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Multi-trait discovery and fine-mapping of
lipid loci in 125,000 individuals of African
ancestry

Abram Bunya Kamiza 1,2,3,19, Sounkou M. Touré 1,4,19, Feng Zhou 5,19,
Opeyemi Soremekun1, Cheickna Cissé4,6, Mamadou Wélé2,6,
Aboubacrine M. Touré6, Oyekanmi Nashiru7, Manuel Corpas 8,
Moffat Nyirenda9, Amelia Crampin2, Jeffrey Shaffer10, Seydou Doumbia4,11,
Eleftheria Zeggini 12,13, Andrew P. Morris 14, Jennifer L. Asimit 5,
Tinashe Chikowore 3,15,16,17 & Segun Fatumo 1,7,12,18

Most genome-wide association studies (GWAS) for lipid traits focus on the
separate analysis of lipid traits. Moreover, there are limited GWASs evaluating
the genetic variants associated withmultiple lipid traits in African ancestry. To
further identify and localize loci with pleiotropic effects on lipid traits, we
conducted a genome-widemeta-analysis,multi-trait analysis ofGWAS (MTAG),
and multi-trait fine-mapping (flashfm) in 125,000 individuals of African
ancestry. Our meta-analysis and MTAG identified four and 14 novel loci asso-
ciated with lipid traits, respectively. flashfm yielded an 18% mean reduction in
the 99% credible set size compared to single-trait fine-mapping with JAM.
Moreover, we identified more genetic variants with a posterior probability of
causality >0.9 with flashfm than with JAM. In conclusion, we identified addi-
tional novel loci associated with lipid traits, and flashfm reduced the 99%
credible set size to identify causal genetic variants associated with multiple
lipid traits in African ancestry.

Lipid traits including high-density lipoprotein cholesterol (HDL-C),
low-density lipoprotein cholesterol (LDL-C), triglycerides (TG) and
total cholesterol (TC) are implicated in cardiometabolic diseases1,2.
Evidence from epidemiological studies indicates that cardiometabolic
disease rates in Africa are comparable to those in other parts of the
world, but are rapidly increasing due to unhealthy dietary intake pat-
terns and lifestyle factors3,4. Moreover, previous studies have sug-
gested that individuals from continental Africa are associated with less
atherogenic lipid profiles5. However, individuals of African ancestry
living in the US or Europe have higher rates of cardiometabolic dis-
eases than other ancestry groups5–7, suggesting that ancestral differ-
ences exist in the aetiology of cardiometabolic diseases.

Lipid traits are influenced by environmental and genetic factors8.
Unhealthy dietary intake, physical inactivity, cigarette smoking, alcohol
consumption and several genetic factors are some of the factors

implicated in atherogenic lipid levels. Although several genetic loci are
associated with lipid traits9–11, they explain only a small fraction of the
variances of atherogenic lipid levels9. Moreover, these genetic loci were
mainly discovered in European and East Asian ancestry cohorts12–14, and
the transferability of these genetic loci to individuals of African ancestry
has been poor15, probably due to differences in linkage disequilibrium
(LD), allele frequencies and environmental exposure among other fac-
tors, suggesting thatmore genetic variants remain to be discovered. To
address this, TheGlobal Lipids Genetics Consortium (GLGC) performed
ameta-analysis of genome-wide association studies (GWASs) withmore
than 1.6 million individuals from five ancestries. Of these individuals,
99,432 were of African ancestry, in whom an additional 15 novel loci
associated with lipid traits were identified16.

Although the GLGC meta-analysis included 99,432 individuals
of African ancestry, 72,859 were African Americans in the US, which
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may not carry ancestry-specific genetic variants across Africa.
Moreover, the majority of African Americans in the US carry West
African ancestry. To further identify genetic loci associated with
lipid traits in individuals of African ancestry and determine their
molecular mechanisms, putative causal genetic variants, and cover
greater genetic diversity across the continent of Africa, we per-
formed a meta-analysis of GWAS including up to 125,000 indivi-
duals of African ancestry. Of these individuals ~14,000 were from
the African Partnership for Chronic Disease Research (APCDR)
consortium in Africa, ~99,000 were from the GLGC and ~11,000
were from Africa Wits-INDEPTH Partnership for Genomic Research
(AWI-Gen) in Africa. To increase the statistical power of detecting
additional novel genetic loci associated with lipid traits, we used
the multi-trait analysis of GWAS (MTAG)17 approach by taking
advantage of the correlation among the lipid traits. Analyzing
multiple lipid traits simultaneously can provide more accurate and
robust results than analyzing each trait separately. Moreover, we
used a single trait (JAM)18 and multi-trait (flashfm)19 fine-mapping
methods to identify causal genetic variants associated with lipid
traits in individuals of African ancestry; sharing information
between traits by joint fine-mapping with flashfm results in higher
resolution (smaller credible sets) than fine-mapping each trait
independently.

