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Abstract
In this paper, we address the problem of high performance and computationally efficient content-based video retrieval in
large-scale datasets’. Current methods typically propose either: (i) fine-grained approaches employing spatio-temporal rep-
resentations and similarity calculations, achieving high performance at a high computational cost or (ii) coarse-grained
approaches representing/indexing videos as global vectors, where the spatio-temporal structure is lost, providing low per-
formance but also having low computational cost. In this work, we propose a Knowledge Distillation framework, called
Distill-and-Select (DnS), that starting from a well-performing fine-grained Teacher Network learns: (a) Student Networks at
different retrieval performance and computational efficiency trade-offs and (b) a Selector Network that at test time rapidly
directs samples to the appropriate student to maintain both high retrieval performance and high computational efficiency. We
train several students with different architectures and arrive at different trade-offs of performance and efficiency, i.e., speed
and storage requirements, including fine-grained students that store/index videos using binary representations. Importantly,
the proposed scheme allows Knowledge Distillation in large, unlabelled datasets—this leads to good students. We evaluate
DnS on five public datasets on three different video retrieval tasks and demonstrate (a) that our students achieve state-of-the-art
performance in several cases and (b) that the DnS framework provides an excellent trade-off between retrieval performance,
computational speed, and storage space. In specific configurations, the proposed method achieves similar mAP with the
teacher but is 20 times faster and requires 240 times less storage space. The collected dataset and implementation are publicly
available: https://github.com/mever-team/distill-and-select.
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1 Introduction

Due to the popularity of Internet-based video sharing ser-
vices, the volume of video content on the Web has reached
unprecedented scales. For instance, YouTube reports that
more than 500 h of content are uploaded every minute.1 This
puts considerable challenges for all video analysis problems,
such as video classification, action recognition, and video
retrieval, that need to achieve high performance at low com-
putational and storage requirements in order to deal with the
large scale of the data. The problem is particularly hard in the
case of content-based video retrieval, where, given a query
video, one needs to calculate its similarity with all videos in a
database to retrieve and rank the videos based on relevance.
In such scenario, this requires efficient indexing, i.e., stor-
age of the representations extracted from the videos in the

1 https://www.youtube.com/yt/about/press/ accessed June 2021
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dataset, and fast calculations of the similarity between pairs
of them.

Depending on whether the spatio-temporal structure of
videos is stored/indexed and subsequently taken into con-
sideration during similarity calculation, research efforts fall
into two broad categories, namely coarse- and fine-grained
approaches. Coarse-grained approaches address this prob-
lem by aggregating frame-level features into single video-
level vector representations (that are estimated and stored at
indexing time) and then calculating the similarity between
them by using a simple function such as the dot-product
or the Euclidean distance (at retrieval time). The video-
level representations can be global vectors (Gao et al., 2017;
Kordopatis-Zilos et al., 2017b; Lee et al., 2020), hash codes
(Song et al., 2011, 2018; Yuan et al., 2020), Bag-of-Words
(BoW) (Cai et al., 2011; Kordopatis-Zilos et al., 2017a; Liao
et al., 2018), or concept annotations (Markatopoulou et al.,
2017, 2018; Liang&Wang, 2020). Thesemethods have very
low storage requirements, allow rapid similarity estimation
at query-time, but they exhibit low retrieval performance,
since they disregard the spatial and temporal structure of
the videos and are therefore vulnerable to clutter and irrel-
evant content. On the other hand, fine-grained approaches
extract (and store at indexing time) and use in the similarity
calculation (at retrieval time) representations that respect the
spatio-temporal structure of the original video, i.e., they have
a temporal or a spatio-temporal dimension/index. Typically,
such methods consider the sequence of frames in the sim-
ilarity calculation and align them, e.g., by using Dynamic
Programming (Chou et al., 2015; Liu et al., 2017), Temporal
Networks (Tan et al., 2009; Jiang & Wang, 2016), or Hough
Voting (Douze et al., 2010; Jiang et al., 2014); or consider
spatio-temporal video representation and matching based on
RecurrentNeuralNetworks (RNN) (Feng et al., 2018;Bishay
et al., 2019), Transformer-based architectures (Shao et al.,
2021), or in the Fourier domain (Poullot et al., 2015; Baraldi
et al., 2018). These approaches achieve high retrieval perfor-
mance but at considerable computation and storage cost.

In an attempt to exploit themerits of both fine- and coarse-
grained methods, some works tried to utilize them in a single
framework (Wuet al., 2007;Chouet al., 2015;Liang&Wang,
2020), leading tomethods that offer a trade-off between com-
putational efficiency and retrieval performance. Typically,
these approaches first rank videos based on a coarse-grained
method, in order to filter the videos with similarity lower
than a predefined threshold, and then re-rank the remaining
ones based on the similarity calculated from a computa-
tionally expensive fine-grained method. However, setting the
threshold is by no means a trivial task. In addition, in those
approaches, both coarse- and fine-grained components are
typically built based on hand-crafted features with tradi-
tional aggregations (e.g., BoW) and heuristic/non-learnable
approaches for similarity calculation—this results in sub-

Fig. 1 Performance of our proposedDnS framework and its variants for
several dataset percentages sent for re-ranking (denoted in bold) evalu-
ated on the DSVR task of FIVR-200K in terms of mAP, computational
time per query in seconds, and storage space per video in megabytes
(MB), in comparison to state-of-the-art methods. Coarse-grained meth-
ods are in blue, fine-grained in red, and re-ranking in orange (Color
figure online)

optimal performance.Wewill be referring to such approaches
as re-ranking methods.

Figure 1 illustrates the retrieval performance, time per
query, and storage space per video of several methods from
the previous categories. Fine-grained approaches achieve the
best results but with a significant allocation of resources.
On the other hand, coarse-grained approaches are very
lightweight but with considerably lower retrieval perfor-
mance. Finally, the proposed re-ranking method provides
a good trade-off between accuracy and efficiency, achiev-
ing very competitive performance with low time and storage
requirements.

Knowledge Distillation is a methodology in which a stu-
dent network is being trained so as to approximate the output
of a teacher network, either in the labelled dataset inwhich the
teacher was trained, or in other, potentially larger unlabelled
ones. Depending on the student’s architecture and the size of
the dataset, different efficiency-performance trade-offs can
be reached. These methods have been extensively used in
the domain of image recognition (Yalniz et al., 2019; Tou-
vron et al., 2020; Xie et al., 2020); however, in the domain of
video analysis, they are limited to video classification meth-
ods (Bhardwaj et al., 2019; Garcia et al., 2018; Crasto et al.,
2019; Stroud et al., 2020), typically performing distillation
at feature level across different modalities. Those methods
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Fig. 2 Overview of the proposed framework. It consists of three net-
works: a coarse-grained student Sc, a fine-grained student Sf , and a
selector network SN. Processing is split into two phases, Indexing and
Retrieval. During indexing (blue box), given a video database, three
representations needed by our networks are extracted and stored in a
video index, i.e., for each video, we extract a 3D tensor, a 1D vector,
and a scalar that captures video self-similarity. During retrieval (red
box), given a query video, we extract its features, which, along with the
indexed ones, are processed by the SN. It first sends all the 1D vectors of
query-target pairs to Sc for an initial similarity calculation. Then, based

on the calculated similarity and the self-similarity of the videos, the
selector network judges which query-target pairs have to be re-ranked
with the Sf , using the 3D video tensors. Straight lines indicate continu-
ous flow, i.e., all videos/video pairs are processed, whereas dashed lines
indicate conditional flow, i.e., only a number of selected videos/video
pairs are processed. Our students are trained with Knowledge Distilla-
tion based on a fine-grained teacher network, and the selector network
is trained based on the similarity difference between the two students
(Color figure online)

typically distill the features of a stream of the network oper-
ating in a (computationally) expensive modality (e.g., optical
flow field, or depth) into the features of a cheaper modal-
ity (e.g., RGB images) so that only the latter need to be
stored/extracted and processed at test time. This approach
does not scale well on large datasets, as it requires storage
or re-estimation of the intermediate features. Furthermore,
current works arrive at fixed trade-offs of performance and
computational/storage efficiency.

In this work, we propose to address the problem of high
retrieval performance and computationally efficient content-
based video retrieval in large-scale datasets. The proposed
method builds on the framework of Knowledge Distillation,
and starting from a well-performing, high-accuracy-high-
complexity teacher, namely a fine-grained video similarity
learning method (ViSiL) (Kordopatis-Zilos et al., 2019b),
trains (a) both fine-grained and coarse-grained student net-
works on a large-scale unlabelled dataset and (b) a selection
mechanism, i.e., a learnable re-ranking module, that decides
whether the similarity estimated by the coarse-grained stu-
dent is accurate enough, or whether the fine-grained student
needs to be invoked. By contrast to other re-ranking meth-
ods that use a threshold on the similarity estimated by the
fast network (the coarse-grained student in our case), our
selection mechanism is a trainable, lightweight neural net-

work.All networks are trained so as to extract representations
that are stored/indexed, so that each video in the database is
indexed by the fine-grained spatio-temporal representation
(3D tensor), its global, vector-based representation (1D vec-
tor), and a scalar self-similarity measure that is extracted by
the feature extractor of the selector network, and can be seen
as a measure of the complexity of the videos in question.
The latter is expected to be informative of how accurate the
coarse-grained, video-level similarity is, and together with
the similarity rapidly estimated by the coarse-grained repre-
sentations, is used as input to the selector. We note that, by
contrast to other Knowledge Distillation methods in videos
that address classification problems and typically perform
distillation at intermediate features, the students are trained
on a similarity measure provided by the teacher—this allows
training on large scale datasets as intermediate features of
the networks do not need to be stored, or estimated multiple
times. Due to the ability to train on large unlabeled datasets,
more complex models, i.e., with more trainable parameters,
can be employed leading to even better performance than
the original teacher network. An overview of the proposed
framework is illustrated in Fig. 2.

