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Differential sensitivity measures provide valuable tools for interpreting complex computational models used

in applications ranging from simulation to algorithmic prediction. Taking the derivative of the model output

in direction of a model parameter can reveal input-output relations and the relative importance of model

parameters and input variables. Nonetheless, it is unclear how such derivatives should be taken when the

model function has discontinuities and/or input variables are discrete. We present a general framework for

addressing such problems, considering derivatives of quantile-based output risk measures, with respect to

distortions to random input variables (risk factors), which impact the model output through step-functions.

We prove that, subject to weak technical conditions, the derivatives are well-defined and derive the cor-

responding formulas. We apply our results to the sensitivity analysis of compound risk models and to a

numerical study of reinsurance credit risk in a multi-line insurance portfolio.

Key words : Sensitivity analysis, importance measurement, differential sensitivity measures, simulation,

risk measures, credit risk.

1. Introduction

The interpretability of complex computational models is of fundamental importance across areas

of applications, with sensitivity analysis providing tools for understanding the importance of risk

factors, their interactions and their impact on a model’s output (Saltelli et al. 2008, Borgonovo

and Plischke 2016, Razavi et al. 2021, Fissler and Pesenti 2023). In recent years, the field received

renewed impetus by the widespread adoption of machine learning and artificial intelligence mod-

els for prediction tasks, which are usually opaque and thus require additional work to illuminate

input/output relationships. Contributions in this field range from the development of general

model-agnostic model interpretation procedures (Ribeiro et al. 2016, Borgonovo et al. 2023), to

those tailored to a class of models, such as tree ensembles (Lundberg et al. 2018) and neural net-

works (Merz et al. 2022), or to specific applications, such as image recognition (Chen et al. 2019)

and credit scoring (Chen et al. 2023). Furthermore, the interest in model interpretation is ampli-

fied by the requirement for models’ behaviour to be fair, in the sense that it does not generate
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discriminatory impacts on protected groups (Frees and Huang 2021, Kozodoi et al. 2022, Lindholm

et al. 2022) – such concerns have generated further research at the interface of sensitivity analysis

and algorithmic fairness (Bénesse et al. 2022, Hiabu et al. 2023).

As part of sensitivity analysis, metrics are often used to assess the importance of model inputs.

A broad class of such metrics is that of differential sensitivity measures, which rely on derivatives

of (a statistical functional of) the model output, in the direction of a perturbation of a (random)

input factor (Antoniano-Villalobos et al. 2018). Recent advances in sensitivity analysis pertain to

perturbing quantile-based risk measures of the model output (Tsanakas and Millossovich 2016,

Browne et al. 2017, Pesenti et al. 2021, Merz et al. 2022). In that context, fundamental technical

requirements for differential sensitivity measures include differentiability of the model function and

Lipschitz continuity of the model output in the perturbation (Broadie and Glasserman 1996, Hong

2009, Hong and Liu 2009). These requirements are stringent, as many computational models map

input factors to outputs in a discontinuous manner; examples include credit risk models (Chen

and Glasserman 2008), financial derivatives and insurance contracts (Albrecher et al. 2017), and

tree-based predictive models (Chen and Guestrin 2016).

In this work, we overcome such strong conditions and derive, under rather mild assumptions,

formulas for differential quantile-based sensitivity measures, in models where the input-output

relationship contains step functions. This is a general setting, since many functions with a finite

number of jump discontinuity points can be written via a sum of step functions. We focus on

the two most common quantile-based risk measures, Value-at-Risk (VaR) and Expected Shortfall

(ES), although the expressions can be generalised for the broader case of distortion risk measures

and rank dependent expected utilities. We consider two types of differential sensitivity measure,

marginal sensitivities and cascade sensitivities. The marginal sensitivity quantifies an input factor’s

sole effect on a model output’s risk measure (Hong 2009, Tsanakas and Millossovich 2016). In

contrast, in the cascade sensitivity setting (Pesenti et al. 2021) a perturbation of a risk factor

affects other dependent risk factors, which in turn impact the output risk measure. To prove the

derived sensitivity formulas we use quantile differentiation and weak convergence of generalised

functions. We find that stresses propagated via step functions naturally lead to delta functions,

which in turn allow for representation as conditional expectations. Hence, our framework allows

estimation of differential sensitivity measures by standard simulation-based methods (Glasserman

2005, Fu et al. 2009, Koike et al. 2022).

Key to our framework is the choice of perturbation or stress on the random input factor. In

particular, the technical conditions we require pertain to the continuity of the stressing mechanism

rather than the underlying random input factor. Consequently, our methods can also be applied

to the calculation of differential sensitivity measures with respect to discrete random inputs for
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a suitably chosen stress. Sensitivity to discrete or categorical input factors is of importance in a

variety of fields, such as modelling biological systems (Gunawan et al. 2005), chemical processes

(Plyasunov and Arkin 2007), and insurance claims (Wüthrich and Merz 2023).

The manuscript is organised as follows. Section 2 introduces the discontinuous loss model and

discusses choices of stresses on a risk factor. Following that, expressions are derived for differential

(marginal) sensitivities, with respect to the VaR and ES risk measures. The next two sections

contain extensions within that framework. Section 3 deals with cascade sensitivities, which reflect

indirect effects via risk factors’ dependence structure. Section 4 provides differential sensitivities

when the considered input random variables are discrete, along with an application to compound

distributions. Finally, a detailed numerical study of a reinsurance credit risk portfolio is given

in Section 5. Differential sensitivity formulas for a more general model function can be found in

Appendix A. All proofs are delegated to Appendix B. Finally, Appendix C contains additional

details on the reinsurance credit risk portfolio model used in Section 5.

2. Differential Sensitivity Measures

2.1. Portfolio Loss Model

We work on a probability space (Ω,A,P) and consider a discontinuous model of the form

L :=
m∑
j=1

gj(Z)1{Xj≤dj}, (1)

where:

• The random vectors X := (X1, . . . ,Xm), Z := (Z1, . . . ,Zn), m,n ∈N are model inputs or risk

factors;

• L is the (univariate) random model output, which we typically interpret as a loss;

• Discontinuities emerge at those states where elements of X cross the thresholds d1, . . . , dm ∈R;

• The functions gj : Rn→ R, j ∈M := {1, . . . ,m} represent the (random) jump of the model

output at the points of discontinuity.

We assume throughout that the marginal distribution functions of Xj, j ∈M and Zk, k ∈ N :=

{1, . . . , n}, denoted by Fj(x) := P(Xj ≤ x) and Fm+k(z) := P(Zk ≤ z), respectively, are absolutely

continuous and strictly increasing on their support and denote their corresponding (strictly positive,

a.e. on their support) densities by fj and fm+k respectively. We further denote by F (l) := P(L≤ l)

the distribution of the loss L. The functions gj : Rn→R, j ∈M are differentiable.

A standard example of a discontinuous loss (1) is a structural model of a credit risk portfolio (e.g.

McNeil et al. 2015, Ch. 11), where {Xj ≤ dj} represents the default event of obligor j and gj(Z)

the corresponding loss given default. Applications to credit risk modelling are further discussed in
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Example 1 and Section 5. We note that the model (1) is formulated such that gj are functions of

Z only. We make this assumption throughout the paper to simplify exposition; the general case of

gj depending on both Z and X is treated in Appendix A.2.

The risk of a loss is assessed via a risk measure ρ : L1→R, where L1 denotes the set of integrable

random variables on (Ω,A,P). The two most widely used risk measures in practice are the Value-

at-Risk (VaR) and the Expected Shortfall (ES). The VaR at level α ∈ [0,1] of the portfolio loss L

is defined as the (left-) quantile function of L evaluated at α, that is

VaRα(L) := F−1(α) = inf{y ∈R |F (y)≥ α} ,

with the convention that inf ∅= +∞. The Expected Shortfall at level α∈ [0,1) of the portfolio loss

L is defined by

ESα(L) :=
1

1−α

∫ 1

α

F−1(u)du .

While we focus on VaR and ES, the sensitivities can be generalised to other quantile-based func-

tionals, such as rank dependent expected utilities or spectral risk measures (Acerbi 2002) – in the

interest of concision we do not pursue this further.

In Section 2.3 we introduce the marginal sensitivity measure, and derive expressions in the

context of the VaR/ES risk measures and the discontinuous model (1). The sensitivity measure

is defined via a partial derivative of a risk measure in the direction of a stressed version of a risk

factor; hence we first introduce ways of stressing risk factors.

2.2. Stressing Risk Factors

Throughout the paper, we fix the index i of the risk factor with respect to which sensitivity is

calculated, such that stresses are applied to either Xi, with i∈M, or to Zi, with i∈N . We define

a stress on Xi or Zi as a deformation of the risk factor given by

Xi,ε := κε(Xi) , respectively, Zi,ε := κε(Zi) ,

where κε : R→R is a stress function defined as follows.

Definition 1 (Stress Function). A family of functions κε : A→A, A⊆R, where ε∈ [0,+∞),

is called a stress function, if it satisfies the following properties:

i) For all ε in a neighbourhood of 0, the function κε(x) is invertible in x∈A, denoted by κ−1
ε (·);

ii) lim
ε↘0

κε(x) = x, for all x∈A;

iii) lim
ε↘0

κ−1
ε (x) = x, for all x∈A;

iv) One of the following holds:

(a) for all ε in a neighbourhood of 0 and all x∈A, it holds that κε(x)≥ x; or
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(b) for all ε in a neighbourhood of 0 and all x∈A, it holds that κε(x)≤ x;

v) κε(x) is differentiable in ε at ε= 0, and we denote its derivative by

K(x) := lim
ε→0

κε(x)−x
ε

, x∈A ;

vi) κ−1
ε (x) is differentiable in ε at ε= 0, and we denote its derivative by

K−1(x) := lim
ε→0

κ−1
ε (x)−x

ε
, x∈A.

We further define

c(κ) :=

{
+1, if κε fulfils iv) (a) ,

−1, if κε fulfils iv) (b) .
(2)

The requirements on the stress function are assumptions on its continuity. First, if stressing Xi,

we typically assume that the domain of the stress function A is equal to the support of Xi. This

guarantees that Xi and its stressed version κε(Xi) have the same support. Second, properties i) to

iii) provide that the stressed risk factor converges P-a.s. to its unstressed form as ε↘ 0. Property

iv) means that the stress, e.g. Xi,ε, either approaches Xi P-a.s. from above or below. The last two

properties imply that the stress function and its inverse are differentiable, so that the sensitivities,

introduced in Sections 2.3 and 3, exist.

Different stress functions may be used, depending on the context of the problem investigated

and what type of deformation of a risk factor is interpretable within that context. For example

additive and proportional stresses can be seen as modifications of location and scale respectively;

tail stresses may reflect risk management objectives; mixture stresses are used to represent model

uncertainty. Some stress functions and related quantities are summarised in Table 1. The additive

and proportional stresses with β > 0 are such that property iv) (a) is satisfied and the stress

stochastically increases the risk factor; this is easily modified by choosing β < 0. For the mixture

and tail stresses both increasing (iv) (a)) and decreasing (iv) (b)) versions of the stresses are stated.

The functions K, K−1 are easily worked out; some additional detail for mixture stresses is given

in Appendix B.1. Stress functions should be designed with particular investigations in mind; we

explore this further in Example 1.

2.3. Marginal Sensitivity

For a stress Zi,ε or a stress Xi,ε, we denote the corresponding marginally stressed loss model by,

respectively

Lε(Zi) :=
∑
j∈M

gj(Z−i,Zi,ε)1{Xj≤dj} and

Lε(Xi) :=
∑
j 6=i
j∈M

gj(Z)1{Xj≤dj}+ gi(Z)1{Xi,ε≤di} ,
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Table 1 Types of stress functions and related quantities.

