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Abstract

Sensitivity analysis is a critical tool used by risk managers for developing and interpreting
quantitative models, as it provides invaluable information regarding model behaviour and
the importance of model assumptions. Building an effective sensitivity analysis approach
leads to more robust decisions ultimately impacting the financial stability of a company.
In this thesis, I develop a novel sensitivity approach that expands the current literature on
sensitivity analysis and stress testing. A change of measure is derived by minimising the
χ2-divergence subject to a moment constraint on a chosen risk factor. A reverse-forward
sensitivity analysis framework is then specified such that the behaviour of model inputs
and output can be assessed consistently. Metrics specific to the approach I adopt are also
introduced to effectively capture the sensitivities of risk factors in a model to rank them
according to their order of importance in a model. A model’s sensitivities to different
risk factors are contingent on parametric assumptions. It is thus important to consider
what the impact of (statistical) uncertainty with respect to such assumptions is, on the
measured sensitivities. The reverse and forward sensitivity analysis, along with specific
bootstrapping procedures, are employed to assess model and parameter uncertainty in a
Solvency II type model for non-life premium and reserve risk. I show that a change in
the distributional assumptions can have an impact on the evaluation of sensitivities of risk
factors and consequently result in reordering of risk factors’ importance. The thesis then
progresses towards developing a more flexible approach for conducting sensitivity analysis,
giving the modeller a choice to select from a broader class of f -divergences which include
the well-known χ2- and Kullback-Leibler divergences. We characterise the properties of the
solutions to the divergence minimisation problems we consider, in terms of the properties
of the divergence function used. In particular, I focus on the shape of the solution and on
stochastic ranking of a variable under different solutions of the divergence minimisation
problems.
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Chapter 1

Introduction

1.1 Sensitivity analysis in insurance risk management

Insurance and financial institutions use sophisticated quantitative simulation models to
effectively manage risk that they face. Specifically, for an insurance company, numerous
factors, such as interest and inflation rates, expected premium growth, claims frequency and
severity, are taken into consideration for model building. An important task of a risk manager
is to identify potential risks and integrate them into the model to enable a more comprehensive
understanding of the model portfolio. As such models are often high-dimensional and have
non-linear relationships between model inputs and output [51], the high complexity of model
building necessitates the application of sensitivity analysis to identify the impact of model
components and assumptions. Sensitivity analysis can have different aims depending on
the problem posed. Typically, it aids in identification of model inputs that have the greatest
influence on the model output and vice versa. By determining the most critical inputs that
drive the output, input factors can be prioritised for further investigation or management
intervention. Parameter and model uncertainty, which are persistent issues in insurance risk
modelling, can be explored through sensitivity analysis by investigating the change in model
predictions when a parameter is altered. Furthermore, sensitivity analysis can be used for
quality and reasonableness checks as it allows comparing the model’s interval dynamics with
modeller’s expectations.

Often sensitivity analyses can be time-consuming as the modeller is required to vary
individual model features multiple times to observe the effect on the model output. As a
result, the costs of performing a sensitivity analysis can be high. For this reason, it is vital
that sensitivity analysis approaches are developed that are both efficient and when dealing
with complex simulation models.
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Saltelli [75] defines sensitivity analysis as the study of how uncertainty in the model’s
output is apportioned to various sources of uncertainty in model inputs. Through sensitivity
analysis, a systematic approach can be applied to identify risk factors, small changes of which
have a high impact on the output of a simulation model. This is particularly important when
dealing with events that have a low probability of occurrence but severe financial implications.
In cases where rare events are modelled using heavy-tailed distributions, sensitivity analysis
becomes even more crucial; examples include modelling losses of a stock [70], flood risk
[6], nuclear waste disposal [48] among others. The tail behaviour of a distribution is also
studied in many actuarial and risk management applications. In the context of capital setting
applications, for example Solvency II models, the evaluation of capital requirement is based
on the 99.5th percentile of the distribution of losses over a one-year period. Furthermore,
depending on the objectives of the modeller, sensitivity analysis can be used to uncover
various behaviours of parameters in a model. Bermúdez et al. [14] use sensitivity analysis in
non-life underwriting risk to evaluate the dependence of copula choice on the importance of
correlation between business lines.

Several approaches to sensitivity analysis are available in literature. In recent years, there
has been a shift in focus towards global sensitivity analysis in actuarial science applications
due to the various shortcomings in local methods. Local sensitivity methods are limited in
their ability to deal with complex models, as they focus on assessing model output sensitivity
only around a specific point of interest. On the other hand, global sensitivity analysis proposed
by Leamer [57] allows analysts to have a better understanding of model behaviour as it takes
the entire space of input values into consideration. This approach has been motivated by
the need to acknowledge the importance of considering alternative model structures and
assessing the impact of each source of uncertainty on model predictions, in turn allowing the
assessment of the robustness of model driven decisions. An extensive literature is available
for the numerous sensitivity analysis techniques that have been proposed, see Borgonovo and
Plischke [21], Saltelli [75]. We specifically focus on global methods, given the fundamental
role of uncertainty in insurance applications.

A more recent study by Pesenti et al. [67] focuses on developing a global method, referred
to as reverse sensitivity analysis, whereby a function of the output is stressed such that it
corresponds to an increase in risk measures of the output. This approach attempts to determine
the most influential factors in model, as those factors are associated with very adverse output
states. Furthermore, the advantages of using such a method are manifold; factor prioritisation
is based on the changes in the output distribution rather than a specific output state and
requires only a single set of input/output scenarios, making it computationally cost-effective.
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In the context of factor prioritisation, a sensitivity measure assigns a score to each input
factor based on the effect it has on the model output. The most common approaches in
evaluating sensitivity measures in the literature include moment-based and variance-based
methods. They have been shown to insufficiently portray information especially when models
are complex, involving correlated input factors. Further, it is possible that a change in one
model input not only affects the output but indirectly affects other input factors in the model.
Pesenti et al. [68] introduces a cascade sensitivity measure to accurately capture such spin-off
effects to reflect the dependence structure between input factors. This is done by taking
directional partial derivatives of risk measures applied to the output. For other literature
closely relating to calculating directional derivatives, see Tsanakas and Millossovich [82].

We focus on developing a sensitivity analysis framework that closely follows the approach
taken by Pesenti et al. [67] to evaluate the importance of inputs in relation to the output
and conversely, to ascertain the significance of output with respect to changes in the inputs.
Such an approach relies on f -divergence minimisation and thus relates to ideas that have
been explored by many others such as Breuer and Csiszár [23], Csiszár [30], Cambou and
Filipović [24]. f -divergences evaluate the dissimilarity between two probability distributions.
The overall approach involves generating alternative scenarios relative to a baseline scenario
by applying a stress on the baseline scenario. By doing this, the model is reconsidered under
a more severe set of conditions. Alternative scenarios generated through this method are
deemed plausible as they reflect the uncertainty while remaining broadly consistent with
the baseline scenario. Often Kullback-Leibler divergence is heavily relied upon for many
applications in statistics, information theory, finance and economics due to its relation with
entropy. However, we note here that there are certain drawbacks for using Kullback-Leibler
divergence which we aim to address in this thesis and the use of alternate f -divergences is
explored.

The thesis consists of three self-contained chapters with their own introduction, notation
and conclusion. Note that there may be some overlap and repetition of information presented
throughout. Chapter 2 has been published in Insurance: Mathematics and Economics (IME)
journal. A brief summary of the following chapters is given below.

1.2 Thesis overview

1.2.1 Sensitivity analysis with χ2-divergence

In Chapter 2, we focus on developing a sensitivity analysis framework to investigate the
importance ranking between various inputs in a model. While our approach to sensitivity
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analysis draws from the ideas of Pesenti et al. [67], we have added a novel approach where
both reverse and forward sensitivity analyses can be integrated in a simple way to obtain
a more comprehensive understanding of the behaviour of model inputs and their rankings.
Novel sensitivity measures that assign a score to each input factor have been proposed, which
reflect both reverse and forward sensitivity analyses.

To carry out the sensitivity analysis methodology, we use optimisation problems in a
discrete space setting, reflecting e.g., a Monte Carlo simulation context. We rely on a change
of measure that is derived by minimising the χ2-divergence subject to a constraint on the
expectation of a random variable and derive an explicit solution to the respective optimisation
problem. By stressing a chosen variable, distortions to the empirical distributions are
produced. The distortions are obtained such that they are close to the baseline model to
reflect the level of underlying uncertainties in a model.

Our choice of minimising the χ2-divergence stems from the fact that Kullback-Leibler
divergence leads to somewhat less stable solutions when heavy-tailed distributions are
modelled. Though in a simulation setting this disadvantage can be overlooked to a certain
extent, we show that using the Kullback-Leibler divergence produces higher sampling errors
compared to the χ2-divergence.

1.2.2 Stress testing the solvency II standard model

Sensitivity analysis, in addition to identifying factors that are important, can be used to
explore parameter uncertainty in the model. This is done by altering one parameter of the
model individually and evaluating sensitivities of input factors. This allows us to pinpoint
those parameters that contribute to model uncertainty significantly. Further, we can assess
the impact a parameter has on the sensitivities of input factors by comparing risk factor
sensitivities obtained for different parameter alterations.

In Chapter 3, we delve more specifically into understanding parameter uncertainty of
a models’ risk factors in the context of Solvency II. We specifically look at the premium
and reserve risk module under the non-life underwriting risk as an example. We propose a
stochastic model for the non-life premium and reserve risk module that broadly aligns with
the standard formula, the distributional assumptions of which are partially determined by the
regulator.

Two specific methods are used to investigate parameter uncertainty: re-simulation and
re-weighting. While the re-simulation technique focuses on obtaining alternative scenarios,
the re-weighting technique focuses on deriving alternative probabilities to a single set of
simulated scenarios. We borrow and integrate the reverse and forward sensitivity analyses
from Chapter 2 in both methodologies. In our analysis, we see that parameter uncertainty can
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have a significant impact on the model, particularly with respect to the model’s correlation
matrix.

1.2.3 Characterising minimal divergence stresses for general f -divergences

In Chapter 4, we delve deeper into studying f -divergences and the characteristics of solutions.
Our aim here is to generalise the divergence minimisation problem stated in Chapter 2,
which involved minimising the χ2-divergence subject to a moment constraint. Our purpose
here is to develop a common framework where different divergences can be implemented
effectively to obtain alternate plausible models for stress testing. We provide results that
allow for a characterisation of solutions when an f -divergence is minimised while, satisfying
a constraint on the expectation of a random variable. The characterisation of the solution
depends on the derivative value of the divergence at zero. This allows for the systematisation
of f -divergences in terms of their features in the study of sensitivity analysis. Furthermore,
we present results that address stochastic dominance and convex ordering of distribution
functions when one parameter in the optimisation problem is altered. In particular, we see
that the convexity of a function closely related to the chosen divergence is key for comparing
the volatilities of stressed random variables. Finally through a simple example, we show the
change in the influence of input factors in a model when different divergences are minimised.





Chapter 2

Sensitivity analysis using χ2-divergence

With minor changes, this chapter has been published as:

Makam, V. D., Millossovich, P., and Tsanakas, A. (2021). Sensitivity analysis with χ2-
divergences. Insurance: Mathematics and Economics, 100:372–383.





Abstract

We introduce an approach to sensitivity analysis of quantitative risk models, for the purpose of
identifying the most influential inputs. The proposed approach relies on a change of measure
derived by minimising the χ2-divergence, subject to a constraint (‘stress’) on the expectation
of a chosen random variable. We obtain an explicit solution of this optimisation problem in a
finite space, consistent with the use of simulation models in risk management. Subsequently,
we introduce metrics that allow for a coherent assessment of reverse (i.e. stressing the output
and monitoring inputs) and forward (i.e. stressing the inputs and monitoring the output)
sensitivities. The proposed approach is easily applicable in practice, as it only requires a
single set of simulated input/output scenarios. This is demonstrated by application on a
simple insurance portfolio. Furthermore, via a simulation study, we compare the sampling
performance of sensitivity metrics based on the χ2- and the Kullback-Leibler divergence,
indicating that the former can be evaluated with lower sampling error.
Keywords: Sensitivity analysis, χ2-divergence, Kullback-Leibler divergence, simulation,
sensitivity measures, reverse stress testing.
JEL codes: C15, G22, D81.

2.1 Introduction

2.1.1 Problem statement

Insurance and financial firms often employ complex quantitative models to analyse and
evaluate the risks pertaining to their organisations; see McNeil et al. [64] for an overview
of relevant methods and techniques. In insurance risk management applications, such
models are typically implemented via Monte Carlo simulation. Scenarios are generated from
modelled sources of uncertainty (risk factors) and are mapped via an aggregation function
to model outputs of interest (e.g. the portfolio loss). Thus, aggregating risk factors allows
the calculation of the probability distribution of model outputs. As the intricacy of such
models increases, it becomes harder to develop insights from them and understand clearly
the relationship between inputs and outputs [see, e.g. 82]. The complexity of quantitative risk
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models arises from the potential high-dimension and stochastic dependence of risk factors
[e.g. 32, 4], as well as the non-linearity of the aggregation function [e.g. 50, 82], which may
itself be numerically demanding in its evaluation at particular simulated scenarios [72, 38].

Our main focus in this paper is to develop an approach to sensitivity analysis, which
enables users to rank model inputs by their importance, while being applicable to the
simulation models used by insurers and financial firms. Sensitivity analysis generates
insights into models and supports robust decision making; for comprehensive reviews see
Christopher Frey and Patil [27], Saltelli [75], Saltelli et al. [77], Borgonovo and Plischke
[21], Rabitti and Borgonovo [71].

We propose a sensitivity analysis framework relying on a change of measure, which
requires only a single set of Monte-Carlo simulations, thus avoiding multiple model runs.
The given set of simulations defines an (empirical) baseline probability measure. The model
is stressed by a change of measure that should reflect specified distortions on the distributions
of risk factors, with the stressed model remaining close to the baseline model. Specifically,
working in a discrete probability space, we derive a change of measure by minimising the χ2-
divergence [29] with respect to the baseline model, subject to a constraint on the expectation
of a model component (e.g. risk factor, model output, or a function thereof). The constraint
reflects the desired stress on the variable of interest. We derive an explicit analytical solution
to the relevant optimisation problem, which allows easy and efficient implementation.

Focusing on risk management applications, we use the terms reverse and forward sensi-
tivity analysis, when the change of measure is, respectively, derived by stressing a model
output or input. While forward sensitivity analysis refers to the well-understood problem of
monitoring the impact of input changes on outputs, reverse sensitivity analysis [67] offers a
generalisation of the reverse stress testing approach often used in risk regulation [36]. We
develop a framework that combines the two analyses by, first, stressing the model output
and evaluating the optimal χ2-divergence and, second, maximising the expectations of input
factors one at a time, while constraining the χ2-divergence to the level obtained from the
first step. By requiring that for both the reverse and forward stresses the χ2-divergence is the
same, we ensure that under all stresses applied the level of distortion to the baseline model is
comparable and derived from an output stress specification, which is itself interpretable in
risk management terms. In our view, this approach ensures the consistency of reverse and
forward sensitivity analyses.

The changes in the distributions of inputs and output, under the reverse and forward
stresses, are quantified via two novel sensitivity measures that we introduce in this paper.
These sensitivity measures are associated with the above reverse/forward framework and
enable the ranking of input factors, based on their importance in the model. We note that
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similar sensitivity measures can be defined if, in the relevant optimisation problems, we
replace the χ2-divergence with a different divergence measure – e.g. Kullback-Leibler
divergence [30, 23]. By a numerical study we show that sensitivity measures based on
the χ2-divergence are obtained with lower sampling error, compared to the case when the
Kullback-Leibler divergence is used.

