
              

City, University of London Institutional Repository

Citation: Serramia, M., Lopez-Sanchez, M., Moretti, S. & Rodriguez-Aguilar, J. A. (2021). 

On the dominant set selection problem and its application to value alignment. Autonomous 
Agents and Multi-Agent Systems, 35(2), 42. doi: 10.1007/s10458-021-09519-5 

This is the published version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/31380/

Link to published version: https://doi.org/10.1007/s10458-021-09519-5

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Vol.:(0123456789)

Autonomous Agents and Multi-Agent Systems (2021) 35:42
https://doi.org/10.1007/s10458-021-09519-5

1 3

On the dominant set selection problem and its application 
to value alignment

Marc Serramia1,2  · Maite López‑Sánchez2 · Stefano Moretti3 · 
Juan  Antonio Rodríguez‑Aguilar1

Accepted: 22 June 2021 / Published online: 30 July 2021 
© The Author(s) 2021

Abstract
Decision makers can often be confronted with the need to select a subset of objects from 
a set of candidate objects by just counting on preferences regarding the objects’ features. 
Here we formalise this problem as the dominant set selection problem. Solving this prob-
lem amounts to finding the preferences over all possible sets of objects. We accomplish so 
by: (i) grounding the preferences over features to preferences over the objects themselves; 
and (ii) lifting these preferences to preferences over all possible sets of objects. This is 
achieved by combining lex-cel –a method from the literature—with our novel anti-lex-cel 
method, which we formally (and thoroughly) study. Furthermore, we provide a binary inte-
ger program encoding to solve the problem. Finally, we illustrate our overall approach by 
applying it to the selection of value-aligned norm systems.

Keywords Qualitative decision making · Social choice · Value alignment · Norms

1 Introduction

Some actual-world decision making problems require to select an array of elements despite 
decision makers only counting on preferences over the elements’ features. Some examples 
are committee selection [13], or college admissions [9, 17]. Considering this last exam-
ple, picture the following situation. A school head master must decide on which students 
to grant admission to. For that, the head master leverages on the admission policy of the 
school, which, for instance, prioritises some minorities, or fosters impoverished neighbour-
hoods. Such policies can be cast as preferences over the students’ features. Nonetheless, 
the head master lacks of a straightforward manner to rank all possible sets of students, 
since these features somehow pose a multi-criteria problem. Moreover, there is a further 
dimension of complexity: some sets may not be eligible (e.g. because of limited budget, 
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or unfulfilment of minority quotas). And yet, despite only counting on preferences over 
features and not sets, the head master must select the most preferred set of students. Inter-
estingly, we can think of many other, similar set selection problems, such as selecting the 
team of players for a match (where we prefer some types of players over others), person-
nel selection (where some capabilities may be preferred over others), selecting regulatory 
norms (where we prefer norms that are more aligned with some moral values), etc. The 
goal of this paper is to design the tools to help decision makers select the “most preferred” 
set in this type of problem, which hereafter we will refer to as dominant set selection prob-
lem (DSSP). Dominance characterises maximal preference in a formal (and particular) way.

In more general terms, assuming that we have sets of objects representing alternatives in 
a decision making process, the problem that we tackle is that of finding the most preferred 
set of objects. This decision must be made based on preference information over the features 
characterising the objects. For instance, in our admission example, ethnic group, neighbour-
hood, and studied subjects constitute some possible features. Furthermore, as noticed above, 
when dealing with decisions, preferences are not the only aspect to consider. Thus, we also 
require that the selected set does comply with some feasibility constraints, be them struc-
tural –due to relationships between the objects–, or inherent to the application domain.

In order to solve the dominant set selection problem, we propose to proceed as follows: 
(1) extract preferences over single objects based on preferences over objects’ features; (2) 
rank all possible sets of objects; and (3) select the most preferred and feasible set of objects. 
For that, we resort to recent, seminal work in the realm of decision making and social choice 
theory, namely social rankings [15] and its solutions [1, 6, 11, 12]. By adapting lex-cel, a 
ranking method introduced in [6], we are able to obtain a ranking over single objects from 
the feature preferences. Ultimately, our goal is to rank all sets of objects considering this 
element ranking, in other words, lifting the element ranking to a set ranking. This lifting 
procedure is very similar to the ranking sets of objects problem, which has been extensively 
studied in the social choice literature [3]. Example solutions to this problem are the maxmin 
and minmax [2] or leximin and leximax [16] functions. Unfortunately, this problem consid-
ers a total order of elements instead of an element ranking. Hence, for the purpose of this 
paper, we cannot readily use any of these approaches. Instead, here we design a novel rank-
ing function, the so-called anti-lex-cel. This function receives as an input a ranking over 
single objects (obtained through lex-cel), and builds a ranking over all possible sets of these 
objects such that the most preferred feasible set in the ranking is the solution to the domi-
nant set selection problem. The combination of the lex-cel ranking described in [6] with our 
novel anti-lex-cel ranking helps us produce our intended ranking over all possible sets of 
objects, and hence solve the core of the dominant set selection problem.

From a pragmatic perspective, building a ranking over all sets of objects turns out to be 
costly. Hence, we show how to solve the dominant set selection problem while avoiding the 
cost of explicitly building a whole ranking. In particular, we show how to to encode it as a 
binary integer program (BIP) so that it can be solved with the aid of off-the-shelf solvers. 
Importantly, we prove that the proposed encoding adheres to the ranking produced after 
lex-cel and anti-lex-cel, and that the solution to our BIP is equivalent to that of the domi-
nant set selection problem. We illustrate the application of our method to a value-alignment 
problem initially introduced in [22] and subsequently investigated from a qualitative per-
spective in [20]. In particular, given a collection of candidate norms, we investigate the 
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selection of the (sub)set of norms, the so-called norm system1,  that is best aligned with 
the moral values2 in a value system. The dominant set selection problem in this case is 
performed according to the following principle: the more preferred the moral values pro-
moted by a norm system, the more preferred the norm system, or, in other words, the more 
dominant with respect to value alignment. Here the decision maker must consider: the pref-
erences over moral values in the value system, the promotion relationship between norms 
and moral values (which can be interpreted as norm features), and the feasibility conditions 
based on the relationships between norms.

Notice that our approach differs from the norm selection method proposed in [22], 
which follows a quantitative approach despite the qualitative nature of the information 
available to the decision maker. Since the approach in [22] follows [4], the decision maker 
is forced to quantify the relations between norms and values by specifying the degrees of 
value promotion of norms. We argue that this is hard to ascertain and, as noted in [19], 
transforming qualitative information into numerical data is prone to errors and biases. In 
fact, this is a general claim that can be applied when solving the dominant set selection 
problem. Therefore, in this paper we opt for a qualitative approach with the aim of keeping 
the decision making process as intuitive as possible.

To summarise, in this paper we make the following contributions: 

1. Formalisation of a novel qualitative decision-making problem, the so-called dominant 
set selection problem (DSSP).

2. Formalisation and study of a novel preference lifting function called anti-lex-cel. We 
provide an axiomatic characterisation of anti-lex-cel, and we show that it generalises 
former results in the social choice literature in [7].

3. Development of a novel method for solving the DSSP based on the combination of the 
lex-cel ranking function in [6] with our novel anti-lex-cel ranking function.

4. A binary integer program (BIP) encoding that is proven to solve the DSSP while avoid-
ing the cost of explicitly building a whole ranking over all possible sets of objects.

5. An application of our methodology to the value-alignment problem described in [20, 
22].

This work significantly extends our previous work in [20] in two main respects. First, here 
we present a general formalisation and solving method for the DSSP, hence going beyond 
[20], which solely focused on composing value-aligned norm systems, namely on a par-
ticular DSSP. Second, here we add with respect to [20] a thorough axiomatic characterisa-
tion of anti-lex-cel, a formal proof of its uniqueness, and results that show the generality of 
anti-lex-cel with respect to existing results in the social choice literature.

The paper is structured as follows. Next, Sect. 2 motivates the usefulness of the domi-
nant set selection problem and provides an informal definition. Then, in Sect. 3 we intro-
duce some necessary background on order theory to subsequently formalise the dominant 
set selection problem in Sect.  4, where we also introduce a simple running example to 
illustrate the technicalities along the paper. Section 5 outlines the resolution of the DSSP. 
We base the solution of the DSSP on two operators: lex-cel (in Sect. 6) and anti-lex-cel 
(in Sect. 7). In Sect. 8 we detail their use to solve the DSSP along with a BIP encoding to 

1 Norms provide the means to regulate the behaviour of individuals within a society, and a norm system is 
a set of norms to enact in that society for regulatory purposes.
2 Moral values can be described as principles that a society deems valuable.
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compute its solution with the aid of state-of-the-art solvers. In more practical terms, Sect. 9 
we exploit the tools developed to solve DSSPs to show how to undertake value-aligned 
norm selection. Section 9 also illustrates how value-aligned norm selection depends on the 
actual preferences over the value system at hand. Finally, Sect. 10 draws conclusions and 
sets paths to future work. For the ease of readability, we include a list of notation and sym-
bols after the conclusions.

2  Problem motivation: value‑aligned norm selection

As mentioned above, there is a number of problems that require to select the most preferred 
set of objects considering preferences over their (qualitative) features. Thus, we have dis-
cussed that a decision maker may need to choose: students to award grants to; players to 
form teams; personnel to undertake tasks; projects to be funded; or norms to be enacted.

In fact, that last example will help us to illustrate the characterisation of the problem at 
hand. Specifically, we assume that there is a set of candidate norms N and we aim to find 
the set of norms that better aligns with the moral values of the society. Our previous paper 
[20] introduces some norm examples in an airport border context, where a norm “Per-
mission to cross the border” is aligned with the moral value of “freedom of movement” 
whereas the norm “Obligation to show passport” is aligned with the value of “security” 
and is incompatible with the previous norm (i.e., they cannot be simultaneously enacted). 
Overall, to assess value-alignment we count on a set of moral values, preferences among 
these values, and a function relating norms to the values that they promote (i.e., specifying 
norms’ features). For instance, consider: four norms {n1,… , n4} ; three values {v1, v2, v3} , 
being v1 more preferred than v2 and v3 , which are indifferent between them; and a feature 
function that specifies that norm n1 promotes the three values, and that the remaining 
norms only promote one value each ( n2 promotes v1 , n3 promotes v2 and n4 promotes v3 ). 
Then, the principle we adhere to is: The more preferred the values promoted by a norm, the 
more preferred the norm and the more preferred the norms in a set the more value-aligned 
the set. Thus, we consider {n2} aligns more with moral values than {n4} because n2 is pre-
ferred over n4 since it promotes a more preferred value. Furthermore, when considering 
larger sets of these norms, value alignment only grows larger. Following our example, set 
S1 = {n1, n2} is more value-aligned than S2 = {n3, n4} because n1 alone is more preferred 
than any of the norms in S2 , and adding n2 only strengthens the value alignment of S1 . 
Additionally, while the more preferred values have greater impact on assessing which set is 
more aligned, whenever possible, we still will prefer to select additional norms even if they 
promote less preferred values (e.g., we favour {n1, n2, n3} over S1 ). Finally though, since 
not all norm sets are feasible (norms may be incompatible or redundant between them), the 
decision maker counts on a function to check if a norm set is feasible or not.

In these terms, the value-aligned norm selection problem consists on finding a set of 
norms S ⊆ N , such that:

• S is feasible;
• S contains the most preferred norms possible (the norms that promote the most pre-

ferred values): If we change any norm of S for a more preferred one, the set becomes 
unfeasible.

• S is maximal, namely it is the largest feasible set: adding any further norms to S makes 
it unfeasible.
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We say this S dominates all other feasible sets and therefore we call the problem of finding 
it dominant set selection problem (DSSP). As discussed before many selection problems 
that count on preferences among the features of the elements can be cast into a DSSP. For 
example, selecting players to play in a match (where we prefer some types of players to 
others), awarding research teams (where we prefer to award excellency teams over regular 
teams), personnel selection (where some capabilities may be preferred over others), etc.

In Sect. 4 below we provide a general formalisation of the dominant set selection prob-
lem that encompasses the particular case described above. Before that, we introduce some 
necessary background on order theory in the following section.

3  Background

Let X be a set of objects. A binary relation ⪰ on X is said to be: reflexive, if for each 
x ∈ X , x ⪰ x ; transitive, if for each x, y, z ∈ X , ( x ⪰ y and y ⪰ z ) ⇒ x ⪰ z ; total, if for each 
x, y ∈ X , x ⪰ y or y ⪰ x ; antisymmetric, if for each x, y ∈ X , x ⪰ y and y ⪰ x ⇒ x = y . We 
can define preferences among the elements of X by means of binary relations. Moreover, 
we can categorise the type of preferences depending on the properties they hold as follows.

Definition 1 (Preorder, ranking, linear order and partial order) A preorder (or quasi-order-
ing) is a binary relation ⪰ that is reflexive and transitive. A preorder that is also total is said 
total preorder or ranking. A total preorder that is also antisymmetric is said a linear order. 
A preorder that is antisymmetric but not total is said a partial order.

Note that neither preorders nor rankings are necessarily antisymmetric relations. Thus, 
given a ranking (or a preorder) ⪰ if x, y ∈ X , such that x ⪰ y and y ⪰ x , then we cannot 
conclude that x = y , instead we say these two elements are indifferently preferred and note 
it as x ∼ y.

Example 1 Given a set X = {x1, x2, x3} , an example of ranking would be: x1 ⪰ x2 ∼ x3 
(with a ranking we know how all elements are related).

Notation 1 We note all possible rankings over X as R(X).