Type of stress κε K K−1 c(κ)

Additive x+βε β −β sgn(β)

Proportional x(1 +βε) βx −βx sgn(β)

Probability F−1
i

(
Fi(x) +βx

)
β

fi(x)
−β
fi(x)

sgn(β)

Mixture
F−1
i,ε ◦Fi(x), where Fi(x)−G(x)

fi(x)
G(x)−Fi(x)

fi(x)
sgn

(
Fi(x)−G(x)

)
Fi,ε(x) := (1− ε)Fi(x) + εG(x)

Tail
x+ ε (x− t)1{x≥t} (x− t)+ −(x− t)+ 1

x+ ε (x− t)1{x≤t} −(t−x)+ (t−x)+ −1

where (Z−i,Zi,ε) is the vector Z whose ith component is replaced by Zi,ε. We call Lε, denoting

either Lε(Zi) or Lε(Xi), the marginally stressed loss, since only the marginal distribution of Zi or

Xi is altered, leaving all other input factors fixed. We denote by Fε(·) the distribution function of

Lε and by qε(·) := F−1
ε (·) the quantile function of Lε for any ε≥ 0.

For the sensitivities to exist, we require two assumptions on the stressed loss model.

Assumption 1. Let 0 ≤ α ≤ 1. For all ε in a neighbourhood of 0 the distribution function Fε of

the marginally stressed loss Lε is continuously differentiable at qα := F−1(α) and let fε(·) be the

derivative of Fε. For ε= 0, we simply write F := F0 and f := f0.

Assumption 2. Let 0≤ α≤ 1. The quantile function at level α of the stressed loss Lε, qε(α), is

differentiable with respect to ε, that is ∂
∂ε
qε(α) exists.

Definition 2 (Marginal Sensitivity). The marginal sensitivity to the risk factor Zi and Xi

for a risk measure ρ is defined by, respectively,

SZi [ρ ] :=
∂

∂ε
ρ (Lε(Zi))

∣∣∣
ε=0

and SXi [ρ ] :=
∂

∂ε
ρ (Lε(Xi))

∣∣∣
ε=0

, (3)

whenever the derivatives exists.

Theorem 1 (Marginal Sensitivity VaR). Let Assumptions 1 and 2 be fulfilled for a given α∈
(0,1). Then, the marginal sensitivity for VaRα to input factor Zi for a stress with stress function

κε is

SZi [VaRα ] =
∑
j∈M

E
[
K(Zi)∂i gj(Z)1{Xj≤dj}

∣∣ L= qα
]
,

where ∂i gj(z) := ∂
∂zi
gj(z) is the partial derivative in the ith component. The marginal sensitivity to

input factor Xi is given by

SXi [VaRα ] = c(κ)K−1(di)
fi(di)

f (qα)
E
[(
1{L≤qα+c(κ)gi(Z)}−1{L≤qα}

) ∣∣ Xi = di
]
.
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Theorem 2 (Marginal Sensitivity ES). Let Assumptions 1 and 2 be fulfilled for a given α ∈
(0,1). Then, the marginal sensitivity for ESα to input factor Zi for a stress with stress function κε

is

SZi [ESα ] =
∑
j∈M

E
[
K(Zi)∂i gj(Z)1{Xj≤dj} | L≥ qα

]
.

The marginal sensitivity to input factor Xi for a stress with stress function κε is

SXi [ESα ] =
−c(κ)K−1(di)fi(di)

1−α
E
[(
L− c(κ)gi(Z) − qα

)
+
−
(
L− qα

)
+

∣∣∣ Xi = di

]
.

The marginal sensitivity measures to Zi for both the VaR and ES generalise the sensitivities derived

in Hong (2009), Hong and Liu (2009) to loss functions L that are not Lipschitz continuous and to

general types of stresses. Related, Fu et al. (2009) proposes a conditional Monte-Carlo approach

to estimate quantile sensitivities. Note however, that their key assumption is that the perturbed

distribution function of Lε can be written as FLε(t) =E[G(t, ε, Y (ε))], where G is P-a.s. continuous

w.r.t. ε and Y (ε) is an arbitrary random variable. This assumption does not hold in our setting

as can be seen in, e.g., Equation (15) of the Proof of Theorem 1. Furthermore, one could derive

the marginal sensitivities of ESα – as well as those of other spectral risk measures (Acerbi 2002) –

using its representation as the integral of VaRα. Interchanging the limit and the integral, however,

requires that the sensitivities for VaRβ to exist, for all β ∈ [α,1). This in particular would imply

that Assumptions 1 and 2 need to hold for all β ∈ (α,1), which is in contrast Theorem 2 which

requires Assumptions 1 and 2 to hold for α only.

We now provide an expression for the marginal sensitivity of the mean. While this could be

obtained as a special case of Expected Shortfall with α= 0, it is simpler to derive Corollary 1 as a

direct consequence of Lemma 1 in Appendix B.

Corollary 1 (Marginal Sensitivity Mean). Let κε be a stress function, then the marginal

sensitivity for the mean (E) to input factor Zi respective Xi are

SZi [E ] =
∑
j∈M

E
[
K(Zi)∂i gj(Z)1{Xj≤dj}

]
and

SXi [E ] =K−1(di)fi(di) E [gi(Z) | Xi = di] .

We conclude the section with an example of how the marginal sensitivity measure can be applied

in the context of a standard portfolio credit risk model, with two different analysis objectives in

mind.

Example 1. Consider a credit risk setting, where Z has the same dimension as X, with gj(Z) =

Zj, j ∈M representing the loss given default and {Xj ≤ dj} the default events with corresponding

probabilities Fj(dj). Hence we have that

L=
∑
j∈M

Zj1{Xj≤dj} .
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A first analysis pertains to the calculation of the sensitivity of the portfolio ES with respect

to the probability of the i-th default event. To achieve this, we need to formulate an appropriate

stress function. Consider the probability stress from Table 1, κε(x) = F−1
i (Fi(x)− ε), leading to

Xi,ε = F−1
i (Fi(Xi)− ε) and

P(Xi,ε ≤ di) = P (Fi(Xi)≤ Fi(di) + ε) = Fi(di) + ε.

Hence the chosen stress function gives an additive stress on the default probability, such that the

sensitivity SXi [ESα ] becomes precisely the derivative of the portfolio risk in direction of the default

probability of the i-th obligor. Using c(κ) =−1 and K−1(x) = 1
fi(x)

; Theorem 2 yields:

SXi [ESα ] =
1

1−α
E
[(
L− (qα−Zi)

)
+
−
(
L− qα

)
+

∣∣∣ Xi = di

]
.

The resulting sensitivity can thus be understood as the difference between two expectations, each

representing the excess portfolio loss over a threshold, conditioned on the least adverse outcome of

Xi that gives a default of the i-th obligor. The difference between the two terms lies in the lower

threshold used in the first term, which is reduced by the loss given default Zi.

Second, we consider the sensitivity to a proportional increase in the loss given default Zi, that

is, using κε(z) = z(1 + ε). Application of Theorem 2 then gives us:

SZi [ESα ] =E
[
Zi1{Xi≤di} | L≥ qα

]
.

Note that this is precisely the Euler allocation of the risk ESα(L) to the loss Zi1{Xi≤di} to the i-th

obligor (Tasche 1999).

Finally, within the same model, we turn our attention to assessment of the relative importance of

common factors that drive dependence between defaults. The dependence of the critical variables

Xj is often modelled via factor models (McNeil et al. 2015, Ch. 6.4, 11) and a question of interest is

the relative importance of underlying factors for portfolio risk. Consider the following representation

Xj :=
τ∑
t=1

βj,tWt +Vj, j ∈M,

where Wt, t = 1, . . . , τ , τ ∈ N, are the common factors, and Vj are idiosyncratic error terms. We

are interested in the sensitivity of the portfolio loss to the factor Ws. To that effect, define:

X̃j,ε :=
∑
t 6=s

βj,tWt +βj,s(Ws− ε) +Vj =Xj −βj,sε ,

κ̃ε(x) := x−βj,sε ,

L̃ε :=
∑
j∈M

Zj1{κ̃ε(Xj)≤dj} .
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The sensitivity of the portfolio risk to the factor Ws can then be written as

∂

∂ε
ESα(L̃ε)

∣∣∣∣
ε=0

=
∑
j∈M

SXj [ESα] ,

where the sensitivities SXj [ESα] are now calculated with the stress functions κ̃ε above. Applying

again Theorem 2 leads to

∂

∂ε
ESα(L̃ε)

∣∣∣∣
ε=0

=
∑
j∈M

fj(dj)βj,s
1−α

E
[(
L− (qα−Zj)

)
+
−
(
L− qα

)
+

∣∣∣ Xi = di

]
.

Hence, intuitively, the sensitivity to the common factor Ws is expressed as sum of sensitivities for

each obligor, weighted by the factor loadings βj,s.

3. Measuring Cascading Effects

The marginal sensitivity introduced in Section 2.3 quantifies the differential impact of stressing a

risk factor on the portfolio loss. Here, we provide the first generalisation/adjustment of the frame-

work, by considering cascade sensitivity measures, as discussed in Pesenti et al. (2021). These

sensitivity measures quantify not only the sensitivity to an individual input Xi, but also consider

(joint) perturbation of all other risk factors Xj, j 6= i, and Zk, k ∈ N , induced by their statisti-

cal dependence on Xi. This is achieved by using the inverse Rosenblatt transform, recalled next

(Rosenblatt 1952, Rüschendorf and de Valk 1993).

Definition 3 (Inverse Rosenblatt Transform). An inverse Rosenblatt transform of an m-

dimensional random vector Y , starting at Yi, for fixed i ∈ M, is given by a function Ψ =

(Ψ(1), . . . ,Ψ(m))> : Rm→ Rm and an (m− 1)-dimensional random vector V = (V1, . . . , Vm−1), con-

sisting of independent standard uniform variables, independent of Yi, such that

Y = Ψ (Yi,V ) =
(
Ψ(1)(Yi,V ), . . . , Ψ(m)(Yi,V )

)
, P-a.s. .

In particular, Yk = Ψ(k)(Yi,V ) P-a.s. for all k ∈M.

To construct the cascade sensitivity to input Xi, we proceed via the following steps. First,

we write the vector of risk factors (X,Z) via its inverse Rosenblatt transform starting from Xi.

From this we obtain (X,Z) = Ψ(Xi,V ) P-a.s., that is Xj = Ψ(j)(Xi,V ), for all j ∈M, and Zk =

Ψ(m+k)(Xi,V ) for all k ∈ N . Second, we stress Xi to Xi,ε, such that the stressed vector of risk

factors becomes Ψ(Xi,ε,V ). Thus, using the inverse Rosenblatt transform, all other risk factors are

perturbed according to their dependence on Xi. Third, we apply the marginal sensitivity to the

portfolio loss as a function of the stressed input vector Ψ(Xi,ε,V ). When stressing Zi the process

is analogous. For simplicity of notation, we use Ψ for the inverse Rosenblatt transform regardless
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of whether the transform starts at Xi or Zi. We further write Ψ(Z) = (Ψ(m+1), . . . ,Ψ(m+n)), so that

Z = Ψ(Z)(Xi,V ) or Z = Ψ(Z)(Zi,V ) (depending on whether the inverse Rosenblatt transform

starts at Xi or Zi). Specifically, following the above process, we can define the stressed loss models

for stresses Zi,ε and Xi,ε respectively by

LΨ
ε (Zi) :=

∑
j∈M

gj

(
Ψ(Z) (Zi,ε,V )

)
1{Ψ(j)(Zi,ε,V )≤dj} and

LΨ
ε (Xi) :=

∑
j∈M

gj

(
Ψ(Z) (Xi,ε,V )

)
1{Ψ(j)(Xi,ε,V )≤dj} .

With these building blocks in place, we can now define the cascade sensitivity measure in the

specific context of this paper.

Definition 4 (Cascade Sensitivity). The cascade sensitivity to the risk factor Zi and Xi for

a risk measure ρ is defined by, respectively,

CZi [ρ ] :=
∂

∂ε
ρ
(
LΨ
ε (Zi)

)∣∣∣
ε=0

, and CXi [ρ ] :=
∂

∂ε
ρ
(
LΨ
ε (Xi)

)∣∣∣
ε=0

, (5)

whenever the derivative exists.

Note that if the cascade sensitivity is exists, it is independent of the choice of Rosenblatt trans-

form, see Prop. 3.6 in Pesenti et al. (2021). In order to establish existence, in this section we make

the assumption that the inverse Rosenblatt transforms are differentiable and locally monotone in

their first argument. This means that stressing a model input leads to perturbation of elements of

X that makes them P-a.s. greater (or smaller) than the original input Xj.

