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Abstract

Neural-Symbolic integration concerns the application of problem-specific
symbolic knowledge within the neurocomputing paradigm. In this paper,
we propose a new approach for representing, reasoning and learning modal
logics in a connectionist framework. We do so by extending the C-IL*P
system [15, 16] to allow the representation of modal theories in neural
networks. This is achieved by a Modalities Algorithm that translates any
modal logic program into a neural networks ensemble. In addition, we
prove that the ensemble computes a fixed-point semantics of the original
modal theory. An immediate result of our approach is the ability to per-
form learning from examples efficiently by applying Backpropagation to
each network of the ensemble, where each network learns a possible world
representation. We also show the effectiveness of our approach as a dis-
tributed knowledge representation and learning mechanism by applying
it to the well-known muddy children puzzle. Our approach paves the way
for the integrated representation and learning of distributed knowledge,
with a broad range of applications from practical reasoning to evolving
multi-agent systems.

Keywords: Neural-Symbolic Learning Systems, Knowledge Repre-
sentation, Modal Logics, Artificial Neural Networks.



1 Introduction

Neural-Symbolic integration concerns the application of problem-specific sym-
bolic knowledge within the neurocomputing paradigm. In contrast with sym-
bolic learning systems, neural networks’ learning implicitly encodes patterns
and their generalizations in the networks’ weights, so reflecting the statistical
properties of the trained data [6]. It has been indicated that neural networks can
outperform symbolic learning systems, especially when data are noisy [33, 46].
This result, due also to the massively parallel architecture of neural networks,
contributed decisively to the growing interest in developing Neural-Symbolic
Learning Systems, i.e., hybrid systems based on neural networks that are capa-
ble of learning from examples and background knowledge [15].

Nevertheless, most of the efforts so far have been directed towards the rep-
resentation of classical logic in a connectionist setting [1, 30, 43, 44, 45]. In
particular, neural systems have not been shown to fully represent and learn
expressive languages such as modal and predicate logics [11]. Our aim is not
only to represent such logics in neural networks, but also to allow the derived
networks to be trained with examples.

In this paper, we propose a new approach for the representation and learning
of propositional modal logics in a connectionist framework. We use the language
of Modal Logic Programming [42] extended to allow modalities such as necessity
and possibility in the head of clauses [38]!. We then present an algorithm to
set up an ensemble of Connectionist Inductive Learning and Logic Programming
(C-IL? P) networks [15, 16], each network being an extension of Holldobler and
Kalinke’s parallel model for logic programming [29]. A theorem then shows that
the resulting ensemble computes a fixed-point semantics of the original modal
theory. In other words, the network ensemble can be seen as a massively parallel
system for modal logic representation and reasoning. We validate the system by
applying it to the muddy children puzzle, a well-known problem in the domain
of distributed knowledge representation and reasoning [17, 32].

In addition, the merging of theory (background knowledge) and data learn-
ing (learning from examples) in neural networks has been indicated to provide
a learning system that is more effective than purely symbolic and purely con-
nectionist systems [20, 46, 47]. In order to do so, one might first translate the
background knowledge into a neural network initial architecture, and then train
it with examples using, for example, Backpropagation, the neural learning algo-
rithm most successfully applied in real-world problems such as DNA sequence
analysis and pattern recognition [40, 27]. Learning in the connectionist modal
logic system is achieved by training each individual C-IL? P network, which in
turn corresponds to the current knowledge of an agent within a possible world,
using Backpropagation. This is exemplified by learning the knowledge of an
agent in the muddy children puzzle using C-IL? P networks.

The connectionist modal logic framework presented here renders Neural-
Symbolic Learning Systems with the ability to provide a more expressive rep-

I Notice that Sakakibara’s Modal Logic Programming [42] is referred to as Modal Prolog
in the well-known temporal and modal logic programming survey of Orgun and Ma [38].



resentation language. Moreover, as modal logics have been the subject of in-
tense investigation in knowledge representation [17], this work is a contribution
towards the learning of modally defined aspects of reasoning using neural net-
works. It contributes to the integration of both research programmes - neural
networks and modal logics - into a unified foundation.

In Section 2, we briefly present the basic concepts of modal logic and ar-
tificial neural networks used throughout this paper. In Section 3, we present
a Modalities Algorithm that translates extended modal programs into artifi-
cial neural networks. The network obtained is an ensemble of simple C-IL?P
networks, each representing a (learnable) possible world. We then show that
the network computes a fixed-point semantics of the given modal theory, thus
proving the correctness of the Modalities Algorithm. In Section 4, we apply
the system to the muddy children puzzle, a well-known problem of distributed
reasoning in multi-agent environments. In Section 5, we conclude and discuss
directions for future work.

2 Preliminaries

In this section, we present some basic concepts of Modal Logic and Artificial
Neural Networks that will be used throughout the paper. We also extend Sakak-
ibara’s Modal Logic Programming [38, 42] to allow modalities [ and < in the
head of the clauses and default negation ~ in the body of the clauses® [10].
Finally, we define a fixed-point semantics for such extension.

2.1 Modal Logic and Extended Modal Programs

Modal logic began with the analysis of concepts such as necessity and possibility
under a philosophical perspective [31, 34]. A main feature of modal logics is the
use of possible world semantics (proposed by Kripke and Hintikka) which has
significantly contributed to the development of new non-classical logics, many
of which have had a great impact in computing science [2, 37]. In modal logic,
a proposition is necessary in a world if it is true in all worlds which are possible
in relation to that world, whereas it is possible in a world if it is true in at least
one world which is possible in relation to that same world. This is expressed in
the semantics formalisation by a (binary) relation between possible worlds.
Modal logic was found to be appropriate to study mathematical necessity
(in the logic of provability), time, knowledge, belief, obligation and other con-
cepts and modalities [9]. In artificial intelligence and computing, modal logics
are among the most employed formalisms to analyse and represent reasoning
in multi-agent systems and concurrency properties [17]. The basic definitions
about modal logics that we shall use in this paper are as follows. As usual, the
language of propositional modal logic extends the language of propostional logic

2The use of classical negation — in the body of clauses is allowed as done in [25] by renaming
each literal of the form —A by a new literal A* not present in the language.



with the O and < operators. Moreover, we assume that any clause is ground
over a finite domain (i.e. they contain no variables).

Definition 1 A modal atom is of the form M A where M € {{0,0} and A is
an atom. A modal literal is of the form ML where L is a literal.

Definition 2 A modal program is a finite set of clauses of the form
MA;:,...MA, — A.