The main contributions of this paper can be summarized
as follows:
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– We build a re-ranking framework based on a Knowl-
edgeDistillation scheme and a SelectionMechanism that
allows for training our student and selector networks
using large unlabelled datasets. We employ a teacher
network that is very accurate but needs a lot of compu-
tational resources to train several student networks and
the selector networks, and use them to achieve different
performance-efficiency trade-offs.

– We propose a selection mechanism that, given a pair of
a fine- and a coarse-grained student, learns whether the
similarity estimated by the fast, coarse-grained student
is accurate enough, or whether the slow, fine-grained
student needs to be invoked. To the best of our knowl-
edge, we are the first to propose such a trainable selection
scheme based on video similarity.

– We propose two fine-grained and one coarse-grained
student architectures. We develop: (i) a fine-grained
attention student, using amore complex attention scheme
than the teacher’s, (ii) a fine-grained binarization student
that extracts binarized features for the similarity calcu-
lation, and (iii) a course-grained attention student that
exploits region-level information, and the intra- and inter-
video relation of frames for the aggregation.

– We evaluate the proposed method on five publicly avail-
able datasets and compare it with several state-of-the-art
methods. Our fine-grained student achieves state-of-the-
art performance on two out of four datasets, and our DnS
approach retains competitive performance with more
than 20 times faster retrieval per query and 99% lower
storage requirements compared to the teacher.

The remainder of the paper is organised as follows. In
Sect. 2, the related literature is discussed. In Sect. 3, the pro-
posed method is presented in detail. In Sect. 4, the datasets
and implementation are presented. In Sect. 5, the results and
ablation studies are reported. In Sect. 6, we draw our conclu-
sions.

2 RelatedWork

This section gives an overview of some of the fundamental
works that have contributed to content-based video retrieval
and knowledge distillation.

2.1 Video Retrieval

The video retrieval methods can be roughly classified,
based on the video representations and similarity calcula-
tion processes employed, in three categories: coarse-grained,
fine-grained, and re-ranking approaches.

2.1.1 Coarse-Grained Approaches

Coarse-grained approaches represent videos with a global
video-level signature, such as an aggregated feature vector
or a binary hash code, and use a single operation for simi-
larity calculation, such as a dot product. A straightforward
approach is the extraction of global vectors as video rep-
resentations combined with the dot product for similarity
calculation. Early works (Wu et al., 2007; Huang et al., 2010)
extracted hand-crafted features from video frames, i.e., color
histograms, and aggregated them to a global vector. More
recentworks (Gao et al., 2017;Kordopatis-Zilos et al., 2017b;
Lee et al., 2018, 2020) rely on CNN features combined with
aggregation methods. Also, other works (Cai et al., 2011;
Kordopatis-Zilos et al., 2017a) aggregate video content to
Bag-of-Words (BoW) representation (Sivic and Zisserman,
2003) by mapping frames to visual words and extracting
global representations with tf-idf weighting. Another pop-
ular direction is the generation of hash codes for the entire
videos combined with Hamming distance (Song et al., 2011,
2018; Liong et al., 2017; Yuan et al., 2020). Typically, the
hashing is performed via a network trained to preserve rela-
tions between videos. Coarse-grained methods provide very
efficient retrieval covering the scalability needs of web-scale
applications; however, their retrieval performance is limited,
typically outperformed by the fine-grained approaches.

2.1.2 Fine-Grained Approaches

Fine-grained approaches extract video representations, rang-
ing from video-level to region-level, and calculate similarity
by considering spatio-temporal relations between videos
based on several operations, e.g., a dot product followed by
a max operation. Tan et al. (2009) proposed a graph-based
Temporal Network (TN) structure, used for the detection
of the longest shared path between two compared videos,
which has also been combined with frame-level deep learn-
ing networks (Jiang & Wang, 2016; Wang et al., 2017).
Additionally, other approaches employ Temporal Hough
Voting (Douze et al., 2010) to align matched frames by
means of a temporal Hough transform. Another solution
is based on Dynamic Programming (DP) (Chou et al.,
2015), where the similarity matrix between all frame pairs
is calculated, and then the diagonal blocks with the largest
similarity are extracted. Another direction is to generate
spatio-temporal representations with the Fourier transform
in a way that accounts for the temporal structure of video
similarity (Poullot et al., 2015; Baraldi et al., 2018). Finally,
some recent works rely on attention-based schemes to learn
video comparison and aggregation by training either atten-
tional RNN architectures (Feng et al., 2018; Bishay et al.,
2019), transformer-based networks for temporal aggrega-
tion (Shao et al., 2021), or multi-attentional networks that
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extract multiple video representations (Wang et al., 2021).
Fine-grained methods achieve high retrieval performance;
however, they do not scale well to massive datasets due to
their high computational and storage requirements.

2.1.3 Video Re-Ranking

Re-ranking is a common practice in retrieval systems. In
the video domain, researchers have employed it to com-
bine methods from the two aforementioned categories (i.e.,
coarse- and fine-grained) to overcome their bottleneck and
achieve efficient and accurate retrieval (Wu et al., 2007;
Douze et al., 2010; Chou et al., 2015; Yang et al., 2019;
Liang & Wang, 2020). Typical methods deploy a coarse-
grained method as an indexing scheme to quickly rank and
filter videos, e.g., using global vectors (Wu et al., 2007) or
BoW representations (Chou et al., 2015; Liang & Wang,
2020). Then, a fine-grained algorithm, such as DP (Chou
et al., 2015), Hough Voting (Douze et al., 2010) or frame-
level matching (Wu et al., 2007), is applied on the videos
that exceed a similarity threshold in order to refine the simi-
larity calculation.Another re-ranking approach employed for
video retrieval is Query Expansion (QE) (Chum et al., 2007).
It is a two-stage retrieval process where, after the first stage,
the query features are re-calculated based on the most simi-
lar videos retrieved, and the query process is executed again
with the newquery representation. This has been successfully
employed with both coarse-grained (Douze et al., 2013; Gao
et al., 2017; Zhao et al., 2019) and fine-grained (Poullot et
al., 2015; Baraldi et al., 2018) approaches. Also, an attention-
based trainable QE scheme has been proposed in Gordo et al.
(2020) for image retrieval.However, even though the retrieval
performance is improved with QE, the total computational
time needed for retrieval is doubled as the query process is
applied twice.

2.2 Knowledge Distillation

Knowledge Distillation (Hinton et al., 2015) is a training
scheme that involves two networks, a teacher network that is
usually trained with supervision and a student network that
leverages teacher’s predictions for improved performance. A
thorough review of the field is provided in Gou et al. (2021).
Knowledge Distillation has been employed on various com-
puter vision problems, i.e., image classification (Yalniz et
al., 2019; Touvron et al., 2020; Xie et al., 2020), object
detection (Li et al., 2017; Shmelkov et al., 2017; Deng et
al., 2019), metric learning (Park et al., 2019; Peng et al.,
2019), action recognition (Garcia et al., 2018; Thoker &
Gall, 2019; Stroud et al., 2020), video classification (Zhang
& Peng, 2018; Bhardwaj et al., 2019), video captioning (Pan
et al., 2020; Zhang et al., 2020), and representation learn-
ing (Tavakolian et al., 2019; Piergiovanni et al., 2020).

Relevant works in the field of Knowledge Distillation dis-
till knowledge based on the relations between data samples
(Park et al., 2019; Tung & Mori, 2019; Liu et al., 2019; Las-
sance et al., 2020; Peng et al., 2019). Student networks are
trained based on the distances between samples calculated by
a teacher network (Park et al., 2019), the pairwise similarity
matrix between samples within-batch (Tung & Mori, 2019),
or by distilling graphs constructed based on the relations of
the samples, using the sample representations as vertices and
their distance as the edges to build an adjacency matrix (Liu
et al., 2019; Lassance et al., 2020).

In the video domain, several approaches have been pro-
posed for the improvement of the computational efficiency
of the networks (Bhardwaj et al., 2019; Zhang & Peng, 2018;
Garcia et al., 2018). Someworks (Bhardwaj et al., 2019) pro-
posed a Knowledge Distillation setup for video classification
where the student uses only a fraction of the frames pro-
cessed by the teacher, or multiple teachers are employed to
construct a graph based on their relations, and then a smaller
student network is trained (Zhang & Peng, 2018). Also, a
popular direction is to build methods for distillation from
different modalities and learn with privileged information
to increase the performance of a single network, i.e., using
depth images (Garcia et al., 2018), optical flow (Crasto et al.,
2019; Stroud et al., 2020; Piergiovanni et al., 2020), or multi-
ple modalities (Luo et al., 2018; Piergiovanni et al., 2020). In
video retrieval, Knowledge Distillation has been employed
for feature representation learning on frame-level using the
evaluation datasets (Liang et al., 2019).

2.3 Comparison to Previous Approaches

In this section, we draw comparisons of the proposed
approach to the related works from the literature with respect
to the claimed novelties.

Proposed Framework There is no similar prior work in
the videodomain that builds a re-ranking frameworkbasedon
KnowledgeDistillation and a trainable SelectionMechanism
based on which the re-ranking process is performed. Other
works (Chou et al., 2015; Yang et al., 2019; Liang & Wang,
2020) rely on outdated hand-crafted methods using simple
re-ranking approaches based on similarity thresholding, the
selection of which is a non-trivial task. By contrast, in this
work, a framework is proposed that starts from an accurate
but heavy-weight teacher to train (a) both a fine-grained and
coarse-grained student network on a large unlabelled dataset
and (b) a selectionmechanism, i.e., a learnable module based
on which the re-ranking process is performed.