Results
Meta-analysis of GWAS
Weconducted aGWASmeta-analysis of ~125,000 individuals ofAfrican
ancestry and identified 63, 68, 48, and 92 independent genetic loci
(500 kb around lead SNP) associated with HDL, LDL, TG and TC,
respectively, at genome-wide significance (p-value < 5 × 10−8) (Supple-
mentary Data 1). The Manhattan and quantile-quantile (QQ) plots for
all lipid traits are shown in Fig. 1. Of the independent genetic loci, four
were novel and not previously reported to be associated with lipid
traits (Table 1). The variants rs2451303 (p-value = 8.0 x 10−09) and
rs6704760 (p-value = 4.50 x 10−08) were associated with LDL and
mapped to the intergenic regions between NT51B and RDH14, MYCN
and MYCNOS, and associated with cardiovascular diseases and neo-
plasm, respectively, Fig. 2. The variants rs12118522 (p-value = 4.52 x
10−08) and rs115505361 (p-value = 4.49 x 10−08) were associated with TG,
mapped within CHRM3 andMGAT2, and associated with hypertension,
body fat distribution and body mass index and blood protein levels,
respectively, Fig. 2. To determine the similarities or differences across
the three datasets used in the meta-analysis, we identified the top hits
in GLGC-AFR compared to those in APCDR and AWI-Gen (Supple-
mentary Fig. 1). We found that these loci were consistent across the
three datasets, although somewere not genome-wide significant in the
APCDR and AWI-Gen datasets.

Fig. 1 | Genome-wide association study (GWAS) for lipid traits in individuals of
African ancestry. a, b are Manhattan and QQ plot, respectively for GWAS meta-
analysis (N = ~125,000). c, d are Manhattan and QQplot, respectively for multi-trait
analysis of GWAS (MTAG, N = ~125,000). X-axis are the genomic position, the Y-axis
represents the log10 of association p-values and the point above the dotted line
represented variants significant at p-value < 5 × 10−8. P-values are two-tailed calcu-
lated using GWAMA for meta-analysis and MTAG for multi-trait analysis of GWAS,

not adjusted for multiple comparisons. Of the 87 (seven novel) loci for the meta-
analysis of GWAS and 85 (13 novel) loci for MTAG analyses corresponding to 107
distinct loci (65 shared) were identified. In b, and d is a comparison of the expected
distribution of association −log10 p-values under the null distribution. Leftward
deviation of the curves from the dotted line of expected values indicated more
associated loci than expected.
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MTAG identified additional novel loci
We then proceeded to perform amulti-trait analysis of GWAS (MTAG)17

to increase the statistical power to identify additional shared genetic
variants associated with lipid traits. We applied the fixed-effect meta-
analysis with linkage disequilibrium scores (LDSC) estimated from the
1000 Genome Project phase 3 of individuals of African ancestry20

(Methods). OurMTAGapproach, identified84, 62, and 110 independent
genetic loci associated with HDL, TG, and TC, respectively, at genome-
wide significance (p-value < 5 × 10−8, 500 kb) (Supplementary Data 2).
TheManhattan andQQplots for HDL, TG, andTC are shown in Fig. 1. Of
the independent genetic loci, 14were novel andnotpreviously reported
to be associated with HDL, TG, and TC (Table 2). The strongest novel
loci associated with lipid traits for our MTAG approach were mapped
within TMEM64 (rs74979471, p-value < 4.75 x 10−10), ZNF782 (rs6477710,
p-value < 1.36 x 10−10), intergenic region betweenMSANTD3 and TMEFF1
(rs113951466, p-value < 6.01 x 10−10), and LOC100507346 (rs7850215, p-
value < 2.06 x 10−09, Supplementary Fig. 2). Of the 14 novel genetic loci
associated with HDL, TG, and TC for the MTAG approach, five
(rs368884688, rs6477710, rs113951466, rs7850215, and rs10819792)
overlap among the lipid traits (Table 2).Of thenovel loci associatedwith
lipid traits in individuals of African ancestry, four and eight did not exist
in the GLGC summary data of European and East Asians ancestry, and
those that were present were not significantly associated (p-value =
0.0124) with lipid traits (Supplementary Data 3). These findings high-
light the importance of studying individuals of African ancestry in the
context of GWAS. We then compared the number of independent
genomic loci identified by our meta-analysis and MTAG approaches
(Supplementary Fig. 3). Notably, our MTAG increased the discovery of
genetic loci by 25%, 25% and 17.3% for HDL, TG and TC, respectively
compared to univariate meta-analysis.