We define extended modal programs as modal programs extended with
modalities [J and < in the head of clauses, and default negation ~ in the body
of clauses. In addition, each clause is labelled by the possible world in which
they hold, similarly to Gabbay’s Labelled Deductive Systems [21].

Definition 3 An extended modal program is a finite set of clauses C of the
form w; : MLy,...,ML, — MA, where w; is a label representing a world in
which the associated clause holds, and a finite set of relations R(w;,w;) between
worlds w; and wj in C.

For example: P = {wy : r —» Og, w1 : Os — r, wa & 8, w3 : ¢ — Op,
R(wi,ws2), R(wi,ws)} is an extended modal program. Formulas in modal logic
will be interpreted in Kripke models, which are defined as follows.

Definition 4 (Kripke Models) Let £ be a modal language. A Kripke model for
L is a tuple M = (Q,R,v) where Q is a set of possible worlds, v is a mapping
that assigns to each propositional letter of L a subset of ), and R is a binary
relation over ).

A modal formula « is said to be true at a possible world w of a model M,
written (M, w) = « if one of the following satisfiability conditions holds.

Definition 5 (Satisfiability of Modal Formulas) Let £ be a modal language,
and let M = (Q,R,v) be a Kripke Model. The satisfiability relation |= is
uniquely defined as follows:

(i) (M,w) = p iff w € v(p) for a propositional letter p

(it) (M,w) = —a iff ( M,w) ¥ «

(iii) (M,w) Ea A iff ( Myw) Ea and (M,w) =0

(iv) M,w) | aV B iff (M,w) E a or (M,w) £

(v) M,w) E a— B iff (M,w) ¥ a or (M,w) |5

(i) (M,w) = O« iff for all wi € Q, if R(w,w1) then (M,w1) E «

(ii) (M,w) = Ca iff there exists a wy such that R(w,w1) and (M,w1) [ a.

A variety of proof procedures for modal logics has been developed over the
years, e.g., [18, 41]. In some of these, formulas are labelled by the worlds in which
they hold, thus facilitating the modal reasoning process (see [41] for a discussion
on this topic). In the natural deduction-style rules below, the notation w : «
represents that the formula « holds at the possible world w. Moreover, the



Table 1: Rules for modality operators

[R(w, ga(w))]
: w1 : Oa, R(w1,ws)
ga(w):aDI w2«
w: D«
w: O OF we 1 a, R(wy,ws)
foc(w) : a,R(w,fQ(w)) w1 S

explicit reference to the accessibility relation also helps in deriving what formula
holds in the worlds which are related by R. The rules we shall represent using
C-IL? P are similar to the ones presented in [41], which we reproduce below.

The OF rule can be seen (informally) as a skolemization of the existential
quantifier over possible worlds, which is semantically implied by the formula
Oain the premise. The term f, (w) defines a particular possible world uniquely
associated with the formula «, and inferred to be accessible from the possible
world w (i.e., R(w, fo(w))). In the OT rule, the temporary assumption should be
read as “given an arbitrary accessible world g, (w)”. The rule of I represents
that if we have a relation R(w1,w2), and if a holds at wy then it must be the
case that o holds at w; The rule OF represents that if Oa holds at a world wy,
and wq is related to ws, then we can infer that o holds at ws.

Semantics for Extended Modal Logic Programs

In what follows, we define a model-theoretic semantics for extended modal
programs. When computing the semantics of the program, we have to consider
both the fixed-point of a particular world, and the fixed-point of the program
as a whole. When computing the fixed-point in each world, we have to consider
the consequences derived locally and the consequences derived from the interac-
tion between worlds. Locally, fixed-points are computed as in the stable model
semantics of logic programming, by simply renaming each modal literal M L;
by a new literal L; not in the language £, and applying the Gelfond-Lifschitz
Transformation [7] to it. When considering interacting worlds, there are two
cases to be addressed, according to the (1] and I rules in Table 1, together
with the accessibility relation R, which might render additional consequences
in each world.

Definition 6 (Herbrand Universe for Extended Modal Logic Programs) Let P
be an extended modal logic program. The Herbrand universe Up of P is the
set of all ground atoms which can be formed out of the constants and function
symbols appearing in P. Fach term has the same interpretation in every world.

Definition 7 (Herbrand Base of Extended Modal Logic Programs) Let P =
{P1, ..., Px} be an extended modal program, where each P; is the set of modal



clauses that hold in a world w; (1 < i < k). The Herbrand base Bp of an
extended modal program is the set of all ground predicates constructed by using
predicate symbols from P with ground atoms from the Herbrand universe Up as
arguments.

Definition 8 (Modal Immediate Consequence Operator) Let P = {Pu, ..., P}
be an extended modal program, where each P; is the set of modal clauses that
hold in a world w; (1 < i < k). Let Bp be the Herbrand base of P and I be
a Herbrand interpretation for P;. The mapping MTp, : 287 — 2B7 in w; is
defined as follows: MTp,(I) = {MA € Bp | either (i) or (ii) or (iii) below

holds}.
(i) MLy, ..., ML, — MA is a clause in P; and {MLy,...., ML,} C I;
(it) M = < and there exists o world w; such that R(w;,wj),

MLy,..,ML,, — A is a clause in P; and {MLy,...,ML,,} C J, where J
is a Herbrand interpretation for P;;

(iti) M = 0O and for each world w; such that R(w;,w;), ML1,..., ML, — A
is a clause in P; and {MLq,...,ML,} C K, where K is a Herbrand interpreta-
tion for P;.

Definition 9 (Global Modal Immediate Consequence Operator) Let P = {P4,
vy Pr} be an extended modal program. Let Bp be the Herbrand base of P and
I; be a Herbrand interpretation for P; (1 <i < k). The mapping MTp : 257 —
2B7 s defined as follows: MTp (I, ..., I}) = U?Zl{Mij}.

In the case of definite extended modal programs, by renaming each modal
atom M A; by a new atom Aj;, we can apply the following result of Ramanujam
[39], regarding the fixed-point semantics of distributed definite logic programs®.

Theorem 1 (Minimal Model of Distributed Programs [39]) For each distrib-
uted definite logic program P, the function MTp has a unique fized-point.
The sequence of all MTZE(I1,...,Iy),m € N, converges to this fived-point
MTg (I, ..., Iy), for each I; C 257.

In order to provide a fixed-point semantics for extended modal programs,
we have to extend the definition of acceptable programs [3, 4].

Definition 10 (Level Mapping) Let P be a general logic program. A level
mapping for P is a function | | : Bp — N from ground atoms to natural numbers.
For A € Bp, |A| is called the level of A and |~ A| = |A|.

