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Abstract

Plasmonic Nanostructures with its highly Localised Surface Plasmon Resonance (LSPRs),

have opened up excellent opportunities for molecular biosensing applications. This PhD

work studies a novel elliptical shaped gold nano antenna array surface as a sensing plat-

form for Refractive Index (RI) diagnostics by using the finite element method (FEM) of

COMSOL Multiphysics package. In this work, initially various computational approaches

for characterising nanoantennas are benchmarked. Then, effect of various nano antenna

parameters are optimised to achieve a high sensitivity and uniformity of the sensor chips. It

has been shown that nanoantenna array with major axes (a) = 100 nm, minor axes (b) = 10

nm, height (h) = 40 nm and separation gap (g) = 10 nm with unit cell period of 400x200

nm yielding a very high sensitivity of 526-530 nm/RIU, FWHM = 110 nm and FOM = 8.1.

Next, a hybrid coupled nano-structured antenna with stacked multilayer gold and Lithium

Tantalate (LiTaO3) or Aluminum Oxide (Al2O3) is designed. A 10 layers of gold (Au)

and Lithium tantalate (LiTaO3) or Aluminum oxide (Al2O3) with h1 = h2 = 10 nm exhibits

very high bulk sensitivity (S) of 730 and 660 nm/RIU, respectively with major axis, (a) =

100 nm, minor axis, (b) = 10 nm, separation gap (g) = 10 nm, and height, (h) = 100 nm,

which is a significant increase in its sensitivity (S). This innovative novel plasmonic hybrid

nanostructures provide a framework for developing plasmonic nanostructures for use in

various sensing applications. Additionally, as an alternative to the use of computationally

expensive FEM, use of multi layer perception (MLP) deep learning method is developed with

the help of Pytorch and scikt learn frameworks. The training of MLP model has been carried



out with the help geometrical data as a input layer and predicted the sensitivity, Full-Width

Half-Maximun (FWHM), Figure of Merit (FOM), plasmonic wavelength and the spectral

patterns of reflection, transmission and absorption spectra. The efficacy and reliability of the

design strategy are confirmed through conventional FEM validations and evaluation shows

that over 95 % accuracy and 40 time faster computational cost as compare to the conventional

FEM method.
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Chapter 1

Introduction

1.1 Objectives and Motivations of Nano technology

The main concept of the paired gold nano antenna are recently gaining lot of popularity among

all researchers due to its versatile application and, establishing a new perspective for the devel-

opment of nano technology for optical bio-sensing applications. Nano shaped antenna can be

a good aspirant for the micro level bio sensing application due to its exciting property called

Localized Surface Plasmon Resonance (LSPR). LSPRs have extremely high electromagnetic

field confinements, making them an excellent contender for bio-molecular sensor applications

including like biomedical detection, photovoltaic cells, spectroscopy, energy generation, and

disease therapy and avoidance. Nanotechnology has garnered tremendous popularity in

recent years due to its great efficiency in terms of scattering, absorption, extinction, and

reflection/transmission at the nanoscale.

Figure 1.1 shows the structural comparison between traditional RF and nano optical

antenna. Figure 1.1a shows a traditional Yagi-Uda RF antenna, which can be 1 m long and

Figure 1.1b shows a sub micron size optical nano antenna along with its prominent results

due to their property called as Surface Plasmon Resonance (SPR), and due to its compact
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size and structure it can be extremely useful to overcome a number of challenges for many

applications.

(a) (b)

Fig. 1.1 Nano Antenna Structures (a) Traditional RF Antenna System, (b) Designed nano
antenna structure placed on the quartz substrate.

Figure. 1.1b shows a nano sensing platform which can be utilised for a range of purposes,

with environmental monitoring and biosensing applications possible through the addition of a

sensing platform. Ideally, a biosensor must be cost-effective and user-friendly with the ability

to obtain stable and reproducible results in a timely manner. Additionally, the sensor must

be both sensitive and specific to the required detection events. As a consequence, optical

nanosensors for biological diagnostic applications must be able to detect and efficiently

monitor biomolecules, providing a signal proportional to the molecule concentration by

modifying the geometries and ambient media; although, there are still many possibilities

to consider. As a result, I have developed an effective refractive index sensor based on

nanostructures in this research.

Many industrial applications, including the development of photonic devices, need

time-consuming stages such as design, optimisation, manufacturing, characterization, error

analysis, and potential reconfiguring. Several mathematical simulations and software pack-
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ages (both open platform and commercialized) have been created for diverse nano photonic

applications to reduce both costs and time of the development process. With the growth of

computing technology, the accuracy of these modelling tools has rapidly increased. 2-D

and 3-D optical devices may be studied using a variety of models and simulators. Although

approximate two-dimensional computations can elucidate some concepts and phenomena,

but comprehensive three-dimensional computations are required to determine the characteris-

tics of practical devices that will be employed in real systems. Furthermore, depending on

the size of the optical device, studying the temporal response of the nano structures might

render the modelling procedure computationally costly.

To study the plasmonic response of 3-D nano structures, the Finite Element Method (FEM)

approach is often adopted, and it typically consists of a triangular mesh with one grid resolu-

tion for the FEM. For complex devices with curved edges, this grid approach can become

inefficient. To address this, an in-house Finite Element Method (FEM) model was created,

which employs a very small sized triangular mesh and allows for varying mesh resolutions in

the computational domain. Despite the availability of super computing machines, a thorough

optimization of plasmonic nano structured device parameters by parameter sweep is typically

a time-consuming procedure as the FEM approach can take a few hours or even a days to

evaluate its optical transmission response.

1.2 Objectives and Motivations of Machine Learning

Machine learning algorithms have been used in the day-to-day applications of tech firms

such as Google, Microsoft, Facebook and others. Machine learning (ML) approaches have

recently been applied to optical systems to effectively optimise various optical characteristics

at a reduced computation cost. This provides an inspiration to investigate the new field

of using machine learning algorithms to effectively predict the optical characteristics for

various nano structured plasmonic devices. The aim here is to achieve automatised ML neural
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network that can adapt the changes in the geometrical dimensions and have the ability to

predict the optical properties in a small computational time. Although, when it comes to the

experimental fabrication such uncertainties may come about if the system is very dynamic or

complex. Hence, this problem can be solved with the help of neural network.

The design of neural network is important as it is very difficult to observe and calculate the

optical characteristics and make immediate understanding through observing. The ML has

shown to be a promising approach for enhancing the potential of monitoring the nano

structured devices. ML neural network can also learn the patterns from the generated data by

using the FEM method and provides interesting insights of the training dataset, and assist the

neural network in making additional predictions and conclusions. Generated training dataset

acts as an automated reasoning tool to overcome the aforementioned FEM uncertainty.

In addition, conventional FEM method consumes considerable computing resources

and time to achieve the desired outcomes. Even a tiny mistake in the FEM model input

parameters may lead to unacceptable optical properties. Conversely, most ML models

(especially supervised learning) are straight-forward statistical mapping algorithms between

the system inputs and outputs. They have the potential to bypass the problems associated

with complex traditional models and solve the prediction problem in a reverse way using

monitoring. Therefore, given the ML neural network capability, intelligent learning agents

can calculate accurate and cost effective desired optical characteristics.

Finally, in the following work I have designed high sensitive nano antenna device for RI

detection using the conventional FEM method. In the second phase, the ML algorithm have

been developed to overcome the computation cost of the system. The designed algorithm

shows its effective performance for predicting the optical characteristics of the nano structured

antenna.
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1.3 Challenges

In the initial part of this project, traditional FEM software was utilised to construct the

nano antenna computation model. However, I employed a variety of methodologies and

boundary conditions for building the nano antenna system. But, in order to be confident in

the computational model design, I adopted one reputable publication and benchmarked their

work, culminating in comparable findings. As a result, the initial challenge of this research

was to produce equivalent results using a computational model. Following the successful

benchmarking, this computational model was further refined with the use of geometrical

parameter variations. Similar computational model is used to produce a very high sensitive

nanoscale antenna system for RI sensing applications after establishing complete confidence

in it. However, while building a high-sensitivity nanoscale antenna system, it was discovered

that traditional FEM software has a large computation complexity and takes a long time,

maybe even a day, to generate useful conclusions.

As a result of this shortcoming in traditional FEM software, the second challenge comes

into the frame. To address this limitation, Machine Learning (ML) was used to deal with the

problem of predicting optical properties of the nano systems and comparing them to FEM

outcomes to visualize the accuracy of the predictions. However, Machine learning neural

network also need sufficient training dataset to make an accurate prediction. This problem

still remains a big challenge for learning in the field nanotechnology. Hence to generate

the dataset one needs specific optical domain knowledge to justify whether the accurate

procedure was adopted during data generation. Although the performance of the ML neural

network also depends on intrinsically design trade-off between the training data size and the

prediction performance. In addition to increasing the training data size, another solution is

generative methods. Due to the lack of monitoring data, learning agents are forced to make
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decisions based on incomplete information. Data curation turn out to be a potential solution

to tackle such data size limitation problems when the agent is not omniscient.

In summary, ML neural network are applied extensively in nano structured sensing devices.

Some of the challenges to be solved by ML are addressed here. Firstly, as aforementioned,

ML is used to confirm the ubiquitous uncertainty during the nano structures fabrication. ML

models are expected to learn from monitoring data and generate updated knowledge of the

uncertain geometrical parameters. The prediction accuracy is the most common to assess the

model performance with the help of Mean Squared Errors (MSE). This learning capability

forms the foundation for neural network diagnosis and reliability. Secondly, ML can be

useful in optimising the control plane decision-making process. This is commonly achieved

by generating a utility (cost) function and optimising it with uncertainty. Thirdly, ML is a

promising method for complementing traditional optimisation models, such as FEM, due

to the high computational complexity. Although such applications sometimes sacrifice the

learning accuracy, they can reduce the redundant computation and speed up the learning

process, while maintaining acceptable levels of optimisation performance. Amongst all these

challenges, the ML capability is critical for capturing the optical characteristics of any nano

structured devices.

1.4 History and Literature

1.4.1 Nanostructures

Nanostructures and nanomaterials have rapidly received considerable attention from re-

searchers due to their wide range of applications, and the worldwide market value of nan-

otechnology reached USD 90 billion by 2021 [1], as automotive and commercial applications

of nanotechnology keep expanding [2]. Synge introduced the theory of near-field region

microscopy for the first time in 1928, but owing to several manufacturing limitations at that
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time, no one acknowledged it. Bailey and Fletcher filed a patent for Electromagnetic Wave

Converters in 1973, it marked as the first commencement of nanoscale antennas comparable

which have been used nowadays [3]. Later, in 1985, Wessel published a concept for electric

fields confinement caused by small nano metallic particles using Scanning Microscopy [4].

He also emphasised the significance of surface plasmon resonance in nanoparticles. Alvin M.

Marks published a super submicron electron beam writer enabling immediate light energy is

conversion into electric current in 1989 [5]. Subsequently, nano antenna gained its popularity

among the researchers.

In recent days nano antenna still holds its popularity to carry out research. According

to the literature there are a number of published articles shows the great effectiveness

in regards of functionality. In 2004 Tolga Atay et al. have reported round periodical

arrangements of gold antennas with significant resonance and wide field patterning [6].

Likewise another group of researchers designed asymmetric split ring resonators for organic

substance detection [7]. Nano antenna can be used as a shared substrate for Surface Enhanced

Raman Spectroscopy (SERS and SEIRS) respectively. In this way it can resonates in the

visible and infrared region at the same time [8]. Additionally, Nano paired antenna used

in different shapes as the Bow-Tie [9–12], Nanodisks [13–15], Nanorods [16–18, 11] and

Nano elliptical shaped antenna have been reported [19, 20] in visible region. The preceding

overview of the literature demonstrates the impressive outcomes of strong resonance and

field confinement obtained through mathematical analysis and empirical research over the

last few years. Some very well-known approaches, such as the finite element method [FEM],

have been used to describe the numerical design and modelling of gold nano antennas

[19, 20, 12, 21, 22, 9] and finite difference time domain method [FDTD] [23–27].
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1.4.2 Nano materials

The four major types of nanomaterials are as follows: (I) Carbon nanomaterials, which in-

clude carbon compounds and comes in geometries such as tubular wires, elliptical, spherical,

and cavities. Diamond, fullereness, carbon nano-fibers (CNTs), nano-tubes (C60, C80, and

C240), and onion are some of the nanomaterials in this category. [28, 29]. Because of their

extraordinary properties and unique carbon hybridization condition (e.g., sp2, sp3 hybridiza-

tion), nanomaterials have driven advancements in electronics, physics, optics, mechanics,

biology and medicines since the 1990s [30]. Additionally, (II) Inorganic nanomaterials

consist variety of nano metals and its alloys/oxides. In this category, several metals such as

gold (Au), silver (Ag), and aluminium (Al) can be included, as well as TiO2 and ZnO as

oxides. (III) Organic nano-materials are primarily formed of organic components. The use of

non - covalent (weak) interaction in molecular individual-assembly and layout aids in the

transformation of organic NMs into desirable structures such as nanocarriers, nanocapsules,

nanostructured lipid carriers, and polymeric nano materials [31]. Lastly (IV) Composites

nanomaterials are primarily multi-phase nanostructures. It is also referred to as a hybrid

composite since one phase of nanoparticles could either interact with another phase of the

substance or blend with a broader bulk material. These are the most intricate structures since

they are made up of organic metallic framework. Such nanomaterials are mostly composed of

carbon atoms, ceramic, metals and other polymers/monomers with various morphology and

functions. Here are a couple of good example: Floral rods of gold/zinc oxide (Au/ZnO) used

for protein delivery identification, titanium dioxide/cerium oxide (TiO2/CeO2) nanowires

seen as a relatively low cost, excellent-performance catalyst scheme, and a hybrid nanobelt

of molybdenum trioxide-reduced graphene oxide (MoO3-rGO) used as a cathode material

for lithium batteries [32–34]. Figure 1.2 depicts different classes of the nano materials.
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Fig. 1.2 Categorical analysis of Nano Materials [35].

When I emphasis on Einstein’s conception of relativity theory, it’s simple to observe

that "physics is the synthesis of various physical and geometrical principles." This concept

may indeed be repeated for nanotechnologies as follows: "Nanophysics is the discipline

that comprises of the size/structure/surface and dimension of nano structures, as well as

the fundamental elements of the physical laws inherent in substances." To gain a better

understanding among the most frequent dimensions of nanostructures, I have classified them

into four categories: 0D, 1D, 2D, and 3D nanostructures shown in Figure 1.3 [31].
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Fig. 1.3 Classification of structures Nano-materials [36].

Nano structures also have several distinct chemical and physical properties, including as

a high specific surface area, strong electromechanical and optical conductance, and excellent

chemical reactivity, which renders them attractive candidates for a wide range of applications.

The brief description of the properties consisting in nano-structures shown in Figure 1.4.

Fig. 1.4 Classification properties of Nano-Structures
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1.4.3 Artificial Intelligence

Similarly, Artificial Intelligence (AI) has experienced substantial progress in the recent years

and now being used by computer scientists and specialists, as well as other investigators

in a range of sectors [37]. It has gained universal acceptance in dealing with complicated

data-driven challenges in sciences and development, [38]. These models have an unequalled

capacity to find and foresee data patterns, as well as uncover unexpected trends that a

human observer may overlook [39]. It is particularly good at finding underlying data model

and categorising exceedingly asymmetric data, making it appropriate for a wide variety of

technical procedures. All scientists are working on light-matter interactions have advanced

to a different extreme with the support of Machine Learning (ML), helped by materials

engineering, mathematics, and optoelectronic innovations. This is demonstrated by following

recent developments: The first one is the creation of intelligent optoelectronic systems, while

the second is the incorporation of ML into physical and chemical sciences enabling in-depth

active learning and innovative basic insights [40].

Eventually, optoelectronics equipment advanced its usefulness by allowing ML ap-

proaches, outperforming conventional optical sensors, which was inefficient in terms of

time and resources, and offered restricted functionality. As a result, numerous investigators

had also turned their attention to ML being used in a wide range of application domains

such as comprehensible optical interaction systems [41], plasmonics [42, 43], fibre chan-

nels [10, 44], sensors [45–49], photonic crystal fibres [50] and nanotechnology [51–55].

Nanophotonics with ML is a prime instance of fast predictions of electro-optic resonant

frequencies and strong localised field, which may be adjusted for diverse purposes by mod-

ifying the shape and materials choices of the nanostructures. Feed forward convolutional

neurological systems have the capability to solve complicated challenges in nano-optics as

well.
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1.5 Outlines

This dissertation is divided into eight chapters, including the present introductory chapter.

The following is a synopsis of the chapter’s contents:

Chapter 2 presents the review of analytical and numerical methods used in the literature

for design, optimisation, and performance analyses of gold nano antenna. These numerical

methods generally use Maxwell’s equations (in differential or integral form) when solving

the computational domain for electromagnetic wave propagation. It has been identified that

the mesh size plays a crucial role in improving the accuracy of the numerical methods. A

trade-off is required as decreasing the mesh element size might significantly increase the

computation time and resources. It also describes the numerical method for designing the

nano structures and the effect of all the parameters such as substrate height, geometries of

the antenna and surrounding medium. A detailed study has been carried out to obtain the

transmission/reflection and absorption spectra, optical mode profiles, power confinements,

and optical power density. I have also considered to design a replica of the paired nano

antenna to get a confidence on the designed model and tried to measure all the given

parameters. Regular and irregular mesh arrangements were considered and compared in

terms of accuracy and dip ratio. Irregular meshes can use dense mesh inside the core, while

coarse mesh can be used outside the core to further reduce the computational times in

comparison to when using a regular mesh arrangement.

Chapter 3 The modelling approaches used to evaluate the optical behaviour of the array

surface are described in depth in this chapter. The nano particle and the substrate interac-

tion plasmonically have been discussed. This chapter also delves over the sensing mechanism

with finite element method (FEM) modelling and the evolution of the computational model

employed in the study.
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Chapter 4 In this chapter, I discusses the use of gold nano antennas in a number

of healthcare application owing to its appealing electrical and optical characteristics that

vary depending on size and shape. Due to its strong electromagnetic field containment

and diffraction limit, a periodical coupled gold nano structure exploiting surface plasmon

resonance is described herein, which displays impressive outcomes for index of refraction

(RI) detection. Solitary and coupled gold nano - structured sensors have been used in this

research for real-time RI monitoring. Full-Width Half-Maximum (FWHM) and Figure-of-

Merit (FOM) are also computed, which associate sensitivities with the sharpness of the peak.

The influence of multiple geometric structural sizes and designs is researched to enhance

the sensitivity response of nano sensing-structures and identifies an optimised elliptical nano

antenna with major axis a, minor axis b, gap between the pair g, and heights h of 100 nm, 10

nm, 10 nm, and 40 nm, respectively. Therefore in this chapter, I explored the bulk sensitivity,

which is the spectrum displacement each refractive indices unit caused by fluctuations in

the neighbouring medium, and this value was estimated as 526-530 nm/RIU, as well as the

FWHM was obtained approximately 110 nm with a Figure-of-Merit (FOM) of 8.1.

Chapter 5 Artificial Neural Network (ANN) has recently emerged as a promising method

for analysing a complicated statistics challenge in Machine Learning (ML). It has gained

popularity in several fields of science, including mathematics, optoelectronics, and mecha-

tronics, because to it’s own time-efficient breakthroughs. This chapter discusses a novel way

to designing and optimising electromagnetic plasmonic nanoparticles relying on an ANN

based computationally inexpensive technique. The nano particles in this work were designed

through using the Finite Element Method (FEM), and afterwards Artificial Intelligence (AI)

has been used to predict associated sensitivity (S), Full Width Half Maximum (FWHM),

Figure of Merit (FOM), and Surface plasmon resonance wavelength (PW) for various paired

nanostructures. At the start, the computational model is created by preparing the dataset

using the Finite Element Method (FEM). To create the dataset, the input variables were the
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Major axis, a, the Minor axis, b, and the separation gap, g, and these were used to determine

the associated sensitivity (nm/RIU), FWHM (nm), FOM, and plasmonic wavelength (nm).

Second, the neural network was created in such a way that the number of hidden layers

and neurons were improved as part of a complete evaluation to increase the ML model’s

performance. This method was then used to produce predictions for certain inputs and their

related outcomes after successfully optimising the computational model. This chapter also

examines the difference between anticipated and simulated results. For estimating outputs

for multiple input device settings, this methodology outperforms conventional computational

approaches.

Chapter 6 In this chapter, I have presented nanophotonics which is the science of

photonics and nanotechnology that has transformed optics in recent years by allowing

subwavelength structures to enhance light-matter interactions. Despite these breakthroughs,

design, fabrication, and characterization have remained iterative processes that are often

computationally costly, memory-intensive, and time-consuming. In contrast, deep learning

(DL) approaches have recently shown excellent performance as practical computational

tools, providing an alternate avenue for speeding up nanophotonics simulations. This study

presents a DL framework for transmission, reflection, and absorption spectra predictions by

grasping the hidden correlation between the independent nanostructure properties and their

corresponding optical responses. The proposed DL framework is shown to require a sufficient

amount of training data to achieve an accurate approximation of the optical performance

derived from computational models. The fully trained framework can outperform a traditional

EM solution based on the COMSOL Multiphysics approach by 1000 times. Furthermore,

employing deep learning methodologies, the proposed DL framework makes an effort to

optimise design elements that influence the geometrical dimensions of the nanostructure,

offering insight into the universal transmission, reflection, and absorption spectra predictions

at the nanoscale. This paradigm improves the viability of complicated nanostructure design
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and analysis, and it has a lot of potential applications involving exotic light-matter interactions

between nanostructures and electromagnetic fields. In terms of computational times, the

designed algorithm is around 700 times faster as compare to conventional FEM method.

Hence, this approach paves the way for fast yet universal methods for the characterization

and analysis of the optical response of nanophotonic systems.

Chapter 7 Photonic researchers have increasingly exploiting nanotechnology due to

the advent of numerous prevalent nanosized manufacturing technology, which has enabled

novel shaped nanostructures to be manufactured and investigated as a method of exploiting

these nano-structures. Owing to the variety of optical modes, hybrid nanostructures that

integrate dielectric resonators with plasmonic nanostructures are also offering enormous

potentials. In this work, I have explored a hybrid coupled nano-structured antenna with

stacked multilayer Lithium Tantalate (LiTaO3) and Aluminum Oxide (Al2O3) operating at

visible and infrared ranging from 400 nm–2000 nm. Here, the sensitivity response has been

explored of these hybrid nano-structured array made of gold elliptical disk placed on the

top of the quartz substrate and excite different modes in both the materials. It shows a large

electromagnetic confinement in the separation gap (g) of the dimers due to strong surface

plasmon resonance (SPR). The influences of the structural dimensions are investigated to

optimize the sensitivity of the stacked elliptical dimers. The designed hybrid coupled nano-

structure with the combination 10 layers of gold (Au) and Lithium Tantalate (LiTaO3) or

Aluminum Oxide (Al2O3) with (5 layers each) h1 = h2 = 10 nm exhibits high bulk sensitivity

(S). The bulk sensitivity, which is the spectrum shift per unit refractive index (RI) change in

the surrounding medium, was calculated to be 730 and 660 nm/RIU for and Lithium tantalate

(LiTaO3) /Aluminum oxide (Al2O3), respectively when the major axis, (a) = 100 nm, minor

axis, (b) = 10 nm, separation gap (g) = 10 nm, and height, (h) = 100 nm. The sensitivity of the

proposed hybrid nano-structure has been compared with a single metallic (only gold) elliptical

paired nano-structure to demonstrate a significant improvement in the sensitivity using a
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hybrid nano-structure. Depending on these findings, I have demonstrated a roughly two-fold

increase in sensitivity (S) can be obtained by utilizing a hybrid nano linked nano-structure

compared to identical nano structure, which competes with traditional sensors with the same

height, (h) based on localized surface plasmon resonances. Our innovative novel plasmonic

hybrid nanostructures provide a framework for developing plasmonic nanostructures for use

in various sensing applications.

This dissertation concludes with Chapter 8 which summarises all the findings and

explores possible directions of future work.
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Chapter 2

Overview of Numerical Methods of

Electromagnetics field theory

2.1 Maxwell’s Equations

Maxwell’s equations play an important role to describe the propagation of EM waves in

any kind of electromagnetic systems, such as waveguides or antenna systems. The concept

of these equations were presented by Lord James Clerk Maxwell, which are completely

based on the classical electromagnetic field theory. From these equation one can calculate

the relations between electric and magnetic fields which are generated by charges, flow of

electrons, and changes of the fields propagating in any kind of medium. These set of four

partial differential equations can be presented in both differential and integral forms.

2.1.1 Differential Form

Differential form of Maxwell’s equations are used for calculating the time and space depen-

dent relationships of electromagnetic field and also useful for solving any kind of analytical

and numerical problems for complicated structures. These equations are also used in any
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modelling as Finite Element Method (COMSOL Multiphysics) and Finite Difference Time

Dome (FDTD) analysis [56].