2.1.2 Review of literature

In recent years, the literature on sensitivity analysis has largely focused on global meth-
ods, which reflect the model behaviour over the entire range of the input distribution; for
comprehensive reviews see Christopher Frey and Patil [27], Saltelli [75], Saltelli et al.
[77], Borgonovo and Plischke [21]. Major advances in sensitivity analysis can be accredited
to Sobol [81], Homma and Saltelli [49], Saltelli et al. [77]. The range of sensitivity analysis
methods available in the literature is substantial, with variance-based [77, 76] and moment-
independent methods [19] being the most common. Recently, local and global sensitivity
methods have been applied to evaluate the comparative importance of demographic and
financial factors in an annuity portfolio [71]. Variance-based measures implicitly assume
that knowledge of the second moment is sufficient to determine the uncertainty of an input
factor, which is problematic in the case of heavy tails [59]. Efforts towards overcoming this
shortcoming include the use of conditional Kullback-Leibler divergences, in order to quantify
the importance of a model input [7, 59].

In this paper, we use the χ2-divergence as a criterion for deriving stressed probability
measures, under which the model’s behaviour is examined. Hence our approach is more
closely related to the literature involving divergence minimisation (under moment constraints)
or moment maximisation (under divergence constraints). Specifically, we build on the reverse
sensitivity testing approach proposed by Pesenti et al. [67], where the stressed probability
measures are derived by minimising the Kullback-Leibler divergence, subject to a constraint
on risk measures such as Value-at-Risk and Expected Shortfall. Working with the χ2-
divergence, we explore problems analogous to the ones stated in Breuer and Csiszár [23],
who use Kullback-Leibler divergence in the context of model uncertainty. Model uncertainty
is also addressed in Glasserman and Xu [44], by bounding the worst-case model error under a
divergence constraint. However, in contrast to those papers, our focus is on understanding the
sensitivities to risk factors within a given model rather than the study of model uncertainty.

Recently, Borgonovo et al. [20] have defined sensitivity measures that reflect the diver-
gence between the unconditional distribution of model output and the conditional distribution,
given an input factor, and have shown that several well-known sensitivity measures fall into
this category. While our paper also utilises divergence measures and shares some concep-
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tual parallels with Borgonovo et al. [20], it does not fall neatly under that framework, as
the impact of a random variable is assessed by stressing its moment and then minimising
divergence, rather than conditioning. Our use of the χ2-divergence is motivated by the fact
that the Radon-Nikodym derivative obtained when using the Kullback-Leibler divergence is
typically exponential in form and, hence, when heavy-tailed distributions are used in a model,
it might lead to issues with existence or (in a Monte Carlo setting) convergence. Related
concerns are found in Glasserman and Xu [44], who use the α-divergence (of which the
χ2-divergence is a special case), when distributions are heavy-tailed. Similarly, Dey and
Juneja [33] minimise a related divergence measure under linear constraints in a portfolio
selection problem.

2.1.3 Structure of the paper

The rest of the paper is organised as follows. In Section 2.2, we discuss the Kullback-Leibler
and χ2-divergences. In Section 2.3, we provide the main result of the paper, relating to
minimising χ2-divergence, under a moment constraint. Furthermore, extensions and varia-
tions of the optimisation problem are considered. Finally, the reverse and forward sensitivity
analysis framework is presented and the related sensitivity measures are defined. In Section
2.4, we apply our results to a simple non-linear insurance portfolio model. Furthermore, a
simulation study is presented, where we assess the extent of simulation error in the evaluation
of our sensitivity measures, when either χ2- or Kullback-Leibler divergence is used. Brief
conclusions are stated in Section 2.5.

2.2 Preliminaries

Let P and Q be two probability measures defined on a common measurable space (Ω,A ).
Q ≪ P indicates the absolute continuity of Q with respect to P and, in this case, we write

the Radon-Nikodym derivative of Q with respect to P as
dQ
dP

. We denote the expectation

operator under P and Q by E and EQ, respectively.
In the paper, we use special cases of the f -divergence [3, 58, 24], as measures of

discrepancy between two probability measures.

Definition 2.2.1. Let f : (0,∞)→ R be a convex function and suppose that Q ≪ P. The
f -divergence of Q with respect to P, denoted by D f (Q||P), is defined as

D f (Q||P) =
∫

Ω

f
(

dQ
dP

)
dP = E

[
f
(

dQ
dP

)]
.
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The f -divergence is non-negative, monotone and jointly convex. The Kullback-Leibler
(KL-) divergence, first introduced by Kullback and Leibler [55], and the χ2-divergence
[29, 58] are two special cases corresponding to f (u) = u logu and f (u) = u2−1, respectively.

Definition 2.2.2. The KL-divergence of Q with respect to P with Q ≪ P, is defined as

DKL(Q||P) =
∫

Ω

dQ
dP

log
(

dQ
dP

)
dP = EQ

[
log
(

dQ
dP

)]
.

The KL-divergence is positive, i.e. DKL(Q||P)> 0, except if Q = P when it becomes 0.
It is also in general asymmetric i.e., DKL(Q||P) ̸= DKL(P||Q).

Definition 2.2.3. The χ2-divergence of Q with respect to P with Q ≪ P is defined as

Dχ2(Q||P) =
∫

Ω

((
dQ
dP

)2

−1

)
dP = E

[(
dQ
dP

)2
]
−1 = var

(
dQ
dP

)
.

In Saraswat [78], it is shown that Dχ2(Q||P)≥ DKL(Q||P) for all P,Q.
Consider a finite probability space Ω = {ω1,ω2, . . . ,ωn} with A = 2Ω. Assume that

Q ≪ P. Let pi and qi denote the probability of obtaining the state of the world ωi ∈ Ω, under
those two measures, that is, pi = P(ωi) and qi = Q(ωi). We assume that pi > 0 for all i,
while there may be states for which qi = 0. Then, the definitions of KL-divergence and
χ2-divergence become:

DKL(Q||P) = ∑
i

qi log
(

qi

pi

)
= ∑

i
piwi logwi

Dχ2(Q||P) = ∑
i

(
qi

pi

2
)
−1 = ∑

i
piw2

i −1,

where wi =
qi

pi
=

dQ
dP

(ωi) for all i.

Finite spaces are typical in a Monte Carlo setting, where we have pi =
1
n

, with each state
of world corresponding to a simulated scenario, with equal probability of occurrence.

A risk measure is a functional ρ mapping a random variable X (a loss), to a real number
ρ(X) and it may represent e.g. the capital to be allocated in order to make the risk X
acceptable. There are several ways of classifying of risk measures (see Artzner et al. [5],
Föllmer and Schied [39]). We focus on the percentile-based risk measures Value-at-Risk
(VaR) and Expected Shortfall (ES) [64].
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Definition 2.2.4. The Value-at-Risk for risk X , at confidence level α ∈ (0,1), is defined as
the left quantile of the distribution of X ,

VaRα(X) = F−1
X (α),

where F−1
X (α) = inf{x ∈ R|FX(x)≥ α}.

Definition 2.2.5. The Expected Shortfall for a risk X with E[|X |]< ∞, at confidence level
α ∈ (0,1), is given by

ESα [X ] =
1

1−α

∫ 1

α

VaRq(X)dq

=
1

1−α
E [((X −VaRα(X))+]+VaRα(X).

From the above formula, the Expected Shortfall can also be interpreted as an average of
Value-at-Risk for confidence levels greater than α , thus taking into account the entire tail of
the distribution [74]. Expected Shortfall is a coherent risk measure, whereas the Value-at-Risk
in general is not [5].

2.3 Stress testing models

2.3.1 Problem definition

We introduce a basic model within a sensitivity analysis framework, where the model inputs
are mapped to a model output by means of an aggregation function. Let the random vector
Z = (Z1,Z2, · · · ,Zd) on a measurable space (Ω,A ) denote the random variables representing
the input factors of the model under consideration. The aggregation function g : Rd → R,
when applied on the inputs, gives a one-dimensional output Y = g(Z). We will throughout
assume that high values of Y correspond to adverse outcomes, as is the case, for example,
when Y represents the total loss of an insurance portfolio. The main focus of this paper
concerns the understanding of model behaviour subject to changes in an input factor or the
output. Specifically, we look at the changes in the distributional characteristics of input
factors when there is a change in the output and vice versa.

Let P denote the set of all probability measures on the measurable space (Ω,A ) and,
for a given P ∈ P , define the baseline model as (Z,g,P). A change of measure is introduced

via the Radon-Nikodym derivative W =
dQ
dP

. We then refer to (Z,g,Q) as an alternative or
stressed model.
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The measure Q is chosen such that the expectation of random variable X becomes

EQ[X ] = E[WX ] = t,

for a specified t ∈ R. The variable X may be chosen to be one of the model inputs
(X = Zi), the model output (X = Y ) or indeed a function of the input vector Z. Depending
on the problem context, the expectation of X may be stressed upwards (t > E[X ]) or down-
wards (t < E[X ]). The choice of Q ∈ P is such that the distortion to the baseline model is
minimised. Specifically, we aim to minimise Dχ2(Q|P), subject to the constraint EQ[X ] = t
being fulfilled. In terms of the Radon-Nikodym derivative W , we arrive at the optimisation
problem 

minW
1
2E[W

2] st

E[W ] = 1,

E[WX ] = t,

W ≥ 0.

(I)

Such a stress on X can be interpreted in two ways. First, we are concerned about model
change. We can consider what would happen to the probability measure – and hence the
distribution of all random variables of interest – if the expected value of X would move to
the stressed value t. The second interpretation is concerned with model mis-specification.
If the current model is not correctly specified, and the actual expectation of X is t, the
Radon-Nikodym derivative arising as a solution to Problem (I) allows the calculation of a
plausible distribution for all variables, under a corrected model. Note that in this paper we are
not concerned with statistical arguments pertaining to how the baseline model was selected
from data.

Portfolio models used in risk management typically require numerical evaluation of
probability distributions of interest, with Monte Carlo simulation often used. For that reason,
in the rest of this paper, we restrict our analysis to a finite probability space Ω = {ω1, . . . ,ωn},
with baseline probability P(ωi) = pi for i = 1, . . . ,n. We denote by w = (w1, . . . ,wn), with
wi =W (ωi), the vector of Radon-Nikodym derivative values, such that Q(ωi) = qi = piwi.
Furthermore, let X(ωi) = xi and denote x = (x1, . . . ,xn). We assume that x1 < .. . < xn; this
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is relaxed in Remark 2.3.5. In that context, Problem (I) becomes:
minw

1
2 ∑

n
i=1 piw2

i st

∑
n
i=1 piwi = 1,

∑
n
i=1 piwixi = t,

wi ≥ 0 for all i = 1, . . . ,n.

(II)

A ‘dual’ version of Problem (II) arises from maximising the expectation of a random
variable with respect to the measure Q, subject to a constraint on the χ2-divergence. A
similar optimisation problem, with a constraint on the KL-divergence, is discussed in Breuer
and Csiszár [23]. Here, we define the problem:

max∑
n
i=1 pivixi s.t

∑
n
i=1 pivi = 1,

1
2

∑
n
i=1 piv2

i ≤ θ ,

vi ≥ 0 for all i = 1, . . . ,n.

(III)

Remark 2.3.1. The KL-divergence as a measure of plausibility of an alternate model is by
far the most popular choice in the family of f -divergences. Applications in financial risk
management include Breuer and Csiszár [23] and Glasserman and Xu [44]. Nonetheless,
there are potential problems in the characterization of solutions obtained when the KL-
divergence is used, if X follows a heavy-tailed distribution, as is often the case in insurance
and finance applications. Specifically, if in Problem (I) we change the χ2- to the KL-
divergence, it is known that the optimal Radon-Nikodym derivative takes the form [30, 23]

W =
exp(βX)

E[exp(βX)]
,

for some β ∈ R. The above expression is not well defined if X is heavy tailed, such that
exponential moments are not defined (e.g. Log-normal or Student t). To avoid this pitfall Dey
and Juneja [33] have replaced the KL-divergence with polynomial divergence in a portfolio
selection problem. This also motivates our choice of the χ2-divergence. In the case of a finite
space (Problem II), issues of heavy-tailedness do not arise. However, if the discrete space is
generated through the realisations of a Monte Carlo simulation, with the underlying model
containing heavy tailed components, then convergence issues may appear – we return to this
issue in Section 2.4.4.
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2.3.2 Main results

In this section, we present the mathematical results of the paper, specifically the solution to
the optimisation Problem (II) and its various corollaries.

Throughout this section, we use the following notations. Let the sum of the first j
probabilities associated with each of the corresponding states of the world be denoted by
π j = ∑

j
i=1 pi and similarly, indicate the sum of the probabilities corresponding to that of the

latter n− j states of the world by π> j = ∑
n
i= j+1 pi. The mean, second moment and variance

of x respectively are defined as:

x̄ =
n

∑
i=1

pixi, x̄(2) =
n

∑
i=1

pix2
i , s2 = x(2)− x̄2.

For any integer j ∈ {1, . . . ,n−2}, the mean of the first j values of x is given by:

x̄ j =
∑

j
i=1 pixi

π j
.

The mean, second moment and variance of the latter n− j values of x is given by:

x̄> j =
∑

n
i= j+1 pixi

π> j
, x̄(2)> j =

∑
n
i= j+1 pix2

i

π> j
, s2

> j = x̄(2)> j − x̄2
> j.

Proposition 2.3.1. Let x̄ < t ≤ xn. Then, the optimisation problem (II) has a unique solution
w, given below.

a) If t < x̄+
s2

x̄− x1
, then wi = λ1 +λ2xi > 0, for i = 1, . . . ,n,

where λ2 =
t − x̄

s2 and λ1 = 1−λ2x̄.

b) If x̄+
s2

x̄− x1
≤ t < xn, then

wi =

0, i = 1, . . . ,k

l1(k)+ l2(k)xi, i = k+1, . . . ,n,
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where 1 ≤ k ≤ n− 2 is the unique integer satisfying l1(k)+ l2(k)xk ≤ 0 and l1(k)+
l2(k)xk+1 > 0 and where the functions l1 and l2 are defined by

l1( j) =
1− l2( j)(x̄− x̄ jπ j)

π> j

l2( j) =
t − x̄−

π j

π> j
(x̄− x̄ j)

π> js2
> j

for j = 1, . . . ,n−2.

c) If t = xn, then wi =

0, i = 1, . . . ,n−1

n, i = n.

Note that the positivity of the weights wi in parts a), and in part b) for i > k, is guaranteed
by the constraint on the parameter t.

Proposition 2.3.2. For a given t with x̄ < t < xn, denote the solution of Problem (II) by

w∗ and the optimal value of the objective function by θ ∗ =
1
2

∑
n
i=1 piw∗

i
2. Then, w∗ solves

Problem (III) with θ = θ ∗.

Finally, from the proof of Proposition 2.3.2 it can be seen that the χ2-divergence constraint
in Problem (III) is always binding at the optimum.

Remark 2.3.2. The Optimal χ2-divergence in Problem (II) ranges from 0, corresponding to
t = x̄, to its maximum value, corresponding to t = max(X) = xn. Furthermore, the optimal
χ2-divergence is a strictly increasing function of t, thanks to the Sensitivity Theorem [61].

Remark 2.3.3. The increasingness of the optimal Radon-Nikodym derivative in Proposition
2.3.1 implies that the distribution of X under the stressed measure Q first order stochastically
dominates the distribution of X under P, see for e.g. Pesenti et al. [67, Prop. A.1]. As a result
the expectation of any increasing function of X is stressed upwards.

Remark 2.3.4. In Proposition 2.3.1, we state the solution to Problem (II) for an upward
stress only, x̄ < t ≤ xn. Consider Problem (II) with a downward stress, that is x1 ≤ t < x̄. Its
solution is the same as that of the following problem:

minw ∑
n
i=1 piw2

i s.t

∑
n
i=1 piwi = 1,

∑
n
i=1 piwiri =−t,

wi ≥ 0 for all i = 1, . . . ,n,
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and where r1 =−xn,r2 =−xn−1, . . . ,rn =−x1. This problem can be solved once again using
Proposition 2.3.1, since r̄ =−x̄ <−t ≤ rn =−x1.

Remark 2.3.5. In a Monte Carlo model where the states of the world are assumed to be
equiprobable, the optimisation Problem (II) simplifies to

minw
1

2n
∑

n
i=1 w2

i s.t
1
n

∑
n
i=1 wi = 1,

1
n

∑
n
i=1 wixi = t

wi ≥ 0 for all i = 1, . . . ,n,

(IV)

The solution of Problem (II), as reported in Proposition 2.3.1, holds for Problem (IV),

after substituting pi =
1
n
,π j =

j
n

and π> j =
n− j

n
.