Fine mapping of associated loci
We then performed fine mapping to localize putative causal variants
associated with lipid traits by taking advantage of the small linkage
disequilibrium block structure among individuals of African ancestry.
Fine-mapping was performed using JAM18, a single-trait fine-mapping
method and flashfm19, a multi-trait fine-mapping method, using the
AFR super population of 1000 Genomes and an in-sample subset of
individuals of African ancestry as a reference panel (Methods)20.

The lipid trait correlations between LDL, TC, TG, and HDL indicate
a high correlation between LDL and TC, and a low to moderate corre-
lation between all other trait pairs (Fig. 3a). In comparing 99% credible
sets (CS99) between JAM and flashfm, we found that flashfm gave a
17.6%mean reduction inCS99 size over JAM.Moreover, 93% (114/122) of
theCS99were either the same size or refinedbyflashfm, and60.6% (74/
122) of the CS99 are strictly smaller than those from JAM (Fig. 3b).

In 15% of the flashfm CS99, there was at least one variant with a
marginal posterior probability (MPP) of being a causal variant
(MPP) > 0.90, whereas all JAM variants had MPP <0.9 (Supplementary
Data 4).Wehighlight three regions inTable 3, whereflashfm refines the
CS99 over JAM for a trait(s) and flashfm results in at least one variant
with MPP > 0.9, though JAM does not. In particular, flashfm and JAM
agree on the most likely causal SNP(s) for some traits and give similar
MPP, but there are other traits for which; (1) flashfm assigns noticeably
higher MPP than JAM for the same variant (i.e. rs78302875 increases
from 0.406 (JAM) to 0.920 (flashfm) for HDL in 16:71465787-
71665787), (2) flashfm assigns noticeably higher MPP than JAM for a
variant in high LDwith it (i.e.. themaxMPP in JAM is 0.501 for rs247616,
which has r2 = 0.992 with rs183130, the top SNP for flashfm (MPP =
0.999) for LDL in 16:56889590-57089590) (Supplementary Fig. 4), (3)
flashfm assigns noticeably higher MPP than JAM for a variant in mod-
erate LD with it (i.e. the max MPP in JAM is 0.332 for rs4783961, which
has r2 =0.470with rs183130, the top SNP for flashfm (MPP =0.999) for
TG in 16:56889590-57089590) (Supplementary Fig. 4) and (4) flashfm
gives an 87.5% reduction from 16 variants in the JAMCS99 to 2 variantsTa
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Fig. 2 | Novel loci associated with lipid traits in individuals of African ancestry
from the meta-analysis genome-wide association analysis (N = ~ 125,000).
a Locuszoom plot showing associations around the intergenic regions between
NT51B and RDH14 region. b Locuszoom plot showing associations around the

intergenic region betweenMYCN and MYCNOS. c Locuszoom plot showing asso-
ciations around the CHRM3 region. d Locuszoomplot showing associations around
the MGAT2 region.

Table 2 | Novel genetic loci associated with lipid traits in individuals of African ancestry from multi-trait genome-wide asso-
ciation study