Definition 11 (Acceptable Programs) Let P be a program, | | a level mapping
for P, and I a model of P. P is called acceptable w. r. t| | and I if for every
clause Ly, ..., Ly — A in P the following implication holds. If 1 /\;;11 L; then
|A| > |L;| for 1 <i<k.

3Definite distributed logic programs are simply tuples < P, ..., P, > where each P; is the
set of clauses (program) associated with each site . Each P; is called a component program of
the composite program [39]. Mutatis mutandis, there is a correspondence between this notion
and that of an extended modal program.



Theorem 2 (Minimal Model of Acceptable Programs [19]) For each acceptable
program P, the function Tp has a unique fived-point*. The sequence of all
TE(I),m € N, converges to this fived-point TF (I) (which is identical to the
stable model of P [24])°, for each I C Bp.

Definition 12 (Acceptable Extended Modal Programs) An extended modal
program P is acceptable iff the program P’, obtained by renaming each modal
literal ML; in P by a new literal L; not in the language L is acceptable.

Following [5], one can construct the semantics of extended modal programs
by considering extended modal ground formulas in order to compute a fixed-
point. As a result, one can associate with every extended modal program a
modal ground program (the modal closure of the program) so that both pro-
grams have the same models. Hence, the classical results about the fixed-point
semantics of logic programming can be applied directly to the modal ground
closure of a program. Thus, Theorem 3, below, follows directly from Theorems
2 and 1.

Theorem 3 (Minimal Model of Acceptable Extended Modal Programs) For
each acceptable extended modal program P, the function MTp has a unique
fized-point. The sequence of all MTZ (I, ..., I),m € N, converges to this fized-
point MTE (I, ..., I1,), for each I; C 2B7.

Finally, note that in the above semantics, the choice of an arbitrary world
for © elimination (made before the computation of MTp) may lead to different
fixed-points of a given extended modal program. Such a choice is similar to the
approach adopted by Gabbay in [22], in which one chooses a point in the future
for execution and then backtracks if judged necessary (and at all possible).

2.2 Artificial Neural Networks

An artificial neural network is a directed graph. A unit in this graph is charac-
terised, at time ¢, by its input vector I;(t), its input potential U;(t), its activation
state A;(t), and its output O;(t). The units (neurons) of the network are inter-
connected via a set of directed and weighted connections. If there is a connection
from unit ¢ to unit j, then Wj; € RN denotes the weight associated with such a
connection.

We start by characterising the neuron’s functionality (see Figure 1). The
activation state of a neuron i at time ¢ (A;(¢)) is a bounded real or integer
number. The output of neuron ¢ at time ¢ (O;(t)) is given by the output rule f;,
such that O;(t) = fi(Ai(t)). The input potential of neuron ¢ at time ¢ (U;(¢))
is obtained by applying the propagation rule of neuron i (g;) such that U;(t) =

4The mapping Tp is defined as follows: Let I be a Herbrand interpretation, then Tp(I) =
{Ao | L1,...,Ln — Ag is a clause in P and {L1,...,Ln} C I}.

5 A Herbrand interpretation I of a general logic program P is called stable iff Tp,(I) =1,
where Py is the definite program obtained from applying the Gelfond-Lifschitz Transformation
over P.



9i(L;i(t),W;), where I;(t) contains the input signals (z1(t),x2(¢),...,zn(t)) to
neuron ¢ at time ¢, and W; denotes the weight vector (W;1, Wia, ..., Wi,) to
neuron ¢. In addition, #; (an extra weight with input always fixed at 1) is
known as the threshold of neuron i. Finally, the neuron’s new activation state
Ai(t+ At) is given by its activation rule h;, which is a function of the neuron’s
current activation state and input potential, i.e. A;(t + At) = h;(A4;(t), Ui (t)),
and the neuron’s new output value O;(t + At) = f;(A;(t + At)).

x/(t) Aft)

Xf1)—— W

Xu(1)

Figure 1: The Processing Unit or Neuron.

In general, h; does not depend on the previous activation state of the unit,
that is, A;(t + At) = h;(U;(t)), the propagation rule g; is a weighted sum,
such that U;(t) = >_; Wjjx;(t), and the output rule f; is given by the identity
function, i.e. O;(t) = A;(¢).

The units of a neural network can be organised in layers. A n-layer feed-
forward network N is an acyclic graph. N consists of a sequence of layers and
connections between successive layers, containing one input layer, n — 2 hidden
layers and one output layer, where n > 2. When n = 3, we say that N is a single
hidden layer network. When each unit occurring in the i-th layer is connected
to each unit occurring in the 7 + 1-st layer, we say that IV is a fully-connected
network (see Figure 2).

The most interesting properties of a neural network do not arise from the
functionality of each neuron, but from the collective effect resulting from the
interconnection of units. Let r and s be the number of units occurring in
the input and output layer, respectively. A multilayer feedforward network N
computes a function f : & — R® as follows. The input vector is presented
to the input layer at time ¢; and propagated through the hidden layers to the
output layer. At each time point, all units update their input potential and
activation state synchronously. At time ¢, the output vector is read off the
output layer. In addition, most neural models have a learning rule, responsible



Output Vector
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Figure 2: A typical feedforward Neural Network.

for changing the weights of the network so that it learns to approximate f
given a number of training examples (input vectors and their respective target
output vectors). The idea is to minimise the error associated with the set of
examples by performing small changes to the network’s weights. In the case of
Backpropagation [40], the learning process occurs as follows: given a set of input
patterns i’ and corresponding target vectors t, the network’s outputs o’ = f(i’)
may be compared with the targets t?, and an error such as

Err(W) = %Z(oi )2 (1)

can be computed. This error depends on the set of example ((i, t) pairs) and may
be minimised by gradient descent, i.e. by the iterative application of changes

AW = —p - Vw - Err(W) (2)

to the weight vector W, where 1 > 0 is called the network’s learning rate and

Vw = (8ETT(W) OErr(W) 8ETT(W)> 3)

8W11 ’ 8W12 Y aWij

Backpropagation training may lead to a local rather than a global error
minimum. In an attempt to ameliorate this problem and also improve training
time, the term of momentum can be added to the learning process. The term
of momentum allows a network to respond not only to the local gradient, but
also to recent trends in the error surface, acting as a low pass filter.



Momentum is added to Backpropagation learning by making weight changes
equal to the sum of a fraction of the last weight change and the new change
suggested by the Backpropagation rule. Equation 4 shows how Backpropagation
with momentum is expressed mathematically.

AW (i) = —n - Vw) - BErr(W(i)) + cAW(i — 1) (4)

where a AW (i — 1) is the term of momentum and 0 < o < 1 is the momentum
constant. Typically, « = 0.9.