Furthermore, assume that in addition to scenarios being equiprobable, we are in a
situation where there are ties in x. For example, if Y is a portfolio loss, we may be interested
in stressing the random variable X = (Y −β )+; in that case we may have X(ωi) = 0 for more
than one state ωi. In particular, assume that there is a unique tie consisting of m+1 values,
x1 < x2 < · · ·< x j−1 < x j = x j+1 = · · ·= x j+m < x j+m+1 < · · ·< xn. Then, we can replace
Problem (IV) with 

minw
1

2n
∑

ñ
i=1 w̃2

i s.t
1
ñ

∑
ñ
i=1 w̃i p̃i = 1,

1
ñ

∑
ñ
i=1 w̃i p̃ix̃i = t,

w̃i ≥ 0,

and ñ = n−m,

x̃i =


xi if i < j,

xi if i = j,

xi+m if i = j+1, · · · , ñ.

p̃i =


pi if i < j,

p j + p j+1 + · · ·+ p j+m if i = j,

pi+m if i = j+1, · · · , ñ.

Remark 2.3.6. We have solved Problem (II) with a non-negativity constraint on the weights.
Thus, information pertaining to some states of nature is lost when they are assigned a zero
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weight, i.e. if for the ith scenario, we have wi = 0. To avoid such a drastic intervention to the
probability measure P, we slightly generalise Problem (II) by introducing a strictly positive
lower bound δ for the weights. Specifically, for a given t ∈ R and 0 < δ < 1, consider the
optimisation problem 

minw ∑
n
i=1 piw2

i s.t

∑
n
i=1 piwi = 1,

∑
n
i=1 piwixi = t,

wi ≥ δ > 0 for all i = 1, . . . ,n.

(V)

The solution to Problem (V) follows from Problem (II), by the following argument. Let
v∗ = (v1, . . . ,vn) be the solution of the auxiliary problem

min∑
n
i=1 piv2

i s.t

∑
n
i=1 pivi = 1,

∑
n
i=1 pivixi =

1
1−δ

(t −δ x̄),

vi ≥ 0 for all i = 1, . . . ,n.

Then, w∗ = δ +(1− δ )v∗ is the solution to the Problem (V). This can be verified by
substituting w∗ in the constraints of Problem (V). The objective function of Problem (V)
becomes:

n

∑
i=1

piw2
i =

n

∑
i=1

pi(δ +(1−δ )vi)
2

= δ
2 +2δ (1−δ )+(1−δ )2

n

∑
i=1

piv2
i .

Hence, minimising the left hand side is equivalent to minimising ∑
n
i=1 piv2

i .

2.3.3 Reverse and forward sensitivity analyses

Here we return to the problem definition of Section 2.3.1, considering a model with output
Y and risk factors Z, linked through an aggregation function, Y = g(Z). Depending on the
purpose of the sensitivity analysis, we may set X in Problem (I) as either X = Y , leading to
a reverse sensitivity analysis (see also Pesenti et al. [67]), or X = Zi, a forward sensitivity
analysis. Reverse sensitivity analysis aims at evaluating the behaviour of risk factors under a
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stress on the model output (portfolio loss), while forward sensitivity is concerned with the
impact on the output distribution of stressing individual risk factors.

Specifically, for reverse sensitivity analysis, we solve Problem (II) with the constraint
EQ(Y ) = t, where t > E[Y ] represents a stress on the expected value of the output Y , and let
dQY
dP the optimal Radon-Nikodym derivative. As high values of Y are interpreted as adverse

outcomes, the value of t can be selected to represent a critical threshold for a decision maker.
Subsequently, the input factors’ importance is assessed according to the impact on their
distribution, caused by the change of measure dQY

dP . A substantial change observed in the
distribution of an input factor can be interpreted as a high sensitivity of that factor.

Conversely, for forward sensitivity testing, a change of measure is obtained by specifying
a stress on one input factor at a time. In order that the stresses on different input factors are
consistent with each other, we obtain the relevant changes of measure by solving Problem
(III) with X = Zi and under the same constraint on the χ2-divergence. Denote the resulting
Radon-Nikodym derivatives by

dQZi
dP , i = 1, . . . ,d. Then, these changes of measure are used

to evaluate stressed distributions of the output Y ; we attribute a higher sensitivity to input
factors that lead to a more substantial change in the distribution of Y.

Furthermore, we can link reverse and forward sensitivity, to ensure consistency between
the stresses applied under each of the two approaches and detect any dissonance that may
arise between the importance rankings they produce. Here, we propose the following
process. We start with reverse sensitivity analysis, as a stress on the output may be calibrated
with reference to an unacceptable level of adverse movement in portfolio risk (Problem
(II)). Subsequently, the optimal χ2-divergence is calculated from that analysis. Then, this
divergence value is used as a constraint in Problem (III) to find the maximal stress possible
on an input factor for the forward sensitivity analysis.

Two sensitivity measures specific to our framework are defined below.

Definition 2.3.1. Let E[Y ] < t < maxY , QY be the probability measure arising from the
solution of Problem (II) with X =Y , and denote by θ ∗ the corresponding optimal value of the
objective function. Let QZi be the probability measure arising from the solution of Problem
(III) with X = Zi and θ = θ ∗. Then, the reverse sensitivity of an input Zi is defined by

Ri :=
EQY [Zi]−E[Zi]

EQZi [Zi]−E[Zi]
,

while the forward sensitivity of Zi is defined as

Fi :=
EQZi [Y ]−E[Y ]
EQY [Y ]−E[Y ]

.
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The sensitivity measure Ri (resp. Fi) represents the change in the expectation of an input
(resp. output), when the output (resp. input) is stressed. The denominators act a normalising
constants, as is seen from Proposition 2.3.3 below. We remark that the sensitivity analysis
framework we present, including Definition 2.3.1, can be altered as necessary to include
functions of input factors to enable the assessment of different distributional characteristics.

Proposition 2.3.3. The sensitivity measures of Definition 2.3.1 satisfy the following proper-
ties:

1. Ri,Fi are well defined.

2. Ri,Fi ≤ 1.

3. Ri = Fi = 0 if Zi,Y are independent.

4. Ri,Fi ≥ 0 if (Zi,Y ) are positive quadrant dependent.

Remark 2.3.7. In the reverse/forward stress testing framework proposed in this section, we
have assumed throughout that the starting point is a stress that increases the mean of the
output Y to a level t. We believe that this has an appealing risk management interpretation,
as it allows us to consider the way that a specified adverse movement in the distribution of Y
(e.g. a portfolio loss) is reflected in corresponding movements of input factors. Of course, an
alternative analysis can be carried out, with t < E[Y ], thus considering improvements in Y .

Furthermore, the formulation of the metrics Ri and Fi encodes an analyst’s prior expecta-
tions on a positive relationship between the risk factors and model input. This is implicit in
the process of stressing upwards a risk factor Zi in order to observe a (presumably) adverse
effect on Y . Put differently, unless such a prior expectation exists, an analyst may choose
to minimise rather than maximise EQ[Zi] in Problem (III), subject to the same constraint on
the χ2-divergence. However, as sensitivity analysis is a process of discovery, the analyst’s
expectations may be confounded, e.g. if Fi < 0 is observed, signifying that an upward stress
in Zi results in a reduction in EQZi [Y ]. Though such a negative value is interpretable in its own
right, the analyst may subsequently choose to carry out a different forward stress, involving
minimisation of EQ[Zi], and recalculate the forward sensitivity measure accordingly. To
formalise this argument, consider Fi as in Definition 2.3.1, and let F̃i be the same quantity,
with the only difference that in the derivation of QZi , minimisation replaces maximisation
in Problem (III). Then one could consider the couple (Fi, F̃i), or indeed some quantity like
max{|Fi|, |F̃i|}, as an importance measure that does not rely on prior expectations – though
the latter would not reveal the direction of association between Zi and Y .
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Remark 2.3.8. A further observation relates to the extent that our approach can be extended
in order to allow the stressing of second moments. For example, in Problem (I) one can
clearly set X = Z2

i , to capture volatility effects, or X = ZiZ j, to capture interaction effects.
However, such a stress specification would lead to results that are hard to interpret, since
under the stressed model with such a second order constraint, the first moments would also
move. A more appropriate method of stressing second moments would involve introducing
more constraints to Problem (I), e.g. fixing the first moments to their values under the
baseline measure P and stressing the second moments to higher values. However, for such a
procedure our main analytical result, Proposition 2.3.1, can no longer be used and one would
need to revert to numerical optimisation. While this is tractable using quadratic programming
methods [e.g. 45], we believe that it lies outside the scope of the current paper.

2.4 Case study of an insurance portfolio

Here we apply the framework of Section 2.3 to the example of a simplified insurance
portfolio. In Section 2.4.1, we introduce the model, while in Sections 2.4.2 and 2.4.3 we,
respectively, perform reverse and forward sensitivity analyses. Finally, in Section 2.4.4, we
evaluate the sensitivity measures of Definition 2.3.1; furthermore, we examine their sampling
performance, comparing them to similar measures that are constructed by replacing the χ2-
with KL-divergence.

2.4.1 Baseline model

Consider a model of an insurance portfolio, with inputs factors Z = (Z1,Z2,Z3,Z4) and
output Y , representing the portfolio loss. Z1 and Z2 represent claims from two lines of
business. Claims are subject to a common multiplicative (e.g. inflation) factor, Z3, such that
the portfolio loss, before reinsurance, is given by

L = (Z1 +Z2)Z3.

The insurance company buys reinsurance on L with limit l and deductible d. Z4 represents
the percentage of reinsurance recovery lost in circumstances when the re-insurer fails to
make a payment. The total portfolio loss thus is:

Y = L− (1−Z4)min{(L−d)+, l}.
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Z1 follows a truncated Log-normal distribution with mean 150 and standard deviation
35, where the truncation point is at the 99.9% quantile; Z2 follows a Gamma distribution
with mean 200 and standard deviation 20; Z3 follows a Log-normal distribution with mean
1.05 and standard deviation 0.05; Z4 follows a Beta distribution with mean 0.1 and standard
deviation 0.2. We assume that Z1,Z2,Z3 are independent. Furthermore, Z4 is dependent on L
through a Gaussian Copula with a correlation of 0.6 and, conditional on L, Z4 is independent
of (Z1,Z2,Z3). For the reinsurance parameters, we set l = 30 and d = 380. We simulate
(Z,Y ) using a Monte Carlo sample of n = 105 scenarios.

2.4.2 Reverse sensitivity analysis of the insurance model

Using the above model, we follow the sensitivity analysis process outlined in Section 2.3.3.
We denote by QY the measure for which dQY

dP is the solution of Problem (II) after setting
X = Y . We stress the expectation of Y upwards by 10%, such that EQY (Y ) = 1.1, E(Y ) = t.

Figure 2.1 (left) displays the Radon-Nikodym derivative of the stressed probability
measure QY , as a piecewise linearly increasing function of Y . On the right of Figure 2.1,
the empirical distributions of Y under the baseline (dashed) and stressed (solid) measure
are shown. The stressed output distribution first-order stochastically dominates the output
distribution under the baseline model, as remarked after Proposition 2.3.1.

Fig. 2.1 Left: Radon-Nikodym derivative of QY against Y . Right: Stressed probability
distributions of Y under models P, QY .

Figure 2.2 displays the distribution of the input factors under the stressed model QY . The
stressed probability distributions appear to stochastically dominate the baseline distributions.
We can see that Z1 and Z4 undergo a larger change, compared to Z2 and Z3. We attribute this
behaviour to the heavier tail of Z1 and the role of Z4 in the aggregation function, since the loss
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of reinsurance recoveries is important in those scenarios where losses L before reinsurance
are high.

These observations are confirmed in Table 2.1, which reports the percentage increases in
the mean, standard deviation, and VaR/ES risk measures, at the 95% level, of the four input
factors. If for example we focus on ES0.95, we observe an approximate increase of 15% and
18% for Z1 and Z4 respectively, with the corresponding values for Z2 and Z3 being much
lower.

Fig. 2.2 Empirical distributions of the input factors under the baseline and stressed models
P, QY .
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Table 2.1 Percentage increase in statistics of output Y and input factors Zi under the stressed
model QY , with respect to the baseline model P.

Factors Mean St. Dev. VaR0.95 ES0.95

Y 10.0 −1.31 11.17 10.90
Z1 17.44 8.67 15.38 14.79
Z2 3.99 −0.80 3.27 3.14
Z3 1.60 −1.48 1.39 1.35
Z4 108.52 39.63 39.18 18.10

2.4.3 Forward sensitivity analysis of the insurance model

Now we carry out forward sensitivity analysis, as discussed in Section 2.3.3. We denote
by QZi the measure for which dQZi

dP is the solution of Problem (III) after setting X = Zi and
θ equal to the optimal χ2-divergence of the reverse sensitivity problem in Section 2.4.2.
Figure 2.3 displays the Radon-Nikodym derivative of the stressed probability measures
QZi , i = 1, . . . ,4. It is seen that each Radon-Nikodym derivative is an increasing function of
the factor being stressed. Note that while the different Radon-Nikodym derivatives have the
same standard deviation (due to the χ2-divergence constraint) their distributions are generally
not the same.

In Figure 2.4, the empirical distributions of Y under the baseline (P, dashed black) and
all stressed (QZi , grey; QY , black) models are displayed. As each input factor is subject to a
stress with the same optimal χ2-divergence, arising from the reverse analysis, the stressed
measures under the forward analysis cannot produce greater distortions to the distribution of
Y compared to that obtained in Section 2.4.2. This is evident from Figure 2.4, where we can
see that the red lines are always between the black and dashed grey ones. This is precisely
the effect that the Definition 2.3.1 of sensitivity measures aims to reflect.

We observe that greater distortions to the distribution of Y arise under stressed models
QZ1 ,QZ4 , compared to QZ2 and QZ3 , implying a higher sensitivity to Z1 and Z4. This is
broadly consistent with the observations of Section 2.4.2. In Table 2.2 we report percentage
changes in distributional characteristics of Y , under the stresses on all input factors. We note
that, for example, the largest changes in the 95%-ES measure are observed for Z1 and Z4,
9.2% and 8.4% respectively.
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Fig. 2.3 Radon-Nikodym derivatives of stressed models QZi for i = 1, . . . ,4
.
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Fig. 2.4 Stressed probability distributions of Y under the baseline model P and the stressed
models QY and QZi for i = 1, . . . ,4.

Table 2.2 Percentage increase in statistics of Y under the stressed models QZi for i = 1, . . . ,4,
with respect to the baseline model P.

Variables stressed Mean St. Dev. VaR0.95 ES0.95

Z1 8.00 2.46 9.41 9.21
Z2 4.52 −4.44 4.65 4.34
Z3 3.72 −0.32 4.35 4.15
Z4 5.51 17.94 8.80 8.41
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2.4.4 Evaluation of sensitivity measures

The aim of this section is to evaluate the sensitivity measures defined in Section 2.3.3 for our
insurance portfolio model and assess the extent of simulation error in their calculation.

The reverse and forward sensitivities of different input factors are reported, respectively,
in the second and fourth column of Table 2.3, such that e.g. R1 = 0.794 and F1 = 0.800. It
can be seen that, according to both the reverse and forward sensitivity measures, the ranking
of risk factors, from the most to the least sensitive, is Z1, Z4, Z2, Z3. This is broadly consistent
with the discussion of Sections 2.4.2 and 2.4.3.

Furthermore, for comparison purposes, in the third and fifth column of Table 2.3, we
report sensitivity measures calculated with respect to the KL- rather than the χ2-divergence.
These sensitivity measures are still calculated according to Definition 2.3.1, with the dif-
ference that the measures QY , QZi are the solutions of modified versions of Problems (II)
and (III), with the χ2-divergence replaced with the KL-divergence. The solution to these
problems is given by e.g. [23] and the numerical implementation is carried out via the R
package SWIM by [66]. We observe that a change in the divergence measure does not impact
the relative importance of input factors.

Table 2.3 Reverse and forward sensitivities of input factors Z1,Z2,Z3,Z4 under χ2-divergence
and KL-divergence (calculated as the average over 1000 sets of n = 105 simulated scenarios).