Assumption 3. Let κε be a stress function and Y, Yε be such that either Y := Zi, Yi,ε := Zi,ε or

Y := Xi, Yi,ε := Xi,ε. Let Ψ be a differentiable inverse Rosenblatt transform starting at Y , such

that (X,Z) = Ψ(Y,V ). Then, for each j ∈M, one of the following holds

(a) for all ε in a neighbourhood of 0, it holds Ψ(j) (Yi,ε,V )≥Xj P-a.s.; or

(b) for all ε in a neighbourhood of 0, it holds Ψ(j) (Yi,ε,V )≤Xj P-a.s.

In the case (a) we denote c(κ; j) = 1 and in the case (b) c(κ; j) =−1.

With these assumptions in place, we can now obtain explicit formulas for the cascade sensitivity

measure of Definition 4. In Theorems 3 and 4 below we deal with the case of ES, while formulas

for VaR are given in Appendix A.1. We observe that the cascade sensitivity to both Xi and Zi

entails a decomposition, reflecting the indirect contribution of the vector being stressed via the

other inputs Xj, Zk.
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Theorem 3 (Cascade Sensitivity ES to Xi). Let Assumptions 1, 2 and 3 (for Y =Xi) be ful-

filled for the stressed model LΨ
ε (Xi) and α ∈ (0,1). Denote Ψ

(j)
1 (x,v) := ∂

∂x
Ψ(j)(x,v). Then, the

cascade sensitivity for ESα to input Xi is given by

CXi [ESα ] =
∑
j∈M

CXi,Xj +
∑
k∈N

CXi,Zk ,

where, for all k ∈N ,

CXi,Zk =
∑
j∈M

E
[
K(Xi)∂k gj(Z)Ψ

(m+k)
1 (Xi,V )1{Xj≤dj}

∣∣∣ L≥ qα] ,
and for all j ∈M,

CXi,Xj =− c(κ; j)fj(dj)

1−α
E
[
K−1(Xi)Ψ

(j)
1 (Xi,V )

((
L− c(κ; j)gj(Z) − qα

)
+
−
(
L− qα

)
+

)∣∣∣ Xj = dj

]
.

Theorem 4 (Cascade Sensitivity ES to Zi). Let Assumptions 1, 2 and 3 (for Y =Zi) be ful-

filled for the stressed model LΨ
ε (Zi) and α ∈ (0,1). Then, the cascade sensitivity for ESα to input

Zi is given by

CZi [ESα ] =
∑
j∈M

CZi,Xj +
∑
k∈N

CZi,Zk ,

where, for all k ∈N ,

CZi,Zk =
∑
j∈M

E
[
K(Zi)∂k gj(Z)Ψ

(m+k)
1 (Zi,V )1{Xj≤dj}

∣∣∣ L≥ qα] ,
and for j ∈M,

CZi,Xj =− c(κ; j)fj(dj)

1−α
E
[
K−1(Zi)Ψ

(j)
1 (Zi,V )

((
L− c(κ; j)gj(Z) − qα

)
+
−
(
L− qα

)
+

)∣∣∣ Xj = dj

]
.

To calculate the cascade sensitivities, we need the derivative of the inverse Rosenblatt transform.

This calculation is simplified by noting that the value of the cascade sensitivity is independent

of the specific choice of Rosenblatt transform. Hence, when calculating, for example, Ψ
(j)
1 (Xi,V ),

we can without loss of generality use the standard construction (Rüschendorf and de Valk 1993)

Ψ(j)(Xi,V ) = F−1
Xj |Xi

(V1|Xi) in Theorem 3 – analogously if Zi is being stressed (Theorem 4). As

a result, it is sufficient to consider the derivatives of inverse Rosenblatt transforms corresponding

to the bivariate dependence structure of, e.g., (Xi,Xj). If the bivariate copula between the risk

factors are known, analytical expressions for the required derivatives may be available. We refer

also to Pesenti et al. (2021), where the formulas given below for the Gaussian and t copulas are

derived.

For simplicity of presentation, we only provide the expressions for Ψ
(j)
1 (Xi, V ), where V is

a suitably defined random variable such that Xj = Ψ(j)(Xi, V ). The formulas for Ψ
(j)
1 (Zi, V ),

Ψ
(m+k)
1 (Xi, V ), and Ψ

(m+k)
1 (Zi, V ), for j ∈M, k ∈N follow analogously.
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Proposition 1 (Bivariate Inverse Rosenblatt Transform). Denote by Φ, φ, the distribution

function and density of a standard normal variable, and by tν , sν the distribution function and

density of a t-distributed random variable with ν degrees of freedom.

1. Assume (Xi,Xj) follows a Gaussian copula with correlation parameter rij and define Yi :=

Φ−1(Fi(Xi)) and Yj := Φ−1(Fj(Xj)). Then,

Ψ
(j)
1 (Xi, V ) = rij

fi(Xi)

φ (Yi)

φ (Yj)

fj(Xj)
,

2. Assume (Xi,Xj) follows a t copula with correlation parameter rij and ν degrees of freedom

and define Yi := t−1
ν (Fi(Xi)) and Yj := t−1

ν (Fj(Xj)). Then,

Ψ
(j)
1 (Xi, V ) =

(
rij +

Yi Yj − rijY 2
i

ν+Y 2
i

)
fi(Xi)

sν(Yi)

sν(Yj)

fj(Xj)
.

3. Assume (Xi,Xj) follows a Archimedean copula with generator ψ : [0,+∞]→ [0,1], i.e., the

copula is given by

C(u1, u2) =ψ
(
ψ−1(u1) +ψ−1(u2)

)
, u1, u2 ∈ [0,1] ,

where ψ−1 denotes the inverse of the generator ψ. Then, for i 6= j

Ψ
(j)
1 (Xi, V ) =

ψ̇ (ψ−1(Uj))

ψ̇ (ψ−1(Ui))

(
ψ̇ (ψ−1(Ui) +ψ−1(Uj))

ψ̈ (ψ−1(Ui) +ψ−1(Uj))

ψ̈ (ψ−1(Ui))

ψ̇ (ψ−1(Ui))
− 1

)
fi(Xi)

fj(Xj)
,

where Uj := Fj(Xj), ψ̇(x) := ∂
∂x
ψ(x), and ψ̈(x) := ∂

∂x
ψ̇(x).

4. Sensitivity to Discrete Random Variables

In this section, we adapt the techniques developed so far, to calculate differential sensitivities to

discrete risk factors. Given the different portfolio structure we consider here, we change notation

to avoid confusion with previous sections. We consider the loss model

T := h (W, Y ) , (6)

where Y := (Y1, . . . , Yd), the function h : Rd+1→ R is differentiable, and W is a discrete random

variable which sensitivity we aim to assess. Such a sensitivity calculation presents both technical

and conceptual challenges. While h is differentiable, the corresponding differential (or infinitesimal

increment) in its first argument is hard to interpret, given the discreteness of W . Here we propose to

calculate the differential sensitivity with respect to a continuous variable, from which W is obtained

via a (discontinuous) transformation. In other words, we exchange the problem of discreteness with

the one of non-differentiability, which we have established.
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We assume that W takes values w1 < · · · < wr with P(W ≤ wk) = pk, k = 1, . . . , r, such that

0 =: p0 < p1 < · · ·< pr = 1. Next, we rewrite the loss model (6) into a form analogous to (1). For

this, let V ∼U(0,1) be independent of (W, Y ) and define the uniform random variable U by

U := F̃W (W ;V ) ,

where F̃W (w;λ) := P(W < w) + λP(W = w) is the generalised distributional transform of W

(Rüschendorf 2013). It then follows that U ∼U(0,1), U is comonotonic to W , and

W = F−1
W (U) =

r∑
k=1

wk1{pk−1<U≤pk} , P-a.s. .

Then, following some manipulations, the loss model admits the form:

T =
r∑

k=1

h (wk,Y )1{pk−1<U≤pk} =
r∑

k=1

∆k h (W,Y )1{U≤pk} ,

where ∆k h (W,Y ) := h (wk,Y )−h (wk+1,Y ), for k= 1, . . . r− 1, and ∆rh (W,Y ) := h(wr,Y ).

We next stress the portfolio loss T with respect to W by applying a stress function to U . Hence,

we write the stressed model as follows:

TW,ε :=
r∑

k=1

∆k h (W,Y )1{κε(U)≤pk} . (7)

Stressing the uniform variable that generates W allows for a cohesive stress, given the comono-

tonicity of (W,U). Next, we define the differentiable sensitivity to W via a stress on U by:

S̃W [ρ ] :=
∂

∂ε
ρ(TW,ε)

∣∣∣
ε=0

.

Formulas for this sensitivity are given in the following result.

Theorem 5 (Marginal Sensitivity – Discrete). Let Assumptions 1 and 2 be fulfilled for the

loss model (6) and for a fixed α∈ (0,1). Then the sensitivity for VaR to the discrete input W is

S̃W [VaRα ] =
c(κ)

f(qα)

r∑
k=1

K−1(pk)E
[(
1{T≤qα+c(κ)∆k h(W,Y )}−1{T≤qα}

)
| W =wk

]
,

where, for simplicity of notation, qα is the α-quantile of T and f its density. The sensitivity for

ES to the discrete input W is

S̃W [ESα ] =− c(κ)

1−α

r∑
k=1

K−1(pk)E
[(
T − c(κ)∆k h(W,Y )− qα

)
+
− (T − qα)+ | W =wk

]
.

In the next example, we apply Theorem 5 for the ES-sensitivity calculation of the frequency

variable in a compound loss model. Compound distributions are canonical tools in modelling insur-

ance claims, as well as credit and operational risk losses, and the impact of the choice of frequency

distribution is well attested, see e.g., McNeil et al. (2015).
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Example 2. We represent by T = h(W,Y ) a compound random variable. Specifically, we set

r = d + 1 and assume that W is a discrete loss frequency, taking values in {w1 = 0, . . . ,wd+1 =

d}, while the d elements of Y = (Y1, . . . , Yd) are loss severities. The variable W has distribution

P(W ≤ k−1) = pk, k= 1, . . . , d+ 1. Furthermore, we assume that Y1, . . . , Yd are i.i.d., continuously

distributed with Y1 ∼ FY , and independent of W . The portfolio loss is:

T = h(W,Y ) =
W∑
`=1

Y` ,

with the understanding that for W = 0 we have T = 0. Our aim is to calculate the sensitivity of the

portfolio’s ES to the frequency variable, i.e. to evaluate the quantity S̃W [ESα ], and to compare

this with the impact of the vector of loss severities, S̃Y [ESα ], which are defined below.

The sensitivity S̃W [ESα ] is evaluated by application of Theorem 5. As before let W = F−1
W (U).

To stress U we need to specify a stress function κε(u) : (0,1)→ (0,1). Let κε(u) := Φ(Φ−1(u) + ε) ,

where Φ is the standard normal distribution. This choice is consistent with the well-known Wang

Transform (Wang 2000) in risk measure theory and satisfies the conditions of Definition 1, with

c(κ) = 1. Then, for Uε := Φ(Φ−1(U) + ε) we obtain, using Theorem 5 and after a few manipulations

not documented here, that

S̃W [ESα ] =
d∑
k=1

(
v(pk)− v(pk+1)

)
E

[(
k∑
`=1

Y`− qα

)
+

]
,

where v(p) :=
φ(Φ−1(p))

1−α , p∈ [0,1]. Hence, the sensitivity becomes a linear combination of the stop-

loss terms E[(
∑k

`=1 Y` − qα)+], with the coefficient weights driven by the distribution of the loss

frequency W .

We now turn our attention to stressing the loss severities Y . We choose to stress all elements of

Y at the same time, using a stress function consistent with the one used for W , i.e. the same κε.

Specifically, for U` := FY (Y`), `= 1, . . . , d, we define the stressed portfolio

TY ,ε :=
W∑
`=1

F−1
Y (κε(U`)) =

d∑
k=1

1{W=k}

k∑
`=1

F−1
Y (κε(U`))

and calculate the sensitivity

S̃Y [ESα ] :=
∂

∂ε
ESα(TY ,ε)

∣∣∣
ε=0

.

By the pointwise continuity of the mapping ε 7→ TY ,ε we can calculate S̃Y [ESα ] by standard

methods (Hong and Liu 2009), yielding:

S̃Y [ESα ] :=
d∑
k=1

P(W = k)
k∑
`=1

E
[
1{T>qα}

v(U`)

fY (Y`)
| W = k

]
.
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Figure 1 Changes in the scaled ES-sensitivity to the frequency (blue) and severity (red) of a compound Negative

Binomial-Gamma distribution. The vertical dashed line in each plot represent baseline assumptions.