Knowledge Distillation To the best of our knowledge,
there is no prior work in the video domain that trains a pair-
wise function thatmeasures video similaritywith distillation.
Works that use a similar loss function for distillation are
Park et al. (2019) and Tung and Mori (2019); however, these
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approaches have been proposed for the image domain.Video-
based approaches (Bhardwaj et al., 2019; Zhang & Peng,
2018; Garcia et al., 2018; Liang et al., 2019) distill informa-
tion between intermediate representations, e.g., video/frame
activations or attention maps—this is costly due to the high
computational requirements of the teacher. By contrast, in
our training scheme the teacher’s similarities of the video
pairs used during training can be pre-computed—this allows
training in large datasets in an unsupervised manner (i.e.,
without labels). Finally, these distillation methods end up
with a single network that either offers compression or better
performance—by contrast, in the proposed framework, we
are able to arrive at different accuracy/speed/storage trade-
offs.

NetworkarchitecturesWepropose three student network
architectures that are trained with Knowledge Distillation in
an unsupervisedmanner on large unannotated datasets avoid-
ing in this way overfitting (cf. Sect. 5.1.2). Two fine-grained
students are built based on our prior work in Kordopatis-
Zilos et al. (2019b), with some essential adjustments to
mitigate its limitations. A fine-grained attention student is
developedusing amore complex attentionmechanism,which
outperforms the Teacher when trained on the large unlabeled
dataset. Also, a fine-grained binarization student is intro-
duced with a binarization layer that has significantly lower
storage requirements. Prior works have used binarization
layers with coarse-grained approaches (Liong et al., 2017;
Song et al., 2018; Yuan et al., 2020), but none learns a fine-
grained similarity function based on binarized regional-level
descriptors. Furthermore, a coarse-grained student is built.
Its novelties are the use of a trainable region-level aggre-
gation scheme—unlike other works that extract frame-level
descriptors—and the combination of two aggregation com-
ponents on frame-level that considers intra- and inter-video
relations between frames. Priorworks have employed a trans-
former encoder to capture intra-video frame relations (Shao
et al., 2021), or a NetVLAD to capture inter-video ones
(Miech et al., 2017); however, none combines the two com-
ponents together.

3 Distill-and-Select

This section presents the Distill-and-Select (DnS) method
for video retrieval. First, we describe the developed retrieval
pipeline, which involves a fine-grained and a coarse-grained
student network trained with Knowledge Distillation, and
a selector network, acting as a re-ranking mechanism
(Sect. 3.1). Then, we discuss the network architectures/
alternatives employed in our proposed approach that offer
different performance-efficiency trade-offs (Sect. 3.2).
Finally, the training processes followed for the training of
the proposed networks are presented (Sect. 3.3).

3.1 Approach Overview

Figure 2 depicts the DnS framework. It consists of three net-
works: (i) a coarse-grained student (Sc) that provides very
fast retrieval speed but with low retrieval performance, (ii) a
fine-grained student (Sf ) that has high retrieval performance
but with high computational cost, and (iii) a selector net-
work (SN) that routes the similarity calculation of the video
pairs and provides a balance between performance and time
efficiency.

Each video in the dataset is stored/indexed using three
representations: (i) a spatio-temporal 3D tensor f S

f
that is

extracted (and then used at retrieval time) by the fine-grained
student Sf , (ii) a 1D global vector f S

c
that is extracted (and

then used at retrieval time) by the coarse-grained student Sc,
and (iii) a scalar f SN that summarises the similarity between
different frames of the video in question that is extracted
(and then used at retrieval time) by the selector network
SN. The indexing process that includes the feature extrac-
tion is illustrated within the blue box in Figs. 2, 3, 4, 5 and is
denoted as f X(·) for each networkX. At retrieval-time, given
an input query-target video pair, the selector network sends
to the coarse-grained student Sc the global 1D vectors so that
their similarity is rapidly estimated (i.e., as the dot product of
the representations) gS

c
. This coarse similarity and the self-

similarity scalars for the videos in question are then given
as input to the selector SN, which takes a binary decision
gSN on whether the calculated coarse similarity needs to be
refined by the fine-grained student. For the small percent-
age of videos that this is needed, the fine-grained network
calculates the similarity gS

f
based on the spatio-temporal

representations. The retrieval process that includes the simi-
larity calculation is illustrated within the red box in Figs. 2,
3, 4, 5 and is denoted as gX(·, ·) for each network X.

In practice, we apply the above process on every query-
target video pair derived from a database, and a predefined
percentage of videos with the largest confidence score cal-
culated by the selector is sent to the fine-grained student for
re-ranking. With this scheme, we achieve very fast retrieval
with very competitive retrieval performance.

3.2 Network Architectures

In this section, the architectures of all networks included
in the DnS framework are discussed. First, the teacher net-
work that is based on the ViSiL architecture is presented
3.2.1. Then, we discuss our student architectures, which
we propose under a Knowledge Distillation framework that
addresses the limitations introduced by the teacher; i.e., high
resource requirements, both in terms of memory space for
indexing, due to the region-level video tensors, and compu-
tational time for retrieval, due to the fine-grained similarity
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Fig. 3 Illustration of ViSiL (Kordopatis-Zilos et al., 2019b) architec-
ture used for the teacher and fine-grained students, i.e.,X can take three
values: T, SfA, and SfB. During indexing, a 3D video tensor is extracted
based on a Feature Extraction (FE) process, applying regional pooling,
whitening, and �2-normalization on the activations of a CNN. Then,
a modular component is applied according to the employed network,
i.e., an attention scheme for T and SfA, and a binarization layer for SfB.

During retrieval, the Tensor Dot (TD) followed by Chamfer Similarity
(CS) are applied on the representations of a video pair to generate their
frame-to-frame similarity matrix, which is propagated to a Video Com-
parator (VC) CNN that captures the temporal patterns. Finally, CS is
applied again to derive a single video-to-video similarity score (Color
figure online)

calculation. More precisely, three students are proposed, two
fine-grained and one coarse-grained variant, each providing
different benefits. The fine-grained students are both using
the ViSiL architecture. The first fine-grained student sim-
ply introduces more trainable parameters, leading to better
performance with similar computational and storage require-
ments to the teacher 3.2.2. The second fine-grained student
optimizes a binarization function that hashes features into a
Hamming space and has very low storage space requirements
for indexing with little performance sacrifice 3.2.3. The third
coarse-grained student learns to aggregate the region-level
feature vectors in order to generate a global video-level
representation and needs considerably fewer resources for
indexing and retrieval but at notable performance loss 3.2.3.
Finally, we present the architecture of the selector network
for indexing and retrieval 3.2.3.Our framework operateswith
a specific combination of a fine-grained and coarse-grained
student and a selector network. Each combination achieves
different trade-offs between retrieval performance, storage
space, and computational time.

3.2.1 Baseline Teacher (T)

Here, we will briefly present the video similarity learning
architecture that we employ as the teacher and which builds
upon the ViSiL (Kordopatis-Zilos et al., 2019b) architecture
(Fig. 3).
Feature Extraction/Indexing ( f T): Given an input video,
we first extract region-level features from the intermedi-
ate convolution layers (Kordopatis-Zilos et al., 2017a) of
a backbone CNN architecture by applying region pooling
(Tolias et al., 2016) on the feature maps. These are further
PCA-whitened (Jégou & Chum, 2012) and �2-normalized.
We denote the aforementioned process as Feature Extraction

(FE), and we employ it in all of our networks. FE is followed
by a modular component, as shown in Fig. 3, that differs for
each fine-grained student. In the case of the teacher, an atten-
tion mechanism is employed imposing that frame regions are
weighted based on their saliency via a visual attention mech-
anism over region vectors based on an �2-normalized context
vector. The context vector is a trainable vector u ∈ R

D that
weights each region vector independently based on their dot-
product. It is learned through the training process. Also, no
fully-connected layer is employed to transform the region
vectors for the attention calculation.We refer to this attention
scheme as �2-attention. The output representation of an input
video x is a region-level video tensorX ∈ R

Nx×Rx×D , where
Nx is the number of frames, Rx is the number of regions per
frame, and D is the dimensionality of the region vectors—
this is the output of the indexing process, and we denote it as
f T(x).
Similarity Calculation/Retrieval (gT): At retrieval time,
given two videos, q and p, with Nq and Np number of
frames and Rq and Rp regions per frame, respectively, for
every pair of frames, we first calculate the frame-to-frame
similarity based on the similarity of their region vectors.
More precisely, to calculate the frame-to-frame similarity
on videos q and p, we calculate the Tensor Dot combined
with Chamfer Similarity on the corresponding video tensors
f T(q) = Q ∈ R

Nq×Rq×D and f T(p) = P ∈ R
Np×Rp×D as

follows

Mqp
f = 1

Rq

Rq∑

i=1

max
1≤ j≤Rp

Q·(3,1)P�(·, i, j, ·), (1)

where Mqp
f ∈ R

Nq×Np is the output frame-to-frame simi-
larity matrix, and the Tensor Dot axes indicate the channel
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dimension of the corresponding video tensors. Also, the
Chamfer Similarity is implemented as a max-pooling oper-
ation followed by an average-pooling on the corresponding
dimensions. This process leverages the geometric informa-
tion captured by region vectors and provides some degree of
spatial invariance. Also, it is worth noting that this frame-
to-frame similarity calculation process is independent of the
number of frames and region vectors; thus, it can be applied
on any video pair with arbitrary sizes and lengths.

