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1 Introduction

The seminal work of A.B. Zamoldochikov [1] proposed a viewpoint of integrable quantum
field theories (IQFTs) as massive perturbations of critical points, described by conformal
field theory (CFT). These perturbations are relevant and associated with specific fields
of the underlying CFT having conformal dimension ∆ < 1. However, it is also possible
to consider irrelevant deformations – of both conformal and gapped quantum field theo-
ries. Recently, a particular class of such perturbations has attracted considerable interest:
those generated by the field TT, where T and T̄ are the holomorphic and antiholomorphic
components of the stress energy tensor. The earliest study of this field’s properties, par-
ticularly its vacuum expectation value, was carried out in [2] for generic 2D quantum field
theory and quickly followed by a systematic study of the form factors of the TT operator
itself [3, 4] in massive IQFTs.

The works [5, 6] showed that the properties of a 2D Quantum Field Theory perturbed
by the irrelevant composite field TT, which has left and right conformal dimension 2,
are under exceptionally good control, even deep in the UV. In particular, one can regard
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the TT deformation as being solvable, in the sense that physical observables of interest,
such as the finite-volume spectrum, the S-matrix [5–7] and the partition functions [8–10],
can all be determined exactly in terms of the corresponding undeformed quantities. The
property of being solvable is also present in the generalised TT deformations, obtained
by perturbing an IQFT by composite operators constructed from higher-spin conserved
currents [11, 12]. Performing a (generalised) TT-deformation in an IQFT is equivalent to
modifying the two-body scattering matrix by a particular type of CDD factor [5, 6, 13, 14].
Recall that in an IQFT the two-body scattering matrix fully characterises all scattering
processes of the theory and can be almost entirely determined by a consistency procedure
known as bootstrap [1, 15]. The “almost” here refers to the so-called CDD ambiguity [15]:
the boostrap equations admit a “minimal solution” (i.e., a solution having the minimal set
of singularities) which can then be dressed by an arbitrary number of CDD factors [16].
These are trivial solutions of the S-matrix bootstrap equations, meaning that although they
can modify the S-matrix in non-trivial ways, they do not include poles in the physical strip,
thus leaving the spectrum of the theory intact. Let us now make all these ideas more precise.

For simplicity, we are going to focus IQFTs with single particle spectrum. After a TT
perturbation the scattering matrix S0(θ), where θ is the rapidity variable, is modified to

Sα(θ) := S0(θ)e−iαm2 sinh θ . (1.1)

In the case of a generalised TT deformation, in the sense defined above, the scattering
matrix will be dressed by a generic CDD factor Φα(θ)

Sα(θ) := S0(θ)Φα(θ) with log Φα(θ) = −i
∑
s∈S

αsm2s sinh(sθ) . (1.2)

Here S denotes the set of the spins of the local conserved quantities and it is a fundamental
datum that depends on the specific theory under consideration. In the interpretation of
IQFTs as massive perturbations of CFTs, these are the conserved charges that are not
destroyed by the deformation process [1, 17]. In many cases, such as the thermal Ising and
sinh-Gordon models, S coincides with the set of odd natural numbers, but this is not always
the case.1 In (1.2), α is a short-hand for the set {αs | s ∈ S} and in (1.1) α = α1. The
αs are coupling constants such that αsm2s is adimensional, with m being a fundamental
mass scale. Written in terms of energy-momentum vectors of the two scattering particles
pi

µ = m(cosh θi, sinh θi), with i = 1, 2, the TT deformation (1.1) reads exp[−iαεµνp1
µp2

ν ],
where θ = θ1−θ2. For simplicity, throughout this paper we will take the mass scale m = 1.

The CDD factors Φα in (1.2) automatically satisfy all S-matrix consistency equations,
i.e. unitarity and crossing. However they introduce a very uncommon double-exponential
dependence on the rapidity that radically changes the S-matrix asymptotic behaviour and
has a stark effect on the theory’s RG flow. Generally speaking, whereas the IR regime is
left unaltered by the perturbation, in the short-distance limit the theory displays unusual

1For example in the magnetic deformation of Ising model, S = {1, 7, 11, 13, 17, 19, 23, 29} mod 30 [1].
Remarkably, these numbers are the Coxeter exponents of the Lie algebra E8. This is just one instance of
the deep relationship between IQFTs and the structure of Lie algebras, particularly evident for models in
the Toda family. The interested reader can find more details in, e.g., [18–20].
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features, which are incompatible with the existence of a UV CFT [7, 21, 22]. This is in agree-
ment with the fact that the CDD factors (1.2) correspond to perturbations by irrelevant
operators, whose presence is not felt at large distances but is expected to severely alter the
properties of the UV. Generalised TT deformations and their properties have been studied
from several viewpoints: in the context of 2D classical and quantum field theory2 [29–31],
in the framework of the ODE/IM correspondence [32] (see [33] for a review), employing
the thermodynamic Bethe ansatz (TBA) approach3 [6, 11–14, 35–37], from the viewpoint
of perturbed conformal field theory [9, 38–44] and also in the context of string theory [45–
48], holography [49–56], quantum gravity [7, 8, 57–60], out-of-equilibrium conformal field
theory [61, 62], long-range spin chains [63–66], and the generalised hydrodynamics (GHD)
approach [67].

In an IQFT several important physical observables can be computed exactly using the
TBA approach [68, 69]. In particular, a key quantity is the ground state energy of the
theory on a cylinder of radius R, denoted by E(R). In a conventional, UV-complete IQFT
the small R behaviour of E(R) is dominated by a simple pole E(R) ∼ − πc

6R that signals
the presence of a CFT with central charge c in the UV. It has been shown [6] that in
TT-deformed theories there are two possible scenarios for small R properties of E(R, α),
depending to the sign of α in (1.1):

• for α > 0 the UV limit of the ground-state energy is finite limR→0 E(R, α) = −e0(α),
implying that the theory possesses a finite amount of degrees of freedom;

• for α < 0 a square-root branch point appears at R = R∗ ∼ |α|−1/2 > 0, signalling
the presence of a Hagedorn growth [70] of the density of states at high energy.

The GHD viewpoint [67] complements this picture, suggesting that the abnormal UV
limit of TT-deformed IQFTs can be imputed to point-like particles acquiring a positive or
negative size, for α > 0 and α < 0 respectively. For what concerns the generalised TT
deformations with S-matrices given by (1.2), it was shown [13] that they can only display
the second of the above behaviours. In fact, for S-matrices (1.2) with a finite set of couplings
α, the standard TBA equations only make sense if the coupling with larger index s is
negative αs < 0. One possible way to study the regime αs > 0 is to employ the generalised
TBA [71] approach. Note that neither of the behaviours listed above is compatible with
Wilson’s paradigm of local QFTs [72]. For this reason — and thanks to their property of
being solvable and controllable at any energy scale — the generalised TT-deformed theories
can be considered as a sensible extension of the Wilsonian notion of a local QFT.

2While extensions of the TT deformation to 1-dimensional, quantum-mechanical systems yields well-
defined, controllable theories [23–25], the proposed higher dimensional generalisations [26, 27] present several
complications, mainly consequence of the fewer amount of restrictions on the short-distance singularities
arising in the OPE of energy-momentum tensor components. Some promising advances have been made
in [28] that considers extensions of the TT deformation in higher dimensions as field-dependent perturbations
of the space-time geometry, in the same spirit as the geometric interpretation of [29] and the topological
gravity picture of [8].

3Remarkably, the first TBA analysis on models with S-matrices of the type (1.1) were performed in [21,
34], before the “official” introduction of the TT deformation in [5, 6].
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In this paper we embark on the study of generalised TT-perturbed IQFTs by employing
a traditional approach in the IQFT context, namely the form factor program for matrix
elements of local fields. Our work constitutes the first systematic attempt (in the sense
that it encompasses a large set of theories, fields and perturbations) at computing the form
factors of local and semi-local fields in generalised TT-perturbed IQFTs. Although the
present paper focuses particularly on the Ising model some of the key results are clearly
more general, as discussed in [73].