Using the indifference relation we can consider the quotient set X∕∼ , which contains 
the equivalence classes of ⪰ . Thus, given the ranking x1 ∼ ⋯ ∼ xs ⪰ ⋯ ⪰ xr−k ∼ ⋯ ∼ xr , 
with x1,… , xs,… , xr−k,… , xr ∈ X , then we can consider the quotient set X∕∼ with quo-
tient order ≻ : Σ1 ≻ ⋯ ≻ Σn , where Σ1 = {x1,… , xs},… ,Σn = {xr−k,… , xr} ∈ X∕∼ are 
equivalence classes.

4  Formalising the dominant set selection problem

The goal of this section is to formalise the dominant set selection problem. Informally, 
and in short, this problem is that of finding a set S ∈ P(X) that is both feasible and more 
preferred than any other set, and hence dominates other sets. Notice that feasibility is an 
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internal property of each set that captures the compatibility of its elements. However, dom-
inance refers to a preference relation of each set with others that is not initially known 
since the preferences at hand are those over the features of the elements of a set S. In what 
follows, we start formally characterising the objects in a dominant set selection problem. 
Thereafter, we show how to gradually build our formal notion of dominance over sets from 
the preferences at hand, namely those over features of elements. Finally, we offer a formal 
definition of the dominant set selection problem.

To start with, we go back to our value-alignment problem in Sect. 2, from which we 
can generalise to identify the objects that formally characterise the input of a dominant set 
selection problem as follows:

• a set of elements X;
• a set of features F;
• a ranking ⪰F over the features in F;
• a function � ∶ X → P(F) that outputs the features of each element in X; and
• a feasibility function 𝜙 ∶ P(X) → {⊤,⊥} , which checks if a set S ∈ P(X) is feasible 

( 𝜙(S) = ⊤ means that it is feasible, and 𝜙(S) = ⊥ means that it is not).

We remind the reader that we provide a list of notation and symbols after Sect. 10. At this 
point, it is important to remark that throughout this paper we consider that ∅ is not a set in 
P(X) ( � ∉ P(X) ). Therefore, we note as P(X) the set containing the 2|X| − 1 different non-
empty subsets of X.

From these, informally, solving the dominant set selection problem amounts to select-
ing a feasible set S ∈ P(X) that is more preferred than any other set and includes as many 
elements as possible. We will say that such set dominates the other sets. To select such 
dominant set we must first formalise our notion of dominance. First, we will only consider 
a single element and define element dominance in: (i) a (equivalence) class of features; 
and (ii) a whole ranking over features. Once we have established how element dominance 
works, we will build upon it to define set dominance.

Given a ranking over features ⪰F , we define element dominance within the scope of an 
equivalence class of features as follows:

Definition 2 Given two elements x, y ∈ X with features in F, a ranking over features ⪰F , 
and a feature equivalence class Ψ ∈ F∕∼F , we say that x is Ψ-dominant over y if

If |�(x) ∩ Ψ| = |�(y) ∩ Ψ| , we say that x and y are Ψ-indifferent.

Back to our example in Sect. 2, the dominant set selection problem would be charac-
terised by: X = {n1 … n4} ; F = {v1, v2, v3} ; �(n1) = {v1, v2, v3} , �(n2) = {v1} , �(n3) = {v2} , 
�(n4) = {v3} ; and v1 ⪰ v2 ∼ v3 . In the quotient order of F∕∼F , this results in two feature 
equivalence classes: Ψ1 = {v1} ≻F Ψ2 = {v2, v3} . With this in mind, n1 is Ψ1-dominant 
over n4 because n1 promotes v1 but n4 does not. n4 is Ψ2-dominant over n2 since n4 promotes 
v3 and n2 does not promote any value in Ψ2 . Finally n1 and n2 are Ψ1-indifferent as they both 
promote v1.

Next, we exploit the definition of element Ψ-dominance to define element dominance 
considering all the features in F and their ranking ⪰F . Formally:

|�(x) ∩ Ψ| > |�(y) ∩ Ψ|.
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Definition 3 Given two elements x, y ∈ X with features in F and a ranking over features ⪰F , 
we say that x is dominant over y if there is a feature equivalence class Ψ ∈ F∕∼F , such that:

• x is Ψ-dominant over y; and
• ∀Ψ� ∈ F∕∼F , such that Ψ� ≻F Ψ , x and y are Ψ�-indifferent.

If neither x dominates y nor vice versa, we say that x and y are indifferent.
Note that the first condition in Definition 3 implies that the dominant element x has 

more of the features of Ψ than y ( |�(x) ∩ Ψ| > |�(y) ∩ Ψ| ). As for the second condition, it 
demands that x and y are indifferent for any other equivalence classes that are more pre-
ferred than Ψ . Hence, the most preferred feature equivalence class for which x and y differ, 
is the class that marks dominance between them.

Back to our example: n1 is dominant over n4 because it is Ψ1-dominant and Ψ1 is the 
most preferred feature class; n1 is also dominant over n2 because even though they are Ψ1

-indifferent, n1 is Ψ2-dominant over n2.
With the definition of element dominance we now consider dominance between sets 

in P(X) . Given a set S = {x1,… , xt} , S ∈ P(X) , we can order its elements in a sequence 
(x�(1),… , x�(t)) according to dominance, where � is a permutation of the indexes, such 
that �(i) is the index in S of the i-th element in the sequence. According to such ordering, 
x�(i) is indifferent or dominated by x�(1),… , x�(i−1) while being indifferent or dominating 
x�(i+1),… , x�(t) . With this in mind we define set dominance as follows.

Definition 4 Given two sets S = {x1,… , xt} and S� = {x�
1
,… , x�

r
} in P(X) and their order-

ings according to dominance (x�(1),… , x�(t)) and (x�
�(1)

,… , x�
�(r)

) respectively, we say that S 
is dominant over S′ if ∃j ∈ {1,max(t, r)} , such that:

• x�(j) dominates x�
�(j)

 or j > r ; and
• x�(i) and x�

�(i)
 are indifferent ∀i < j.

Notice that the notion of dominance that we propose rewards element excellence in a 
set: the more preferred (excellent) the features of the elements in a set, the more dominant 
the set. Therefore, a set containing a few excellent elements (with regards to their features) 
will be preferred over larger sets with mediocre elements (i.e. related to less preferred fea-
tures). This will be the case even if the mediocre elements in a larger set are related to 
many more features.

Continuing with our example, the set S1 = {n1, n2} is dominant over S2 = {n3, n4} 
because n1 is the most dominant element in S1 , n3 is the most dominant element in S2 , and 
n1 is dominant over n3.

With the definition of set dominance we can now tackle the formalisation of the dom-
inant set selection problem. Formally:

Problem 1 (Dominant set selection problem) Given a set of elements X, a set of features F, 
a ranking ⪰F over F, a function � ∶ X → P(F) linking the elements in X with their features, 
and a feasibility function 𝜙 ∶ P(X) → {⊤,⊥} that checks if a set S ∈ P(X) is feasible, then 
the dominant set selection problem (DSSP) is that of finding a set S ∈ P(X) such that:

• S is feasible, that is, 𝜙(S) = ⊤ ; and
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• no other feasible set dominates S, that is, if S� ∈ P(X) , such that, S′ is dominant over 
S ⇒ 𝜙(S�) = ⊥.

At this point, we remind the reader that our notion of dominance above is meant 
to reward element excellence. Hence, dominant set selection problems model decision 
problems for which element excellence is the main decision criterion. This is the case in 
the examples mentioned in the introduction (granting admissions, committee selection), 
other examples are awarding prizes or scholarships. Of course, other decision criteria 
are possible. For example, a decision maker could consider avoiding incompetence as 
the main decision criterion (in this case elements with more features would be preferred 
over elements with few more preferred features).

Indeed, it is worth stressing that the problem of how to aggregate different attrib-
utes or variables is typically studied in the field of Multiple Criteria Decision Mak-
ing (MCDM), where it is relevant to ask to a decision maker the question on whether 
the compensation of bad performances on some criteria by good performances on other 
criteria is acceptable or not [18]. As pointed out in [8], the notion of compensation 
in general boils down to that of ‘tradeoffs’ among criteria. For instance, a possibility 
of compensation is provided by additive utility-based approaches, but there are plenty 
of other methods offering different levels of compensation, or using non-compensatory 
aggregation techniques (see, for instance, the article [18] for a discussion about the 
question guiding to the choice of an appropriate MCDM method and the articles [8, 23] 
for an axiomatic analysis of MCDM methods in situations with multicriteria non-com-
pensatory preferences; see also [10] for an updated review of compensatory and non-
compensatory approaches). Therefore, although this issue is the subject of considerable 
debate in the MCDM literature, here we define a specific dominance notion that rewards 
element excellence, and argue that its applicability is strongly dependent on the context.

Note also that the dominant set selection problem may have multiple solutions when 
multiple sets satisfy the conditions of the problem and do not dominate one another. 
However, it may also be worth mentioning that, by construction, these solutions will 
always have the same number of elements (see Sect. 5).

To illustrate the problem and its resolution we use the following problem as a run-
ning example in the following sections.

Example 2 Consider four elements X = {x1, x2, x3, x4} , two features F = {f1, f2} , the feature 
ranking f1 ⪰F f2 and the feature function �(x1) = �(x2) = {f1} and �(x3) = �(x4) = {f2} . In 
terms of feasibility, we know that any set containing both x1 and x3 , or both x2 and x4 , is not 
feasible (e.g. 𝜙({x1, x2, x3}) = ⊥,𝜙({x3, x4}) = ⊤ ). These elements conform an example of 
dominant set selection problem.

The next section outlines how we actually proceed to solve the dominant set selection 
problem.

5  Solving the dominant set selection problem: an outline

As we anticipated in the introduction above, we tackle the dominant set selection prob-
lem by splitting its resolution in three steps: (1) we extract preferences over single objects 
based on their features and on the preferences over the features; (2) we rank all possible 
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sets of objects; and (3) we select the most preferred feasible set of objects. Figure 1 shows 
the general outline of the steps that we shall follow to solve the dominant set selection 
problem: preference grounding, preference lifting, and feasibility check. First, preference 
grounding is performed by grounding the preferences over objects’ features to obtain a 
ranking over the objects in X. Second, preference lifting lifts this element ranking over the 
elements in X to a set ranking over P(X) . Notice that preference lifting must ensure that the 
output ranking embodies dominance, thus meaning that a set dominates all its (strictly) less 
preferred sets in the ranking. Third, the feasibility check step finds the feasible set that is 
most preferred in the ranking over P(X) . That set will be the set that is dominant over all 
other feasible sets and, thus, it will constitute the solution to our problem.

The main difficulty when solving the dominant set selection problem lies on generating 
a ranking over all sets in P(X) . Therefore, the next Sects. 6, 7 and 8 focus on that goal. Sec-
tions 6 and 7 introduce two key functions that will allow: (i) to transform a ranking over 
elements’ features into a ranking over elements in X; and (ii) in turn this ranking over ele-
ments into a ranking over sets in P(X).

At this point, we warn the reader that Sect. 6 must be taken as background, since lex-cel 
was already introduced in [6], whereas Sects. 7 and 8 contain novel contributions.

6  The lex‑cel ranking grounding function

The social ranking problem [15] consists on transforming a ranking over P(X) into a rank-
ing over the elements of X. Thus, a social ranking solution can be viewed as a function 
srs ∶ R(P(X)) → R(X) , such that for a ranking ⪰∈R(P(X)) , srs(⪰) = ⪰e is a ranking of 
X. Informally, we say that a social ranking solution grounds the preferences over subsets to 
preferences over elements.

Several social ranking solutions have been proposed, such as: a grounding function 
based on the ceteris paribus majority principle [11]; a grounding function based on the 
notion of marginal contribution [12]; two rankings based on the analysis of majority graphs 
and minmax score [1]; or the lex-cel ranking function [6], which is based on lexicographi-
cal preferences. Here, we adapt lex-cel to rank the elements in X based on their features in 
F.

In more detail, the transformation performed by lex-cel proceeds as follows. First, con-
sider the quotient set P(X)∕∼ (see Sect. 3) such that subsets related by indifference relations 
fall on the same equivalence class Σi ∈ P(X)∕∼ . Since the equivalence classes are not indif-
ferent between them, we have a strict quotient order ≻ between them: Σ1 ≻ ⋯ ≻ Σ|P(X)∕∼|.

We now define a function � ∶ X → ℕ
|P(X)∕∼| , which for an element x ∈ X returns its pro-

file vector, a natural vector whose dimension is the number of equivalence classes in the 
quotient set |P(X)∕∼ | . The i-th component of the profile vector for x stands for the number 
of times that x appears in the subsets of equivalence class Σi . Notice that equivalence class 
Σi is the class containing the i-th most preferred subsets of P(X) according to the preorder 
⪰ . For instance, if �(x) = (cx

1
,… , cx|P(X)∕∼|) , then cx

i
 is the number of times that x appears in 

the subsets of equivalence class Σi . Formally, we define the profile vector for an element 
x ∈ X as:

(1)�(x) = (cx
1
,… , cx|P(X)∕∼|), where c

x
i
= |{S ∈ Σi ∶ x ∈ S}|
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Given any two elements x, y ∈ X , we can establish a preference between them by compar-
ing their profile vectors with the lexicographical order of vectors. That is:

Definition 5 We define the lexicographical order of vectors ≥L such that given two 
vectors c = (c1,… , cm), c

� = (c�
1
,… , c�

m
) ∈ ℕ

m , we say that c >L c′ iff ∃i , such that 
c1 = c�

1
;… ;ci−1 = c�

i−1
 and ci > c′

i
 . On the other hand, c =L c� ⇔ c = c�.

We then define the lexicographical-exellence grounded ranking le(⪰) =⪰e between two 
elements by comparing their profile vectors. Given x, y ∈ X , we say that:

In [6], the authors prove that grounding preferences with lex-cel satisfies properties that 
make the grounding fair. In particular, such properties are neutrality, coalitional anonymity, 
monotonicity and independence of the worst set. Next, we provide a short illustration of 
these four properties.