The ultimate measure of success of neural networks learning should not
be how closely the network approximates the training data, but how well it
accounts for yet unseen cases, i.e. how well the network generalises to new
data. In order to evaluate the network’s gemeralisation, the set of examples is
commonly partitioned into a training set and a testing set, as detailed in Section
4.2.

In this paper, we concentrate on single hidden layer feedforward networks,
since they can approximate any (Borel) measurable function arbitrarily well,
regardless of the dimension of the input space [12]. In this sense, single hidden
layer networks are approximators of virtually any function of interest. We also
use bipolar semi-linear activation functions h(z) = He%m — 1 with inputs in
{-1,1}, and the Backpropagation learning algorithm to perform training from
examples.

3 Connectionist Modal Logic

In this section, we extend the C-IL°P system to represent modal theories by
using ensembles of C-IL° P networks. In [29], it is shown that the semantics of
any first order acyclic logic program [35] can be approximated by a single hidden
layer recurrent neural network (although no translation algorithm is presented).
Since this is precisely the kind of network used by C-IL? P, ensembles of C-IL’ P
networks can enhance the expressive power of the system, yet maintaining the
simplicity needed for performing inductive learning efficiently. In this section,
we also present an efficient translation algorithm from extended modal programs
to artificial neural networks.

We start with a simple example. It briefly illustrates how an ensemble of
C-IL? P networks can be used for modelling non-classical reasoning with modal
logic. Input and output neurons may represent (1L, OL or L, where L is a
literal.

Example 1 Figure 3 shows an ensemble of three C-IL*P networks (w1, ws,ws),
which might “communicate” in many different ways. If we look at wy, wo and w3
as possible worlds, we might be able to incorporate modalities in the language of
C-IL?P. For example, (i) “If wy : OA then wy : A” could be communicated from
w1 to wa by connecting JA in the output layer of w1 to A in the output layer of
wo such that, whenever [JA is activated in w1, A is activated in ws. In addition,
analogously to the feedback of C-IL>P networks, we could have feedback between

10



ensembles of C-IL?P networks. For example, (ii) “If (w2 : A)V (w3 : A) then
wy : OA” could be implemented by connecting output neurons A of wa and ws
into output neuron CA of wy, through two hidden neurons (say, h1 and hg) in
w1 such that wy : hy V hg — CGA. Ezamples (i) and (ii) simulate, in a finite
universe, the rules of O Elimination and < Introduction (see Table 1). The

representation of modalities in neural networks will be described in detail in
Section 3.2.

Figure 3: An ensemble of C-IL?P networks for modeling uncertainty by using
modalities and possible worlds.

Due to the simplicity of each C-IL? P network, e.g. wy, performing inductive
learning within each possible world is straightforward. The main problem to be
tackled when it comes to learning in the new neural model, therefore, is how
to set up the connections that establish the necessary communication between
networks, e.g., w; and ws. In the case of modal logic, such connections are
defined analogously to the modal rules of natural deduction (Table 1). The
Modalities Algorithm presented in Section 3.2 implements those rules, but first
we recall how the C-IL?P system works.

11



3.1 The C-IL?P System

C-IL*P [15, 16] is a massively parallel computational model based on a feedfor-
ward artificial neural network that integrates inductive learning from examples
and background knowledge with deductive learning from logic programming.
Following [28] (see also [29]), a Translation Algorithm maps a general logic pro-
gram P into a single hidden layer neural network N such that N computes the
least fixed-point of P. This provides a massively parallel model for computing
the stable model semantics of P [35]. In addition, A" can be trained with ex-
amples using Backpropagation [40], having P as background knowledge. The
knowledge acquired by training can then be extracted [14], closing the learning
cycle (as in [47]).

Let us exemplify how C-IL° P’s Translation Algorithm works. Each rule (r;)
of P is mapped from the input layer to the output layer of N through one neuron
(N;) in the single hidden layer of A/. Intuitively, the Translation Algorithm from
P to N has to implement the following conditions: (C1) The input potential of
a hidden neuron (NV;) can only exceed N;’s threshold (6;), activating N;, when
all the positive antecedents of r; are assigned the truth-value true while all the
negative antecedents of r; are assigned false; and (C2) The input potential of
an output neuron (A) can only exceed A’s threshold (64), activating A, when
at least one hidden neuron N; that is connected to A is activated.

Example 2 Consider the logic program P = {BC ~ D — A; EF — A; — B}.
The Translation Algorithm derives the network N of Figure 4, setting weights
(W's) and thresholds (0's) in such a way that conditions (C1) and (C2) above
are satisfied. Note that, if N ought to be fully-connected, any other link (not
shown in Figure /) should receive weight zero initially.

Note that, in Example 2, each input and output neuron of N is associated
with an atom of P. As a result, each input and output vector of N can be
associated with an interpretation for P. Note also that each hidden neuron N;
corresponds to a rule r; of P. In order to compute the stable models of P,
output neuron B should feed input neuron B such that N is used to iterate
Tp, the fixed-point operator of P. N will eventually converge to a stable state
which is identical to the answer set of P [16].

Notation : Given a general logic program P, let ¢ denote the number of rules
r; (1 <1 < q) occurring in P; v, the number of literals occurring in P;
Apmin, the minimum activation for a neuron to be considered “active” (or
true), Amin € (0,1); Apmaz, the maximum activation for a neuron to be
considered “not active” (or false), Apar € (—1,0); h(z) = 1755 — 1,
the bipolar semi-linear activation function®; g(z) = x, the standard linear
activation function; s(z) = y, the standard nonlinear activation function
(y =1if x > 0; and y = 0 otherwise), also known as the step function;

6We use the bipolar semi-linear activation function for convenience. Any monotonically
crescent activation function could have been used here.
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Interpretations

Figure 4: Sketch of a neural network for the above logic program P.

W (resp. -W), the weight of connections associated with positive (resp.
negative) literals; 0;, the threshold of hidden neuron N; associated with
rule r; 0 4, the threshold of output neuron A, where A is the head of rule
ry; ki, the number of literals in the body of rule 7;; p;, the number of
positive literals in the body of rule r;; n;, the number of negative literals
in the body of rule r;; y;, the number of rules in P with the same atom in
the head, for each rule r;; MAX,, (k;,;), the greater element among k;
and g for rule rj; and MAXp(ki, ..., kg, f11, -, 1), the greatest element

among all k’s and p’s of P. We also use % as a shorthand for (k1, s kq),
and 70" as a shorthand for (py, ..., 1,).