The n-particle form factor of a field O is defined as:

FO
n (θ1, . . . , θn; α) := ⟨0|O(0)|θ1, . . . , θn|0⟩ , (1.3)

where |θ1, . . . , θn|0⟩ is a state of n incoming particles of rapidites {θi}n and |0⟩ is the vacuum
state. Assuming that the form factor equations still hold for the fields of the perturbed
theory, the quantities (1.3) can be computed by following the usual bootstrap program [74,
75], taking as starting point the deformed S-matrix (1.2). They can then be used as
building blocks to construct correlation functions, allowing in particular to study the short
and long-distance limits of these correlation functions and to understand how those limits
are affected by the perturbation. The form factors and correlation functions of a theory
with similar unusual features (the sinh-Gordon model, with deformation Φα(θ) = −1) were
computed for the first time in [76], and found to give rise to a number of problems, including
non-covergent correlators and form factors involving free parameters that could not be fully
fixed. The present work will allow us to understand similar issues in a much wider context.

Given the unusual properties of TT-perturbed IQFTs, notably the lack of a proper UV
fixed point, it is natural to ask whether a form factor program can be pursued in the first
place. We believe that the results of this work represent an affirmative answer to this ques-
tion as well as the beginning of a new research program. Indeed, as discussed earlier, there
has already been a vast amount of work on the description and interpretation of the scat-
tering and thermodynamic properties of the S-matrices (1.2), work that has been possible
despite the unusual properties of the resulting models. With the first step of the bootstrap
program now completed, it is then natural to proceed to the next stage of the program,
namely the computation of form factors and correlation functions. This further step will
provide new insights into the physics of the TT perturbations and of its generalisations.

This paper is organised as follows: in section 2 we review the form factor program for
IQFTs, extending it to generalised TT-perturbed IQFTs. In particular, we find a general
formula for the minimal form factor in any IQFT with diagonal scattering. In section 3 we
write the form factor equations for higher particle numbers and general local and semi-local
fields and S-matrix, assuming a single-particle spectrum, for simplicity. We then specialise
to the Ising field theory and find closed solutions to the deformed form factor equations for
the field Θ (the trace of the stress-energy tensor) and the fields µ and σ, typically known
as the disorder and order field, respectively. In section 4 we explain how our form factor
solutions can be used as building blocks for correlation functions and we analyse their
asymptotic properties both at short and long distances. We also discuss the convergence
— or the lack thereof, depending on the sign of the deformation parameters — of the form
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factor expansion and show how for a certain range of values, the form factor series is conver-
gent. In such cases traditional consistency checks of the form factor solutions, such as the
∆-sum rule and Zamolodchikov’s c-theorem, are put to the test and the results discussed.
We conclude in section 5. The appendix contains an extension of the discussion in section 4.

2 Form factor program for generalised TT-deformed theories

Consider an IQFT with a single-particle spectrum and deformed S-matrix given by (1.2),
with m = 1. In the absence of bound states, the form factor equations for local and
semi-local fields in this theory can be written as [74, 75]:

FO
n (θ1, . . . , θi, θi+1, . . . , θn; α) = Sα(θi − θi+1)FO

n (θ1, . . . , θi+1, θi, . . . , θn; α) , (2.1)
FO

n (θ1 + 2πi, θ2 . . . , θn; α) = γOFO
n (θ2, . . . , θn, θ1; α) , (2.2)

and

lim
θ̄→θ

(θ̄ − θ)FO
n+2(θ̄ + iπ, θ, θ1, . . . , θn; α) = i

1 − γO

n∏
j=1

Sα(θ − θj)

FO
n (θ1, . . . , θn; α) .

(2.3)
The two first equations constrain the monodromy of the form factors while the last one,
the kinematic residue equation, specifies their pole structure. In (2.3) we introduced the
parameter γO, a complex number of unit length |γO| = 1, known as the factor of local
commutativity in [77]. In theories possessing an internal symmetry, such as the Ising
model, it can be a non-trivial phase.

The solution procedure typically starts with finding a “minimal” solution to the two-
particle form factor equations4

Fmin(θ; α) = Sα(θ)Fmin(−θ; α) = Fmin(2πi − θ; α) , (2.4)

that presents no poles in the physical strip. Since the S-matrix is factorised as in (1.2), it
is natural to make the ansatz

Fmin(θ; α) := Fmin(θ; 0)φ(θ; α) , (2.5)

where the function φ(θ; α) solves the equations

φ(θ; α) = Φα(θ)φ(−θ; α) = φ(2πi − θ; α) . (2.6)

In fact, φ(θ; α) is the minimal form factor of the generalised TT-deformed free boson
theory. It is easy to show that the simplest solution to (2.6) is

φ(θ; α) = exp
[
−(iπ − θ)

2π

∑
s∈S

αs sinh(sθ)
]

. (2.7)

4For fields that are primary in the conformal limit and their descendants, the zero-particle form factor
is the vacuum expectation value of the field ⟨O⟩. For spinless fields, the one-particle form factor is also a
constant. Thus, the two-particle form factor is the first non-trivial solution to the equations.
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More generally, given a solution (2.7) it is always possible to multiply it by a function of
the following form

C(θ; β) := exp

∑
s∈Z

βs cosh(sθ)

 , (2.8)

which plays the role of a “CDD factor” for the minimal form factor itself. Once (2.7) is
known, the minimal form factor of any theory with a single-particle spectrum can be easily
constructed through (2.5) and the generalisation to multiple particle types follows naturally.
In this paper, we will not consider the larger family of solutions generated by (2.8), however
it is possible to give a physical interpretation for the factor C(θ; β). The terms αs sinh(sθ)
in the sum over s are the one-particle eingenvalues of local conserved quantities of spin
s. However, those one-particle eigenvalues are more generically linear combinations of the
form αs sinh(sθ)+βs cosh(sθ). The fact that we can always add a sum of terms βs cosh(sθ)
is a reflection of this “ambiguity” in our choice of the conserved quantities. It also means
that given a solution to the form factor equations for a certain field for the choice β = 0,
new solutions can be constructed by “switching on” some of the parameters β (although in
some cases, depending on which values s can take in βs the introduction of parameters βs

can change not just the minimal form factor but other parts of the form factor too). These
new solutions, depending on different choices of the parameters β, are distinct solutions to
the same form factor equations, thus will correspond to a different field. Interestingly all of
these fields will “flow” to the original unperturbed field O when the parameters α, β 7→ 0.

For the free boson (+) and free fermion (−) theories, with scattering matrices S0(θ) =
±1, the minimal form factors are

F +
min(θ; α) = φ(θ; α) , F−

min(θ; α) = −i sinh θ

2φ(θ; α) , (2.9)

whereas for an interacting theory, such as the sinh-Gordon model with scattering matrix

S0(θ) =
tanh 1

2

(
θ − iπB

2

)
tanh 1

2

(
θ + iπB

2

) with B ∈ [0, 2] , (2.10)

the minimal form factor is

F sG
min(θ; α) = F sG

min(θ; 0)φ(θ; α) (2.11)

where the underformed form factor F sG
min(θ; 0) is well-known [78–80]. The key observation

is then that the function φ(θ; α) is common to all theories and describes the universal way
in which the minimal solution to the form factor equations is modified by the presence of
irrelevant perturbations. We are now in a position where we can systematically study any
IQFT with diagonal scattering.

Before moving on, we remark that, if S contains only odd spins, as we are going to
assume henceforth, the function φ satisfies the following identity that will be useful in
subsequent computations:

φ(θ; α)φ(θ + iπ; α) =
√

Φα(θ) , (2.12)

– 6 –
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Furthermore, with our normalisations

φ(iπ; α) = φ(θ; 0) = 1 . (2.13)

We now turn to the problem of computing higher particle form factors.