First, neutrality ensures that the ranking resulting from applying lex-cel does not 
depend on the elements’ names/identities. Specifically, this property means that if we 
permute two elements x and y in a ranking ⪰ over P(X) , the grounded ranking should 
obey to the same permutation. So, for instance, consider a ranking ⪰ over P(X) , with 
X = {x, y, z} and such that {x, y, z} ⪰ {x} ⪰ {y, z} ⪰ {x, y} ⪰ {y} ⪰ {x, z} ⪰ {z} . Sup-
pose that the grounded ranking specifies the relation x ⪰e y on the ranking ⪰ . Then, 
the grounded ranking should specify the relation y ⪰�

e
x on the ranking ⪰� such that 

{x, y, z} ⪰� {y} ⪰� {x, z} ⪰� {x, y} ⪰� {x} ⪰� {y, z} ⪰� {z} , which is obtained from ⪰ by 
permuting x and y.

Similar to the neutrality property, the coalitional anonymity property 
extends the anonymity principle to “non-informative” subsets of X: the rela-
tive ranking between two elements should only depend on the sequence in 
which they separately occur along the ranking over P(X) . For instance, in 
the two rankings {x, y, z} ⪰ {x} ⪰ {y, z} ⪰ {x, y} ⪰ {y} ⪰ {x, z} ⪰ {z} and 
{x, z} ⪰� {y, z} ⪰� {x, y, z} ⪰� {x, y} ⪰� {y} ⪰� {z} ⪰� {x} , if we focus on sets containing 
either x or y (but not both), from left to right: first, we have that element x occurs in the 
singleton set {x} in ⪰ and in the set {x, z} in ⪰� , then element y occurs in the set {y, z} in 
both rankings ⪰ and ⪰� , y occurs in the set {y} in both rankings ⪰ and ⪰� , and finally, x 
occurs in the subset {x, z} in ⪰ and in {x} in ⪰� . Therefore, since x and y occur accord-
ing to the sequence x, y, y, x on both rankings ⪰ and ⪰� , a grounded ranking satisfying 

(2)

⎧⎪⎨⎪⎩

x ⪰e y ⇔ �(x) ≥L �(y)

x ⪯e y ⇔ �(x) ≤L �(y)

x ∼e y ⇔ �(x) = �(y)

Fig. 1  Outline of the steps to solve the dominant set selection problem
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coalitional anonymity should specify the same relation between x and y on ⪰ and ⪰� 
(i.e., x ⪰e y ⇔ x ⪰�

e
y ).

As shown in [6], neutrality and coalitional anonymity together imply that if two ele-
ments x and y are such that �(x) = �(y) , then they should be ranked indifferent in the 
grounded ranking.

A grounded ranking that satisfies monotonicity, breaks possible indifference rela-
tions in a consistent way. This means that if on a ranking ⪰ over P(X) a grounded 
ranking states that two elements x and y are indifferent (i.e, x ∼e y ), then, if we con-
sider a new ranking ⪰� obtained from ⪰ by improving the position of some subsets 
containing x but not y, we should have that the grounded ranking ranks x strictly bet-
ter than y on ⪰� (i.e, x ⪰�

e
y and x ≁�

e
y ). For instance, suppose that on a ranking 

{x, y, z} ⪰ {x} ∼ {y, z} ⪰ {x, y} ⪰ {y} ∼ {x, z} ⪰ {z} the grounded ranking is such that 
x ∼e y . Now, if we improve the position of the subset {x, z} , so that we obtain the new 
ranking {x, y, z} ⪰� {x} ∼� {y, z} ⪰� {x, y} ⪰� {x, z} ⪰� {y} ⪰� {z} , according to monoto-
nicity we have a grounded ranking such that x ⪰�

e
y and x ≁�

e
y.

Finally, the property of independence of the worst subsets is aimed at accounting 
higher ranked subsets over lower ranked ones. Thus, we say that a grounded ranking is 
independent of the worst subsets if, once the grounded ranking has stated that an element 
x is strictly better than y, any change in the relative ranking of subsets in the worst indif-
ference class of the ranking over P(X) does not affect such an assertion. For instance, 
suppose that on the ranking {x, y, z} ⪰ {x} ⪰ {y, z} ⪰ {x, y} ⪰ {y} ∼ {x, z} ∼ {z} 
the grounded ranking says the x ⪰e y and x ≁e y , then it should say the same on 
{x, y, z} ⪰� {x} ⪰� {y, z} ⪰� {x, y} ⪰� {y} ⪰� {x, z} ⪰� {z} , which is obtained from ⪰ by 
just modifying the relation among elements of its last equivalence class {{y}, {x, z}, {z}} . 
So, giving more importance to occurrences in higher ranked subsets, this property actu-
ally rewards the ‘excellence’ of elements in a ranking over P(X).

In [6], the authors not only prove that lex-cel satisfies these (logically independent) 
axioms, but also that it is the only grounding function that satisfies them.

Even though lex-cel is formally defined in [6] as a function le ∶ R(P(X)) → R(X) , 
here we adapt it to handle the input of the dominant set selection problem and thus 
perform the grounding process in Fig.  1. Therefore, we redefine lex-cel as a function 
le ∶ R(F) → R(X) . Then, given a ranking of features f1 ⪰F ⋯ ⪰F f|F| , with quotient 
order Ψ1 ≻F ⋯ ≻F Ψ|F∕∼F | over F∕∼F , and an element x ∈ X , the function � , would be 
defined as:

Example 3 Following Example 2, note that we know that elements x1 and x2 have both the 
most preferred feature f1 , while x3 and x4 have the least preferred feature f2 . With this in 
mind, their � vectors would be: �(x1) = (1, 0) , �(x2) = (1, 0) , �(x3) = (0, 1) , �(x4) = (0, 1) . 
Therefore, the grounded ranking over X would be x1 ∼e x2 ⪰e x3 ∼e x4.

7  The anti‑lex‑cel ranking lifting function

Thanks to lex-cel we can ground a ranking over features in F to a ranking over the elements 
in X. As shown in Fig. 1, the next step is to lift this ranking over single elements to a rank-
ing over sets of elements, namely over P(X) . This procedure is similar to that of the ranking 

�(x) = (|�(x) ∩ Ψ1|,… , |�(x) ∩ Ψ|F∕∼F ||).
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sets of objects problem surveyed in [3]. The ranking sets of objects problem consists on 
building a ranking over sets from an ordering over individual elements. Some solutions for 
the ranking sets of objects problem are maxmin and minmax, as introduced in [2]. Maxmin 
assesses preferences over sets by comparing only their most preferred element except when 
these elements are the same, in which case it compares their least preferred elements. On 
the other hand, minmax does the inverse comparison. It assesses preferences over sets 
based only on how their least preferred elements are compared. If these elements are the 
same, the sets’ most preferred elements are compared. Note that neither of these methods 
consider further elements than the most and least preferred ones. This makes them unsuit-
able for our purpose, since we want to take into account as many elements as possible. 
The leximin and leximax functions introduced in [16] represent alternative approaches. In 
summary, leximin and leximax are based on comparing lexicographically sets. In the case 
of leximin, preferences over sets depend on how their worst elements compare. If these 
elements are the same, their second worst elements are compared, and so on. If there is no 
difference, the larger set is preferred (the sets are indifferent if both have the same size). 
Conversely, leximax compares sets depending on how their best elements compare. If these 
elements are the same, their second best elements are compared, and so on. If there is no 
difference, the smaller set is preferred (the sets are indifferent if both have the same size). 
Unfortunately, we cannot use any of the solutions of the ranking sets of objects problem 
because they assume a total order of elements. Instead, we have a more general assump-
tion, since we suppose a ranking on elements. Note that this is a crucial difference, since 
rankings allow for different elements to be indifferently preferred, whereas total orders are 
antisymmetric, meaning that an element cannot be equally preferred to another element.

Since, to the best of our knowledge, no lifting functions assuming element rankings 
exist, in this section we formalise a novel one, which we call anti-lex-cel. In Sect. 7.1 we 
formally introduce anti-lex-cel. Thereafter, in Sect.  7.2 we provide an axiomatic charac-
terisation of anti-lex-cel and we prove that it is the only lifting function satisfying such 
axioms. Finally, Sect.  7.3 draws the relationship between lex-cel and anti-lex-cel while 
Sect. 7.4 connects the results in this section with existing results in the literature.

7.1  Formal definition

Anti-lex-cel can be viewed as a function ale ∶ R(X) → R(P(X)) , such that for a ranking 
⪰e∈ R(X) , ale(⪰e) = ⪰ is a ranking over P(X) . We formalise anti-lex-cel in a very similar 
way to lex-cel, but reversing the process.

To perform anti-lex-cel we start with a ranking ⪰e over the elements in X. First, we 
consider the quotient set X∕∼e . Each equivalence class in X∕∼e contains a set of indiffer-
ently preferred elements. Equivalence classes in X∕∼e are ordered by the quotient order ≻e . 
Hence, Ξ1 ≻e ⋯ ≻e Ξr , where r = |X∕∼e| and Ξi is the equivalence class containing the i-th 
most preferred elements. We define a function � ∶ P(X) → ℕ

r to count the appearances of 
the elements of a set in P(X) in each equivalence class. Thus, given a set S ∈ P(X) , �(S) is a 
vector of size r whose i-th component stands for the number of elements in S that are found 
in the equivalence class Ξi . Formally:

Note that, similarly to � in Eq. 1, �(S) is a vector whose elements represent how preferred 
the elements in S are: the larger the first numbers of the vector, the more preferred the ele-
ments in S are (in terms of ⪰e ), and hence we can infer that the more preferred S is. This 

(3)�(S) = (s1,… , sr), where si = |S ∩ Ξi|
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again means that ranking sets of elements is equivalent to lexicographically ordering their 
associated vectors as calculated by the � function. Thus, to compare two sets S, S� ∈ P(X) , 
we compare lexicographically �(S) and �(S�) (see Definition 5). With those considerations, 
we are now ready to tackle the formulation of the anti-lex-cel function ale. We define ⪰ as 
the ranking of sets in P(X) such that given two sets S, S� ∈ P(X) , it orders them according 
to the following rules:

After that, we are ready to formally define the anti-lexicographic-excellence ranking lifting 
function as follows:

Definition 6 Given a set of elements X and a ranking ⪰e over the elements in X, the rank-
ing lifting function ale ∶ R(X) → R(P(X)) such that ale(⪰e) = ⪰ is called anti lexico-
graphic excellence (anti-lex-cel).

Example 4 Consider the element ranking x1 ∼e x2 ⪰e x3 ∼e x4 over X that we found in 
Example 3. We apply anti-lex-cel to this ranking by computing the � vector for the sets in 
P(X) . Since the quotient order is Ξ1 ≻ Ξ2 , with Ξ1 = {x1, x2} and Ξ2 = {x3, x4} , we have 
that, for instance, �({x1, x2, x3}) = (2, 1) and �({x3, x4}) = (0, 2) . Then, by comparing the � 
vectors of all sets we can build the following ranking over P(X) : 
{x1, x2, x3, x4} ⪰ {x1, x2, x3} ∼ {x1, x2, x4} ⪰ {x1, x2} ⪰ {x1, x3, x4} ∼ {x2, x3, x4} ⪰ {x1, x3}

∼ {x1, x4} ∼ {x2, x3} ∼ {x2, x4} ⪰ {x1} ∼ {x2} ⪰ {x3, x4} ⪰ {x3} ∼ {x4}.

7.2  Axiomatic characterisation

We now introduce four properties for a ranking lifting function f ∶ R(X) → R(P(X)) and 
prove that they together axiomatically characterise ale and that ale is the unique lifting 
function that satisfies them.

The first axiom is a coherence property saying that the ranking of singleton sets should 
be “aligned” with ⪰e , where ⪰e is a ranking of the elements of X.

Axiom 1 (Simple Dominance) Given an element ranking ⪰e∈ R(X) , a ranking lifting 
function f satisfies the simple dominance property iff

for all x, y ∈ X and with ⪰= f (⪰e).

The second axiom is an anonymity property: permuting the names of elements 
should not affect the ranking provided by a lifting function.

Axiom 2 (Neutrality) Given an element ranking ⪰e∈ R(X) , let � be a bijection on X and let 
⪰�
e
∈ R(X) be such that by

(4)

⎧
⎪⎨⎪⎩

S ⪰ S� ⇔ �(S) ≥L �(S�)

S ⪯ S� ⇔ �(S) ≤L �(S�)

S ∼ S� ⇔ �(S) = �(S�)

x ⪰e y and x ≁e y ⇒ {x} ⪰ {y} and {x} ≁ {y}
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for all x, x� ∈ X . A lifting function f satisfies the neutrality property iff

for all S, S� ∈ P(X) and where �(S) and �(S�) are the images of S and S′ through � and 
where ⪰= f (⪰e) and ⪰�= f (⪰�

e
).

The next axiom says that if a set S is (weakly) preferred to another one S′ , then add-
ing new elements to the preferred one S makes this new set (strictly) preferred to S′.

Axiom 3 (Size Monotonicity) Given an element ranking ⪰e∈ R(X) , a ranking lifting func-
tion f satisfies the size monotonicity property iff

for all S, S� ∈ P(X) and S̄ ⊆ (X ⧵ S) , S̄ ≠ ∅ , with ⪰= f (⪰e).

The next axiom aims at rewarding the best elements preventing the overestimation of 
dominated ones and states that a strict preference between two sets S and S′ , i.e. S ⪰ S� 
and S ≁ S� , should not be affected by the addition of new single element that are strictly 
worse (with respect to the element ranking ⪰e of X) to those already contained in the 
preferred set S.

