2 Carry Factor

In regards to carry, given the characteristics of my data, i.e. CUSIP-level at daily frequency,
adapting the measures of Koijen et al. (2018) requires careful consideration of duration risk.
Koijen et al. (2018) examine carry for US Treasuries in the cross section from one to ten years of
maturity, and adjust their position sizing to account for the different volatility (and duration)
of the short and long legs. Consider for instance a (term-spread) portfolio that invests long 1$
of 10-year bonds and shorts 1$ of 1-year bonds. The 10-year bonds are far more volatile than
the 1-year, and they adjust their positions by multiplying the synthetic futures price Fτ

t by the
duration Dτ

t , Xτ
t = Fτ

t Dτ
t . This implies that a riskier bond with a larger duration is supported

by a larger amount of capital and its return and carry are scaled down accordingly. The key
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equations from Koijen et al. (2018) are

Rτ
t =

Fτ
t − Fτ

t−1

Xτ
t−1

(C.1)

Cτ
t (X = Fτ

t Dτ
t ) =

Cτ
t (X = Fτ

t )

Dτ
t

(C.2)

Cτ
t (X = Fτ

t ) =
(1 + yτ

t )
τ

(1 + r f
t )(1 + yτ−1

t )τ−1
− 1 (C.3)

where Cτ
t (X = Fτ

t Dτ
t ) is the time-t carry on a bond with τ periods to maturity, which is a

function of the bond’s duration Dτ
t and the carry of a fully collateralised position Cτ

t (X = Fτ
t ),

yτ
t is the zero-coupon bond yield. The return and carry of the slope-of-the-yield portfolio in my

example are

Cslope
t = C10Y

t (X = F10Y
t D10Y

t )− C2Y
t (X = F2Y

t D2Y
t ) (C.4)

Rslope
t = R10Y

t − R2Y
t . (C.5)

The approach of Koijen et al. (2018) of calculating carry for constant-maturity securities dif-
fers from my setup under many aspects: they use synthetic futures as base assets, instead of
traded bond data, they bootstrap the yields yτ

t for all (continuous) maturities of a single issuer’s
curve, and adjust their allocations by duration, rather than time-to-maturity. An extension to
my study is to compare the performance of portfolios formed on bond-level data against the
constant-maturity benchmark yields that I plot in figure 3.2. Using the latter, I can price the
synthetic bond portfolios for all available maturities (together with the bootstrapped yields),
calculate the carry of a fully collateralised position using equation (C.3), and finally use equa-
tions (C.4) and (C.5) to calculate carry and returns. I can then compare its performance against
a (local or global) portfolio formed on bond-level data that match a desired duration target D∗

(ten and two years in the example above)

w∗
t (D∗) = min{D∗

t
(c,b) − D∗} (C.6)

D∗
t
(c) =

Nt,c

∑
i

w∗
i,t I(w∗

i,t > 0) Di,t +
Nt,c

∑
i

w∗
i,t I(w∗

i,t < 0) Di,t. (C.7)

The resulting portfolio returns (for a fixed target D∗) can be calculated using equation (3.3),
and the equivalent slope-of-the-yield portfolio is thus

R∗
t

slope = f (c)
t (D∗ = 10Y)− f (c)

t (D∗ = 2Y). (C.8)

Effectively, one can think of the constant-maturity portfolios f (c)
t (D∗) as primitive assets in this

approach, which allows reconciliation with standard practices from the literature, eg. Durham
(2015), Brightman and Shepherd (2016), Brooks and Moskowitz (2017) and Brooks, Palhares,
and Richardson (2018).



TABLES 207

TABLE C.1: Data Cleaning Parameters

The table reports the parameters that I use to select the data series after the screens are applied. Column maxdays
refers to the number of maximum consecutive missing observations (in days), and miss to the percentage of missing
data in the sample period.

Data maxdays (days) miss (%)

Bond Data (prices, yields etc.) 10 10
IRS 10 50
Deposit Rates 800 70
Generic Yields (nominal, real) 800 70
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TABLE C.2: Data Availability

The table reports a summary of the available data for each country after the cleaning procedure. In the Market Data
panel, I report a blue tick under the column IRS if there is sufficient data on the time-series of swap rates, and on the
underlying deposit rates. A black tick indicates unavailable data on the time-series of deposit rates, but sufficient
data on the swap rates. For the other columns a tick indicates that the data is available after the screens, and a cross
otherwise. In the Bond Data panel, I count the number of bonds that have complete time-series of clean and dirty
prices (P), the corresponding yields to maturity (y), dollar duration, DV01, and z-spread, Z.

Market Data Bond Data

Issuer Included IRS Nominal Real Clean (P) Dirty (P) Clean (y) Dirty (y) DV01 Z

Australia ✓ ✓ ✓ ✓ 32 28 25 25 18 0
Canada ✓ ✓ ✓ ✓ 62 54 52 52 36 36
Denmark x x ✓ ✓ 8 6 6 6 5 5
Japan ✓ x ✓ x 184 149 94 87 61 61
New Zealand x ✓ ✓ ✓ 13 12 11 11 11 0
Norway x x ✓ ✓ 8 8 7 7 6 6
South Korea x x ✓ ✓ 21 21 16 14 0 0
Sweden x ✓ ✓ ✓ 8 8 8 8 5 5
Switzerland x x ✓ ✓ 13 12 12 12 7 7
United Kingdom ✓ ✓ ✓ ✓ 35 35 35 35 27 27
United States ✓ ✓ ✓ ✓ 385 275 272 268 231 0
Euro Area ✓
Austria x ✓ ✓ 22 21 19 19 14 14
Belgium x ✓ ✓ 24 24 23 23 15 15
France ✓ ✓ ✓ 45 39 38 38 27 27
Germany ✓ ✓ ✓ 72 68 63 63 45 42
Greece x ✓ ✓ 16 16 15 15 14 14
Italy ✓ ✓ ✓ 98 86 84 84 61 61
Netherlands x ✓ ✓ 20 19 18 18 11 11
Portugal x ✓ ✓ 15 15 15 15 11 11
Spain ✓ ✓ ✓ 59 54 54 54 34 34
All 20 7 20 19 1140 950 867 854 639 376
Included 9 5 9 8 972 788 717 706 540 288
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