Reverse SM Forward SM
Input χ2-divergence KL-divergence χ2-divergence KL-divergence

Z1 0.794 0.809 0.800 0.806
Z2 0.433 0.389 0.451 0.417
Z3 0.370 0.356 0.374 0.346
Z4 0.568 0.570 0.551 0.580

To quantify simulation error, we simulate m sets of n simulated scenarios from our model.
The sensitivity measures are evaluated on each of the m sets of simulations, resulting in
empirical distributions representing sampling error. Specifically, for k = 1, . . . ,m, we follow
the algorithm:

1. Multivariate scenarios z(k) are sampled from Z under P, where z(k) =
(

z(k)j,i

)
j=1,...,n
i=1,...,d

.

Subsequently, evaluate y(k)=
(

y(k)j

)
j=1,2,...,n

, where y(k)j = g
(

z(k)j•

)
and z(k)j• =(z(k)ji )i=1,...,d .

2. Set t(k) = 1.1
1
n

∑
n
j=1 y(k)j for the reverse sensitivity test.

3. Working first with the χ2-divergence, we obtain the corresponding Radon-Nikodym
densities (w(k)

j ) j=1,...n by solving Problem (II) with x = y(k) and t = t(k).
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4. Evaluate the optimal divergence, θ (k) =
1
n

∑
n
j=1(w

(k)
j )2.

5. For the forward sensitivity test, set θ = θ (k) and solve Problem (III) with x = z(k)•i ,
where z(k)•i = (z(k)ji ) j=1,...,n, to obtain the Radon-Nikodym densities w(k)

i = (w(k)
ji ) j=1,...,n.

6. Using w(k) and w(k)
i , we measure the reverse and forward sensitivity measures Ri,Fi as

given in Definition 2.3.1.

In addition, we carry out the same algorithm, but using the KL-divergence for the
calculation of sensitivity measures, as discussed above. We aim to compare the simulation
error of sensitivity measures under each of the two divergence measures. This is motivated
by Remark 2.3.1, where we argued that, due to the form of the solution of the KL-divergence
minimisation problem, high numerical errors may arise.

Figure 2.5 displays box plots of input factors’ sensitivity measures. The top left and right
box plots are associated with reverse sensitivity with χ2- and KL-divergences respectively,
while the bottom two plots represent forward sensitivities for the two divergences. We
observe greater volatility in the estimates of both reverse and forward sensitivities, when the
KL-divergence is used. This is particularly visible in the case of the reverse sensitivity, where
the KL-divergence produces a high number of outliers. This confirms our concerns raised
in Remark 2.3.1 about the use of the KL-divergence and demonstrates the better numerical
properties of sensitivity measure estimates, when the χ2-divergence is used.
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Fig. 2.5 Box plots of reverse and forward sensitivities of input factors under χ2- and Kullback-
Leibler divergences, for m = 1000 sets of n = 105 simulated scenarios.

In Table 2.4, we show the standard errors of reverse and forward sensitivities of in-
put factors Z1,Z2,Z3,Z4 under the χ2- and KL-divergences, for m = 1000 sets of n ∈
{103, 104, 105} simulated scenarios. Once more, we observe the higher error of sensi-
tivity measures based on the KL-divergence, particularly for lower sample sizes n.
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Table 2.4 Standard errors of reverse and forward sensitivities of input factors Z1,Z2,Z3,Z4
under χ2-divergence and KL-divergence for m = 1000 sets of n = 103,104,105 simulations.

Reverse Sensitivity Forward Sensitivity

n = 103 χ2-divergence KL-divergence χ2-divergence KL-divergence
Z1 0.013 0.023 0.012 0.034
Z2 0.028 0.057 0.027 0.034
Z3 0.029 0.088 0.029 0.036
Z4 0.029 0.046 0.026 0.040

n = 104 χ2-divergence KL-divergence χ2-divergence KL-divergence
Z1 0.004 0.010 0.004 0.016
Z2 0.009 0.026 0.008 0.012
Z3 0.009 0.045 0.009 0.012
Z4 0.009 0.015 0.008 0.014

n = 105 χ2-divergence KL-divergence χ2-divergence KL-divergence
Z1 0.001 0.004 0.001 0.006
Z2 0.003 0.010 0.003 0.005
Z3 0.003 0.019 0.003 0.004
Z4 0.003 0.005 0.003 0.006

2.5 Conclusions

We have proposed a sensitivity analysis framework based on the χ2-divergence, to investigate
in a coherent fashion the relationship between a model’s inputs and output. Two approaches
to sensitivity analysis are considered; for the reverse approach, the expectation of the output
was stressed to ascertain the output to input relationship whereas, for the forward approach,
the input factors were stressed subject to the same optimal divergence. The analytical solution
obtained for the divergence minimisation problem allows an easy implementation of the
sensitivity analyses using Monte-Carlo simulation. We introduced sensitivity measures
specific to our framework, to investigate the changes in the distributions of inputs and
output. Finally, a numerical study is presented, comparing the simulation error of sensitivity
measures based on the KL- and χ2-divergences. The lower errors observed in the case of
the χ2-divergence and its applicability in the context of heavy-tailed distributions, make it a
competitive alternative to the more commonly used KL- divergence.
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2.6 Appendix: Proofs

Proposition (2.3.1). If t ≤ xn, Problem (II) is a quadratic programming problem which
admits a unique solution. The Karush-Kuhn-Tucker (KKT) conditions will then be both
necessary and sufficient for optimality of a candidate solution w [61].

The KKT conditions are:

piwi = piλ1 + piλ2xi +µi,
n

∑
i=1

piwi = 1,

wiµi = 0,
n

∑
i=1

piwixi = t,

µi ≥ 0, wi ≥ 0,

for i = 1, . . . ,n.
To find the general form of λ1 and λ2, we substitute the equation piwi in the equality
constraints of Problem II. We get

λ1 = 1−λ2x̄−
n

∑
i=1

µi, (i)

λ2 =
t − x̄+∑

n
i=1 µi(x̄− xi)

s2 . (ii)

We note that wi > 0 implies that µi = 0 and wi = λ1 +λ2xi.

We now show that λ2 > 0. Let’s suppose by contradiction that λ2 ≤ 0 and consider the case
where xh < x j for some indices 1 ≤ h < j ≤ n such that w j > 0. It follows that w j = λ1+λ2x j

and

phwh = phλ1 + phλ2xh +µh

≥ phλ1 + phλ2xh (since µh ≥ 0)

≥ ph(λ1 +λ2x j) (since xh < x j)

= phw j.

We conclude that wi is non-increasing in i and that there is a counter-monotonic relationship
between X and W . In the case where w j = 0, the conclusion still holds. Therefore, by
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Chebyshev’s Sum Inequality,

t =
n

∑
i=1

pixiwi ≤
n

∑
i=1

piwi

n

∑
i=1

pixi = x̄

which contradicts t > x̄. Therefore, λ2 > 0.

Let now xh < x j for 1 ≤ h < j ≤ n such that wh > 0. Then µh = 0 and we have

p jw j = p jλ1 + p jλ2x j +µ j

≥ p jλ1 + p jλ2x j

> p j(λ1 +λ2xh)

= p jwh.

Hence wi is non-decreasing in i and the solution will be of the form

wi =

0 i < k∗

λ1 +λ2xi i ≥ k∗
(iii)

for some k∗ ∈ {1, . . . ,n}, where k∗ is the smallest index such that wk∗ > 0.

Note that the implications in the statement of the proposition can be inverted as the three
cases are mutually exclusive and exhaustive. If w is the unique solution of Problem II, we
will proceed by proving the following:

a) If wi > 0 for i = 1, . . . ,n, then t < x̄+
s2

x̄− x1
.

b) If wi = 0 for some i and w j > 0 for at least two indices j, then x̄+
s2

x̄− x1
≤ t < xn.

c) If wi = 0 for all i but one, then t = xn.

We proceed with the proof by considering three different cases for k∗ and establish the
condition on t for each case.

Case k∗ = 1:

Let k∗ = 1, which implies that wi > 0 for all i = 1,2, . . . ,n. Therefore, from (iii), the solution
is wi = λ1 +λ2xi > 0 for any i = 1,2, . . . ,n.
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The general formulas derived for λ1 and λ2 in equations (i) and (ii) simplify as follows:

λ1 = 1− x̄λ2, λ2 =
t − x̄

s2 .

In order to obtain a condition on t we substitute λ1 and λ2 in wi, to get

wi = 1− t − x̄
s2 (x̄− xi).

As all wi are positive, t < x̄+
s2

x̄− xi
for each i. Since the xi’s are increasing, this is equivalent

to t < x̄+
s2

x̄− x1
.

Case 1 < k∗ < n:

We let k∗ = k+1 for some 1 ≤ k ≤ n−2.
Thus

wi = λ1 +λ2xi +
µi

pi
= 0 for i ≤ k, (iv)

wi = λ1 +λ2xi > 0 for i > k. (v)

Rearranging the terms in (iv), we get µi = −(λ1 + λ2xi)pi for i ≤ k and subsequently,
substituting for µi in equations (i) and (ii), we solve for λ1 and λ2.
Solving for λ1:

λ1 = 1−λ2x̄−
k

∑
i=1

µi =
1−λ2(x̄− x̄kπk)

π>k
. (vi)

Solving for λ2 gives:

λ2 =
t − x̄+∑

k
i=1 µi(x̄− xi)

s2 ,

which leads to

λ2s2 = t − x̄−
k

∑
i=1

(λ1 pi +λ2 pixi)(x̄− xi).
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Hence

λ2 =
t − x̄−πk(x̄>k − x̄k)(

s2 −πk

(
x̄>k(x̄− x̄k)− x̄x̄k + x̄(2)k

)) .

After some algebra, the denominator becomes

s2 −πk

(
x̄>k(x̄− x̄k)− x̄x̄k + x̄(2)k

)
= π>ks2

>k.

Therefore,

λ2 =

(t − x̄)− πk

π>k
(x̄− x̄k)

π>ks2
>k

. (vii)

We know that from the KKT conditions, 0 = wk = λ1 +λ2xk +
µk

pk
. Since,

µk

pk
≥ 0, we have

λ1 +λ2xk ≤ 0. Substituting the values of λ1 and λ2 in the above, we get:

1−
(t − x̄)− πk

π>k
(x̄− x̄k)

π>ks2
>k

(x̄− x̄kπk − xkπ>k)≤ 0.

Therefore, the last inequality can be written as

t − x̄ ≥ A(k)
B(k)

(viii)

where, A(i) = π>is2
>i +πi(x̄− x̄i)(x̄>i − xi) and B(i) = π>i(x̄>i − xi).

To see that
A(i)
B(i)

is increasing in i note that, after some algebra, we have

A(i)B(i+1)−A(i+1)B(i)≤ 0 =⇒ π>is2
>i(xi − xi+1)≤ 0.

Setting i = 1, we get
A(1)
B(1)

=
s2
>1 +π1(x̄>1 − x̄1)(x̄>1 − x1)

x̄>1 − x1
=

s2

x̄− x1
.

Since t = ∑
n
i=1 piwixi = ∑

n
i=k∗ piwixi and k∗ < n, it follows that t < xn.

To find the value of k, we use 0=wk = λ1+λ2xk+
µk

pk
≥ λ1+λ2xk and wk+1 = λ1+λ2xk+1 >

0.
Hence, k will be the unique value such that λ1 +λ2xk ≤ 0 < λ1 +λ2xk+1. By noting the
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dependence of λ1 and λ2 on k, through equations (vi) and (vii), the expression for calculating
k, that is given in the proposition’s statement, follows.

Case k∗ = n:

We get wn = n and wi = 0 for i = 1, . . . ,n− 1. In such a case, it is clear from the second
constraint of Problem II that t = xn.

Proposition 2.3.2. It can be confirmed that w∗ is a solution to Problem (III) by verifying that

it satisfies the KKT conditions, by choosing η∗
2 =

−1
λ2

,η∗
1 =

λ1

λ2
and ε∗i =

µi

λ2
, where λ1,λ2

and µi are the Lagrangian multipliers in Problem (II).
The KKT conditions for for Problem (III), i = 1, . . . ,n, are:

η2 pivi =−pixi −η1 pi − εi, viεi = 0,

η2

(
1
2

n

∑
i=1

piv2
i −θ

)
= 0 εi ≥ 0

n

∑
i=1

pivi = 1, η2 ≤ 0,

1
2

n

∑
i=1

piv2
i = θ , vi ≥ 0.

As (III) is a convex problem, satisfying the KKT conditions is necessary and sufficient for
w∗ to be a solution.

Proposition (2.3.3). 1. The denominator of Fi is strictly positive, by assumption. The
denominator of Ri is strictly positive by Proposition 2.3.2.

2. For Ri ≤ 1, EQY (Zi)≤EQZi (Zi) must hold. This follows from Dχ2(QY ||P)=Dχ2(QZi ||P)
and QZi being the maximiser in Problem (III).
The claim Fi ≤ 1 follows similarly, by considering Problem (III) and Proposition 2.3.2,
for X = Y .

3. If (Zi,Y ) are independent, EQY (Zi) = E(Zi) and EQZi (Y ) = E(Y ), implying directly
that Ri = Fi = 0.

4. Let η(Y ) = dQY
dP . From Proposition 2.3.1, we know that η is a non-decreasing function.

By the PQD assumption it follows that EQY (Zi) = E(η(Y )Zi)≥ E(Zi), which shows
that Ri ≥ 0. The case Fi ≥ 0 is similar.
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Stressing the solvency II standard model





Abstract

Solvency II provides a risk management framework for insurance companies by setting out
strict regulatory requirements to reflect the level of risk undertaken. We apply the reverse-
forward sensitivity analysis framework from Makam et al. [62] to a stochastic model for
non-life premium and reserve risk, which partially adheres to the standard formula Solvency
II. We investigate model and parameter uncertainty, by employing bootstrapping approaches,
namely re-simulation and re-weighting, to assess the impact of a parameter change on the
sensitivities of risk factors. While re-simulation involves generating multiple sets of scenarios
under different distributional assumptions, the re-weighting technique involves constructing
alternate probabilities for one given set of simulated scenarios. We highlight the importance
of considering parameter uncertainty in sensitivity studies by evaluating its impact on risk
factors’ sensitivity ranking and examining how this impact is itself affected by variations in
distributional assumptions.
Keywords: Solvency II, parameter uncertainty, sensitivity analysis, sensitivity measures.

3.1 Introduction

In Chapter 2, we introduced a sensitivity analysis framework that involved both reverse and
forward sensitivity approaches and relied on prior knowledge about the underlying statistical
model. In this chapter, we focus on a Solvency II-inspired model and specifically examine
the non-life premium and reserve risk sub-module. Furthermore, we assess the way that
the sensitivity of the portfolio risk to different lines of business is impacted by parameter
uncertainty.

The Solvency II directive for insurance firms in Europe, implemented in 2016, aims to
establish strict capital requirements to reflect the level of risk undertaken by firms and to
safeguard interests of policyholders, by ensuring that insurers have sufficient resources to
meet their obligations. Of the three pillars constituting Solvency II, the first pertains to the
quantitative requirements for the level of capital that a company must maintain, referred to as
the solvency capital requirement (SCR). The SCR is calculated to be the capital necessary
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for a company in order to meet its obligations with a minimum of 99.5% likelihood within
one year [25]. This definition is applied individually to all sub-modules for calibration [35]
and typically risk measures such as Value-at-risk are used for computing SCR. For a detailed
overview of Solvency II, see Eling et al. [37].

In this chapter, we examine the non-life premium and reserve risk sub-module of the
Solvency II standard formula. Under Solvency II, insurance companies have the option
to use a standard formula, an internal model or a partial internal model to assess their
risk-based capital requirements. Although companies often rely on the standard formula
for its convenience, using a stochastic model instead of a deterministic one would allow
analysts to have a more comprehensive understanding of their risks. A stochastic model can
enhance the firms’ capabilities to apply stress testing and sensitivity analysis. In Section
3.3, we construct a stochastic model for the non-life premium and reserve risk sub-module
incorporating various distributional assumptions, while partially adhering to the standard
formula. This enables risk analysts to gain further insights into different business lines – e.g.
by assessing their relative importance – with such insights obtained at a lower cost compared
to developing an internal model from scratch.