For instance, for the program P of Example 2, ¢ =3, v =6, k1 = 3, ko = 2,

k‘3:0,p1:2,p2:2,p3:0,n1:1,712:0,713:0,,u1:2,,u2:2,
s = 1, MAX, (k1,1q) = 3, MAX,,(ka, 1) = 2, MAX,,(ks,u3) = 1, and
MAX’}D(]{}l,]{J27]{}3,/.L1,/.L2,/.L3) =3.

In the Translation Algorithm below, we define A,,;n, W, 0;, and 0 4 such that

conditions (C1) and (C2) above are satisfied. Given a general logic program
P, consider that the literals of P are numbered from 1 to v such that the input
and output layers of N are vectors of length v, where the i-th neuron represents
the i-th literal of P. We assume, for mathematical convenience and without loss

of generality, that A,qe = —Amin- We start by calculating M AXp(?, ) of
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P and A,,;, such that:

MAXp(k, 1) — 1
Anu'n > — (5)
MAXp(k, @) +1

The Translation Algorithm

1. Calculate the value of W such that the following is satisfied:

2 In (1 + Amin) —In (1 - Amin)
>Z. — ; (6)
B MAX’p(k‘, M)(Amin_1)+Amin+1

2. For each rule r; of P of the form Ly,...,Ly — A (k > 0):

(a) Add a neuron N, to the hidden layer of N;

(b) Connect each neuron L; (1 <i < k) in the input layer to the neuron
N in the hidden layer. If L; is a positive literal then set the connec-
tion weight to W; otherwise, set the connection weight to —W;

(c) Connect the neuron N; in the hidden layer to the neuron A in the
output layer and set the connection weight to W;

(d) Define the threshold (;) of the neuron N; in the hidden layer as:

(14 Apin) (k1 — 1)
2

0, = w (7)

(e) Define the threshold (0 4) of the neuron A in the output layer as:

(1+ Apin) (1 — 1)
2

04 = w (8)

3. Set g(x) as the activation function of the neurons in the input layer of N.
In this way, the activation of the neurons in the input layer of N, given
by each input vector i, will represent an interpretation for P.

4. Set h(x) as the activation function of the neurons in the hidden and output
layers of . In this way, a gradient descent learning algorithm, such as
Backpropagation, can be applied on N efficiently.

5. If N ought to be fully-connected, set all other connections to zero.

Theorem 4 [15, 16] For each propositional general logic program P, there ex-
ists a feedforward artificial neural network N with exactly one hidden layer and
semi-linear neurons such that N' computes the fized-point operator Tp of P.
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3.2 The Modal C-IL?P System

In this section, we extend the C-IL?P system to deal with modalities. We use
the Translation Algorithm presented in Section 3.1 for creating each network
of the ensemble, and the following Modalities Algorithm for interconnecting
the different networks. The Modalities Algorithm translates natural deduction
rules into the networks. Intuitively, the accessibility relation is represented in
the metalevel by connections between (sub)networks, as depicted in Figure 5,
where R(w1,w2) and R(wi,ws3). Connections from wi to we and ws represent
either OJE or OE (Table 1). Connections from wy and ws to wy represent either
LI or <l

Figure 5: An ensemble of networks that represents modalities.

Let P be an extended modal program with clauses of the form w; : MLy, ...,
ML), — MA, where each L; is a literal, A is an atom and M € {O,O},
1<i<mn,0<j<Ek Asin the case of individual C-IL*P networks, we start

. - _
by calculating MAXp( &k, 1w, n) of P and Ay, such that:
MAXp(k, 7,n) — 1
MAXp(k, 7,n) +1

which, now, also considers the number n of networks (possible worlds) in the
ensemble.

9)

min
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The Modalities Algorithm

1. Let P; € P be the set of clauses labelled by w; in P. Let N; be the
neural network that denotes P;. Let WM € R be such that WM >
h=Y(Awin) + ;W + 0.4, where p;, W and 04 are obtained from C-IL°P’s
Translation Algorithm” .

2. For each P; do:
a ename eac i In P; by a new literal not occurring in of the
R h ML; in P; b li 1 i in P of th
form L7 if M =0, or LY if M = O

(b) Call C-IL?P’s Translation Algorithm;

3. For each output neuron L in Nj, do:
(a) Add a hidden neuron L} to an arbitrary N (0 < k < n) such that
R(ws, wi);

(b) Set the step function s(x) as the activation function of Lé\/f ;

(¢) Connect Lf in V; to L;M and set the connection weight to 1;

(d) Set the threshold oM of L;-W such that —1 < M < Apin;

(e) Connect L;-w to L; in N}, and set the connection weight to WM.

)
)
)
)

4. For each output neuron L7 in N, do:
(a) Add ahidden neuron Lé\/f to each NV, (0 < k < n) such that R(w;, wg);
(

b) Set the step function s(z) as the activation function of L}';

d) Set the threshold 8 of L;M such that —1 < M < Apin;

)

)
(c) Connect LT in N; to L}’ and set the connection weight to 1;
(d)
(e) Connect L;w to L; in N}, and set the connection weight to WM.

5. For each output neuron L; in N}, such that R(w;,wy) (0 <i < m), do:

(a) Add a hidden neuron LY to N;
(b) Set the step function s(z) as the activation function of L};
(c) For each output neuron LY in N, do:

i. Connect L; in NV, to L} and set the connection weight to 1;

ii. Set the threshold 8 of L]v such that —nA,in < 0 < Apin —
(n—1);
iii. Connect LY to Lf in V; and set the connection weight to WM.

"Recall that y; is the number of connections to output neuron I.
8 This allows us to treat each ML; as a literal and apply the Translation Algorithm directly
to P;, by labelling neurons as OLj, OLj, or Lj.
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6. For each output neuron L; in NV}, such that R(w;,wy) (0 <i < m), do:

(a) Add a hidden neuron LJA to Nj;
(b) Set the step function s(z) as the activation function of L7}
(c) For each output neuron L5 in A, do:

i. Connect L; in Ny, to Lg\ and set the connection weight to 1;

ii. Set the threshold 0" of L;-\ such that n — (1 + Apin) < 0" <
iii. Connect L} to L} in N and set the connection weight to W,

Let us now illustrate the use of the Modalities Algorithm with the following
example.

Example 3 Let P = {wy : 7 — Og, wy : Os = 1, wy & 8, wy : ¢ — Op,
R(wi,w32), R(wi,ws)}. We start by applying C-IL?P’s Translation Algorithm,
which creates three neural networks to represent the worlds wy, we, and ws
(see Figure 6). Then, we apply the Modalities Algorithm. Hidden neurons
labelled by {M,V, A} are created using the Modalities Algorithm. The remaining
neurons are all created using the Translation Algorithm. For the sake of clarity,
unconnected input and output neurons are not shown in Figure 6.