We now calculate the sensitivities S̃W [ESα ] and S̃Y [ESα ] for a model with the following baseline

assumptions. The confidence level of the risk measure is α= 0.95. The frequency W follows a Nega-

tive Binomial distribution with mean E[W ] = 5 and over-dispersion Var(W)/E[W] = 2.5, truncated

at the 99.9th percentile. The severities Y` follow Gamma distributions with shape parameter θ= 5,

corresponding to a skewness coefficient of 0.894. With these choices, we find that the sensitivities,

scaled by the portfolio risk, take values S̃W [ ESα ]

ESα(T )
= 0.414 and S̃Y [ ESα ]

ESα(T )
= 0.429. This indicates that

the compound sum T is approximately equally sensitive to the loss frequency and severity.

In Figure 1 we depict how the scaled sensitivities change after varying the baseline assumptions,

one at a time, regarding frequency mean, frequency over-dispersion, the skewness of the severity

distribution, and the confidence level of the ES risk measure. In each plot the baseline assumption

is indicated by a vertical dashed line. We observe that, as the frequency mean increases, the

importance of severities dominates, given the larger overall number of individual losses. On the

other hand, when the frequency over-dispersion increases, the importance of frequency dominates,

since the variance of the frequency distribution becomes the key risk driver. Furthermore, as one

would expected, the sensitivity of the severities Y increases in the skewness, which reflects a riskier

loss profile. Finally, as the confidence level increases, severities become more important than the

frequency W , representing a more pronounced impact on the extreme tail of the portfolio loss.
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5. Application to reinsurance credit risk modelling

Reinsurance credit risk modelling represents a prominent example where credit risk exposures are

non-granular and inhomogeneous. Insurers buy reinsurance products in order to transfer some

of the risk of (typically) higher than expected claim amounts to a third party. By taking on

insurers’ excess liabilities, the reinsurance market thus operates as an industry-wide risk pooling

arrangement (Albrecher et al. 2017). Credit risk then arises from the possibility that, in the event

of high (industry) losses, reinsurers will not be able to make good on their obligations to insurers.

Reinsurance credit risk has two features particularly relevant to our setting. First, dependence is

of primary importance. Different reinsurers’ ability to fulfil obligations is highly dependent on each

other, given the systemic impact of overall (re)insurance market conditions and industry shocks.

As a result, reinsurers’ default indicators should also be considered dependent on insurers’ gross

(i.e. before-reinsurance) losses; hence one needs to account for the event that reinsurers default

precisely at those times when insurers need them most. Second, reinsurance credit risk exposures

are highly inhomogeneous. Different reinsurers often reinsure different lines of business at different

levels of extreme loss. Furthermore, the credit rating of reinsurers varies and insurers typically

transfer the most extreme layers of their gross losses to a small number of highly rated reinsurers

– while this is a rational strategy, it creates non-trivial concentration effects. The concern with the

risk of reinsurance defaults, and particularly with their dependence, has been thoroughly reflected

in actuarial modelling practice (Ter Berg 2008, Britt and Krvavych 2009).

Here we present a numerical example of differential sensitivity analysis to reinsurance defaults,

working with an illustrative model of reinsurance credit risk. In equation (1), we interpret the

terms as follows:

• L is the total reinsurance credit risk loss for an insurer.

• Z = (Z1, . . . ,Zn) are the gross losses of the insurer, from its n= 12 lines of business (LoB).

• gj(Z), j ∈M are the reinsurance recoveries expected from each of m= 8 reinsurers.

• {Xj ≤ dj} is the event that the j-th reinsurer defaults.

The 12 LoB are marginally Lognormal distributed with the same mean and coefficient of variation

(CoV) given in Table 2, and which are consistent with the Solveny II standard formula parameters

(Lloyd’s 2022). In specifying the form of the gjs we make the simplifying assumption that all

reinsurance contracts bought consist of reinsurance layers on the gross losses Z1, . . . ,Z12.

We assume that each of the first 6 reinsurers covers a layer from two LoBs, with deductibles sj,k

and limit tj,k. Each of reinsurers 7 and 8 covers a higher layer from 6 LoBs. Specifically, we have:

gj(Z) =
2i∑

k=2j−1

min
{

(Zk− sj,k)+
, tj,k

}
, for j = 1, . . . ,6 ,
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Table 2 Name of Lines of business (LoB) and Coefficient of variation (CoV) (Source: Lloyd’s (2022)).

LOB Name LoB CoV

Direct and Proportional Motor Vehicle Liability Z1 0.1
Direct and Proportional Other Motor Z2 0.08
Direct and Proportional Marine, Aviation and Transportation Z3 0.15
Direct and Proportional Fire & Other Damage to Property Z4 0.08
Direct and Proportional General Liability Z5 0.14
Direct and Proportional Credit & Suretyship Z6 0.19
Direct and Proportional Legal Expenses Z7 0.083
Direct and Proportional Assistance Z8 0.064
Direct and Proportional Miscellaneous Financial Loss Z9 0.13
Non-Proportional Casualty Reinsurance Z10 0.17
Non-Proportional Marine, Aviation and Transportation Reinsurance Z11 0.17
Non-Proportional Property Reinsurance Z12 0.17

g7(Z) =
6∑
k=1

min
{

(Zk− s7,k)+
, t7,k

}
, and

g8(Z) =
12∑
k=7

min
{

(Zk− s8,k)+
, t8,k

}
.

The deductibles and limits are such that the first six reinsurers cover losses between the 55%

and 85% quantile, whereas the last two reinsurers cover the losses between the 85% and the 95%

quantile, i.e.,

sj,k = F−1
Zk

(0.55) and tj,k = F−1
Zk

(0.85)− sj,k , for j = 1, . . . ,6 ,

sj′,k = F−1
Zk

(0.85) and tj′,k = F−1
Zk

(0.95)− sj,k , for j′ = 7,8 .

Finally, the default probabilities are set at 1.5% for the first 6 reinsurers and 1% for reinsurers 7

and 8. We assume that the random vector (X,Z) is dependent with a t-copula with 4 degrees of

freedom, such that the correlation matrix of Z satisfies Solvency II assumptions (Lloyd’s 2022),

while the random vector X has a homogeneous correlation matrix such that Corr(Xi,Xj) = 0.05.

The joint dependence of (X,Z) is effected via a t-distribution factor model; further details are

given in Appendix C.

The distribution of the total credit risk loss L is evaluated by Monte-Carlo simulation. Specifi-

cally, since almost all scenarios of (X,Z) result in a credit loss of zero, i.e., a realisation {L= 0},
we generated a dataset of size 500,000 (keeping track of the total number of simulations), in which

all realisations satisfy L> 0. The probability that L> 0 is 5.044% in our dataset. Figure 2 depicts

a histogram of the insurer’s total credit risk loss L conditional that a loss occurred. We also report

the unconditional VaR and ES at level α = 0.975. The skewness and multimodality of the loss

distribution, driven by the portfolio’s lack of homogeneity, are apparent.

We apply stresses on each of the risk factors Xi and Zi. Specifically, we apply left-tail stresses

(see Table 1) on the risk factors driving defaults, i.e., Xi,ε :=Xi + ε
(
Xi−F−1

Xi
(0.2)

)
1{Xi≤F−1

Xi
(0.2)},
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Figure 2 Histogram of the insurer’s total reinsurance credit risk loss conditional on a positive loss, i.e., L|L> 0.

Vertical lines are the unconditional VaR and ES at level α= 0.975.

i= 1, . . . ,8. These stresses increase the probability of reinsurance defaults, though in a more com-

plex way compared to Example 1. For each LoB, we consider a right-tailed stress Zi,ε := Zi +

ε
(
Zi−F−1

Zi
(0.8)

)
1{Zi≥F−1

Zi
(0.8)}, i = 1, . . . ,12, which increases the loss quantiles of Zi, beyond its

80% quantile.

We calculate the sensitivities with respect to the VaR and ES risk measures at level α= 0.975,

according to Theorems 1 and 2. To calculate the sensitivities to Zis, we require estimates of

expectation conditioned on the event {L = qα} and {L ≥ qα}. For estimating the expectation

conditional on the event of zero probability {L= qα}, we use the δ-estimator (Glasserman 2005).

Specifically, for δ > 0 with 0<α− δ, and α+ δ < 1, we approximate the sensitivity of VaR to Zi by

ŜZi [VaRα ] =
1

2δ

8∑
j=1

E
[
K(Zi)∂i gj(Z)1{Xj≤dj}1{L∈(F−1(α−δ), F−1(α+δ))}

]
.

Mathematically, we replace the conditioning event {L= qα} by an event of probability 2δ, i.e. by

{L ∈ (F−1(α− δ), F−1(α+ δ)}. A value of δ = 0.005 was used throughout. We use our sample of

(X,Z,L | L> 0), which contains 500,000 simulated scenarios, and estimate the sensitivities using

bootstrap with replacement and a bootstrap size of 450,000. The reported sensitivities are averaged

over 100 bootstrap estimates.

For estimating the sensitivities to each Xi, a different dataset is simulated. Specifically, for each

j = 1, . . . ,8, we generate a dataset of size 500,000, in which all realisations of (X,Z) satisfy Xj ∈(
F−1
Xj

(dj − δ), F−1
Xj

(dj + δ)
)
, for small δ > 0. Again, sensitivities were estimated by bootstrapping

100 times with replacement and bootstrap size 450,000. Figures 3 and 4 display violin plots of the

sensitivities to Zi and to Xi for both VaR and ES. Again a value of δ= 0.005 is used as a baseline;

the effect of this choice on sensitivity estimates is discussed in the sequel (Figure 6).
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Figure 3 Marginal sensitivity to Zis of VaR (left; with δ= 0.005) and ES (right) with α= 0.975.
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Figure 4 Marginal sensitivity to Xis of VaR (left; with δ= 0.005) and ES (right; with δ= 0.005) with α= 0.975.

In Figure 3, where the sensitivities to the Zis are plotted, we observe that business line 6 has a

large sensitivity for VaR, the LoB with the largest CoV, see Table 2. In the right panel we observe

that for ES the sensitivities are ordered similarly to the CoV of the business lines, but with a larger

spread compared to the case of VaR – this could be attributed to the higher tail-sensitivity of the

ES measure. Indeed, LoB 6 has the largest sensitivity, followed by 10, 11, and 12, which all have

the same, second largest, CoV. Furthermore, LoB 2, 4, 7, and 8, which have the smallest CoVs,

have small sensitivities for both VaR and ES.

In Figure 4, we depict the sensitivities to the Xis. A similar picture emerges, with the sensitivities

for VaR (left panel) being very close together and for ES (right panel) being more spread-out. For

ES, we observe that reinsurer 3, which has a layer on LoBs 5 and 6, and reinsurer 6, which has a

layer on LoBs 11 ad 12, have the largest sensitivities. These LoBs have large sensitivities for ES,

as seen in Figure 3 (right panel). Thus, a default of these reinsurers would naturally have a large

impact on the ES of the total loss. We also see that reinsurers 7 and 8 have large sensitivities for

ES. This is in line with expectations, since reinsurer 7 and 8 take on the highest layers (between

the 85% and 95% quantile) of 6 business lines each. Nonetheless, this concentration effect is not
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picked up by the VaR sensitivity, as in the left panel the sensitivities to X7,X8 are rather low. This

points to the importance of selecting an appropriately tail-sensitive risk measure.
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Figure 5 Marginal sensitivities of ES and different choices of α between 0.955 and 0.99. Left: sensitivity to Zis.

Right: sensitivity to Xis.

Figure 5 depicts the sensitivities of ES for different choices of α, from 0.955 to 0.99. The left panel

contains the sensitivities to the LoBs (Zi) and the right panel the sensitivities to the reinsurers

(Xi). We observe that the ordering of the risk factors is mostly consistent with respect to changes

in confidence level. An exception to this are the sensitivities to X7 and X8 which increase faster

(relative to others) with α, as seen by the line crossings on the right panel. Once again this

demonstrates the increased impact of default risk concentration at high loss quantiles.