CHR SNP BP A1 A2 EAF BETA SE P-value N Genes Traits

1 rs368884688 181315526 G A 0.994 −0.267 0.046 7.20 x 10−09 13114 CACNA1E HDL

1 rs368884688 181315526 G A 0.994 −0.277 0.050 3.47 x 10−08 13115 CACNA1E TG

3 rs149700703 45204966 T G 0.008 0.232 0.040 5.68 x 10−09 31019 RPS24P8 TC

4 rs911749026 6362109 A G 0.991 −0.229 0.041 1.64 x 10−08 13115 PPP2R2C TG

7 rs13438114 31039982 A G 0.189 0.025 0.005 4.85 × 10−08 123032 GHRHR TC

8 rs77237080 91701696 G A 0.064 −0.028 0.005 3.59 x 10−09 120770 TMEM64 HDL

8 rs74979471 91724679 A G 0.070 −0.031 0.005 4.75 × 10−10 119930 TMEM64 TG

8 rs112773301 133214483 G A 0.986 0.134 0.024 4.65 x 10−08 23589 KCNQ3 TG

9 rs6477710 99585314 G T 0.069 −0.032 0.005 1.36 × 10−10 102013 ZNF782 HDL

9 rs113951466 103289530 T C 0.077 −0.027 0.004 6.01 × 10−10 120770 MSANTD3-TMEFF1:TMEFF1 HDL

9 rs7850215 98327711 A G 0.104 −0.023 0.004 2.06 × 10−09 120771 RP11-332M4.1 HDL

9 rs6477710 99585314 G T 0.070 −0.047 0.008 5.65 x 10−10 104276 ZNF782 TC

9 rs4743855 94581258 T C 0.107 −0.024 0.004 2.08 x 10−09 110284 ROR2 HDL

9 rs10819792 98834653 T C 0.219 −0.016 0.003 6.03 × 10−09 120771 RP11-569G13.2 HDL

9 rs7041800 95951769 A G 0.072 −0.043 0.007 4.72 x 10−09 104276 WNK2 TC

9 rs10819792 98834653 T C 0.220 −0.024 0.004 1.36 x 10−08 123033 RP11-569G13.2 TC

9 rs113951466 103289530 T C 0.077 −0.027 0.005 9.84 x 10−09 119930 MSANTD3-TMEFF1:TMEFF1 TG

9 rs7850215 98327711 A G 0.105 −0.033 0.006 1.68 x 10-08 123032 RP11-332M4.1 TC

12 rs374366861 87353564 T C 0.943 0.070 0.012 1.87 x 10−08 23589 RP11-324H9.1 TG

CHR chromosome, SNP single nucleotide polymorphism, BP base position, A1 effect allele, A2 other allele, EAF effect allele frequency, SE standard error, N sample size.
P-values are two-tailed calculated using MTAG and not adjusted for multiple comparisons.
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in the flashfm CS99 for TC and 21:46753876-46975775, and the variant
favoured by JAM, rs77974343 (MPP =0.275) has moderate LD
(r2 =0.686) with the variant favoured by flashfm, rs116386571 MPP =
0.989) (Supplementary Fig. 5). The variants rs77974343 and
rs116386571 are both intronic low-frequency variants (African MAF =
0.02; European MAF =0) and have been previously identified in Afri-
can ancestries as associatedwith TG (rs77974343, p-value = 5.77 x 10-47;
rs11638657, p-value = 6.03 x 10−49) and TC (rs77974343, p-
value = 7.61 x 10−10; rs11638657, p-value = 1.14 x 10−6)16. HaploReg21 indi-
cates that rs116386571 has enhancer histone marks for adipose nuclei
and fetal heart, as well as bound proteins TCF12 and POL2B and 18
altered motifs, whereas rs77974343 has three altered motifs and
enhancer histone marks in the spleen, suggesting slightly more bio-
logical support for rs116386571.

Comparison of fine-mapping results
Wecompareour African ancestry JAMandflashfm resultswith those of
GLGC: single causal variant single trait fine-mapping for admixed
African/African ancestry and trans-ancestry16. We compare the lists of
variants with MPP >0.90 for each method, for instances where our
region contains the lead SNP of the region considered by GLGC. This
resulted in 90of our trait-region combinations thatoverlapwithGLGC,
of which 62 have flashfm variants with MPP >0.90 for comparison
(SupplementaryData 4). Among these62 regions, 31 have variantswith
PP >0.90 in the GLGC African analysis, and 48 have variants with
PP >0.90 in the GLGC trans-ancestry analysis; we compare our results
with those ofGLGCwithin these regionswherebothflashfmandoneof
the GLGC analyses has at least one variant with MPP > 0.90.

As expected, there is a higher agreement between our analysis
with the African analysis of GLGC, than with their trans-ancestry ana-
lysis. In 45% (14/31) of the regions that have variants prioritised
(MPP >0.90) by both flashfm and the African fine-mapping of GLGC,
there was a shared prioritised variant; 21% (10/48) of the regions that
have variants prioritised by both flashfm and the multi-ancestry fine-
mapping of GLGC share a prioritised variant. Details of variants
prioritised by flashfm or JAM, as well as all functional annotations and
whether they are also prioritised by the GLGC analyses are also pro-
vided (Supplementary Data 5).