3 Solving the recursive equations

Consider the form factor equations (2.1), (2.2) and (2.3) for higher particle form factors
of local or semi-local operators. Assuming there is a kinematic pole whenever any two
rapidities differ by iπ,5 we can make the standard type of ansatz

FO
n (θ1, . . . , θn; α) = HO

n QO
n (x1, . . . , xn; α)

∏
i<j

Fmin(θij ; α)
xi + xj

. (3.1)

The functions QO
n (x1, . . . , xn; α) are symmetric and 2πi-periodic functions of all the vari-

ables xj := eθj . Since they are symmetric, they can be written in terms of a basis of
elementary symmetric polynomials in these variables. Denoting the order j elementary
symmetric polynomial of n variables as σ

(n)
j (x1, . . . , xn), their definition is as follows

σ
(n)
0 (x1, . . . , xn) = 1 and σ

(n)
j (x1, . . . , xn) =

∑
1≤i1<i2<···<ij≤n

xi1xi2 · · ·xij . (3.2)

The symbols HO
n in (3.1) are constants, independent of the rapidity variables. Plugging

this ansatz into the kinematic residue equation (2.3) we can reshape the left hand side into
the following form

FO
n+2(θ̄ + iπ, θ, θ1, . . . , θn; α) = HO

n+2QO
n+2(−x̄, x, x1, . . . , xn; α)

∏
1≤i<j≤n

Fmin(θij ; α)
xi + xj

×

 n∏
j=1

Fmin(θ − θj ; α)Fmin(θ̄ + iπ − θj ; α)
(x + xj)(−x̄ + xj)

 Fmin(iπ; α)
−x̄ + x

(3.3)

where x = eθ and θij := θi − θj . Then the equation becomes

Fmin(iπ;α) lim
θ̄→θ

θ̄−θ

x−x̄
HO

n+2QO
n+2(−x̄,x,x1,...,xn;α)

n∏
j=1

Fmin(θ−θj ;α)Fmin(θ̄+iπ−θj ;α)
(x+xj)(−x̄+xj)

= i

1−γO

n∏
j=1

Sα(θ−θj)

HO
n QO

n (x1,...,xn;α). (3.4)

5Note that this is typically not the case for the two-particle form factor of the trace of the stress-energy
tensor Θ or more generally of any local fields (i.e. fields where γO = 1), since in this case the r.h.s. of the
kinematic residue equation (2.3) with n = 2 is vanishing. The kinematic pole in the two-particle form factor
is generally only present for symmetry fields, which sit at the origin of branch cuts in the complex plane.
However, for theories with a non-trivial S-matrix, kinematic residue poles will be present for the higher
particle form factors, even for local fields.

– 7 –
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where we used (2.13). Finally, noting that limθ̄→θ
θ̄−θ
x−x̄ = − 1

x and using the proper-
ties (2.5), (2.12) and (2.13), we arrive at

−x−1Fmin(iπ; α)HO
n+2QO

n+2(−x, x, x1, . . . , xn; α)
n∏

j=1

Fmin(θ − θj ; 0)Fmin(θ̄ + iπ − θj ; 0)
x2

j − x2

= i

 n∏
j=1

Φα(θ − θj)−
1
2 − γO

n∏
j=1

Φα(θ − θj)
1
2 S0(θ − θj)

HO
n QO

n (x1, . . . , xn; α). (3.5)

We will now show how to find solutions to this equation for the Ising field theory.

3.1 The Ising field theory

The form factors of the Ising field theory have been extensively studied in the literature [81,
82]. In the so-called disordered phase, form factors and correlation functions of the order (σ)
and disorder (µ) fields were computed in [77, 83]. Around the same time, form factors of de-
scendant fields in the CFT sense where computed in [84] and shown to be in one-to-one cor-
respondence with the Virasoro irreducible representations characterising the critical theory.
More recently, the study of form factors has expanded to encompass other types of fields
which are present in the replica version of the Ising model. Form factors of the branch point
twist field where computed [85, 86] as well as for composite branch point twist fields in [87].
These form factors play a prominent role in the study of entanglement measures of IQFT.

The Ising field theory is a free fermion theory with scattering matrix S0(θ) = −1, and
Fmin(θ; 0) = −i sinh θ

2 . For this model, the set S of the spins of local conserved quantities
coincides with the odd positive integers

S = {s = 2n − 1|n ∈ Z+} , (3.6)

With these specifications, equation (3.5) simplifies to

−x−1HO
n+2QO

n+2(−x, x, x1, . . . , xn; α)
n∏

j=1

i

4xxj
(3.7)

= i

 n∏
j=1

Φα(θ − θj)−
1
2 − γO(−1)n

n∏
j=1

Φα(θ − θj)
1
2

HO
n QO

n (x1, . . . , xn; α).

that we can further split into two equations:

QO
n+2(−x, x, x1, . . . , xn; α) = xn+1

n∏
j=1

xj (3.8)

×

 n∏
j=1

Φα(θ − θj)−
1
2 − γO(−1)n

n∏
j=1

Φα(θ − θj)
1
2

QO
n (x1, . . . , xn; α).

and
HO

n+2 = 4ni−1−nHO
n . (3.9)
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The latter is easily solved

HO
2n = 4n(n−1)i−n2

HO
0 and HO

2n+1 = 4n2
i−n(n+1)HO

1 . (3.10)

whereas the equation for the polynomials QO
n (x1, . . . , xn; α) requires some additional input

about the field O. Let us recall the field content of the Ising field theory (besides the
fermion itself) consists of the energy ε, the spin σ and the disorder µ fields. Their form
factors are well known

F µ
2n(θ1, . . . , θ2n; 0) = in

∏
i<j

tanh θij

2 , F µ
2n+1(θ1, . . . , θ2n+1; 0) = 0 , (3.11)

F σ
2n(θ1, . . . , θ2n; 0) = 0 , F σ

2n+1(θ1, . . . , θ2n+1; 0) = in
∏
i<j

tanh θij

2 , (3.12)

and
F ε

2 (θ; 0) = −i sinh θ

2 , F ε
n>2(θ1, . . . , θn; 0) = 0 . (3.13)

In the Ising model, there is a Z2 symmetry and the fields organise themselves into two
symmetry sectors. The energy ε and the spin σ fields both have γε = γσ = 1 whereas the
field µ has γµ = −1. Due to the symmetry the fields ε and µ have only non-vanishing
even-particle form factors (more precisely, since ε is a bilinear in the fermion field it only
has non-vanishing two-particle form factor) whereas σ has only odd-particle ones. The
generalised TT deformations do not break the Z2 symmetry so these properties are all
preserved. Instead of focusing on the energy field itself, it is common to study the properties
of the trace of the stress-energy tensor Θ which is a field proportional to ε. Its form factors
are very simple

F Θ
2 (θ; 0) = −2πi sinh θ

2 , F Θ
n>2(θ1, . . . , θn; 0) = 0 . (3.14)

For dimensional reasons, the form factor above must be proportional to m2 (recall that we
have set m = 1 throughout the paper). Consequently, in the massless limit m → 0 all the
form factors of Θ vanish identically, which is consistent with vanishing of the stress-energy
tensor trace in the CFT limit.

For Θ the equation (3.8) becomes

QΘ
2n+2(−x, x, x1, . . . , x2n; α) (3.15)

= 2ix2n+1 sin

∑
s∈S

αs

2

 2n∑
j=1

sinh s(θ − θj)

 2n∏
j=1

(xj)QΘ
2n(x1, . . . , x2n; α)

and
HΘ

2n = 4n(n−1)i−n2
HΘ

0 with HΘ
0 = F Θ

0 . (3.16)

The equation (3.15) only holds for n > 0. Indeed, the operator Θ is special in that its
two-particle form factor has no kinematic pole while higher particle ones do. Hence, we
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expect to have the standard normalisation F Θ
0 = 2π = F Θ

2 (iπ; α). The two-particle form
factor should be generalisation of (3.14) with the standard form

F Θ
2 (θ; α) = 2πf(θ; α) Fmin(θ; α)

Fmin(iπ; α) . (3.17)

where the function f(θ; α) is constrained by f(iπ; α) = f(θ; 0) = 1 and should be an even,
2πi-periodic function of θ. We will see later that consistency with higher particle solutions
requires this function to be non-trivial. The equation (3.15) determines the higher-particle
form factors which, as the sine factor suggests, will all vanish for αi = 0, in agreement
with (3.14).