Finally, in Figure 6 top panels, we show the sensitivities to Xis for VaR (left panel) and ES (right

panel) with α= 0.975, using different choices of δ for approximating the expectation conditional

on {Xi = di}. We observe that the estimates are very stable for different choices of δ. Furthermore,

in the bottom panels of Figure 6 we plot the standard deviation of the sensitivity estimators, thus

choosing δ= 0.005 provides a suitable bias and variance trade-off.

6. Conclusion

Taking derivatives of model outputs in the direction of inputs is a foundational process for inter-

preting complex computational models. However, differential sensitivity measures typically require

stringent assumptions on differentiability and Lipschitz continuity of the model function. This

severely limits the scope of current methods of differential sensitivity analysis. We address the

problem by noting that, when inputs are uncertain – as is the case in settings ranging from Monte

Carlo simulation to algorithmic prediction – a global view can be more appropriate than a local

one. For a global assessment, differentiation is required across the entire input space; but then,

it is not the derivative of the model function as such that is of primary interest, but rather the
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Figure 6 Marginal sensitivities to Xi and their sample standard deviations for different choices of δ. Top panels:

Marginal sensitivity for VaR (left) and for ES (right) both with α = 0.975. Bottom panels: Sample

standard deviation of the sensitivity estimators for VaR (left) and ES (right).

derivative of a statistical functional of the output. Still, extent literature on sensitivity analysis of

risk measures typically requires differentiability of the model aggregation function.

In this paper, we overcome current limitations in the literature and derive expressions for deriva-

tives of quantile-based risk measures of model outputs, in a general setting where aggregation func-

tions contain step functions and thus are not Lipschitz continuous. The conditions we require are

rather weak and the sensitivity measures obtained admit representations as conditional expected

values, which allows their estimation by standard methods. There are multiple potential applica-

tions of our methodology. We demonstrate applications in the area of credit risk modelling, but

also in assessing sensitivity with respect to discrete random inputs. While our work is applica-

ble in principle to discontinuous (e.g., tree-based) predictive models, addressing the idiosyncratic

challenges of such exercises remains a topic for future work.
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Appendix A: Additional Sensitivity Formulas

Here we provide additional results for marginal and cascade sensitivities, which are omitted from

the main body of the text for reasons of concision. In Section A.1 we deal with cascade sensitivities

of VaR, while in Section A.2 we present results for a more general model than (1).

A.1. Cascade Sensitivities to VaR

Here we report the cascade sensitivity formulas for VaR.

Theorem 6 (Cascade Sensitivity VaR to Xi). Let Assumptions 1, 2 and 3 (for Y = Xi) be

fulfilled for the stressed model LΨ
ε (Xi) and given α∈ (0,1). Then, the cascade sensitivity for VaRα

to input Xi is given by,

CXi [VaRα ] =
∑
j∈M

CXi,Xj +
∑
k∈N

CXi,Zk ,

where for all k ∈N ,

CXi,Zk =
∑
j∈M

E
[
K(Xi)∂kgj(Z)Ψ

(m+k)
1 (Xi,V )1{Xj≤dj}

∣∣∣ L= qα

]
,

and for j ∈M,

CXi,Xj =
c(κ; j)fj(dj)

f (qα)
E
[
K−1(Xi)Ψ

(j)
1 (Xi,V )

(
1{L≤qα+c(κ; j)gj(Z)}−1{L≤qα}

) ∣∣∣ Xj = dj

]
.

Theorem 7 (Cascade Sensitivity VaR to Zi). Let Assumptions 1, 2 and 3 (for Y = Zi) be

fulfilled for the stressed model LΨ
ε (Zi) and given α∈ (0,1). Then, the cascade sensitivity for VaRα

to input Zi is given by,

CZi [VaRα ] =
∑
j∈M

CZi,Xj +
∑
k∈N

CZi,Zk ,

where for all k ∈N ,

CZi,Zk =
∑
j∈M

E
[
K(Zi)∂kgj(Z)Ψ

(m+k)
1 (Zi,V )1{Xj≤dj}

∣∣∣ L= qα

]
,

and for j ∈N ,

CZi,Xj =
c(κ; j)fj(dj)

f (qα)
E
[
K−1(Zi)Ψ

(j)
1 (Zi,V )

(
1{L≤qα+c(κ; j)gj(Z)}−1{L≤qα}

) ∣∣∣ Xj = dj

]
.
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A.2. Sensitivity to General Loss Models

In this section, we generalise the loss model (1) to include cases where the functions gj depends on

both Z and X. Specifically, we let

L :=
∑
j∈M

gj(X,Z)1{Xj≤dj}, (9)

where a stress on Xi results in the stressed loss model

Lε(Xi) :=
∑
j 6=i
j∈M

gj(Xi,ε,X−i,Z)1{Xj≤dj}+ gi(Xi,εX−i,Z)1{Xi,ε≤dj} . (10)

We only present the sensitivities to Xi, as the sensitivities to Zi are not impacted by the model

generalisation. We observe in the next result that the marginal sensitivity to Xi of the loss model

(9) accounts for both the stress in the indicator and the stress via the functions gj, j ∈M.

Theorem 8 (Marginal Sensitivity – General Loss Model). Let Assumptions 1 and 2 be ful-

filled for the loss model (9) and for fixed α ∈ (0,1). Then, the marginal sensitivity for VaR to Xi

for loss model (9) is

SXi [VaRα ] =
∑
j∈M

(
E
[
K(Xi)∂igj(X,Z)1{Xj≤dj}

∣∣∣ L= qα

])
+ c(κ)K−1(di)

fi(di)

f (qα)
E
[(
1{L≤qα+c(κ)gi(X,Z)}−1{L≤qα}

) ∣∣∣ Xi = di

]
.

The marginal sensitivity for ES to Xi for the loss model (9) is

SXi [ESα ] =
∑
j∈M

(
E
[
K(Xi)∂igj(X,Z)1{Xj≤dj}

∣∣∣ L≥ qα])
− c(κ)K−1(di)fi(di)

1−α
E
[
(L− c(κ)gi(X,Z)− qα)+− (L− qα)+

∣∣∣ Xi = di

]
.

Theorem 9 (Cascade Sensitivity VaR – General Loss Model). Let Assumptions 1, 2, and

3 (for Y = Xi) be fulfilled for the stressed model (10) and given α ∈ (0,1). Then, the cascade

sensitivity for VaRα to input Xi is given by

CXi [VaRα ] =
∑
j∈M

CXi,Xj +
∑
k∈N

CXi,Zk ,

where for all k ∈N ,

CXi,Zk =
∑
j∈M

E
[
K(Xi)∂m+kgj(X,Z)Ψ

(m+k)
1 (Xi,V )1{Xj≤dj}

∣∣∣ L= qα

]
,

and for j ∈M,

CXi,Xj =

(
m∑
r=1

E
[
K(Xi)∂jgr(X,Z)Ψ

(j)
1 (Xi,V )1{Xr≤dr}

∣∣∣ L= qα

])

+ c(κ; j)
fj(dj)

f (qα)
E
[
K−1(Xi)Ψ

(j)
1 (Xi,V )

(
1{L≤qα+c(κ; j)gi(X,Z)}−1{L≤qα}

) ∣∣∣ Xj = dj

]
.
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Theorem 10 (Cascade Sensitivity ES – General Loss model). Let Assumptions 1, 2, and

3 (for Y = Xi) be fulfilled for the stressed model (10) and given α ∈ (0,1). Then, the cascade

sensitivity for ESα to input Xi is given by

CXi [ESα ] =
∑
j∈M

CXi,Xj +
∑
k∈N

CXi,Zk ,

where for all k ∈N ,

CXi,Zk =
∑
j∈M

E
[
K(Xi)∂m+kgj(X,Z)Ψ

(m+k)
1 (Xi,V )1{Xj≤dj}

∣∣∣ L≥ qα] ,
and for j ∈M,

CXi,Xj =

m∑
r=1

(
E
[
K(Xi)∂jgr(X,Z)Ψ

(j)
1 (Xi,V )1{Xr≤dr}

∣∣∣ L≥ qα])
− c(κ; j)

fj(dj)

1−α
E
[
K−1(Xi)Ψ

(j)
1 (Xi,V )

(
(L− c(κ; j)gj(X,Z)− qα)+− (L− qα)+

) ∣∣∣ Xj = dj

]
.

Appendix B: Proofs

B.1. Proof of Mixture Stress

Proof of mixture stress stress properties. We prove that the mixture stress in Table 1 is well-

defined. First, the stress function and its inverse are given by

κε(x) = F−1
i,ε (Fi(x)) and κ−1

ε (x) = F−1
i (Fi,ε(x)) ,

where Fi,ε = (1−ε)Fi+εG. By construction, it holds that Fi,ε(x) is continuous and strictly increas-

ing in x for all ε ≥ 0. Furthermore, Fi,ε and F−1
i,ε converge pointwise, as ε↘ 0, to Fi and F−1

i

respectively, thus the stress function fulfils ii) and iii). Next, if G(x)≤ Fi(x) for all x ∈ R, then

Fi,ε(x) = Fi(x) + ε (G(x)− Fi(x)) ≤ Fi(x), and therefore F−1
i,ε (u) ≥ F−1

i (u) for all u ∈ [0,1]. Thus

κε(x) = F−1
i,ε (Fi(x))≥ x and the stress function fulfils iv) (a). The case when the stress function

fulfils iv) (b) if G(x)≥ Fi(x) for all x∈R, follows similarly.

Now, to check property v), note that

K(x) = lim
ε↘0

1
ε

(κε(x)−x) = lim
ε↘0

1
ε

(
F−1
i,ε

(
Fi(x)

)
−F−1

i

(
Fi(x)

))
=

∂

∂ε
F−1
i,ε (Fi(x))

∣∣∣
ε=0

.

Further, from the relation ∂
∂ε
F−1
i,ε (x)|ε=0 =−

∂
∂εFi,ε(y)

fi(y)
|y=F−1

i (x) = Fi(y)−G(y)

fi(y)
|y=F−1

i (x), it follows that

K(x) =
Fi(x)−G(x)

fi(x)
.

To obtain the expression for vi), note that the stress function κε(x) is differentiable in x, for

all ε in a neighbourhood of 0, and ∂
∂x
κε(x)|ε=0 6= 0, then property vi) is satisfied with K−1(x) =

−K(x)
∂
∂xκε(x)|ε=0

, which follows immediately from an application of the chain rule applied to the identity

κ−1
ε (κε(x)) = x. Moreover,

∂

∂x
κε(x) =− fi(x)

∂
∂x
Fi,ε(F

−1
i,ε (Fi(x)))|ε=0

=−1 ,

which concludes the proof. �
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B.2. Proofs of Marginal Sensitivity: Theorems 1 and 2

For the proof of the marginal sensitivities to VaR and ES, we need the following lemma concerning

sequences of functions that converge weakly to a Dirac delta function. For this, we first write the

marginally stressed portfolios as

L(Zi,ε) =L+
m∑
k=1

∆εgk and

L(Xi,ε) =L+ gi(Z)
(
1{Xi,ε≤di}−1{Xi≤di}

)
,

where we define ∆εgk := (gk(Z−i, κε(Zi)) − gk(Z))1{Xk≤dk}. When the stress is clear from the

context, we write Lε =L(Zi,ε) and Lε =L(Xi,ε).

Lemma 1. For fixed d∈R, define the family of functions

δε(x) =

∣∣1{κε(x)≤d}−1{x≤d}
∣∣

ε
, x∈R , ε > 0.

Then, δε converges weakly to a scaled Dirac delta function at d for ε↘ 0. Moreover, for any family

of measurable functions hε : Rm+n→R such that limε↘0 E [|hε(X,Z)|]<∞, the following holds:

lim
ε↘0

E [δε(Xi)hε(X,Z)] =−c(κ)K−1(d)fi(d)E [h0(X,Z) | Xi = d ] ,

where c(κ) is given in (2), and h0(x,z) = limε↘0 hε(x,z).

Proof of Lemma 1. First note that

∣∣1{κε(x)≤d}−1{x≤d}
∣∣=−c(κ)

(
1{κε(x)≤d}−1{x≤d}

)
. (11)

Let ξ be an infinitely often differentiable function. Using the change of variable y= κε(x), we obtain∫ +∞

−∞
ξ(x)δε(x)dx=−c(κ)

ε

∫ +∞

−∞
ξ(x)

(
1{κε(x)≤d}−1{x≤d}

)
dx

=−c(κ)

ε

∫ +∞

−∞

ξ(z)
∂
∂x
κε(z)

∣∣∣
z=κ−1

ε (y)
1{y≤d} dy−

1

ε

∫ d

−∞
ξ(x)dx .