MTAG identifies eQTL with a high posterior probability of
shared association
To identify putative functional mechanisms of novel loci, we per-
formed Bayesian colocalization on meta-analysis and MTAG summary
datawithGTEx v8 tissue-specific gene expression quantitative trait loci
(eQTL) using coloc22. Of the four novel loci identified bymeta-analysis,
none were colocalized (H4 PP <0.8) with the respective lipid traits
(Supplementary Data 6). For the MTAG summary data, we found six
genetic loci (rs13438114, rs6477710, rs113951466, rs4743855,
rs10819792, and rs7041800) with H4 PP >0.8; the co-localized gene
expression traits involvedmultiple tissues (SupplementaryData 7). For
instance, ADCYAP1R1, ANKRD19P, CCDC180, ECM2, FGD3, HABP4,
LINC02937, MSANTD3, NUTM2G, OGN, IPPK, PTLC1, and ZNF484 hadH4
PP > 85% with MTAG HDL and were expressed in several tissues,
notably those of the liver, brain, adipose tissues, artery, gastro-
intestinal tract, andwhole blood (SupplementaryData 7). Interestingly,
these genes are involved in several pathways, including insulin secre-
tion, renin secretion, the cAMP signaling pathway, inositol phosphate
metabolism, metabolic pathways, and the phosphatidylinositol sig-
naling system.

Discussion
By analyzing multiple lipid traits simultaneously, we have provided
more accurate and robust results than by analyzing each lipid trait
separately. Moreover, we replicated several genetic loci previously
reported to be associated with lipid traits including, PSCK9, APOE, LPL,
CETP, and DOCK7 in individuals of African ancestry22. The greater cov-
erage of African genetic variation allowed us to identify an additional
four novel genetic loci in our GWAS meta-analysis. Using the MTAG
approach, we identified 14 additional novel genetic loci associated with
lipid traits that were not found in our GWAS meta-analysis approach.
Moreover, ourMTAG gene expression trait colocalization found six loci
with a posterior probability of shared causality ≥80%. For finemapping,
we observed an improvement in terms of credible set size reduction
when multiple lipid traits were jointly fine-mapped using flashfm.

Ourmeta-analysis of AWI-Gen, APCDR, andGLGC-AFR, found four
novel loci associated with lipid traits in individuals of African ancestry
(Table 1). The rs115505361 is mapped on MGAT2 and associated with

Fig. 3 | Fine-mapping of lipid traits in individuals of African ancestry. a Lipid trait correlation measured as Pearson’s correlation in the Uganda genome resource
(N = ~125, 000). b flashfm multi-trait fine-mapping generated smaller 99% credible sets (CS99) than JAM single-trait fine-mapping (N = ~125,000).
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body mass index, blood proteins, insulin sensitivity and hyper-
triglyceridemia. MGTA2 is involved in various metabolic and N-glycan
biosynthesis pathways, including lipid metabolism and protein
synthesis. rs12118522, mapped to CHRM3, is associated with hyper-
tension and body fat distribution. Some pathways associated with
CHRM3 include calcium signalling, cholinergic synapses, taste trans-
duction, insulin secretion, salivary secretion, gastric acid secretion,
and pancreatic secretion pathways. rs2451303 and rs6704760 are
novel loci associated with lipid traits and aremapped in the intergenic
regions between NT51B and RDH14, MYCN and MYCNOS, respectively.
These genes have been previously reported to be associated with
cardiovascular diseases and neoplasm, respectively.

As hypothesized, by using a multivariate approach, we improved
the discovery of additional novel loci (Table 2). The MTAG approach
identified 84, 62, and 110 distinct genetic loci associatedwith HDL, TG,
and TC levels, respectively. Moreover, on average, MTAG analysis
increased the power of identifying additional loci by 25% and provided
greater power for downstreampathway analysis (Fig. 3).We also noted
that theMTAGapproachproducedmorenovel genetic loci thanGWAS
meta-analysis results.