To calculate the video-to-video similarity, the generated
similarity matrix Mqp

f is fed to a Video Comparator (VC)
CNNmodule (Fig. 3),which is capable of learning robust pat-
terns of within-video similarities. The output of the network
is the refined similarity matrix Mqp

v ∈ R
N ′
q×N ′

p . In order to
calculate the final video-level similarity for two input videos
q, p, i.e., gT(q, p), the hard tanh (Htanh) activation func-
tion is applied on the values of the aforementioned network
output followed by Chamfer Similarity in order to obtain a
single value, as follows

gT(q, p) = 1

N ′
q

N ′
q∑

i=1

max
1≤ j≤N ′

p

Htanh
(Mqp

v (i, j)
)
. (2)

In that way, the VC takes temporal consistency into consider-
ation by applying learnable convolutional operations on the
frame-to-frame similaritymatrix. Those enforce local tempo-
ral constraints while the Chamfer-based similarity provides
invariance to global temporal transformations. Hence, simi-
larly to the frame-to-frame similarity calculation, this process
is a trade-off between respecting the video-level structure and
being invariant to some temporal differences.

3.2.2 Fine-Grained Attention Student (SfA)

The first fine-grained student adopts the same architecture
as the teacher (Sect. 3.2.1, Fig. 3), but uses a more complex
attention scheme in the modular component, employed for
feature weighting, as proposed in Yang et al. (2016).
Feature Extraction/Indexing ( f S

f
A ): The Feature Extrac-

tion (FE) process is used to extract features, similar to the
teacher. In the modular component shown in Fig. 3, we
apply an attention weighting scheme as follows. Given a
region vector r : X (i, j, ·) ∈ R

D , where i = 1, . . . , Nx ,
j = 1, . . . , Rx , a non-linear transformation is applied, which
is implemented as a fully-connected layer with tanh activa-
tion function, to form a hidden representation h. Then, the
attention weight is calculated as the dot product between h
and the context vector u, followed by the sigmoid function,

as

h = tanh(r · Wa + ba),

α = sig(u · h),

r′ = αr,

(3)

where Wa ∈ R
D×D and ba ∈ R

D are the weight and
bias parameters of the hidden layer of the attention module,
respectively, and sig(·) denotes the element-wise sigmoid
function. We will be referring to this attention scheme as
h-attention. The resulting 3D representation is the indexing
output f S

f
A(x) for an input video x .

Similarity Calculation/Retrieval (gS
f
A): To calculate simi-

larity between two videos, we build the same process as for
the teacher, i.e., we employ a Video Comparator (VC) and
use the same frame-to-frame and video-to-video functions to
derive gS

f
A(q, p) for two input videos q, p (Fig. 3).

In comparison to the teacher, this student (a) has very sim-
ilar storage requirements, since in both cases, the videos are
stored as non-binary spatio-temporal features, (b) has sim-
ilar computational cost, since the additional attention layer
introduces only negligible overhead, and (c) typically reaches
better performance, since it has slightly higher capacity and
can be trained in a much larger, unlabelled dataset.

3.2.3 Fine-Grained Binarization Student (SfB)

The second fine-grained student also adopts the same archi-
tecture as the teacher (Sect. 3.2.1, Fig. 3), except for the
modular component where a binarization layer is introduced,
as discussed below.
Feature Extraction/Indexing ( f S

f
B ): f S

f
B is the part of the

indexing of the student SfB that extracts a binary representa-
tion for an input video that will be stored and used at retrieval
time. It uses the architecture of the teacher, where the modu-
lar component is implemented as a binarization layer (Fig. 3).
This applies a binarization function b : RD → {−1, 1}L
that hashes the region vectors r ∈ R

D to binary hash codes
rB ∈ {−1, 1}L as

b(r) = sgn (r · WB) , (4)

where WB ∈ R
D×L denote the learnable weights and sgn(·)

denotes the element-wise sign function.
However, since sgn is not a differentiable function, learn-

ing binarization parameters via backpropagation is not pos-
sible. To address this, we propose an approximation of the
sign function under the assumption of small uncertainty in
its input. More specifically, let sgn : x �→ {±1}, where x is
drawn from a uni-variate Gaussian distribution with given
mean μ and fixed variance σ 2, i.e., x ∼ N (μ, σ 2). Then,
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the expected value2 of the sign of x is given analytically as
follows

E[sgn(x)] = erf

(
μ√
2σ 2

)
, (5)

where erf(·) denotes the error function. This is differentiable
and therefore can serve as an activation function on the bina-
rization parameters, that is,

b(r) = erf

(
r · WB√
2σ 2

)
, (6)

where we use as variance an appropriate constant value
(empirically set to σ = 10−3). During training, we use
(6), while during evaluation and hash code storage we use
(4). After applying this operation to an arbitrary video x
with Nx frames and Rx regions, we arrive at a binary ten-
sor XB ∈ {±1}Nx×Rx×L , which is the indexing output
f S

f
B (x) = XB used by this student.

Similarity Calculation/Retrieval (gS
f
B ): In order to adapt

the similarity calculation processes with the binarization
operation, the Hamming Similarity (HS) combined with
Chamfer Similarity is employed as follows.Given two videos
q, p with f S

f
B (q) = QB ∈ {±1}Nq×Rq×L and f S

f
B (p) =

PB ∈ {±1}Np×Rp×L their binary tensors, respectively, we
first calculate the HS between the two tensors with the
use of Tensor Dot to calculate the similarity of all region
pair combinations of the two videos and then apply Cham-
fer Similarity to derive the frame-to-frame similarity matrix
Mqp

B ∈ R
Nq×Np . That is,

HSqp = QB·(3,1)P�
B /L,

Mqp
B = 1

Rq

Rq∑

i=1

max
1≤ j≤Rp

H Sqp(·, i, j, ·),
(7)

Finally, a Video Comparator (VC) is applied on the frame-to-
frame similaritymatrices in order to calculate the final video-
to-video similarity, similarly to (2) in the original teacher
(Fig. 3)—this is denoted as gS

f
B (q, p) for two input videos

q, p.
In comparison to the teacher, this student (a) has remark-

ably lower storage requirements, since the binary spatio-
temporal representations are 32 times smaller than the
corresponding float ones (full precision), (b) has similar com-
putational cost, as the architecture is very similar, and (c)
reaches better performance since it is trained at a larger
(despite being unlabelled) dataset. Note that this student only
uses a binary input but is not a binarized network.

2
E[sgn(x)] = 1·P(x > 0)+(−1)·P(x < 0) = 1−2·P(x < 0) = 1−

2P
(
z < − μ√

2σ 2

)

⇒ E[sgn(x)] = 1 − 2�

( −μ√
2σ 2

)
= erf

(
μ√
2σ 2

)
,

where z ∼ N (0, 1) denotes the standard Gaussian and � its CDF.

Fig. 4 Illustration of the architecture of the coarse-grained student Sc,
consisting of three main components. During indexing, the FE process
with attentionweighting and average pooling is applied to extract frame-
level features. Then, they are processed by a Transformer network and
aggregated to 1D vectors by a NetVLAD module. During retrieval, the
video similarity derives from a simple dot product between the extracted
representations (Color figure online)

3.2.4 Coarse-Grained Student (Sc)

The coarse-grained student introduces an architecture that
extracts video-level representations that are stored and can
be subsequently used at retrieval time so as to rapidly estimate
the similarity between two videos as the cosine similarity of
their representations. An overview of the coarse student is
shown in Fig. 4.
Feature Extraction/Indexing ( f S

c
): The proposed coarse-

grained student comprises of three components. First, we
extract weighted region-level features with Feature Extrac-
tion (FE), using the attention module given by (3), and then
average pooling is applied across the spatial dimensions of
the video tensors lead to frame-level representations for the
videos; i.e., xi = 1

Rx

∑Rx
k=1 αkrk , where xi ∈ R

D is the
frame-level vector of the i-th video frame, Rx is the num-
ber of regions, and αk is the attention weight calculated by
(3). In that way, we apply a trainable scheme to aggregate
the region-level features that focuses on the information-rich
regions. Second, a transformer (Vaswani et al., 2017) network
architecture is used to derive frame-level representations that
capture long-term dependencies within the frame sequence,
i.e., it captures the intra-video relations between frames. Fol-
lowing Shao et al. (2021), the encoder part of the Transformer
architecture is used, which is composed of a multi-head self-
attention mechanism and a feed-forward network. Finally, a
NetVLAD (Arandjelovic et al., 2016) module aggregates the
entire video to a single vector representation (Miech et al.,
2017). This component learns a number of cluster centers and
a soft assignment function through the training process, con-
sidering all videos in the training dataset. Therefore, it can
be viewed as it encodes the inter-video relations between
frames. Given input a video x , the output f S

c
(x) is a 1D

video-level vector that is indexed and used by the coarse-
grained student during retrieval.
Similarity Calculation/Retrieval (gS

c
): Once feature rep-

resentations have been extracted, the similarity calculation
is a simple dot product between the 1D vectors of the com-
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Fig. 5 Illustration of the Selector Network architecture. During index-
ing, the self-similarity of the videos is calculated according to the
following scheme. First, region-level attention-weighted features are
extracted. Then, the frame-to-frame self-similarity matrix derives with
a Tensor Dot (DT) and Average Pooling (AP), which is propagated to

a VC module to capture temporal patterns. The final self-similarity is
calculated based on an AP on the VC output. During retrieval, given a
video pair, a 3-dimensional vector is composed by the self-similarity of
each video and their similarity calculated by the Sc. The feature vector
is fed to an MLP to derive a confidence score (Color figure online)

pared videos, i.e., gS
c
(q, p) = f Sc (q) · f Sc (p) for two input

videos q, p.
In comparison to the original teacher, this student (a)

has remarkably lower storage requirements for indexing,
since it stores video-level representations instead of spatio-
temporal ones, (b) has significantly lower computational cost
at retrieval time, since the similarity is calculated with a sin-
gle dot-product between video-level representations, and (c)
has considerably lower performance, since it does not model
spatio-temporal relations between videos during similarity
calculation.