Taking N1 (which represents w1 ), output neurons Lf should be connected to
output neurons Lj in an arbitrary network N; (which represents w;) to which
N7 is related. For example, taking N; = Na, s in N7 is connected to s in Na.

Then, output neurons LJD should be connected to output neurons L; in every
network N to which N7 is related. For example, Oq in N1 is connected to q in
both No and N3.

Now, taking Na, output neurons L;j need to be connected to output neurons
Lf and LJD in every world Nj related to Ny. For example, s in No is connected
to Os in N1 wvia the hidden neuron denoted by V in Figure 6, while q¢ in N
is connected to g in N1 via the hidden neuron denoted by A. Similarly, q in
N3 is connected to (g in N1 via A. The algorithm terminates when all output
neurons have been connected.

We are now in a position to show that the ensemble of neural networks
N obtained from the above Modalities Algorithm is equivalent to the original
extended modal program P, in the sense that A/ computes the modal immediate
consequence operator MTp of P (see Definition 8).

Theorem 5 For any extended modal program P there exists an ensemble of
feedforward neural networks N with a single hidden layer and semi-linear neu-
rons, such that N' computes the modal fized-point operator MTp of P.

Proof. We have to show that there exists W > 0 such that the network N,
obtained by the above Modalities Algorithm, computes MTp. Throughout, we
assume that N and Nj are two arbitrary sub-networks of N, representing pos-
sible worlds w; and wj, respectively, such that R(w;,w;). We distinguish two
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Figure 6: The ensemble of networks {N7, Na, N3} that represents P.

cases: (a) rules with modalities O and < in the head, and (b) rules with no
modalities in the head.

(a) Firstly, note that rules with O in the head must satisfy OF, while rules
with & in the head must satisfy OF in Table 1. Given input vectors i and
j to N; and Nj, respectively, each neuron A in the output layer of Nj is ac-
tive (A > Apin) if and only if: (i) there exists a clause of P; of the form
MLy, ...,ML, — A s.t. MLy,..., MLy are satisfied by interpretation j, or (ii)
there exists a clause of P; of the form MLy,.... ML, — A s.t. MLy, ..., MLy
are satisfied by interpretation i, or even (iii) there exists a clause of P; of the
form MLy,.... MLy — A s.t. MLq,..., MLy are satisfied by interpretation i,
and the Modalities Algorithm (step 3a) has selected N as the arbitrary network
N

(—) (i) results directly from Theorem 4. (ii) and (iii) share the same proof,
as follows: from Theorem 4, we know that if MLy, ..., MLy are satisfied by
interpretation i then M A is active in N; (recall, M € {J,O}). Hence, we only
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need to show that M A in N activates A in Nj. From the Modalities Algorithm,
AM is a non-linear hidden neuron in Nj. Thus, if MA is active (MA > Apin)
then AM presents activation 1. As a result, the minimum activation of A is
(WM — 11 ;W — 04). Now, since WM > h=Y(Apin) + uaW + 04, we have
h(WM — i yW — 04) > Apin and, therefore, A is active (A > Apmin). (—)
Directly from the Modalities Algorithm, since AM is a non-linear neuron, it
contributes with zero to the input potential of A in Nj when MA is not active
in N;. In this case, the behaviour of A in Nj is not affected by N;. Now,
from Theorem 4, Nj computes the fized-point operator Tp, of Pj. Thus, if
MLy, ..., MLy, is not satisfied by j then A is not active in Nj.

(b) Rules with no modalities must satisfy OI and I in Table 1. Given input
vectors i and j to Nj and N, respectively, each neuron JA in the output layer
of N is active (DA > Apin) if and only if: (i) there exists a clause of P; of the
form MLy,....MLy — OA s.t. MLy,..., MLy are satisfied by interpretation i,
or (it) for all Nj, there exists a clause of Pj of the form MLy, ..., MLy, — A s.t.
MLy, ..., MLy are satisfied by interpretation j. Each neuron OA in the output
layer of N is active (OA > Apin) if and only if: (iii) there exists a clause
of P; of the form MLq,..,ML, — OA s.t. MLq,...,MLy are satisfied by
interpretation i, or (iv) there exists a clause of P; of the form MLy, ..., ML —
A s.t. MLy,..., MLy are satisfied by interpretation j.

(—) (i) and (iii) result directly from Theorem 4. (ii) and (iv) are proved in
what follows: from Theorem 4, we know that if M Ly,..., ML are satisfied by
interpretation j then A is active in Nj. (ii) We need to show that if A is active
in every network Nj (0 < j < n) to which Nj relates to, A is active in Nj.
> From the Modalities Algorithm, A" is a non-linear hidden neuron in N;. If A
is active (A > Apin) in Nj, the minimum input potential of A" is nAyin — .
Now, since 0" < nApin (Modalities Algorithm, step 6(c)ii), the minimum input
potential of A™ is greater than zero and, therefore, A® presents activation 1.
(iv) We need to show that if A is active in at least one network Nj (0 < j <n)
to which N; relates to, OA is active in N;. From the Modalities Algorithm,
AV is a non-linear hidden neuron in N;. If A is active (A > Apin) in Nj, the
minimum input potential of AV is Apin — 0. Now, since 0" < Apin — (n—1)
(Modalities Algorithm, step 5(c)ii), and n > 1, the minimum input potential of
AV is greater than zero and, therefore, AV presents activation 1. Finally, if A®
presents activation 1, the minimum activation of A is (WM — o y,W — 0 4),
and, exactly as in item (a) above, JA is active in N;. Similarly, if AV presents
activation 1, the minimum activation of GA is (W™ — o W — o), and,
exactly as in item (a) above, OA is active in N;.