The differential form of Maxwell’s equations for the time varying electromagnetic fields

is more widely used, and is defined as follows:

∇ ·D = ρ (2.1)

∇ ·B = 0 (2.2)

∇×E = −∂B
∂ t

(2.3)

∇×H = J+
∂D
∂ t

(2.4)

where, E is the vector electric field, H is the vector magnetic field, D is the vector electric

flux, B is the vector magnetic flux, J is the vector form of current density of the medium and

ρ is the charge density of the medium.

2.1.2 Integral Form

The integral form of Maxwell’s equations has been used to describe the underlying physical

laws. This form of the equations are required to establish the calculations for boundary

conditions, and also used to describe the electromagnetic fields having a higher degree of

symmetry. These equations can be easily derived from the differential form by applying

Stokes theorem [57]. They can also be used in some finite difference algorithms [58, 59]

and finite integration methods [60]. The integral form of Maxwell’s equations are given as

follows:
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2.1 Maxwell’s Equations

∮
S

D ·dS = Qenclosed (2.5)

∮
S

B ·dS = 0 (2.6)

∮
E ·dl = − ∂

∂ t

∫
S

B · dS (2.7)

∮
H ·dl =

∮
S

J ·dS +
∂

∂ t

∫
S

D · dS (2.8)

where dS, dl are the vectors denoting the change in the surface S and change on the line

l, respectively. The quantities involved in Equations 2.1–2.8 and their respective units are

listed below:

Table 2.1 Electromagnetic quantities and units

Quantity Description Units

E Electric field amplitude Volt/meter(V/m)

H Magnetic field amplitude Amp/meter(A/m)

D Electric flux density Coulomb/meter2(C/m2)

B Magnetic flux density Weber/meter2(Wb/m2)

J Current density Amp/meter2(A/m2)

ρ Charge density Coulomb/meter3(C/m3)

Q Charge Coulomb(C)

2.1.3 Constitutive Relations

The electric and magnetic flux densities (D and B) are related to the electric and magnetic field

amplitudes (E and H) by the constitutive relations. The functional form of the relationship
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depends upon the nature of the medium. For linear and isotropic media, the relations between

electric flux, magnetic flux, electric field and magnetic field are given by:

B = µH (2.9)

D = εE (2.10)

where µ is the magnetic permeability of the medium (in Henry/meter) and ε is the

electrical permittivity of the medium (in Farad/meter). The values of µ and ε in vacuum are

symbolically denoted by µ0 and ε0, respectively and are given as:

µ0 = 4π ×10−7 Henry/m

ε0 = 8.854×10−12 Farad/m

2.1.4 The Wave Equations

The electromagnetic wave equation can be derived using Maxwell’s equations. For a source

free (ρ = 0, J = 0), linear (µ and ε are independent of E and H), and isotropic medium

conditions, Equations 2.1–2.4 become:
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2.1 Maxwell’s Equations

∇ ·D = ρ (2.11)

∇ ·B = 0 (2.12)

∇×E = −∂B
∂ t

(2.13)

∇×H =
∂D
∂ t

(2.14)

Where, E is the vector electric field, H is the vector magnetic field, D is the vector electric

flux, B is the vector magnetic flux, and ρ is the charge density of the medium.

Equations 2.11–2.14 are strongly coupled first-order differential equations and it is not

easy to implement these equations in a computer program for the solution of many problems.

Therefore, it is usual practice for many algorithms to use decoupled second-order differential

equations that consist of only one field value (either E or H). It should be noted that the

choice of a coordinate system is critical in obtaining the wave equation

The wave equation in terms of the electric field amplitude is given by [57]:

∇
2E −µε

∂ 2E
∂ 2t

= 0 (2.15)

While, the wave equation in terms of the magnetic field amplitude is given by [57]:

∇
2H −µε

∂ 2H
∂ 2t

= 0 (2.16)
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As both wave equations consist of only one field amplitude, discretisation of the com-

putational domain for different numerical methods becomes easier in comparison to when

using the coupled equations [61]

2.2 Numerical Calculations: Finite Element Method

The Finite Element Method (FEM) is a quantitative approach for addressing a wide range of

engineering problems, includes computational electromagnetics, and is especially beneficial

for difficulties with variable shapes and steep gradients. The FEM was initially introduced for

the modelling of mechanical applications related to aerospace and civil engineering structures.

Later on, it was employed in different areas of interest including structural analysis, heat

transfer, fluid flow, biomechanics, biomedical, and electromagnetics, among others.

The main feature of FEM is to break the spatial domain (one-, two- or three-dimensional)

into a number of simple geometric elements such as triangles or quadrilaterals called element.

These elements are assumed to be connected with one another, but only at interconnected

joints, known as nodes. The complete arrangement of the elements is known as a mesh.

The FEM formulation of the problem results in a system of algebraic equations. Each

element represents a set of equations. All sets of element equations are then systematically

recombined into a global system of equations that models the entire problem. FEM theory is

well developed and offers great freedom in the selection of discretisation. The precision of

this procedure is also influenced by the mesh size. A finer mesh throughout the entire region

potentially prove more effective, but at the expense of additional processing complexity. In

order to reduce this computation time different element sizes for the discretisation can also

be considered. In the region where the field fluctuates rapidly, a finer mesh might well be

employed. A coarser mesh, on the other hand, can be employed if there is minimal fluctuation

or magnetic vibrations are nearly insignificant.
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2.3 Surface Plasmon Resonance

In 1902, Wood explained the concept of Surface Plasmon Resonance (SPR) [62]. As I

have already discuss Maxwell’s Equations for electromagnetics, hence it would be easy

to understand the concept of Plasmons. When polarized incident wave launched in any

medium it consists both electric and magnetic vectors and I can solve the coupled equation

with the help of Maxwell’s Equations. The free electrons which got excited due to EM

waves are known as Polaritons and if these free electrons are bounded at the surface of any

structures then it is known as Surface Polaritons but if these free electrons in any metal

react with polarized light then it is known as surface plasmon resonance (SPR). There are

some restriction in surface plasmon resonance that they can only occur in the metals due to

its negative dielectric constant, at high plasmon frequencies and large amount of electrical

conductivity, hence can shown prominent results of Surface Plasmons.

Fig. 2.1 Schematic of Interaction of electric field with gold nanospheres resulting in electron
cloud oscillation.

Figure 2.1 shows the SPR is associated to charge densities oscillations at the interface at

metallic layer because it depends on the optical characteristics of the metal nano structure

and environmental variations. As a consequence, biomolecular are extremely sensitive to
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plasmon resonance, obviating the need for exogenous biomolecular labelling. SPR has the

benefit that it does not pass the light beam through the surrounding medium, therefore the

impact of light absorption in the analyte may be neglected. As a result, the principal use of

SPR is to characterise the surrounding medium. In other words, the resonance conditions

has been formed when the frequencies of the photons satisfies the natural frequency of

metal electron oscillations against the force applied of positive nuclei, supplied the metals

does indeed have a large negative real part and very small positive imaginary part of the

dielectric constant. Surface plasmons are classified into two categories in the nanometer scale:

localised and propagating plasmons. The aggregate synchronized electromagnetic oscillation

is restricted at the subatomic particle surface in the first example, forming an electromagnetic

field surrounding it that is referred as localised surface plasmon resonance (LSPR). Surface

charge oscillations naturally interface with electromagnetic waves or incoming photons

in the second scenario, propagating along the metal dielectric intersection can be defined

as Surface plasmon polariton (SPP). This is restricted to a two-dimensional environment

because SPP does not couple to EM illumination at the flat metal and vacuum interface,

gratings or prismatic matching techniques are used to create energy coupling. However, SPP

propagation is hampered by damping, which becomes a major issue when it is used in sensors,

nano circuits, and plasmonic lasers. LSPR and SPP are depicted schematically in Figure

2.1. For the physical world, both SPR and LSPR have distinct features. Electromagnetic

waves propagate in a transverse direction is known as Surface plasmon waves (SPW). The

SPWs might be either radiative or nonradiative. With planar electromagnetic waves, coupling

occurs, resulting in visual phenomena such as transitional radiation and plasma resonance

absorption. The frequency of LSPR varies depending on the material type (platinum, gold,

silver, etc.) and is greatly influenced by the form, shape, and thickness of nanostructures

as well as their nearby environment. These days researchers are giving more importance

to gold and silver due to its ease in fabrication and good affect in resonance. Some metals
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2.3 Surface Plasmon Resonance

like aluminium can also use for surface plasmons but it suffers from low durability and

oxidization, hence it has never achieved that much popularity. The minor changes in the

surrounding dielectric environment, such as molecular adsorptions on the surface of the

nanoparticle, impact the frequencies of LSPR, which may be seen as light scattering and

absorption frequency shifts. These shifts then be readily converted into simple optical

transmission or reflection observations with great spectrum precision, allowing nano-sized

LSPRs to be used as excellent sensors for chemical and biological analytes detection.

2.3.1 Mathematical Description of Surface Plasmon Polaritons

The simplest geometry for sustaining Surface Plasmon Polaritons, a planar metal-dielectric

interface which is semi-infinite in the x-z plane. The metal has a frequency-dependent,

complex dielectric function, εm(ω) and the dielectric has a real, positive dielectric constant,

εd as shown in Figure 2.2.

Fig. 2.2 Schematic of Dielectric (εd) and Metal (εm(ω)) Semi-Infinite Interface Supporting
SPP Propagation.

The SPPs will propagate along the boundary (z=0) in the x direction, with an infinite

y plane preventing scattering effects from the edges of the media. If the SPPs travel in the

z-direction, they experience exponential decay with distance into either media. Therefore,
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the SPPs must have a wavevector, k with real part in x-direction and imaginary component

in z-direction. In addition, as the SPPs propagate along the interface then field components

must be continuous across the boundary. It can be shown that for these conditions, no surface

modes exist for transverse electric (TE) polarisation [63] and only transverse magnetic (TM)

polarisation will excite SPPs.

Transverse magnetic waves have perpendicular magnetic field and parallel electric field

components, Hy, Ex and Ez respectively. The electric and magnetic fields of the TM wave

can then be described in the metal (z<0) by equations 2.17–2.18 respectively and dielectric

(z>0) by equations 2.19–2.20 respectively.

For Metal when z < 0:

Em = (Emx,0,Emz)ei(kxx−kmzz−ωt) (2.17)

Hm = (0,Hmy,0)ei(kxx−kmzz−ωt) (2.18)

For Dielectric when z > 0:

Ed = (Edx,0,Edz)ei(kxx−kdzz−ωt) (2.19)

Hd = (0,Hdy,0)ei(kxx−kdzz−ωt) (2.20)

By applying Maxwell’s Equations in absence of charges and currents, and suitable

boundary conditions to equations 2.17–2.18 and 2.19–2.20, the surface plasmon dispersion

relation can be derived [64] and is given in 2.21.
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kx = kspp = k0

√
εdεm(ω)

εd + εm(ω)
(2.21)

Where εm(ω) shows the dependence of the metal dielectric function (and behaviour)

on the optical frequency. For surface plasmon polaritons (SPPs) to exist, the real part of

the dielectric function must be negative in the metal will be concluded in next section, and

its magnitude must be greater than that of the dielectric. Figure. 2.3 below compares the

dispersion relation of SPPs with that of incident light in air.

Fig. 2.3 Comparison of Dispersion Curves for Surface Plasmon Polaritons (SPP) (black line)
and Incident Light (blue line) Showing Wavevector Mismatch.

At large wavevectors, the SPPs approach the surface plasmon frequency, as given by

equation 2.22.
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ωSP =
ω p√
1+ εd

(2.22)

If damping of the free electron oscillations is considered negligible, then as the frequency

tends toward the surface plasmon frequency, the wavevector tends towards infinity and

gradient (group velocity, dω/dk) tends to zero. In this case, the mode is electrostatic and

represents a surface plasmon. Hence the surface plasmon frequency is an asymptotic limit for

the SPPs. The dispersion relations of light and SPPs never overlap, which visually represents

the wavevector momentum mismatch between the two. This means that incident light cannot

directly excite the SPPs and a coupling method is required to overcome this mismatch.

2.4 Drude Free Electron Theory

Sir Paul Drude, in 1900, discussed the behaviour of free electrons in any kind of metal. This

model can be used to find the optical and structural properties of any metallic structure.

This approach concentrates on the free electrons that reside in metal and produce surface

plasmons; therefore, I could simply compute the surface plasmon resonance using transmis-

sion/reflection and absorption spectra using this framework. This can also shows the good

results on insulators with any kind of doping which consist free electrons.

The function calculated by Drude theory is shown below:

εr = ε∞ −
ωp

2

ω(ω + jγ)
(2.23)

Where εr is considered as Drude constant, ε∞ is the permittivity of the metal, ωp is known

as plasmon frequency which is defined as the natural frequency of undamped oscillations of

the free electrons i.e.
√

4πNe2

m0
, where N and m0 is considered as conduction electron density
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and effective optical-mass respectively. γ is the free electron plasma oscillations that occurs

due to damping through electron collisions with collision frequency is shows as γ = 1
τ

. Where

τ is the relaxation time and, which is typically around 10−14 sec. Approximating the metal

as a driven, damped oscillator, the dielectric function can be described as a combination of

phase lag between the driving frequency and natural frequency of the free electrons and the

loss of energy through damping. By considering these factors, the dielectric function can be

rewritten as complex with real and imaginary parts as given in equations 2.24–2.25.

εreal = 1−
ωp

2τ2

1+ω2τ2 (2.24)

εimag =
ωp

2τ

ω(1+ω2τ2)
(2.25)

For metallic structure at near-infrared frequencies are considered when ω >> 1/τ ,

Equations (2.24 and 2.25) simplify to [65].

ε(ω) = 1−
ωp

2

ω2 + j
ωp

2

ω3τ
= ε

f
real + jε f

imag (2.26)

The real part relates to the phase lag, which is due to the slowing down of an incident

electromagnetic wave through the metal, dependent on the metal’s permittivity to the light.

At angular frequencies less than the plasma frequency, the real dielectric function of metals

will be negative. The imaginary part is due to damping of the wave within the metal, through

losses from resistance and absorption of the incident light. The complex dielectric function

can be rewritten in terms of its real and imaginary counterparts as shown in equation 2.26.

Figure 2.4 depicts the computed real and imaginary components of the dielectric permittivity

for gold, which have been used to computed the reflection and transmission coefficients.
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Equation 2.24 shows that the real dielectric function with the optical frequencies. This

value becomes smaller through the ultraviolet regime, before turning negative in the visible

region and is largely negative in the infrared spectrum. This optical property of the real

dielectric function gives rise to the various optical behaviour of metals, including the existence

of plasmons. Plasmons are the oscillations of the free electrons within the plasma. Plasmons

can exist in bulk or at a metal-dielectric boundary, where they are referred to as a surface

plasmon. To support plasmons, the real dielectric function of the metal must be negative in

the specified wavelength range and the imaginary part, which determines absorption, must

be small to prevent lossy waves.

(a) (b)

Fig. 2.4 Real (a) and Imaginary (b) counterparts of dielectric constant of gold obtained from
[65].

Here, in the Figure 2.4 data-sets have been collected data from the Babar and Weaver [65],

Jhonson and Christy [65] and McPeak [65] for achieving the accurate and strong resonance.

Furthermore, I have implemented the model in Comsol Multiphysics by importing these data

sets.
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2.5 LSPR on Nanospheres

The optical properties of colloidal gold particles have been utilized throughout history,

from use in paints and in the famous Lycurgus cup [66]. In 1908, Gustav Mie published

his research in describing the underlying mechanisms producing these properties [67]. It

describes the interactions between electromagnetic fields and colloidal gold nanoparticles,

considering them as homogeneous metal spheres of arbitrary size surrounded by an isotropic,

non-absorbing dielectric media. That work focused on the nanostructures smaller than the

wavelength of incident light, where nanosphere interactions can be analysed through use of

the quasi-static approximation.

The approximation assumes that the nanosphere experiences a surrounding uniform

external electric field and Maxwell’s equations can then be solved for this quasiparticle field.

A complete derivation of the approximation which solves the Laplace equation under suitable

boundary conditions can be found elsewhere [63, 68]. The treatment concludes that the

applied field induces a dipole moment, p at the centre of the nanosphere, given by equation

2.27.

p = 4πε0εdr3E0
εm − εd

εm +2εd
(2.27)

Where E0 is the applied field, r is the nanosphere radius and εm and εd are the dielectric

function of the metal and dielectric constant of the surrounding media, respectively. The

polarisation of the nanoparticle is in the same direction as the applied field, with strength

proportional to the field as shown in equation 2.28.

p = ε0εdαE0 (2.28)
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Where the polarizability of the nanosphere, α is given by equation 2.29.

α = 4πr3(
εm(ω)− εd

εm(ω)+2εd
) (2.29)

The polarisability occurs due to the external field, which induces a dipole moment

proportional to the field. Equation 2.28 shows that the response of the charge distribution to

external perturbations is dependent on the nanoparticle shape, material and surrounding media.

As the dielectric function of the metal is frequency dependent, therefore the polarizability is

also frequency dependent. When the denominator approaches a minimum, the polarizability

shows a resonant enhancement. Light scattering off the nanosphere and absorbed by the

nanosphere also experiences a resonance enhancement which can be expressed through

scattering and absorption cross-sections. The cross sections can be derived from the Poynting

vector of the electromagnetic fields from the nanosphere, treated as an oscillating dipole

[63]. The scattering and absorption cross-sections are given in equations 2.30 and 2.31,

respectively.

Csca =
k4

0
6π

|α|2 = 8π

3
k4

0r6[
εm − εd

εm +2εd
]2 (2.30)

Cabs = k0Im|α|= 4πk0r3Im[
εm − εd

εm +2εd
] (2.31)

Where k0 is the wavevector given by the angular frequency, ω over speed of light, c. The

sum of these two cross-sections gives the resonant enhanced extinction cross-section, given

by equation 2.32.
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Cext = Csca +Cabs = 9
ω

c
ε

3
2
d V (

εi

(εreal +2εd)2 + ε2
imag)

(2.32)

Where V is the volume of the nanosphere and εreal and εimag are the real and imaginary

portions of the metal sphere’s dielectric permittivity (equation 2.26). Plotting extinction

data shows a peak at a specific frequency, corresponding to the LSP mode and is given by

equation 2.33, assuming the metal follows the Drude model.

ωLSP =
ωp√
εd +2

(2.33)

2.6 COMSOL Model Methodology and Validation

This section reviews the popular modelling techniques for plasmonic systems, including

theoretical, analytical and numerical methods. The development of the model used in this

research is discussed, showing the progression from isolated nanoparticle models to the final

nano elliptical antenna array surface. In addition, the effect of approximations and restrictions

of the system are also considered. The validity of the final model is also examined, through

comparison of simulated data to other model outputs.

2.6.1 Mie Theory

Mie theory, as detailed in Section 2.5, provides a mechanism of determining the absorption

and scattering behaviour of spherical nanoparticles in an isotropic and homogeneous environ-

ment [67, 69]. Expansions of the theory have also been carried out to provide approximate

solutions for other simple geometries such as infinite cylinders and ellipsoids [70, 71]. In

this work, the theoretical Mie scattering from nanospheres was determined using MiePlot

33



Overview of Numerical Methods of Electromagnetics field theory

v4.6 software [72]. The program utilises the BHMIE algorithm [73] to determine the Mie

scattering profile. Scattering from ellipsoids was also calculated using the Mie-Gans ap-

proximation outlined in Chapter 4. The main limitation of Mie theory-based models is the

inability to accurately model the resonant behaviour of many fabricated structures, including

elliptical nano antennas, nanorods, holes and domes. In addition, Mie theory calculations

do not consider the density of the nanostructures and can only model isolated structures in

homogeneous media. However, as Mie theory can accurately determine the optical behaviour

of simple specific systems, it was used at the start as a validation method for the models

utilised in this research shown in Section 2.6.2.

2.6.2 Gold nano sphere in air/water

In this section, I have optimized the performance of standalone gold nano sphere and

benchmarked it with the available Mie theory [74] and calculated the absorption, extinction

and scattering efficiency at different radius of sphere when the surrounding medium was air.
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Fig. 2.5 Comparison of in-house simulated results with already published work (a) Shows
the absorption spectra of gold nano sphere of 10 nm radius. (b) Shows the absorption spectra
of gold nano sphere of 20 nm radius. (c) Shows the absorption spectra of gold nano sphere
of 40 nm radius. (d) Shows the absorption spectra of gold nano sphere of 70 nm radius, and
all the referenced results are taken from [74] and compared with the my own model.

Figure 2.5 shows the simulated absorption spectra using Comsol multiphysics of the gold

nano sphere (in Cartesian and Spherical domain shown by blue and green curve, respectively

as carried out here) and compared with the available Mie plot theory [72] (also simulated

here) and the published work [74]. As the above results shows the excellent agreements on

the Absorption Spectra, hence it can be concluded that our designed model working fine in

both Cartesian and spherical co-ordinate systems as achieved results are almost similar with

the published work. The performance of extinction efficiency for sphere with 10 nm, 20 nm,
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40 nm and 70 nm radius are shown in Figure 2.6 and compared with the published work to

benchmark the accuracy of the designed model.
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Fig. 2.6 Comparison of published results [74] with the in-house generated model the extinc-
tion Spectra of standalone gold nano sphere in air domain (a) 10 nm gold nano sphere in air
(b) 20 nm gold nano sphere in air (c) 40 nm gold nano sphere in air (d) 70 nm gold nano
sphere in air.

However, I have also calculated scattering efficiency for 40 nm and 70 nm radius as

shows in Figure 2.7. Where black curve shows the results of the published work and red

curve shows the dataset generated by using the Mie plot software. However, blue and pink

curve shows the designed Comsol module dataset carried out by the candidate for 40 nm and

70 nm radius sphere to show the confidence in using Comsol by benchmarking
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Fig. 2.7 Comparison of in-house simulated model with the extracted [74] Scattering Spectra
of standalone gold nano sphere in air domain (a) 40 nm gold nano sphere in air (b) 70 nm
gold nano sphere in air.

Additionally, the performance of the gold nano sphere submerged in water have also been

carried out (design adopted from [75]). In this work, I have modelled the 40 nm radius gold

nano sphere which was submerged in the water environment. Here, Figure 2.8a shows the

comparison of our simulated work on of the extinction efficiency of the sphere (shown by

blue curve) with the published work (shown by pink curve). Figures 2.8b and 2.8c show the

normalized electric field profiles of the simulated and published works, respectively. In this

way, to start the original research work I have tried to do sufficient benchmarking to get more

familiarity of the FEM software by benchmarking the accuracy of our results.
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Fig. 2.8 Comparison of in-house simulated and extracted from [75] (a) Extinction Efficiency
of standalone gold nano sphere of 40nm dia in water (b) Shows the inhouse simulated
Normalised Electric Field of nano Sphere (c) Normalized electric field profiles profile
reprinted from published article [75].

Next, I have extended the above shown results with the evaluation of the performance of

different surrounding medium (from RI 1.2 to 1.42 with 0.01 step size) and simulated the

designed FEM model to calculate the absorption cross-section shown in Figure 2.9a. Here,

it can be seen that as the refractive index of the surrounding media in changing the spectra

is shifting toward the higher wavelength. However, the similar patterns can be seen while

calculating the scattering and extinction cross-section as shown in Figures 2.9b and 2.9c.
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Fig. 2.9 Response of the 40 nm in-house simulated nano sphere in different surrounding
medium (a) Absorption efficiency of standalone 40 nm gold nano sphere in mentioned
refractive indexes. (b) Scattering efficiency of the same structure (c) Extinction efficiency
response of the different RIs.

Furthermore, I have also studied the effect of the change in radius of the nano sphere. To

study the structural effect of the nano sphere, I have simulated from 10 nm to 80 nm. In this
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case, I have started from 10 nm radius to 80 nm with 10 nm step size, and calculated the

scattering, absorption and extinction efficiencies, which are shown in Figures 2.10a, 2.10b

and 2.10c, respectively.
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Fig. 2.10 Response of in-house simulated nano spheres submerged in water (a) Scattering
coefficients of nano spheres (b) Absorption coefficients of the same structure (c) Extinction
coefficients response of nano spheres with different radius.

One important thing here is to notice that as I am changing radius of the sphere the modes

are changing after 70 nm radius as shown in Figure 2.10. It can also be seen that as the
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radius of the sphere is increasing the intensity of the peak increases, hence from here it can

be concluded that the geometrical structure plays an important role in LSPRs.

2.6.3 Periodic Gold Nano Disk

After successfully benchmarking and analysing the structural properties of gold nano sphere,

next I have considered the periodic nano disk placed on the quartz substrate and benchmarked

it with the Rizzato et al. [76]. The motivation behind this task was to benchmark this work

to both experiment and theoretical work, and I can get stronger confidence in our developed

model. In this work, Rizzato et al. [76] have not clearly mentioned the surrounding media;

however they have used sodium chloride (NaCl) in their experiment for surrounding media.

Hence, I have simulated for the refractive indexes (RI from 1 to 1.7 with 0.1 in step size) to

identify which one is closer to their published result for sodium chloride (NaCl) to study the

performance of the developed model with respect to the published work.