Axiom 4 (Independence of the Worst Elements) Given an element ranking ⪰e∈ R(X) , a 
ranking lifting function f satisfies the independence of the worst elements property iff

for all S, S� ∈ P(X) and S̄� ⊆ (X ⧵ S�) , S̄′ ≠ ∅ , such that x ⪰e x
� and x ≁e x

� for all x ∈ S and 
x� ∈ S̄� and with ⪰= f (⪰e).

The following proposition establishes that anti-lex-cel satisfies the four axioms 
above.

Proposition 1 The anti-lex-cel lifting function ale satisfies Axioms 1, 2, 3 and 4.

Having axiomatized anti-lex-cel, we can obtain a stronger result. Thus, the follow-
ing theorem tells us that in fact anti-lex-cel is the only lifting function that satisfies these 
axioms.

Theorem 1 Let f ∶ R(X) → R(P(X)) be a ranking lifting function. Then f satisfies Axioms 
1, 2, 3 and 4 if and only if f is the anti-lex-cel lifting function ale.

For the sake of readability, we detail the proofs of Proposition 1 and Theorem  1 in 
Appendix A.1.

x ⪰e x
�
⇔ �(x) ⪰�

e
�(x�)

S ⪰ S� ⇔ �(S) ⪰� �(S�)

S ⪰ S� ⇒ (S ∪ S̄) ≻ S� and (S ∪ S̄) ≁ S�

S ⪰ S� and S ≁ S� ⇒ S ⪰ (S� ∪ S̄�) and S ≁ (S� ∪ S̄�)
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7.3  On the relation between lex‑cel and anti‑lex‑cel

As noticed above, the anti-lex-cel function is very similar to lex-cel, though it real-
ises the reverse process (from ranking over elements to ranking over sets of elements). 
However, notice that, since le ∶ R(P(X)) → R(X) is not injective (it cannot be because 
|R(P(X))| > |R(X)| ), there is no inverse for lex-cel, and therefore, in general, anti-lex-cel 
is not the inverse of lex-cel. Nonetheless, in what follows we characterise the conditions 
under which anti-lex-cel becomes the inverse of a restriction of lex-cel.

Before establishing such formal result, we introduce an auxiliary result that will prove 
useful for that purpose. The following lemma states that we can build the profile vector for 
an element in a compositional, additive manner. More precisely, we can obtain the � and � 
profile vectors by adding up the profile vectors restricted to each part in a partition of P(X) . 
This property will help us prove the relation between lex-cel and anti-lex-cel in the forth-
coming Theorem 2.

Lemma 1 Given P1,… ,Pk a partition of P(X):

�(x) = �|P1
(x) +⋯ + �|Pk

(x),∀x ∈ X

�(S) = �|P1
(S) +⋯ + �|Pk

(S),∀S ∈ P(X)

where

• �|Pj
(x) = (c1,… , cl), with ci = |{S ∈ Σi ∩ Pj ∶ x ∈ S}| , stands for the profile vector of 

element x restricted to partition Pj ; and
• �|Pj

(S) = (s1,… , sr) , with si = |({S} ∩ Pj) ∩ Ξi| , stands for the profile vector of set S 
restricted to partition Pj.

Proof  1 The proof is straightforward considering that � and � are vectors of cardinali-
ties and cardinalities satisfy that if S ⊆ X , and P1,…Pk ⊆ X is a partition of X, then 
�S ∩ X� = ∑

i �S ∩ Pi�.

The following result tells us that given a ranking ⪰e over the elements of X, the compo-
sition of anti-lex-cel and lex-cel over it results in the very same ranking ⪰e.

Theorem 2 Given a ranking ⪰e∈ R(X) , le(ale(⪰e)) =⪰e.

Proof  2 Suppose ale(⪰e) =⪰ and le(ale(⪰e)) =⪰
�
e
 . First, note that if ⪰e is such that 

∀x, y ∈ X , x ∼e y , then when applying ale to ⪰e we would have that ∀S ∈ P(X) , 
�(S) = (|S|) which would mean that the preference of a set only depends on its car-
dinality (not on its elements), and when applying back le to the obtained set rank-
ing we would have that ∀x, y ∈ X,�(x) = �(y) as all elements in X appear in the same 
number of sets of a certain cardinality. Therefore, to prove the theorem we can con-
sider that x, y ∈ X , such that x ⪰e y and x ≁e y and prove that x ⪯�

e
y is not pos-

sible. Now consider XYS = {S ∈ P(X), x, y ∈ S} , XS = {S ∈ P(X), x ∈ S, y ∉ S} , 
YS = {S ∈ P(X), x ∉ S, y ∈ S} and RS = {S ∈ P(X), x, y ∉ S} , note that these subsets form 
a partition of P(X) ( P(X) = XYS ∪ XS ∪ YS ∪ RS , and XYS, XS, YS, RS disjoint), thus when 
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applying le ( le(⪰) =⪰e ) we will have: �(x) = �|XYS(x) + �|XS(x) + �|YS(x) + �|RS(x) and 
�(y) = �|XYS(y) + �|XS(y) + �|YS(y) + �|RS(y) , and �|XYS(x) = �|XYS(y) , �|RS(x) = �|RS(y) , 
and �|YS(x) = �|XS(y) = (0,… , 0) . Since, y ⪰�

e
x , we have that �(y) ≥L �(x) which consid-

ering the equalities above implies that �|YS(y) ≥L �|XS(x) , since |YS| = |XS| , this would 
mean that ∃S ∈ YS , such that ∀S� ∈ XS , S ⪰ S� or alternatively �(S) ≥L �(S�) . But this is 
not possible, consider S� = S ⧵ {y} ∪ {x} , this set contains x, therefore S� ∈ XS and since 
x ⪰e y and x ≁e y , 𝜂(S�) >L 𝜂(S) , which proves the theorem.

Based on the theorem above, we can establish that anti-lex-cel is the inverse of lex-cel 
for a restricted family of rankings ILE = {⪰∈ R(P(X)),∃ ⪰e∈ R(X)ale(⪰e) =⪰}.

Corollary 1 le|ILE is the inverse of ale.

Proof  3 In Theorem  2 we have seen that le(ale(⪰e)) =⪰e , which means that 
le|ILE(ale(⪰e)) =⪰e as we are only restricting the domain of le, now due to this restriction 
le is injective and exhaustive, as is ale, so they are inverses.

7.4  Related results from the literature

Next we investigate the relationship between anti-lex-cel and a related result in the litera-
ture. In [7], Bossert et al. study a particular preorder on P(X) associated to a linear order 
on X. Therefore, analogously to anti-lex-cel, [7] studies a lifting of preferences from the 
element level (the linear order) to the set level. Interestingly, in this section we show that 
when fed with a linear order on X (which is a particular type of ranking), the output of anti-
lex-cel is precisely the preorder on P(X) studied in [7]. Hence, this shows the generality of 
anti-lex-cel.

Given an element ranking ⪰e∈ R(X) that is also anti-symmetric (i.e., ⪰e is a linear 
order), in [7] the authors have introduced the following properties for a preorder (a transi-
tive and reflexive relation) ⪰ of P(X) associated to ⪰e (see also [3] for a general review of 
the related literature):

• Simple dominance (SD): for any x, y ∈ Y  , x ⪰e y and x ≁e y ⇒ {x} ⪰ {y} and {x} ≁ {y}

;
• Simple Monotonicity (SM): for any x, y ∈ X with x ≠ y , {x, y} ⪰ {x} and {x, y} ≁ {x};
• Independence (IND): for any S, T ∈ P(X) , for each x ∈ X ⧵ (S ∪ T) , 

S ⪰ T ⇔ S ∪ {x} ⪰ T ∪ {x};
• Robustness for strict Preferences (RP): for any S, T ∈ P(X) , for each x ∈ X ⧵ (S ∪ T)

A particular preorder on P(X) associated to a linear order ⪰e on X has been studied in 
[7]. To define it, we need some more notations. Without loss of generality, it is assumed 
that the elements of any set S = {x1,… , xs} ∈ P(X) are ordered in decreasing preference 
according to ⪰e , that is, x1 ⪰e x2 ⪰e … ⪰e xs.

S ⪰ T and S ≁ T ,

y ⪰e x and y ≁e x ∀y ∈ S,

z ⪰e x and z ≁e x ∀z ∈ T

⎫
⎪⎬⎪⎭

⇒ S ⪰ T ∪ {x} and S ≁ T ∪ {x}.
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Let u⪰e
∶ X → ℝ>0 be a real-valued function such that for all x, y ∈ X , 

u⪰e
(x) ≥ u⪰e

(y) ⇔ x ⪰e y . For S = {x1,… , xs} ∈ P(X) , let v(S) be an |X|-dimensional 
vector such that

so, the last |X| − |S| components of the vector are completed with zeros.
The relation ⪰u⪰e

 on P(X) is then defined as follows:

for all S, T ∈ P(X) . The following result, which has been proved in [7], states that ⪰u⪰e
 is 

the unique preorder of P(X) that satisfies the four properties.

Theorem 3 [7] Let ⪰ be a preorder on P(X) . ⪰ satisfies SD, SM, IND and RP iff ⪰=⪰u⪰e
.

We now prove that the total preorder ⪰= ale(⪰e) also satisfies properties SD, SM, 
IND and RP.

Proposition 2 Given a linear order ⪰e∈ R(X) , the ranking ⪰= ale(⪰e) satisfies SD, SM, 
IND and RP.

Proof 4 From Proposition 1 we know that f satisfies Axioms 1, 3 and 4.
From Axiom 1 on ale, we directly have that ⪰ satisfies SD. Since ⪰ is total, we have 

{x} ∼ {x}.
Then, the proof that ⪰ satisfies SM follows by Axiom 3 on ale with {x} in the role of 

both S and S′ and S̄ = {y}.
To prove IND, simply notice that for all S, T ∈ P(X) , 

�(S) ≥L �(T) ⇔ �(S ∪ {x}) ≥L �(T ∪ {x}) for all x ∈ X ⧵ (S ∪ T).
Finally, the proof that ⪰ satisfies RP follows by Axiom 4 on ale with T in the role of S′ 

and S̄� = {x}.

To end this section, the following corollary formally establishes the relationship 
between anti-lex-cel and the results by Bossert et al. in [7].

Corollary 2 Let ⪰e be a linear order on X, then ⪰=⪰u⪰e
 where ⪰= ale(⪰e).

Proof 5 The proof follows directly from Theorem 3 and Proposition 2.

8  Solving the dominant set selection problem

With both lex-cel and anti-lex-cel, we can now address solving the dominant set selection 
problem. As shown in Fig. 1, we will build the solution through three steps. In particular 
we will transform the input of the DSSP into a ranking over X using lex-cel, then we use 
anti-lex-cel to obtain a ranking over P(X) . Thanks to the properties of ale, this ranking 
embodies dominance as in Definition 4, meaning that a set is dominant over its least pre-
ferred sets in the ranking. With this ranking and the feasibility function, we can find the 
solution as the more preferred set in the ranking that is feasible.

vu⪰e
(S) = (u⪰e

(x1),… , u⪰e
(xs), 0,… , 0),

S ⪰u⪰e
T ⇔ vu⪰e

(S) ≥L vu⪰e
(T).
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We start with the elements in X, the set of features F, their ranking ⪰F and the feature 
function � relating elements to their features. In Sect. 6, we have adapted the lex-cel func-
tion to ground the ranking ⪰F to a ranking over X such that le(⪰F) =⪰e . Then, we apply 
anti-lex-cel to this ranking, ale(⪰e) =⪰ , to obtain a ranking over P(X) . Thus, by composing 
lex-cel and anti-lex-cel, we can define a function dom ∶ R(F) → R(P(X)) that transforms a 
ranking over the features in F to a ranking over the sets in P(X) as dom(⪰F) = ale(le(⪰F)) . 
We show that the resulting ranking from the dom function embodies dominance as stated 
by the following theorem.

Theorem 4 Let X be a set of elements, F a set of features, ⪰F a ranking over F, and a func-
tion � relating elements to their features. For any pair S, S� ∈ P(X) , S is dominant over S′ 
⇔ S ≻ S′ ( S ⪰ S� and S ≁ S� ), where dom(⪰F) = ale(le(⪰F)) =⪰.

For the sake of readability, we detail the proof of Theorem  4 in the appendix (see 
Sect. A.2).

Corollary 3 Consider a dominant set selection problem with a set of elements X, a 
set of features F, a ranking ⪰F over F, and a function � relating elements to their fea-
tures. Consider a set Spref ∈ P(X),𝜙(Spref ) = ⊤ , such that ∀S� ∈ P(X) with S� ⪰ Spref  and 
S� ≁ Spref ⇒ 𝜙(S�) = ⊥ . Then, Spref  is a solution to the dominant set selection problem.

Proof 6 This result follows directly from Theorem 4.

With this result, note that to find the solution to the dominant set selection problem, the 
only step left to do after building ⪰ is to check for feasibility from the most preferred set in 
⪰ to the least preferred set in ⪰ until we find the most preferred one that is feasible.

Nonetheless, note that building the ranking dom(⪰F) =⪰ to solve the dominant set 
selection problem turns out to be rather costly. It requires to compute the � profile vector 
in Eq. 3 for every subset in P(X) , with cost O(2|X|) , to subsequently order them following 
Eq.  4, which requires O(2|X| ⋅ log(2|X|)) in the average case ( O(22|X|) in the worst case). 
Therefore, finding the solution has worse than exponential complexity on the number of 
elements of X, hence hindering applicability.