For the field µ we have γµ = −1 and only even-particle form factors. Then the
equations (3.8), (3.10) become:

Qµ
2n+2(−x, x, x1, . . . , x2n; α) (3.18)

= 2x2n+1 cos

∑
s∈S

αs

2

 2n∑
j=1

sinh s(θ − θj)

 2n∏
j=1

(xj)Qµ
2n(x1, . . . , x2n; α) ,

and
Hµ

2n = 4n(n−1)i−n2
Hµ

0 with Hµ
0 = ⟨µ⟩α . (3.19)

where ⟨µ⟩α = F µ
0 (α) is the vacuum expectation value of µ, which may depend on α in

the deformed theory. In the case of the field σ, we only have odd particle numbers and a
trivial factor of local commutativity γσ = 1, so we also get a cosine

Qσ
2n+1(−x, x, x1, . . . , x2n+1; α)

= 2x2n cos

∑
s∈S

αs

2

2n−1∑
j=1

sinh s(θ − θj)

 2n−1∏
j=1

(xj)Qσ
2n−1(x1, . . . , x2n−1; α)

and
Hσ

2n+1 = 4(n−1)2
i−n(n−1)Hσ

1 with Hσ
1 = F σ

1 (α) . (3.20)

3.1.1 Solving the equations: the fields µ and σ

As shown in [73], solutions to the form factor equations above factorise into the unperturbed
solutions times a function that depends on the scattering matrix and the locality properties
of the field. This factorisation is particularly natural for the Ising field theory, as we will
see below. We can write

Qµ
2n(x1, . . . , x2n; α) := Dµ

2n(x1, . . . , x2n; α)P µ
2n(x1, . . . , x2n) , (3.21)

where

Dµ
2n+2(−x, x, x1, . . . , x2n; α) = 2 cos

∑
s∈S

αs

2

 2n∑
j=1

sinh s(θ − θj)

Dµ
2n(x1, . . . , x2n; α) ,

(3.22)
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and
P µ

2n+2(−x, x, x1, . . . , x2n) = x2n+1σ
(2n)
2n P µ

2n(x1, . . . , x2n) . (3.23)

The equations for the operator σ are identical to (3.21 – 3.23) with 2n 7→ 2n − 1 and so
are the solutions. The equation (3.23) can be solved easily, starting with the cases

P µ
2 (−x, x) = xP µ

0 and P σ
3 (−x, x, x1) = x2x1P σ

1 , (3.24)

and proceeding recursively. For instance

P µ
2 (x1, x2) = −i(σ(2)

2 )
1
2 P µ

0 , (3.25)

and so

P µ
4 (−x, x, x1, x2) = −i(x2x1x2)

3
2 P µ

0 ⇒ P µ
4 (x1, x2, x3, x4) = (σ(4)

4 )
3
2 P µ

0 . (3.26)

It is then easy to show that the general expressions are

P µ
2n(x1, . . . , x2n) = i−n2(σ(2n)

2n )
2n−1

2 P µ
0

P σ
2n+1(x1, . . . , x2n+1) = in2+n(σ(2n+1)

2n+1 )nP σ
1 .

(3.27)

Then, by requiring consistency with unperturbed solutions we can fix the constants to
P µ

0 = 1 and P σ
1 = 1.

The α-dependent part is solved by

Dµ
2n(x1, . . . , x2n; α) = 2n

√√√√√ 2n∏
i=1

cos

∑
s∈S

αs

2

2n∑
j=1

sinh(sθij)

 , (3.28)

and

Dσ
2n+1(x1, . . . , x2n+1; α) = 2n

√√√√√2n+1∏
i=1

cos

∑
s∈S

αs

2

2n+1∑
j=1

sinh(sθij)

 . (3.29)

Putting everything together, the form factors of the disorder and order fields are

F µ
2n(θ1, . . . , θ2n; α) = in⟨µ⟩α

√√√√√ 2n∏
i=1

cos

∑
s∈S

αs

2

2n∑
j=1

sinh(sθij)

∏
i<j

tanh θij

2 φ(θij ; α) .

(3.30)
and

F σ
2n+1(θ1, . . . ,θ2n+1;α) = inF σ

1 (α)

√√√√√2n+1∏
i=1

cos

∑
s∈S

αs

2

2n+1∑
j=1

sinh(sθij)

∏
i<j

tanh θij

2 φ(θij ;α) ,

(3.31)
where we used the identities∏

1≤i<j≤2n

(xi + xj) =
∏

1≤i<j≤2n

√
xixj 2 cosh θij

2 = 2n(2n−1)(σ(2n)
2n )

2n−1
2

∏
1≤i<j≤2n

cosh θij

2 .

(3.32)
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As we can see from the above expressions, the unperturbed solutions given in (3.11)
and (3.12) are correctly recovered in the α → 0 limit. As shown more generally in [73],
the form factors of the perturbed theory factorise as

FO
n (θ1, . . . , θn; α) = FO

n (θ1, . . . , θn; 0)Gn(θ1, . . . , θn; α) . (3.33)

Note that this factorisation property is model-independent. The sole exception is the field
Θ in the Ising field theory. In the case of σ and µ, the deforming factor reads

Gn(θ1, . . . , θn; α) :=

√√√√√ n∏
i=1

cos

∑
s∈S

αs

2

n∑
j=1

sinh(sθij)

∏
i<j

φ(θij ; α). (3.34)

3.1.2 Solving the equations: the trace of the stress-energy tensor Θ

The equation for the form factors of the trace of the stress-energy tensor suggests a similar
solution procedure as for µ and σ. However, a special feature of this field is that it is local,
hence its two-particle form factor has no kinematic pole, even if higher-particle ones do.
Since their kinematic pole residue is non-vanishing, according to (3.15), higher particle form
factors are non-vanishing in the TT-perturbed theory. Hence, we need to solve (3.15) for
n > 1. Comparing (3.15) with (3.18) and reviewing the solution to (3.18) given by (3.30)
it is clear that the simplest, consistent solution to the higher-particle form factor equations
will be of the form

F Θ
2n(θ1, . . . ,θ2n;α) = A2n(α)

√√√√√ 2n∏
i=1

sin

∑
s∈S

αs

2

2n∑
j=1

sinh(sθij)

∏
i<j

tanh θij

2 φ(θij ;α) , n > 1

(3.35)
where A2n(α) is a normalisation constant to be fixed later. Taking this solution and writing
the kinematic residue equation that relates the four-particle to the two-particle form factor
we get that the latter is given by

F Θ
2 (θ; α) = −A4(α)

∣∣∣∣∣sin
(∑

s∈S

αs

2 sinh(sθ)
)∣∣∣∣∣ tanh θ

2φ(θ; α) . (3.36)

This function has no pole at iπ, as required but, unless A4(α) is chosen carefully, it will
give zero when the parameters αs → 0. One naive way to deal with this is to choose

−A4(α) = 2C(α)
αs′

, (3.37)

and then take the limit αs to zero for each term on the sum over s, with s = s′ the spin
associated with the last limit taken. This limit then gives

lim
αs′→0

lim
αs ̸=s′→0

F Θ
2 (θ; α) = F Θ

2 (θ; 0) = C(0)
∣∣∣∣sinh s′θ

2

∣∣∣∣ tanh θ

2 . (3.38)

This result is problematic. Not only does is not reproduce the correct form factor at α = 0
but is dependent on the order in which the parameters αs are taken to zero, a property that

– 12 –



J
H
E
P
0
9
(
2
0
2
3
)
0
4
8

seems quite unnatural. We must then conclude that the ansatz (3.35) is not the correct
solution to the form factor equations for n > 1. The question is then, how should (3.35) be
modified so that it is consistent with a two-particle form factor which has all the correct
properties?