400 500 600 700 800

0.0

0.2

0.4

0.6

0.8

1.0

A
bs

or
pt

io
n 

Sp
ec

tr
a

Wavelength (nm)

  RI 1
  RI 1.2
  RI 1.3
  RI 1.4
  RI 1.5
  RI 1.6
  RI 1.7

Ex
Sim

(a)

0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
580

600

620

640

660

680

700

720

740

Effective Index

W
av

el
en

gt
h 

(n
m

)

(b) (c)

Fig. 2.11 Response of in-house simulated gold nano disk in different RIs (a) Absorption
Efficiency of stand alone gold nano disk in different RIs (b) Linear Relation with RI and
wavelengths (c) Model Profile of normalized Electric Field from the in-house simualted
model.

Figure 2.11a shows the absorption spectra of the gold nano disk of 80 nm diameter and

surrounding refractive index was varied from 1.0 to 1.7. The performance of the developed

model was compared with the published experimental and simulation spectra shown by

dashed orange and sky blue curves, respectively. From this, it can be concluded that when
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the refractive index of the surrounding media was close to 1.4 in this case our simulated

results agree well with the published work. From this findings I got the confidence on our

modelling knowledge and extended it to visualize the plasmonic wavelength shift which is

plotted with respect to refractive index variation of surrounding medium as shows in Figure

2.11b. From this figure, it can be concluded that wavelength shift is following linearly when

the refractive index changes in the surrounding media. Additionally, Figure. 2.11c shows the

electric field distribution of the gold nano disk along the x− y plane.

2.6.4 Array of Gold Nano Holes

In this section, I have designed the gold nano holes where all the parameters are adopted

from an earlier report [77]. Here, I have calculated the reflection/transmission and absorption

spectra. All these nano holes designed here are surrounded by the water. I have shown

the two modes from the transmission spectra/absorption spectra and their associated field

distributions. Similar as above, the nano holes has been excited from the top and it generated

the SPR which can be a good candidate for sensing applications and I can consider it

for fluorescent molecules which can be attached with any analyte, and each molecule of

fluorescent will behave as an amplifier and the detected signal can inform the concentration of

any kind of analyte. Figure 2.12a shows the results published by Wu et al. [77] and in order

to get confidence on our modelling skill, I have compared the mode profile of our designed

model shown in Figure 2.12b. However, field distributions at the resonant wavelength are

different for these two modes. As I discussed earlier that the slight change in geometries of

any nano structures can create a difference in the spectral values. From here, it can be seen

that the peak of the first mode do not agree fully, however the response of the mode profile

for peak of second mode is more convincing. On the other-hand, it can also be seen that the

mode profile of the nano hole are perfectly matching with the published results. The mode

profile is analysed here to understand the fundamental difference between the two modes.
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These findings are particularly useful to guide the design of a metallic nanostructure-based

plasmonic sensing system.

(a) (b)

Fig. 2.12 Mode field distribution of in-house developed gold nano hole in water (a) Figure
taken from [77] (b) In-house developed mode field distribution of the nano holes.

2.7 Mesh Considerations

In FEM modelling the size of the discrete element is determined by the mesh. Reducing

the mesh size increases the number of elements and improves the accuracy of the model.

However, the mesh size also significantly affects the computation time of the model, with

large element numbers causing issues with memory allocation and ultimately preventing the

model running. Therefore, a compromise between accuracy and computation time must be

considered. Figure 2.13 shows a comparison of mesh sizes and the corresponding effect on

plasmonic resonances must be identical at every mesh boundaries, it is necessary to match

mesh conditions to reduce errors in the simulated data. This is especially important for the

boundaries at the sides of the unit cell used to form an array. If the meshes are not identical

at opposite sides, the perfect electric conductor and perfect magnetic conductor boundary

condition will be affected and cause errors in the program. Therefore, copy face operations

were used to match meshes on opposite boundaries of the nanorod unit cell. A larger mesh

size can be used for larger dimensions, such as the matrix, glass substrate and PML without

much effect on the accuracy. However, as the matrix and glass layers were in contact with the
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thinner gold underlayer and nano holes’ dimensions, the mesh conditions had to be similar.

In this research a custom mesh size was used, which allowed for equivalent mesh sizes on

the boundaries. A maximum mesh size of 10 nm was used, with a minimum of 0.5nm in the

surrounding media and a minimum value from sequence, obtained during computation, in

the gold nanostructured media. These conditions allowed for larger elements throughout the

most of the matrix and glass layers, which provided a compromise between the accuracy and

the computation time.
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Fig. 2.13 Transmission Spectra of in-house simulated gold nano holes (a) Shows the trans-
mission spectra of gold nano hole when height is fixed at 50nm (b) Comparison of generated
and extracted Transmission spectra of (c) Model profiles of 150nm gold nano holes with
transmission spectra.
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The transmission spectra has been calculated for the 150 nm hole diameter with 400

nm-pitch at different mesh sizes where it can been seen that as the mesh size is changing

the spectral values are shifting a bit. Figure 2.13 shows transmission spectra for nanohole

arrays in gold films of thickness 50, 100, 150, and 200 nm and compared with the published

results [77] (shown by pink curves). In the calculations, one illumination conditions has been

considered i.e from the water. It is clear from Figure. 2.13 that the transmission spectrum

varies with the gold film thickness for transmission modes. As the film thickness is increased

from 50 nm to 200 nm gradually, peaks at the lower wavelength of smaller the transmission

spectra gradually reduced peak which was present in the Figure 2.13a. The mode profiles

have also been shown by the inset figures.

Finally, it is well established that the finite element mesh components have a significant

impact on the precision of FEM-based modal solutions also as the mesh size is refined the

results are conversed very well with respect to the published work [77]. As a result, the

quadrilateral mesh was utilised in all our simulations. As, FEM is heavily mesh dependent

so refining is needed for two main reasons. One geometrical and other is mathematical.

However, if we will have smaller elements with same degreed shape functions, the solution

will be more accurate as seen in Figure 2.13 where, the performances of normal, fine, and

extremely fine mesh size have been shown by black red and blue curves and show very nice

agreement with the published work [77].

2.8 Summary

In summary, the Maxwell’s equations in the differential and integral forms have been

introduced. Maxwell’s equations are generally used as a starting point for solving the

computational domain problem by using different numerical approaches such as finite

differences, finite elements, boundary integral, surface integral, and others. The importance

of Finite Element Method has been discussed and explained that it can be used for numerical

44



2.8 Summary

simulations for more accurate representation of complex structures. In this chapter, the

modelling techniques used to simulate the gold nanorod array surface have been presented.

The development of the modelling sets made it possible to evaluate the model’s underlying

physics and mimic ideal conditions while also comparing it to theory and other modelling

techniques. The finite element method (FEM) was chosen as it could be used to model any

complex system with nanoparticle of any shape. It also allows in-depth visualisation of the

simulated fields surrounding the nano particles and the position of intense field, which are

the areas of localised field enhancement.

FEM software, COMSOL Multiphysics 5.5 was used to model single nanoparticles in

free-space, on a substrate and finally nanorod array surface. The simulated results were

compared with the theory, other reported numerical and experimental results, where applica-

ble. Nanosphere results were in good agreement with the Mie theory. I have discussed the

behaviour of the surface plasmon resonance including mathematical description. In addition,

we have also shown the successfully benchmark of the result obtained from the in-house

developed FEM model and compared with some key published articles in order to optimize

the designed model to get the expertise in model design. For different nano structured shapes

and index values, modal field components e.g. Ex, Ey obtained by using in-house model and

these were compared with the published work, which have shown good agreement. I have

also presented in-depth studies on exciting the SPR of an air(or water)–gold–glass structure

illuminated from either water or air. Our studies show that reflection and scattering modes can

excite the resonance at the air/water gold interface. Due to the changed optical power flow

and surface layer power absorption, the optical field distributions have also been observed at

the illumination direction or the form of nanostructures. These benchmarking could assist

in determining the favourable illumination direction and also the effect of nano structures’

shape in the design of the metallic nanostructure-based plasmonic sensing systems. Finally,

in the last section of this chapter I have observed the effect of increasing mesh refinement
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which can increase the accuracy, but at the cost of increased simulation times. An irregular

mesh with only increased resolution inside the nano structure with generated FEM code can

be used. This does not increase the overall simulation times significantly, unlike regular

mesh arrangement. Different types of mesh arrangements including progressive type and

extra elements type mesh have been evaluated. Hence, the FEM method has been used as an

alternative of any other available technique as it provides better meshing.
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Chapter 3

Conceptualization of elliptical nano

structures

3.1 Introduction

Nanostructures have lately attracted a lot of attention due to their numerous capabilities, and

they have opened up a new way of thinking about growing nanotechnology for optical bio-

sensing applications. Due to its effective localised surface plasmon resonance (LSPRs), nano

shape antennas can give an excellent opportunity for single-molecule biological sensing

applications [75]. Pharmacological sensors, bio-medicines, networking, photovoltaic panels,

scanning, fuel cells, treatment of water, disease detection and mitigation, or enhancements all

benefit from intense electromagnetic confinement due to LSPR. Nanotechnology has gained

a lot of attention recently due to its great efficiency in absorbance, dispersion, extinction,

and reflection/transmission at nanometer dimensions; yet, there are still a lot of untapped

possibilities. The Drude Lorentz model is employed to compute the dielectric constant of

a metal with free electrons in this research, and an unique coupled gold elliptical shaped

nanoscale structure is evaluated.
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Despite the fact that Synge presented the theory of near field microscopes in 1928, it was

never extensively investigated due to the manufacturing limitations of that era [78]. Bailey

and Fletcher acquired a patent for Electromagnetic Wave Converters in 1973 [3], that was the

first report of a nano antenna that resembles contemporary nano-antennas [3]. Wessel later

revealed a notion for high field containment due to small nanoscale metallic surfaces, that can

be observed by using Scanning Microscopy [79], and emphasised the relevance of surface

plasmon resonance of these nano-sized particles in 1985. Alvin M. Marks published a super

sub-micron electron beam writer for visible sunlight to electrical power transformation in

1989 [5]. The influence of various plasmonic antenna designs and characteristics for an array

of applicants were discussed in that article. In 2004, Atay et al. successfully manufactured

circular periodical array of gold antennas exhibiting high resonance and far-field patterning

[6]. Likewise, Lahiri et al. developed unevenly split ring resonators for biological substance

identification [7].

Surface Enhanced Raman Spectroscopy (SERS) employs nano antennas, that have the

benefit of resonating concurrently in the visible and infrared ranges [8]. Nano paired

antennas of various forms, including the Bow-Tie, are also available [9–12]. Nanodisks

[13–15], Nanorods [16–18, 11] and Nano elliptical-shaped antennas have also been reported

[19, 20] in visible region. In 2008, Fisher and Martin reported [80] a sensitivity of 500-510

nm/RIU for a Bow-Tie plasmonic nanoantenna with a 10 nm gap between their 20 nm

narrower tips. In the same year, Anker et al. [81] reviewed the effect of shape and size

of plasmonic nano-antennas and also sensing by surface enhanced Raman spectroscopy.

In 2011, Sage et al. [82] reported the advances on localized SPR for spectroscopy-based

biosensing using triangular shaped Ag nanoparticles with a thickness of 10 nm. They had

functionalized multiples spectrally distinct nanoparticles by changing the material, shape,

and size of constituent antennas to target different species for multiplexing. Recently, Chao

et al. [83] reported higher sensitivity of 1120 nm/RIU using a metal-insulator-metal bus
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waveguide side-coupled to a ring resonator comprised of many Ag nano rods. More recently,

Armstrong et al. [84] and Mauriz and Lechuga [85] reviewed the rapid advancement of

plasmonic biosensors for single-molecule biosensing.

Many reports of biosensors employing artificially produced metamaterials have lately

been surfaced. In 2009, Kabashin et al. demonstrated a sensitivity of 30000 nm/RIU for two-

dimensional porous gold nanorod arrangements a best plasmonic parabolic metamaterial for

bio - sensing devices [16]. This bulk Kretschmann configuration, although being downsized

for commercialized biomedical application, is not suited for further miniature integrated

photonic detectors. In 2016, Sreekanth et al. [86] claimed a comparable sensitivities of

30000 nm/RIU for a grating linked parabolic metamaterial for bulk refractive index sensing.

Despite the fact that the system was simpler and therefore more multiplexed than [16], it

nevertheless used bulk plasmonic modes and required relatively sophisticated manufacturing

and stimulation procedures. The usage of metamaterials and metasurfaces for sensing

applications was examined by Lee et al. [87] in 2017. Garoli et al. [88] lately proposed a

feasible reduced production and convenient excitation procedures employing nano-porous

gold metamaterials, achieving a sensitivity of 15000 nm/RIU. Through numerical modelling

and experimental studies, the foregoing talks demonstrate the potential outcomes of intense

resonating and field confinement. Recently, a computationally efficient finite element method

(FEM) [19, 20, 12, 21, 22, 9] and the versatile finite difference time domain method (FDTD)

[23–27] gained popularity.

This chapter is organized as follows. Section 3.2 elaborates the description of the elliptical

nanostructured geometries. Section 3.3 demonstrate the plasmonic interaction between the

nano particles, coupling mechanism between the nanostructures and substrate. This section

also covers the sensing mechanism of nano particles.
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3.2 Expansion for Nanostructured Geometries

Provided nanospheres remain small enough, their optical properties can be determined

accurately through use of the quasistatic approximation. However, for other nanoparticles

typically utilised in plasmonics, such as nanorods; Mie theory is unable to predict light

scattering and absorption behaviour. To predict the behaviour of non-spherical geometries,

additional expansions are required, such as Mie-Gans theory [70]. By considering nanorods

as ellipsoids, their optical properties can be approximated using the quasistatic approximation

through the inclusion of a geometrical factor. Ellipsoids, described by equation 3.1, can be

either prolate or oblate, referring to either elongated or flattened ellipsoid with shapes similar

to a needle or disk respectively as shown in Figure 3.1

x2

a2 +
y2

b2 +
z2

c2 = 1 (3.1)

Fig. 3.1 Schematic of (a) Sphere (b) Prolate ellipsoids (c) Oblate ellipsoids with Semi-Axis
Lengths, a, b and c in x, y and z directions respectively.

The ellipsoids are considered to have equal semi-axes (a = b) with solutions for prolate

ellipsoids (c > a = b) used, rather than oblate (c<a=b) to approximate the shape of the
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cylindrical nanorods. The polarisability can be derived through the quasistatic approximation,

however the full derivation can be found in [89]. Considering the three axes of the ellipsoid,

the polarisability depends on the orientation of the ellipsoid in the field, as given by equation

3.2 [90].

αi =
4π

3
abc

εm − εd

εd +Li(εm − εd)
(3.2)

Where i represents the three axes and Li is the depolarisation (or geometrical) factor in

each direction. For cylindrical nanorods approximated by a prolate ellipsoid, the geometrical

factor in the z-direction is given by L1 in equation 3.3 [90].

Li =
1− e2

e2 (
1
2e

ln
1+ e
1− e

−1) (3.3)

Where e is the eccentricity given by equation 3.4:

e =

√
1− a2

b2 (3.4)

The geometrical factor in the x and y directions is equal ( L2 = L3 ) and is given as a

function of L1 as shown in equation 3.5.

L2 = L3 =
1−L1

2
(3.5)

Due to the different polarisation along the short and long axes of the ellipsoid, the optical

properties along the axes will vary. At resonance, when the denominator of 3.4 approaches
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zero, there are two examples are associated with the short and long axis oscillations, as seen

in Figure 3.2, known as transverse and longitudinal modes respectively.

Fig. 3.2 Schematic of short and long axis oscillations of transverse and longitudinal resonance
modes respectively.

3.3 Plasmonic Interactions

The theoretical solutions for nanoparticles assume that a single particle is isolated in a

homogenous media. In reality, the nanostructures will typically be interacting with others

while suspended in solution, evaporated, or fabricated on a substrate or aligned within an

array. Each of these interactions affects the measured optical properties of the nanostructures.

Additionally, the dependence of the resonance on the dielectric function of the surrounding

media, as seen in equations 2.29 and 3.2 can be utilised for measuring changes in the local

refractive index for sensing applications.

3.3.1 Nanostructure-Substrate Coupling

At a significant distance from a substrate, the optical response of the nanoparticle is similar

to that in an isolated, homogeneous media. With decreasing distance between the nanoparti-

cle and surface, the substrate interrupts the symmetrical field distribution surrounding the

nanoparticles. For metal substrates, strong coupling between nanoparticles and surfaces

occur with hybridisation of the localised plasmons on the nanoparticle and SPPs on the metal

substrate. Nanoparticles also couple with image charges, which are multipoles induced on
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the surface by the proximity of the plasmonic nanoparticle [90], as shown in Figure 3.3.

Coupling between the nano-particle and substrate results in a red shift of resonance peak

which is dependent on the separation between substrate and nanoparticle and thickness of

substrate [91].

Fig. 3.3 Schematic representation of nano ellipsoid coupled to dipole image charges in
substrate.

Dielectric substrates also couple with nanoparticles, with weaker interactions due to

coupling only with image charges on the surface. However, the strength of nanoparticle

dielectric substrate interaction can still be significant, with strength increasing for increasing

dielectric permittivity (refractive index). With increased permittivity, the strength of the image

and resultant interactions increase with image charges reduced by a factor of (ε −1)/(ε +1)

[92]. Additionally, the inclusion of the substrate which breaks the field symmetry surrounding

the nanoparticles can result in higher order plasmon modes [90].

3.3.2 Sensing Mechanisms of Nanoparticles

Excitation of localised surface plasmons is dependent on the size, shape and material of the

host nanoparticle, as defined in equations 2.28 and 3.1. However, the optical behaviour is also

affected by the surrounding media, where a change in the dielectric constant (and refractive
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index), results in a change of resonant properties. This inherent sensitivity can be exploited

for detecting molecules for a variety of sensing applications as detailed in Section 4.2, where

a change in surrounding media results in a shift in the resonance peak. Single nanoparticle-

based sensors are capable of ultra-low limits of detection with 40 nm shifts reported for a

single Ag nanoparticle [93]. Array based sensing results in a significantly smaller shift of

peak but provides a better signal-to-noise ratio as signal occurs over a larger sensing platform.

Due to the simpler setup, array devices are easier to use and take measurements and allow

for higher throughput. In the sensor setup utilised in this research (Section 4), changes in the

resonance peak are detected by a dip or peak in the signal measured through a sensor-gram.

When a solution change or binding event occurs, the resonance peak is shifted from the

baseline, causing either a peak or dip in the real-time response due to a higher or lower

refractive index respectively.

3.4 Summary

The principle of the paired nano structure has been explained in this chapter and concept

of an elliptical-shaped nanostructure has been thoroughly discussed with detailed optical

characteristics of paired nanostructures. The effect of the coupling between the nanostructure

and the substrate is also discussed in this chapter. Finally, the nano particle’s sensing

mechanism after it was placed on the substrate is also explained in this chapter.

54



Chapter 4

All-Opto plasmonic controlled bulk and

surface sensitivity analysis of paired

nano-structured antenna with label-free

detection approach

4.1 Introduction

Gold nano antennas have been used in a variety of biomedical applications due to their

attractive electronic and optical properties which are shape and size dependent. Here, a

Periodic paired gold nano structure exploiting surface plasmon resonance is proposed which

shows promising results for refractive index (RI) detection due to its high electric field

confinement and diffraction limit. Here, single and paired gold nano structured sensors are

designed for real-time RI detection. Full-Width Half-Maximum (FWHM) and Figure-of-

Merit (FOM) are also calculated, which relate sensitivity with the sharpness of the peak.

The effect of different possible structural shapes and dimensions are studied to optimise
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the sensitivity response of nano sensing-structures and identifies an optimised elliptical

nano antenna with its major axis a, minor axis b, gap between the pair g, and heights h

being 100 nm, 10 nm, 10 nm and 40 nm, respectively. In this work, I have investigated the

bulk sensitivity, which is the spectral shift per refractive index unit due to change in the

surrounding material, and this value was calculated as 526-530 nm/RIU and the FWHM was

calculated around 110 nm with a Figure-of-Merit (FOM) of 8.1. On the other hand, surface

sensing is related to spectral shift due to refractive index variation of the surface layer near to

the paired nano antenna surface, and this value for the same antenna pair was calculated as

250 nm/RIU for surface layer thickness of 4.5 nm.

Section 4.2 describes numerical methods and model optimization with 2 subsections

containing the performances of the optimized nano structure and comparison of the optimized

structure with the published work. Section 4.3 shows the performance surface sensing for the

designed nano structure after that this chapter concludes in Section 4.4. Finally novelties of

the proposed work is described in Section 4.5.

4.2 Numerical Methods and Model Optimization

A frequency domain technique based on FEM has been used in this study [19, 20, 12, 21,

22, 9] to evaluate the plasmonic field scattering of gold nano-particles. Figure 4.1 illustrates

the dimensions of nanostructures, with a and b representing the major and minor axes, h

indicating the height, and g identifying the separation gap.

Figure 4.1a shows a graphical representation of a paired gold nanostructured antennas on

a quartz substrate. The single cell of quartz substrate on which a coupled nanosized structure

is implanted is referred to as a 3D arrangements. Comsol Multiphysics, which is based on

the FEM, was used to perform all of the computational simulations. The electron transfer

in metals are precisely similar to the complex dielectric permittivity, and the electric and

magnetic fields are coupled by this permittivity to keep the computational findings. Drude
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(a) (b)

Fig. 4.1 Designed model on COMSOL Multiphysics (a) Top and Side views of a paired
elliptical shaped gold nano antenna (b) Computational model of paired gold nano antenna
along with the boundary conditions.

Lorentz model has been used to obtain the property of the gold because it focuses on the

free-electron present in the metals which causes surface plasmons resonance. To minimize

the computational cost, I have modelled single unit cell with appropriate boundary conditions,

as shown in Figure 4.1b with waves activation ON, a metallic nano structure was stimulated

in the z-direction from the top by x-polarized light, and Scattering boundary conditions

(SBC) were positioned at the bottom and top of the finite element model. To get the field

distribution, transmission and reflection patterns, the complete numerical problem was solved

in the frequency domain. The whole structure was discretized into ’study’ mesh elemental
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scale in the FEM method. To eliminate backward reflection distortions in the calculations,

Perfectly matched layer (PML) with a height of 200 nm was added at the top of the air

domain and bottom of the quartz substrate. The periodicity were 400 nm and 200 nm in

the x and y axes, respectively. The metal discs were first set at a height of 40 nm from the

quartz substrate’s surface. Perfect magnetic conductor (PMC) and Perfect electric conductor

(PEC) have been employed to enforce the structure’s periodicity in the x and y directions,

respectively. The sensitivity research of four distinct designs is provided in this chapter:

single sphere and single disc, paired disc, and elliptical shaped paired disk antennas, as

shown in Figure. 4.2

Fig. 4.2 Work approach of the designed computation model.

To examine the physical plasmonic characteristics, the FEM is used to solve the standard

Maxwell equations while taking into account the harmonic dependency of the electric field

E(r, t) = E(r)e− jωt . Throughout the simulation, I employed the Helmholtz equation, that

can be obtained from standard Maxwell’s equations and is illustrated below.
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∇
2 E+ k2

0ε E = 0 (4.1)

The wave vector is represented by k0. Here, a harmonic propagating field is recognised

with E(x,y,z) = E(x,y,z)e jβ z, where β is the propagation constant. The propagation de-

pendency in the z directions are represented by the complex form γ = α + jβ , and when

for loss-less case, α = 0, γ = jβ . The antenna is excited by an x-polarized wave in the

z-direction incident from the upper surface, which forms the LSPR following interactions

with the gold nano shapes. The proposed structure’s sensitivity (nm/RIU), S, is defined as the

ratio of resonant wavelength λres shift to the change in ambient index of refraction δns(RIU):

Figure 4.3 shows the sensitivity of a single disk and sphere. The sensitivity measurements

of a solitary sphere of various diameters mounted on a quartz platform are shown by a green

curve, and this value is approximately 25 nm/RIU for d = 70 nm - 120 nm. Due to the obvious

amplitude modulation and transition in the plasmonic wavelength, these single spheres can

be used to detect the target in complex media like a serum, as discussed by Chen et al. in

2010 [94], and the initial response of the base pairs and trimers of spheres was shown by

Deep et al. in 2015 [95]. The sensitivity of a single disk is also displayed by a blue curve

when its thickness is 80 nm to explore the influence of diameter. It can be seen that when the

diameter of the disk is reduced, its responsiveness decreases, even for such a thicker disk,

its sensitivity is comparable to that of a sphere of similar diameter. However, as the height

is reduced further, the sensitivity increases substantially. A red curve depicts the sensitivity

calculations of a single disk of 40 nm height, which is practically saturating to 125 nm/RIU

when the diameter exceeds 100 nm. When the height is reduced to 10 nm, as illustrated by

the black curve, the sensitivity of a circular disk increases to 225 nm/RIU as the diameter is

raised to 120 nm, and then it becomes saturated. A purple dashed-dotted curve also depicts

the sensitivity of a single elliptical disk. The major axis, a, is kept constant at 100 nm, while
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the minor axis, b, is changed. It can be seen that as b, the minor axis, is decreased, the

sensitivity rapidly increases, reaching 350 nm/RIU at b = 10 nm.

Fig. 4.3 Sensitivity variation with the diameter of single nano disk of 10 nm, 40 nm and 80
nm height, sphere and single elliptical disk when a = 100 nm, b = varied (10 nm to 100 nm),
h = 40 nm.