With the intent of solving the DSSP through optimisation techniques, we show an alter-
native way of comparing sets of P(X) avoiding the cost of explicitly building ⪰ . In particu-
lar, we propose a function, the so-called preference function � ∶ P(X) → ℕ , which embod-
ies the preferences in the ⪰ ranking while not needing to build it. Given a set S ∈ P(X) , the 
larger its value by the preference function, the more preferred it is in ⪰ . Importantly, we 
prove that this function adheres to ⪰ , meaning that for all pairs of sets, the ranking between 
each pair is maintained by the function’s output.

Let S ∈ P(X) be a set of elements. We define its profile vector as �(S) = (cS
1
,… , cS

r
) , 

where cS
i
= |S ∩ Ξi| and r = |X∕∼e| . From that, we compute the preference value of S as 

follows:

Recall that Ξr is the equivalence class containing the least preferred elements of X. Notice 
that by applying Eq.  5, we can compute the preference of each equivalence class Ξi : 

(5)�(S) =

r∑
i=1

|S ∩ Ξi|(
r∑

j=i+1

�(Ξj) + 1), where �(Ξr) = |Ξr|.



Autonomous Agents and Multi-Agent Systems (2021) 35:42 

1 3

Page 19 of 38 42

�(Ξi) = �Ξi�(∑r

j=i+1
�(Ξj) + 1) . Hence, the preference of the classes in the quotient order 

Ξ1 ≻e ⋯ ≻e Ξr can be recursively computed starting from Ξr . Note also that �(S) ≥ 0 , and 
�(S) ∈ ℕ for any S.

The � preference function embodies the ranking ⪰ over sets in P(X) , as we now prove 
through the following theorem.

Theorem 5 Given two sets S, S� ∈ P(X) , S ⪰ S� ⇔ �(S) ≥ �(S�).

Again, for the sake of readability, we detail the proof of Theorem 5 in the appendix (see 
Sect. A.3).

The preference function � together with the results in Theorems 4 and 5 are key to cast 
the dominant set selection problem as the optimisation problem expressed by the following 
corollary.

Corollary 4 Consider a dominant set selection problem with a set of elements X, a set of 
features F, a ranking ⪰F over F, and a function � relating elements to their features. A fea-
sible set Smax ∈ P(X) with maximum preference � (see Eq. 5):

is a solution to the dominant set selection problem.

Proof 7 This result follows directly from Theorems 4 and 5 and Corollary 3.

Building the whole ranking or computing the preference of all possible subsets is com-
putationally costly. Nonetheless, in those cases in which the feasibility function can be 
translated into linear or quadratic constraints we can profit from the preference function 
� to encode the DSSP into a binary integer program (BIP) and solve it with state of the 
art solvers. Thus, hereafter we will assume that we can translate the feasibility function 
into a set of linear or quadratic constraints C. The first step to encode the dominant set 
selection problem is to build the objective function of the BIP. The challenge here is to 
compactly represent the sets of P(X) . Notice that for X = {x1, x2, x3} , the set S = {x1, x2} 
can be represented as {x1, x2,¬x3} , or as the binary vector (1,  1,  0). In general, any 
S ∈ P(X) can be encoded as a vector (d1,… , d|X|) , where di ∈ {0, 1} is the decision vari-
able for element xi ∈ X : if di = 1 means that xi is in S, while di = 0 means xi is not in S. 
Using the (d1,… , d|X|) encoding for sets and following Eq.  5, in general we can obtain 
the preference of any set as 

∑r

i=1
(
∑

xw∈Ξi
dw)(

∑r

j=i+1
�(Ξj) + 1) , making use of the fact that 

�S ∩ Ξi� = ∑
xw∈Ξi

dw . Therefore, solving Problem 1 amounts to finding the assignment of 
variables (d1,… , d|X|) representing a feasible set with maximum preference. For that, we 
propose to solve the following BIP:

We require that the selected set satisfies the constraints in C. Thus, we consider these con-
straints in the encoding.

Observe that our BIP employs |X| binary decision variables ( di ∈ {0, 1} ) and avoids 
the expensive, explicit computation of the ranking. Instead, it only requires to compute 
the preference of the equivalence classes Ξi(�(Ξi) ). Since our objective function is always 

(6)Smax = argmaxS∈P(X), 𝜙(S)=⊤ �(S)

(7)max

r∑
i=1

(
∑
xw∈Ξi

dw)(

r∑
j=i+1

�(Ξj) + 1)
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linear, if the constraints in C are either linear or quadratic, we can resort to off-the-shelf 
integer programming solvers like CPLEX or Gurobi. If the constraints in C are linear we 
would have to solve a typical BIP, whereas if they are quadratic we would have to solve a 
Binary Integer Quadratically Constrained Program. Appendix B details the algorithms to 
build the BIP and provides a link to an implementation.

In the next section we show the BIP that results when encoding the value-alignment 
norm selection problem introduced in Sect.  2. There we show an example of objective 
function together with a collection of linear constraints.

9  Application: value‑aligned norm selection

Now we count on the tools to solve the dominant set selection problem. Hereafter we will 
revisit the value-alignment problem described in Sect. 2 to exploit such tools for solving it, 
hence helping the decision maker.

Recall that in our value-alignment problem the decision maker is presented with a set of 
candidate norms N and a value system, which includes moral values and their preferences. 
Each of the norms in N is linked to some values, meaning that each norm promotes the val-
ues it is linked to. The problem for the decision maker is to select the subset of norms in N 
that better aligns with the values.

Prior to casting the problem faced by the decision maker as a particular type of domi-
nant set selection problem, we must formally characterise: (i) the elements (norms); and (2) 
the features and preferences over features (value system).

First we start with the elements. For that, we base the definition of norms and their 
relationships in those in [22]. Hereafter we consider that norms are meant to regulate a 
multi-agent system composed of a set of agents Ag, with a finite set of actions A available 
to them.

Furthermore, we consider a simple, first-order language L to describe the state of the 
multi-agent system. With these definitions in place, we formalise the elements of our prob-
lem, the norms:

Definition 7 (Norm) A norm is a pair ⟨�, �(a)⟩ , where � is a precondition in the language 
L , a ∈ A is the regulated action, and � ∈ {Obl,Per,Prh} is a deontic operator.

Example 5 Say that a country has to decide the norms to apply to its airport borders. The 
following norms are considered: n1 permits to cross the border, n2 prohibits to scan the bag-
gage, n3 obliges to show a passport, and n4 obliges to scan the baggage. These norms can 
be represented formally as follows: n1 as ⟨∅,Per(cross)⟩ ; n2 as ⟨∅,Prh(scan-bag)⟩ ; n3 as ⟨∅,
Obl(show-passport)⟩ ; and n4 as ⟨∅,Obl(scan-bag)⟩ . Since we will use these norms in fol-
lowing examples, for the sake of readability we will note them omitting their precondition.

Given a set of norms N, relationships between norms may hold. Thus, we identify 
norm exclusivity and generalisation as norm relations. Such relationships are relations 
over norms, henceforth noted as Rx and Rg respectively. Two norms n, n′ are mutually 
exclusive, noted as (n, n�) ∈ Rx , when they cannot be enacted at once; and they have a 
direct generalisation relation, noted as (n, n�) ∈ Rg , when n is more general than n′ and 
there is no other nmid ∈ N , such that n is more general than nmid being nmid more general 
than n′ . We note A(n)/S(n) the ancestors/successors of n.
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By putting together norms and their relations, we fully characterise the normative 
dimension of our decision space.

Definition 8 A norm net is a structure ⟨N,R⟩ , where N is a set of norms and R = {Rx,Rg} 
is the set of exclusive, and generalisation relations.

Likewise [22], henceforth we shall refer to any subset Ω ⊆ N as a norm system. We 
are interested in a particular type of norm systems: those that contain neither conflicting 
nor redundant norms. Thus, we characterise norm systems that avoid both conflicts and 
redundancy as sound norm systems.

Definition 9 Given a norm net ⟨N,R⟩ , a norm system Ω ⊆ N is sound iff it is both con-
flict-free and non-redundant, that is a norm system Ω ⊆ N is sound if for each ni, nj ∈ Ω , 
(ni, nj) ∉ Rx ; nj ∉ A(ni) ; and ∀n ∈ N , such that |S̄(n)| > 1 , then S̄(n) ⊈ Ω , where S̄(n) are 
the direct successors of n ( ̄S(n) = {n� ∈ N, (n, n�) ∈ Rg}).

At this point, notice that sound norm systems represent feasible norm systems. 
Therefore, when casting our value-alignment problem as a dominant set selection prob-
lem, checking for feasibility would consist in checking for soundness.

Example 6 Consider the norms in Example 5, note that we cannot jointly allow to cross 
the border freely while obliging to show a passport, therefore n1 and n3 are incompatible 
norms. On the other hand, we cannot both oblige to scan a bag and prohibit it, making 
norms n2 and n4 incompatible as well. Thus, the norm net for the norms in Example 5 is the 
one in Fig. 2

The features in this particular instance of a dominant set selection problem are val-
ues. Ethical reasoning typically involves a value system, that contains a set of moral val-
ues, which are principles that the society deems valuable. As noted in [5], within a value 
system, some values are preferred to others, and such preferences over moral values 
influence decision making. Therefore, the preferences over the moral values of a value 
system, together with the values themselves, have been identified as a core component 
for ethical reasoning in [5, 14, 21]. Formally,

Definition 10 A value system is a pair ⟨V ,⪰v⟩ , where V stands for a non-empty set of val-
ues, and ⪰v is a ranking over the moral values in V.

The definition of value system contains a ranking over moral values, and hence this is 
the ranking over features.

As required by the dominant set selection problem, we define a function linking 
the norms (elements) to their values (features). Note though that due to the interplay 
between values and norm relations, this function must fulfil some conditions. Thus:

Definition 11 Given a norm net ⟨N,R⟩ and a value system ⟨V ,⪰v⟩ , we call value promo-
tion function the function � ∶ N → P(V) that for each norm returns the set of values the 
norm promotes �(n).
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In norm selection, a norm that does not promote any value and a value that is not 
promoted by any norm are irrelevant. Henceforth, we suppose that all norms promote at 
least one value ( ∀n ∈ N, �(n) ≠ � ), and that all values are promoted by at least one norm 
( ∀v ∈ V  , ∃n ∈ N , s.t. v ∈ �(n)).

Example 7 Following Example 6, we observe that n1 and n2 promote free movement 
of people/goods ( �(n1) = �(n2) = {vfm} ), whereas the rest of norms promote safety 
( �(n3) = �(n4) = {vsaf } ), as depicted in Fig. 2.

With the definitions of the various structures of norms and values we can now define 
the problem faced by the decision maker that we want to solve.

Problem 2 Given a norm net ⟨N,R⟩ , a value system ⟨V ,⪰v⟩ and a value promotion func-
tion � , we call value-aligned norm selection (VANS) problem, the problem of finding the 
set of norms S ∈ P(N) , such that S is a sound norm system and any other norm system S′ , 
that dominates S is not sound.

The value-aligned norm selection problem is a particular instance of the dominant set 
selection problem.

To solve the value-aligned norm selection problem, we proceed as detailed in Sect. 8. 
First, we apply lex-cel to the value ranking (as we have done in Example 3).

Once we obtain the ranking over N, we would just apply ale to obtain the ranking 
over all possible norm systems (as done in Example 4).

With the ranking over all norm systems in P(N) , it remains to check for feasibility (in 
this case by checking for soundness).

Example 8 An example value-aligned norm selection problem would be that where 
N are the norms in Example 5, with the relations R in Example 6 to assess feasibility 
and the value promotion function � defined in Example 7, supposing the value system 
V = {vfm, vsaf } , with the value ranking (feature ranking) vfm ⪰v vsaf  . Note that this structure 
is completely equivalent to the dominant set selection problem formulated in Example 2, 
therefore in this case we already know the P(N) ranking as we have found it in Example 

Fig. 2  Example of candidate 
norms for border control along 
with their relations and their 
promotion of the free movement 
and safety values
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4. Thus, the solution to this value-aligned norm selection problem is {n1, n2} because it is 
the first sound (feasible) norm system in the ranking. Note that all norm systems with 3 or 
4 norms contain a pair of exclusive norms and out of all the norm systems with 2 norms, 
{n1, n2} is the most preferred one. In conclusion, we provided some norms to regulate an 
airport and by preferring freedom of movement of people/goods over security we selected 
the norms allowing to cross the border freely to both people and their belongings.

Nonetheless, as explained previously, the exhaustive approach followed above is com-
putationally expensive. Instead, we can solve a VANS problem as an optimisation problem 
by encoding it into a BIP, as explained in Sect. 8. Building the objective function for this 
encoding is straightforward from Eq. 7. We must simply consider that there is one deci-
sion di variable for each norm ni ∈ N . Moreover, we must add the following constraints to 
ensure that the resulting solution is feasible (the resulting norm system is sound):

• Mutually exclusive (incompatible) norms cannot be selected at once: 

• A norm cannot be simultaneously selected with any of its ancestors: 

• If a norm has more than one direct successor (we note S̄(n) = {n� ∈ N, (n, n�) ∈ Rg} ), 
these direct successors cannot be simultaneously selected: 

Algorithms to build the BIP for a VANS problem and a link to an implementation can be 
found in Appendix C.

Example 9 Example 8, details a value-aligned norm selection problem and how to build a 
norm system ranking for it. Next we provide the BIP encoding for this example problem. 
First, we will build our objective function. Since the element ranking is n1 ∼e n2 ⪰e n3 ∼e n4 
(see Example 3), the quotient order is Ξ1 ≻e Ξ2 , we first compute �(Ξ2) = |Ξ2| = 2 , 
because Ξ2 = {n3, n4} (we can also compute �(Ξ1) = |Ξ1| ⋅ (�(Ξ2) + 1) = 6 , because 
Ξ1 = {n1, n2} , though we do not need this number). Therefore, the objective function 
(following Eq. 7) which we want to maximise is 3d1 + 3d2 + d3 + d4 . Since the norms of 
our running example have some relations between them, as shown in Fig. 2, we consider 
the following constraints regarding exclusive norms: d1 + d3 ≤ 1 , d2 + d4 ≤ 1 . With this 
encoding the solution to the BIP is {n1, n2} (the same we found in Example 8 using ⪰).