Letting Ξ be a primitive of ξ vanishing at −∞, then∫ +∞

−∞
ξ(x)δε(x)dx=−c(κ)

ε

(∫ d

−∞

d

dy
Ξ(κ−1

ε (y))dy−Ξ(d)

)
=−c(κ)

ε

(
Ξ(κ−1

ε (d))−Ξ(d)
)
.

Taking the limit as ε→ 0, we obtain that

lim
ε↘0

∫ +∞

−∞
ξ(x)δε(x)dx=−c(κ) ξ(d)K−1(d) .
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For the second part of the statement, note that

lim
ε↘0

E [δε(Xi)hε(X,Z)] = lim
ε↘0

∫
Rm+n

δε(xi)hε(x,z)fX,Z(x,z)dxdz

=−c(κ)K−1(d)

∫
Rm+n−1

hε(x−i, d,z)fX,Z(x−i, d,z)
fi(d)

fi(d)
dx−i dz

=−c(κ)K−1(d)fi(d)E [h0(X,Z) | Xi = d ] .

�

Lemma 2. For fixed 0<α< 1 and z ∈Rn, define the sequence of functions

δε(l) =
1{l≤qα−∑m

k=1 ∆εgk} −1{l≤qα}
ε

l ∈R , ε > 0.

where ∆εgk = (gk(z−i, κε(zi)) − gk(z))1{xk≤dk}, z ∈ Rn, and l ≥ 0. Then, δε converges weakly to

a scaled Dirac delta function at qα for ε↘ 0. Moreover, for any family of measurable functions

hε : Rm+n→R such that limε↘0 E [|hε(X,Z)|]<∞, the following holds:

lim
ε↘0

E [δε(L)hε(X,L)] =−f(qα)
m∑
k=1

E
[
K(Zi)∂i gk(Z)1{Xk≤dk} h0(X,L)

∣∣L= qα
]
. (12)

Proof of Lemma 2. Let ξ(·) be an infinitely often differentiable function. Applying Taylor’s

Theorem of gk around zi, and then using κε(zi) = zi + εK(zi) + o(ε), we obtain for all k= 1, . . . , n,

that

gk(z−i, κε(zi))− gk(z) = (κε(zi)− zi)∂i gk(z) + o (κε(zi)− zi)

= εK(zi)∂i gk(z) + o (ε) , (13)

where ∂i gk(z) = ∂
∂zi
gk(z) is the derivative in the ith component. Thus, we have that for all z ∈Rn,

using the Mean Value Theorem for some l∗ ∈ (qα, qα −∆εg ] (or l∗ ∈ (qα −∆εg , qα]) in the second

equation, and then (13) that∫ +∞

−∞
ξ(l)δε(l)dl=

1

ε

∫ qα−
∑m
k=1 ∆εgk

qα

ξ(l)dl=−1

ε

m∑
k=1

∆εgk ξ(l
∗)

=−

(
m∑
k=1

K(zi)∂i gk(z)1{xk≤dk}+ o (1)

)
ξ(l∗) .

Taking the limit for ε↘ 0, we have

lim
ε↘0

∫ +∞

−∞
ξ(l)δε(l)dl=−K(zi)

m∑
k=1

∂i gk(z)1{xk≤dk}ξ (qα) .

Equation (12) follows using a similar argument as in Lemma 1. �
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Proof of Theorem 1 (Marginal Sensitivity VaR) By Proposition 2.3 in Embrechts and Hofert

(2013) it holds for all ε≥ 0 that Fε (qε(α)) = α. Taking derivative with respect to ε and evaluating

at ε= 0 (note that Assumptions 1 and 2 are fulfilled), we obtain

f (qα) ∂
∂ε
qε(α)

∣∣
ε=0

+ ∂
∂ε
Fε(qα) = 0 and

∂

∂ε
qε(α)

∣∣∣∣
ε=0

=− 1

f (qα)

∂

∂ε
Fε(qα) , (14)

whenever ∂
∂ε
Fε(qα(α)) exists. Next, we show that the derivative of Fε with respect to ε exists.

Part 1: We first consider the case of stressing Xi and calculate

Fε(qα)−F (qα) = P (Lε ≤ qα)−P (L≤ qα) (15a)

=E
[
1{L≤qα−gi(Z)(1{κε(Xi)≤di}−1{Xi≤di})} −1{L≤qα}

]
(15b)

=E
[∣∣1{κε(Xi)≤di}−1{Xi≤di}∣∣ (1{L≤qα+c(κ)gi(Z)}−1{L≤qα}

)]
, (15c)

where the last equality follows from (11). Invoking Lemma 1 we obtain

∂

∂ε
Fε(qα) =−c(κ)K−1(di)fi(di) E

[ (
1{L≤qα+c(κ)gi(Z)}−1{L≤qα}

) ∣∣ Xi = di
]
.

Combining with Equation (14) concludes the first part.

Part 2: Next, we consider the case of stressing Zi. For this, it holds that

Fε(qα)−F (qα) =E
[(
1{L≤qα−∑m

k=1 ∆εgk } −1{L≤qα}
)]

.

Applying Lemma 2 and Equation (14) conclude the proof. �

Proof of Theorem 2 (Marginal Sensitivity ES). We first calculate the sensitivity to Xi, and in

a second step to Zi.

Part 1: To calculate the sensitivity to Xi, we observe that

ESα(Lε)−ESα(L)

ε
=

1

ε(1−α)
E
[
(Lε− qε)+− (L− qα)+

]
+
qε− qα
ε

=
1

ε(1−α)
E
[
(Lε− qε)+− (Lε− qα)+

]
︸ ︷︷ ︸

:=A(ε)

+E
[
(Lε− qα)+− (L− qα)+

]︸ ︷︷ ︸
:=B(ε)

+
qε− qα
ε︸ ︷︷ ︸

:=C(ε)

.

(16)

To calculate the expectation in A(ε), we use integration by parts in the third equation, and interpret∫ a
b
h(x)dx=−

∫ b
a
h(x)dx, if a< b.

A(ε)ε(1−α) =

∫ +∞

qε

(y− qε)dFε(y)−
∫ +∞

qα

(y− qα)dFε(y)

=

∫ qα

qε

y dFε(y)− qε (1−α) + qα (1−Fε(qα))

= qαFε(qα)− qεα−
∫ qα

qε

Fε(y)dy− qε (1−α) + qα (1−Fε(qα))

= (qα− qε)−
∫ qα

qε

Fε(y)dy .
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Next, we collect parts A(ε) and C(ε), and use the Mean Value Theorem, that is there exists a

q∗ ∈ (qε, qα] (or q∗ ∈ (qα, qε], if qα < qε) such that
∫ qα
qε
Fε(y)dy= (qα− qε)Fε(q∗). Thus, we obtain

A(ε) +C(ε) =
1

ε(1−α)

(
(qα− qε) (1−Fε(q∗)) +

qε− qα
ε

=
(qε− qα)

ε

(
1− 1−Fε(q∗)

1−α

)
.

Talking the limit for ε↘ 0, and noting that the derivative of the quantile function with respect to

ε exists by Theorem 1, we obtain

lim
ε↘0

A(ε) +C(ε) = 0 .

Next, for part B(ε) we obtain using Equation (11)

B(ε) =
1

ε(1−α)
E
[(
L+ gi(Z)

(
1{Xi,ε≤di}−1{Xi≤di}

)
− qα

)
+
− (L− qα)+

]
=

1

ε(1−α)
E
[∣∣∣1{Xi,ε≤di}−1{Xi≤di}∣∣∣( (L− c(κ)gi(Z) − qα)+− (L− qα)+

)]
.

Applying Lemma 1, we obtain

lim
ε↘0

B(ε) =
−c(κ)K−1(di)fi(di)

1−α
E
[
(L− c(κ)gi(Z) − qα)+− (L− qα)+ | Xi = di

]
.

Part 2: For the sensitivity to Zi, we write similarly to part 1,

ESα(Lε)−ESα(L)

ε
=A(ε) +B(ε) +C(ε) ,

where A(ε) and C(ε) are the same as in (16), while B(ε) is

B(ε) =
1

ε(1−α)
E

[(
L+

m∑
k=1

∆εgk − qα

)
+

− (L− qα)+

]
(17a)

=
1

ε(1−α)
E

[
(L− qα)

(
1{L≤qα}−1{L≤qα−∑m

k=1 ∆εgk}
)

+
m∑
k=1

∆εgk1{L≥qα−
∑m
k=1 ∆εgk}

]
, (17b)

where in the last equality we used that 1{L>qα} = 1−1{L≤qα}. Note that the argument that A(ε) +

C(ε) converges to 0 for ε↘ 0 only depends on the fact that Fε converges to F for ε↘ 0. Thus, also

here, it holds that limε↘0A(ε)+C(ε) = 0. To calculate the limit of B(ε), we apply Lemma 2 to the

first term, which turns out to be equal to zero. For the second term, note that 1
ε
∆εgk converges to

K(Zi)∂i gk(Z)1{Xk≤dk} P-a.s. for ε↘ 0, see also Equation (13). Thus,

lim
ε↘0

B(ε) =
1

1−α

m∑
k=1

E
[
K(Zi)∂i gk(Z)1{Xk≤dk}1{L≥qα}

]
=

m∑
k=1

E
[
K(Zi)∂i gk(Z)1{Xk≤dk} | L≥ qα

]
.

�
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B.3. Proof of Cascade Sensitivity: Theorems 3, 4, 6, and 7.

For the proofs of the cascade sensitivities to VaR and ES, we need the following lemmas concerning

sequences of functions that converge weakly to Dirac delta functions. For this, we first provide a

representation of the stressed loss, when stressing Xi.

For a stress function κε and a Rosenblatt transform Ψ, we define for all j ∈M and fixed v,

aε,j(x) := |1{ηε,j(x)≤dj}−1{x≤dj}| ,

where ηε,j(x) := Ψ(j)
(
κε
(
Ψ(j),−1(x,v)

)
,v
)

and Ψ(j),−1 denotes the inverse in the first component

of Ψ(j). Further, we let

Aε,j := aε,j(Xj) ,

where it is implicit that v is replaced by V . Note that Xj = Ψ(j)(Xi,V ) P-a.s., and therefore

Ψ(j) (Xi,ε,V ) = Ψ(j) (κε(Xi),V ) = Ψ(j)
(
κε
(
Ψ(j),−1(Xj,V )

)
,V
)

= ηε,j(Xj) P-a.s. .

Lemma 3 (Stressed Portfolio Loss). For a stress Xi,ε, the stressed portfolio admits representa-

tion

LΨ(Xi,ε) =L+
m∑
k=1

∆̃εgk−
m∑
j=1

c(κ; j)gj(Z)Aε,j ,

where ∆̃ε gk =
(
gk
(
Ψ(Z)(Xi,ε,V )

)
− gk(Z)

)
1{Ψ(k)(Xi,ε,V )≤dk}.

Proof of Lemma 3. We obtain

LΨ(Xi,ε) =L+
m∑
k=1

∆̃εgk +
m∑
j=1

gj(Z)
(
1{ηε,j(Xj)≤dj}−1{Xj≤dj}

)
=L+

m∑
k=1

∆̃εgk−
m∑
j=1

c(κ; j)gj(Z)Aε,j ,

since by Assumption 3 it holds that 1{ηε,j(x)≤dj}−1{x≤dj} =−c(κ; j)aε,j(x) for all j ∈M. �

Lemma 4. Let K⊂M and its complement K{ =M/K and define the sequence of functions

δKε (x) =
1

ε

∏
k∈K

aε,k(xk)
∏
l∈K{

a{ε,l(xl), ε > 0,

where a{ε,k(x) = 1− aε,k(x).

Then, for all functions hε : Rm+n→R such that limε↘0 E [|hε(X,Z)|]<∞, the following holds:

i) if K contains one element, K= {k}, then

lim
ε↘0

E
[
δKε (X)hε(X,Z)

]
=−c(κ; k)fk(dk)E

[
K−1 (Xi) Ψ

(k)
1 (Xi,V )h0(X,Z)

∣∣∣ Xk = dk

]
.
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ii) if K contains two or more elements, then

lim
ε↘0

E
[
δKε (X)hε(X,Z)

]
= 0 .