Nonetheless, model and parameter uncertainty will persist around the assumptions behind
any stochastic model. Model uncertainty refers to the uncertainty surrounding the choice of
the model used (e.g. the family of (joint) distribution), while parameter uncertainty involves
the uncertainty around the selected parameters, given the model [16, 8]. The question then
arises as to how such uncertainties impact the results of sensitivity analyses and particularly
the relative importance ranking of risk factors. Investigating this question forms the main
contribution of this chapter, focusing on the issue of parameter uncertainty.

Parameter uncertainty arises from limited samples being used to estimate parameters,
resulting in estimates that can deviate from the true parameters substantially [17]. The
risk associated with parameter uncertainty can have a significant impact on the company’s
probability of insolvency. Gerrard and Tsanakas [42] show that for a class of loss distributions
derived by increasing transforms of location-scale, ignoring parameter uncertainty while
calculating risk capital can substantially increase the probability of insolvency beyond the
0.5% threshold. Both underestimating and overestimating parameter risk can have drawbacks.
For example, underestimation of parameter risk would lead to an increased risk of insolvency
and overestimating the risk can lead to incorrect management decisions [40].

In this chapter, we assume that the distributions of risks are known, and the parameters are
estimated. To tackle parameter uncertainty, several approaches in the existing literature point
to bootstrapping and Bayesian procedures. The bootstrap procedure assumes that the true
parameter of a risk distribution is unknown but fixed, and the uncertainty around the estimate
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is modelled as a random variable, from which new observations can be drawn in order to
quantify the parameter uncertainty [63, 69, 40]. On the other hand, the Bayesian approach
treats the unknown parameter as a realisation of a random variable with a prior distribution.
For further details on the Bayesian approach in the context of insurance risk, see Borowicz
and Norman [22], where parameter uncertainty is studied in the context of extreme event
frequency-severity model using data on Danish fire losses. Diers et al. [34] also study the
importance of parameter uncertainty in the context of premium risk in a multi-year horizon
using the Bayesian approach. Other methods in the existing literature to measure parameter
uncertainty include raising the confidence level to adjust the risk capital [42], the asymptotic
normality approach [34] or the capital add-on method [40].

We explore parameter uncertainty in the Solvency II-inspired model proposed for cal-
culating non-life premium and reserve risk capital requirements. To this effect, we propose
two different bootstrapping procedures are implemented: re-simulation and re-weighting.
The re-simulation approach, often used by practitioners, involves generating different sets
of simulated scenarios for risk factors, under alternative parameter estimate realisations
obtaining a set of simulated scenarios using current information. In addition, we consider
a re-weighting scheme, whereby a single set of risk factor simulations is used, which are
assigned different probabilities, under alternative parameter assumptions.

Our objective is to investigate model and parameter uncertainty through a sensitivity
analysis framework. We adopt the reverse and forward sensitivity analysis techniques
presented in Makam et al. [62], as described in Chapter 2. This methodology allows us to
evaluate how the ranking of model inputs changes when we implement alternative model
parameterisations. In our analysis, we modify the model assumptions independently and
observe the changes in the sensitivities and rankings of model input factors. We use the
reverse sensitivity metric to evaluate the sensitivities of risk factors. We note that when a
parameter is changed, there is a significant impact on the rankings of risk factors. Although
the most/least important risk factors retain their spots across different scenarios, their actual
sensitivity values may be much higher/lower for some comparisons. Furthermore, we find
that the sensitivities’ error bounds often overlap, indicating a lack of robustness in sensitivity
evaluation, as the ranking of risk factors may depend on the particular realisation of parameter
estimators.

The rest of the chapter is structured as follows: In Section 3.2, we present the reverse
and forward sensitivity analysis frameworks from Makam et al. [62], along with the re-
simulation and re-weighting approaches to parameter uncertainty. In Section 3.3, we present
the stochastic model for non-life premium and reserve risk sub-modules, as well as the
statistical assumptions and data used. Section 3.4 covers the implementation of bootstrapping
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procedures on the proposed statistical model and the investigation of the impact of parameter
uncertainty. Finally in Section 3.5, we summarise our conclusions.

3.2 Stress testing by change of measure

3.2.1 Reverse and forward sensitivities

We consider a standard sensitivity analysis framework. A model has d inputs Z= (Z1, . . . ,Zd).
These inputs or risk factors are mapped to a model output Y via an aggregation function,
g : Rd → R, such that Y = g(Z). The model output Y is understood as a portfolio loss.

The statistical behaviour of the risk factors Z is governed by an underlying parametric
distribution Z ∼ F(·|θ 0), which reflects an analyst’s current best estimates. For the sake of
practicality, a set of n multivariate scenarios is simulated from F(·|θ 0) and we denote these
n realisations of Z by z1, . . . ,zn.

Restricted to those scenarios, the analyst is essentially working on a discrete probability
space, where each realisation zi = (z1,i, . . . ,zd,i), i = 1, . . . ,n is a state itself, taking the
same probability pi = 1/n. We call this the reference model. Different simulation exercises
could hence give rise to different reference models, in this terminology. The corresponding
realisations of the portfolio loss Y are denoted by yi = g(zi), i = 1, . . . ,n and we write
y = (y1, . . . ,yn). Without loss of generality, we assume that y1 < .. . < yn.

For the purpose of sensitivity analysis, the analyst also considers stressed versions of
a reference model. Under a stressed model, different probability weights are assigned to
different states of the reference model. Specifically, under the stressed model, the probability
of the state zi, i = 1, . . . ,n is given by wi/n, where the vector w = (w1, . . . ,wn) with wi ≥ 0
and 1

n ∑
n
i=1 wi = 1 plays the role of a Radon-Nikodym derivative.

In this paper, we conduct reverse and forward sensitivity analyses to evaluate the relative
importance of risk factors in the presence of model uncertainty. Reverse sensitivity analysis
[67] focuses on the distributional changes in the risk factors if the output distribution is
stressed in a certain way, while forward sensitivity analysis considers the effect on the model
output when an input is stressed. For further details on the two sensitivity analysis approaches,
see Makam et al. [62]. The two analyses are implemented in tandem as they provide a fuller
understanding of factor importance. The optimisation problems formulated in Makam et al.
[62] for the reverse and forward sensitivity analysis are as follows. First, we consider the
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problem: 

minw∈Rn
1
2

∑
n
i=1 piw2

i s.t.

∑
n
i=1 piwi = 1,

∑
n
i=1 piwiζ (yi)≥ t,

wi ≥ 0 for all i = 1, . . . ,n.

(I)

In this reverse analysis, the χ2-divergence is minimised with a constraint on the mean of Y ,
or of any function ζ of Y under the stressed model. Problem (I) allows us to find a stressed
version of the reference model subject to a desired shock on the output.

The forward analysis is an extension of the reverse sensitivity analysis. For the forward
analysis, the χ2-divergence is first evaluated as λ ∗ = ∑

n
i=1 piw∗2

i , where w∗ = (w∗
1, . . . ,w

∗
n) is

the solution of Problem (I). The mean of a risk factor is then maximised with a constraint on
the divergence. For each fixed Z j, j = 1, . . . ,d, the problem is as follows:

maxv∈Rn ∑
n
i=1 piviζ j(z j,i) s.t

∑
n
i=1 pivi = 1,

1
2

∑
n
i=1 piv2

i ≤ λ ∗,

vi ≥ 0 for all i = 1, . . . ,n.

(II)

where ζ j is some function of the j-th risk factor.
The importance of the risk factors Z j can be quantified through a measure that evaluates

the difference between the probability distributions before and after stressing the mean of Y .
Here, for our analysis, we use the reverse sensitivity measure of Makam et al. [62] to rank
each Z j according to the change in its expectation. The reverse sensitivity measure for factor
Z j is

R j =
∑

n
i=1 piw∗

i zi −∑
n
i=1 pizi

∑
n
i=1 piv∗j,izi −∑

n
i=1 pizi

where, v∗j = (v∗j,1, . . . ,v
∗
j,n) is the solution of Problem (II). The greater the change in a risk

factor’s distributional characteristics, the greater its sensitivity score will be.

3.2.2 Reflecting parameter uncertainty

Our aim is to examine how model uncertainty impacts the assessment of input factors’
sensitivity using the reverse sensitivity framework described above. Specifically, we generate
models that are plausible alternatives to the reference model. Each of those alternative models
is stressed and the reverse sensitivity measure is subsequently evaluated for all risk factors.
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The distribution of sensitivities across models reveals the way that model uncertainty impacts
factor importance. The generation of alternative models can be carried out in two distinct
ways, which are discussed below.

Parameter uncertainty by re-simulation

Alternative models are obtained via bootstrapping. We start from the underlying parametric
distribution F(·|θ 0), which governs the behaviour of risk factors. In each of b bootstrap
iterations, a data set of size m is simulated from F(·|θ 0). Each of those data sets is used to
re-estimate the parameters of F . Subsequently, for each such different set of parameters, we
simulate n risk factor values and, on these, evaluate the sensitivity measures.

Through this process we obtain b sets of risk factor realisations z(h)i = (z(h)1,i , . . . ,z
(h)
d,i ), i =

1, . . . ,n, h = 1, . . . ,b. For each h, the realisations z(h)i , i = 1, . . . ,n with corresponding
probabilities 1/n give an alternative model. The stressed version of the h-th alternative
model, has again states z(h)i , but now with re-weighted probabilities w(h)

i /n attached to them.
Specifically, for h = 1, . . . ,b, we proceed as follows:

1. Generate a multivariate sample of size m from the underlying parametric model,
(z̃(h)1 , . . . , z̃(h)m )∼ F(·|θ 0), where z̃(h)k = (z̃(h)1,k, . . . , z̃

(h)
d,k), k = 1, . . . ,m.

2. Estimate the distribution parameters θ̂ (h) ≡ θ̂(z̃(h)1 , . . . , z̃(h)m ).

3. Simulate n scenarios (z(h)1 , . . . ,z(h)n )∼F(·|θ̂ (h)), where z(h)i =(z(h)1,i , . . . ,z
(h)
d,i ), i= 1, . . . ,n

.

4. Evaluate y(h)i = g(z(h)i ), i = 1, . . . ,n.

5. Set t(h) = (1+β )
1
n

∑
n
i=1 ζ (y(h)i ), β > 0.

6. Solve Problem (I) for the Radon-Nikodym density w∗(h)
i by setting yi = y(h)i , pi =

1
n

and t = t(h) and evaluate the χ2-divergence λ ∗(h) =
1
n

∑
n
i=1(w

∗(h)
i )2.

7. For fixed j = 1, . . . ,d, set λ = λ ∗(h) in Problem (II) and solve the Radon-Nikodym-

density v∗(h)j,i by setting z j,i = z(h)j,i , i = 1, . . . ,n and pi =
1
n

.

8. Evaluate R(h)
j =

∑
n
i=1 w∗(h)

i z(h)j,i −∑
n
i=1 z(h)j,i

∑
n
i=1 v∗(h)j,i z(h)j,i −∑

n
i=1 z(h)j,i

for j = 1, . . . ,d.
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Parameter uncertainty by re-weighting approach

Here we introduce a second approach to generating alternative models reflecting parameter
uncertainty. Rather than re-simulating, we consider a scenario re-weighting procedure. While
in the approach of Section 3.2.2 each alternative model is represented by a different set of
equiprobable scenarios, here we fix the set of simulated scenarios and vary the probabilities
attached to them.

We start again with an underlying parametric distribution F(·|θ 0) for the risk factors and
simulate n risk factor values zi = (z1,i, . . . ,zd,i), i = 1, . . . ,n from it. On the discrete space

with states corresponding to zi, we consider reference probabilities p0
i =

1
n

. As before, we
denote yi = g(zi).

Following that, we re-estimate model parameters via the same bootstrap procedure as
before in Section 3.2.2. Subsequently, b alternative models are generated by varying the
probabilities attached to each realisation zi, i = 1, . . . ,n. These probabilities are calcu-
lated via a likelihood ratio, induced by the parametric model with re-estimated parameters,
F(·|θ (h)), h = 1, . . . ,b. The corresponding probabilities for each alternative model are de-
noted by p(h)i , i = 1, . . . ,n. Then, the stressed version of the h-th alternative model has states
zi, i = 1, . . . ,n, with re-weighted probabilities p(h)i attached to them.

Specifically, for h = 1, . . . ,b, we proceed as follows:

1. Generate a multivariate sample of size m from the underlying parametric model,
(z̃(h)1 , . . . , z̃(h)m )∼ F(·|θ 0), where z̃(h)k = (z̃(h)1,k, . . . , z̃

(h)
d,k), k = 1, . . . ,m.

2. Estimate the parameters of the risk distributions θ̂ (h) ≡ θ̂(z̃(h)1 , . . . , z̃(h)m ).

3. Using the estimated parameters, define p(h)i =
1
n

f (zi|θ̂ (h))

f (zi|θ 0)
for i = 1, . . . ,n.

4. Set t(h) = (1+β )∑
n
i=1 p(h)i ζ (yi), β > 0.

5. Solve Problem (I) for the Radon-Nikodym density w∗(h)
i by setting yi = yi, pi = p(h)i

and t = t(h) and evaluate the χ2-divergence λ ∗(h) =
1
n

∑
n
i=1 p(h)i (w∗(h)

i )2.

6. Set λ = λ ∗(h) in Problem (II) and solve for the Radon-Nikodym density v∗(h)j,i by setting

z j,i = z j,i for j = 1, . . . ,d, i = 1, . . . ,n and pi = p(h)i .

7. Evaluate R(h)
j =

∑
n
i=1 p(h)i w∗(h)

i z j,i −∑
n
i=1 p(h)i z j,i

∑
n
i=1 p(h)i v∗(h)j,i z j,i −∑

n
i=1 p(h)i z j,i

for j = 1, . . . ,d.

In step 3, f (·|θ) denotes the joint density corresponding to F(·|θ).
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3.3 A statistical version of the Solvency II standard formula

The Solvency II Standard Formula does not in itself constitute a well-specified statistical
model. In this section we formulate a model that translates the principles of the Standard
Formula into statistical language.

3.3.1 Standard formula

The standard formula for the non-life underwriting risk is a tool for the aggregation of
premium and reserve, lapse and catastrophe risks. In this paper we are only concerned with
the premium and reserve risk and the definition of the standard formula adopted reflects
this. Firstly, the premium risk is the risk that the future premiums earned will be inadequate
to cover the volume of losses and expenses. On the other hand, the reserve risk takes into
account the risk that the claim provisions might be mis-estimated as well as the risk that
stems from the claim payments being stochastic in nature. From an actuarial perspective, it
is the risk that the estimated reserves will be insufficient to cover claims payments in a full
run-off of the liabilities [65].

Under the standard formula, the solvency capital requirement for the non-life premium
and reserve risk is defined as

SCRSF = 3σV,

where σ and V are the portfolio’s standard deviation and volume measure respectively.
The portfolio volume measure after aggregating across different business lines is given

by:
V = ∑

i
Vi = ∑

i
(Vi,p +Vi,r)(0.75+0.25Di).

The standard deviation for a line of business i is calculated as

σi =

√
V 2

i,pσ2
i,p +Vi,pVi,rσi,pσi,r +V 2

i,rσ
2
i,r

Vi,p +Vi,r
[(Vi,p +Vi,r)(0.75+0.25Di)] ,

where σi,p,σi,r are the standard deviations for premium and reserve risk and Vi,p,Vi,r are the
corresponding business volumes.

Finally, the portfolio standard deviation σ is then defined as

σ =
1
V

√
∑
i, j

ρi, jσiσ jViVj

where ρi, j is the correlation between business line i and j.
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Solvency II calculations take into consideration the diversification between geographical
regions. The diversification factor, Di is interpreted as the Herfindahl index which measures
the dispersion of the risk. In the sequel we assume the diversification factor Di = 1.

3.3.2 Model structure

In this section we frame the Solvency II standard formula in terms of an underlying statistical
model.