Different value rankings may vary the selection of the value-aligned norm system. In 
previous examples we solved the problem of norm selection in an airport depicted in Fig. 2 
by considering the value ranking (feature ranking) vfm ⪰v vsaf  . Subsequent Examples 10 
and 11 explore how the solution changes for alternative value rankings ( vfm ⪯v vsaf  and 
vfm ∼v vsaf ).

Example 10 Supposing vfm ⪯v vsaf  , when grounding these preferences with lex-cel we 
obtain the norm ranking n3 ∼e n4 ⪰e n1 ∼e n2 . Then, lifting this ranking with anti-lex-cel 

(8)di + dj ≤ 1 for each (ni, nj) ∈ Rx

(9)di + dk ≤ 1 for each nk ∈ A(ni) 1 ≤ i ≤ |N|

(10)If |S̄(n)| > 1 then
∑

nj∈S̄(n)

dj < |S̄(n)| for each n ∈ N
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we obtain: {n1, n2, n3, n4} ⪰ {n1, n3, n4} ∼ {n2, n3, n4} ⪰ {n3, n4} ⪰ {n1, n2, n3} ∼ {n1, n2, n4}

⪰ {n1, n3} ∼ {n1, n4} ∼ {n2, n3} ∼ {n2, n4} ⪰ {n3} ∼ {n4} ⪰ {n1, n2} ⪰ {n1} ∼ {n2} . In 
this case the solution is {n3, n4} , as it is the first sound (feasible) norm system in the rank-
ing (on one hand, all norm systems containing 4 or 3 norms include a pair of exclusive 
norms and, on the other hand, out of all the norm systems with 2 norms it is the most pre-
ferred one).

Example 11 If vfm ∼v vsaf  , when grounding these preferences with lex-cel we obtain the 
norm ranking n1 ∼e n2 ∼e n3 ∼e n4 . And lifting this ranking with anti-lex-cel we obtain: 
{n1, n2, n3, n4} ⪰ {n1, n2, n3} ∼ {n1, n2, n4} ∼ {n1, n3, n4} ∼ {n2, n3, n4} ⪰ {n1, n2} ∼ {n1, n3} ∼

{n1, n4} ∼ {n2, n3} ∼ {n2, n4} ∼ {n3, n4} ⪰ {n1} ∼ {n2} ∼ {n3} ∼ {n4} . In this case there 
are multiple solutions, namely: {n1, n2} , {n1, n4} , {n2, n3} , and {n3, n4} , as these are the 
most preferred sound (feasible) norm systems in the ranking (all norm systems containing 
4 or 3 norms include a pair of exclusive norms, and the rest of norm systems with 2 norms 
are not sound). Notice that, when considering the values indifferently preferred, the possi-
ble solutions contain both permissive and restrictive norms for travellers. This was not the 
case in previous examples, as most permissive norms where selected when preferring free-
dom of movement over security and most restrictive norms when preferring security over 
freedom of movement.

10  Conclusions and future work

This paper describes tools to help decision makers select the most preferred set from a 
range of available options. We refer to this problem as the dominant set selection problem 
(DSSP). We solve it by considering both qualitative preference information over the fea-
tures characterising the options and feasibility constraints.

Specifically, we propose to: first, ground the feature preferences to preferences over sin-
gle objects; second, lift the object ranking into a ranking of all possible sets of options; and 
third, select the most preferred and feasible set of options. This requires the combination 
of existing results in the social choice literature, lex-cel [6], with our novel anti-lex-cel. To 
the best of our knowledge, the composition of ranking functions to obtain another ranking 
function (in our case we have composed le and ale to obtain dom) has not been previously 
explored and may pose an easier approach in those cases in which defining a ranking func-
tion directly is no easy task.

Moreover, we show how to encode the dominant set selection problem as a binary inte-
ger program (BIP) so that it can be solved with the aid of off-the-shelf solvers. We formally 
prove that solving the optimisation problem defined by the BIP encoding of the DSSP, we 
obtain a solution to the DSSP. Note that, for our set ranking we have found an encoding 
that allows to find the most preferred feasible set in the ranking while avoiding the compu-
tational cost of building it. We deem this strategy as promising when dealing with similar 
qualitative problems.

Thus, the overall contributions of this paper are two-fold. Firstly, the formalisation of a 
novel qualitative decision-making problem: the dominant set selection problem. Secondly, 
the resolution of this problem, which requires the combination of methods from the lit-
erature as well as our novel anti-lex-cel method. Regarding anti-lex-cel, we also charac-
terise it axiomatically, prove its uniqueness and show that it generalises former results in 
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the literature. Furthermore, we use binary integer programming to encode (and solve) the 
problem. Finally, we illustrate our overall approach by means of the so-called value-align-
ment norm-selection problem.

However, our work counts on some limitations that are worth discussing. First, the qual-
itative approach described in this paper does not allow to express different degrees of rela-
tion with a feature (as it is the case in the quantitative approach described in [22]). Besides 
that, although we can express positive relationships between elements and features, we 
cannot express negative relationships (e.g. norm value demotion). Secondly, our work con-
siders only element features, but cannot model set features. For instance, in a selection 
problem considering human candidates, gender is an individual feature. However, a feature 
such as gender balance, which affects a collection of individuals, cannot be handled within 
our framework.

As to future work, we plan to extend our work on norm selection. In its current form, 
we assume that norms promote moral values, but in general norms may also demote moral 
values. From a theoretical point of view, capturing demotion will require a reformulation 
of the dominant set selection problem. Also, we would like to study which problems can-
not be efficiently solved with the current BIP encoding. Theoretically, we cannot efficiently 
solve any problem with constraints that are neither linear nor quadratic. In practice though, 
it is difficult to identify problems with such complex constraints. Finally, we also envision 
as an interesting future research to investigate alternative approaches to our dominance 
principle. Grounded on the literature of Multi-Criteria Decision Making, those approaches 
would compensate features rather than favouring element excellence.

Proofs

Axiomatic characterisation of anti‑lex‑cel

First, we prove that ale satisfies the axioms of our characterisation. After that, we show 
that, in fact, ale is the only lifting function that satisfies such axioms.

Proposition 1 The anti-lex-cel lifting function ale satisfies Axioms 1, 2, 3 and 4.

Proof 8 Let ⪰e be a ranking over the elements of X and X∕ ∼e its quotient order with equiv-
alence classes Ξ1 ≻e … ≻e Ξr . Let ⪰= ale(⪰e).

Axiom 1:
Take x, y ∈ X such that x ⪰e y and x ≁e y . Then, two elements i, j ∈ {1,… , r} exist such 

that i < j , x ∈ Ξi and y ∈ Ξj . So, 𝜂({x}) >L 𝜂({y}) and, by relation (4), we have {x} ⪰ {y} 
and {x} ≁ {y} , which proves that ale satisfies Axiom 1.

Axiom 2:
let � be a bijection on X and let ⪰�

e
∈ R(X) be such that

for all x, y ∈ X . Let X∕ ∼�
e
 be the quotient order of ⪰�

e
 with equivalence classes 

Ξ𝜋
1
≻𝜋
e
… ≻𝜋

e
Ξ𝜋
r
 . Notice that ⪰e and ⪰�

e
 have precisely the same number of equivalence 

classes. Moreover, for any x ∈ X there exists i ∈ {1,… , r} such that

x ⪰e y ⇔ �(x) ⪰�
e
�(y)
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So, �(S) = �(�(S)) for any S ∈ P(X) and where �(S) is the image of S through � . By rela-
tion (4), it follows that ale also satisfies Axiom 2.

Axiom 3:
Consider two sets S, S� ∈ P(X) such that S ⪰ S� . Consider the case S ∼ S� (the case 

S ⪰ S� and S ≁ S� is similar and left to the reader). By relation (4) we have that �(S) = �(S�) . 
Now take another set S̄ ⊆ (X ⧵ S) , S̄ ≠ ∅ . Consider the new set S ∪ S̄ which contains some 
elements not in S. Then, 𝜂(S ∪ S̄) >L 𝜂(S) = 𝜂(S�) and, by relation (4), it follows that 
(S ∪ S̄) ≻ S� and (S ∪ S̄) ≁ S� which proves that ale satisfies Axiom 3.

Axiom 4:
Consider two sets S, S� ∈ P(X) such that S ⪰ S� and S ≁ S� . By relation (4), it exists 

i ∈ {1,… , r} such that �k(S) = �k(S) for all k ∈ {1,… , i − 1} and 𝜂i(S) > 𝜂i(S
�) (being 

�j(S) , the j-th element of �(S) ). Let S̄� ⊆ (X ⧵ S�) , S̄′ ≠ ∅ , be such that x ⪰e x
� and x ≁e x

� 
for all x ∈ S and x� ∈ S̄� . Since each element in S is strictly preferred to each element in S̄′ , 
then 𝜂k(S�) = 𝜂k(S

� ∪ S̄�) for all k ∈ {1,… , i} and, consequently, 𝜂(S) >L 𝜂(S� ∪ S̄�) , which 
finally proves the fact that ale also satisfies Axiom 4.

Having axiomatized anti-lex-cel, we now prove that anti-lex-cel is the only lifting 
function that satisfies these axioms. Such proof of unicity requires the previous intro-
duction of two auxiliary lemmas.

Lemma 2 Let f ∶ R(X) → R(P(X)) be a ranking lifting function that satisfies Axiom 2. Let 
S, S� ∈ P(X) and ⪰e∈ R(X) be such that �(S) = �(S�) . Then S ∼ S� (where ∼ is the symmet-
ric part of relation ⪰= f (⪰e)).

Proof  9 Let ⪰e be a ranking over the elements of X and X∕ ∼e its quotient order 
with equivalence classes Ξ1 ≻e … ≻e Ξr . Since �(S) = �(S�) = (s1,… , sr) , with 
si = |S ∩ Ξi| = |S� ∩ Ξi| for all i ∈ {1,… , r} , we can define a bijection � on X such that 
the �(S ∩ Ξi) = S� ∩ Ξi and �(S� ∩ Ξi) = S ∩ Ξi for all i ∈ {1,… , r} . So, �(S) = S� and 
�(S�) = S.

Define a new ranking ⪰�
e
∈ R(X) such that x ⪰e y ⇔ �(y) ⪰�

e
�(y) for all x, y ∈ X . Then, 

by Axiom 2, we have that

On the other hand, ⪰=⪰� , and we may conclude that S ⪰ S� ⇔ S� ⪰ S , which precisely 
means that S ∼ S� for ⪰ is a total relation.

Lemma 3 Given an element ranking ⪰e∈ R(X) and f ∶ R(X) → R(P(X)) a ranking lifting 
function that satisfies Axioms 1 and 4. Then, the resulting set ranking f (⪰e) =⪰ is such that 
∀x ∈ X , {x} ⪰ S and {x} ≁ S for every S ⊆ L(x) , where L(x) = {x� ∈ X|x ⪰e x

� and x ≁e x
�} , 

is the set of elements strictly less preferred than x.

Proof 10 Given an element ranking ⪰e∈ R(X) , let ⪰= f (⪰e) and ⪰∗= ale(⪰e) . Let x ∈ X 
and L(x) = {x� ∈ X|x ⪰e x

� and x ≁e x
�} . Take y ∈ L(x) . By Axiom 1, we have that 

{x} ⪰ {y} and {x} ≁ {y} . Now take S̄� ⊆ L(x) ⧵ {y} . By Axiom 4, with {x} in the role of S, 
{y} in the role of S′ , we have that {x} ⪰ {y} ∪ S̄� and {x} ≁ {y} ∪ S̄� . Since {y} ∪ S̄� can be 
whatever subset of L(x), we have proved the lemma.

x ∈ Ξi ⇔ �(x) ∈ Ξ�
i
.

S ⪰ S� ⇔ S� ⪰� S.
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Theorem 1 Let f ∶ R(X) → R(P(X)) be a ranking lifting function. Then f satisfies Axioms 
1, 2, 3 and 4 if and only if f is the anti-lex-cel lifting function ale.

Proof  11 We know from Proposition 1 that the anti-lex-cel lifting function ale satisfies 
Axioms 1, 2, 3 and 4.

Conversely, suppose f satisfies Axioms 1, 2, 3 and 4. Consider an element ranking 
⪰e∈ R(X) having X∕ ∼e as quotient order with equivalence classes Ξ1 ≻e … ≻e Ξr . Let 
⪰= f (⪰e) and ⪰∗= ale(⪰e) . It has to be proved that

for all Q,Q� ∈ P(X).
We first prove the equivalence for the asymmetric parts, i.e.,

for all Q,Q� ∈ P(X).
(⇒)
Let Q ⪰∗ Q� and Q ≁∗ Q� . By relation (4), it exists i ∈ {1,… , r} such that 

�k(Q) = �k(Q
�) for all k ∈ {1,… , i − 1} and 𝜂i(Q) > 𝜂i(Q

�) (being �j(Q) , the j-th element of 
�(Q) ). We distinguish two cases: 

 (i): �k(Q
�) = 0 for all k ∈ {1,… , i} . Take an element x ∈ Ξi ∩ Q and an element 

y ∈ Q� ∩ Ξj where j ∈ {i + 1,… , r} is the smallest index such that Q� ∩ Ξj ≠ � . 
Notice that j > i , so x ⪰e y and x ≁e y for all y ∈ Q� . Since f satisfies both Axiom 1 
and 4, by Lemma 3 we have that {x} ⪰ Q� and {x} ≁ Q� . Now, let Q̄ = Q ⧵ {x} . Being 
Q = {x} ∪ Q̄ , and applying Axiom 3 on f with {x} in the role of S, Q′ in the role of S′ 
and Q̄ in the role of S̄ , we finally have Q ⪰ Q� and Q ≁ Q�.