Notably, our novel genetic loci have been linked to traits correlated
with blood lipid traits, including bodymass index, systolic and diastolic
blood pressure, diabetes, chronic kidney disease, blood protein levels,
blood and immunology phenotypes, and Alzheimer’s biomarkers such
as amyloid or infectious diseases. For instance, CACNA1E encodes the
alpha-1E subunit of R-type calcium channels, which belong to the ‘high-
voltage activated’group thatmaybe involved in themodulationoffiring
patterns of neurons important for informationprocessing23. This gene is
involved in the following pathways; MAPK signaling, calcium, T2D, and
early infantile epileptic encephalopathy pathways and has been pre-
viously associated with blood pressure, BMI, and coronary artery calci-
fication. TMEM64 is localized in the endoplasmic reticulum and
modulates the nuclear localization of β-catenin, resulting in the activa-
tion of β-catenin-mediated transcription24. Diseases and phenotypes
associated with TMEM64 include cholesterol, creatinine, chronotype,
and serum metabolite concentrations in chronic kidney disease.
PPP2R2C has previously been associated with BMI, coronary artery dis-
ease, T2D, and metabolite levels. This gene belongs to the phosphatase
2 regulatory subunit B family25, which is related to PI3K-Akt, AMPK sig-
naling, adrenergic signaling in cardiomyocytes, Chagas disease, hepa-
titis C, and human papillomavirus infection pathways. These pathways
suggest an important role of viral infections in lipid regulation in areas
with a high viral load. This finding is consistent with the impact of viral
infection on lipid metabolism. Indeed, gene and pathway analyses
confirmed that inflammatory pathways and beta-cell type gene sets are
associated with these traits. Future GWAS with imputed HLA variants
may reveal additional insights into the relationship between lipid reg-
ulation and immunity, which has been observed in a previous study26.

Our MTAG gene expression trait colocalization analysis identified
six loci with an H4 PP ≥ 80%. These genes are involved in several
pathways, including insulin secretion, renin secretion, cAMP signaling,
inositol phosphate metabolism, metabolic pathways, and the phos-
phatidylinositol signaling system.Moreover, some of the pathways are
directly associated with lipid metabolism; for instance, the phospha-
tidylinositol signaling pathway enhances lipid metabolism, and insulin
secretion inhibits lipolysis. These gene have been associated with
various phenotypes including, TG, glucose, ischemic stroke, malaria,
BMI, waist and hip circumference Visceral adipose tissue/sub-
cutaneous adipose tissue ratio27–30.

Forfine-mapping,weobserved thatflashfmproduced, onaverage a
smaller CS99 and a larger number of SNPs with MPP>0.9 than JAM
(Fig. 3, Supplementary Data 3). We then compared the CS99 between
flashfm and JAM. For HDL, the median credible set size was 24 for the
JAMmethod comparedwith 18 forflashfm, suggesting a 25%decrease in
CS99. For TC, TG and LDL, CS99 decreased by 20.8%, 21.7% and 23.2%,Ta
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respectively, suggesting that flashfm enhances the identification and
localization of putative genetic variants. Our findings indicate an
advantage of leveraging information between traits to jointly fine-map
them using flashfm19. In addition to refining CS99, compared to JAM
single-trait fine-mapping18, we were able to find noticeably increased
MPP for a variant to be causal for a trait, as well as instances where a
completely different variant (r2 <0.6) is favoured by flashfm over JAM.

The main strength of this study is that it is the largest GWAS of
lipid traits in individuals of African ancestry that covers greater genetic
diversity across Africa, while previous studies of African Americans
were predominantly of West African ancestry. We used MTAG and
flashfm to increase the discovery of additional novel loci and to reduce
the credible set size for identifying genetic variants causally associated
with lipid traits. The main limitation of this study is the poor general-
izability of our findings to individuals of European and Asian ancestry.
The GTEx database used for gene expression trait colocalization is
predominantly of European ancestry and is not matched for LD with
the African ancestry GWAS, which may reduce power. Although our
study increased the genetic diversity across Africa, the sample sizes
from continental African cohorts were smaller than those of African
Americans. Moreover, high heterogeneity was observed among indi-
viduals of African ancestry. Nevertheless, we used inverse variance-
weighted fixed-effects meta-analysis to address heterogeneity.

In conclusion, by meta-analyzing the summary data from APCDR,
GLGC, and AWI-Gen, we identified four novel genomic loci associated
with lipid traits in individuals of African ancestry. The multivariate
approach identified an additional 14 novel loci, and flashfm, on aver-
age, produced a smaller CS99 and the largest number of SNPs with
MMP>0.9. Moreover, our findings highlight the importance of
studying African ancestry in the context of GWAS and provide insights
into the genetics of dyslipidemia in this population.