This highlights an excellent opportunity: the sensitivity of a non-circular elliptical disc

may be significantly boosted even with its smaller overall size, but the sensitivity of a bigger

circular disc is very much restricted. The diameter, major and minor axes, and thickness of

the disks all affect sensitivity, however to produce a reasonable evaluation, a fixed height of

40 nm is considered in the next section for all the devices which can be easily manufactured.

The significant electric field entrapment at the sharp corners of the elliptical disk can

be seen in Figure 4.4a. This obviously shows that the field is more confined due to the

absence of circumferential symmetry. Figure 4.4b shows the variation of the electric field Ex

in the x-direction through the centre of a solitary elliptical disk. At the edges of the solitary
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elliptical disk with a = 100 nm, b = 10 nm, and h = 40 nm, this figure likewise displays a

significant normalised electric with field intensity up to 18000 V/m. With a = b = 100 nm

and h = 40 nm, this value is approximately twice that of a circular disk. In comparison to

a singular circular disk, a single elliptical disk can be regarded a viable option for sensing

purpose due to its higher electric field confinement.
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Fig. 4.4 (a) Ex, mode field profile of a single elliptical disk antenna when a = 100 nm, b =
10 nm and h = 40 nm (b) Electric field variation along the x-axis for a single elliptical disk
when a = 100 nm, b = 10nm and h = 40 nm.

4.2.1 Paired Elliptical shaped Nano Antenna

Since it is usually recognized that a paired disks, also referred as a dimer, could increase

the field intensity across their gaps, so our the next step is to assess both paired circular and

elliptical disks. As a result, the transmission spectra of a 100 nm gold nano disk surrounding

by a material with varied refractive indices are displayed in Figure 4.5a.
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(a) (b)

Fig. 4.5 (a) Transmission Spectra of paired 100 nm circular nano disk with 10 nm separation
distance and 40 nm height (b) Sensitivity and R-Square Error calculation of 100 nm and 50
nm paired circular disk.

One can see that when the refractive index increases, the resonating wavelength shifts to a

higher wavelength. The separation gap, g, and the height of the disks, h, are set to 40 nm and

10 nm, respectively. The resonating wavelength increases when the surrounding refractive

index, RI is increased, as shown in Figure 4.5b. The slope of these two curves, 105.79 and

205.18 for diameter 50 nm and 100 nm, respectively, are used to compute the sensitivities of

the coupled circular nano disks. A nearly linear relationship between wavelength fluctuation

and RI variations has also been established. For 50 nm and 100 nm diameters, the R-square

errors were estimated as 0.98915 and 0.9137, correspondingly, indicating a nearly linear

correlation. The acquired sensitivity of the 100 nm coupled disk is obviously bigger than

that of the 50 nm paired disk, as illustrated in Figure 4.5b.
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Fig. 4.6 Sensitivity analysis of paired circular nano disk of 50 nm, 100 nm and 150 nm
diameter with the different separation distance.

Since sensitivity is affected by the spacing between the circular paired disks, next, its

influence is investigated, and the sensitivities of disk with diameter 50 nm, 100 nm, and 150

nm are plotted against the separation distance in Figure 4.6. It should be observed that when

the separation distance between the disks, g, is high, the sensitivity is equivalent to that of a

single disk, however sensitivity improves when the separation distance, g, is reduced. As

a result it can seen that the sensitivity of a coupled disk is always greater than that of an

individual disk. Zhao et al. presented an Au nanoparticle on a nano spherical shape with an

separation gap, g of 0.82 nm [96]. It is also demonstrated herein that as the circular disk’s

diameter d increases, so does its sensitivity. The sensitivity of an elliptical-shaped paired

nano disk is then investigated by changing its minor axis b from 10 nm to 100 nm while

retaining the major axis a fixed at 100 nm. The antenna’s height is set at 40 nm. These

coupled nanostructures were stimulated with a linearly x polarised light in the z direction,

with primary polarisation parallel to the major axis a. Transmission spectra at various index
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of refraction values were used to optimise the sensitivity. Figure 4.7a shows transmission

spectra for a selected design with various surrounding medium (n). Here, 100 nm, 10 nm, 10

nm, and 40 nm are used as the major axis, a, minor axis, b, separation distance, g, and height,

h, respectively. Because the design concept exhibits a greater efficient change in resonating

wavelength, it could be employed as a refractive index sensor and is a good contender for RI

detecting applications. The narrow band coupled nanostructures’ spectral absorption may

also be modified to fit the distinctive absorption spectra of selected RI in order to identify

targeted media in the IR range.
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(a) (b)

(c) (d)

Fig. 4.7 (a) Transmission spectra of the optimized paired elliptical antenna with 100 nm, 10
nm major and minor axes, respectively with 10 nm separation distance g and 40 nm height,
h (b) Absorption Spectra of the same structure (c) Ex, mode field profile of the optimized
paired structure (d) Variation of Electric field along the x-direction of the optimized elliptical
disk of 100 nm paired circular nano disk with 10 nm separation distance, g and 40 nm height,
h.

Figure 4.7b illustrates the absorption spectra of the developed coupled nano antenna array

for six RI values, which validates the observed transmission spectra and demonstrates sensing

responses. Applied electric intensity in the separation region and extremely high electric

field containment in the centre of the coupled antenna are shown in Figure 4.7c. The intensity

of the localised electric field is critical for label-free identification. Because the highest

electric field developed in the centre of the separation gap in the designed structure, such an

ultra-strong electric field can be used for sensing applications.
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Figure 4.7d depicts the variation of the electric field Ex in the x-direction across the centre

of elliptical antenna pair. Although electron conduction provides an efficient force at the

surface of the paired device, the electric field in the separation gap region is significantly

enhanced, as shown in Figure 4.7d. The maximum normalised electric field, shown by a

black curve in Figure 4.7d, reaches up to 35000 V/m at the an inner edge of the paired

elliptical disk for a = 100 nm, b = 10 nm, g = 10 nm, and h = 40 nm, indicating that the

highest field level of intensity is more than 50% greater in the gap especially compare to

the field at the outer edges. It can be regarded a superior choice for biosensor applications

owing to its increased strength of electric field containment. The applied electric field

profile shows that by reducing the minor axis, a considerable field increase may be observed

at the sharp corner of a coupled structure. This coupling causes the LSPR improvement

because the elliptical structures interact more strongly as they approach nearer through one

another. When the separation distance was larger, the change in transmission and absorption

spectra of the resonating wavelength was smaller, therefore a smaller separation distance is

recommended to generate an intense electric field concentration. The maximum localised

field intensity forms due to the coupling of surface waves on nanostructures, as shown in the

aforementioned figures, and could be an ideal contender for RI sensing applications. This

indeed very sharp behaviour can also be useful for scattering constrained EM waves, such as

label-free RI identification by surface-enhanced Raman scattering and a wide range of many

other Point-of-Care application domains.

4.2.2 LSPR sensing calculation of optimised structure

Enhanced sensitivities are indeed the principal designing requirement for an excellent detector,

however the sharpness of the reflection and transmission curves are also essential for quick

identification. I have concentrated on crucial device metrics namely Sensitivity (nm/RIU),

Full-Width Half-Maximum (nm), Figure-of-Merit, and R-Square Error in this subsection.
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The variations of the resonating wavelength with the index of refraction for three distinct

major axis, a values are shown in Figure 4.8a. The sensitivity (nm/RIU) is computed using a

polynomial linear fit of the sensitivity analysis, and the slope, S, is obtained as 320 nm/RIU

with 0.9974 R-Square error for a = 60 nm (as seen by black curve). Furthermore, at 467.69

nm/RIU with accompanying 0.9985 R - Square error, the S for 80 nm is computed somewhat

better than that for a = 60 nm, as illustrated by a red curve. Finally, the sensitivity, S was

computed at 526.12 nm/RIU for a = 100 nm with 0.9996 R - Square error, as shown in Figure

4.8a by a blue curve.

  a = 100 nm, b = g = 10 nm, h = 40 nm
  a = 80 nm, b = g = 10 nm, h = 40 nm
  a = 60 nm, b = g = 10 nm, h = 40 nm
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Fig. 4.8 (a) Polynomial Fit at when a axes were at 100 nm, 80 nm and 60 nm at RI from 1.0
to 1.8 (b) Sensitivity variation with the minor, b when major axis, a were fixed at either 100
nm, 80 nm or 60 nm and with fixed at 10 nm separation gap, g and height, h = 40 nm.

The variation of the sensitivity, S with the minor axis, b for three fix values of a = 60 nm,

80 nm and 100 nm with fixed g = 10 nm are shown in Figure 4.8b. It can be seen that as the

major axes, a increases from 60 nm to 80 nm and to 100 nm, the sensitivity, S is increased

as shown by blue, red and black curves, respectively, in Figure 4.8b. Figure 4.8b shows the

change of sensitivity, S, with the minor axis, b, for three fixed values of a = 60 nm, 80 nm,

and 100 nm with g = 10 nm. The sensitivity, S, improves as the major axes, a, increases

from 60 nm to 80 nm and then to 100 nm, as illustrated by the blue, red, and black curves in

Figure 4.8b. Sensitivity was evaluated as approximately 170 nm/RIU for a = b = 80 nm, then
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All- O pt o pl as m o ni c c o nt r oll e d b ul k a n d s u rf a c e s e nsiti vit y a n al ysis of p ai r e d
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s e nsiti vit y, S , w as c al c ul at e d t o b e 2 5 0 n m/ RI U w h e n a = b = 1 0 0 n m, a n d r a pi dl y i n cr e as es t o

5 2 0 n m/ RI U w h e n t h e mi n or a xis, b = 1 0 n m, as r e pr es e nt e d b y a bl u e c ur v e. It d e m o nstr at es

t h at b y r e d u ci n g t h e mi n or a xis, b , f or a l ar g e m aj or a xis, a , r el ati v el y hi g h s e nsiti vit y m a y b e

att ai n e d. T h e s h ar p n ess of t h e r es o n a n c e c ur v es aff e cts m e as ur e m e nt pr e cisi o n, w hi c h c a n b e

e v al u at e d usi n g t h e F W H M , w hi c h is i d e nti fi e d as t h e diff er e n c e b et w e e n t w o w a v el e n gt hs

w h e n t h e r es p o ns e is h alf of its hi g h est v al u e:

F W H M = λ 1 − λ 2 ( 4. 2)

W h er e λ 1 a n d λ 2 ar e t h e w a v el e n gt hs, pr es e nt e d as a n i ns et i n Fi g ur e 4. 9 a, w h e n t h e

tr a ns missi o n is h alf of t h e hi g h est a m plit u d e.
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as shown by a red curve in Figure 4.9a. The similar tendency can be seen for the paired

elliptical disks, where when the minor axes, b is reduced, at first FWHM decreases until

it reaches a minimum value of 95 nm for minor axes, b within 30 nm and 40 nm, and

then it increases, when b reduces further, as shown by a black curve in Figure 4.9a. As a

consequence, I can assess alternative designs based on their FWHM values. I need a high

sensitivity, S, as well as a sharper resonance (lower FWHM) in the proposed study, therefore

the Figure-of-Merit (FOM) may be regarded a significant parameter for the development of a

coupled nano antenna system. Here, FOM can be defined as the sensitivity to the FWHM

ratio:

FOM =
S(nmRIU−1)

FWHM
(4.3)

Figure 4.9b shows the variations of FOM with the minor axis, b. The major axis, a,

separation distance, g, and height, h, are kept constant at 100 nm, 10 nm, and 40 nm,

respectively, in this case. Shreekanth et al. [86] examined a comparable FOM, but instead of

∆λ , they have used ∆ω . When the minor axis is narrowed below 30 nm, even if the sensitivity

increases exponentially (shown in Figure 4.8b), FOM has only been slightly enhanced, since

its FWHM was increased in this instance. The sensitivity variation for a single and paired

circular and elliptical disk is shown in Figure 4.10a. It can be seen that when the antenna’s

height h is decreased, S increases in all circumstances. However, with a reduced antenna

height, S of a paired circular disk (represented by a curve for a = b = 100 nm) is higher than

that of a single disk (shown by a black curve for a = b = 100 nm). However, the sensitivity

of an elliptical paired disk (represented by a blue curve, with a = 100 nm and b = 10 nm)

displays the maximum values most often at shorter heights (a = 100 nm, b = 10 nm). Figure

4.10a further shows that when the antenna height, h, is more than 60 nm, sensitivity stays

nearly constant. The sensitivity analysis for circular and elliptical paired discs is shown in

69



All-Opto plasmonic controlled bulk and surface sensitivity analysis of paired
nano-structured antenna with label-free detection approach

Figure 4.10b. Their height, h, and separation gap, g, are 40 nm and 10 nm, respectively, in

this case. When a = b = 100 nm, the sensitivity of a circular disk (with a = b) rises as its

diameter increases, reaching roughly 220 nm/RIU.

(a) (b)

Fig. 4.10 (a) Sensitivity comparison of Single, Double disk and optimized Paired elliptical
nano antenna with 10 nm separation gap and 100 nm major axes. (b) Sensitivity comparison
of the variation of major axes a, minor axes b and paired disk variable.

These observations are comparable to those published by Tsai et al. [97] for the circular

dimer, albeit it should be emphasised that they used a considerably larger disk. When the

major axis, a, is set at 100 nm, the sensitivity evolution of a paired elliptical disc with the

minor axes, b, is depicted by a red curve. Even though the sensitivity of a circular, especially

for a paired disk, may be increased by expanding its size, it is demonstrated that whilst the

sensitivity of an elliptical disk pair can indeed be improved by rather decreasing the minor

axis, b, as illustrated by a red curve. The 526-530 nm/RIU was considered high sensitivity

at the 10 nm minor axis, thus I have considered it for future investigations. Although the

minor axis, b, is constant at 10 nm and the major axis, a, is altered, the sensitivity of a

paired elliptical disk is shown by blue curve. It should be highlighted that when a = 100

nm, that is the identical value as the left most peak of the red graph, a higher sensitivity

of 526-530 nm/RIU may be reached. As a is reduced, the sensitivity decreases, and the

asymmetry also decreases. I performed Full wave mathematical modelling to evaluate the

70



4.3 Surface sensing Outcomes of the Paired Elliptical nano structured antenna

different analytical information, then used our findings to develop periodic coupled nano

antenna designs for possible bio-sensing applications. The modelling findings reported here

show that the engineering techniques can be utilised to optimise sensor sensitivity for many

applications. Furthermore, I demonstrate that for a paired elliptical disk with a = 100 nm,

b = 10 nm, h = 40 nm, and g = 10 nm, a paired micro antenna with sensitivity of 526-530

nm/RIU and FWHM, FOM of 108.86 nm, and 8.19 RIU−1 can be achieved. The sensitivity

obtained can be used in biosensors and new biological imaging techniques. Tsai et al. also

[97] showed that by employing a coupled nanoscale ring can also boost sensitivity by up to

50%, while our study indicates that for elliptical dimers, sensitivity can indeed be raised by

more than 100% while utilising a considerably a much shorter size of the antenna.

4.3 Surface sensing Outcomes of the Paired Elliptical nano

structured antenna

Furthermore, for label-free sensing, the surface sensitivity of the structural parameters was

determined by calculating the electric field intensity adjacent to the nanoscale antenna.

Surface sensitivity is affected significantly by the increased electric field strength along

the edges and in the gap region. The presence of a sensing target can alter the sensing

layer’s refractive index, thickness, or even both. The surface sensing transmission spectra are

presented in Figure 4.11a when the refraction indices (ns) of a 4.5 nm thick sensing layer

was modified for a = 100 nm, b = 10 nm, h = 40 nm, g = 10 nm. As the RI of the surface

layer increased from 1.4 to 1.6, the resonating wavelength shifted towards greater resonating

wavelength, Illustrated by the black, red, and blue curves. The sensitivity values at various

surface thicknesses when a = 100 nm, b = 10 nm, h = 40 nm, and g = 10 nm are shown in

Figure 4.11b. In all the sensitivity analyses, the RI of the surrounding medium was specified

to 1.33 for water, while the refractive index of the surface layer was adjusted to ns. Figure
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4.11b shows that as the thickness of the surface layer increases, so does the sensitivity, that

could reaches up to 240 nm/RIU.
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Fig. 4.11 (a) Transmission spectra for surface sensing of the optimized paired elliptical
antenna disk when a = 100 nm, b = 10 nm, h = 40 nm, g = 10 nm and surface layer thickness
= 4.5 nm (b) Surface sensitivity analysis of the optimized elliptical disk when a = 100 nm, b
= 10 nm, h = 40 nm.

The sensitivity and FWHM of the proposed paired structure were also compared to

previously published work and are given in Table 4.1. The suggested design has a higher

sensitivity than previously reported publications. The comparison of published results in

many aspects with our innovative technique of the developed structure, which seems to have

high sensitivity and FWHM; thus, our conclusions are fairly encouraging when compared to

the previous information. The parameters specified (Sensitivity (nm/RIU), FWHM (nm), and

Figure-of-Merit (FOM)) can be used to describe sensing effectiveness and to analyse various

attributes in order to expand its functionality.
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Table 4.1 Comparison of published work with the optimized paired structure.

S.No.

Designed

Antenna

(nm)

Full-Width

Half-Maximum

(nm)

Sensitivity

(nm/RIU)
Ref.

1. Square Shape (h = 30, g = 30) 125 — [98]

2. Disk Shape (h = 60, g = 14) 147 — [99]

3. Bow Tie Shape (h = 90, g = 65) 280 — [100]

4. Disk Shape (h = 40, g = 55) 109-113 — [19]

6. Nano shell (d = 50) — 60 [101]

7. Nano rods, cubes and bipyramids — 195-288 [102] [103]

8. Silver nano particles (h = 50) — 200 [104]

9. Gold Nano Square (h = 100) — 167-327 [105]

10. Nanodisk (h = 1) — 200-350 [106]

11. Nanotubes (h = 100, g = 55) — 250 [107]

12. Elliptical Antenna 95-100 510-530 Proposed

4.3.1 Model Investigation and Its Applications

In this chapter, optimized design have been used to show the efficient performances in terms

of sensitivity and FWHM and next this design has been tested for detection of 2-propanol

(IPA) concentration through its corresponding refractive indices, which are adopted form

[108], and shown in Table 4.2.
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Table 4.2 Comparison of published work with the optimized paired structure.

C 0% 10% 20% 40% 60% 80% 100%

RI 1.3330 1.3420 1.3514 1.3642 1.3717 1.3742 1.3776

Figure 4.12a shows the transmission spectra of aqueous solution of 2-propanol (IPA)

at different concentrations where the black, pick, blue and orange curves show the 0%,

20%, 60%, and 100% IPA concentration, respectively. Figure 4.12b shows the calculated

FWHM with the IPA concentration having different refractive indices. From this figure it

can be observed that at different IPA concentration (shown by pink dots) the FWHM was

calculated as ∼135 nm; however, it increases for higher refractive index values as shown

by a black curve. On the other hand, Figure 4.12c shows the resonating wavelength with

the refractive indices by a black curve with its highest value nearly 1320 nm at 1.8. In this

figure, the variations of resonating wavelength for IPA solution are also shown by pink dots

at around 1100 nm. Figure 4.12d shows the plasmonic wavelength shift of antenna placed

in IPA solution compared to its placement in the vacuum. In order to calculate the value

of the shifted plasmonic wavelength, the plasmonic resonating wavelength (when antenna

was presented in inert environment) was substrated from the wavelength (when antenna

was presented in different concentration of IPA as shown in Figure 4.12d. In this way, the

potential application in detection of IPA aqueous solution at different concentrations from

0% to 100% has been shown by a black curve in Figure 4.12d. Pink dashed lines show

the corresponding refractive index of aqueous solution of IPA at different concentrations

from 0% to 100% with respect to resonating wavelength. A strong argument can be made

here that the optimized design can be a useful candidate for many homogeneous RI sensing

applications.
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Fig. 4.12 (a) Shows the transmission spectra of different IPA concentrations (b) Demonstrate
the FWHM variation of 2-propanol (IPA) with different RIs (c) Shows the resonating plas-
monic wavelength with refractive index values (d) Shows the shift in resonating wavelength
with the 2-propanol (IPA) concentration.

4.4 Summary

Finally, owing to their very attractive optical functionality which are shape and size dependent,

gold nano antennas have been considered in a wide range of biological sensing applications.

The surface and bulk sensitivity capability of these kind of periodic coupled gold nano

structures is examined in this research leveraging the FEM for LSPR sensor design. It can be
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seen from this investigation that sensitivity increases as the height of the couple and distance

between them decreases. When the diameter of a circular coupled disk is increased, its

sensitivity increases. However, for an elliptical dimer when its asymmetry is increased, the

sensitivity of a coupled elliptical disk increases. Thus, with a smaller elliptical disk, I can

attain a significantly higher sensitivity. As a result, a significantly smaller elliptical antenna

pair can attain substantially better sensitivity than the much larger circular disc [97]. For

optimum design, the highest transmission dip and absorption peak were attained at almost

850 nm, whereas plasmonic degradation migrated towards greater wavelengths for different

RIs. The sensitivity is computed as roughly 518-530 nm/RIU, with 109 nm FWHM and

8.35654 Figure-of-Merit (FOM) for a coupled elliptical disk with a, b, h, and g values as

100 nm, 10 nm, 40 nm, and 10 nm, respectively. When the sensing layer is 4.5 nm thick with

a refractive indices ranging from 1.4 to 1.6 while the refractive index of the outside region is

1.33, the surface sensitivity was estimated as 240 nm/RIU. Furthermore, the adopted design

show a high electric field distribution in the gap region. After successfully optimizing the

nano antenna as a sensor, an aqueous solution at various IPA concentrations was used to

observe the sensitivity of the engineered sensor, demonstrating its significant contribution

to the advancement of potential innovative technologies for Point-of-Care, therapeutic, and

water quality assessments, as well as a tool for regulating seawater salinity..

4.5 Novelties and Highlights

• The fundamental originality of this research is the revelation that by avoiding circular

symmetry, as illustrated in this above chapter by employing an elliptical shaped disk,

the electric field can be concentrated even more and the sensitivity of a solitary elliptical

disk can indeed be improved.
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• Furthermore, improved field patterns are shown, which closely correspond with almost

twice the field strength particularly when compared to a circular disk, culminating in

three times higher sensitivity.

• Additionally, the enhancement of field in the gap of an elliptical dimer, as well as the

consequent increase in sensitivity is highlighted.

• It would be as easy to manufacture an elliptical dimer as it might be to construct

a circular dimer, and even simpler than a ring-shaped dimer [83, 97]. However, a

valuable feature will be that a much smaller elliptical-shaped dimer with its reduced

area could achieve a similar high sensitivity as in a circular or ring-shaped dimer with

a substantially greater dimensions.
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Chapter 5

Artificial Neural Network Modelling for

Optimizing the Optical Parameters of

Plasmonic Paired Nanostructures

5.1 Introduction

Nanostructures have lately attracted a great deal of recognition from research groups due

to their wide range of application fields, and the worldwide demand for nanotechnology

is expected to reach USD 90 billion by 2021 [1] as manufacturing and service provider

applications of nanostructures are expected to expand [2]. Likewise, Artificial Intelligence

(AI) has grown and developed rapidly in the last ten years [37], with computer scientists

and specialists, as well as many other investigators in other disciplines, embracing it. It has

gained widespread acceptance in the field of science and technology for dealing with complex

data-driven problems [38]. These models have unrivalled capacity to discover and foresee

patterns in data, as well as uncover unanticipated tendencies that a normal observer could

overlook [39]. It specializes in identifying hidden database systems and categorizing non-

linear data information, allowing it a perfect fit for a variety of empirical methodologies. All
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researchers focusing on light-matter coupling have advanced to a different level, supported

by nanomaterials engineering, chemistry, and optoelectronic advancements, by exploiting

Machine Learning (ML). This is facilitated by two contemporary events: The primary is the

development of sophisticated optoelectronic devices; the second is the full integration of

machine learning (ML) with physical/chemical disciplines for in-depth acquiring information

which produced many novel discoveries [40].

Photonic technology has recently enhanced its capability by exploiting machine learning

approaches, and the outperforming classical photonics, which is still inefficient in regards to

effort and expense and provides restricted efficiency. As a result, numerous investigators had

already changed their attention to ML and included it in a wide range of application fields,

including comprehensible optoelectronic networks [41], plasmonics [42, 43], multimode

fibres [109, 44], sensing [45–49], photonic crystal fibre [50], and nanotechnology [51, 110,

53–55]. Nanophotonics is an outstanding example of optical plasmon and strong localised

fields that may be tuned for diverse purposes by modifying the shape and material choices of

nanoparticle. In this work, paired nanostructures were investigated and the corresponding

sensitivity, FWHM, FOM, and plasmonic wavelength were also estimated. The finite element

methodology (FEM) was used to create and visualise these coupled nanostructures. It is

commonly established that comprehensive complete vector illustration models of 3D photonic

systems require days or weeks to solve a complicated system [111]. To address this problem,

we developed a deep neural model based on the Python (version 3.8.3) framework, that

revealed to be extremely fast at predicting their performances. Feedforward convolutional

neurological systems have a lot of promise for solving difficult challenges in nano-optics,

including adjusting the optical properties of single or paired nanostructures [112].