 (ii): �k(Q
�) ≠ 0 for some k ∈ {1,… , i} . First, consider the two non-empty 

s e t s  T =
⋃

k∈{1,…,i}(Q ∩ Ξk)  a n d  T � =
⋃

k∈{1,…,i}(Q
� ∩ Ξk)  .  S i n c e 

𝜂i(Q) = |Q ∩ Ξi| > |Q� ∩ Ξi| = 𝜂i(Q
�) there must be at least �i(Q) − �i(Q

�) elements 
in Q ∩ Ξi but not in Q� ∩ Ξi . Let I = {x ∈ Q ∩ Ξi ⧵ Q

�} with |I| = �i(Q) − �i(Q
�) . Now, 

consider the two sets T ⧵ I and T ′ . By construction, �(T ⧵ I) = �(T �) . Then, since f 
satisfies Axiom 2, by Lemma 2 we have that T ⧵ I ∼ T � . We are now ready to apply 
Axiom 3 on f with T ⧵ I in the role of S and T ′ in the role of S′ and T̄ = Q ⧵ (T ⧵ I) 
in the role of S̄ . Then, being Q = (T ⧵ I) ∪ T̄  , we have Q ⪰ T � and Q ≁ T � . Finally, 
we use Axiom 4 on f with Q in the role of S, T ′ in the role of S′ and T̄ � = Q� ⧵ T � in 
the role of S̄′ . So, we have that Q ⪰ T � ∪ T̄ � and Q ≁ T � ∪ T̄ � . Being Q� = T � ∪ T̄ � , we 
conclude that Q ⪰ Q� and Q ≁ Q�.

(⇐)
Let Q ⪰ Q� and Q ≁ Q� . First, suppose that Q ∼∗ Q� . Then, by relation (4), we have that 

�(Q) = �(Q�) . So, by Lemma 2, it must be Q ∼ Q� , which yields a contradiction. On the 
other hand it cannot even be Q� ⪰∗ Q and Q� ≁∗ Q (otherwise we would have a contradic-
tion by the other implication proved earlier). So, by the fact that ⪰∗ is a total relation, it 
must be Q ⪰∗ Q� and Q ≁∗ Q� , which concludes the proof of the equivalence between the 
asymmetric parts of ⪰ and ⪰∗.

We now prove the equivalence for the symmetric parts, i.e.,

Q ⪰∗ Q�
⇔ Q ⪰ Q�

Q ⪰∗ Q� and Q ≁∗ Q�
⇔ Q ⪰ Q� and Q ≁ Q�
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for all Q,Q� ∈ P(X).
(⇒)
Let Q ∼∗ Q� . Then, by relation (4), we have that �(Q) = �(Q�) and by Lemma 2 and the 

fact that ⪰ satisfies Axiom 2, it immediately follows that Q ∼ Q�.
(⇐)
Let Q ∼ Q� . By the equivalence of the asymmetric part proved earlier, we cannot have 

Q ⪰∗ Q� and Q ≁∗ Q� , or, Q� ⪰∗ Q and Q� ≁∗ Q . So, since ⪰∗ is a total relation, it must be 
Q ∼∗ Q� , which concludes the proof.

In the following, we prove that the four axioms 1, 2, 3 and 4 are logically independent, 
so they all are necessary to uniquely characterize ale.

Proposition 3 Exists a function f ≠ ale satisfying any three of the axioms 1, 2, 3 and 4 and 
not fulfiling the remaining one.

Proof  12 A ranking lifting function that does not satisfy simple dominance. Con-
sider a ranking lifting function f sd ∶ R(X) → R(P(X)) with ⪰= f sd(⪰e) such that 
S ⪰ T ⇔ �(S) ≥L �(T) for all S, T ∈ P(X) with |S| > 1 or |T| > 1 , and {x} ∼ {y} for all 
x, y ∈ X . Similar to ale, it is easy to verify along the lines of Proposition 1 that f sd satis-
fies axioms 2, 3 and 4. But of course f sd does not satisfies Axiom 1 (just take ⪰e such that 
x ⪰e y and x ≁e y).

A ranking lifting function that does not satisfy neutrality. Let z ∈ X . Consider a ranking 
lifting function f n ∶ R(X) → R(P(X)) with ⪰= f n(⪰e) such that S ⪰ T and S ≁ T  for all 
S, T ∈ P(X) with �(S) = �(T) and z ∈ S ⧵ T  , and S ⪰ T ⇔ �(S) ≥L �(T) for all the remain-
ing pairs of sets S, T ∈ P(X) . It easy to verify along the lines of Proposition 1 that f n satis-
fies axioms 1, 3 and 4. But of course f n does not satisfies Axiom 2, for f n breaks some ties 
in ale if favour of the set containing element z.

A ranking lifting function that does not satisfy size monotonicity. Consider a ranking 
lifting function f sm ∶ R(X) → R(P(X)) with ⪰= f sm(⪰e) such that S ⪰ T ⇔ iS ≤ iT for 
all S, T ∈ P(X) , where iS and iT are, respectively, the smallest index such that �iS (S) ≠ 0 
and �iT (T) ≠ 0 . One can check that f sm satisfies Axioms 1, 2 and 4, but it does not ful-
fil Axiom 3. To see that f sm does not satisfy Axiom 3, consider X = {x1, x2, x3} with the 
element ranking x1 ⪰e x2 ⪰e x3 , which implies �({x1}) = (1, 0, 0) , �({x2}) = (0, 1, 0) and 
�({x3}) = (0, 0, 1) . Then, {x1, x2} ∼ {x1, x3} (for �1({x1, x2}) = �1({x1, x3}) = 1 ≠ 0 ), 
but it is not true that {x1, x2} ∪ {x3} ⪰ {x1, x3} and {x1, x2} ∪ {x3} ≁ {x1, x3} (for 
�1({x1, x2, x3}) = �1({x1, x3}) = 1 ≠ 0).

A ranking lifting function that does not satisfy independence of the worst elements. 
Consider a ranking lifting function f iwe ∶ R(X) → R(P(X)) with ⪰= f iwe(⪰e) and such 
that S ⪰ T ⇔ |S| ≥ |T| for all S, T ∈ P(X) with |S| > 1 or |T| > 1 , and {x} ⪰ {y} ⇔ x ⪰e y 
for all x, y ∈ X . One can check that f iwe satisfies Axioms 1, 2 and 3, but it does not fulfil 
Axiom 4. To see that f iwe does not satisfy Axiom 4, consider X = {x1, x2, x3, x4} and the 
element ranking x1 ∼e x2 ⪰e x3 ∼e x4 with quotient order Ξ1 = {x1, x2} ≻e Ξ2 = {x3, x4} . 
We have that {x1, x2} ⪰ {x2} and {x1, x2} ≁ {x2} (for |{x1, x2}| = 2 and |{x2}| = 1 ) but it is 
not true that {x1, x2} ⪰ {x2} ∪ {x3, x4} and {x1, x2} ≁ {x2} ∪ {x3, x4} (for |{x2, x3, x4}| = 3).

Q ∼∗ Q�
⇔ Q ∼ Q�
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⪰ embodies dominance

To show that ⪰ embodies dominance, first we need an auxiliary result showing that ⪰e 
embodies element dominance.

Lemma 4 ⪰e= le(⪰F) embodies element dominance, that is ∀x, y ∈ X , x is dominant over y 
⇔ x ≻e y.

Proof 13 To start we have a set of features F and a ranking over them ⪰F , which can be 
represented in general as: f 1

1
∼F ⋯ ∼F f s

1
≻F ⋯ ≻F f 1

k
∼F ⋯ ∼F f r

k
 meaning that in F∕∼F 

the quotient order is Ψ1 ≻F ⋯ ≻F Ψk , with Ψi = {f 1
i
,… f

q

i
}(q depends on i, for Ψ1 , q = s 

and for Ψk , q = r).
With these considerations, suppose x ≻e y , by the definition of lex-cel, this means that 

𝜇(x) >L 𝜇(y) , which by the definition of � means that ∃Ψi , such that x has a larger number 
of features in Ψi than y: |�(x) ∩ Ψi| > |�(y) ∩ Ψi| , while ∀Ψj ≻F Ψi , x and y have the same 
number of features in Ψj : |�(x) ∩ Ψj| = |�(y) ∩ Ψj| . This means that x is Ψi-dominant over y, 
while for all Ψj ≻F Ψi , they are Ψj-indifferent, which is the definition of x being dominant 
over y.

Now having proved that x ≻e y implies x dominant over y, we tackle the other direction. 
Suppose x dominant over y, if x ≺e y we have seen that would imply y dominant over x 
which contradicts our assumption, therefore x ⪰e y , but note that if x ∼e y , then proceeding 
as above we obtain |�(x) ∩ Ψi| = |�(y) ∩ Ψi|∀Ψi , which would mean that neither x domi-
nates y nor vice versa, contradicting our initial assumption. Therefore the only possibility is 
that x ≻e y , proving the lemma.

Having seen that ⪰e embodies element dominance, we can build upon this result to 
prove the theorem stating that ⪰ embodies dominance.

Theorem 2 Let X be a set of elements, F a set of features, ⪰F a ranking over F and � a 
function relating elements to their features, then for S, S� ∈ P(X) , S is dominant over S′ ⇔ 
S ≻ S′ ( S ⪰ S� and S ≁ S� ), where dom(⪰F) = ale(le(⪰F)) =⪰.

Proof 14 First, suppose S ≻ S′ , then since ale(le(⪰F)) =⪰ we know that 𝜂(S) >L 𝜂(S�) , that 
is ∃Ξi ∈ X∕∼e , such that |S ∩ Ξi| > |S� ∩ Ξi| and ∀Ξj ∈ X∕∼e,Ξj ≻e Ξi , |S ∩ Ξj| = |S� ∩ Ξj| , 
note though that these equivalence classes are ordered with ≻e which we have seen in the 
lemma that embodies element dominance, therefore for Ξ ≻e Ξ

� , all elements of Ξ are dom-
inant over all elements of Ξ� , while the elements in the equivalence class are indifferent 
between them. With this consideration and the previous findings |S ∩ Ξi| > |S� ∩ Ξi| and 
∀Ξj ∈ X∕∼e,Ξj ≻e Ξi , |S ∩ Ξj| = |S� ∩ Ξj| means that S contains more elements in Ξi than 
S′ , while containing the same number of elements for more preferred equivalence classes. 
Therefore, considering S = {s1,… , s|S|} , S� = {s�

1
,… , s�|S�|} and the permutation � explained 

in Sect.  4 (and used in the definition of dominance), we have that each s�(1),… , s�(r) is 
indifferent with its counterpart s�

�(1)
,… , s�

�(r)
 for r =

∑
j<i �S ∩ Ξj� + �S� ∩ Ξi� , but s�(r+1) 

dominates s�
�(r+1)

 , because either s�(r+1) ∈ Ξi and s�
�(r+1)

∈ Ξl with l > i or r + 1 > |S�| , 
which is the definition of S being dominant over S′.

Now having proved that S ≻ S′ implies S dominant over S′ , we tackle the other implica-
tion. Suppose S dominant over S′ , if S ≺ S′ we have seen that would imply S′ dominant 
over S which contradicts our assumption, therefore S ⪰ S� , but note that if S ∼ S� , then 
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|S ∩ Ξ| = |S� ∩ Ξ|∀Ξ ∈ X∕∼e and therefore s�(i) and s�
�(i)

 are in the same equivalence class 
∀i , meaning that s�(i) and s�

�(i)
 are indifferent ∀i , which means that S and S′ are indifferent 

contradicting our assumption. Therefore the only possibility is that S ≻ S′ , which proves 
the theorem.

� embodies the ⪰ ranking

To show the main goal of this section, namely that � embodies the ⪰ ranking, we firstly 
require some lemmas regarding the properties of �.

Lemma 5 �(S) =
∑r

w=1
�(S ∩ Ξw)

Proof  15 By applying Eq.  5 we obtain the preference of an equivalence class Ξw 
as �(S ∩ Ξw) = 

∑r

i=1
�S ∩ Ξw ∩ Ξi�(∑r

j=i+1
�(Ξj) + 1) = �S ∩ Ξw�(∑r

j=w+1
�(Ξj) + 1) , 

since all equivalence classes are disjoint, meaning that |S ∩ Ξw ∩ Ξi| = |�| = 0 
when i ≠ w and |S ∩ Ξw ∩ Ξi| = |S ∩ Ξw| , when i = w . Now 

∑r

w=1
�(S ∩ Ξw) = ∑r

w=1

∑r

i=1
�S ∩ Ξw ∩ Ξi�(∑r

j=i+1
�(Ξj) + 1) = 

∑r

w=1
�S ∩ Ξw�(∑r

j=w+1
�(Ξj) + 1) = �(S).

Lemma 6 ∀w,�(Ξw) ≥ �(S ∩ Ξw)

Proof  16 Since all equivalence classes are disjoint, from Eq.  5 we have that �(Ξw) = 
�Ξw�(∑r

j=w+1
�(Ξj) + 1) and �(S ∩ Ξw) = �S ∩ Ξw�(∑r

j=w+1
�(Ξj) + 1) . Since |Ξw| ≥ |S ∩ Ξw| , 

then �(Ξw) ≥ �(S ∩ Ξw).

With these lemmas in mind, we now prove that � embodies the ⪰ ranking by means of 
the following theorem.