(—) Again, (i) and (iii) result directly from Theorem 4. (ii) and (iv) are
proved below: (ii) We need to show that if DA is not active in N; then at
least one A is not active in Nj to which N relates to (0 < j < mn). If0A is
not active, A" presents activation 0. In the worst case, A is active in n — 1
networks with mazimum activation (1.0), and not active in a single network
with minimum activation (—Amin). In this case, the input potential of A" is
n—1—Apmin—0". Now, since " > n— (14 Apin) (Modalities Algorithm, step
6(c)ii), the mazimum input potential of A™ is smaller than zero and, therefore,
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AN presents activation 0. (iv) We need to show that if CA is not active in N
then A is not active in any network /\/J to which N relates to (0 < j < n).
If OA is not active, AV presents activation 0. In the worst case, A presents
activation — Ay in all Nj networks. In this case, the input potential of AV is
—nApmin —0". Now, since 0¥ > —nApin (Modalities Algorithm, step 5(c)ii),
the maximum input potential of AV is smaller than zero and, therefore, AV
presents activation 0. Finally, from Theorem 4, if A™ and AV present activation
0, N; computes the fized-point operator MTp, of P;. This completes the proof.
[ |

Now, if each network A; in the ensemble is transformed into a partially
recurrent network N by linking the neurons in the output layer to the corre-
sponding neurons in the input layer, the ensemble can be used to compute the
extended modal program in parallel. For example, in Figure 6, if we connect
output neurons ¢s and r to input neurons ¢s and r, respectively, in N7, and
output neuron ¢ to input neuron ¢ in N3, the ensemble computes {<s, r, Og}
in wy, {s,q} in we, and {g, s} in ws. As expected, these are some of the logi-
cal consequences of the original program P given in Example 3. Although the
computation is done in parallel in N, following it by starting from facts (such
as s in wo) would help in verifying this.

Corollary 6 Let P be an acceptable extended modal program. There exists an
ensemble of recurrent neural networks N with semi-linear neurons such that,
starting from an arbitrary initial input, N converges to a stable state and yields
the unique fized-point (MTEF (I)) of MTp.

Proof. Assume that P is an acceptable program. By Theorem 5, N computes
MTp. Recurrently connected, N" computes the upwards powers (T3'(I)) of Tpp.
Finally, by Theorem 3, N computes the unique fixed-point (MTF (I)) of MTp.
|

Hence, in order to use N as a massively parallel model for modal logic, we
simply have to recurrently connect N with fixed-weight links W, = 1.

4 Case Study: The Connectionist Muddy Chil-
dren Puzzle

In this section, we apply the Modal C-IL°P System to the muddy children
puzzle, a classic example of reasoning in multi-agent environments. In contrast
with the also well-known wise men puzzle [17, 32], in which the reasoning process
is sequential, here it is clear that a distributed (simultaneous) reasoning process
happens, as follows: There is a group of n children playing in a garden. A
certain number of children k& (K < n) has mud on their faces. Each child can
see if the other are muddy, but not themselves. Now, consider the following
situation®.

9We follow the muddy children problem description presented in [17]. We must also assume
that all the agents involved in the situation are truthful and intelligent.
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A caretaker announces that at least one child is muddy (kK > 1) and asks
“does any of you know if you have mud on your own face?”'® To help un-
derstanding the puzzle, let us consider the cases in which £ = 1, £ = 2 and
k=3.

If k=1 (only one child is muddy), the muddy child answers yes at the first
instance since she cannot see any other muddy child. All the other children
answer no at the first instance.

If k£ = 2, suppose children 1 and 2 are muddy. In the first instance, all
children can only answer no. This allows 1 to reason as follows: “if 2 had said
yes the first time, she would have been the only muddy child. Since 2 said
no, she must be seeing someone else muddy; and since I cannot see anyone else
muddy apart from 2, I myself must be muddy!” Child 2 can reason analogously,
and also answers yes the second time round.

If k£ = 3, suppose children 1, 2 and 3 are muddy. Every children can only
answer no the first two times. Again, this allows 1 to reason as follows: “if 2
or 3 had said yes the second time, they would have been the only two muddy
children. Thus, there must be a third person with mud. Since I can see only 2
and 3 with mud, this third person must be me!” Children 2 and 3 can reason
analogously to conclude as well that yes, they are muddy.

The above cases clearly illustrate the need to distinguish between an agent’s
individual knowledge and common knowledge about the world in a particular
situation. For example, when k = 2, after everybody says no in the first round,
it becomes common knowledge that at least two children are muddy. Similarly,
when k& = 3, after everybody says no twice, it becomes common knowledge
that at least three children are muddy, and so on. In other words, when it
is common knowledge that there are at least & — 1 muddy children; after the
announcement that nobody knows if they are muddy or not, then it becomes
common knowledge that there are at least k muddy children, for if there were
k — 1 muddy children all of them would know that they had mud in their faces.
Notice that this reasoning process can only start once it is common knowledge
that at least one child is muddy, as announced by the caretaker.

4.1 Distributed Knowledge Representation

Let us now formalise the muddy children puzzle in our connectionist modal logic
framework. Typically, the way to represent the knowledge of a particular agent
is to express the idea that an agent knows a fact « if the agent considers/think
that « is true at every world the agent sees as possible. In such a formalisation,
a K; modality that represents the knowledge of an agent j is used analogously
to a [J modality as defined in Section 2.1. In addition, we use p; to denote that
proposition p is true for agent i. For example, K;p; means that agent j knows
that p is true for agent i. We omit the subscript j of K whenever it is clear
from the context. We use p; to say that child ¢ is muddy, and g to say that
at least k children are muddy (k < n). Let us consider the case in which three

100f course, if k > 1 they already know that there muddy children amongst them.
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children are playing in the garden (n = 3). Rule r} below states that when child
1 knows that at least one child is muddy and that neither child 2 nor child 3 are
muddy then child 1 knows that she herself is muddy. Similarly, rule r} states
that if child 1 knows that there are at least two muddy children and she knows
that child 2 is not muddy then she must also be able to know that she herself is
muddy, and so on. The rules for children 2 and 3 are interpreted analogously.

Rules for Agent(child) 1:

ri: KiqnAK;—p2AKy—ps —Kips
r3: K1q2AKi—p2 —Kipy

ri: KiqeAK1—ps —Kips

ri: Kiqs —=Kip:

Rules for Agent(child) 2:

r?: Koqi AKo—p1 AKa—ps —Kops
r3: KoqaAKo—p1 —Kopo

r3: KoqaAK2-p3 —Kapo

r3: Koqs —Kapo

Rules for Agent(child) 3:

r$: K3q1 AK3-p1 AK3—ps —Ksps
r3: K3qaAK3—p1 —Ksps

Tgi K3q2AK3—p2 —K3ps

ri: Kzqzs —Ksps

Each set of rules 7!, (1 <1 < n, m € NT) is implemented in a C-IL’P
network. Figure 7 shows the implementation of rules r{ to r} (for agent 1)!*. In
addition, it contains p;'? and Kq;, K¢» and Kgqs, all represented as facts. This
is highlighted in grey in Figure 7. This setting complies with the presentation
of the puzzle given in [32], in which snapshots of the knowledge evolution along
time rounds are taken in order to logically deduce the solution of the problem
without the addition of a time variable. In contrast with p; and Kgy, (1 < k < 3),
K-—p2 and K—p3s must be obtained from agents 2 and 3, respectively, whenever
agent 1 does not see mud on their foreheads.