The neural network was developed and trained in the second stage using the acquired

data-set from the FEM. The labelled entry variables, like the Major axis, a, Minor axis,

b, separation gap, g, and height, h, are used to train to predict the corresponding output
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values: sensitivities, FWHM, FOM, and plasmonic wavelengths. The learning process

provides an approximated functionality that anticipates outcome quantities to initiate training

of the constructed neural network. After adequate training, this developed model can

produce output values for any new data variables. This training technique may evaluate its

forecasted output to the actual output values and determine the mean squared errors (MSE) to

demonstrate the performance of the models. Various prevalent ML paradigms can be used in

the development and training of this deep learning model, including pandas [113] for data

cleaning, Scikit-learn [114], which is a higher-end library chosen for regression analysation,

NumPy [115] used for multi-dimensional arrays and matrices, and pickel [116]. Additionally,

the Pytorch, which is an ML package premised on Torch tensors, has indeed been implemented

[117–119]. Pytorch is an immensely renowned fully accessible, developed in 2016 by

Facebook’s AI Research lab (FAIR) [120] based on the scripting language Lua [121], that

it is equivalent to NumPy matrices, including the significant incentive of GPU support. It

is indeed a powerful method since it assists in the acceleration of quantitative calculations,

which may increase the performance of the neural network by up to 50 times. It has an

easy-to-use API, making it straightforward to interact with Python. The usage of such

excellent framework is justified since it enables the creation of dynamically computational

chart that can also be updated in real-time, which is necessary throughout neural network

training and testing. Even though PyTorch supports multiple rear ends rather than a solitary

back end for CPU, GPU, as well as other fully functioning properties, we have used FEM

simulation models in the rear end for data gathering, that is utilised for neural network

training, and Pytorch and Scikit-learn at the front end due to its exceptional indispensable

architectural style, which provides immediate and fast strategies. This study enables the

calculation of photonic properties for coupled nano-structured devices using artificial neural

network optimization algorithms.
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5.2 The Convergence of Machine Learning with Nanostruc-

tural Devices

Commercial software (Comsol Multiphysics 5.5) was used to execute finite element method

simulations of coupled gold nanoparticles on a quartz substrate. In reality, a couple tens

of micrometres thick quartz layer was introduced to establish the antenna. However, only

a 600 nm quartz base segment was investigated as field did not extend beyond that. The

usage of PML borders defragments the mathematical prototype. Due to the existence of free

electrons in the metal, the dielectric properties of the metallic surface has been computed

using the Drude free electron model. In this model, the dielectric properties is derived using

the relaxation period τ = 9.3±0.9×10−15, and for metal at near-infrared frequencies when

ω >> 1τ , [65]:

ε(ω) = 1−
ωp

2

ω2 + j
ωp

2

ω3τ
= ε

f
real + jε f

imag (5.1)

Here, ωp is the plasma angular frequency equal to
√

4πNe2

m0
= 9 eV, and N and

m0 = 0.99±0.04 are the conduction electron density and effective optical mass, respectively

[65]. Figure 4.1 depicts an explanatory and simulation model interpretation of the paired

nanostructures and their applications. In comparison to distributed nanoparticles in a liquid

environment, this arrangement makes the entire system more resilient and easier to handle.

A quartz substrate is both transparent and chemically inert over a wide range of frequencies.

The quartz substrate has a computational thickness of 600 nm, and the height, h of the nanos-

tructures is with respect to substrates. With wave excitement ON, a coupled metal antenna

was stimulated by x-polarized light propagating in the z-direction from the top, and scattering

boundary conditions (SBC) were established at the bottom and top of the computational
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region. The unit cell dimension of the quartz substrate kept consistent at 400 × 200 nm2,

which is bordered by a perfect electric conductor (PEC) and a perfect magnetic conductor

(PMC) along x and y walls, respectively, to impose the periodicity of the nanostructures.

Throughout the numerical experiment, the height of the metal antenna was fixed to 40 nm

[122]. Figure 5.1b depicts the variation of the electric field Ex in the x-direction through the

core of the couple of nanoantenna computed using Comsol Multiphysics, and it illustrates

an extremely enhanced electric field confinement in the separation area and the edges of the

ellipsoidal and round antenna. Since electron propagation provides an appropriate electron

confinement at the top of the paired device, the electric field in the separation gap area is

significantly enhanced, as shown in Figure 5.1c. Figure 5.1c shows the maximum electric

field intensities for a = 100 nm, b = 10 nm, g = 10 nm, and h = 40 nm, reaches up to 35,000

V/m at the interior edge of the coupled elliptical antenna, and the highest field intensity here

is 97.14 % greater than the case of a circular antenna shown in Figure 5.1c. The electric field

profile shows that for a coupled dimer, reducing the minor axis, b, results in a considerable

field enhancement at the corners and edges. The LSPR is enhanced as a consequence of

this interaction because the elliptical nanostructures interact intensely as they get nearer to

one another. The change in the optical transmission/reflection and absorption spectra of

the resonating wavelengths were smaller when the separation distance was greater, hence a

narrower separation distance is recommended to obtain significant electric field enhancement

[122].
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(a) (b)

(c)

Fig. 5.1 (a) Schematic of circular and elliptical nanostructures placed on a quartz substrate (b)
Mode profile Ex of paired gold (i) elliptical and (ii) circular nanoantennas (c) The line plot of
the electric field confinement in the separation gap and at the corners of the nanoantennas.

Following the effective development of the mathematical simulations, this strategy has

been used to vary the major axis a, minor axis b, and separation distance g of the nanostruc-

tures and quantify their commensurate sensitivity S, which is described as the rate of resonant
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wavelength (λres) variation with the change in the surrounding refractive index δns(RIU),

where S = δλres(nm)/δns(RIU). The sensitivity of a sensing element is the primary focus

in its development, but the sharpness of the reflection and transmission patterns is also

significant for their easy identification. The sharpness of the resonance curves is also affected

by quantification precision, that can be directly measured by the FWHM, which itself is

identified as the difference between the two wavelength values, i.e., FWHM = λ1 − λ2,

where λ1 and λ2 are the wavelengths, when the response is half of its peak value. Further-

more, FOM has been regarded as the third crucial output variable, which was calculated as

the ratio of the sensitivity to the FWHM, i.e., FOM = S/FWHM(RIU−1), and the surface

plasmon resonance wavelength has been recognised as the fourth output parameter because

it indicates the highest comparative response amplitude at specific wavelengths [83, 122]

to gather the range of dataset for neural network training. The nano-structured calculations

were time-consuming and complicated. To address this limitation of conventional numerical

simulations, the time-efficient ML method has been devised. We concentrated on the collec-

tion of input variables that can aid in neural network training. A large number of simulations

have been carried out in order to obtain the sufficient dataset for neural network training. The

input variables have been the major axis a, minor axis b, and separation distance g, while the

outgoing variables were the sensitivity, FWHM, FOM, and plasmonic wavelength. Moreover,

a neural network was created with the aid of a supervised learning algorithm to produce

accurate predictions after learning from a training datasets. Here, Multi-layered perceptron

(MLP) designs employed the back-propagation (BP) algorithm and multiple activation func-

tions to construct multiple layers in feed-forward and back-propagation neural networks.

In this work, we established an algorithm which can be employed for multi-input/output

platforms and involves just a one-time training process that takes a few minutes to yield

corresponding output values. As a result, this approach may be useful for a comparable

nanoantenna development. Ultimately, this research exhibits forward modelling enabled by
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neural networks, which has proved the AI algorithm’s capacity to understand sophisticated

correlations between nanophotonic structures and their associated optical outputs.

5.2.1 Artificial Neural Networks for Prediction of Output Parameters

of Nanophotonic Structures

We live in a fascinating technological era in which ML has a substantial influence on a

wide range of applications, from large data processing to producing precise predictions.

Nevertheless, in the realm of ML, data gathering/collection might become a key issue.

Data preprocessing, which includes data collecting, scrubbing, analysing, visualising, and

extraction of features, consumes the preponderance of the time spent executing the ML

algorithm from beginning to final moment. As a result, developing this ML algorithm becomes

a critical endeavour. In addition, the outputs are depending on the improvements done by the

proposed algorithm. Following the collection of the dataset, the created programme employs

a number of data processing approaches. The generated task of the neural network training

data is automated, with minimal or no user engagement. As a result, the significance of

COMSOL Multiphysics data gathering cannot be overstated. ML plays an important role in

facilitating the rapid analysis of vast amounts of data produced by nanostructures in order to

identify meaningful insights for data scientists. Table 5.1 displays the variability of a data set

or a sequence of integer data received from COMSOL multiphysics. As a result, the work

of categorising data into multiple subcategories is completely automated. Table 5.1 shows

the percentile, mean, standard deviation, lowest, and highest values for the generated data

frame.
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Table 5.1 Dataset variation used for neural network training.

Major Axis

(nm)

Minor Axis

(nm)

Gap

(nm)

Sensitivity

(nm/RIU)

FWHM

(nm)

Plasmonic

Wavelength

(nm)

count 530 530 530 530 530 530

mean 89.69 49.54 39.5471 191.22 78.54 653.64

Standard

Deviation
24.74 29.22 22.35 109.43 37.16 86.97

Minima 30.00 10.00 10.00 26.52 2.90 557.35

Maxima 130.00 130.00 80.00 595.04 202.40 1068.24

In Table 5.1, the dataset variation, and the relationships of the dataset along with its

trends and patterns can be seen.

5.2.2 The Architecture of the Multilayer Artificial Neural Network

ANNs have indeed been presented as a powerful tool for assessing the relationship between the

architecture and compositions of customizable nanophotonics structures and their operational

qualities. It focuses on the development of computer algorithms that aid in the extraction

of trends and the optimization of complicated data with a large number of factors. Forward

ANNs are unique in that several layers and neurons may be employed to enhance performance.

This artificial neural network was created using a computer with 8 GB of RAM, 128 GB of

SSD storage, and the MacOS Big Sur (version 11.2.1 (20D74) operating system. Throughout

the calculation, the digital environment Jupyter Notebook (version 6.0.3) is employed, which

is a web-based interactive computing notebook environment with Python (version 3.8.3)

installed in an anaconda (version 1.7.2) environment. Even without special thumb rule, this
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method can manage the complicated data hyperparameters derived from the basic input data.

This was structured in three levels, as shown in Figure 5.2, including an input layer, an output

layer, and hidden layers.

Fig. 5.2 Outlayer of Artificial Neural Network.

The input parameters to be processed are delivered to the completely integrated input

layers. The output layer does the necessary tasks, such as prediction and classification. A

neural network is made up of neurons which are arranged in layers (or nodes). Every neuron

in one layer is linked to the neuron in the next layer by a weighted connection. The weight

wi j represents the frequency of the connection between the ith neuron in one layer and the jth

neurons in the next layer. To produce the neurons’ output, a functional weight is assigned to

each neuron as an entry that is linearly aggregated (or summarised) and transmitted through

an activation function. Finally, the anticipated output may be compared to the random test

sets. The network may be represented as a black box that accepts m inputs and produces

n outputs, as seen in Figure 5.2. An optimized ANN model with 5 hidden layers and 50

nodes/neurons within every layer was implemented all through this research, as shown in

Figure. 5.2. These hidden layers were completely interlinked, which means that each

node/neuron inside one layer is connected to the node/neuron in the next layer. To facilitate

unbiased assessment while tuning the ANN model parameters, 10% of the datapoints were
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randomly chosen from the training dataset and assigned as the validation dataset (weights and

biases). The Rectified linear unit ReLU activation function [123] and the Adam optimizer

[124] were employed throughout the training method to depict the nonlinear function and

improve the weights, respectively. The ANN model predicts certain outcomes after each

iteration/epoch. The Mean Squared Errors (MSE) between both the predicted and actual

outputs was calculated, and the back-propagation phenomena was employed to adjust the

hidden layer weights for each epoch. The MLP computational system can have an infinite

number of hidden layers between both the input and output layers; nevertheless, in this

research, only a finite number of hidden layers were included, and data kept flowing forward

from the input node to the destination node layer, similar to a feed-forward network in an

MLP; however, the sensitivity, FWHM, FOM, and Plasmonic wavelength were considered

outputs from the output layers. With the input variables of the artificial neural network are the

major axis a, the minor axis b, and the separation gaps g have been mapped as the physical

variables that are utilised for input layers, Figure 5.2 shows the flow of the entire procedure

of the artificial neural network, where the first phase is to gather up the labelled dataset from

the Comsol Multiphysics. Between the input and output layers, there are customisable hidden

layers and neurons (or nodes) that anticipate output parameters that are similar to the real (or

simulated) output. Neurons in the hidden layers plays a critical role in determining the neural

network’s overall performance. Despite the fact that these layers have no visible interface

with the outside world, they have a substantial impact on the overall outcome.

The number of hidden layers and the number of neurons in each hidden layer are

thoroughly researched based on mean squared errors (MSE) that can be calculated by using

Equation 6.2:

MSE =
1
n

n

∑
i=1

(
Yi −Y p

i
)2 (5.2)
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where n is the total number of data points used in the procedure. Yi denotes the real value

obtained by Comsol Multiphysics, whereas Yip denotes the expected quantities (e.g., from

a linear regressing fit). For each data point and the predicted regression model, the MSE

can be calculated. The model is shown to be capable of making accurate predictions with

the lowest MSE. The validation and training dataset’s actual and projected data points are

detailed in a subsequent section. These hidden layers can be used to break down a neural

network’s function into meaningful data computations. Each hidden layer is programmed to

produce a certain result. The randomized weights are fine-tuned by altering the hidden layers

(from 1 to 10) using 50 neurons and calculating the appropriate MSE, as illustrated in Figure

5.3a. The MSE = 0.14 at the initial epoch for 1 hidden layer is shown in red, and it drops

steeply until 1500 epochs, when it stabilises for the subsequent epochs. The green curve, on

the other hand, shows MSE = 0.10 for three hidden layers at the first epoch and stabilized

after 700 epochs.

Consequently, the MSEs for 5 and 10 hidden layers are roughly 0.07 and 0.06 at the

first epoch, respectively, and after 2000 epochs, it stabilized, as shown by the black and

purple curves in Figure 5.3a. The MSE does not improve significantly when the hidden layers

are larger than five; hence, five hidden layers were selected for additional investigations.

Following that, the number of neurons in each of the five hidden layers was adjusted from

1 to 100, as illustrated in Figure 5.3b. When only one node is employed, the MSE is 0.25,

as illustrated by the red curve. However, MSE = 0.21 was estimated for 5 nodes at the very

first epoch, and the green curve shows that it stabilises after 1200 epochs. The MSE = 0.15

for 10 nodes at the first epoch is shown in black, and it remains stable after 800 epochs. The

technique for 50 and 100 epochs was also investigated in order to lower MSE further, as

demonstrated by purple and pink curves, respectively. Only a small variation in MSE was

observed in these circumstances, and it became relatively steady after 600 epochs.
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Fig. 5.3 Mean squared error calculation for the above shown dataset in Table. 5.1: (a) The
mean squared error at different hidden layers with 50 nodes (neurons) (b) Neuron variation
in hidden layers.

Lower the MSE, closer are the predicted regression values to the actual values, therefore

the models with 5 hidden layers and 50 neurons appeared to be effectively trained, as

illustrated in Figure 5.3b. This procedure was run for 5000 epochs to ensure that the MSE

values dropped to their lowest level. Following this experiment, all subsequent calculations

will use 5 hidden layers with 50 neurons to reduce the computational load. After this

improvement, the neural network was designed using the rectified linear activation function

(or ReLU), since it is convenient, straightforward to use, and effective in getting over the

restrictions of other common activation functions like Sigmoid and Tanh. It is less vulnerable

and susceptible to vanishing gradient difficulties, that can render deep learning models

exceedingly difficult to train. The Adam optimizer was preferred over LBFGS and Stochastic

Gradient Descent (SGD) optimizer to facilitate the weight values during the ML training

phase since it maintains effectively for a decently large dataset. When MSE converges to an

adequate threshold, the user selects the number of epochs to be collected. After modifying

the model to obtain a steady MSE value, the necessary outcomes were presented as additional

input data that was not provided during the training operation. The term "rectified network"

refers to an artificial neural network with hidden layers that employs the rectifier function.
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As the approaches that currently mandate the methodical creation of neural networks, ReLU

implementation is without a doubt one of the main milestones in the deep learning revolution.

The quantity of data, the number of hidden layers, the number of neurons in each hidden

layer, and the number of epochs all influence how long it requires to train an artificial neural

network. When we utilised 5 hidden layers with 50 neurons in each layer and ran for 5000

epochs, it took roughly 10 seconds to train the proposed model with the COMSOL dataset.

After the training was performed, the model weights and parameters were saved in the

machine. The next stage was to use previously saved weights to estimate the output for

unknown inputs, which took just 71 seconds for 5 hidden layers. Direct numerical simulation

using COMSOL multiphysics, on the other hand, can take about 165 minutes, 235 minutes,

and 636 minutes, for normal, fine and extremely fine meshes, respectively, and a day or

two and can take much longer if a manual mesh (smaller to extremely fine mesh size) is

being used to calculate the sensitivity, FWHM, FOM, and Plasmonic wavelength for only

one design,

5.3 Neural Network Analysis with Empirical Evidences

The trained artificial neural network is assessed in this section by comparing predicted and

real outputs for coupled nanoparticle having randomized design characterizations. Then

after, for any of the major axis a, minor axis b, and separation gap g values, the anticipated

sensitivities, FWHM, FOM, and Plasmonic wavelength are compared to their corresponding

calculated values.

5.3.1 Sensitivity (nm/RIU)

The sensitivity [125] predictions has indeed been investigated in this subsection using MSE

calculations for training and validation sets at various epochs. For the training and validation
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sets, the MSE was determined as almost 0.130 and 0.128, respectively which indicates that

training has been sufficiently completed. Numerous additional and randomized datasets were

used to see if the model made appropriate predictions when applied to real-world data. The

data point location of the training, validation, and test sets are shown in Figure 5.4a. The red

circle in Figure 5.4a denotes the training dataset that was utilized to train the neural network

and forecasts the sensitivity parameters for arbitrary inputs. Furthermore, black circles

indicate the validation dataset, that describes the prediction accuracy over real values, and

green dots reflect the test dataset, which is completely different from the train and validation

sets and is intended to assess prediction accuracy after training. The neural network is

validated using this test dataset. Every circle defines a specific piece of information, and the

numbers should indeed be oriented nearer to the solid black line in a well-trained model.
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Fig. 5.4 The scatter plot of a data point location: (a) The comparison of the training, validation,
and test data set (b) The efficiency of the developed neural network with epoch variance,
with the comparison of actual sensitivity (nm/RIU) values (from the simulation) with respect
to predicted values (calculated from the neural network).

The enhanced ML model with iteration (Epoch) is demonstrated in Figure 5.4b; this graph

indicates the improvements in the planned neural network from 250 epochs to 10,000 epochs.

The R-Squared values have also been determined to prevent overfitting. The projected

sensitivity levels (shown by purple circles) at epoch 250 are not near to the true values (given
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by the solid black curve). R-Squared scores for a mathematical fit were obtained, and the

variation in predicted values was 0.31 for 250 epochs, demonstrating that the model had

not been correctly trained. 1000 epochs were used to refine this established model, and the

predictions were somewhat close the ideal curve, as illustrated by the blue circles. The 0.85

R-Squared value was calculated for 1000 epochs, demonstrating the improvements in neural

network training predictions.
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Fig. 5.5 Sensitivity visualization: (a) the predicted sensitivity over the major axes (nm) at
different epochs (b) a contour plot of the absolute error values for sensitivity predictions
over the major axes (nm) (c) the sensitivity response against the minor axes (nm) with
epoch variation.
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We kept increasing the epochs until we got nearer to actual values, and the R-Squared

values for epochs 5000 and 10,000 were determined as 0.964 and 0.959, respectively, as

represented by green and red circles. The R-Squared value declined significantly at 5000,

indicating that the model was being overfit, as seen in Figure. 5.4b. As a result, 5000 epochs

have been considered for further analyses.

The modification in sensitivity with the major axis for various epoch values is shown

in Figure 5.5a. The real dataset produced via COMSOL modelling is shown in black, and

this dataset has been utilized as a reference dataset. We train the neural network in such a

fashion that it can generate accurate predictions with regard to the reference data points by

adjusting the period. The gap between the actual sensitivity (shown by black curve) and

projected sensitivity (shown by green curve) is somewhat large at 250 epochs, as illustrated

in Figure 5.5a. The disparity between both the expected sensitivity (represented by a red

curve) and the actual sensitivity is minimised when the neural network is trained at 1000

epochs. The neural network was solved for 5000 and 10,000 epochs, respectively, to produce

better projections over real sensitivities, as demonstrated by the pink and dashed blue curves.

With a higher amount of epochs, the projected sensitivity is nearer to the actual sensitivity

with no over-fitting in the model, as can be seen in these comparisons. Figure 5.5b illustrates

a contoured graph of the projected sensitivity’s error rate on a changeable major axis to

optimise absolute error levels with varying epoch values. The error rate is steadily decreasing

in this graph, with values of 1.90, 1.08, 0.72, 0.54, 0.36, and 0.18 for 500, 700, 1100, 1500,

2500, 3000, and 4500 epochs, respectively. The error decreases close to zero at 4500 epochs,

which could be considered positive observations as shown in Figure 5.5b, so the trained

model weights may then be retained for subsequent assessment at 5000 epoch. The sensitivity

prediction across the minor axis from 10 nm to 120 nm is shown in Figure 5.5c. A black

curve has been created in this image to represent the standard data points. The error rate

between both the actual and anticipated sensitivity is steadily reducing as the epoch value
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increases, as illustrated by the green, red, pink, and dashed blue curves with respect to the

black curve. From 250 to 5000 epochs, the absolute error rate of sensitivity prediction is

plotted along the minor axis. The error rate declines steadily from smaller to bigger epochs,

with a value of 0.68 for 250 epochs; but, it drops to 0.51, 0.34, and 0.17 for 1000, 2000,

and 4000 epochs, respectively, before reaching its minimum number for 5000. Because the

absolute error rate is lowest at 5000 epochs, 5000 epochs have been optimised for further

observations.

5.3.2 Plasmonic Wavelength

The wavelength of plasmonic resonance is critical to comprehending the efficiency of a nano-

structured antenna. As a result, the reaction of the anticipated plasmonic wavelength (nm)

(from the previously created neural network) to the actual plasmonic wavelength (derived

from COMSOL multiphysics) has been investigated in this section. The MSE values of

the neural network for the training and validation sets were estimated as 0.15 and 0.10,

correspondingly. The MSE value of the neural network declines significantly from the first

epoch to the 1000 epochs, reaching its minimum number for larger epoch values.

The improvements in the projected plasmonic wavelength with regard to the real plas-

monic wavelength at epochs from 250 to 10,000 are shown in Figure 5.6. The linear

regression fit is shown in black, and the plasmonic wavelength at 250 epochs is shown in

purple hollow circles, that is not particularly close to the linear regression fit, indicating that

the neural network is not correctly trained. As a result, the planned neural network was

trained for 1000, 5000, and 10,000 epochs, as indicated by the blue, green, and red hollow

circles, respectively. It is evident from this that as the epoch values increase, the projected

values go closer to the linear regressing fit. The R-Squared value has also been estimated as

0.188, 0.78, 0.99, and 0.98 for 250, 1000, 5000, and 10,000 epoch values, correspondingly, to

prevent over-fitting in the neural network. It can be observed that R-Squared values slightly
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reduced with 10,000 epochs, indicating that projected quantities are approaching over-fitting,

hence 5000 epochs are used for subsequent analyses.
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Fig. 5.6 The scatter plot of a data point location shows improvement on a developed neural
network with different epochs.

The R-Squared value has also been estimated as 0.188, 0.78, 0.99, and 0.98 for 250, 1000,

5000, and 10,000 epoch values, correspondingly, to prevent over-fitting in the neural network.

It can be observed that R-Squared values decline for 10,000 epochs, indicating that projected

quantities are approaching over-fitting, hence 5000 epochs are used for subsequent analyses.

The enhancement in plasmonic wavelength predictions with regard to the major axis a is

illustrated in Figure 5.7a, which would be analysed to the real (simulated by the finite element

approach) plasmonic wavelength represented by a black curve. The predicted plasmonic

wavelength for 250 epochs (presented by a green curve) is significantly a field from the

validation curve (shown by a black line) in this figure, indicating that the neural network

was not correctly trained. The predicted values then increased somewhat (indicated by the

red curve) after 1000 epochs, approaching the validation curve. The neural network has

been trained for higher epochs of 5000 and 10,000, as illustrated by pink and dashed blue

curves, correspondingly, in order to produce accurate predictions, which have shown good
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accuracy with regard to the validation curve. It is evident that as the number of epochs rises,

the accuracy of the forecast improves. However, the absolute error values with respect to the

major axis, a are 0.40, 0.34, 0.27, 0.20, 0.14, and 0.069 for 300, 570, 690, 1000, 2000, and

3000 epochs, correspondingly, from 250 to 5000 epochs. Following that, it is decreased to its

smallest value at 5000 epochs; as a result, 5000 epochs have been used for all subsequent

computations.
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Fig. 5.7 Plasmonic wavelength (nm) visualization: (a) the predicted plasmonic wavelength
(nm) with major axes (nm) variation at different epoch; (b) the plasmonic wavelength (nm)
response against the minor axes (nm) with epoch variation.