Proof of Lemma 4. First, let K= {k} and note that limε↘0 a
{
ε,j(x) = limε↘0 1− aε,j(x) = 1, for

all j ∈M and x∈R. Next, we calculate the inverse of ηε,k(x) in x, which is given by

η−1
ε,k(x) = Ψ(k)

(
κ−1
ε

(
Ψ(k),−1(x,v)

)
,v
)

= Ψ(k)
(
κ−1
ε (x),v

)
.

Its derivative is, noting that η0,k(x) = η−1
0,k(x) = x,

lim
ε↘0

1
ε

(
η−1
ε,k(x)−x

)
= Ψ

(k)
1 (x,v)K−1(x) .

Using similar arguments as in the proof of Lemma 1, replacing κ−1
ε with η−1

ε,k, we obtain that

lim
ε↘0

E[δkε (X)hε(X,Z)] =−c(κ; k)fi(dk)E
[
K−1(Xi)Ψ

(k)
1 (Xi,V )h0(X,Z) | Xi = dk

]
.

Next, assume that K = {k, j} contains two indices and let ξ : R2 → R be an infinitely often

differentiable function. Then, using (11) and the following change of variable yj = ηε,j(xj) in the

first equation∫ +∞

−∞

∫ +∞

−∞
ξ(xj, xk)δ

K
ε (xj, xk)dxjdxk

=−c(κ)
1

ε

∫ +∞

−∞

∫ +∞

−∞
ξ(xj, xk)

(
1{ηε,j (xj)≤ dj}−1{xj≤dj}

)
dxj aε,k(xk)

∏
l 6=j,k

a{ε,l(xl)dxk

=−c(κ)

∫ +∞

−∞

(
1

ε

(∫ +∞

−∞

ξ(η−1
ε,j (yj), xk)

η′ε,j(η
−1
ε,j (yj))

1{yj≤d} dyj −
∫ dj

−∞
ξ(xj, xk)dxj

))
aε,k(xk)

∏
l 6=j,k

a{ε,l(xl)dxk .

Define the function Ξ(x, y), such that d
dx

Ξ(x, y) = ξ(x, y), so that

1

ε

∫ +∞

−∞

ξ(η−1
ε,j (yj), xk)

η′ε,j(η
−1
ε,j (yj))

1{yj≤d} dyj −
∫ d

−∞
ξ(xj, xk)dxj =

1

ε

(
Ξ(η−1

ε,j (d,xk))−Ξ(d,xk)
)
. (18)

The limit of (18) for ε↘ 0 exists, moreover aε,k(x) converges to 1, for ε↘ 0, while a{ε,l(x), l 6= {j, k},
converge to 0 for ε↘ 0. Thus, we obtain that δKε (·) converges weakly to 0, for ε↘ 0.

The cases when K contains more than two indices follow analogous. �

Lemma 5. Define the sequence of functions

δε(l) =
1{l≤qα−∑m

k=1 ∆̃εgk} −1{l≤qα}
ε

,

where ∆̃εgk =
(
gk
(
Ψ(Z)(κε(xi),v)

)
− gk(z)

)
1{Ψ(k)(κε(xi),v)≤dk}, z ∈Rn, xi ∈R, and l ≥ 0. Then, δε

converges weakly to a scaled Dirac delta function at qα for ε↘ 0. Moreover, for any function

hε : Rm+n→R such that limε↘0 E [|hε(X,Z)|]<∞, the following holds:

lim
ε↘0

E [δε(L)hε(X,L)] =−f(qα)
m∑
k=1

n∑
l=1

E
[
K(Xi)∂l gk(Z)Ψ

(m+l)
1 (Xi,V )1{Xk≤dk} h0(X,L)

∣∣∣L= qα

]
.
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Proof of Lemma 5. This proof follows along the lines of the proof of Lemma 2. Note that

zl = Ψ(m+l)(xi,v), and that the Taylor approximation of gk
(
Ψ(z)(κε(xi),v)

)
around ε= 0, becomes,

using first an approximation of gk around z, then of Ψ(m+l) around xi, for all l = 1, . . . , n, and

finally for κε around ε= 0

gk
(
Ψ(Z)(κε(xi),v)

)
− gk(z) =

n∑
l=1

∂l gk(z)
(
Ψ(m+l)(κε(xi),v)− zl

)
+ o
(
Ψ(m+l)(κε(xi),v)− zl

)
=

n∑
l=1

∂l gk(z)Ψ
(m+l)
1 (xi,v) (κε(xi)−xi) + o (κε(xi))

= ε
n∑
l=1

∂l gk(z)Ψ
(m+l)
1 (xi,v)K(xi) + o (ε) .

The reminder of the proof follows analogous steps to those in the proof of Lemma 2. �

Proof of Theorem 6 (Cascade Sensitivity VaR to Xi). Analogous to the proof of Theorem 1,

we use Equation (14) and, thus, we only need to calculate ∂
∂ε
Fε(qα)|ε=0. Using Lemma 3, we obtain

Fε(qα)−F (qα) =E
[
1{L≤qα−∑m

k=1 ∆̃εgk+
∑m
j=1 c(κ; j)gj(Z)Aε,j} −1{L≤qα}

]
,

where we recall that Aε,j = |1{ηε,j(Xj)≤dj} − 1{Xj≤dj}| and denote its complement by A{ε,j, i.e.,

A{ε,j = 1−Aε,j. Next, as Aε,j are indicators, we can rewrite the expectation and split it into multiple

sums, as follow: The first expectation corresponding to all A{ε,j (19a), and then we sum over all

possible combinations of Aε,j and A{ε,k.

Fε(qα)−F (qα) =E

[
m∏
i=1

A{ε,i

(
1{L≤qα−∑m

k=1 ∆̃εgk} −1{L≤qα}
)]

(19a)

+
m∑
k=1

m∑
i1,...,ik=1

i1<···<ik

E

 k∏
j=1

Aε,ij

m∏
l=1

l 6∈{i1,...,ik}

A{ε,l

×
(
1{

L≤qα−
∑m
r=1 ∆̃εgr+

∑k
j=1 c(κ; j)gij (Z)

}−1{L≤qα}
)]

.

For the first expectation above (Equation (19a)), we apply Lemma 5 and that limε↘0A
{
ε,k = 1 for

all k = 1, . . . ,m. For the other terms, we apply Lemma 4. Specifically, we observe that only the

summands that contains exactly one Aε,k do not converge to 0. Thus, we obtain the limit, noting

that for all k= 1, . . . ,m, ∆̃ε gk converges to 0, for ε↘ 0,

lim
ε↘0

Fε(qα)−F (qα)

ε

=−
m∑
j=1

n∑
l=1

f(qα)E
[
K(Xi)∂l gj(Z)Ψ

(m+l)
1 (Xi,V )1{Xj≤dj}

∣∣∣L= qα

]
−

m∑
j=1

c(κ; j)fj(dj)E
[
K−1(Xi)Ψ

(j)
1 (Xi,V )

(
1{L≤qα+c(κ; j)gj(Z)} −1{L≤qα}

)
| Xj = dj

]
.

Combining with Equation (14) concludes the proof. �
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Proof of Theorem 3 (Cascade Sensitivity ES to Xi). We write analogous to the proof of Theo-

rem 2

lim
ε↘0

1
ε

(ESα(Lε)−ESα(L)) = lim
ε↘0

A(ε) +B(ε) +C(ε) = lim
ε↘0

B(ε) .

For part B(ε), we proceed similar to the proof of Theorem 6 and write, using the notation from

the proof of Theorem 6 and Lemma 3

B(ε)(1−α)ε=E

[(
L+

m∑
r=1

∆̃εgr−
m∑
k=1

c(κ; k)gk(Z)Aε,k− qα

)
+

− (L− qα)+

]

=E

[
m∏
i=1

A{ε,i

((
L+

m∑
r=1

∆̃εgr− qα
)

+
− (L− qα)+

)]
(20a)

+
m∑
k=1

m∑
i1,...,ik=1

i1<···<ik

E
[ k∏
j=1

Aε,ij

m∏
l=1

l 6∈{i1,...,ik}

A{ε,l

×

((
L+

m∑
r=1

∆̃εgr−
k∑
j=1

c(κ; j)gij (Z)Aε,ij − qα
)

+
−
(
L− qα

)
+

)]
. (20b)

To calculate the limit of the expectation in Equation (20a), we rewrite similar to (17)

(
L+

m∑
r=1

∆̃εgr− qα
)

+
− (L− qα)+ =

(
L− qα

)
+

(
1{L≤qα}−1{L≤qα−∑m

k=1 ∆̃εgk}

)
(21a)

+
m∑
r=1

∆̃εgr1{L≥qα−
∑m
k=1 ∆̃εgk} . (21b)

For the term (21a) we apply Lemma 5, noting that A{ε,k converges to 1, for all k = 1, . . . ,m, as

ε↘ 0. For the term (21b), we note that for all k= 1, . . . ,m, it holds P-a.s. (see the Proof of Lemma

5) that

lim
ε↘0

∆̃εgk
ε

=
n∑
l=1

∂l gk(Z)Ψ
(m+l)
1 (Xi,V )K(Xi)1{Xk≤dk} .

For all the other summands in Equation (20b) we apply Lemma 4. Collecting, we obtain that

(1−α) lim
ε↘0

B(ε) =

m∑
k=1

n∑
l=1

f(qα)E
[
K(Xi)∂l gk(Z)Ψ

(m+l)
1 (Xi,V )1{Xk≤dk}

(
L− qα

)
+

∣∣∣L= qα

]
(22a)

+
m∑
j=1

n∑
l=1

E
[
∂l gj(Z)Ψ

(m+l)
1 (Xi,V )K(Xi)1{Xj≤dj}1{L≥qα}

]
−

m∑
j=1

c(κ; j)fj(dj)E
[
K−1(Xi)Ψ

(j)
1 (Xi,V )

((
L− c(κ; j)gj(Z) − qα

)
+
−
(
L− qα

)
+

)
| Xj = dj

]
.

Due to the conditioning event, (22a) is equal to 0. �
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Proof of Theorems 7 and 4 (Cascade Sensitivities to Zi). The proof follows by noting that the

stressed portfolio for a stress on Zi, admits an analogous representation as when stressing Xi, with

the only difference that the inverse Rosenblatt transform starts at Zi instead of Xi, see Equation

(4) . �

Proof of Proposition 1. The first two cases follow from Proposition 4.2 in Pesenti et al. (2021).

Assume (Xi,Xj) follow a Archimedean copula. By independence of the cascade sensitivity to the

choice of Rosenblatt transform, we have can choose (Rüschendorf and de Valk 1993)

Ψ
(j)
1 (Xi,V ) = F−1

j|i (Vj|Xi) P-a.s. ,

where a.s. Vj = FXj |Xi(Xj |Xi) and FXj |Xi(x |y) = P (Xj ≤ x |Xi = y) denotes the conditional dis-

tribution of Xj given Xi = y. We observe that Ψ
(j)
1 (Xi,V ) only depends on Vj and we may write

Ψ
(j)
1 (Xi, Vj) instead of Ψ

(j)
1 (Xi,V ).

We use Sklar’s theorem to write the conditional distribution and quantile functions as

Fj|i(xj |xi) = Cj|i(Fj(xj) |Fi(xi)) and F−1
j|i (v |xi) = F−1

j

(
C−1
j|i (v |Fi(xi))

)
. (23)

Taking derivative of the conditional quantile function with respect to the conditioning variable

Ψ
(j)
1 (y, v) =

∂

∂y
F−1
j|i (v |y) =

fi(y)

fj

(
F−1
j|i (v |y)

) ∂

∂z
C−1
j|i (v |z)

∣∣∣
z=Fi(y)

.