Figure 8 illustrates the interaction between three agents in the muddy chil-
dren puzzle. The arrows connecting C-IL? P networks implement the fact that
when a child is muddy, the other children can see it. For the sake of clarity, the
rules 7. , corresponding to neuron Kipi, are shown only in Figure 7. Analo-
gously, the rules r2, and 73, for Kops and K3psz would be represented in similar
C-IL? P networks. This is indicated in Figure 8 by neurons highlighted in black.
In addition, Figure 8 only shows positive information about the problem. Recall
that negative information such as —p;, K—p1, K—ps is to be added explicitly to
the network, as shown in Figure 7.

' Note that with the use classical negation, Kp; and K—p; should be represented as two
different input neurons [13]. Negative weights in the network would then represent default
negation, allowing one to differentiate between Kp; and ~Kp;, and between K—p; and ~K-p;,
respectively. This can be easily verified by renaming K—p; by a new literal Kp/.

12Note the difference between py (child 1 is muddy) and Kp; (child 1 knows she is muddy).
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Figure 7: The implementation of rules {r},...,71}.

4.2 Learning

As discussed in the Introduction, one of our main objectives when develop-
ing neural-symbolic learning systems is to retain good learning capability while
seeking to develop systems that can deal with more expressive languages such
as modal logics. As indicated in [20, 46], the merging of theory (background
knowledge) and data learning (learning from examples) in neural networks may
provide a learning system that is more effective than purely symbolic and purely
connectionist systems. In order to implement such a hybrid system, one might
first translate the background knowledge into a neural network initial archi-
tecture, and then train it with examples using some neural learning algorithm
[47, 15].

In this section, we use the Modalities Algorithm given in Section 3.2 to per-
form the translation from a modal background knowledge to the initial ensemble
architecture. We then use standard Backpropagation to train each network of
the ensemble with examples 3. Our aim is to verify whether a particular agent
i can learn from examples if he is muddy or not, i.e. learn rules 7¢ to 7§ above.

We have performed two sets of experiments using the muddy children puz-

13Recall that each network in the ensemble is a C-IL?P network and, therefore, can be
trained with examples using standard Backpropagation.
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Figure 8: Interaction between agents in the muddy children puzzle.

zle in order to compare learning with background knowledge and without
background knowledge. In the first set of experiments, we have created net-
works with random weights to which we then presented a number of train-
ing examples. In the second set of experiments, we have inserted rule r} :
K11 AK1—p2AK;—p3 —Kip; as background knowledge before training the
networks with examples!?. Each training example states whether agent i is
muddy or not, according to the truth-values of literals K;q1, K;q2, K;qs, K;p1,
K,;—p1, K;p2, K;—p2, K;ps, K;—p3 (represented as input neurons).

We have evaluated the networks using cross-validation, a testing method-
ology in which the set of examples is permuted and divided into n sets [36].
One division is used for testing and the remaining n — 1 divisions are used for

4 Note that rule r? works as a base rule for induction in the muddy children puzzle.
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training. The testing division is never seen by the learning algorithm during
the training process. The procedure is repeated n times so that every partition
is used once for testing. In both experiments, we have used n = 8 over a set of
32 examples. In addition, we have used a learning rate n = 0.2, a term of mo-
mentum « = 0.1, h(z) = 1+e+5w — 1 as activation function, and bipolar inputs
in {-1,1}.

The training sets were presented to the networks for 10,000 epochs, and
the sets of weights were updated every 16 epochs'®. For each experiment, this
resulted in 8 networks being trained with 28 examples, with 4 examples reserved
for testing. All 16 networks reached a training set error Err(W) (according to
Equation 1) smaller than 0.01 before 10,000 epochs had elapsed. In other words,
all the networks have been trained successfully. Recall that learning takes place
locally in each network. Any connection between networks in the ensemble is
defined by the rules of natural deduction for modalities presented in Section 2.1.

As for neural network’s generalisation capability, the results corroborate the
importance of exploiting any available background knowledge. In the first exper-
iment, in which the connectionist modal system was trained with no background
knowledge, the networks presented average test set accuracy of 84.37%. In the
second experiment, in which rule r{ had been added to the networks prior to
training, an average test set accuracy of 93.75% was obtained under exactly the
same training circumstances.

5 Conclusions and Future Work

In this paper, we have presented a new neural-symbolic learning system for
modal logic. We have done so by presenting an algorithm to translate a modal
theory into an ensemble of C-IL?P neural networks [15, 16], and proved that
the ensemble computes a fixed-point semantics of the theory. As a result, the
ensemble can be seen as a new massively parallel model for modal logic. In
addition, the ensemble can be used to learn possible world representations from
examples using the standard Backpropagation learning algorithm as shown in
Section 4.2. Finally, we have applied the Connectionist Modal Logic System to
the muddy children puzzle, a well-known benchmark for distributed knowledge
representation. We have both set up and trained networks to reason about this
puzzle.

This paper opens up a new area of research in which modalities can be
represented and learned using artificial neural networks. There are several av-
enues of research to be pursued as a result. For instance, an important aspect
of Neural-Symbolic Learning Systems, not dealt with in this paper, is rule ex-
traction from neural networks ensembles [14, 48]. In the case of connectionist
modal logic, rule extraction methods would need to consider the more expres-
sive knowledge representation language used here. In addition, extensions to the
basic modal C-IL°P system presented in this paper include the study of how

15 An epoch is defined as one pass through the complete set of training examples.
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to represent other modal logics such as temporal [23], dynamic [26], and condi-
tional logics of normality [8], as well as inference and learning of (fragments) of
first-order modal logic.

The addition of a time variable to the approach presented here would allow
the representation of knowledge evolution. This could be implemented using
labelled transitions from one knowledge state to the next, with a linear timeflow,
where each timepoint is associated with a state of knowledge, i.e. a network
ensemble [23]. We have already initiated the investigations on how to represent
linear temporal logic in the modal C-IL?P framework.

One could also think of the modal C-IL?P system presented here as a first
step towards a model construction algorithm, which in turn allows for investi-
gations in model checking of distributed reasoning systems in a connectionist
framework. Alternatively, the modal C-IL°P system can be seen as a connec-
tionist theorem prover for modal logics, which can be implemented in hardware
as a neural network. In summary, we believe that our connectionist modal logic
framework addresses the need for integrated distributed knowledge representa-
tion and learning mechanisms in Artificial Intelligence.
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