The accuracy of the plasmonics wavelength predictions with regard to the minor axis b is

shown in Figure 5.7b. The difference between both the actual (shown by a black curve) and

predicted values was large for lower epoch values, and as the epoch increased, the accuracy

of the predicted values continued to increase as well, as shown by green, red, pink, and

dashed blue curves at 250, 1000, 5000, and 10,000 epochs, respectively. The absolute error

values with various minor axes and epochs ranging from 250 to 5000 were also obtained

to assess the neural network’s efficiency. For the 900, 3000, 4000, and 4300 epochs, these

values are 0.11, 0.073, 0.045, and 0.045, respectively. Finally, at the 5000th epoch, it dropped

to its minimum value, which was utilised for all subsequent projections.
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Fig. 5.8 Sensitivity (nm/RIU) and Plasmonic wavelength (nm) visualization: (a) show actual
sensitivity (nm/RIU) and plasmonic wavelength (nm) response with predicted sensitivity
(nm/RIU) and plasmonic wavelength (nm) over the major axis (nm) (b) the difference
between actual predicted sensitivity (nm/RIU) and plasmonic wavelength (nm) and predicted
sensitivity and (nm/RIU) plasmonic wavelength (nm) over the minor axis (nm).

Figure 5.8a depicts the variation of anticipated sensitivity (Left y-axis) and plasmonic

wavelength (Right y-axis) with major axis, a (x-axis) after 5000 epochs. Using the Left

y-axis, this figure depicts the fluctuation of sensitivity with the major axis represented by

pink and blue curves for real values (acquired from COMSOL multiphysics) and anticipated

values (predicted from the generated neural network). On the other end, using the Right

y-axis, the variation of plasmonic wavelength with the major axis for the actual and expected

values is represented by red and black curves, respectively, for 5000 epochs. The expected

sensitivity (Left y-axis) and the plasmonics wavelength (Right y-axis) with regard to the

minor axis at 5000 epochs are shown in Figure 5.8b. From this figure, it can be seen that

the discrepancy between the actual and predicted values was quite small, implying that the

constructed artificial neural network performs well within 65 seconds, whereas COMSOL

takes between 5 to 6 hours. This implies that this network accurately and consistently predicts

the value of sensitivity and plasmonics wavelengths with less processing time/load than

conventional computational techniques.
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5.3.3 Full-Width Half Maximum (FWHM)

The FWHM provides a significant part in observing the sharpness of the transmission spectra

of the paired nanostructured sensors, thus the measurements of the FWHM predictions were

also shown in this section from the above designed neural network. For the computation of

FWHM(nm), the MSE values for the train and validation sets were 0.19 and 0.11, correspond-

ingly, with a large reduction after 1000 epochs. Then, in order to boost the effectiveness

of the constructed neural network, the accuracy of FWHM prediction was increased from

250 to 10,000 epochs. For 250, 1000, 5000, and 10,000 epochs, further computations were

carried out, yielding R-Squared values of 0.72, 0.77, 0.846, and 0.845, correspondingly. Due

to the reduction in R-Squared values for 10,000 epochs, 5000 epochs were instead utilised to

optimise the full FWHM predictions.
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Fig. 5.9 FWHM (nm) visualization: (a) the predicted FWHM (nm) with major axes (nm)
variation at different epochs (b) shows the FWHM (nm) response against the minor axes
(nm) with epoch variation.

In addition, Figure 5.9a shows the variation of FWHM performance with the major axis.

The reference data point acquired from COMSOL multiphysics is shown by a black curve.

The green, red, pink, and dashed blue curves represent FWHM projections for 250, 1000,

5000, and 10,000 epochs, respectively; conversely, the actual FWHM is portrayed by a black
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curve. These graphs show that as the number of epochs is increased to the quality of the

forecast improves until it reaches the over-fitting point, which in this case is 5000 epochs.

The error rate of the FWHM with the major axis in relation to epoch number decreases

steadily as the epoch number increases. The relative error rates for the 530, 1000, 2100,

4000, 4900, and 5900 epochs were 0.61, 0.53, 0.35, 0.27, 0.18, and 0.091, respectively. The

goal of calculating these values is to offer a numerical figure for the reduction in error rates.

The projected FWHM for various epochs with regard to the minor axis is presented in Figure

5.9b, which is compared to the actual FWHM (shown by a black curve). The projected values

converge with the true FWHM as the period increases, as seen by the green, red, pink, and

dashed blue curves for epoch values 250, 1000, 5000, and 10,000, respectively. As the epoch

number is raised, the error rate for the FWHM with the minor axes is similarly seen to be

continuously reducing as shown in Figure 5.9b. As the epoch number is raised, the error rate

decreases, with values of 0.2, 0.1, 0.06, and 0.03 for 3000, 3800, 5000, and 8000 epochs,

respectively.

5.4 Comparison of Computational and Numerical Simula-

tions Performance

COMSOL Multiphysics software based on the finite element methodology (FEM) has been

utilized to generate the optical transmission/reflection spectra and field distributions for

the coupled nano-structured antennas. The neural network, which has been mentioned in

the previous part, was created in Python to make predictions. This created neural network

model produced predictions on the related outputs in a few seconds using randomized

input variables. Nevertheless, to study a particular variable by directly using COMSOL

Multiphysics might require a long and tedious time. Finally, we estimated the sensitivity,

FWHM, and Plasmonic wavelength for randomized major axis, minor axis, and separation
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gap, as well as their corresponding sensitivity, FWHM, and Plasmonic wavelength, within

the range (provided dataset), as shown in Table. 5.2. The absolute error rate in % between

both the predicted and simulated sensitivities for the randomized dataset is also provided.

The estimated relative error parameters were obtained to be between 3.39% and 0.02%,

demonstrating that it is an excellent response for an algorithm built in-house for generating

relatively accurate predictions.

Table 5.2 Comparison between actual and predicted values within the range.

Input Parameters Simulated Data from COMSOL Multiphysics Predicted Data from Artificial Neural Network Abs Error

Major

Axis

(nm)

Minor

Axis

(nm)

Gap

(nm)

Sensitivity

(nm/RIU)

FWHM

(nm)
FOM

Plasmonic

Wavelength

(nm)

Sensitivity

(nm)

FWHM

(nm)
FOM

Plasmonic

Wavelength

(nm)

Sensitivity

(nm/RIU)

%

60 20 40 147.2138 47.5796 12.9362 615.5012 146.9226 48.2208 12.7551 614.5826 0.19

80 30 80 163.8554 70.5513 8.8533 624.6127 163.6056 73.3072 8.5141 624.1441 0.15

85 45 25 171.4485 40.5550 17.8535 724.0533 170.1578 45.2992 16.0795 728.3898 0.75

90 50 90 135.1549 72.3698 8.4007 607.9604 135.6321 76.1116 7.9741 606.9173 0.35

100 40 60 197.3106 67.2607 9.5097 639.6299 196.4355 66.1773 9.6454 638.3086 0.44

100 40 50 208.2831 69.2660 9.2666 641.8674 208.2168 70.5940 9.0697 640.2649 0.03

100 50 90 170.0086 79.0452 7.8709 622.1600 171.1509 82.6979 7.5360 623.2143 0.67

110 50 110 193.4595 90.4005 7.1131 643.0292 194.6961 92.8461 6.9959 649.5304 0.64

115 25 25 307.8743 100.8810 7.7953 786.4027 307.7973 100.0813 7.8181 782.4466 0.02

120 60 90 202.0654 125.9891 5.1380 647.3321 202.4991 118.7540 5.4480 646.9770 0.21

120 50 110 231.9397 105.6556 6.3215 667.9105 224.0618 105.1861 6.3483 667.7588 3.39

120 60 120 208.3476 105.9363 6.1832 655.0344 208.6262 104.3657 6.2874 656.1949 0.13

In addition, as shown in Table 5.3, we have shown the performance of the proposed neural

network outside of the training dataset. Here the trained code was checked within the range, a

comparison of actual and predicted values is performed. Comparing the actual data values and

the predicted data points, the absolute error rate was determined. The ANN has the particular

advantage of being able to calculate optical parameters in a very short period of time with
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very reduced computer resources. Another benefit of the created ANN is that it involves

minimal sophisticated statistical training and can detect complex non-linear connections

between dependent and independent variables with no explicit training. This investigation,

in contrast to conventional regression analysis [126], demonstrates the ability to identify

all potential interactions between predictor variables and provides multiple input training.

Conventional regression analysis requires substantial statistical expertise and knowledge of a

variety of statistical concepts, including backward and forward stepwise regression, p values,

odds ratios, multi - collinearity, correlations, and input - output parameters.

Table 5.3 Comparison between actual and predicted values outside the range.

Input Parameters Simulated Data from COMSOL Multiphysics Predicted Data from Artificial Neural Network Abs Error

Major

Axis

(nm)

Minor

Axis

(nm)

Gap

(nm)

Sensitivity

(nm/RIU)

FWHM

(nm)
FOM

Plasmonic

Wavelength

(nm)

Sensitivity

(nm)

FWHM

(nm)
FOM

Plasmonic

Wavelength

(nm)

Sensitivity

(nm/RIU)

%

135 35 65 293.7393 137.3619 5.5150 757.5516 298.9795 161.6434 4.6454 750.9131 1.78

145 25 30 368.6747 214.8370 3.8776 833.0679 361.9376 187.1250 4.5343 848.4839 1.82

155 55 35 302.0654 194.7975 3.8421 748.4509 285.3999 195.8552 3.7381 732.1369 5.51

165 65 45 328.0120 208.4629 3.6274 756.1962 298.4219 210.7488 3.7008 779.9491 9.02

165 85 55 296.2564 225.6050 3.2763 739.1566 271.6019 216.4422 3.5380 765.7940 8.32

5.5 Summary

Finally, machine learning method was developed and utilised to predict the key features

of a coupled gold nanoantenna for a combination of input/output parameters. This study

illustrates how to evaluate an artificial neural network rigorously and how to make excellent

predictions using a trained network. Five hidden layers of 50 neurons were employed all

through the neural network to accomplish rapid resolution and good precision in estimating

outputs for unpredictable input geometric parameters of the nanoantenna. The MSE has also

been tested against the number of epochs when predicting sensitivity, FWHM, FOM, and
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plasmonic wavelength about any random input variables of various major axis, minor axis,

and separation gap for any arbitrary input variables of distinctive major axis, minor axis, and

separation gap. This research also offers a comparison between COMSOL Multiphysics

and in-house created neural networks in terms of computing time, which is nearly five times

faster than conventional simulations. Finally, the created model’s performance was proven

for the randomized input parameter and the associated output parameters were predicted. As

a result, we predict that the coming together of artificial intelligence and nanotechnology

will pave the way for a plethora of new technical breakthroughs in the field of knowledge

sciences.
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Chapter 6

Deep learning for spectral prediction and

prospective validation of nanostructured

dimers

6.1 Introduction

In recent years, many advances in optics have resulted in remarkable capabilities beyond the

diffraction limit with various applications in the field of biomedicine, point-of-care applica-

tions, and nanotechnology. Nanophotonics has transformed traditional optics by allowing

subwavelength structures to influence light-matter interactions [127–129]. Nanophotonics

strives to use optical resonances and strong surface plasmon localized fields produced by

either nanoparticle shape or selection of materials [130–133]. Complex nanostructures, on

the other hand, whose shapes may be characterized by several geometrical factors, usually

necessitate the use of advanced numerical techniques to deal with multidimensional matrix

organizations deodorised from integral or differential versions of the Maxwell’s equations.

There are different numerical techniques are available to solve such complex structures based

on the finite element methods [134] named COMSOL Multiphysics numerical packages
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[135], the generalized method of moments (GMM) [136], and finite difference time domain

method [137, 138], as well as the discontinuous Garlekin method [139–141]. Regrettably,

simulations employing these tools are often quite time-taking and computationally costly,

nonetheless, in scenarios requiring a real-time application, such as biosensors [142, 143], par-

ticle physics [144], condensed matter [145], chemical physics [146], ultra-cold science [147],

conventional microscopy [148, 149] iterative inverse designs of complex optical devices

[150, 151] and investigation of optical functionalization [152], efficient modelling of optical

performance at the nano/micro region is greatly sought. To overcome this shortcoming, deep

learning (DL) techniques [153] such as multilayer perceptron neural networks (MLPs) [154],

convolutional neural networks (CNNs) [155], recurrent neural networks (RNNs) [156], and

generative adversarial networks (GANs) [157], the predictive modelling play a vital role

based on physics has advanced dramatically in the realm of cognitive science [38]. As a

result, several researchers have increasingly turned their attention to DL and have applied in

synchronous transceivers that are one example of these kind of applications [41], plasmonics

[42, 43], multimode fibres [44], sensing [45, 47–49], nanotechnology [51, 110, 53–55] and

photonic crystal fibre [50]. Nanophotonics is an outstanding example of surface plasmon res-

onance and intensely confined electromagnetic fields that may be tuned for diverse purposes

by modifying the nanoparticle shape and material choices. The overall tendency of this study

findings so far is that a neural network must be developed for a fast computational process

and less computing load that involves hyper-parameter tuning, training data production,

training, and rigorous testing for each unique problem adopting a specific geometric model.
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6.2 Deep Learning (DL) paradigm and its synchronizations

with nanotechnology

This work has been organised in two phases where in first, we have developed a FEM-based

frequency domain approach [19, 20, 12, 21, 22, 9] which was utilized to obtain the surface

plasmon resonance confinement around the gold nanostructures. Figure 6.1. shows an

overview of the model description, where gold elliptical and circular dimmers have been

designed. The dielectric constant of the gold have been adopted from [65].

Fig. 6.1 Schematic of the extended unit cell elliptical and circular nano antenna and its optical
response in terms of transmitted and reflection spectra.

The classical Maxwell equations were solved by employing the FEM, taking into ac-

count the harmonic dependency of the electric field E(r, t) = E(r)e− jωt in order to examine

the physical plasmonic characteristics of nanostructures. Throughout the simulation, the

Helmholtz equation has been employed, which can be obtained from the usual Maxwell
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equations, as shown below.

∇
2E + k2

0εE = 0 (6.1)

Here, k0 is wave vector. Temporal periodic disseminating field was used as E(x,y,z) =

E(x,y,z)e jβ z, and β is defined as a propagation constant. In complex form, γ = α + jβ ,

and if α = 0, then γ = jβ , which represents the propagation dependency in the z-direction.

To excite the nanostructures, the x-polarised wave is launched from the top layer in the

z-direction which generated the LSPR upon interaction with the designed nanostructures.

The strongly localized LSPRs and its optical responses (for elliptical and circular dimers) has

also been shown the in inset of Figure 6.1. For more details please see Chapter 4. From that it

is clearly identified that the frequency response is sensitive to geometrical parameters of any

nanostructure, materials characteristics, and changes in the local environment, LSPRs have

huge potential for molecular sensing, which could help with clinical diagnosis, environmental

monitoring, and detection of biological agents [158–160]. The analyte molecules are typically

attached to the exterior face of the nanostructures, either along with or without tethering

particles. It generates a minor perturbation of the dielectric surrounding refractive index

(RI), resulting in a measurable shift in the resonance frequencies or amplitude, which may be

evaluated instantaneously using the transmission, reflectance and absorption spectra which

can be predicted with the help of designed DL neural network configuration as shown in

Figure 6.2.
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Fig. 6.2 Schematic of the structure of two elliptical and circular nanostructures on SiO2
substrate (The top and front views of a single unit cell with the geometrical parameters are
represented in the insets). (b) A DL neural network model that predicts the optical response
over a wavelength range for the given geometrical parameters (c) Shows the predicted optical
response for a given geometrical structure.

Here, Figure 6.2a shows the given geometrical inputs (paired elliptical and circular

dimers) to the DL neural network. Surface lattice resonances (SLRs) are made up of gold

nanostructures organised in a regular pattern. It can sustain resonances that are formed via

LSPRs coupling and have much finer spectral characteristics [161]. A gold nanostructure

supports plasmonic resonances on a SiO2 substrate in each unit of the structure. The

geometric properties of the nanoparticles [162], which may be mapped to the major (a)

and minor (b) axes, diameter (d) of circular dimer, separation distance (g) and height (h)

of the nanostructures, influence the wavelengths at which SLRs are triggered. Variation in

these factors can change the optical spectral values. Thus, the major (a) and minor (b) axes,

diameter (d), height (h) are adopted as input parameters, and the corresponding outputs

are discrete spectral datapoints. Figure 6.2b shows the brief architecture of the developed

neural network when the input parameters are remitted for predicting the spectral response
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of the corresponding nano structures. To begin training the developed DL neural network,

the learning algorithm develops an estimated function that expects output values. After

adequate training, this built model is expected to produce output spectral responses utilising

any new geometrical dimensional values. This process of learning will determine the mean

squared errors (MSE) to demonstrate the efficacy of the proposed DL neural network by

comparing its anticipated spectral output with the actual spectral values. Many widely used

machine learning packages were exploited to develop and train this DL neural network,

including pandas [113] for data preprocessing and Scikit-learn [114] for intensive training.

NumPy [115] for matrices and multidimensional arrays, and pickel [116] for compiling

and deserializing a Python object hierarchy are all elevated libraries used for developing

regression model. Subsequently, Pytorch [117], a DL framework centred on Torch tensors,

was employed. It’s a commercial and free licence project created in AI Research lab organized

by Facebook (FAIR) [120] in 2016 and entrenched on the scripting language Lua [121], that

is identical to NumPy with GPU integration. This is a crucial method since it assists in

the acceleration of numerical computations, which may strengthen the performance of the

DL neural network up to 60 times. It has a concise API, making it simple to integrate with

Python. The usage of this excellent platform is attributable to the fact that it provides for the

creation of rapid computational features that can be updated in real-time, which is necessary

throughout DL neural network training process. Designers used FEM solvers in the tail

end for dataset collection, which is useful to train the DL neural network, and Pytorch and

Scikit-learn in the front end due to their remarkable compelling architectural style, which

facilitates rapid and lanky approaches, even though PyTorch employs several backend instead

of a single backend for GPUs and CPUs as well as other operational aspects. While designing

this algorithm, Adam Optimizer has been used which is one of the most widely used in DL

neural network training algorithms nowadays. Following Adam’s approach, it was widely

assumed that Adam converges faster than vanilla Stochastic Gradient Descent (SGD) and
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Stochastic Gradient Descent (SGD) with momentum, but that it generalises poorly. The

relative insensitivity to hyper-parameters and short time frame performance in training are

therefore considered to be Adam’s strengths over SGD. Researchers have created a metric

of "tunability" and confirmed that Adam Optimizer is the most adjustable for most of the

challenges they have investigated. Hence, by using this designed DL neural network, this

identification gives researchers the encouragement to discern optical spectral response for

paired nanostructural devices.

6.3 Architectural framework of DL neural network with

Empirical attestation

DL neural network have indeed been established as a powerful tool for deciphering the corre-

lation in between the architecture and re-configurable nanophotonic structure composition

and its functionality. It involves the construction of computer algorithms that aid in the

extraction of motifs and the optimization of complicated information with a large number

of variables. Forward ANNs are remarkable in that they may leverage numerous layers and

neurons to efficiently operate. This neural network is formed using a cognitive computer

with 8 GB RAM, 500 GB Hardrive, with the windows operating system (version 20H2

Semi-Annual Channel) installed. Throughout the calculation, the virtual environment Spyder

python (version 5.1.5) is installed in anaconda (version 1.7.2). This DL neural network was

arranged in three levels, as shown in Figure 6.2b, including an input, output and hidden

layers. The input parameters that must be interpreted are delivered to the fully linked input

layers. Prediction and categorization are among the tasks that the output layer does. A

layer-by-layer assembling of neurons makes up a neural network. Every neuron in single

layer is interconnected to the neurons in the following layers via a weighted connection. The

frequency of the relation between the jth neuron in one layer and ith neuron is represented by
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the weight wi j. Each neuron is given a function weight, which is then linearly aggregated (or

summed) and transmitted with the help of an activation function to produce the output from

neurons. Finally, the anticipated output data may be compared to the random test data points.

The designed DL neural network can be visualised as a locked box that accepts x input and

generates y outputs [163] (see Figure 6.2b). As shown in Figure 6.2, an optimal DL neural

network with optimized hidden layers = 5, neurons = 50 in each layer was implemented

throughout this investigation. Every neuron inside each layer was interconnected to the

neurons in the subsequent layer, implying that these concealed levels were totally integrated.

20% of datapoints were randomly selected from the training datapoints and supplied as the

evaluation datapoints to provide impartial evaluation while tweaking the DL neural network

hyperparameters (weights and biases).

6.4 Results and Discussion

In this work, the geometrical range (a, b, d and g) of the nanostructure were varied from

10 nm to 130 nm; however, h was fixed at 40 nm. The granularity of gathered dataset is

chosen to minimise computing costs while yet allowing the DL neural network to be trained

properly. The complete datasets throughout this investigation comprise 10,500 parameter

combinations and their accompanying spectra. We exclusively selected structural factors that

have a considerable influence on the spectral properties and cover all conceivable spectrum

variants. Indeed, with this subsequent quantity of training data, DL neural network can be

trained to accurately model and forecast millions of spectral properties of the plasmonic

structures in the parametric range. Datasets are divided into three groups throughout the

training process of training dataset, validation dataset, and test dataset shown in Figure. 6.3

Training dataset are provided to the DL neural network to optimise the algorithm by

revising weights whereas validation dataset are used to evaluate the DL neural network,

acting as a verification of the training response and supporting to determine if the network
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Fig. 6.3 Histogram of the Input and Output datasets for elliptical and Circular paired nano
structure. (a) Shows the scaled input (Major, Minor Axis and Separation Distance) dataset
used to train the neural network. (b) Shows the trend of the Output (Reflection, Transmission
and Absorption Spectra) dataset used to train the developed neural network

is overfitting; and test dataset are used to assess the predictive performance. Every time,

the ideal DL neural network is determined by selecting suitable hyperparameters depending

on the training performance. The performance improvement of the DL neural network are

thoroughly investigated in terms of MSEs that have been calculated for each hidden layers

when the epoch = 5000 and neurons = 50. For MSEs calculation following Eq. 6.2 has been

used.

MSEs =
1
n

n

∑
i=1

(
Za

i −Zp
i
)2 (6.2)

Where, n is the total number of datasets utilised throughout the training process. Za
i is

the original data points calculated from Comsol Multiphysics, Zp
i is the predictions over the

actual dataset. The calculated MSEs of the predicted datapoints from the developed network

compared to the targeted datapoints are quantified by MSEs, which itself is regarded the

most effective assessment criterion. It is also used as the validation criteria of the DL neural
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network. Hence, the comparison of the MSEs calculation at each hidden layers are shown in

Figure 6.4 when neurons = 50 and epoch = 5000.
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Fig. 6.4 Shows the MSEs values for 1, 3 and 5 hidden layers when neurons = 50 and epoch =
5000.

Figure 6.4. shows that the values of MSEs for hidden layers = 1, 3 and 5 when neurons

= 50 and epoch = 5000. Here, the red curve shows the MSEs values = 0.4 at epoch = 1 for

hidden layers = 1, and neurons = 50 which rapidly decreases until epoch = 2000, and then

almost constant for epoch ≥ 2000. However, the orange curve shows the MSEs values = 0.35

at epoch = 1 for hidden layers = 2, neurons = 50, and it quickly stabilized after epoch ≥ 500.

On the other hand, for epoch = 1, MSEs values = 0.2 has been shown by a blue curve when

the hidden layers = 5, neurons = 50. The MSEs values fall significantly at hidden layers

= 5, and in this context, it can be stated that the constructed neural network produces the

appropriate approximation when the hyper-parameters are adequately configured.

For selecting the best hyper-parameters in terms of performance of the DL neural network,

the hidden layers are optimized in first stage when the number of epoch and neurons were

fixed at 5000 and 50. The initial prediction have been made for the given input geometrical
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dimensions as a = 70 nm, b = 10 nm, and g = 10 nm and the corresponding predicted

transmission, reflection and absorption spectra shown in Figure 6.5 for hidden layers = 1.
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Fig. 6.5 Hidden layer = 1, Neurons = 50 and Epoch = 5000 (a) Shows the comparison
between the predicted transmission spectra with respect to the original transmission spectra.
(b) Shows the anticipated reflection spectra are compared to the original reflection spectra.
(c) Shows the predicted absorption spectra against the original absorption spectra.

In Figure 6.5a a black curve shows the original transmission spectra (calculated by

COMSOL Multiphysics) with respect to the predicted transmission spectra when the a = 70

nm, b = 10 nm, g = 10 nm, and h = 40 nm. Similarly, the reflection and absorption spectra

are predicted in Figure 6.5b and 6.5c. Where the original spectral values are shown by the

black curves, while the predicted values are represented by the red curves. Where it can be

observed that when hidden layers = 1 and neurons = 50, the MSEs was calculated as 0.4

for epoch = 1 and rapidly reduces till epoch = 900; however, it got stabilised after epoch =

1000. Hence, epoch = 5000 is used to make initial predictions. Indeed, it is true that the

lower MSEs, the more predicted spectral values are more closer with respect to actual values.