Methods
Data sources
In the current analysis, we performed a meta-analysis of GWASs of up
to 125,000 individuals of African ancestry.Of these individuals ~14,000
were from the African Partnership for Chronic Disease Research
(APCDR) consortium in Africa, ~99,000 were from the GLGC and ~
11,000 were from the Africa Wits-INDEPTH partnership for Genomic
Studies (AWI-Gen). The APCDR comprised the Ugandan General
Population Cohort (UGP), the Durban Diabetes Study (DDS), the Dur-
ban Case-Control Study (DCC), and the Africa American diabetes
mellitus (AADM)22,31,32. UGP is a population-based cohort of around
6407 individuals from roughly 25 neighbouring villages of Kyamu-
libwa, in the countryside of southwestUganda in East Africa22. DDS and
DCC are urban population-based cohorts in Durban, South Africa.
These cohortswere set up to investigate factors influencing diabetes in
South African Zulus in Durban, KwaZulu Natal31. The AADM is an
ongoing study investigating the genetic epidemiology of non-
communicable diseases in Africa. The AADM study comprises 5231
participants recruited from University Medical Centers in Accra and
Kumasi in Ghana, Enugu, Ibadan and Lagos in Nigeria and Eldoret in
Kenya32. The GLGC included data from the Million Veteran Program
(MVPAFR),UKBiobank (UKBB, AFR) andother consortia of individuals
of African ancestry in the US16. The AWI-Gen study participants are
drawn from five INDEPTH member centres across the African con-
tinent, ensuring a balance of west, east and southern African popula-
tions from rural and urban settings. These centres are located in
Burkina Faso, Ghana, Kenya and South Africa33,34.

Quality control of input summary statistics
Variants with imputation scores lower than 0.3 were removed from all
cohorts. Only SNPs with minor allele frequency (MAF) greater than
0.01 in the combined cohort were retained for further analyses. This
set of SNPs was then intersected with the 1000 Genomes phase 3

African super population variants (1KAFR) to ensure allelic orientation
consistency, estimation of linkage disequilibrium (LD) between test
variants and derive estimates of LD scores for downstream analyses20.
The quality control step of the 1KAFR reference included the removal
of duplicated and singleton variants as well as the removal of one
individual from the first and second-degree relatives duos. Genomic
inflation factors and LD regression intercepts were calculated to assess
inflation in univariate summary statistics and correct for residual
stratification in the input cohorts. The intercept of the LD scores
regression qualifies the amount of inflation in test statistics due to
stratification versus polygenicity35,36. LD scores within 1 centimorgan
(CM)windows and regression interceptswere estimatedwith the LDSC
package.

Meta-analysis of univariate traits and heterogeneity analyses
We then performed an inverse variance weighted fixed-effect meta-
analysis of the GLGC-AFR, APCDR, and AWI-Gen using genome-wide
association meta-analysis (GWAMA) for each of the lipid traits37. Stra-
tification in the participating cohorts was corrected by inflating stan-
dard errors by the square root of the LD score regression intercepts.

Multi-trait of GWAS for the discovery of loci associated with
lipid traits
Multi-trait Analysis of GWAS (MTAG) is a summary statistics-based
method for joint analysis that generalizes inverse variance meta-
analysis for studies with overlap and different traits36. It has been
shown to increase the power of association for marginal traits while
controlling for confounding of population stratification using LD score
regression to estimate confounding bias and trait correlation. Given
input summary statistics and LD scores, the algorithm estimates
marginal association statistics for each input trait while accounting for
other traits. In this step, analysis was restricted to SNPswhichwere not
stranded ambiguous, MAF >0.01 and with sample size N > = (2/3) of
the 90th percentile of variant sample size distribution.

We did not include LDL in our MTAG analysis as it was strongly
correlated with other lipid traits (r2 = 0.92). Moreover, it is recom-
mended to removehighly correlated traits fromanMTAGas it can lead
to inflated associations36, which can result in false positive results. In
addition, highly correlated traits can increase the risk of overfitting,
which can lead to poor performance and reduce the overall statistical
power of the study.