By definition of Vj, it holds P-a.s. that F−1
j|i (Vj |Xi) =Xj, thus

Ψ
(j)
1 (Xi, Vj) =

fi(Xi)

fj (Xj)

∂

∂z
C−1
j|i (Vj |z)

∣∣∣
z=Fi(Xi)

. (24)

Next, we calculate the derivative (with respect to the conditioning argument) of the inverse of an

conditional Archimedean copula with generator ψ. The conditional Archimedean copula and its

inverse are given by (Cambou et al. 2017)

Cj|i(x |y) =
ψ̇ (ψ−1(y) +ψ−1(x))

ψ̇ (ψ−1(y))
and (25a)

C−1
j|i (v |y) =ψ

[
(ψ̇)−1

{
v ψ̇
(
ψ−1(y)

)}
−ψ−1(y)

]
,

where ψ̇(x) = d
dx
ψ(x). Taking derivative

∂

∂y
C−1j|i (v |y) = ψ̇

[
(ψ̇)−1

{
v ψ̇
(
ψ−1(y)

)}
−ψ−1(y)

] 1

ψ̇ (ψ−1(y))

 v ψ̈ (ψ−1(y))
..

ψ
(

(ψ̇)−1{v ψ̇ (ψ−1(y))}
) − 1

 .

Next, we use the definition of Vj and Equations (23) and (25a) to write

Vj = Cj|i(Fj(Xj) |Fi(Xi)) =
ψ̇ (ψ−1(Ui) +ψ−1(Uj))

ψ̇ (ψ−1(Ui))
,
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where Uj = Fj(Xj) and Ui = Fi(Xi). Using the above, we obtain

∂

∂y
C−1
j|i (Vj |y)

∣∣∣∣
y=Ui

=
ψ̇ (ψ−1(Uj))

ψ̇ (ψ−1(Ui))

{
ψ̈ (ψ−1(Ui))

ψ̈ (ψ−1(Ui) +ψ−1(Uj))

ψ̇ (ψ−1(Ui) +ψ−1(Uj))

ψ̇ (ψ−1(Ui))
− 1

}
.

Combining with Equation (24) concludes the proof. �

B.4. Proof of Sensitivity to General Loss Model: Theorems 8, 9, and 10

Proof of Theorem 8 (Marginal Sensitivity - General Loss Model). The stressed loss model has

representation (using Equation (11))

Lε(Xi) =L+
m∑
j=1

∆εgj − c(κ)gi (Xi,ε,X−i,Z)Aε ,

where ∆εgj := (gj(Xi,ε,X−i,Z)− gj(X,Z))1{Xj≤dj} and Aε = |1{Xi,ε≤di}−1{Xi≤di}|. To prove the

case for VaR, note that

Fε(qα)−F (qα) =E
[
A{ε

(
1{L+

∑m
j=1 ∆εgj≤qα}−1{L≤qα}

)]
(26a)

+E
[
Aε

(
1{L+

∑m
j=1 ∆εgj−c(κ)gi(Xi,ε,X−i,Z)≤qα}−1{L≤qα}

)]
, (26b)

Applying Lemma 2 to (26a), noting that limε↘0A
{
ε = 1, and Lemma 1 to (26b), noting that

limε↘0

∑m

j=1 ∆εgj = 0 concludes the proof for VaR.

To prove the case of ES, we have from the proof of Theorem 2 that

lim
ε↘0

ESα(Lε)−ESα(L)

ε
= lim

ε↘0

1

ε(1−α)
E[(Lε− qα)+− (L− qα)+]

= lim
ε↘0

1

ε(1−α)

{
E
[
A{ε

(
(L+

m∑
j=1

∆εgj − qα)+− (L− qα)+

)
︸ ︷︷ ︸

=Bε

]

+E

[
Aε

((
L+

m∑
j=1

∆εgj − c(κ)gi(Xi,ε,X−i,Z)− qα
)

+
− (L− qα)+

)]}
.

(27a)

Next, we see that

Bε = (L− qα)+

(
1{L≤qα}−1{L≤qα−∑m

j=1 ∆εgj}

)
+

m∑
j=1

∆εgj1{L≥qα−
∑m
j=1 ∆εgi} .

Using similar arguments as in the proof of Theorem 3 (in particular applying Lemma 5), we observe

that

lim
ε↘0

1

ε(1−α)
E[A{ε Bε] =

m∑
j=1

E
[
∂igj(X,Z)K(Xi)1{Xj≤dj} | L≥ qα

]
.

Applying Lemma 1 to (27a) concludes the proof. �

The proofs of Theorems 9, and 10 follow along the lines of the proofs of Theorems 6 and 3.
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B.5. Proof of Sensitivity to Discrete Random Variable: Theorem 5.

Proof of Theorem 5 (Marginal Sensitivity - Discrete). The stressed loss can be written as

TW,ε = T − c(κ)
r∑

k=1

∆k h(W,Y )Aε,k ,

where Aε,k = |1{κε(U)≤pk}−1{U≤pk}| for k ∈ {1, . . . , r}. To prove the formula for VaR, we calculate

similarly to the proof of Theorem 6

P (TW,ε ≤ qα)−P (T ≤ qα)

=E
[
1{T≤qα+c(κ)

∑r
k=1 ∆k h(W,Y )Aε,k}−1{T≤qα}

]
=

r∑
k=1

r∑
i1,...,ik=1

i1<···<ik

E

 k∏
j=1

Aε,ij

r∏
l=1

l 6∈{i1,...ik}

A{ε,l

(
1{T≤qα+c(κ)

∑k
j=1 ∆j h(W,Y )}−1{T≤qα}

) .
Applying Lemma 4 we obtain

∂

∂ε
Fε(qα) =−

r∑
k=1

c(κ)E
[
K−1(U)

(
1{T≤qα+c(κ)∆k h(W,Y )}−1{T≤qα}

)
| U = pk

]
=−c(κ)

r∑
k=1

K−1(pk)E
[(
1{T≤qα+c(κ)∆k h(W,Y )}−1{T≤qα}

)
| W =wk

]
.

Combining with Equation (14) concludes the proof for VaR.

Second, we prove the case ES. From the proof of Theorem 2, we have

ESα(TW,ε)−ESα(T ) = 1
(1−α)

E[(TW,ε− qα)+− (T − qα)+]

= 1
(1−α)

E

[(
T − c(κ)

r∑
k=1

∆k h(W,Y )Aε,k− qα
)

+
− (T − qα)+

]

= 1
(1−α)

r∑
k=1

m∑
i1,...,ik=1

i1<···<ik

E

 k∏
j=1

Aε,ij

m∏
l=1

l 6∈{i1,...ik}

A{ε,l

×

((
T − c(κ)

k∑
j=1

∆ijh(W,Y )− qα
)

+
− (T − qα)+

)]
.

Next, we apply Lemma 4 and obtain

lim
ε↘0

1

ε
(ESα(Lε)−ESα(L)) =− c(κ)

1−α

r∑
k=1

K−1(pk)E
[(
T − c(κ)∆kh(W,Y )− qα

)
+
− (T − qα)+

∣∣∣ U = pk

]
,

which concludes the proof. �
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Table 3 Correlation matrix R of Z (source: Lloyd’s (2022)).

Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z11 Z12

Z1 1 0.5 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.25 0.25
Z2 0.5 1 0.25 0.25 0.25 0.25 0.5 0.5 0.5 0.25 0.25 0.25
Z3 0.5 0.25 1 0.25 0.25 0.25 0.25 0.5 0.5 0.25 0.5 0.25
Z4 0.25 0.25 0.25 1 0.25 0.25 0.25 0.5 0.5 0.25 0.5 0.5
Z5 0.5 0.25 0.25 0.25 1 0.5 0.5 0.25 0.5 0.5 0.25 0.25
Z6 0.25 0.25 0.25 0.25 0.5 1 0.5 0.25 0.5 0.5 0.25 0.25
Z7 0.5 0.5 0.25 0.25 0.5 0.5 1 0.25 0.5 0.5 0.25 0.25
Z8 0.25 0.5 0.5 0.5 0.25 0.25 0.25 1 0.5 0.25 0.25 0.5
Z9 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 0.25 0.5 0.25
Z10 0.25 0.25 0.25 0.25 0.5 0.5 0.5 0.25 0.25 1 0.25 0.25
Z11 0.25 0.25 0.5 0.5 0.25 0.25 0.25 0.25 0.5 0.25 1 0.25
Z12 0.25 0.25 0.25 0.5 0.25 0.25 0.25 0.5 0.25 0.25 0.25 1

Appendix C: Model specification for the numerical example of Section 5

The insurance company has n= 12 lines of business (LoB) each following a LogNormal distribution,

Zk ∼LN (µk, σ
2
k), k ∈N . The parameters µk and σk are such that E[Zi] = eµi+

1
2σ

2
i = 100 (reflecting

the business volume) and CoVi =
√

var(Zi)/E[Zi] =
√
eσ

2
i − 1, where CoV denotes the coefficients

of variation. The considered CoV and lines of business are reported in Table 2 and the correlation

matrix R in Table 3. These figures are taken from the Solvency II Standard Formula parameters

(Lloyd’s 2022).

We assume that the reinsurers’ critical variables follow a standardised student t distributions

with ν = 4 degrees of freedom, i.e. Xi ∼ t(4), for all i= 1, . . . ,8. (Note that the choice of marginal

distribution forXi is irrelevant since we consider only the event {Xi ≤ di}.) The default probabilities

P(Xi ≤ di) = qi are set to qi = 0.015, i= 1, . . . ,6 and qi = 0.01, i= 7,8.

We assume that (X,Z) has a multivariate t copula with ν = 4 degrees of freedom and correlation

parameter matrix Σ = {σi,j}i,j=1,...,m+n (McNeil et al. 2015, Sec. 7.3). The elements of Σ comprise

the pairwise Pearson correlations of multivariate tν-distributed random vector arising from mono-

tone transformations of elements of (X,Z), so that each has tν marginals. As the (multivariate)

margins of multivariate tν distributions are again multivariate tν , we start by specifying the cor-

relation parameters of the vectors X and Z separately and then consider the dependence across

the two vectors’ elements. First, X has standardised tν margins and hence follows a multivariate

tν distribution. Furthermore, we assume that the dependence structure is homogeneous, such that

σi,j = Corr(Xi,Xj) = λ> 0, for all i 6= j, i, j ∈M. Second, Z has a multivariate tν copula with cor-

relation parameter matrix R = {rk,l}k,l∈N , given in Table 2, thus σm+k,m+l := rk,l, k, l ∈N . Third,

to specify the elements of Σ characterising the dependence of (Xj,Zk), i.e. σj,m+k, j ∈M, k ∈N ,

we build a dependence model that links gross losses to reinsurance defaults using a single factor

model, reflecting the homogeneity in the dependence of X. The common factor is a function of the

gross losses and acts as a proxy for industry effects.
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By the representation of multivariate t distributions as normal mixtures (McNeil et al. 2015,

Sec. 6.2), we can represent each Zk as

Zk = F−1
Zk

(
tν
(√
WZ̃k

))
, k ∈N ,

where W ∼ InvGamma(ν/2, ν/2− 1), such that E[W ] = 1, and (Z̃1, . . . , Z̃n) are multivariate stan-

dard normal, with correlation matrix R. Then the random variables (
√
WZ̃1, . . . ,

√
WZ̃n) are mul-

tivariate tν distributed, with correlation matrix R and margins standardised to have unit variance.

(Note that this is slightly different to the standard tν construction, which has margins with variance

ν/(ν − 2). This choice, which does not affect the dependence model, is made to simplify moment

calculations.) Define:

β := var
( n∑
k=1

Z̃k

)
=
∑
k,l∈N

rk,l , and Ψ :=
1√
β

∑
k∈N

Z̃k ∼N(0,1) .

Then the factor model becomes:

Xj =
√
W
(√

λΨ +
√

1−λΘj

)
, j ∈M,

where Θ1, . . . ,Θm are i.i.d. standard normal variables, independent of (Z̃1, . . . , Z̃n,W ). It follows eas-

ily that E[Xi] = 0, var(Xi) = 1 and Corr(Xi,Xj) = λ is fulfilled. Furthermore, the cross-correlation

values:

σi,m+k = Corr(Xi, t
−1
ν

(
FZk(Zk)

)
= Corr

(√
W
(√

λΨ +
√

1−λΘi

)
,
√
WZ̃k

)
=
√
λ Corr

(
Ψ , Z̃k

)
=
√

λ
β

Corr
(∑
l∈N

Z̃l , Z̃k

)
=
√

λ
β

∑
l∈N

rk,l .

This completes the dependence model specification.
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