Let Z=(Z1, . . . ,Zd) be the losses from d lines of business of a non-life insurance portfolio
and Y = g(Z) = ∑

d
i=1 Zi the total portfolio loss. The Solvency Capital Requirement (SCR) is

given by the Value-at-Risk
SCR = F−1

Y (α),

for some α ∈ (0,1), typically α = 0.995, where F−1
Y (α) = inf{y ∈ R|FY (y)≥ α}.

The loss in business line i can be written as

Zi =Vi,pXi,p +Vi,rXi,r,

where Xi,p,Xi,r are the losses for premium and reserve risk and Vi,p,Vi,r are the corresponding
business volumes. The random variables Xi,p,Xi,r have standard deviations σ [Xi,p] = σi,p and
σ [Xi,r] = σi,r and means E[Xi,p] = µi,p and E[Xi,r] = µi,r. If we assume that µi,r = µi,p = 1,
then σi,p,σi,r can be interpreted as coefficients of variation.

In the standard formula approach, a d ×d correlation matrix R of the business lines Z
is considered. Furthermore, for any business line, the correlation matrix of premium and
reserve risk, (Xi,p,Xi,r), is implicitly assumed to be

A =

[
1 0.5

0.5 1

]
.

In order to have a well specified model, we need to construct the correlation matrix Σ of
the 2d-dimensional vector of risk factors,

X = (X1,p,X1,r,X2,p,X2,r, . . . ,Xd,p,Xd,r).

While one can design a simulation scheme for X that reproduces the specified matrix R as
the correlation matrix of Z, such a recipe does not admit a mathematically intuitive model
specification. Hence, we propose an alternative way of parameterising the dependence
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structure of X, based on the Kronecker product, which diverges somewhat from the approach
in the standard formula.

Specifically, we assume that the correlation matrix Σ of X is given by the Kronecker
product of A and R, that is,

Σ := A⊗R =

[
1 0.5

0.5 1

]
⊗


1 r12 · · · r1d

r21 1 · · · r2d
...

... . . . ...
rd1 rd2 · · · 1



=



1 0.5 r12 0.5r12 · · · r1d 0.5r1d

0.5 1 0.5r12 r12 · · · 0.5r1d r1d

r21 0.5r21 1 0.5 · · · r2d 0.5r2d

0.5r21 r21 0.5 1 · · · 0.5r2d r2d
...

...
...

... . . . ...
...

rd1 0.5rd1 rd2 0.5rd2 · · · 1 0.5
0.5rd1 rd1 0.5rd2 rd2 · · · 0.5 1


Thus,

Corr(Xi,p,X j,p) = ri j, Corr(Xi,r,X j,r) = ri j,

Corr(Xi,p,Xi,r) = 0.5, Corr(Xi,p,X j,r) = 0.5ri j.

However, such an approach does not guarantee that the correlation matrix of business line
losses Z is exactly equal to the specified correlation matrix R.

Building up the matrix Σ this way ensures that, by the properties of the Kronecker product,
Σ will be positive definite [83]. Furthermore, it results in a multiplicative structure for cross-
correlations which have been used in a Gaussian setting to complete correlation matrices,
under a conditional independence assumption – for more on the problem of correlation matrix
completion, see e.g. Georgescu et al. [41].

3.3.3 Data and assumptions

In this section, we list out our statistical assumptions and the input data used for our model.
We assume that the business lines for each premium and reserve risk Xi,p,Xi,r are log-
Normally distributed with means µi,p = µi,r = 1 and pre-defined standard deviations σi,p,σi,r,
as given by the regulator. To model the dependence between the random variables in X,
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we use a Gaussian copula with correlation parameters given by the matrix Σ as constructed
above.

We use d = 12 lines of business. The correlation matrix R is pre-defined by the regulator
[e.g., 60] as

R =



1.00 0.50 0.50 0.25 0.50 0.25 0.50 0.25 0.50 0.25 0.25 0.25
0.50 1.00 0.25 0.25 0.25 0.25 0.50 0.50 0.50 0.25 0.25 0.25
0.50 0.25 1.00 0.25 0.25 0.25 0.25 0.50 0.50 0.25 0.50 0.25
0.25 0.25 0.25 1.00 0.25 0.25 0.25 0.50 0.50 0.25 0.50 0.50
0.50 0.25 0.25 0.25 1.00 0.50 0.50 0.25 0.50 0.50 0.25 0.25
0.25 0.25 0.25 0.25 0.50 1.00 0.50 0.25 0.50 0.50 0.25 0.25
0.50 0.50 0.25 0.25 0.50 0.50 1.00 0.25 0.50 0.50 0.25 0.25
0.25 0.50 0.50 0.50 0.25 0.25 0.25 1.00 0.50 0.25 0.25 0.50
0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 1.00 0.25 0.50 0.25
0.25 0.25 0.25 0.25 0.50 0.50 0.50 0.25 0.25 1.00 0.25 0.25
0.25 0.25 0.50 0.50 0.25 0.25 0.25 0.25 0.50 0.25 1.00 0.25
0.25 0.25 0.25 0.50 0.25 0.25 0.25 0.50 0.25 0.25 0.25 1.00


The premium volumes, meant to be indicative of a large diversified portfolio, were taken
from the 2019 Solvency and Financial condition report for AIG’s Europe operations [2].

Table 3.1 Standard deviations as specified by the regulator and the premium volumes for the
premium and reserve risk for each line of business. [sources: 60, 2]

No Line of Business Premium risk Reserve risk
σi,p Vi,p σi,r Vi,r

1 Motor vehicle liability 0.080 113.448 0.090 187.276
2 Other motor 0.080 6.326 0.080 7.554
3 Marine, aviation and transport (MAT) 0.150 347.254 0.110 569.077
4 Fire and other damage to property 0.064 772.964 0.100 844.445
5 General liability 0.112 633.813 0.110 2544.256
6 Credit and suretyship 0.190 56.532 0.172 136.130
7 Legal expenses 0.083 0.000 0.055 0.000
8 Assistance 0.064 2.484 0.220 1.590
9 Miscellaneous financial loss 0.130 43.962 0.200 48.695
10 Non- proportional casualty reinsurance 0.170 0.000 0.200 11.543
11 Non-proportional MAT reinsurance 0.170 0.000 0.200 10.724
12 Non-proportional property reinsurance 0.170 0.000 0.200 62.649
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3.4 Results

In this section, we use the model from Section 3.3 to investigate the impact of parameter
uncertainty on the sensitivity ranking of risk factors, that is, of the aggregate reserve and
premium risk for different lines of business. We first define our baseline model consistently
with the assumptions of Section 3.3.3. Integrating the bootstrapping techniques from Section
3.2, the reverse sensitivities of risk factors are calculated, for alternative plausible model
parameterisations. We call this the baseline run.

Subsequently we present additional results under modelling scenarios whereby different
distributional assumptions of baseline run are altered. This allows for the identification of
model assumption that have the most impact on sensitivities of input factors.

3.4.1 Baseline run

For the baseline run, we consider d −1 = 11 lines of business instead of 12 as the volumes
for business line “legal expenses" are 0 for both the premium and reserve risk. We let each
of the premium and reserve risk components, Xi,p,Xi,r, i = 1, . . . ,11, follow a log-normal
distribution with mean 1 and standard deviations as in Section 3.3.3. The dependence between
these random variables is modelled by a Gaussian copula, parameterised by the correlation
matrices of Section 3.3.3. We calculate sensitivities to risk factors representing loss by line
of business, i.e. to the random variables Zi as specified in Section 3.3.2.

The settings around parameter uncertainty involve the choice of m, which represents
sample size on which parameters are estimated, the methodology used to reflect the parameter
uncertainty, and the conditions set on the correlation parameters. For the baseline run, we set
m = 20 to generate a preliminary sample and use re-simulation method of Section 3.2.2 to
generate alternative models. The bootstrap procedure is used to derive alternative estimates
for the parameters of the marginal log-Normal distributions. Furthermore, we assume that the
correlation factors are fixed as given by the regulator and not re-estimated by bootstrapping.
The impact of modifying these settings is later explored.

We aim to stress the 95%-Value-at-Risk of Y by 10%. Given that quantiles cannot
be written as expectations, this leads to the following formulation of Problem (I): we set
ζ (yi) = 1{yi≤1.1VaRα (Y )}, where α = 95% and VaRα(Y ) is the empirical quantile from the
simulated sample, and fix t = α . Using the premium volumes in Section 3.3.3, we simulate
(Z,Y ) using a Monte Carlo sample of n = 5×105.

We note here that it is important to differentiate between the use of VaR for capital
requirement calculation and the analysis of sensitivities through stressing the VaR. In the
context of capital requirement calculation, an insurance company is required to hold capital
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reserves equal to the value represented by the 99.5% VaR in order to cover potential losses.
We opted to use instead the 95%VaR for stressing the model, such that our analysis is not
exclusively focused on the extreme tails, but also reflects impacts at lower confidence levels
that are of interest for management decisions.

To make the following analysis easier to follow, we summarise in Tables 3.2 and 3.3 the
notation and baseline parameter values which are used throughout the section.

Table 3.2 Symbols and their meanings in the baseline model.

Symbol Description
d Number of business lines
m Sample size for parameter estimation
b Number of bootstrap iterations
n Sample size for Monte-Carlo simulations
Xip Random variable representing premium risk component for business line i
Xir Random variable representing reserve risk component for business line i
Zi Random variable representing loss for business line i
Y Random variable representing the output
α Significance level for Value-at-Risk calculations
t Threshold value used in Value-at-Risk calculations
R Correlation matrix of business lines

Table 3.3 Baseline parameter values

Parameter Value
d 11
m 20
b 50
n 5×105

α 0.95
t α

Figure 3.1 shows box-plots of the sensitivities of Zi, i = 1 . . . ,11, in the baseline run,
representing the average level and variability of the reverse sensitivity defined in Section 3.2.1,
with respect to bootstrapped parameter values. From the plot, it is evident that Z5 and Z8 are
the most important risk factors, due to their highest sensitivity measure. Furthermore, Z5 and
Z8 are also most impacted by parameter uncertainty, as they show the most volatility in their
respective sensitivities. A greater spread indicates a higher uncertainty with respect to the
estimation of the parameter itself. From Figure 3.1, it is seen that Z2 and Z11 exhibit lowest
sensitivity levels. However as the error bounds for the risk factors overlap substantially,
the exact ranking for the full set of risk factors is difficult to establish. As a result, the
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importance rankings between risk factors may often change when the model is run several
times. This also indicates that importance rankings for any particular model should be
interpreted cautiously, as they may be driven by parameter uncertainty rather than true
underlying effects.

We compare most of our results with the baseline run in the following sections. In cases
where this is not feasible, we employ a slightly modified baseline run to make comparisons
more meaningful.

Fig. 3.1 Box plot of sensitivities for risk factors under a χ2-divergence for b = 50 sets of
n = 5×105 simulated scenarios under the baseline run when VaR95%(Y ) is stressed by 10%;
average sensitivities of risk factors are represented by blue dots.

In addition to calculating the reverse sensitivities of risk factors, we also determine the
forward sensitivities, refer to Chapter 2 Section 2.3.3. Working with average sensitivities,
we show the impact of input factors on the output variables using a radar chart in Figure 3.2.
The radar chart is composed of a circular grid with input factors evenly positioned around it.
Lines are drawn to connect the data points for each input factor, representing the sensitivities.
The length of the lines indicates the magnitude of the sensitivity; longer lines indicate higher
importance. In the chart, reverse sensitivities are depicted in blue, while forward sensitivities
are depicted in red. We can see that the average forward sensitivities are slightly larger than
reverse ones, nonetheless the relative ranking among the input factors remains consistent.
For numerical values of the average reverse and forward sensitivities, we refer to Table 3.4,
which was used to generate Figure 3.2.
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Fig. 3.2 Radar chart of average reverse and forward sensitivities under baseline model for
b = 50 sets of n = 5×105 simulated scenarios.

Table 3.4 Table of average reverse and forward sensitivities under the baseline model.

Output Reverse Sensitivity Forward Sensitivity
Z1 0.0901 0.1020
Z2 0.0489 0.0504
Z3 0.0728 0.0796
Z4 0.0769 0.0853
Z5 0.1433 0.1696
Z6 0.0900 0.1000
Z7 0.0696 0.0748
Z8 0.1063 0.1201
Z9 0.0816 0.0887
Z10 0.0641 0.0680
Z11 0.0576 0.0602

3.4.2 Variations in type of stress

In this section, we present the results of sensitivities of risk factors when a different type of
stress on Y is applied and compare it with the results obtained for the baseline run. In the
baseline run, we stressed the 95% VaR of Y by 10%. We now choose to stress the mean of Y
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by 10% keeping all other assumptions of the baseline run fixed. This allows us to examine
the impact of different types of stresses.

Fig. 3.3 Box plot of sensitivities for risk factors under a χ2-divergence for b = 50 sets of
n = 5×105 simulated scenarios when E[Y ] is stressed by 10%; average sensitivities of risk
factors are represented by blue dots.

In Figure 3.3, we plot the sensitivities of Zi, i = 1, . . . ,11 for b = 50 bootstrap iterations
when the mean of Y is stressed at 10%. The sensitivities of risk factors in this scenario are
much higher in absolute terms in Figure 3.3 than what was observed in Figure 3.1. This
implies that the sensitivities are greatly impacted by the type of stress that is applied.

However, if we consider the importance rankings, we find results consistent with those
obtained for the baseline run; Z5 and Z8 come across as being the most sensitive risk factors
in the model and Z2 and Z11 being the least sensitive. However, the spread of the sensitivities
in Figure 3.3 is much smaller as compared to Figure 3.1. As the error bounds overlap less
in Figure 3.3, we note that the order of ranking of the risk factors is much more reliable.
This indicates that stress tests based on the mean are more robust to parameter uncertainty
compared to stress-tests based on the Value-at-Risk. Hence, there is an important trade-off:
while stressing the distribution tail is of interest to risk management purposes, it can also
lead to less reliable conclusions.

We further substantiate these findings in Table 3.5, where we report the average sensitivi-
ties under the two models and accordingly, the order of ranking for the risk factors; 1 being
the most important or sensitive risk factor and 11 being the least. We also report the number
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of times, across bootstrap iterations, that a particular risk factor obtains exactly the average
ranking value. This frequency allows us to identify those lines of business which are robust
in their rankings. For example, Z2,Z5,Z8,Z11 retain their ranking across the two models and
also have a high frequency of attaining their average rank.

Table 3.5 Table of average sensitivity, ranking and the occurrence of that particular ranking
in the bootstrap procedure for each risk factor.

Stress VaR Stress Mean
Input Avg sensitivity ranking frequency Avg sensitivity ranking frequency

Z1 0.0842 3 0.64 0.6017 3 0.92
Z2 0.0467 11 1.00 0.3466 11 1.00
Z3 0.0702 7 0.46 0.5034 6 0.44
Z4 0.0712 6 0.36 0.5314 5 0.38
Z5 0.1357 1 1.00 0.9014 1 1.00
Z6 0.0823 4 0.58 0.5539 4 0.62
Z7 0.0647 8 0.74 0.4493 8 0.94
Z8 0.0993 2 1.00 0.6653 2 1.00
Z9 0.0755 5 0.62 0.4943 7 0.48
Z10 0.0605 9 0.82 0.4192 9 1.00
Z11 0.0552 10 0.94 0.3820 10 1.00

3.4.3 Variations in the copula family

Here, our aim is to understand the effect that the choice of a copula family has on the
sensitivities of risk factors. In the baseline run, we implemented a Gaussian copula to model
the dependence between risk factors. Here, we use a t-copula and compare our results to
the baseline run when all other assumptions are kept fixed. The Gaussian and the t-copula
are widely used in risk management frameworks. While the Gaussian copula is mostly
considered as the benchmark copula in modelling, the t-copula is popular for its ability to
capture the tail dependence [64].
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(a)

(b)

Fig. 3.4 Plot of the average sensitivities (b) and coefficient of variation (b) for risk factors’
sensitivities when a t-copula is implemented with 3,10,∞ degrees of freedom for b = 50 sets
of n = 5×105 simulations under the χ2-divergence.