Theorem 3 Given two sets S, S� ∈ P(X) , S ⪰ S� ⇔ �(S) ≥ �(S�).

Proof 17 We divide the proof into three steps. First we prove two implications, and we sub-
sequently show that these implications suffice to prove the theorem.

S ≻ S� ⇒ �(S) > �(S�) : Say that S ≻ S′ . From Eq. 4, we have that S ≻ S� ⇔ 𝜂(S) >L 𝜂(S�) . 
By using the definition of � in Eq. 3 we can write 𝜂(S) >L 𝜂(S�) as (cS

1
,… cS

r
) >L (cS

�

1
,… cS

�

r
) 

(where cS
i
= |S ∩ Ξi| and cS�

i
= |S� ∩ Ξi| ∀i ). Now, by using the formalisation of the lexico-

graphical order (see Definition 5), we have that (cS
1
,… cS

r
) >L (cS

�

1
,… cS

�

r
) , which implies 

that ∃k ∈ {1,… , r} , s.t. ∀t < k, cS
t
= cS

�

t
 and cS

k
> cS

′

k
 . In other words, ∃k ∈ {1,… , r} s.t. 

|S ∩ Ξk| > |S� ∩ Ξk| and ∀t < k, |S ∩ Ξt| = |S� ∩ Ξt| and therefore �(S ∩ Ξt) = �(S� ∩ Ξt).
Next we prove that �(S) > �(S�) . First, note that by consider-

ing Lemma 5, we have that �(S) =
∑k−1

i=1
�(S ∩ Ξi) +

∑r

i=k
�(S ∩ Ξi) 

≥
∑k−1

i=1
�(S ∩ Ξi) + �(S ∩ Ξk) and applying Lemma 5 and Lemma 6 we have that 

�(S�) =
∑k−1

i=1
�(S� ∩ Ξi) +

∑r

i=k
�(S� ∩ Ξi) ≤

∑k−1

i=1
�(S� ∩ Ξi) + �(S� ∩ Ξk) +

∑r

i=k+1
�(Ξi)  . 

Therefore, to prove that �(S) > �(S�) it suffices to prove that ∑k−1

i=1
�(S ∩ Ξi) + �(S ∩ Ξk) >

∑k−1

i=1
�(S� ∩ Ξi) + �(S� ∩ Ξk) +

∑r

i=k+1
�(Ξi) . This is equiva-

lent to show that �(S ∩ Ξk) − �(S� ∩ Ξk) −
∑r

i=k+1
�(Ξi) > 0.

Now, using Eq. 5, �(S ∩ Ξk) − �(S� ∩ Ξk) −
∑r

i=k+1
�(Ξi) = �S ∩ Ξk�(∑r

j=k+1
�(Ξj) + 1)−

�S� ∩ Ξk�(∑r

j=k+1
�(Ξj) + 1) −

∑r

i=k+1
 �(Ξi) = (�S ∩ Ξk� − �S� ∩ Ξk�)(∑r

j=k+1
�(Ξj) + 1)−∑

r

i=k+1
�(Ξ

i
).
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As shown above, we know that |S ∩ Ξk| > |S� ∩ Ξk| . From that, and since these 
sets’ cardinalities are natural numbers, we obtain the following lower bound: 
|S ∩ Ξk| − |S� ∩ Ξk| ≥ 1 . Therefore, (�S ∩ Ξk� − �S� ∩ Ξk�)(∑r

j=k+1
�(Ξj) + 1) −

∑r

i=k+1
�(Ξi)) ≥∑r

j=k+1
�(Ξj) + 1 −

∑r

i=k+1
�(Ξi)) = 1 > 0.

Recall that we assumed that S ≻ S′ . Since we have managed to prove that S ≻ S′ implies 
that �(S ∩ Ξk) − �(S� ∩ Ξk) −

∑r

i=k+1
�(Ξi) > 0 , which in turn implies that �(S) > �(S�) , 

then it is clear that S ≻ S� ⇒ �(S) > �(S�).
S ≻ S� ⇐ �(S) > �(S�) : Suppose that �(S) > �(S�) . If S ≺ S′ , then we have already 

shown above that �(S) < �(S�) , which contradicts our initial assumption. If S ∼ S� , then 
�(S) = �(S�) , which means that (cS

1
,… , cS

r
) = (cS

�

1
,… , cS

�

r
) , and therefore ∀i cS

i
= cS

�

i
 . This 

means that ∀i |S ∩ Ξi| = |S� ∩ Ξi| , which implies that �(S) = 
∑r

i=1
�S ∩ Ξi�(∑r

j=i+1
�(Ξj) + 1) 

=
∑r

i=1
�S� ∩ Ξi�(∑r

j=i+1
�(Ξj) + 1) = �(S�) . The fact that �(S) = �(S�) also contradicts our 

initial assumption �(S) > �(S�) . Thus, we conclude that �(S) > �(S�) ⇒ S ≻ S′.
S ≻ S� ⇔ �(S) > �(S�) suffices to prove the theorem: Note that we have proved that 

S ≻ S′ ⇔ �(S) > �(S�) , then it trivially follows that S ≺ S′ ⇔ �(S) < �(S�) . And these 
two cases imply that S ∼ S� ⇔ �(S) = �(S�) . Finally, S ≻ S′ ⇔ �(S) > �(S�) and S ∼ S� ⇔ 
�(S) = �(S�) imply that S ⪰ S� ⇔ �(S) ≥ �(S�) , which ends the proof of the theorem.

DSSP algorithm and implementation

Algorithm 1 encodes a DSSP into a BIP, and also writes this encoding into a file that can 
be fed into a BIP solver. This algorithm receives as input:

• a non-empty list of elements X;
• a list F of feature equivalence classes in descending order of preference (each equiva-

lence class being a list of its indifferently preferred features, hence the feature order 
f1 ≻F f2 ∼F f3 ≻F f4 would be represented as as F = [[f1], [f2, f3], [f4]]);

• a mapping � relating elements to their features; and
• a list of constraints C (each constraint c ∈ C being a string).

The algorithm uses several auxiliary functions: sort(l, k) sorts a list l in ascending order 
using as key a function k; write(s, file) writes a string s in a separated line in the given file; 
str(num) converts a numeric value num into a string; and get(l, i), which returns the ele-
ment in position i in a list l. Finally, given two strings s and s’, we represent string concat-
enation as s + s� . Notice also that "+" represents a string solely composed by character ‘+’.

Algorithm 2 provides a function used in Algorithm 1 to compute profile vectors accord-
ing to the definition in Sect. 6. Algorithm 2 receives as input an element x ∈ X , a list F of 
feature equivalence classes in descending order of preference, and a mapping � relating ele-
ments to their features. From that, it builds the profile of the element, �(x) (as a list instead 
of a vector), following Eq. 1. The auxiliary function has_feature in Algorithm 2 checks if 
an element has a given feature or not.

There is a publicly-available implementation of our DSSP encoder and solver at https:// 
gitlab. iiia. csic. es/ marcs err/ dssp.

Example 12 below shows an example of the BIP output by Algorithm 1.

https://gitlab.iiia.csic.es/marcserr/dssp
https://gitlab.iiia.csic.es/marcserr/dssp
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Example 12 Suppose that a school wants to award three scholarships to their best last year 
students. Eight candidate students are considered, for which we assign decision variables 
X = {s1, s2, ... , s8} (where si = 1 means student si is awarded with a scholarship and si = 0 
means that si is not). The features that the school considers are: academic excellence (ax), 
good behaviour (gb), having helped the staff (hl), and punctuality (p). Academic excellence 
is the most important feature to compete for a scholarship, followed by good behaviour and 
helping staff members, which are indifferently preferred. Finally, punctuality is the least 
preferred feature. Hence, the feature order is: ax ≻ gb ∼ hl ≻ p, meaning that F= [[ax], [gb, 
hl], [p]]. The features of each student are:

Finally, in terms of constraints, since there are only three scholarships, we have 
to consider a constraint that enforces that we have to exactly select three students: 
s1+s2+s3+s4+s5+s6+s7+s8=3. Furthermore, suppose that s1-s4 belong to one group, 
whereas s5-s8 belong to another group, and the school wants to give at least one schol-
arship to each group. Thus, we have to consider constraints "s1+s2+s3+s4>= 1 " and 
"s5+s6+s7+s8>= 1 ". Then, the resulting BIP after applying Algorithm 1 would be :

Maximize
1s6 + 2s8 + 4s3 + 4s5 + 12s4 + 12s7 + 36s1 + 72s2
Subject To
s1+s2+s3+s4+s5+s6+s7+s8=3
s1+s2+s3+s4>= 1

s5+s6+s7+s8>= 1

Binaries
s1
s2
s3
s4
s5
s6
s7
s8
End

The solution to the BIP above is {s1, s2, s7}.

VANS algorithm and implementation

Algorithm 3 encodes a VANS problem into a BIP. The input of the algorithm contains: a 
non-empty set of norms N; a list of value equivalence classes V (each equivalence class 
being a list of its indifferently preferred values); a mapping relating norms to their pro-
moted values � ; a list of mutually exclusive relations (the relations being binary tuples); 
and a generalisation graph (implementing generalisation relations, being the parents of 
a norm, more general norms). First, the algorithm builds the constraints on norms dis-
cussed in Sect. 9 using Algorithm 4. Thereafter, it feeds N, V, � , and the obtained con-
straints into Algorithm 1 in Appendix B.

s1: ax, gb, hl s2: ax, gb, hl, p s3: gb, hl, p s4: ax, gb, p

s5: gb, hl, p s6: hl, p s7: ax, gb, p s8: gb, hl
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Algorithm 4 uses several auxiliary functions (some of them already used in Appen-
dix B): append(x, list) appends x at the end of the list; get(l, i) returns the element in 
position i of the list l; parents(n, G) returns a list of all parents (direct or not) of n in 
the graph G; direct_siblings(n, G) returns a list of the direct siblings of n in G. Finally, 
given two strings s and s’, we represent string concatenation as s + s’. Notice also that 
"+" represents a string solely composed by character ‘+’.

Example 13 below shows the BIP obtained after applying Algorithm 3 to Example 8.

Example 13 

• BIP file:
• Maximize
• 3n1 + 3n2 + 1n3 + 1n4
• Subject To
• n1 + n3 <= 1
• n2 + n4 <= 1
• Binaries
• n1
• n2
• n3
• n4
• End

The solution to the BIP above is {n1, n2}.
There is a publicly-available implementation of our encoder for VANS problems at 

https:// gitlab. iiia. csic. es/ marcs err/ vans- probl em.

https://gitlab.iiia.csic.es/marcserr/vans-problem
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List of notation and symbols

General notation
X  A set of elements.
x∕x�∕xi  An element x∕x�∕xi ∈ X.
P(X)  The power set of X.
S∕S�∕Si  A subset of elements of X, S∕S�∕Si ∈ P(X).
⪰∕⪰�∕⪰X  A generic ranking, where ≻∕≻�∕≻X is its antisymmetric part and ∼∕∼�∕∼X its 

symmetric part. We also use this notation for the ranking over P(X) obtained 
through anti-lex-cel.

F  A set of features.
R(X)  All possible rankings over a set.
⪰F  A ranking of features.
�  A function that receives and element in X and returns the set of its features.
�  The feasibility function that receives a set in S ∈ P(X) and returns ⊤ if the set 

is feasible and ⊥ if it is not feasible.
Ψ∕Ψ�∕Ψi  A feature equivalence class in F∕∼F.
�  A permutation of indexes of the elements in a set S with respect to a property 

(dominance). Thus, �(i) is the index of the i-th best element with regards to the 
property.

srs  A social ranking solution, that is a function srs ∶ R(P(X)) → R(X).
le  The lex-cel (lexicographic excellence) function.
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⪰e  A general grounded ranking, that is a ranking over X, obtained from a social 
ranking solution (a grounding) srs (in particular a ranking obtained through 
lex-cel).

�  The function that builds the profile vector of lex-cel.
Σ∕Σ�∕Σi  An equivalence class of P(X)∕∼.
cx
i
  The i-th element of �(x) . Thus, �(x) = (cx

1
,… cx

k
).

≥L  The lexicographic order of vectors.
ale  The anti-lex-cel function.
Ξ∕Ξ�∕Ξi  An element equivalence class of X∕∼e.
�  The vector used by anti-lex-cel to build the ranking over P(X).
cS
i
  The i-th element of �(S) . Thus, �(S) = (cS

1
,… cS

q
).

dom  A function that transforms a ranking over the features in F to a ranking over 
the sets in P(X) . This function is the composition of lex-cel and anti-lex-cel 
dom = ale◦le.

�  The preference function that assigns a natural number to each set in P(X) , with 
regards to the ranking obtained trough dom.

Spref   The feasible set in P(X) that is most preferred with regards to the set ranking ⪰ 
obtained through dom.

Smax  The feasible set of maximum preference �.
di  The decision variable representing element xi ∈ X.

Value‑aligned norm selection
A  A set of actions.
Ag  A set of agents.
L  A first order language.
�  A precondition.
�  A deontic operator (prh/per/obl).
a  An action a ∈ A.
n∕n�∕ni  A norm.
N  A set of norms.
v∕v�∕vi  A moral value.
V  A set of moral values.
⪰v  A ranking over moral values in V.
R  The set of norms relations, R = {Rx,Rg}.
Rx  The set of exclusive relations, (n, n�) ∈ Rx if n and n′ are mutually exclusive 

norms.
Rg  The set of generalisation relations, (n, n�) ∈ Rx if n generalises n′.
A(n)  The ancestors of n, the norms that generalise n.
S(n)  The successors of n, the norms that are generalised by n.
S̄(n)  The direct successors of n, the norms n′ such that (n, n�) ∈ Rg.
di  The decision variable representing norm ni ∈ N.
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