Given that the oscillatory part of the solution (3.35) is crucial for the solution of the
higher particle form factors, it seems that we must accept the presence of an oscillatory
part also in the two-particle form factor. We assume then the following form

F Θ
2 (θ; α) = 2πf(θ; α) Fmin(θ; α)

Fmin(iπ; α) , (3.39)

where f(θ; α) is a function that satisfies

f(iπ; α) = f(θ; 0) = 1 , (3.40)

as well as being symmetric and 2πi-periodic in θ. According to the discussion above, it
must also include the oscillatory factor in (3.35), specialised to n = 1. It is not too difficult
to realise that the function we need is

f(θ; α) =
∣∣∣∣∣sin

(∑
s∈S

αs
2 sinh(sθ)

)∑
s∈S

αs
2 sinh(sθ)

∣∣∣∣∣ cosh θ

2 , (3.41)

which gives the two-particle form factor

F Θ
2 (θ; α) = −2πi

∣∣∣∣∣sin
(∑

s∈S
αs
2 sinh(sθ)

)∑
s∈S

αs
2 sinh(sθ)

∣∣∣∣∣ sinh θ

2φ(θ; α). (3.42)

Comparing (3.42) to (3.36) we see that we need to modify the ansatz (3.35) so as to produce
the function (3.42). In order to do this, while still solving the higher-particle form factor
equations we need to find a function f2n(x1, . . . , x2n; α) such that we can multiply (3.35)
by it, while still solving all equations. In other words, we need this function to satisfy

f2n+2(−x, x, x1, . . . , x2n; α) = f2n(x1, . . . , x2n; α) . (3.43)

and
f2(x1, x2; α) =

cosh θ12
2∣∣∑

s∈S
αs
2 sinh(sθ12)

∣∣ . (3.44)

A crucial observation to proceed is that the ratio of elementary symmetric polynomials

σ
(2n)
1 σ

(2n)
2n−1

σ
(2n)
2n

, (3.45)

solves (3.43). This is because under the reduction (x1, x2, . . . , x2n+2) 7→
(−x, x, x1, . . . , x2n), the elementary symmetric polynomials behave as follows: σ

(2n+2)
2n+1 7→

−x2σ
(2n)
2n−1, σ

(2n+2)
2n+2 7→ −x2σ

(2n)
2n and σ

(2n+2)
1 7→ σ

(2n)
1 . In fact, any function of the ra-

tio (3.44) will solve (3.43). Additionally, this facts will still hold true if the elementary
symmetric polynomials are taken to be functions of the powers xs

i rather than just xi = eθi .

– 13 –



J
H
E
P
0
9
(
2
0
2
3
)
0
4
8

Let us then be slightly more general and denote as σ
(2n)
i,s the ith elementary symmetric poly-

nomial of the 2n variables {esθ1 , . . . , esθ2n}. It is a matter of simple algebra to verify that
for any odd integer values of s, the function

g2n(x1, . . . , x2n; s) =
σ

(2n)
1,s σ

(2n)
2n−1,s

σ
(2n)
2n,s

, (3.46)

solves (3.43). We now proceed to write (3.44) in terms of these factors. For n = 1 we have
that

g2(x1, x2; s) =
(σ(2)

1,s)2

σ
(2)
2,s

= (esθ1 + esθ2)2

esθ1+sθ2
= 4 cosh2 sθ12

2 . (3.47)

so that

4 sinh2 sθ12
2 = g2(x1, x2; s) − 4 . (3.48)

and √
g2(x1, x2; s)(g2(x1, x2; s) − 4) = 2| sinh(sθ12)| . (3.49)

This is precisely the sort of factor we need in our two-particle form factor. In fact, in order
to have a consistent set of form factors, we need to multiply our solution (3.35) by the
function

f2n(x1, . . . , x2n; α) =

√
σ

(2n)
1 σ

(2n)
2n−1

σ
(2n)
2n∣∣∣∣∣ ∑s∈S αs

4

√(
σ

(2n)
1,s σ

(2n)
2n−1,s

σ
(2n)
2n,s

− 4
)

σ
(2n)
1,s σ

(2n)
2n−1,s

σ
(2n)
2n,s

∣∣∣∣∣
, (3.50)

where σ
(2n)
i ≡ σ

(2n)
i,1 and we set f0(α) = 1. For n = 1 this function correctly repro-

duces (3.44) and the two-particle form factor reduces to (3.42) with an appropriate choice
of normalisation. This requires that |∑s∈S

αs
2 sinh(sθ)| = |

∑
s∈S

αs
2 | sinh(sθ)|| which holds

for θ ∈ R.
Let us then summarise what we found. All the form factors of the field Θ, with the

standard normalisation F0 = F Θ
2 (iπ) = 2π, are given by

F Θ
2n(θ1, . . . , θ2n; α) = 2πi in

√√√√ 2n∏
i=1

sin
(∑

s∈S

αs
2

2n∑
j=1

sinh(sθij)
)

∣∣∣∣∣ ∑s∈S αs
4

√(
σ

(2n)
1,s σ

(2n)
2n−1,s

σ
(2n)
2n,s

− 4
)

σ
(2n)
2n σ

(2n)
1,s σ

(2n)
2n−1,s

σ
(2n)
2n,sσ

(2n)
1 σ

(2n)
2n−1

∣∣∣∣∣
×
∏
i<j

tanh θij

2 φ(θij ; α) . (3.51)

Note that, although the final formula contains α-dependence both in the numerator and
denominator, it is easy to see F Θ

2n(θ1, . . . , θ2n; 0) = 0 for n > 1.
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4 Two-point function cumulant expansion

Let us consider a generic field O. We are going to employ the form factors found in the
previous section to write the cumulant expansion of the two-point function. For fields with
non-vanishing VEV we can write

log ⟨O(0)O(r)⟩α

⟨O⟩2
α

=
∞∑

ℓ=1
cOℓ (r; α) , (4.1)

where cOℓ (r; α) are the cumulants,

cOℓ (r; α) := 1
ℓ!

∫ ∞

−∞

dθ1
2π

· · ·
∫ ∞

−∞

dθℓ

2π
e−r

∑ℓ

i=1 cosh θihO
ℓ (θ1, . . . , θℓ; α)

= 1
πℓ!

∫ ∞

−∞

dθ1
2π

· · ·
∫ ∞

−∞

dθℓ−1
2π

K0(rdℓ)hO
ℓ (θ1, . . . , θℓ−1, 0; α) . (4.2)

Here we introduced the notation

dℓ =

√√√√√ℓ−1∑
j=1

cosh θi + 1

2

−

ℓ−1∑
j=1

sinh θi

2

, (4.3)

and K0(x) is the modified Bessel function. The second line of (4.2) follows from integration
of one rapidity variable, since the functions hℓ({θi}; α) depend on rapidity differences only.
This expression for the cumulants can be found in many places, for instance [88].

In the Ising model, due to Z2 symmetry, we usually have either even- or odd-particle
cumulants only. For instance for the field µ

⟨µ⟩2
αhµ

2 (θ1, θ2; α) := |F µ
2 (θ1, θ2; α)|2 , (4.4)

⟨µ⟩4
αhµ

4 (θ1, θ2, θ3, θ4; α) := ⟨µ⟩2
α|F

µ
4 (θ1, θ2, θ3, θ4; α)|2 − |F µ

2 (θ1, θ2; α)|2|F µ
2 (θ3, θ4; α)|2

−|F µ
2 (θ1, θ3; α)|2|F µ

2 (θ2, θ4; α)|2

−|F µ
2 (θ1, θ4; α)|2|F µ

2 (θ2, θ3; α)|2 , (4.5)

whereas for Θ we just need to replace µ 7→ Θ and ⟨µ⟩α 7→ 2π. For the field σ on the other
hand, only the odd cumulants are not vanishing, the first two of which are

hσ
1 (θ1; α) := 1 , (4.6)

|F σ
1 (α)|6hσ

3 (θ1, θ2, θ3; α) := |F σ
1 (α)|4|F σ

3 (θ1, θ2, θ3; α)|2 − |F σ
1 (α)|6 . (4.7)

Note that, since the 1-point function of σ vanishes, the normalisation in the cumulant
expansion (4.1) should be replaced by the norm squared of the one-particle form factor

log ⟨σ(0)σ(r)⟩α

|F σ
1 (α)|2 =

∞∑
ℓ=1

cσ
ℓ (r; α) . (4.8)

Under a generalised TT perturbation, a free theory will cease to be such, in the sense
that many of the nice properties free theories enjoy — such as a trivial S-matrix — are
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lost to the deformation. In particular, the cumulant expansion does not simplify in any
obvious way, a fact which is well-known to happen for the Ising fields in the usual free
model [77] and on its replica version, studied in the context of entanglement measures (see
i.e. [86, 89]). These simplifications are generally due to the Pfaffian structure of the form
factors that follows from Wick’s theorem in free theories. Such properties no longer hold in
generalised TT perturbations. Instead, as far as we can see, with our form factor solutions,
there is no simple closed general expression for the cumulants. It is however interesting
to write down at least the lower ones. As we shall see, they exhibit interesting properties,
some of which will extend to the whole cumulant expansion.