Figure 3.4a shows a plot of the average sensitivities of risk factors, Zi when a t-copula is
implemented with 3,10 and ∞ degrees of freedom – the last case being the one of a Gaussian
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copula. The average sensitivities of Zi are highest when a t-copula with lowest degrees
of freedom is implemented and the average sensitivities decrease in absolute terms while
retaining their order of ranking between the risk factors. The sensitivities are the lowest when
a Gaussian copula is implemented. Hence, in this model, the presence of tail dependence
increases the absolute level of sensitivity, while not changing the portfolio’s relativities.

Figure 3.4b shows a plot of the coefficient of variation for the risk factor’s reverse
sensitivity, across bootstrap samples when a t-copula is implemented with 3,10,∞ degrees
of freedom. As the coefficient of variation is a scale-invariant quantity, it is useful for
comparing the variability among data sets with different means. In Figure 3.4b, we see that
the coefficient of variation is highest when a Gaussian copula is used implying a greater
variability in the sensitivity values around their means. The coefficient of variation decreases
as the number of degrees of freedom is reduced for the t-copula. A possible interpretation
of this finding follows by noting that, in this context, we do not fully reflect the uncertainty
around correlation values; hence all parameter uncertainty comes from the specification of
the marginal distribution parameters. However, at the same time, we know that in t-copula
models, the impact of dependence on tail risk is more pronounced compared to Gaussian
models.

3.4.4 Variations in the marginal distribution family

Here, we look at the impact on risk factors’ sensitivities when a different distribution is used
for the marginals. We now assume Zi, i = 1, . . . ,11 follow an Inverse Gamma distribution
with mean and standard deviations consistent with baseline run assumptions. We choose
the Inverse Gamma distribution because it is a plausible alternative to the log-Normal
distribution with similar properties but a heavier (regularly varying) tail [64, Sec. A.2]. Table
3.6 shows the mean and coefficient of variation of the sensitivities for Zi, under each marginal
distribution assumption. As the Inverse Gamma distribution has a comparatively heavier tail
than Log-normal distribution, we see slightly higher average sensitivities for Zi under Inverse
Gamma marginals. We note the same for coefficient of variations.

3.4.5 Uncertainty in the correlation matrix

In this section, we aim to understand the effect of correlation matrix, R on the sensitivities of
risk factors. In the baseline run, R was assumed to be fixed and given by the regulator. Here,
we change our assumption on R and let the correlation parameters be re-estimated in each
iteration of the bootstrap procedure. To avoid errors in estimation of correlation factors, we
set m = 100 in the bootstrap procedure.
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Table 3.6 Table of average sensitivity and coefficient of variation of sensitivities for risk
factors Zi, i = 1, . . . ,d, when Zi follow Log-normal versus Inverse-Gamma marginals.

Log-normal marginals Inverse-Gamma Marginals
Input Avg sensitivity CoV Avg sensitivity CoV

Z1 0.0842 0.1412 0.0906 0.1467
Z2 0.0467 0.1349 0.0499 0.1386
Z3 0.0702 0.1125 0.0754 0.1237
Z4 0.0712 0.1286 0.0760 0.1455
Z5 0.1357 0.1970 0.1505 0.2093
Z6 0.0823 0.1618 0.0904 0.1718
Z7 0.0648 0.1282 0.0703 0.1417
Z8 0.0993 0.1426 0.1096 0.1490
Z9 0.0755 0.1706 0.0833 0.1830
Z10 0.0605 0.1333 0.0655 0.1460
Z11 0.0552 0.1446 0.0602 0.1607

Figure 3.5a and 3.5b show a plot of the average sensitivities of Zi and the coefficient of
variation respectively when the correlation matrix, R is kept fixed and when re-estimated.
Both the average sensitivities and the coefficient of variation increases substantially when
the correlation matrix R is re-estimated, indicating both a higher sensitivity and a lower
robustness of the sensitivity rankings observed. This demonstrates the profound impact of
uncertainty in the correlation matrix specification on the risk factors’ relative importance, as
quantified by sensitivity analysis. Interestingly, the higher increase in coefficient of variation
is observed for those risk factors (e.g., Z2, Z11) that had the lowest mean sensitivity in the
fixed R setting.

Figure 3.6a shows a box-plot of sensitivities of risk factors under the baseline run when
m = 100 and Figure 3.6b shows a box-plot of sensitivities under the baseline run assumptions
but when m = 100 and the correlation matrix R is re-estimated at every iteration of the
bootstrap procedure. From Figure 3.6b, we see that the risk factors Z5 and Z8 still take
precedence in ranking and have the highest sensitivities. Further, there are stark differences
in the spread and variability of the sensitivities between the two figures. The spread of
sensitivities is much greater in Figure 3.6b compared to Figure 3.6a. The overlap of the
error bounds is also significantly greater in Figure 3.6b. Overall, changes in assumptions
on the correlations between the risk factors appears to have a considerable impact on the
sensitivities and rankings of the risk factors.
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(a)

(b)

Fig. 3.5 Plot of (a) average sensitivities and (b) coefficient of variation of risk factors
sensitivities for b = 50 sets of n = 5×105 simulated scenarios, when R is fixed and when R
is re-estimated.
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(a)

(b)

Fig. 3.6 Box plot of sensitivities for risk factors under χ2-divergence for b = 50 sets of
n = 5∗105 simulated scenarios with (a) fixed correlation and (b) re-estimated correlation
when m = 100.
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3.4.6 Variations in the sample size m

In the baseline run, we set m = 20, where m is the number of observations used to estimate
model parameters. Here, we investigate the impact on parameter uncertainty when the value
of m is varied.

As the value of m increases, we expect that estimates become more stable and the
ranking of risk factors becomes more robust to parameter uncertainty. To quantify this effect
we plot the average pairwise correlation of the risk factor ranks, over bootstrap iterations.
Specifically, let U = {ui,k}i=1,...,11, k=1,...,b be the matrix of reverse sensitivities of input
factors Zi, i = 1, . . . ,11 over b = 50 sets of bootstrap iterations. Let r j,k be the pairwise
Spearman rank correlation of columns j and k of the matrix U. We then evaluate

r̄ =
2

b(b−1)

b−1

∑
j=1

b

∑
k= j+1

r j,k.

A high value of the average rank correlation r̄ indicates that vectors of ranks for the different
risk factors are consistent across different bootstrap iterations and hence robust to parameter
uncertainty.

In Figure 3.7 we plot r̄ against different values of m when (a) the correlation matrix R
is kept fixed as in the baseline run and (b) when R is re-estimated in each iteration of the
bootstrap procedure. By doing this, we not only investigate how the rank correlations are
affected by changes in m, but also examine the impact of uncertainty in R on the robustness
of risk factors’ importance ranking. For R fixed, we see that the average rank correlation is
close to 1 for all values of m. However, when R is re-estimated, the average rank correlation
increases very gradually from a level of approximately r̄ = 0.6 for m = 50 and remains
consistently below the case of a fixed R. This indicates that parameter uncertainty in the
correlation matrix has a profound impact on the robustness of risk factors’ importance
ranking.
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Fig. 3.7 Average correlation of rank (using Spearman’s pairwise rank correlation) of risk
factors when m is varied for fixed correlation parameters (black) and when correlation
parameters are re-estimated (blue).

To illustrate this further, in Figure 3.8a we show a plot of sensitivities of risk factors, Zi

for b = 50 sets of bootstrap iterations when m = 10 under the baseline run assumptions. Here
each line represents the sensitivities of a particular risk factor. Similarly, in Figure 3.8b, we
show the sensitivities of Zi for b = 50 bootstrap iterations when m = 500, keeping all other
assumptions fixed in the baseline run. We see that when m = 10, there is high volatility in
the sensitivities of the risk factors. Further, the overlapping of the sensitivities across risk
factors also makes it difficult to discern the order of importance of risk factors. However,
when m = 500, there is far less volatility in the sensitivities of all the risk factors and the
ranking of risk factors is much more discernible. The order of ranking appears to be much
more robust in this case, consistently with the reduction in parameter uncertainty arising
from larger sample sizes.

In Figure 3.9, we plot sensitivities of risk factors, Zi for b = 50 sets of bootstrap iterations
when m = 500 when correlation matrix R is re-estimated. We observe a high volatility in the
sensitivities of risk factors and the overlapping of the sensitivities implies that the order of
rankings is not very robust even for a large sample of m. Comparing it to Figure 3.8b, it is
evident that we lose the stability in the order of rankings when uncertainty in correlation
parameters is taken into consideration, making it an important factor in understanding
parameter uncertainty.
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(a)

(b)

Fig. 3.8 (a) Sensitivities of risk factors for b = 50 bootstrap iterations when m = 10; (b)
Sensitivities of risk factors for b = 50 bootstrap iterations when m = 500.
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Fig. 3.9 Sensitivities of risk factors for b = 50 bootstrap iterations when m = 500 when
correlation parameters are estimated.

3.4.7 Variations in simulation methodology

In this section, our aim is to examine the effect on parameter uncertainty when the re-
weighting approach presented in Section 3.2.2 is implemented, compared to the re-simulation
approach that was used in the baseline run. The two methodologies vary in how the alternative
models of risk factors, as part of the stress-testing procedure, are generated. To make
appropriate comparisons between the two methodologies, we set m = 100. The re-weighting
methodology involves constructing a likelihood ratio using multivariate normal distributions.
Having a smaller sample m = 10 as in the baseline run can lead to problems with estimation
of the likelihood ratio, leading to unreliable alternate probabilities. This, in turn, would lead
to difficulties in assessing the sensitivities of risk factors accurately. For that reason, we
choose m = 100 to compare our results obtained under the two methodologies.

Figure 3.10 shows a box-plot of sensitivities of risk factors, Zi when the re-weighting
approach is implemented with m = 100. Comparing this to Figure 3.6a, which displayed a
box-plot of sensitivities of Zi using re-simulation when m = 100, we observe that the two
methods give nearly identical results. As the two procedures are mathematically equivalent, it
is expected that the change in simulation methodology would not have a significant impact on
the resulting sensitivities. Nonetheless the two methods have somewhat different numerical
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features. In Figure 3.6a, we observe a larger inter-quartile range among the sensitivities
across all risk factors, while in Figure 3.10 there are more outliers.

Fig. 3.10 Box plot of sensitivities of risk factors Zi for b = 50 iterations of n = 5× 105

simulations under a re-weighting approach when m = 100.

3.5 Conclusion

We have proposed a stochastic model for non-life premium and reserve risk segments of
Solvency II calculation which is consistent with the standard formula. Our objective is
to investigate the impact of parameter uncertainty on the reverse sensitivity measures of
the model’s risk factors and, through this, the robustness of their importance ranking. We
propose two bootstrapping techniques to simulate risk factors under alternative parametric
assumptions and implement reverse and forward sensitivity analyses. We first established our
baseline model and conducted sensitivity analyses by individually varying one parameter at a
time to assess the impact of parameter changes on uncertainty. Through these analyses, we
identified the risk factors that exhibited the highest and lowest sensitivity. The considerable
presence of error bounds led to rankings of input factors that overlapped. However, when we
stressed the mean by 10% instead of stressing the VaR95%, we obtained consistent rankings
with fewer overlaps. This indicates that the robustness of importance measurement to
parameter uncertainty depends on the loss statistic being stressed; in particular an excessive
emphasis on the extreme tail may be counter-productive.
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To model the dependence between random variables in our model, we initially used the
Gaussian copula. As an alternative, we also employed the t-copula, which is comparable
to the Gaussian copula but allows for tail dependence. We observed that increasing the
degrees of freedom – hence reducing the level of tail dependence – led to a decrease in the
average sensitivities, indicating a reduced impact of parameter variations on the portfolio
loss. Further, we explored the impact of using a heavier tailed marginal distribution such
as the Inverse Gamma. As expected, the sensitivities were slightly higher than the baseline
model but maintained similar order of rankings.

Additionally, we investigated the effect of modifying our assumptions regarding the
correlation matrix. In the baseline model, the correlation matrix of business lines remained
constant across various model runs. However, by re-estimating the correlation matrix during
each iteration of bootstrap procedure, we observe a substantial increase in the overlapping
of error bounds. This suggests that uncertainty in the dependence structure has a dominant
impact on the sensitivity of risk factors.

The sample size used in parameter estimation was set to 20 in the baseline model. By
increasing the sample size, we observe greater stability in the rankings of input factors. How-
ever in the case where the correlation matrix was re-estimated, even for larger sample sizes,
substantial uncertainty persists. This again highlights the lack of robustness to dependence
uncertainty.

Lastly, we implemented different simulation methodologies. While the different methods,
as expected, give consistent results, they appear to have somewhat different sampling proper-
ties. This is a numerical issue of practical importance which merits further investigation.

While changing model assumptions tends to have an impact on the values of the estimated
sensitivities, this generally does not affect the relative importance ranking of risk factors,
with the exception of the case where the correlation matrix is re-estimated. The study could
have been further strengthened by exploring other conditions under which the rankings of
input factors lack robustness. Overall we conclude that ignoring parameter uncertainty may
not just limit an insurance company’s understanding of its solvency capital requirements, but
also on the reliability of the lines’ relative performance and risk.
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Characterising minimal divergence
stresses for general f -divergences





Abstract

We aim to provide a broader framework to risk analysts for deriving stressed probability
measures using divergence minimisation problems. While the Kullback-Leibler and χ2-
divergence are popular choices, we present a more flexible approach that allows practitioners
to choose from a wider class of f -divergences. In this chapter, we explore the possibility of
accommodating a general f -divergence in the minimisation problem proposed in Makam
et al. [62], where a χ2-divergence was minimised subject to a moment constraint. Various
results are presented in this chapter that classify f -divergences and provide a characterisation
of the shape of the Radon-Nikodym derivative based on their first derivative value at zero.
Additionally, we also present results to stochastically compare the stressed distributions
of a random variable based on the behaviour of the Radon-Nikodym derivatives when one
parameter in the optimisation problem has been altered.

4.1 Introduction and review of literature

In the field of Information theory, f -divergences have been extensively studied as a tool
to quantify the distance between two probability distributions [1]. Among the various
f -divergences available in the literature, the Kullback-Leibler divergence has been most
commonly used by academics and modelers. Additionally, in optimisation problems where
Kullback-Leibler divergence is minimised subject to a moment constraint, the corresponding
Radon-Nikodym derivative has a tractable expression [55]. In Chapter 2, we highlighted some
of the shortcomings of using Kullback-Leibler divergence and explored the idea of using
χ2-divergence as an alternative to address the issue of using Kullback-Leibler divergence in
the context of model behaviour when heavy-tailed distributions are used. This motivates the
study of a wider range of divergences, as applied to stress testing problems.

Practitioners may find it beneficial to choose from various f -divergences based on the
objectives of their analysis. Applying multiple f -divergences in the analysis may result in a
more comprehensive understanding of model behaviour. In this chapter, we aim to establish
a broader framework for divergence minimisation problems where flexibility of selecting
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from different f -divergences is available to derive stressed probability distributions. In such
a context, our intent is to study the characteristics of divergences and the solutions they
produce to systematise them in a way to enable several comparisons.

Optimisation problems are often used in the field of actuarial science to assess and
quantify model error and other stochastically driven uncertainties in the model. Csiszár [30]
in his seminal paper had first studied minimisation divergence problem using the Kullback-
Leibler divergence under linear constraints, giving rise to many practical applications in
finance and information theory. Breuer and Csiszár [23] have developed an approach based
on Csiszár [30] that is particularly relevant to stress testing. It involves searching for
the worst case scenario against a reference distribution by measuring the plausibility of a
scenario using Kullback-Leibler divergence. Pesenti et al. [67] and Makam et al. [62] have
used optimisation problems in the context of stress testing and sensitivity analysis in risk
management processes. Cambou and Filipović [24] solve a similar divergence minimisation
problem for f -divergences, focusing the problem around internal models in the context
of solvency assessment. Unlike Breuer and Csiszár [23], Pesenti et al. [67] and Makam
et al. [62] where moment constraints were used while minimising the divergence, Cambou
and Filipović [24] solve with respect to constraints on scenarios and show that an infinite-
dimensional problem can be reduced to a finite-dimensional convex optimisation problem.