Due to this reason, the remaining hyper-parameters have been tweaked for producing more

accurate predictions over the actual spectral responses.

From Figure 6.4. it can be seen, as the number of hidden layers is increased, the predicted

results became better. Finally, the appropriate DL neural framework is designed using suitable

hyper-parameter selection based on the MSEs determined at every dataset training. In the

Final algorithm the hidden layers = 5, epoch = 5000 and neurons = 50 were adopted. The
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MSEs was also gets its minimum values 0.20 at epoch = 1 and reaches upto 0.05 on epoch =

200; however, it stabilises and reaches approximately 0 at epoch = 5000.
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Fig. 6.6 Hidden layer = 5, Neurons = 50 and Epoch = 5000 (a) Shows the comparison
between the predicted transmission spectra with respect to the original transmission spectra.
(b) Shows the anticipated reflection spectra are compared to the original reflection spectra.
(c) Shows the predicted absorption spectra against the original absorption spectra.

Figure 6.6 illustrates the outcomes form the improved DL neural network where it can be

clearly seen that as the MSEs reduces the predicted transmission, reflection and absorption

responses reaches more closer to the original spectral values shown by red and black curves,

respectively for the specified geometrical dimensions where a = 70 nm , b = 10 nm, g = 10

nm and h = 40 nm. Altogether, these findings suggest that DL neural network can accurately

predict spectra for billions of distinct nanostructures in the a, b, g and h ranges using adequate

amount of simulation dataset. They all preserve the same accurate resonance properties

as by FEM simulations (using COMSOL Multiphysics), demonstrating that the DL neural

network can be well trained for electromagnetic modelling. As a result, it is reasonable to

conclude that expanding the training dataset will improve the performance and accuracy of

the DL neural network. In this way, it can be stated that the constructed DL neural network

outperforms traditional FEM simulation.

The performance of the designed neural network has also been evaluated in terms on

the computational cost. Generating large training data sets for DL neural network demands

a significant investment of computational effort. This emphasises the critical difficulty of
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automatically generating extra data points, particularly for regions that are devalued in the

present data collection. Aside from reducing numerical efforts, this would also aid to cut

physical labour by reducing the involvement of the researchers in the data curation chain.

However, the high computational cost of producing such data sets typically hinders database

expansion; as a result, the resulting DL neural network are unreliable owing to overfitting

and other difficulties.
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Fig. 6.7 (a) Shows the computational Cost (Sec) for the DL neural network training with
respect to different epoch (b) Represents the comparison in computational cost at different
hidden layers.

Hence, Figure 6.7a depicts the comparison of training execution time times for different

epoch when neurons = 50 and hidden layers = 5. Here, it can be seen that at 10,500 data

points the computational cost have been calculated while DL neural network training. It is

evident that the developed DL neural network have shown approximately 1 sec at epoch =

1. However, it reaches up to 50 sec for epoch = 500. But it is observed that at lower epoch

the MSEs values were high and the predictions were not closer of the actual results. Hence,

computational cost has been compared at different epoch. As from Figure 6.7a it can be

stated that at every epoch weights and parameters were stored in the computing machine after

the DL neural network training was finished and the predictions were made for unseen inputs

117



Deep learning for spectral prediction and prospective validation of nanostructured
dimers

with the aid of previously saved weights at epoch = 5000 is also represented in Figure 6.6. As

a consequence, it can be inferred that at epoch = 5000, the computational cost is 250 seconds,

which is rather expensive when compared to the smaller epochs, but the performance of

the DL neural network has improved. This performance is also far superior to typical FEM

solvers, which may take up to 10,200 seconds, 14,100 seconds, 38,160 seconds, and even a

day or two to compute the optical spectrum responses for normal, fine, finer, and extremely

fine meshes. Next, Figure 6.7b also represents the performance of the DL neural network

based on the computational cost with respect to the hidden layers varies from 1-5. Where,

it can be seen that at hidden layers = 1 the computational load was comparatively small,

approximately 75 sec but in Figure 6.5 it can be seen that the spectral performances was

not acceptable hence the DL neural network training has been continued for higher hidden

layers. Where it can be seen that at hidden layers = 2, 3, 4 and 5 the computational cost

increases from 100 sec, 170 sec, 220 sec and 250 sec. Additionally, the corresponding

improvement in MSEs values are also represented in Figure 6.4 from where it is clear that

as the hidden layers increases the MSEs values decreased which means that the prediction

are getting more closer to the actual spectral values. Hence, the epochs = 5000 is selected

by the user once MSEs has converged to a suitable threshold. After modifying the model to

obtain a stable MSE value, the necessary outputs datapoints were provided as additional input

datapoints that was not supplied during the training operation. The term "rectified network"

refers to an DL neural network with hidden layers that employs the rectifier function. As

the approaches that increasingly facilitate the methodical evolution of DL neural networks,

ReLU implementation is most significant breakthroughs milestones in the deep learning

rebellion.
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Fig. 6.8 Hidden layers= 5 and Epoch = 5000 (a) Shows the comparison of predicted reflection
spectra with respect to the original reflection spectra at neuron = 1 (b) Represents the
resemblance of predicted reflection spectra with respect to the original reflection spectra at
neuron = 30

Next, the performance on the neurons at each hidden layers has been optimized in Figure

6.8. Since, the neuron assesses a set of weighted inputs, implements an activation function,

and outputs. An input from neuron might be either features from a training set or outputs

from neurons in a previous layer. Weights are assigned to inputs as they travel through

synapses on their route to the neuron. The neuron then applies an activation function (ReLU

in this case) to the ”aggregate of synaptic weights” from each arriving synapse and sends

the result to neurons of following layer. Hence, it plays a crucial role for optimizing any DL

neural network. This can be better followed from Figure 6.8a which shows the performance

of the predicted spectra when the hidden layer = 5, epoch = 5000 and neurons = 1. From this

it can be seen that as the hidden layer = 5 and epoch = 5000 were optimised still the numbers

of neurons also plays an important role for stabilizing the DL neural network. Hence, the

predicted spectral values at neuron = 1 also plotted where red curve shows the predicted

spectral values and black curve represents the actual optical spectral values for a = 70 nm, b

= 10 nm, g = 10 nm and h = 40 nm. Figure 6.8b shows the response of the higher neurons

used in each hidden layers = 5 and epoch = 5000. From this it can be inferred that as the
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neurons increases the performance of the predicted spectral values increases where the red

curve shows the predicted spectral response with respect to original spectral values shown by

a black curve. The entire procedure of the algorithm convergence is shown when neuron = 1

and 30. Hence, it can be said that as the number of neurons increases the algorithm converges

and reaches at it saturation point so the outcomes of the final optimized hyper-parameters

when hidden layers = 5, neurons = 50 and epoch = 5000 are shown in Figure 6.6b. To show

convergence in the predicted spectral values more clearly, the MSEs has been plotted at

different number of neurons when the epoch varies from 0 - 5000 and hidden layer = 5. As,

it has been already discussed that at the lower MSEs the prediction will be more accurate

towards the original spectral values.
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Fig. 6.9 Hidden layer = 5 and Epoch = 5000 (a) Shows the comparison of MSEs at different
neurons (b) Represents the trend of the computational cost with respect to the variations in
neurons

Figure 6.9a depicts the improvement in MSEs from neurons = 1 to 50. Where red curve

shows the highest MSEs values = 0.75 at epoch = 1 and gradually reduces till 0.1 at epoch =

5000. Hence, this means the prediction when neuron = 1 is not acceptable to make a efficient

DL neural network as seen in Figure 6.8a. Hence, to improve the performance even better

neuron = 5 has been used and the corresponding MSEs are shown by orange curve. This
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shows that MSEs values = 0.68 at epoch = 1 and sharply reduces till epoch = 1000. Finally, it

stabilised till epoch = 5000 when neuron = 10 are used, as show in Figure 6.8a. Black curve

shows the expeditious reduction in MSEs values = 0.38 at epoch = 1 and decreases till epoch

= 700 until stabilised. Pink curve shows the further decrements in MSEs values = 0.22 at

neurons = 30 and steadies after epoch = 200. The corresponding spectral response is also

shown in Figure 6.8b. Finally, neurons = 50 have been adopted to see further improvement

in the MSEs values as shown by blue curve, when the MSEs values = 0.18 at epoch = 1

and quickly equilibrated after epoch = 50. Hence, neurons = 50 was considered for further

observations as it is showing less MSEs values and converges faster. The corresponding

predicted spectral values are also shown in Figure 6.6. Figure 6.9b shows the effect of

computational cost at different neurons when hidden layer = 5 and epoch = 5000. Here, it

is clear that when number of neurons = 1 the computation cost were achieved as 50 sec;

however, it increased more and reaches up to 250 sec but the DL neural network stabilised.

This computational cost also depends on the specifications on the computing machine. In this

research, cognitive computer with 8 GB RAM, 500 GB hardrive, with the windows operating

system (version 20H2 Semi-Annual Channel) have been used but it can be said that by using

high end computers the computational time cost can be reduced even more.

6.5 Substantiation of in-house developed DL neural net-

work for concealed nanostructures

Finally, after stabilizing the developed DL neural network with the help of the all possible

hyper-parameters, we demonstrated how deep learning and dynamic challenges are inter-

connected in this paper, providing the groundwork for future research at the intersection of

problems and data science. In particular, we suggest novel topologies for DL neural network

that increase forward propagation stability. We additionally increase the well-posedness
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of the learning activity by using derivative-based regularisation. We additionally present a

multi-level technique for establishing hyper-parameters, which makes DL neural network

training easier.

 Original Spectra
 Predicted Spectra

400 500 600 700 800 900 1000

0.0

0.2

0.4

0.6

0.8

1.0

70nm

20nm

70nm

5 Hidden Layers 50 Neurons and 5000 Epoch 

Tr
an

sm
is

si
on

 S
pe

ct
ra

Wavelength (nm)

 Original Spectra
 Predicted Spectra

400 500 600 700 800 900 1000

0.0

0.2

0.4

0.6

0.8

1.0

70nm

20nm

70nm

5 Hidden Layers 50 Neurons and 5000 Epoch 

R
ef

le
ct

io
n 

Sp
ec

tr
a

Wavelength (nm)

 Original Spectra
 Predicted Spectra

400 500 600 700 800 900 1000

0.0

0.2

0.4

0.6

0.8

1.0

70nm

20nm

70nm

5 Hidden Layers 50 Neurons and 5000 Epoch 

A
bs

or
pt

io
n 

Sp
ec

tr
a

Wavelength (nm)

(a) (b) (c)

Fig. 6.10 Hidden layer = 5, Neurons = 50 and Epoch = 5000 (a) Shows the comparison
between the predicted transmission spectra with respect to the original transmission spectra
when d = 70 nm, g = 20 nm and h = 40 nm. (b) Shows the anticipated reflection spectra are
compared to the original reflection spectra d = 70 nm, g = 20 nm and h = 40 nm. (c) Shows
the predicted absorption spectra against the original absorption spectra d = 70 nm, g = 20 nm
and h = 40 nm.

We additionally present new regularisation techniques that rely on our continuous concep-

tualization of the challenge to increase generalisation accuracy, consistency, and streamline

DL neural network training. After designing a stable DL neural network, we have used this

algorithm for predicting the spectral response for the paired circular nano structure where

d = 70 nm, g = 20 nm and h = 40 nm. Figure 6.10a shows the spectral response of the

circular paired nano disk where a red curve shows the predicted spectral values and their

actual spectral values calculated by FEM are shown by a black curve. Similarly, Figure 6.10b

and c show the predicted reflection and absorption spectra (shown by red curves) and actual

reflection and absorption values are shown by in black curve.
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6.5.1 Evaluation of in-house developed DL neural network for imper-

ceptible geometric dimensions (beyond the training dataset)

In this section, we have discussed the performance of the designed DL neural network

when it predicts the spectral values outside the range of the training dataset. The geometric

parameters are selected at random from the test sets outside of the training dataset and

manually verified from the commercial software for the plasmonic nanostructures to examine

the performance optimization of the transmission and reflection values for an arbitrary

wavelength and visualize the outcomes. In this entire training, we have used the dataset of

major axis (a) from 10 nm to 130 nm with 10 nm interval.
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Fig. 6.11 Hidden layer = 5, Neurons = 50 and Epoch = 5000 (a) Shows the comparison
between the predicted transmission spectra against the original transmission spectra when a
= 155 nm, b = 55 nm, g = 35 nm and h = 40 nm. (b) Shows the anticipated reflection spectra
are compared to the original reflection spectra a = 155 nm, b = 55 nm, g = 35 nm and h = 40
nm.

Hence, in this section the spectra has been predicted when major axis (a) = 155 nm, minor

axis (b) = 35 nm and separation gap (g) = 55 nm. It is worth to note that Figure 6.11 shows

spectral response of the optimised DL neural network with prediction accuracy and reliability

more than 90% when the training data-points was approximately 50,000 to show the impact

of the test set, which was outside from the training set range. Where black curve shows the
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original spectral values computed from the Comsol Multiphysics and the red curves shows

the spectral values predicted from the in-house developed neural network.

6.5.2 Evaluation of in-house developed neural network on the experi-

mental spectra

In this section, we have tested the predicted spectra from the in-house developed neural

network on the experimental spectra. The pattern of the experimental spectra has been

adopted from the Liu et. al [20]. In this work, they have experimentally developed the gold

plasmonic nano antenna having dimensions a = 110 nm, g = 17 nm, b = 35 nm and h = 40

nm.

(a) (b)

Fig. 6.12 Hidden layer = 5, Neurons = 50 and Epoch = 5000 (a) Shows the comparison
between the predicted transmission spectra with respect to the experimental transmission
spectra when a = 110 nm, b = 35 nm, g = 17 nm and h = 40 nm. (b) Shows the anticipated
reflection spectra are compared to the experimental reflection spectra a = 110 nm, b = 35 nm,
g = 17 nm and h = 40 nm.

Figure 6.12 shown the comparison of the experimental and predicted spectra where

red curve shows the predicted spectra and black curve shows the experimental spectra.

In can be seen in these curves that the peak and dip of the predicted spectra is perfectly
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matching with the experimental spectra. Hence, from the developed algorithm the resonating

wavelength and the spectral information can be predicted. Hence, this work can be significant

facilitator of cutting-edge nanotechnology research is the capacity to swiftly extract the

desired optical response from an artificial neural network from the geometrical parameters

of a plasmonic nanostructures. One can envision a variety of scenarios in which such data

is essential to the design of investigations. The highlights this DL neural network is that it

has a capacity to address multiple targeted resonance spectra for various paired geometrical

dimensions, and it emphasises that this technique may be applied to other molecules for

sensing in biology, chemistry, and material science. Hence, it can be said that the spectrum

prediction from the nanostrutures have a high degree of employability, indicating that this

techniques might indeed be useful in wide range of spectral and non-spectral aspects. This

deep learning protocol has the potential to revolutionize real-time field applications in a

variety of spectroscopic disciplines.

6.6 Summary

In summary, this work demonstrates the use deep learning to correlate spectroscopic knowl-

edge of a paired nanostructure and in local environments. The presented DL neural network

algorithms can estimate spectral values of designed paired nano structures at a three-order

of-magnitude lower computing cost than the traditional FEM solver while sustaining the

same degree of precision. This study illustrates DL neural network has been tested rigorously

and shown its excellent predictions using one time trained process. Hidden layers = 5,

neurons = 50 and epoch = 5000 were employed all across the neural network to provide

swift convergence and good precision in estimating spectral values for randomized input

geometrical dimensions of the paired nanostructures. In this work, we have also shown the

performance of the associated hyper-parameters of the designed DL neural network and

explained in terms of MSEs which is plotted with respect to hidden layers, epoch and neurons.

125



Deep learning for spectral prediction and prospective validation of nanostructured
dimers

This research also offers a contrast between traditional FEM solver and in-house developed

DL neural networks in terms of computing time, which is nearly 40 times faster than direct

FEM simulations (when normal mesh size is used). Finally, the performance of the proposed

DL neural network model was proven for the random input parameter for inside and outside

the training dataset such as paired circular when d = 70 nm and g = 20 nm and paired

elliptical dimers when a = 155 nm, b = 55 nm and g = 35 nm respectively, and corresponding

spectral values were predicted. The detection of structural variations/fluctuations in chem-

ical reactions, automatic identification of interstellar molecules, and real-time recognition

of particles in biomedical diagnosis are just a few of the significant functions of precise

spectrum prognostication and insightful framework recognition. As a result, we conclude

the consolidation of nanotechnology and artificial intelligence will open the direction for

several other new technological advancements in the profession of comprehension scientific

disciplines.
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Chapter 7

Advanced refractive index sensor using

3-dimensional metamaterial based

nanoantenna array

7.1 Introduction

Researchers have become more interested in surface plasmon polaritons (SPPs), since they

provided a fresh, remarkable opportunities for the future era of nanotechnologies. The

progress of optics includes the integration and miniaturization of optoelectronic circuitry and

subsystems. To construct effective nano photonic devices [164] with ultra-fast operational

speed and the capability to concentrate the electromagnetic field into a region significantly

narrower than the operating wavelength [165], using SPPs ensures that the objectives of

the nanophotonic branch [166] are addressed. SPPs have extensively been used in several

technologies, including waveguides [167], modulators [168], nano-lasers [169], and nano-

antennas [170]. Initial studies with nanosized antenna focused primarily on controlling the

localized incident electromagnetic pattern while responding with an incident electromagnetic

radiation from the free space. A wide range of devices are needed in systems involving
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detectors and spectroscopy instruments. However, when equipment is being developed for

optics, the antenna would need to transmit electromagnetic signal in-plane, broadcast it

to space, and, via reciprocity, would need to be able to receive the data from space and

guide it in-plane. Due to advancement of semiconductor fabrication techniques and electron

beam lithography, researchers have lately delved into the manufacture of nano-antenna

[170], which range in size from a few hundreds of nanometers to over several microns.

These may be advantageous because of their rapid transient response, compactness, and

efficiency parameters adjustability. However, since metals become dispersive in the visible

spectrum, so it must be simulated with accurate dielectric permittivity function. While the

dielectric resonator was used to create the antenna described in [171], most nanoantenna

working in the optical regime rely on the plasmonic resonance principle [172, 173], and [174].

In addition to these methods, hybrid plasmonic structures have been used to build nano-

antennas [175, 176]. Yousafi et al. [175] have suggested a rectangular patch nanostructure

to radiate the localized electromagnetic wave power of a hybrid plasmonic waveguide [177–

179] in which the electromagnetic waves were contained in thin material having very low

refractive index in between plasmonic metallic layers. Unfortunately, the applicability

of surface plasmons polaritons (SPPs) for many real-world applications is considerably

restricted by their substantial signal attenuation. To attain long propagation length by

fusing the dielectric and plasmonic antenna, the hybrid plasmonic mechanism has been

employed for nano-antenna design. Due to significant ohmic losses, earlier nano-antenna

performances have mostly been plasmonic in nature, which have a very low efficiency

[180–182]. Their performance can be increased by reducing losses by exploiting Hybrid

Plasmonic Waveguide (HPW) nano structures and thus for proposed antenna, performance

of earlier reported HPW microstructures can be further enhanced [175, 183–185]. To

increase the localized electric field of plasmonic nanostructures, several attempts have

been considered. Adjusting an antenna’s structures, particularly its separation distance

128



7.1 Introduction

[186, 80, 187], is an effective technique to increase its applied electric field enhancement

for plasmonic nanostructures [188, 189]. However, as the separation distance enters the

subnanometer zone, quantum interactions become apparent and prevent additional field

augmentation [190–194]. Additionally, certain separation distances and widths for the

antennas are needed for various metal or dielectric photonic nanostructures, to greatly

enhance the localized field of the nano structures [195–198]. The conventional approach in

these connected systems is to augment the effective electromagnetic field excitation by the

nanostructures. The linked structure is significantly bigger than the operating wavelength and

is often achieved by utilizing a periodic pattern (photonic crystal) or film. Due to extremely

confined electric and magnetic resonance responses and minimal material losses, dielectric

nanostructure with large refractive index have presently received a significant attention among

the researchers [199–202]. Many nanoscale applications, including meta-surfaces [202, 203],

meta-materials [204], architectural colour combinations [205], and optical nano antenna [206–

209], have been reported due to their excellent properties. It should be noted that these low-

order electromagnetic resonance dielectric structures [199–201] have substantially smaller

diameters than the previously reported series of dielectric structure [197, 198]. Dielectric and

plasmonic nanostructure combinations have been demonstrated to be able to alter the linear

and non-linear far field behaviours of paired structures [210–215] as well as they emit radio

frequencies to work as antenna [215, 216]. Robust electromagnetic near field enhancements

and large far field scatterings are frequently present in conjunction with the significant optical

response of dielectric nanostructures. The magnetic and electric near fields are commonly

dispersed across the volume of conventional dielectric nanostructures. For instance, the

electric field around a magnetic dipole mode typically rotates [201]. Contrary to its plasmonic

equivalents, dielectric nanostructures’ spatially large dispersion of the electromagnetic field

makes it difficult to achieve reasonably robust field enhancement. On the other hand, such a

distribution suggests that if I place the antenna near the dielectric structure’s electric field, the
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electromagnetic field intensity of a tiny plasmonic nano structures can be increased. Despite

a few earlier examples, this form of combination has not received significant consideration

[217]. In this chapter, I have proposed a novel hybrid with Lithium Tantalate (LiTaO3) or

Aluminium Oxide (Al2O3) multilayer stacked elliptical shape paired nanoantenna as they

can strongly confine and maintain surface plasmon polaritons (SPPs) operating at spectrum

ranging from 400 nm–2000 nm. Recently published multilayered hybrid plasmonic antenna,

which surpasses prior plasmonic waveguides in terms of confinement and propagation

losses [183, 184], served as the inspiration for the proposed hybrid nanostructures. Unlike

the usually presented local field antenna, our proposed nano structure enables an efficient

performance even while retaining a very high intensity in the local field. This chapter

is divided into four sections where Section 7.1.1 describes the computational design and

optimization methods. Section 7.2.1 evaluates the parametric studies of the multi-layer

structure. Finally, in Section IV a conclusion and future possibilities are drawn.

7.1.1 Approaches for computational design and optimization

In this chapter, the Comsol Multiphysics software enabled with Finite Element Method (FEM)

has been used to calculate the plasmonic response and to design the coupled hybrid nano

structured antenna as shown in Figure 7.1. Figure 7.1a shows a 3D view of the schematic of

designed computational domain of hybrid nanostructured antenna. The dielectric properties

of gold have been calculated using the Drude-Lorentz model as it is based on the movement

of the unbounded electrons in the metal that causes the surface plasmon resonance. The

material properties of LiTaO3and Al2O3 have been taken from the Moutzouris et al. [218]

and Boidin et al. [218], respectively. To reduce the computational time, I have designed the

unit cell enforcing the periodicity in the x and y directions. In the computational domain

the Perfect Magnetic Conductor (PMC) has been used along the x-axis and Prefect Electric

Conductor (PEC) has been employed along the y-axis. To reduce the back reflection, the
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Perfect Matched Layer (PML) has been used along the z-direction. The quartz substrate

has been optimized [122] at 400x200 nm2 length and width, respectively. A hybrid nano

antenna has been excited by x-polarized light in the z-direction from the top of the antenna as

shown in Figure 7.1a. The final design of the 10 layered hybrid sensor system placed on the

400x200 nm2 quartz is shown in Figure 7.1b. In this section I have calculated the sensitivity

of the paired hybrid nanoantenna and compared them with a single metallic nano antenna.

Next, I explore the sensitivity performance of the 10 total layered, with 5 layers of

LiTaO3 (or Al2O3) and gold each, stacked elliptical-shaped paired nano structure, with its

minor axis, b = 10 nm and major axis, a = 100 nm. Linearly x-polarized electromagnetic

waves propagating in the z-direction were used to illuminate these paired nano structures.

Through analysis of transmittance at various refractive index levels, its sensitivity has been

optimized. Figure 7.1c displays the transmission spectra for a design specification using

various surrounding medium (n). Here, the major axis a = 100 nm, minor axis, b =10 nm,

separation distance, g = 10 nm and h1= 10 nm and h2= 10 nm are selected, as the LiTaO3

(or Al2O3) and gold (Au) thickness, respectively of the stacked nano structure. Since Figure

7.1c demonstrates a more effective change in resonating wavelength, it can be employed as

a refractive index sensor and is a good contender for biosensing applications. The spectral

absorption of the narrow band paired structures can also be modified to match the distinctive

absorption spectra of a certain targeted RI in order to identify targeted medium inside the

infrared range.
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(a) (b)

(c)

Fig. 7.1 (a) Schematic of the computational domain designed on the FEM method enabled
commercial software (b) Graphical representation of the designed hybrid refractive index
sensor (c) Transmission spectra of the optimized paired elliptical nano structure with major
axis, a = 100 nm and minor axis, b = 10 nm.

To calculate the sensitivity, the following equation has been used.
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S =
−δλresnm
δλnsRIU

(7.1)

Where, λres is the shift in the plasmonic wavelength and ns is the surrounding refractive

index.