3.2.5 Selector Network (SN)

In the proposed framework, at retrieval time, given a pair
of videos, the role of the selector is to decide whether the
similarity that is calculated rapidly based on the stored coarse
video-level representations is accurate enough (i.e., similar
to what a fine-grained student would give), or whether a fine-
grained similarity, based on the spatio-temporal, fine-grained
representations needs to be used, and a new, refined similarity
measure needs to be estimated. Clearly, this decision needs
to be taken rapidly and with a very small additional storage
requirement for each video.

The proposed selector network is shown in Fig. 5. At
retrieval time, a simple Multi-Layer Perceptron (MLP) takes
as input a three dimensional vector, z ∈ R

3, with the follow-
ing features: (a) the similarity between a pair of videos q, p,
as calculated by Sc (Sect. 3.2.4), and (b) the fine-grained
self-similarities f SN(q) and f SN(p), calculated by a train-
able NN (Fig. 5). Since f SN(x) depends only on video x , it
can be stored together with the representations of the video x
with negligible storage cost. Having f SN(q) and f SN(p) pre-
computed, and gS

c
rapidly computed by the coarse-grained

student, the use of selector at retrieval time comes at a negli-
gible storage and computational cost. Both the self-similarity
function f SN that extracts features at indexing time and the
MLP that takes the decision at retrieval time, which are parts
of the Selector Network SN, are jointly trained.

In what follows, we describe the architecture of the selec-
tor, starting from the network that calculates the fine-grained
similarity f SN. This is a modified version of the ViSiL archi-
tecture that aims to derive a measure that captures whether
there is large spatio-temporal variability in its content. This
is expected to be informative on whether the fine-grained
student needs to be invoked. The intuition is that for videos
with high f SN, i.e., not high spatio-temporal variability, their
video-level representations are sufficient to calculate their
similarity, i.e., the similarity estimated by the coarse-grained
student is accurate enough.
Feature Extraction/Indexing ( f SN): Given a video x as
input, features are extracted based on the Feature Extrac-
tion (FE), using the attention module as in (3), to derive
a video tensor X ∈ R

Nx×Rx×D . Then, the frame-to-frame
self-similarity matrix is calculated, as

Mx
f = 1

R2
x

Rx∑

i=1

Rx∑

j=1

X ·(3,1)X�(·, i, j, ·), (8)

where, Mx
f ∈ R

Nx×Nx is the symmetric frame-to-frame
self-similarity matrix. Note that (8) is a modified version
of (1), where the Chamfer Similarity is replaced by the aver-
age operator. In this case, we calculate the average similarity
of a region with all other regions in the same frame—the
use of Chamfer Similarity would have resulted in estimating
the similarity of a region with the most similar region in the
current frame, that is itself.
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Similarly, a Video Comparator (VC) CNN network is
employed (same as ViSiL, Fig. 3) that is fed with the self-
similarity matrix in order to extract the temporal patterns
and generate a refined self-similarity matrixMx

v ∈ R
N ′
x×N ′

x .
To extract a final score (indexing output) that captures self-
similarity, we modify (2) as

f SN(x) = 1

N ′
x
2

N ′
x∑

i=1

N ′
x∑

j=1

Mx
v(i, j), (9)

that is, the average of the pair-wise similarities of all video
frames. Note that we also do not use the hard tanh activation
function, as we empirically found that it is not needed.
Confidence Calculation/Retrieval (gSN): Given a pair of
videos and their similarity predicted by the Sc, we retrieve
the indexed self-similarity scores, and then we concatenate
themwith the Sc similarity, forming a three-dimensional vec-
tor z ∈ R

3 for the video pair, as shown in Fig. 5. This vector
is given as input to a two-layer MLP using Batch Normal-
ization (Ioffe & Szegedy, 2015) and ReLU (Krizhevsky et
al., 2012) activation functions. For an input video pair q, p,
the retrieval output gSN(q, p) is the confidence score of the
selector network that the fine-grained student needs to be
invoked.

3.3 Training Process

In this section, we go through the details of the procedure
followed for the training of the underlying networks of the
proposed framework, i.e., the teacher, the students, and the
selector.

3.3.1 Teacher Training

The teacher network is trained with supervision on a labelled
video datasetVl , as shown in Fig. 6. The videos are organized
in triplets (v, v+, v−) of an anchor, a positive (relevant), and
a negative (irrelevant) video, respectively, where v, v+, v− ∈

Fig. 6 Illustration of the training process of the teacher networks. It
is trained with supervision with video triplets derived from a labelled
dataset, minimizing triplet loss

Fig. 7 Illustration of the training process of the student networks.
They are trained on an unlabelled dataset by minimizing the differ-
ence between their video similarity estimations and the ones calculated
by the teacher network

Vl , and the network is trained with the triplet loss

Ltr = max
(
0, gT(v, v−) − gT(v, v+) + γ

)
, (10)

where γ is a margin hyperparameter. In addition, a similarity
regularization function is used that penalizes high values in
the input of hard tanh that would lead to saturated outputs.
Following other works, we use data augmentation (i.e., color,
geometric, and temporal augmentations) on the positive sam-
ples v+.

3.3.2 Student Training

An overview of the student training process is illustrated in
Fig. 7.LetVu = {v1, v2, . . . , vn}be a collectionof unlabelled
videos and gT(q, p), gS(q, p) be the similarities between
videos q, p ∈ Vu , estimated by a teacher network T and
a student network S, respectively. S is trained so that gS

approximates gT, with the L1 loss,3 that is,

LT S =
∥∥∥gT(q, p) − gS(q, p)

∥∥∥
1
. (11)

Note that the loss is defined on the output of the teacher.
This allows for a training process in which the scores of
the teacher are calculated for a number of pairs in the unla-
belled dataset only once, and then being used as targets for
the students. This is in contrast to methods where the loss is
calculated on intermediate features of T and S, and cannot,
thus, scale to large-scale datasets as they have considerable
storage and/or computational/memory requirements. In this
setting, the selection of the training pairs is crucial. Since it
is very time consuming to apply the teacher network T to
every pair of videos in the dataset (O(n2) complexity) and
randomly selecting videos would result in mostly pairs with
low similarity scores, here, we follow Kordopatis-Zilos et al.

3 We have experimented with other losses, i.e., L2 and Huber loss, with
no considerable performance difference.
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(2019a) and generate a graph to extract its connected com-
ponents, which are considered as video clusters. Each video
included in a video cluster is considered as an anchor, and
we form pairs with the videos belonging to the same cluster,
which are treated as positive pairs. Also, based on the anchor
video, we form pairs with the 50 most similar videos that
belong to the other clusters and the 50 most similar videos
that belong to no cluster, which are treated as negative pairs.
At each epoch, one positive and one negative pair are selected
for each anchor video to balance their ratio.

3.3.3 Selector Training

Typically, the similarity between two videos q and p that is
estimated by afine-grained studentSf , leads to better retrieval
scores than the one estimated by the coarse-grained student
Sc. However, for some video pairs, the difference between
them (i.e., ‖gSc(q, p)− gS

f
(q, p)‖1) is small and, therefore,

having negligible effect to the ranking and on whether the
video will be retrieved or not. The selector is a network that
is trained to distinguish between those video pairs, and pairs
of videos that exhibit large similarity differences. For the
former, only the coarse-grained student Sc will be used; for
the latter, the fine-grained student Sf will be invoked.

The selector network is trained as a binary classifier, with
binary labels obtainedby setting a threshold t on‖gSc(q, p)−
gS

f
(q, p)‖1, that is,

l(q, p) =
⎧
⎨

⎩
1 if

∥∥∥gSc(q, p) − gS
f
(q, p)

∥∥∥
1

> t,

0 otherwise.
(12)

Video pairs are derived fromVu , andBinaryCross-Entropy is
used as a loss function, as shown in Fig. 8. We use the same
mining process used for the student training, and at each
epoch, a fixed number of video pairs is sampled for the two
classes.We reiterate here that the selector is trained in an end-
to-endmanner, i.e., both the self-similarity feature extraction
network f SN, given by (9), and the decision-making MLP
(Fig. 5) are optimized jointly during training.

4 Evaluation Setup

In this section, we present the datasets (Sect. 4.1), evaluation
metrics (Sect. 4.2), and implementation details (Sect. 4.3)
adopted during the experimental evaluation of the proposed
framework.

Fig. 8 Illustration of the training process of the selector network. It is
trained on an unlabelled dataset, exploiting the similarities calculated
by a coarse- and fine-grained student. Note that the fine-grained student
is applied on all video pairs only during training time. During retrieval,
only a portion of the dataset is sent to it

4.1 Datasets
4.1.1 Training Datasets

VCDB (Jiang et al., 2014) was used as the training dataset
to generate triplets for the training of the teacher model. The
dataset consists of videos derived from popular video plat-
forms (i.e., YouTube and Metacafe) and has been developed
and annotated as a benchmark for partial copy detection. It
contains two subsets, namely, the core and the distractor sub-
sets. The former one contains 28 discrete sets composed of
528 videos with over 9000 pairs of copied segments. The
latter subset is a corpus of approximately 100,000 randomly
collected videos that serve as distractors.