Single and multi-trait fine-mapping of multiple causal variants
For each of the four lipids traits (HDL, LDL, TC and TG), we identified all
genome-wide significant (p< 5 x 10–8) variants, excluding the MHC
region due to its extensive LD structure. Independent loci were identi-
fied by distance clumping all significant SNPs around lead variants. For
finemapping, initial regions were constructed around each lead variant
fromeach trait, using an interval of ±100kb. Regions formulti-trait fine-
mapping were then constructed by merging regions in which the lead
variants had r2 >0.5. This resulted in 47 regions that had genome-wide
signals from at least two of the lipid traits, for which we applied both
JAM single-trait fine-mapping18 and flashfm multi-trait fine-mapping19.
Within these 47 regions, we also assessedwhether the traits that did not
have a variant with p < 5 x 10−8, had amoderately significant variant with
p < 1 x 10−6; signals from such traits were also included in our fine-
mapping. The distribution of the number of traits having signals fine-
mapped in the same region is as follows: 26 regions with two traits, 14
regions with three traits, and seven regions with four traits (Supple-
mentary Data 4); there are 122 trait-region combinations in total.

We used an in-sample LD reference panel consisting of the
Uganda Genome Resource (UGR) and the Zulu cohort, together with
the African super-population of 1 K Genomes; first-degree relatives
were removed from these cohorts yielding a total of 8850 individuals
in the reference panel. Only variants that had a call rate of at least 99%
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were retained. flashfm requires the trait correlation matrix for the
lipid traits, and we obtained Pearson’s correlations based on the in-
sample UGR lipids measurements (Fig. 3). Variants with MAF >0.05
in the GWAS or in the reference panel were included in the fine-map-
ping, though for five of the dense regions, we used MAF >0.01; in
particular, 5:74556539-74756539, 8:21818089-22018089, 9:107489744-
107689744, 9:108081107-108281390, and 19:45300747-45512079.
Flashfm gains speed by partitioning the joint Bayes’ Factor (BF) into a
function of the single-trait BFs and making use of the single-trait fine-
mapping results. By default, flashfm considers the SNP models from
each trait that have cumulative PP (cpp) of 0.99. We used this default
flashfm cpp value of 0.99 for all regions, except for 9:108081107-
108281390, and 19:45300747-45512079, where we used cpp=0.95 to
further increase computational speed; these two regions had four
traits, some with a very large number of models, that noticeably
increased the computational speed. Fine-mapping results from JAM
and flashfm were each used to generate a 99% credible set (CS99) for
each trait flagged in each region. A CS99 was constructed by first
sorting all model (multi-SNP) posterior probabilities and consecutively
collecting models until the cumulative posterior probability first pas-
ses .99; the unique variants from these models form CS99.

For twoof our highlighted regions,wedisplayfine-map integrated
regional association plots that indicate p-values by location height (y-
axis) andMPP by the diameter of the points (Supplementary Fig. 4 and
Supplementary Fig. 5); thesefigureswere generated using theweb tool
flashfm-ivs (http://shiny.mrc-bsu.cam.ac.uk/apps/flashfm-ivis/)38.

Gene expression trait colocalization to prioritized genes in the
novel loci
In addition to fine mapping, to identify potentially mediating mole-
cular traits in the novel loci identified in the GWAS meta-analysis and
MTAG analyses, we performed tissue-specific gene expression quan-
titative trait loci (eQTL) colocalization analysis for the 18 novel loci.
GTEx Version 8 tissue-specific gene expression association summary
statistics were downloaded from the eQTL catalogue39 and merged
with meta-analyses and MTAG summary data within the novel loci
defined as one MB region around lead SNPs. The merging step
involved lifting over GWAS summary data to hg38 build and the
removal of duplicated sites. We then estimated evidence of shared
causal variants using the coloc.abf function of the coloc R package40.
The coloc.abf estimates the posterior probabilities of 5 hypotheses
including a posterior of a shared causal allele between two target traits
(H4 PP), two distinct causal alleles (H3 PP), a causal allele for only one
target (H1 orH2) and null of no causal allele within a locus. Themethod
was applied using default priors for meta-analysis or MTAGxTissuex-
Genexloci combinations and a threshold of H4 PP > 80% was set to
assign significance.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The genome-wide association summary statistics data used in this
study are publicly available at https://www.ebi.ac.uk/gwas/downloads/
summary-statistics. The summary statistic data generated have been
deposited in the GWAS Catalog database under accession codes:
GCST90278110 forHDL, GCST90278111 for LDL, GCST90278112 for TG
and GCST90278113 for TC. The processed data generated in this study
are provided in the Supplementary Information and Supplemen-
tary Data.

Code availability
We used publicly available software GWAMA, MTAG, JAM and
flashfm and its code is publicly available at https://bio.tools/

GWAMA, https://github.com/JonJala/mtag, https://github.com/
USCbiostats/hJAM, https://github.com/jennasimit/flashfm. Other
software programs used are listed and described in the Methods.
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