4.1 Two-particle cumulants and their asymptotics

Let us look at the lower-particle contributions to the expansion for the fields Θ and µ. For
the field µ we have

cµ
2 (r; α) = 1

2

∫ ∞

−∞

dθ1
2π

∫ ∞

−∞

dθ2
2π

e−2r cosh θ12
2 cosh θ̂12

2 cos2
(∑

s∈S

αs

2 sinh(sθ12)
)

×
∏
s∈S

e
αsθ12

π
sinh(sθ12) tanh2 θ12

2 . (4.9)

As usual, one integral can be carried out by introducing new variables x = θ12 and y =
θ̂12 := θ1 + θ2, so the cumulant becomes

cµ
2 (r; α) = 1

4π2

∫ ∞

−∞
dxK0(2r cosh x

2 ) cos2
(∑

s∈S

αs

2 sinh(sx)
) ∏

s∈S
e

αsx
π

sinh(sx) tanh2 x

2 .

(4.10)
A very similar behaviour is found in the first cumulant contribution to the two-point
function of Θ. Following the same steps, we arrive at

cΘ
2 (r; α) = 1

4π2

∫ ∞

−∞
dx K0(2r cosh x

2 )
[

sin
(∑

s∈S
αs
2 sinh(sx)

)∑
s∈S

αs
2 sinh(sx)

]2 ∏
s∈S

e
αsx

π
sinh(sx) sinh2 x

2 .

(4.11)
Regarding the convergence of the integrals (4.10) and (4.11) it is easy to see that this is
determined by the exponential factor and, in particular, by the sign of the parameter αs∗

where s∗ is the largest spin which is present in the product of exponentials. If αs∗ > 0 the
integral is divergent, whereas the opposite is true for αs∗ < 0. This applies not just to the
second cumulants, but to all cumulants. The same conclusion is reached by employing a
well-known derivation presented in [94, 95], which concerns the asymptotic behaviour of
form factors and correlation functions. In these papers it was shown that for a two-point
function ⟨O(0)O†(r)⟩ to admit a convergent form factor expansion which is compatible
with power-law scaling at short distances, the form factors of O can diverge at the very
most exponentially with each rapidity variable, that is

FO
k (θ1, . . . , θk; 0) ∼ eyOθi for θi → ∞, (4.12)

with yO ≤ ∆O and where ∆O is the conformal dimension of the field in the UV limit.
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As we have seen, in generalised TT-perturbed theories the asymptotics of the form
factors is dictated by the double-exponential function exp(αs∗

π θ sinh(sθ)). The remaining α-
dependent part of the form factor is generally a product of real oscillatory functions, which
are bounded6 and the “unperturbed” form factor will typically scale exponentially. Clearly,
when αs∗ > 0 the form factors diverge double-exponentially so the bound (4.12) can never
be satisfied and the expansion of the two-point function is divergent. However, when αs∗ <

0 the bound (4.12) is always satisfied, since the form factors tend to zero for large rapidities.
Thus we expect power-law scaling which we indeed also find from the cumulant expansion.

Notice that these convergence properties chime with what was mentioned in the intro-
duction: the TBA for generalised TT deformations with more than one coupling are only
well defined if αs∗ < 0. We must mention however, that the asymptotics of these expres-
sions and higher terms in the form factor expansion can change substantially if the set of
spins s involved in the products above is infinite, as it will now depend on the analytic
properties of the infinite product of exponentials. For the purposes of this paper and in
order to avoid such subtleties, we will always assume that we are considering a finite set of
non-vanishing couplings, even if the total set S is infinite.

4.2 Leading cumulant for the TT perturbation

Let us now focus on the standard TT perturbation corresponding to having a single non-
vanishing parameter α1 := α. Other more general cases are discussed in appendix A.

4.2.1 α > 0: excitations of finite positive length

According to the picture put forward in [67] the α > 0 regime corresponds to a theory
whose UV physics is characterised by objects of finite length. It is then not surprising
that short distances cannot be probed and that in this limit the two-point function should
diverge. At the TBA level [6] this finite length leads to a finite ground state energy.

In fact, for α > 0, even the IR limit can be problematic, if we also probe high momenta.
In this case we will again encounter this finite length, leading to a divergent form factor
expansion. In other words, there is no local QFT describing the deep UV limit of the
theory and if we try to probe this theory by approaching either small values of r for any
momenta, or large values of r and high momenta we always find a divergence. For large
momenta, we can even estimate a characteristic scale or cut-off — a function of r/α — at
which this divergence dominates as we now show.

If we take the two-particle cumulant of µ and expand the Bessel function at leading
order for large r we find

cµ
2 (r ≫ 1; α > 0) ≈ 1

4π2

√
π

2r

∫ ∞

−∞

dx√
cosh x

2

cos2
(

α

2 sinh x

)
e−2r cosh x

2 + αx
π

sinh x tanh2 x

2 .

(4.13)
Convergence of the integral is determined by the balance between the two terms in the
exponent. While for α < 0 the exponent is negative and the exponential rapidly decreasing,

6This is slightly different for the field Θ as we have seen, but does not substantially change our argument.
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for α > 0 the integral is convergent for as long as

2r cosh x

2 >
αx

π
sinh x . (4.14)

In other words, there exist a maximum allowed rapidity x, solution of the equation
πr

α
= x sinh x

2 . (4.15)

For x ≫ 0 we can approximate the sinh by an exponential, arriving at
πr

α
= x

2 e
x
2 . (4.16)

The solutions to the equation above are known in the literature as Lambert W -function
Wk(z) for k ∈ Z. This is a multi-valued function, hence the index k. For real values of x and
πr
α > 0 the correct branch of the solution is the principal one x = 2W0(πr/α). This scales as

W0(a) ≈ a for a ≪ 1 , and W0(a) ≈ log a for a ≫ 1 , (4.17)

Quite naturally, the cut-off depends on the ratio of the two independent scales in the
system r/α. If r is large compared to α this cut-off will be very large as well since the
finite length of the fundamental excitation is not seen, even for large momenta. However,
if α is large compared to r the particles’ finite length is probed for momenta that are
not necessarily large and the cumulant expansion can only be made convergent by the
introduction of the rapidity cut-off

Λ = 2W0(πr/α) . (4.18)

The fact that Lambert’s W -function plays a role is rather suggestive given that it features
in a variety of problems, many of which are intuitively connected to the physics of TT
perturbations (see [90] for a review). For instance, a key application is to delay problems
which are similar in spirit to the “delay” induced by the phase-shift Φα(θ) and by the
finite length of the rods, that best describe the effect of the TT perturbation in the
GHD context. The Lambert function also features directly in previous discussions of TT
perturbations, such as in [67] where it enters the formula for the free energy in a hard-rod
model and in the solutions of JT gravity [7, 91].

Although the characteristic momentum cut-off (4.18) is obtained from the two-particle
contribution, the qualitative picture presented here should extend to higher-particle terms.
It is indeed possible to write a simple argument showing this. Consider the definition (4.2)
in the large r limit. Expanding the Bessel function, for large r, all cumulants will include
an r-dependent exponential of the form e−rdℓ with dℓ defined in (4.3). Suppose that one of
the rapidities is very large, say θ1 ≫ 1 and θ1 ≫ θi ̸=1. Then, cosh θ1, sinh θ1 are also much
larger than cosh θi ̸=1 and sinh θi ̸=1. By neglecting these terms in the definition of dℓ, we
have the approximation

e−rdℓ ≈ e−2r cosh θ1
2 for θ1 ≫ 1, θ1 ≫ θi ̸=1 . (4.19)
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The cumulant will also contain the factor
∏

1≤i≤j≤ℓ−1
e

αθij
π

sinh θij

ℓ−1∏
i=1

e
αθi

π
sinh θi ≈ e−

ℓαθ1
π

sinh θ1 , (4.20)

where the approximation is made under the same assumptions as above. Then the two
exponentials can be compared just as for the two-particle cumulant and a similar cut-off
Λ — with α replaced by ℓα — can be found.