DnS-100K is the dataset collected for the training of the
students. We followed the collection process from our prior
work (Kordopatis-Zilos et al., 2019a) for the formation of
the FIVR-200K dataset in order to collect a large corpus of
videos with various relations between them. First, we built
a collection of the major news events that occurred in recent
years by crawling Wikipedia’s “Current Event” page.4 To
avoid overlap with FIVR-200K, where the crawling period
was from 2013–2017, we only considered the news events
from the years 2018–2019. Then, we retained only the news
events associated with armed conflicts and natural disasters
by filtering them based on their topic. Afterwards, the public
YouTube API5 was used to collect videos by providing the
event headlines as queries. The resultswere filtered to contain
only videos published at the corresponding event start date
and up to one week after the event. At the end of this process,
we had collected a corpus of 115,792 videos. Following the
mining scheme described in Sect. 3.3.2, we arrived at 21,997
anchor videos with approximately 2.5M pairs.

4 https://en.wikipedia.org/wiki/Portal:Current_events.
5 https://developers.google.com/youtube/.
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4.1.2 Evaluation Datasets

FIVR-200K (Kordopatis-Zilos et al., 2019a) was used as
a benchmark for Fine-grained Incident Video Retrieval
(FIVR). It consists of 225,960 videos collected based on
the 4687 events and 100 video queries. It contains video-
level annotation labels for near-duplicate (ND), duplicate
scene (DS), complementary scene (CS), and incident scene
(IS) videos. FIVR-200K includes three different tasks: a) the
Duplicate Scene Video Retrieval (DSVR) task, where only
videos annotated with ND and DS are considered relevant,
b) the Complementary Scene Video Retrieval (CSVR) task,
which accepts only the videos annotated with ND, DS, or CS
as relevant, and c) Incident Scene Video Retrieval (ISVR)
task, where all labels are considered relevant. For quick com-
parisons of different configurations, we also used FIVR-5K,
a subset of FIVR-200K, as provided in Kordopatis-Zilos et
al. (2019b).

CC_WEB_VIDEO (Wu et al., 2007) simulates the Near-
Duplicate Video Retrieval (NDVR) problem. It consists of
24 query sets and 13,112 videos. The collection consists of
a sample of videos retrieved by submitting 24 popular text
queries to popular video sharing websites, i.e., YouTube,
Google Video, and Yahoo! Video. For every query, a set
of video clips was collected, and the most popular video
was considered to be the query video. Subsequently, all
videos in the video set were manually annotated based on
their near-duplicate relation to the query video. We also use
the ‘cleaned’ version, as provided in Kordopatis-Zilos et al.
(2019b).

SVD (Jiang et al., 2019) was used for the NDVR problem,
tailored for short videos in particular. It consists of 562,013
short videos crawled from a large video-sharing website,
namely, Douyin.6 The average length of the collected videos
is 17.33 s. The videos with more than 30,000 likes were
selected to serve as queries. Candidate videos were selected
and annotated based on a three-step retrieval process. A large
number of probably negative unlabelled videos were also
included to serve as distractors. Hence, the final dataset con-
sists of 1206 queries with 34,020 labelled video pairs and
526,787 unlabelled videos. The queries were split into two
sets, i.e., training and test set, with 1000 and 206 queries,
respectively. In this paper, we only use the test set for the
evaluation of the retrieval systems.

EVVE (Revaud et al., 2013) was designed for the Event
Video Retrieval (EVR) problem. It consists of 2,375 videos
and 620 queries. The main task on this dataset is the retrieval
of all videos that capture the event depicted by a query video.
The dataset contains 13 major events that were provided as
queries to YouTube. Each event was annotated by one anno-
tator, who first produced a precise definition of the event.

6 http://www.douyin.com.

However, we managed to download and process only 1906
videos and 504 queries (that is, ≈80% of the initial dataset)
due to the unavailability of the remaining ones.

4.2 EvaluationMetric

To evaluate retrieval performance, we use the mean Average
Precision (mAP)metric, as defined inWu et al. (2007),which
captures the quality of video rankings. For each query, the
Average Precision (AP) is calculated as

AP = 1

n

n∑

i=0

i

ri
, (13)

where n is the number of relevant videos to the query video
and ri is the rank of the i-th retrieved relevant video. ThemAP
is calculated by averaging the AP scores across all queries.
Also, for the evaluation of the selector, we use the plot of
mAP with respect to the total dataset percentage sent to the
fine-grained student. The objective is to achieve high retrieval
performance (in terms of mAP) with low dataset percentage.

4.3 Implementation Details

All of our models have been implemented with the PyTorch
(Paszke et al., 2019) library. For the teacher, we have
re-implemented ViSiL (Kordopatis-Zilos et al., 2019b) fol-
lowing the same implementation details, i.e., for each video,
we extracted 1 frame per second and used ResNet-50 (He
et al., 2016) for feature extraction using the output maps of
the four residual blocks, resulting in D = 3840. The PCA-
whitening layer was learned from 1M region vectors sampled
fromVCDB. In all of our experiments, theweights of the fea-
ture extraction CNN and whitening layer remained fixed.We
sampled 2000 triplets in each epoch. The teacher was trained
for 200 epochs with 4 videos per batch using the raw video
frames. We employed Adam optimization (Kingma & Ba,
2015) with learning rate 10−5. Other parameters were set to
γ = 0.5, r = 0.1 andW = 64, similarly to Kordopatis-Zilos
et al. (2019b).

For the students, we used the same feature extraction pro-
cess as in the teacher, and the same PCA-whitening layer was
used for whitening and dimensionality reduction. We empir-
ically set D = 512 as the dimensions of the reduced region
vectors. The students were trained with a batch size of 64
video pairs for 300 epochs, using only the extracted video
features. Also, during training, we applied temporal aug-
mentations, i.e., random frame drop, fast forward, and slow
motion, with 0.1 probability each. We employed Adam opti-
mization (Kingma & Ba, 2015) with learning rate 10−5 and
10−4 for the course- and fine-grained students, respectively.
For the fine-grained binarization student, the binarization
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layer was initialized with the ITQ algorithm (Gong et al.,
2012), learned on 1M region vectors sampled from our
dataset, as we observed better convergence than random ini-
tialization, and with L = 512 bits. For the coarse-grained
student’s training, the teacher’s similarities were rescaled
to [0, 1] leading to better performance. Also, we used one
layer in the transformer, with 8 heads for multi-head atten-
tion and 2048 dimension for the feed-forward network. For
the NetVLAD module, we used 64 clusters, and a fully-
connected layer with 1024 output dimensions and Layer
Normalization (Ba et al., 2016). For the fine-grained stu-
dents’ training, we employed the similarity regularization
loss from Kordopatis-Zilos et al. (2019b), weighted with
10−3, arriving at marginal performance improvements.

For the selector, we used the same feature extraction
scheme that was used for the students. It was trained with
a batch size of 64 video pairs for 100 epochs, using only the
extracted video features. At each epoch, we sampled 5000
video pairs from each class. We employed Adam optimiza-
tion (Kingma & Ba, 2015) with learning rate 10−4. For the
fully-connected layers of the MLP, we used 100 hidden units
and 0.5 dropout rate. For the training of the selector model,
the similarities of the fine-grained student were rescaled
to [0, 1] to match similarities calculated from the coarse-
grained student. Finally, we used a threshold of t = 0.2 for
the class separation, unless stated otherwise.

5 Experiments

In this section, the experimental results of the proposed
approach are provided. First, a comprehensive ablation study
on the FIVR-5Kdataset is presented, evaluating the proposed
students and the overall approach under different configura-
tions to gain better insight into its behaviour (Sect. 5.1). Then,
we compare the performance and requirements of the devel-
oped solutions against several methods from the literature on
the four benchmark datasets (Sect. 5.2).

5.1 Ablation Study

5.1.1 Retrieval Performance of the Individual Networks

In Table 1, we show the performance and storage/time
requirements of the teacher T and the three proposed student
networks, namely, SfA, SfB, and S

c, trained with the proposed
scheme. The fine-grained attention student SfA achieves the
best results on all evaluation tasks, outperforming the teacher
T by a large margin. Also, the fine-grained binarization stu-
dentSfB reports performance very close to the teacher’s on the
DSVR andCSVR tasks, and it outperforms the teacher on the
ISVR task, using only quantized features with lower dimen-

sionality than the ones used by the teacher and therefore
requiring up to 240 times less storage space. This highlights
the effectiveness of the proposed training scheme and the
high quality of the collected dataset. Furthermore, both fine-
grained students have similar time requirements, and they
are three times faster than the teacher because they pro-
cess lower dimensionality features. Finally, as expected, the
coarse-grained student Sc results in the worst performance
compared to the other networks, but it has the lowest require-
ments in terms of both storage space and computational time.