7.2 The parameterized investigation of the multi layered

structure

In this section, I have analysed the performance of a hybrid nano structure and compared with

a single metal nano structure. Figure 7.2a shows the comparative analysis of sensitivity of the

single, paired circular and paired elliptical metallic nano structures. Here, black curve shows

when h = 100 nm the sensitivity value was nearly 5 nm/RIU and increases as h is reduced

and reaches nearly 200 nm/RIU when h = 10 nm for a single nano disk. The response of the

paired circular nano antenna when a = b = 100 nm and g = 10 nm is shown by a red curve

and the highest sensitivity of 250 nm/RIU was achieved when h = 10 nm, which sharply

increases for lower h values. The sensitivity response of the paired elliptical shaped antenna

is shown by a blue curve when a = 100 nm, b = 10 nm, and g = 10 nm. The blue curve shows

the highest sensitivity value of nearly 525 nm/RIU at h = 10 nm and gradually decreases for

higher h values. In all cases, it can be observed that the highest sensitivity of single metal

dimer can be achieved nearly 525 nm/RIU when its height is reduced to 10 nm. Verma et

al. [122] and results presented in Chapter 4 show that the separation distance, g decreases,

the value of the sensitivity increase and at the g = 10 nm, the highest sensitivity values has

been achieved. Additionally, the performance of the symmetry has also been discussed with

respect of the separation distance, g. In this work I will show that the performance can be
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further improved by placing layer of LiTaO3 or Al2O3 on top of the metallic paired nano

antenna.

(a) (b)

Fig. 7.2 (a) Shows the performance of the single, coupled circular and coupled elliptical
shaped gold nano an-tenna (b) Shows the sensitivity performance of the two-layer hybrid
nanoantenna.

Figure 7.2b shows the sensitivity comparison of the paired gold elliptical shaped antenna

where the LiTaO3 or Al2O3 has been stacked on earlier optimized [122] elliptical dimer with

a = 100 nm, b = 10 nm, g = 10 nm, and metal thickness h1 = 10 nm. Black dashed curve

shows nearly 525 nm/RIU sensitivity of single layer gold elliptical dimer antenna when h

was kept constant at 20 nm. On the other hand, when Al2O3 was placed on the top of paired

elliptical shaped antenna the sensitivity increases and reaches up to 532 nm/RIU (shown by

the black curve). The values increase even more and reaches up to 543 nm/ RIU (shown by a

red curve) for LiTaO3, for h2 = 10 nm. From this it can also be stated that as the height h2,

of the LiTaO3 and Al2O3layer decreases the sensitivity is increasing. Although, it is true that

sensitivity increases as metal or dielectric layer thickness is reduced, but getting very thin

layer may bring fabrication uncertainty and for a fair comparison, the minimum height, h2 of

the LiTaO3 and Al2O3 layer is fixed at 10 nm for further observations.
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7.2.1 Performance of multi-layered elliptical shaped antenna stacked

with Al2O3 and LiTaO3

Sensitivity of the stacked antenna is next evaluated in this section, where I have shown the

sensitivity performance of multiple layered paired elliptical shaped antennae designed when

a = 100 nm, b = 10 nm, g = 10 nm, and h = 100 nm. Red curve in Figure 7.3a shows the

sensitivity values when height, h varied from 10 nm to 100 nm for single metal elliptical

dimer. From this figure it can be observed that at a large value of height, h = 100 nm the

sensitivity of the single metal antenna its lowest with a value of nearly 360 nm/RIU was

achieved. However, as the height, h is reducing to 10 nm, the sensitivity increases and reaches

its highest values nearly 525 nm/RIU. On the other hand, the blue curve shows that as number

of the layers in the stacked antenna (with Al2O3) with a = 100 nm, b = 10 nm, g = 10 nm,

h1 = 10 nm, and h2 = 10 nm is increasing the sensitivity rather increases when the height of

stacked layer is increasing and reaches up to its saturation point of nearly 660 nm/RIU. In

other words, it can be concluded that by using Al2O3 stacked antenna the sensitivity can be

enhanced by 1.5 times as compared to a single metallic antenna keeping h1 fixed at 10 nm.
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(a) (b)

Fig. 7.3 (a) Shows the sensitivity performance single metallic (Au) and Al2O3 stacked antenna
when total height, h = 100 nm with or without stacked (b) Shows the sensitivity performance
single metallic (Au) and LiTaO3 stacked antenna when total height, h = 100 nm with or
without stacked.

Similarly, Figure 7.3b demonstrates that by using 10 layered LiTaO3stacked antenna

with a = 100 nm, b = 10 nm, g = 10 nm, h1 = 10 nm, and h2 = 10, sensitivity can be further

enhanced by more than two folds (nearly 730 nm/RIU) as compared to the single gold

elliptical paired antenna. It is worth noting a remarkable more than two-fold increase of the

sensitivity and the highest electromagnetic field confinement that has been observed by using

the stacked antenna approach. Hence, such LiTaO3 and Al2O3 stacked plasmonic sensor can

detect the small change in the surrounding medium with a sensitivity of about 730 nm/RIU

and 660 nm/RIU, respectively and its sensitivity is expected to increase further by decreasing

the height of the individual layers and also corresponding separation distance.

7.2.2 Study of field distribution around the single metal and ten layered

(5 Pairs of gold and LiTaO3 stacked elliptical shaped antenna

In this section, the performance of electric field distribution along the single metal and stacked

antenna is discussed. The normalized electric field intensity of the single gold circular and
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elliptical pair was calculated (from COMSOL Multiphysics) nearly 8.6 × 102 V/m and 2.9

× 104 V/m reached at the inner edge as shown in Figure 7.4a (i) and (ii). Variation of the

electric field, Ex along the x direction through the centre of the single metallic (gold) elliptical

nano structure is shown in Figure 4b by a red curve which is compared with the Al2O3

and LiTaO3 stacked nanostructured field distribution shown by the black curve (shown in

Figure 7.4b(i) and 7.4b.(ii)). In the case of the Al2O3 stacked nano structure the electric field

intensity was calculated nearly 5.4 × 104 V/m which is nearly 9 times higher (shown by a

black curve in Figure Figure 7.4b(i)) than that of the single metallic elliptical shaped nano

structure shown by a black curve. How-ever, the electric field intensity even increases further

up to 6.5 × 104 V/m at the inner edges of the LiTaO3 stacked elliptical nano structure with a

= 100 nm, b = 10 nm, and h = 100 nm shown by a black curve in Figure 7.4b(ii). This value

is nearly 10.5 times of a single gold elliptical nano structure, with a = 100 nm, b = 10 nm,

and h = 100 nm. The higher sensitivity shown in Figure 7.3 was due to its strong electric

field confinement and thus, a LiTaO3 stacked elliptical nano structure can be considered as

a very promising choice for many bio sensing applications as compared to the Al2O3 and

single metallic nano structure. For single elliptical dimer but height, h = 100 nm, Figure 7.4c

shows mode profile along the centre of the x− z plane and demonstrating that where most of

the electric field confinement occurs at the sharp corners and in the separation gap between

the two elliptical nano structure. As I have considered elliptical dimer, higher electric field

exists close to narrower corners and variation of Ey along the x− z plane for a single elliptical

dimer with h = 100 nm is shown in Figure 7.4c.

137



Advanced refractive index sensor using 3-dimensional metamaterial based
nanoantenna array

(a) (b)

(c) (d)

Fig. 7.4 (a) Electric field distribution along thex plane in the gold elliptical and circular paired
structure when a = 100 nm, b = 10, g = 10 nm and h = 10 (b) Electric field distribution along
the x plane in the single gold and stacked 10 layers (with LiTaO3 or Al2O3) elliptical paired
structure when a = 100 nm, b = 10, g = 10 nm and h1 = h2 = 10 nm. (c) Ey, mode field profile
of a single metallic elliptical nano structure when a = 100 nm, b = 10 nm, and h = 100 nm
along the x− z plane (d) Electric field variation along the x− z plane for a 10 layered LiTaO3
stacked nano structure when a = 100 nm, b = 10 nm, and h1 = h2 = 10 nm.

This demonstrates that, due to the absence of a circular symmetry, the electric field

intensity was more localized near to sharper corners and at 4 single metal/ dielectric interfaces,

at the upper, lower and two sides. The electric field distribution along the centre of the x− y

plane of stacked nanostructure is also shown in the Figure 7.4d where most of the electric

field occurs. From there it can be clearly observed that the electric field intensity is higher

and localized at all metal/dielectric interfaces including the 8 inner metal/dielectric interfaces

in the stacked nano structure as compared to the single metallic nano structure.
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(a) (b)

Fig. 7.5 (a) Ex, mode field profile in the x− y plane of a single metallic elliptical nano
structure when a = 100 nm, b = 10 nm, and h = 100 nm (d) Electric field profile in the x− y
plane for a 10 layered LiTaO3 stacked nano structure when a = 100 nm, b = 10 nm, and h1 =
h2 = 10 nm.

Figure 7.5a displays the Ex, mode field pattern along the x− y plane for an elliptical

dimer with height, h = 100 nm. It can be observed that the sharp corners and separation gap

of the elliptical nanostructure are where most of the electric field confinement occurs. The Ex

field profile has been shown along the x−y plane when z = 0 for the LiTaO3 stacked antenna

as shown in Figure 7.5b. This indicates that the field was more concentrated at corners and at

four single metal/dielectric contacts, because of the absence of circular symmetry as shown

in Figure 7.5b. Hence, from here it can be stated that the stacked antenna is more efficient

candidate for the sensing application compared to single metal antenna even with the same

other structural dimensions.

7.3 Effect of the separation distance on the LiTaO3 and

Al2O3 stacked nano structure.

It is well known that the structural dimensions of the nano structures can enhance the field

intensity in the separation gaps and due to this field enhancement the sensitivity can be

affected, so next the performance of the 10 layered LaTiO3 and Al2O3 stacked nano structure

is studied. Hence, a 10 layers paired elliptical dimers on the quartz crystal is studied and
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calculated the sensitivity when the surrounded medium was covered by the different refractive

indices from 1.0 to 1.5. Here, it can be noted that as shown in earlier Figure 7.1c for a single

case, as the refractive index was increasing, the resonating wavelength was shifting towards

the higher range.

Fig. 7.6 Sensitivity comparison of 10 layered stacked antenna (5 gold layers with h1 = 10 nm
gold and 5 LiTaO3/Al2O3 layers with h2 = 10 nm) with respect to separation distance.

Figure 7.6 shows the sensitivity of the LiTaO3 and Al2O3 stacked nano structure when the

separation distance, g varying from 10 nm to 100 nm. The sensitivity of the 10 layered LiTaO3

stacked paired nanostructure is calculated from the slopes of the shift in the transmission

spectra from where I observed the linear relationship between the RI values and the plasmonic

wavelengths. The R-square error value was calculated as 0.9991 and 0.9817 for 10 layered

LiTaO3 and Al2O3 stacked paired nanostructure, respectively suggesting al-most linear

response. Figure 7.6 clearly shows that as the separation distance, g = 100 nm the sensitivity
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reaches 545 nm/RIU, which is effectively the sensitivity of single isolated layered elliptical

dimer. But when the separation distance, g reduced further and reaches up to 60 nm the

sensitivity remained nearly constant at 550 nm/RIU. Finally, at the separation distance, g

= 10 nm the sensitivity increases rapidly and reaches up to 660 nm/RIU as shown by the

red curve. Similarly, the sensitivity dependence of the LiTaO3 stacked antenna with the

separation distance shown by the black curve. The highest sensitivity of the LiTaO3 stacked

antenna was achieved nearly 770 nm/RIU when g = 10 nm and reduces gradually with the

increase in the separation distance. Finally, after g = 60 nm remained nearly constant as

shown by the black curve, and at g = 100 nm the sensitivity was obtained up to 555 nm/RIU.

When the separation distance, g is higher, effectively these metallic antennas are uncoupled

and achieved 555 nm/RIU and 545 nm/RIU sensitivity when they can be considered as

isolated. However, as the separation distance, g is reduced these two isolated antennas are

now coupled and formed an effective dimer and their sensitivity reached up to 660 nm/RIU

and 770 nm/RIU for hybrid Al2O3 and LiTaO3 structure, respectively. So, it is demonstrated

here that, sensitivity of the hybrid LiTaO3 and Al2O3 paired nano structure is always higher

than that of single metallic nano structure. Tsai et al. also [97] reported that by using a

coupled nano ring, sensitivity can be enhanced up to 50 % but our work shows that for

elliptical nano structure the sensitivity values can be further in-creased by more than 150

% while using a much smaller overall size of the antenna compared to [122] and a further

sensitivity enhancement is shown in this work by using the stacked antenna nanostructure.

Hence, this can be an attractive method for detecting the heavy metals, biochemicals, air

quality, and water purity, this is more efficient and cost-effective (it they are fabricated in

bulk), as well as opening up new ways for both healthcare and environmental monitoring

applications.
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7.4 Summary

In Conclusion, I have reported a study of a hybrid (LiTaO3 and Al2O3) stacked metallic nano

plasmonic sensor. The designed and optimized sensor with a = 100 nm, b = 10 nm, g = 10 nm,

h1= 10 nm, and h2 = 10 nm has been evaluated in various surrounding refractive indices from

1.0 to 1.5 to calculate their corresponding sensitivity. The transmission, absorption, reflection

spectra and modal field profiles have also been calculated to observe the sensor performance.

The designed hybrid sensor has been compared with single metallic nanoantenna when a

= 100 nm, b = 10 nm, g = 10 nm, and h = 100 nm to observe the sensitivity enhancement.

From the above shown results, it can be stated that the sensitivity can be enhanced by nearly

1.5 times by using Al2O3 stacked antenna and more than 2 times by using LiTaO3. It is also

shown that sensitivity can be further increased by reducing metal height, h1 and dielectric

height, h2 or separation distance, g. But for the fair comparison the values of these are taken

as 10 nm. The normalized electric field intensity of the LiTaO3 and Al2O3 stacked antennas

were stronger, nearly 6.5 × 104V/m and 5.4 × 104V/m respectively, which was approximately

more than 10.5 times of the single metallic nanostructure for LiTaO3 and 9 times for Al2O3

stacked antenna. The proposed nano-enhanced antenna’s sensitivity is proven by using of a

full-wave electromagnetic simulation. Our suggested nano-antenna may be used for different

nano inter- and intra-chip photonic sensor systems to develop cutting-edge detecting devices

for measuring the quality of water, air, and soils. Furthermore, due of its wide frequency

coverage, this suggested antenna may be employed for biosensing, optical energy harvesting

(also known as nano-rectenna or Nantenna) and optical sensing applications.
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Chapter 8

Conclusion and Future Work

In this dissertation, consideration has been given to modelling, optimisation, and plasmonic

effects by using metallic nano antenna. In Chapter 1 I have mentioned the objectives and

motivations behind this work. The benefits associated to work with nano structures. I have

presented the difference between traditional and recent nano structures, and the effect of

geometrical variations discussed so far. Finally, Chapter 1 ends with the history related

development of nano antenna and the application and procedures which are involved in Nano

antenna optimization/fabrications. I have also discussed the various application of this which

are subsequently mentioned in the earlier chapters. Outlies of the work are briefly described

according to the Chapter 1. Chapter 2 discusses the physics behind these nano antenna

and I have discussed the techniques which dominantly considered metallic nano structures

simulations. Henceforth, I have started from the basic of the EM waves such as Maxwell’s

Equations in both the forms and later on discussed about the Surface Plasmon Resonance and

its characteristics which is induced when EM waves interacts with any metallic structures.

Additionally, I have discussed the Drude-Lorentz model for accurate optimization of free

electrons present in the metallic nano antennas. I have carried out all the simulation using

FEM method with the help of COMSOL multiphysics. The main objectives was to develop a

Finite Element Method (FEM) to clearly visualize the effect of nano antenna arrays in terms
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of domain and geometrical variations with less compution time. The advantage of using

this finite element method with other numerical methods is briefly discussed in Chapter 2.

This chapter also shows some benchmarking outcomes, as I have carried out these in order

to build confidence as I embarked on new designs. I have compared the published results

with our results which are generated from the in-house developed model. Computation

domain is terminated by PML boundary to reduce the reflections from the outer boundaries

in simulations. Several benchmarking results have been shown in Chapter 2 which shows the

validity of in-house FEM model designed in COMSOL multiphysics to reduce the simulation

times. Free space propagation of the electromagnetic wave has also been shown and the

speed obtained with the in-house model is compared with the normalised value. Furthermore,

I have use different meshes to optimise the results and checked the response of plasmonic

peak. Regular and irregular mesh arrangements were considered and compared in terms of

accuracy and convergency of the results. Irregular meshes can use dense mesh inside the core,

while coarse mesh can be used outside the core to further reduce the computational times in

comparison to when using a regular mesh arrangement. Chapter 3 discusses the modelling

approaches used to evaluate the optical behaviour of the array surface are described in depth

in this chapter. The nano particle and the substrate interaction has been discussed. This

chapter also delves over the sensing mechanism with finite element method (FEM) modelling

and the evolution of the computational model employed in the study. Chapter 4 presented the

combination of paired gold nano structures developed based on its property of LSPRs and

calculated the highest sensitivity as nearly 526-530 nm/RIU, around 110 nm FWHM and 8.1

Q-Factor achieved which can be used for the dedicated sensing applications. In this chapter,

I have also shown the effect of the structure orientation on the sensitivity which is important

aspect to overcome the fabrication imperfections of nano structures. FEM simulation results

were perceived to give an optimum explanation of the presented designs, and this also

showed the most substantial coupling effect in optimized design and the lesser effect of
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the performance of further designs for plasmonic structures. The strongest transmission

dip and reflection peak achieved at nearly 850 nm for optimized design while plasmonic

loss shifted towards higher wavelength. Chapter 5 discussed a novel way to design and

optimise electromagnetic plasmonic nanoparticles relying on an ANN based computationally

inexpensive technique. The nano particles in this work were designed through using the Finite

Element Method (FEM), and afterwards Artificial Intelligence (AI) has been used to predict

associated sensitivity (S), Full Width Half Maximum (FWHM), Figure of Merit (FOM),

and Surface plasmon resonance wavelength (SPRW) for various paired nanostructures. At

commencement, a computational model is created by preparing the dataset using a Finite

Element Method (FEM). To create the dataset, the input variables were the Major axis, a,

the Minor axis, b, and the separation gap, g, were considered to determine the associated

sensitivity (nm/RIU), FWHM (nm), FOM, and plasmonic wavelength (nm). Second, the

neural network was created in such a way that the number of hidden layers and neurons were

improved as part of a complete evaluation to increase the ML model’s performance. This

method was used to produce predictions for certain inputs and their related outcomes after

successfully optimising the computational model. This chapter also examined the difference

in inaccuracy between anticipated and simulated results. For estimating outputs for multiple

input device settings, this methodology outperforms conventional computational. Chapter 6

presented a DL framework for transmission, reflection, and absorption spectra predictions

by grasping the hidden correlation between the independent nanostructure properties and

their corresponding optical responses. The proposed DL framework is shown to require

a sufficient amount of training data to achieve an accurate approximation of the optical

performance derived from computational models. A fully trained framework can outperform

a traditional EM solution based on the COMSOL Multiphysics approach by three orders

of magnitude. Furthermore, employing deep learning methodologies, the proposed DL

framework makes an effort to optimise design elements that influence the geometrical
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dimensions of the nanostructure, offering insight into the universal transmission, reflection,

and absorption spectrum predictions at the nanoscale. This paradigm improves the viability

of complicated nanostructure design and analysis, and it has a lot of potential applications

involving exotic light-matter interactions between nanostructures and electromagnetic fields.

In terms of computational times, the designed algorithm is around 40 times faster as compare

to conventional FEM method. Hence, this approach paves the way for fast yet universal

methods for the characterization and analysis of the optical response of nanophotonic systems.

Chapter 7 shows the study of a hybrid (LiTaO3 and Al2O3) stacked metallic nano plasmonic

sensor. The designed and optimized sensor with a = 100 nm, b = 10 nm, g = 10 nm, h1= 10

nm, and h2 = 10 nm has been evaluated in various surrounding refractive indices to calculate

their corresponding sensitivity. The transmission, absorption, reflection spectra and modal

field profiles have also been calculated to observe the sensor performance. The designed

hybrid sensor has been compared with single metallic nanoantenna when a = 100 nm, b

= 10 nm, g = 10 nm, and h = 100 nm to observe the sensitivity enhancement. From the

results shown, it can be stated that the sensitivity can be enhanced by nearly 1.5 times by

using Al2O3 stacked antenna and more than 2 times by using LiTaO3. It is also shown that

sensitivity can be further increased by reducing metal height, h1 and dielectric height, h2

or separation distance, g. But for the fair comparison the values of these are taken as 10

nm. The normalized electric field intensity of the LiTaO3 and Al2O3 stacked antennas were

stronger, nearly 6.5 × 104V/m and 5.4 × 104V/m respectively, which was approximately

more than 10.5 times of the single metallic nanostructure for LiTaO3 and 9 times for Al2O3

stacked antenna. The proposed nano-enhanced antenna’s sensitivity is proven by using of a

full-wave electromagnetic simulation. Our suggested nano-antenna may be used for different

nano inter- and intra-chip photonic sensor systems to develop cutting-edge detecting devices

for measuring the quality of water, air, and soils. Furthermore, due of its wide frequency
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coverage, this suggested antenna may be employed for biosensing, optical energy harvesting

(also known as nano-rectenna or Nantenna) and optical sensing applications.

8.1 Future Scope

While above shown results obtained during this research are promising, but further work

is required to improve the sensing mechanisms and evaluate the model. The required

investigations, referring to both the innovative LSPR based biosensor and involvement of

artificial intelligence, are described below.

8.1.1 Future possibilities in the LSPR based sensors

As I have to demonstrate the proposed nanoantenna and develop the innovative applications

and designed geometries can enhance the performance in number of applications to help

researchers to make the more efficient and compact devices. These days no one want to carry

big and sophisticated devices and tools so this can be a great potential. Only a single unit cell

device can detect the number of deceases in term of sensing application. I can also use this

method to enhance the performance of nano solar cells implementation. Some researchers

uses it in optical switching, and further work can be extended based on the plasmonic heat

than I can kill the targeted molecules which are dangerous to humans or it would be a great

candidate for targeting and treating a particular molecule which is very highly efficient

application in medical field. The performance of this nano structures would be more than 100

times has been achieved compare to the ordinary device. Finally, this exciting and cutting

edge research work are expected to create interest in exploiting these designs. Some issues

as high computation cost are still untouched in this work, and I tried to improve this with the

help of the artificial intelligence so it could show much more robustness in near future.
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8.1.2 Future possibilities in the Artificial intelligence based optical prop-

erties predictions

The fascinating strength of AI is its capacity to solve a wide range of electromagnetic-based

issues that are intractable by other known methodologies utilising a number of frameworks.

It can thus yield not just new or improved solution and forecasts, but also additional physical

knowledge into the system at present. Many of the world’s top nano photonics research

organisations already are researching into AI applications and building photonic AI imple-

mentations. Engineering of artificial electromagnetic materials is one of the major difficulties

being tackled (optimization of metamaterial and other nanostructural geometries to achieve

specific, targeted optical properties). Nano photonic technique, platform, and system ar-

chitecture optimization (e.g. adaptively reconfigurable waveguide structures for arbitrary

input/output operations). Photonic materials discovery, optimization, synthesis, and pro-

cessing (identification of materials providing selected desirable properties for photonic

applications). Sources of complicated electromagnetic fields, such as phase singularities,

super-oscillatory foci, and so on, are being developed (design of field structures themselves

and evolution of strategies for generating, characterising and utilising such fields). Photonic

reservoirs, neuromorphic optical computing, photonic deep neural networks, all optical

photonic cognitive networks, and optical oracles are all being developed. As a result, I can

develop computationally cost-effective micro photonic structures, which are in high demand

these days, utilising novel AI-based methods. I have also demonstrated the AI algorithm’s

potential to produce considerable outcomes. As a result, it can be concluded that the future

of AI using plasmonics has a lot of potential in terms of avoiding excessive computing costs.

In near future this AI algorithm can be used for the reverse analysis as they greatly needed

nanophotonic devices and brought optimized performance. However, the use of inverse

design for plasmonic structures has been challenging due to local field concentrations that

148



8.1 Future Scope

can lead to errors in gradient calculation when the continuum adjoint method is used. On the

other hand, with the discrete adjoint method one can achieve the exact gradient. Historically

the discrete version is exclusively used with a Finite Element model, and applying the Finite

Difference Time-Domain (FDT D) method in inverse design of plasmonic structures is rarely

attempted. Due to the popularity of using FEM in simulating plasmonic structures, I can

integrate the discrete adjoint method with Comsol and can present a framework to carry out

inverse design of plasmonic structures using density-based topology optimization. In this way,

I can demonstrate the exactness of the gradient calculation for a plasmonic block structure

with varying permittivity. Another challenge that is unique with plasmonic structures is

that non-physical amplification caused by poorly chosen material interpolation can destroy

a stable convergence of the optimization. To avoid this, I can adopt a non-linear material

interpolation scheme in the FEM solver. In addition, filtering-and-projection regularization

is incorporated to ensure manufacturability of the designed structures. As an example of this

framework, successful reconstruction of electric fields of different plasmonic apertures.
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