4.2.2 α < 0: excitations of finite “negative” length

Following the analysis of [67], for α < 0 we are now dealing with a theory of particles
having a “negative” length. From the viewpoint of correlation functions, both the UV and
IR regimes can be probed without any issues at all. In fact, the form factor series is more
rapidly convergent for α < 0 than for α = 0 since the minimal form factor typically decays
much faster for large rapidities than any other function in the integrand. We have that,
for all cumulants in (4.2)

lim
θi→∞

hO
ℓ (θ1, . . . , θℓ; α) = 0 ∀ i & α < 0 . (4.21)

For many theories, the statement above also holds at α = 0 but the Ising model is an
exception to this rule since the cumulants of µ, σ and Θ all either diverge exponentially
(Θ) or tend to a constant (µ and σ) for large rapidities.

Now that (4.21) holds, we can safely expand the Bessel functions K0(2rdℓ) in (4.2) for
small r in order to investigate the UV scaling of correlators,

K0(rdℓ) = − log r − γ + log 2 − log dℓ . (4.22)

We find that the leading contributions to the cumulant expansion at short distances are all
proportional to a factor log r. This implies a power-law scaling of the correlators, just as one
would expect if the UV limit was a CFT. This is an interesting though unexpected result,
given that we know a TT-deformed theory is not supposed to have a UV fixed point in the
standard sense. Our results suggest that for large energies, the TT deformation does have
properties that are reminiscent of critical systems. In other words, two-point functions will
still scale as power-laws r−4zO(α) at short distances, with exponent zO(α) < ∆O — for α < 0
— where ∆O is the UV dimension of the field in the unperturbed theory. We also see that
zO(α) → 0 for −α → ∞. The IR limit is straightforwardly analysed as well, with two-point
functions decaying exponentially at large distances, faster than in the undeformed theory.
In the deep IR the theory will still be trivial, as dictated by the presence of a mass scale.

For the two-particle cumulants, the leading UV (r ≪ 1) contributions are

cµ
2 (r ≪ 1; α < 0) ≈ − log r

4π2

∫ ∞

−∞
dx cos2

(
α

2 sinh x

)
e

αx
π

sinh x tanh2 x

2 := −4zµ
2 (α) log r ,

(4.23)
and similarly

cε
2(r ≪ 1; α < 0) ≈ − log r

4π2

∫ ∞

−∞
dx

[
sin(α

2 sinh x)
α cosh x

2

]2

e
αx
π

sinh x := −4zε
2(α) log r , (4.24)
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Figure 1. The functions zµ
2 (α) and zε

2(α). In the unperturbed Ising model we have that the
two-point functions scale exactly as r− 1

4 and r−2 for µ and ε respectively so that zµ
2 (0) = 1

16 and
zε

2(0) = 1
2 . From the two-particle contributions, it seems that there is still power-law scaling at

short distances but the decay becomes faster the larger is −α. Note that the definitions (4.23)
and (4.24) of zµ

2 (α) and zε
2(α) are not valid at α = 0: there is a sharp change at α = 0 which is a

peculiar feature of the Ising model.

The cumulants of the energy field ε which is related to the Θ by Θ = 2πmε are identical
to those of Θ when m = 1, however, unlike Θ, ε is a primary field in CFT and should scale
as 1/r2 in the short-distance limit for α = 0 (whereas Θ vanishes in the CFT limit). It is
thus more interesting to consider the short-distance scaling of ε than that of Θ.

Due to the exponential terms, the integrals in (4.23) and (4.24) cannot be computed
analytically but they can be evaluated numerically and the results are shown in figure 1.
These indicate that the short-distance scaling of the two-point function will now be depen-
dent on α. Note that it is not possible to extrapolate these contributions to α = 0 because
the integral is not convergent in this case (see [77]). This sharp change in the behaviour of
zµ,ε

2 (α) is a special feature of the Ising model.

4.3 ∆-sum rule and c-theorem

In this section we investigate whether two standard IQFT formulae typically employed
a consistency checks for form factor computations can still provide some insights in TT
perturbed theories. These are the ∆-sum rule [92] and Zamolodchikov’s c-theorem [93].
Once more we limit our consideration to the simplest case of the TT deformation.

Given an IQFT resulting from the massive perturbation of a known CFT, the ∆-sum
rule [92] reads

∆UV
O − ∆IR

O = − 1
4π⟨O⟩

∫ ∞

0
dr r⟨Θ(0)O(r)⟩c, (4.25)

where O(x) is a local field in the off-critical theory, ∆IR
O = 0 if the theory is massive and

the index ‘c’ indicates the connected correlator.
Consider the field µ. After integrating in r and in one of the rapidities, we obtain the

exact formula

Fµ(α) := ∆UV
µ − ∆IR

µ = 1
16π

∫ +∞

−∞
dx

∣∣∣∣sin(α sinh x)
α sinh x

∣∣∣∣ tanh2 x
2

cosh x
2

e
α
π

x sinh x , (4.26)
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Figure 2. The functions F (α) and c(α). They both tend to zero for large −α and to their exact
values in the unperturbed theory for α = 0: F (0) = 1

16 = 0.0625 and c(0) = 1
2 = 0.5

For α = 0 the integral can be computed exactly and we obtain the expected CFT value
∆µ = 1

16 while for α < 0 we can only integrate numerically. We find that F (α) tends to
zero for −α → ∞. The decay is extremely fast and can be best seen when plotting against
log(−α), as in figure 2 (left). The behaviours at small and large −α are exactly what we
would expect from the general picture developed in the analysis of the cumulants, thus the
results of the ∆-sum rule are compatible with the general picture of power-law scaling at
short distances.

In the same way we can study Zamolodchikov’s c-function. We know that

cUV − cIR = 3
2

∫ ∞

0
dr r3⟨Θ(0)Θ(r)⟩c, (4.27)

and we can once again integrate in r and in one rapidity to obtain the formula

c(α) := cUV − cIR ≈ 3
8

∫ +∞

−∞
dx

[
sin(α

2 sinh x)
α
2 sinh x

]2 tanh2 x
2

cosh2 x
2

e
α
π

x sinh x , (4.28)

in the two-particle approximation. For α = 0 we obtain the usual value c = 1/2 while
c(α) → 0 for α → −∞. The decay to zero as −α is increased is very fast and best seen in
logarithmic scale, as shown in figure 2 (right).

5 Conclusions, discussion and outlook

In this paper and, more generally, in the letter [73] we have shown that a consistent form
factor program can be developed for fields in generalised TT-perturbed integrable quantum
field theories. This means that form factor equations can be written in the usual way but
they will now be dependent on a scattering matrix which contains additional CDD factors
as shown in (1.2). The result are equations that are generally harder to solve and whose
solutions have an unusual dependence on the rapidities (typically double-exponential and
oscillatory). In particular, the minimal form factor contains a factor which can grow
doubly-exponentially as a function of rapidity differences.
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In this paper we have focused on one of the simplest and best-studied massive IQFTs,
the Ising field theory. We have constructed the deformed form factors of the standard fields
{Θ(ε), σ, µ} and shown that they typically factorise into a function which is exactly the
known, undeformed form factor and a function which depends on the deformation param-
eters. The latter function itself factorises into an oscillatory part and an exponential part,
both of which depend on the deformation parameters. As we have shown in [73] this struc-
ture extends beyond the Ising model, to all IQFTs with diagonal scattering. The only excep-
tion to this factorisation property seems to occur for the field Θ in the Ising model. In this
case higher particle form factors are vanishing in the underformed theory but not in the de-
formed one. Nonetheless, even in this case we find factorisation into a function of the defor-
mation parameters and a function that does not depend on those parameters. As expected,
our solutions reduce to the known form factors when all deformation parameters vanish.

Starting from form factor solutions for local and semi-local fields depending on a set
of continuous deformation parameters we can now expand the correlation functions and
examine their properties. There is an infinite set of distinct deformations we can study, as
many as the parameter choices we can make, but in essence the leading behaviours are de-
termined by the term associated with the highest spin s∗ which is involved in the scattering
matrix (1.2) and minimal form factor (2.7), both characterised by the coupling αs∗ .