5.1.2 Distillation Versus Supervision

In Table 2, we show the performance of the teacher T trained
with supervision on VCDB (as proposed in Kordopatis-Zilos
et al. (2019b) and used for our teacher training) and the three
proposed students, namely, SfA, SfB, and Sc, trained under
various combinations: (i) with supervision on VCDB (same
as the original teacher), (ii) with distillation on VCDB, and
(iii) with distillation on the DnS-100K dataset. It is evident

Table 1 Comparison of the teacher T and the students SfA, SfB, and
Sc, in terms of mAP on FIVR-5K and computational requirements, i.e.,
storage space in KiloBytes (KB) per video and computational time in
seconds (s) per query

Net. DSVR CSVR ISVR KB Sec

T 0.882 0.872 0.783 15124 10.10

SfA 0.893 0.882 0.803 2016 3.300

SfB 0.879 0.868 0.788 63 3.250

Sc 0.634 0.647 0.608 4 0.018

Bold values indicate the best performing method in the corresponding
dataset/subset

Table 2 Comparison of the teacher T and the students SfA, SfB, and S
c

trained on different datasets and training schemes in terms of mAP on
FIVR-5K

Task Net. VCDB VCDB DnS-100K
w/ supervision w/ distillation w/ distillation

DSVR T 0.882 – –

SfA 0.821 0.873 0.893

SfB 0.846 0.868 0.879

Sc 0.444 0.510 0.634

CSVR T 0.872 – –

SfA 0.801 0.861 0.882

SfB 0.837 0.859 0.868

Sc 0.443 0.520 0.647

ISVR T 0.783 – –

SfA 0.727 0.787 0.803

SfB 0.769 0.781 0.788

Sc 0.400 0.491 0.608
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Table 3 Comparison of students SfA, SfB, and Sc, in terms of mAP,
trained with different amount of training data on FIVR-5K

Task Student Dataset (%)

25 50 75 100

DSVR SfA 0.888 0.894 0.893 0.893

SfB 0.868 0.871 0.873 0.879

Sc 0.573 0.608 0.621 0.634

CSVR SfA 0.877 0.883 0.882 0.883

SfB 0.858 0.861 0.863 0.868

Sc 0.586 0.621 0.633 0.647

ISVR SfA 0.801 0.803 0.803 0.805

SfB 0.776 0.779 0.783 0.788

Sc 0.564 0.583 0.594 0.608

Bold values indicate the best performing method in the corresponding
dataset/subset

that the proposed training scheme using a large unlabelled
dataset leads to considerably better retrieval performance
compared to the other setups for all students. Also, it is note-
worthy that training students with supervision, same as the
teacher, results in a considerable drop in performance com-
pared to distillation on either dataset. The students achieve
better resultswhen trainedwithDnS-100K instead ofVCDB.
An explanation for this is that our dataset contains various
video relations (not only near-duplicates as in VCDB) and
represents a very broad and diverse domain (by contrast to
VCDB, which consists of randomly selected videos), result-
ing in better retrieval performance for the students.

5.1.3 Impact of Dataset Size

In Table 3, we show the performance of the proposed stu-
dents, namely,SfA,SfB, andS

c, in termsofmAP,when they are
trainedwith different percentages of the collectedDnS-100K
dataset (that is, 25%, 50%, 75%, and 100%). We report large
differences in performance for the fine-grained binarization
student SfB and the coarse-grained student Sc. We note that
the more data is used for training, the better their retrieval
results are. On the other hand, the fine-grained attention stu-
dent’s SfA performance remains relatively steady, regardless
of the amount used for training. We attribute this behaviour
to the fact that SfA learns to weigh the input features without
transforming them; hence, a smaller dataset with real video
pairs with diverse relations, as in our collected dataset, is
adequate for its robust performance.

5.1.4 Student Performance with Different Teachers

In Table 4, we show the performance of the proposed stu-
dents, namely, SfA, SfB, and Sc, in terms of mAP, when they
are trained/distilled using different teachers. More specifi-

Table 4 Comparison of students SfA, SfB, and Sc, in terms of mAP,
trained with different teachers on FIVR-5K

Task Student Teacher

T Sf(1)A Sf(2)A

DSVR SfA 0.893 0.896 0.899

SfB 0.879 0.888 0.895

Sc 0.634 0.631 0.632

CSVR SfA 0.882 0.884 0.887

SfB 0.868 0.878 0.883

Sc 0.647 0.643 0.645

ISVR SfA 0.803 0.807 0.810

SfB 0.788 0.797 0.804

Sc 0.608 0.603 0.607

Bold values indicate the best performing method in the corresponding
dataset/subset

cally, using as a teacher: (i) the original teacher T, leading
to the student Sf(1)A , (ii) the fine-grained attention student

Sf(1)A , leading to the student Sf(2)A (first iteration), and (iii)

the fine-grained attention student Sf(2)A (second iteration).

In the case of fine-grained students, training with the Sf(1)A
and Sf(2)A yields large performance boost in comparison to
original teacher T. More precisely, the fine-grained attention
student SfA exhibits a total improvement of about 0.006 mAP
comparing its results trained with the teacher T (i.e., 0.893
mAP onDSVR task) and the Sf(2)A (i.e., 0.899mAP onDSVR
task). A very considerable improvement has the fine-grained
binarization student, i.e., training with Sf(1)A gives a perfor-
mance increase of almost 0.01 mAP on DSVR task, which
further improves when trained with Sf(2)A by 0.007. On the
other hand, using a better teacher does not improve the per-
formance of the coarse-grained student Sc.

5.1.5 Student Performance with Different Settings

In this section, the retrieval performance of the proposed
students is evaluated under different design choices.

Fine-Grained Attention Student In Table 5, we show
how the adopted attention scheme (�2-attention—Sect. 3.2.1,
or h-attention—Sect. 3.2.2) affects the performance of the
student SfA. Using h-attention leads to considerably better
results compared to the �2-attention, that was originally used
in ViSiL (Kordopatis-Zilos et al., 2019b).

Fine-Grained Binarization Student In Table 6, we
report the retrieval results of the fine-grained binarization stu-
dent SfB implemented with different activation functions in
the binarization layer, i.e., sgn(x) which is not differentiable
so the layer weights remain fixed, tanh(βx), as proposed in
Cao et al. (2017) with β = 103, and the proposed E[sgn(x)]
(Sect. 3.2.3). The binarization student with the proposed
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function achieves notably better results on all tasks, espe-
cially on ISVR. Moreover, we experimented with different
number of bits for the region vectors and report results in
Table 7. As expected, larger region hash codes lead to bet-
ter retrieval performance. Nevertheless, the student achieves
competitive retrieval performance even with low number of
bits per region vector.

Coarse-GrainedStudent InTable 8,we report the perfor-
mance of the coarse-grained student Sc implemented under
various combinations of its components. The proposed setup
with all three components achieves the best results compared
to the other configurations. The single component that pro-
vides the best results is the transformer network, followed by
NetVLAD.Also, the attentionmechanism provides a consid-
erable boost in performance when applied. The second-best
performance is achieved with the combination of the trans-
former module with the NetVLAD.

5.1.6 Selector Network Performance

In this section, the performance of the proposed selec-
tor network is evaluated in comparison with the following
approaches: (i) a selectionmechanism that applies naive sim-
ilarity thresholding for choosing between the coarse-grained
and the fine-grained student, (ii) an oracle selector, where
the similarity difference between the fine-grained and coarse-
grained student is known and used for the re-ranking of video
pairs, and (iii) a random selector that sends with a fixed
probability videos to either the coarse-grained or the fine-
grained student. Figure 9 illustrates the performance of the
DnS approach in terms of mAP with respect to the percent-
age of video pairs from the evaluation dataset sent to the
fine-grained student. We consider that the closer the curves
are to the upper left corner, the better their performance. For

Table 5 Comparison of different attention schemes of the fine-grained
attention student SfA, in terms of mAP on FIVR-5K

attention DSVR CSVR ISVR

�2-attention (Kordopatis-Zilos et al., 2019b) 0.888 0.873 0.787

h-attention (Yang et al., 2016) 0.893 0.882 0.803

Bold values indicate the best performing method in the corresponding
dataset/subset

Table 6 Comparison of different activation functions for fine-grained
binarization student SfB, in terms of mAP on FIVR-5K

activation DSVR CSVR ISVR

sgn(x) 0.876 0.863 0.776

tanh(βx) (Cao et al., 2017) 0.875 0.861 0.781

E[sgn(x)] (ours) 0.879 0.868 0.788

Bold values indicate the best performing method in the corresponding
dataset/subset

Table 7 Comparison of
different fine-grained
binarization student SfB
implemented with different
number of bits per region vector,
in terms of mAP on FIVR-5K

bits DSVR CSVR ISVR

64 0.845 0.835 0.748

128 0.862 0.849 0.766

256 0.870 0.857 0.779

512 0.879 0.868 0.788

Bold values indicate the best
performing method in the corre-
sponding dataset/subset

Table 8 Comparison of different design choices of our coarse-grained
student Sc, in terms of mAP on FIVR-5K

Att. Trans. NetVLAD DSVR CSVR ISVR

� – – 0.595 0.600 0.564

– � – 0.612 0.622 0.590

– – � 0.600 0.610 0.578

� � – 0.620 0.628 0.591

� – � 0.609 0.618 0.584

– � � 0.630 0.637 0.600

� � � 0.634 0.647 0.608

Bold values indicate the best performing method in the corresponding
dataset/subset

this experiment, we used the proposed fine-grained atten-
tion student SfA and the coarse-grained student Sc. All three
runs outperform the performance of the random selector by
a large margin on all dataset percentages. The oracle selec-
tor performs the best with considerable margin, highlighting
that using the similarity difference between the two students
(Sect. 3.3.3) is a good optimization criterion. Furthermore,
the proposed selector network outperforms the one with sim-
ilarity thresholding on all tasks and percentages, i.e., in lower
dataset percentages (< 25%) with a large margin. It achieves
more than 0.85 mAP on the DSVR task with only 10% of the
video pairs in FIVR-5k sent to the fine-grained student.

5.1.7 Impact of Threshold on the Selector Performance

In this section, we assess the impact of the threshold param-
eter t that is used to obtain binary labels for the selector
network [see Sect. 3.3.3, Eq. (12)], on the retrieval perfor-
mance. To do so, we report the mAP as a function of the
dataset percentage sent to the fine-grained student for re-
ranking—we do so for selectors trained with different values
of t in order to compare the curves. The results are shown in
Fig. 10. The best results are obtained for t = 0.2; however,
the performance is rather stable for thresholds between 0.1
and 0.4, as well. For threshold values> 0.4, the performance
drops considerably on all evaluation tasks.
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Fig. 9 mAP with respect to the dataset percentage sent to the fine-
grained student for re-ranking based on four selectors: (i) the proposed
selector network, (ii) a selector with naive similarity thresholding, (iii)
an oracle selector, ranking videos based on the similarity difference
between the two students, and (iv) a random selector
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Fig. 10 mAP with respect to the dataset percentage sent to the fine-
grained student for re-ranking based on our selector network trained
with different values for the threshold t

5.2 Comparison with State of the Art

In this section, the proposed approach is compared with
several methods from the literature on four datasets. In all
experiments, the fine-grained attention student Sf(2)A is used
as the teacher. We report the results of our re-ranking DnS
scheme using both fine-grained students and sending the 5%
and 30% of the dataset videos per query for re-ranking based
on our selector score. We compare its performance with sev-
eral coarse-grained, fine-grained, and re-ranking approaches:
ITQ (Gong et al., 2012) and MFH (Song et al., 2013) are
two unsupervised and CSQ (Yuan et al., 2020) a supervised
video hashing methods using Hamming distance for video
ranking, BoW (Cai et al., 2011) and LBoW (Kordopatis-
Zilos et al., 2017a) extracts video representations based on
BoW schemes with tf-idf weighting, DML (Kordopatis-
Zilos et al., 2017b) extract a video embedding based on
a network trained with DML, R-UTS-GV and R-UTS-
FRP (Liang et al., 2019) are a coarse- and fine-grained
methods trained with a teacher–student setup distilling fea-
ture representations,TCAc andTCA f (Shao et al., 2021) are
a coarse- andfine-grainedmethods using a transformer-based
architecture trained with contrastive learning, TMK (Poul-
lot et al., 2015) and LAMV (Baraldi et al., 2018) extracts
spatio-temporal video representations basedonFourier trans-
form, which are also combined with QE (Douze et al.,
2013), TN (Tan et al., 2009) employs a temporal network
to find video segments with large similarity, DP (Chou et
al., 2015) is a dynamic programming scheme for similarity

calculation, A-DML (Wang et al., 2021) assess video sim-
ilarity extracting multiple video representations based on a
multi-head attention network, PPT (Chou et al., 2015) is
a re-ranking method with a BoW-based indexing scheme
combined with DP for reranking, and HM (Liang & Wang,
2020) is also a re-ranking method using a concept-based
similarity and a BoW-based method for refinement, and our
re-implementation of ViSiL (Kordopatis-Zilos et al., 2019b).
From the aforementioned methods, we have re-implemented
BoW, TN, and DP, and we use the publicly available imple-
mentations for ITQ, MFH, CSQ, DML, TMK, and LAMV.
For the rest, we provide the results reported in the original
papers. Also, for fair comparison, we have implemented (if
possible) the publicly available methods using our extracted
features.

InTable 9, themAPof the proposedmethod in comparison
to the video retrieval methods from the literature is reported.
The proposed students achieve very competitive performance
achieving state-of-the-art results in several cases. First, the
fine-grained attention student achieves the best results on
the two large-scale datasets, i.e., FIVR-200K and SVD, out-
performing ViSiL (our teacher network) by a large margin,
i.e., 0.022 and 0.021 mAP, respectively. It reports almost
the same performance as ViSiL on the CC_WEB_VIDEO
dataset, and it is slightly outperformed on the EVVE dataset.
Additionally, it is noteworthy that the fine-grained binariza-
tion student demonstrates very competitive performance on
all datasets. It achieves similar performance with ViSiL and
the fine-grained attention student on the CC_WEB_VIDEO,
the second-best results on all three tasks of FIVR-200K, and
the third-best on SVD with a small margin from the second-
best. However, its performance is lower than the teacher’s
on the EVVE dataset, highlighting that feature reduction and
hashing have considerable impact on the student’s retrieval
performance on this dataset. Also, another possible explana-
tion for this performance difference could be that the training
dataset does not cover the included events sufficiently.

Second, the coarse-grained student exhibits very compet-
itive performance among coarse-grained approaches on all
datasets. It achieves the best mAP on two out of four evalua-
tion datasets, i.e., on SVD and EVVE, reporting performance
close or even better than several fine-grained methods. On
FIVR-200K and CC_WEB_VIDEO, it is outperformed by
the BoW-based approaches, which are trained with samples
from the evaluation sets. However, when they are built with
video corpora other than the evaluation (which simulates
more realistic scenarios), their performance drops consid-
erably (Kordopatis-Zilos et al., 2017b, 2019a). Also, their
performance on the SVD and EVVE datasets is considerably
lower.

Third, our DnS runs maintain competitive performance. It
improves the performance of the coarse-grained student by
more than 0.2 on FIVR-200K and 0.02 on SVDby re-ranking
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only 5% of the dataset with the fine-grained students. How-
ever, on the other two datasets, i.e., CC_WEB_VIDEO and
EVVE, the re-ranking has negative effects on performance.A
possible explanation for thismight be that the performance of
the coarse- and fine-grained students is very close, especially
on the EVVE dataset. Also, this dataset consists of longer
videos than the rest, which may impact the selection process.
Nevertheless, the performance drop on these two datasets is
mitigated when 30% of the dataset is sent to the fine-grained
students for re-ranking; while on the FIVR-200K and SVD,
the DnS method reaches the performance of the correspond-
ing fine-grained students, or it even outperforms them, i.e.,
DnS30%B outperforms SfB on SVD dataset.

Additionally, Table 10 displays the storage and time
requirements and the reference performance of the pro-
posed method on each dataset. In comparison, we include
the video retrieval methods that are implemented with
the same features and run on GPU. For FIVR-200K and
CC_WEB_VIDEO datasets, we display the DSVR and
cc_web∗

c runs, respectively. We have excluded the TN and
DP methods, as they have been implemented on CPU and
their transfer to GPU is non-trivial. Also, the requirements
of the TCA runs from Shao et al. (2021) are approximated
based on features of the same dimensionality. All times are
measured on a Linux machine with the Intel i9-7900X CPU
and an Nvidia 2080Ti GPU.

First, the individual students are compared against the
competing methods in their corresponding category. The
fine-grained binarization student has the lowest storage
requirements among the fine-grained approaches on all
datasets, having 240 times lower storage requirements than
the ViSiL teacher. The fine-grained attention student needs
the second-highest requirements in terms of space, but still,
it needs 7.5 times less than ViSiL, achieving considerably
better retrieval performance on two out of four evaluation
datasets. However, the required retrieval time is high for
all fine-grained approaches, especially in comparison with
the coarse-grained ones. The coarse-grained student, which
employs global vectors, has high storage requirements com-
pared to the hashing and BoW methods that need notably
lower storage space. In terms of time, all coarse-grained
methods need approximately the same on all datasets, which
is several orders of magnitude faster than the fine-grained
ones.

Second, we benchmark our DnS approach with the two
fine-grained students and two dataset percentages sent for
refinement. An excellent trade-off between time and perfor-
mance comes with the DnS5%B offering an acceleration of
more than 17 times in comparison to the fine-grained stu-
dents, at a small cost in terms of performance when 5% is
used. Combined with the fine-grained binarization student,
on FIVR-200K, it offers 55 times faster retrieval and 240
times lower storage requirements compared to the original

ViSiL teacher providing comparable retrieval performance,
i.e., 0.041 relative drop in terms of mAP. The performance
of the DnS increases considerably when 30% of the video
pairs are sent for re-ranking, outperforming the ViSiL on
two datasets with considerable margins. However, this per-
formance improvement comeswith a corresponding increase
in the retrieval time.

6 Conclusion

In this paper, we proposed a video retrieval framework
based on Knowledge Distillation that addresses the problem
of performance-efficiency trade-off focused on large-scale
datasets. In contrast to typical video retrieval methods that
rely on either a high-performance but resource demand-
ing fine-grained approach or a computationally efficient
but low-performance coarse-grained one, we introduced a
Distill-and-Select approach. Several student networks were
trained via a Teacher–Student setup at different performance-
efficiency trade-offs.We experimented with two fine-grained
students, one with amore elaborate attentionmechanism that
achieves better performance and one using a binarization
layer offering very high performancewith significantly lower
storage requirements. Additionally, we trained a coarse-
grained student that provides very fast retrieval with low
storage requirements but at a high cost in performance. Once
the students were trained, we combined them using a selec-
tor network that directs samples to the appropriate student
in order to achieve high performance with high efficiency.
It was trained based on the similarity difference between a
coarse-grained and a fine-grained student so as to decide at
query-time whether the similarity calculated by the coarse-
grained one is reliable or the fine-grained one needs to be
applied. The proposed method has been benchmarked to a
number of content-based video retrieval datasets, where it
improved the state-of-art in several cases and achieved very
competitive performance with a remarkable reduction of the
computational requirements.

The proposed scheme can be employedwith several setups
based on the requirements of the application. For exam-
ple, when small-scale databases are involved, with no strict
storage space and computational time restrictions, the fine-
grained attention student could be employed since it achieves
the best retrieval performance. On the other hand, for mid-
scale databases, where the storage requirements increase,
the fine-grained binarization student would be a reasonable
option since it achieves very high retrieval performance with
remarkable reduction of storage space requirements. Finally,
for large-scale databases, where both storage space and com-
putation time are an issue, the combination of fine-grained
binarization student and the coarse-grained student with the
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selector network would be an appropriate solution that offers
high retrieval performance and high efficiency.

In the future, we plan to investigate alternatives for the
better selection and re-ranking of video pairs based on our
selector network by exploiting the ranking of videos derived
from the two students. Also, we will explore better archi-
tectural choices for the development of the coarse-grained
student to further improve the system’s scalability with little
compromises in retrieval performance.
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