• If the parameter αs∗ > 0 correlators are divergent at short distances, i.e. in the UV
limit. In this case the UV limit is described by fundamental excitations of finite,
positive length, and the divergence reflects the fact that the deep UV limit can no
longer be probed. It is interesting to mention that also in the TBA context, for the
case of a Gibbs ensemble, taking αs∗ > 0 leads to convergence problems, in this case
affecting the recursive procedure typically used to solve the TBA equations.

• If αs∗ > 0 correlators are generally also divergent at large distances, unless a rapidity
cut-off is introduced. The physical idea behind this is that if distances are large but
momentum is also large, the finite-length of the excitations again comes into focus
and correlators are divergent. However, for sufficiently low rapidities, convergence
can be preserved. There is a natural rapidity cut-off which, interestingly, is described
by the Lambert W -function, a function that is typically encountered in the context
of delay equations [90] and also in the GHD description of TT perturbed theories [67]
and JT-gravity [7, 91].

• If the parameter αs∗ < 0 then the form factor expansion of correlation functions is
rapidly convergent — faster than in the unperturbed model — both for large and
short distances. The form factor expansion suggests that for short distances two-
point functions still scale as power laws r−4zO(α), just like in critical models. The
exponents zO(α) are smaller compared to the unperturbed ones zO(α) ≤ zO(0) and
decay as −αs∗ grows

lim
αs∗→−∞

zOn (α) = 0 . (5.1)

Here zO(α) := ∑
n zOn (α) and zOn (α) is the n-particle contribution to the exponent

in the form factor series. For the field µ, this behaviour is found both from the
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short-distance scaling of correlation functions and from the ∆-sum rule [92] in the
two-particle approximation. It is also possible to employ Zamolodchikov’s c-theorem
to see that the “perturbed” c-function is a rapidly decreasing function of α.

• The physical picture suggested by these results is that for αs∗ < 0 the perturbed IQFT
flows between a UV theory, characterised by finite α-dependent critical exponents
and “effective” central charge, and a “trivial” IR fixed point dictated by the presence
of a mass scale.

There are of course many open questions and possible extensions of this work.
First, although we have proposed an intuitive interpretation in the paper, the precise

role and meaning of the minimal form factor “CDD” factor (2.8) remains to be better
understood.

Second, and connected to the previous point, given how reliant all our results are on the
minimal form factor, it is highly desirable to find an independent method to derive (2.7)
and (2.8) and to show that these are the only possible minimal solutions. A possible
approach is perturbation theory. Since the modification of the minimal form factor is uni-
versal, it would be sufficient to derive it for one simple theory, such as the Ising field theory.

Third, in the convergent regime, it is important to understand what the form factor
expansion of correlation functions is telling us about the underlying theory. For the few
examples analysed here we find power-law scaling at short-distances and, although this
is not evident from the figures, there is also an underlying oscillatory behaviour of the
exponents as functions of α (i.e. they are not monotonic functions of α). It is known from
the existing literature that the UV theory cannot be a CFT in the standard sense, thus, how
should we interpret the scaling behaviours that we have found? A related open question is
what the ∆’s and c that we obtain from the ∆-sum rule and Zamolodchikov’s c-theorem
actually represent for a TT-deformed theory. Even though the two-particle estimate of
Fµ(α) gives a decreasing function that flows from 1/16 to zero and which shares some
properties with the exponent zµ

2 (α) it is most likely that these are two different functions.
For instance, if we were to add further terms in the form factor expansion of the

correlator ⟨µ(0)Θ(r)⟩, there is no guarantee those terms will be positive or even real for
α ̸= 0, since the form factors involved contain square roots of functions that are not
positive-definite. Thus the function resulting from the ∆-sum rule is almost surely not
the same as the power in the power-law short-distance scaling of the two-point function
⟨µ(0)µ(r)⟩ where all terms must be positive and real. An interesting feature of the Ising
model is that the form factors of all fields in the unperturbed theory are such that cumulants
diverge for large rapidities. This leads to an interesting feature, namely that the functions
zµ

2 (α), zε
2(α) have a sharp discontinuity exactly at α = 0. In other words, for the Ising field

theory, not only are the α > 0 and α < 0 regimes extremely different but, from the form
factor viewpoint, the point α = 0 is also distinct from the limit α → 0 of either of them.

Given the finite length of elementary excitations, one would expect that the ∆-sum
rule and c-theorem, formulae where there is integration over ‘all’ length scales should
be modified. Indeed, our results for the c-function, while no doubt encapsulate some
interesting physics, also show that this function is extremely different from its counterpart
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in the TBA context. In fact, we know that for α < 0 the TBA c-function becomes complex
in the UV limit, a fact that is directly related to the existence of a Hagedorn transition [70].
The standard c-theorem, does not allow for such a behaviour, simply because the two-point
function of the trace of the stress-energy tensor is positive-definite by construction.

Fourth, another interesting problem we have already started analysing is the extension
of this derivation to the branch point twist fields that play such a prominent role in the
context of entanglement [85, 87].

Fifth, it would be nice to connect this program to existing work in CFT. It should
be possible by carrying a massless limit of correlation functions/form factors to recover
previous results, also in the context of entanglement.

Finally, we would like to study other (interacting) IQFTs. The beginning of such a
study has been provided in [73].
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A Correlation functions and cumulants for more general TT perturba-
tions

In this appendix we discuss briefly two cases: the case when α ̸= 0 and αs ̸= 0 for some
s ̸= 1 (that is, there are two free parameters, a generalised TT-perturbation involving TT
and a higher spin s operator), and the case when only a spin s term is present αs ̸= 0 but
also the parameter βs ̸= 0 with all other αs and βs equal zero.

A.1 Cut-off for a generalised TT perturbation: α, αs ̸= 0

Consider the case when two parameters in the vector α are non-zero. We choose α1 = α

and αs with s > 1. The form of the cumulants is just a special case of the general
formulae (4.10) and (4.11). The analysis is rather similar to that of subsection 4.2.1.

For αs > 0 and any values of α (positive or negative), we can again find (for large
r) a rapidity cut-off below which convergence can be maintained. In this case, the condi-
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tion (4.14) is replaced by

2r cosh x

2 >
αx

π
sinh x + αsx

π
sinh(sx), (A.1)

and for large x it is the term sinh(sx) that dominates, giving the following equation for
the cut-off

2πr

αs
= xe(s− 1

2 )x . (A.2)

which has solution
Λ = 1

s − 1
2

W0

(
2πr(s − 1

2)
αs

)
. (A.3)

In other words, the contribution of the parameter αs with larger spin dominates over the
lower one α and the above result holds whether α is positive or negative.

A.2 Cut-off for a generalised TT perturbation: αs, βs ̸= 0

We now take a look at the cut-off for the two-particle cumulant in the case when only
one higher spin charge is present αs ̸= 0 but we allow for the parameter βs in (2.8) to be
non-zero as well.

In this case, convergence of the integral in the two-particle cumulant is achieved for
values of rapidity x satisfying

2r cosh x

2 >
αsx

π
sinh(sx) + βs cosh(sx) . (A.4)

For large rapidities, the inequality above can be approximated by

2rπ

αs
> (x + πβs

αs
)ex(s− 1

2 ) . (A.5)

The cut-off is the solution of this equation when inequality is replaced by equality and
terms are rearranged so generate an equation whose solution may be expressed in terms of
Lambert’s function. This can be done by multiplying both sides of the equation by a factor

2rπ

αs

(
s − 1

2

)
e

πβs
αs

(s− 1
2 ) =

(
s − 1

2

)(
x + πβs

αs

)
e(x+ πβs

αs
)(s− 1

2 ) , (A.6)

so that the solution is(
s − 1

2

)(
Λ + πβs

αs

)
= W0

(2rπ

αs

(
s − 1

2

)
e

πβs
αs

(s− 1
2 )
)

, (A.7)

or
Λ = 1

s − 1
2

W0

(2rπ

αs

(
s − 1

2

)
e

πβs
αs

(s− 1
2 )
)
− πβs

αs
, (A.8)

which reduces to (4.18) for s = 1, βs = 0, αs = α and to (A.3) for βs = 0.
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