The applicability of minimising f -divergences also extends into the realm of finance.
Pricing models are often considered in an incomplete market setting where selecting a price
measure is not direct and trivial [10]. Minimal divergence martingale measures, defined to
be the measures obtained after minimising an f -divergence over the set of all martingale
measures, have been heavily relied on to derive a set of prices in the context of no-arbitrage
argument [54]. Delbaen et al. [31] showed that maximising the utility function embedding
preferences of investors is equivalent to minimising a pseudo-distance between probability
measures. f -divergences such as relative entropy and Hellinger distance defined over all
equivalent martingale measures are interpreted as pseudo-distances in optimisation problems.
f -divergences arise naturally here as most often, options are represented by convex functions
of the underlying asset. The conditions for which the convex order between equivalent
martingale measures hold becomes relevant and this has been explored by [13]. Further,
Goll and Rüschendorf [46] give a general characterisation of minimal distance martingale
measure by providing necessary and sufficient conditions for all f -divergences which are
strictly convex and differentiable. Generalisations of Csiszár [30]’s theorem have also been
used in the pricing of options (see Goll and Rüschendorf [46]).

In Chapter 2, we have used a divergence minimisation problem where χ2-divergence is
minimised subject to a constraint on the mean of a random variable. Here, we generalise the
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problem such that a general f -divergence is minimised subject to a moment constraint. In
addition, we also generalise the dual problem stated in Chapter 2 to accommodate a general
f -divergence. Further, we present some results which allows us to categorise divergences
based on the shape of the Radon-Nikodym derivative. By computing the derivative of any
divergence at zero, we can determine a key property of the Radon-Nikodym derivative. The
solution admits strictly positive weights when the derivative at zero is infinite; otherwise,
the solution may also allow for null weights. Additionally, we present results concerning
stochastic comparisons when one parameter in the optimisation problem is modified. We
prove that a higher stress-induced probability measure stochastically dominates one that
is induced by a lower stress. Furthermore, when solving the optimisation problem using
different divergences for a given stress, we observe a convex ordering of distribution functions
of a random variable.

The rest of the chapter is organised as follows: In Section 4.2, we discuss some prelimi-
naries and define the optimisation problem which minimises a general f -divergence measure
subject to a constraint on the mean. In Section 4.3, we present some of our main results
that allows us to categorise f -divergences based on their derivative value at zero. In Section
4.4, we present some stochastic relations between distributions under different probability
measures when one factor/parameter is altered and demonstrate the relations using a simple
example. In Section 4.5, we define reverse and forward sensitivity measures which can
be applied in a model irrespective of the divergence used. We use the insurance portfolio
example introduced in Chapter 2 to demonstrate the impact of different divergences on the
prioritisation of input factors. In Section 4.6, we state some conclusions.

4.2 Preliminaries and problem statement

Let P be the set of probability measures defined on (Ω,A ). We consider two arbitrary

measures P and Q ≪ P such that
dQ
dP

is the Radon-Nikodym derivative of Q with respect to
P. Here, we denote Q ≪ P to indicate absolute continuity of Q with respect to P. Further,
we denote by E and EQ, the expectation operator under P and under Q, respectively.

The general definition of an f -divergence given in Liese and Vajda [58] is as follows:

Definition 4.2.1. Let f : (0,∞) → R be a convex function. The f -divergence of Q with
respect to P, denoted by D f (Q||P), is defined as

D f (Q||P) =
∫

Ω

f
(

dQ
dP

)
dP = E

[
f
(

dQ
dP

)]
,
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where f (0) = limu→0 f (u) is assumed to be finite when Q ≪ P. When Q is not absolutely
continuous with P, then D f (Q||P) = +∞.

We restrict our choices to strictly convex f -divergences in this paper. Given that f (1) = 0,
the f -divergence measure is non-negative, and D f (Q||P) = 0 if and only if Q = P.

Moreover, adding a linear term to the function f or multiplying a positive constant does
not change the ranking between different probability measures. For further reading on the
properties of f -divergences, refer to Ali and Silvey [3], Liese and Vajda [58], Bellini [9],
Shannon [80].

In this paper, we consider a model with Z = (Z1,Z2, · · · ,Zd) inputs on (Ω,A ) such that
an aggregation function, g, is used to associate the model inputs to a one-dimensional model
output, Y . The aggregation function g : Rn → R when applied on the inputs gives Y = g(Z).
For a given P,Q ∈ P , we can refer to the models (Z,g,P) and (Z,g,Q) as the baseline
model and the stressed model. We interpret P to represent the best estimates of the modeler
while Q represents an alternative view that stresses the model. We assume that Q ≪ P, so
that the stressed model must agree on zero probability events in the baseline model, and we

formulate the change of measure via the Radon-Nikodym derivative W =
dQ
dP

. Here, Q is

chosen such that the expectation of a random variable under Q is EQ[X ] = E[WX ] = t, where
t ∈ R is the stressed mean of X . We are essentially generating distortions to the baseline
model by choosing an appropriate Q. Here, X is considered to be a generic random variable
and depending on the purpose of the analysis, X can be set as either one of the inputs (Zi),
the output (Y ) or a function of them.

Our aim is to minimise the dissimilarity between the stressed probability Q and the
baseline probability P, that is D f (Q||P), subject to mean constraint stated above, so that the
stressed model is close to the baseline model. For a given t, we then solve the optimisation
problem minQE

[
f
(

dQ
dP

)]
st

EQ[X ] = t.
(I)

The divergence minimisation under moment constraints as defined in Problem (I) has
been studied by multiple authors. Csiszár [29] and Breuer and Csiszár [23] have extensively
used the Kullback-Leibler divergence in a minimisation problem within a model uncertainty
perspective in a continuous space. Cambou and Filipović [24] studied the divergence
minimisation problem using f -divergences on a finite probability space. Other papers by
Ben-Tal et al. [11], Weber [84] have also worked on entropy minimisation problem under
conditions on Expected Shortfall and average Value-at-Risk. Pesenti et al. [67] have used
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similar formulations of Problem (I) under VaR and ES constraints. In Makam et al. [62],
the χ2-divergence was minimised subject to a constraint on the mean of a random variable
in a discrete space setting. In this paper, we build on the work from Makam et al. [62] to
provide a more thorough characterisation to the solution of Problem (I) and its properties
when different f -divergences are considered in a discrete setting.

4.3 Discrete setting

We consider models in a discrete space setting where realisations may be generated using
Monte-Carlo simulation. In such a context, let Ω = {ω1,ω2, . . . ,ωn} with σ -algebra A = 2Ω.
Let pi = P(ωi)> 0 and qi = Q(ωi) denote the probability of obtaining the state of the world

ωi ∈ Ω, under those two measures P and Q. In this discrete setting, we let W =
dQ
dP

such that

W (ωi) =
dQ
dP

(ωi) =
qi

pi
= wi. Then the general expression for an f -divergence is given by

D f (Q||P) = ∑
i

f
(

qi

pi

)
pi = ∑

i
f (wi) pi.

The f -divergences which are under our purview are assumed to be continuously differen-
tiable on (0,∞).

Some examples are shown in Table 4.1. Note that all divergences in Table 4.1 are chosen
so that f (1) = 0. Further, the χ2- and the Kullback-Leibler (KL) divergences essentially
correspond to the α-divergence for α = 2, respectively α = 1.
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Table 4.1 List of f -divergences along with their corresponding functions.

f -
divergence

Notation f (u)

χ2 Dχ2(Q||P) = ∑i
qi

pi

2
−1 u2 −1

KL DKL(Q||P) = ∑i qi log
qi

pi
u lnu

Hellinger DH(Q||P) = ∑i(
√

qi −
√

pi)
2 (

√
u−1)2

Triangular
discrimina-
tion

D∆(Q||P) = ∑i
(qi − pi)

2

qi + pi

(u−1)2

u+1

α Dα(Q||P) =
∑i pi

(
qi

pi

)α

−1

α(α −1)

uα −α(u−1)−1
α(α −1)

,

α ∈ R,α ̸= 0,α ̸= 1

Le Cam DLC(Q||P) = 1
2

∑i
pi(pi −qi)

pi +qi

1−u
2u+2

Under the current notation, Problem (I) can be written as
minw ∑

n
i=1 pi f (wi) st

∑
n
i=1 piwi = 1,

∑
n
i=1 piwixi = t,

wi ≥ 0 for all i = 1, . . . ,n.

(II)

Here, we denote by w = (w1, . . . ,wn), with wi =W (ωi), the vector of Radon-Nikodym
derivative values, such that Q(ωi) = qi = piwi. We will refer to wi as weights since they
allow to re-scale the probabilities pi to their new values qi. Furthermore, let X(ωi) = xi and
denote x = (x1, . . . ,xn). We assume without loss of generality x1 < .. . < xn. We refer to
Chapter 2 for details on how to handle ties in x. For a special case of a Monte-Carlo setting,
pi = 1/n and the states of world have an equal probability of occurrence.

Problem (II) admits a unique solution for all x1 ≤ t ≤ xn since the objective function is
strictly convex, continuous and the feasible region is a non-empty, compact, convex subset of
Rn.
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When t = x̄ = ∑ pixi, the solution of Problem (II) is constant (i.e., wi = 1 for all i so that
the solution is Q = P) and, when t = xn, the solution is wi = 0 for i < n and wn = n.

The Karush-Kuhn-Tucker (KKT) conditions for i = 1, . . . ,n of Problem (II) with x̄ < t <
xn, are necessary and sufficient for optimality of the solution and are as follows: w solves
Problem (II) if and only if, there exist multipliers λ1,λ2 and µi for i = 1, . . . ,n such that for
i = 1, . . . ,n

pi f ′(wi) = piλ1 + piλ2xi +µi,
n

∑
i=1

piwi = 1,

wiµi = 0,
n

∑
i=1

piwixi = t,

µi ≥ 0, wi ≥ 0.

(KKT II)

Note that these conditions hold for all i such that wi > 0 or for wi = 0 when f (0) is finite.
When f ′(0) =−∞, the solution is strictly positive and (KKT II) still hold, see Proposition
4.3.1. This finiteness of f ′(0) will play a role in the next results.

In Breuer and Csiszár [23], the minimisation of KL divergence resulted in a solution
that was exponential, leading to strictly positive values, whereas, in Makam et al. [62],
the minimisation of the χ2-divergence under constraints on the stressed mean resulted in
a solution where null weights could be admitted for large t. We aim to study conditions
under which we may get either of the two classes of solutions for any f -divergence used. A
solution containing null weights implies a stressed model which gives zero probability to
events that the baseline deemed possible. This is typically the case when there is a substantial
stress on the mean of X . Such a type of stress may be undesirable for some modellers.
Further, note that any calculation/analysis performed in such a stressed model will ignore the
zero-weighted states.

In Proposition 4.3.1, we show that the derivative of the f -divergence at zero determines
whether the solution is strictly positive for every meaningful value of t. This result is not
surprising as the slope of the f -divergence at zero must be finite if a solution with null weights
must be obtained. The converse of Proposition 4.3.1 will be proved later in Proposition 4.3.3.

Proposition 4.3.1. Assume that f ′(0+) =−∞. Then for all x̄ ≤ t < xn, the solution w∗ of
Problem (II) is strictly positive.

For the divergences listed in Table 4.1, we can provide a full characterisation in terms of
their derivative value at zero. Those divergences for which f ′(0) =−∞ are as follows: The

KL with derivative f ′(u) = 1+ lnu and Hellinger with derivative f ′(u) = 1− 1√
u

result in

solutions which are always strictly positive as their derivative at zero is −∞. On the other hand,
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divergences such as χ2, Triangular discrimination and Le Cam with respective derivatives

f ′(u) = 2u, f ′(u) =
(u−1)(u+3)

(u+1)2 and f ′(u) =
−1

(x+1)2 have a finite derivative value at

zero and consequently may admit zero weights depending on the stress applied. Note that

for the α-divergence, the derivative at zero depends on the value of α as f ′(u) =
uα−1 −1

α −1
.

More specifically, the derivative is infinite for α < 1 and finite for α > 1.
In this paper, we only discuss results based on upward stresses on the mean of a random

variable regardless of our choice of divergence used in Problem (II). In Proposition 4.3.2,
we show that for an upward stress in the mean of X , the solution is always non-decreasing.
This implies that a heavier weight is placed on larger realisations of X , in order to be able to
achieve such upward stress. In the case of divergences for which f ′(0)>−∞, this may result
in sacrificing some states by setting their weights to 0 in order for the constraint to be satisfied.
Similar analyses can be done for a downward stress of the mean of a random variable. The
optimisation problem can be formulated accordingly using a substitution detailed in Makam
et al. [62].

Proposition 4.3.2. Let x̄ ≤ t ≤ xn. Then, the solution w∗ of optimisation Problem (II) is
non-decreasing in xi.

From Proposition 4.3.2 and using Proposition A.1 of Pesenti et al. [67], we can infer the
stochastic dominance of the distribution of X under measure Q corresponding to the solution
w∗ of Problem (II) with respect to its baseline distribution. A further result on stochastic
dominance is stated in Proposition 4.4.1 where we discussed the ranking of the solutions for
different stresses on the mean of X .

The next result provides a converse to Proposition 4.3.1.

Proposition 4.3.3. If for all t ∈ (x̄,xn) Problem (II) has a strictly positive solution w∗, then
f ′(0) =−∞.

Consider the case where all the weights are positive i.e., suppose w1 > 0. From the KKT
conditions, we obtain µi = 0 for all i, implying f ′(wi) = λ1 +λ2xi. More generally, a semi-
explicit solution of Problem (II) holds in terms of the inverse of the divergence function’s
first derivative.

Lemma 4.3.1. Let x̄ < t < xn. If w∗ is the solution of Problem (II), then for i = 1, . . . ,n,

w∗
i = g(max( f ′(0),λ1 +λ2xi))

=

0 if λ1 +λ2xi ≤ f
′
(0)

g(λ1 +λ2xi) if λ1 +λ2xi > f
′
(0),
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where g = ( f ′)−1 and λ1,λ2 are KKT multipliers.

We also consider an alternative optimisation problem, “dual” of Problem (II), by max-
imising the expectation of the random variable X , while constraining the f -divergence to a
particular upper bound. Therefore, we seek for the worst case scenario in terms of expected
loss which is consistent with a given divergence bound.

maxv ∑
n
i=1 pivixi s.t

∑
n
i=1 pivi = 1,

∑
n
i=1 pi f (vi)≤ θ ,

vi ≥ 0 for all i = 1, . . . ,n.

(III)

Note that Problem (III) is feasible if and only if θ ≥ f (1). In this case, the feasible region
is non-empty, compact and convex and Problem (III) admits a solution.

Similar problems analogous to Problem (III) have been studied by Breuer and Csiszár
[23] using the KL-divergence and in Makam et al. [62] using the χ2-divergence. Blanchet
et al. [18] also look at similar formulations to Problem (III) within the context of model error
in a non-parametric framework. In Proposition 4.3.4 we show that the solutions of Problem
(II) and Problem (III) coincide.

Proposition 4.3.4. Let x̄ < t < xn. Denote the solution of Problem (II) by w∗ and the optimal
value of the objective function by θ ∗ = ∑

n
i=1 pi f (w∗

i ). Then, w∗ solves Problem (III) with
θ = θ ∗. Conversely, for a feasible θ ≥ f (1), denote the solution of Problem (III) by v∗ and
let t∗ = ∑i piv∗i xi be the optimal value. Then, v∗ solves Problem (II) with t = t∗.

4.4 Stochastic comparisons

Stochastic relations are useful to understand the relative ranking of the inputs and output of a
given model. Here, we analyse how the distribution of a random variable X under a stressed
probability solution of Problem (II) changes when one of the parameters of the problem is
altered.

We introduce some familiar definitions for stochastic order relations that are considered
in this paper (see Denuit et al. [32] for a detailed overview). Denote FQ′

X ,FQ′′

X to be the
distribution function of X under measures Q′,Q′′ respectively. We write FQ′

X ⪯st FQ′′

X if
FQ′′

X stochastically dominates FQ′

X in first-order, that is if FQ′′

X (x) ≤ FQ′

X (x) for all x ∈ R.
Alternatively, FQ′

X ⪯st FQ′′

X if and only if EQ′
[h(X)]≤ EQ′′

[h(X)] for all increasing functions
h such that the expectations exist. First-order stochastic dominance allows us to compare
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random variables under different probability measures, indicating which probability measure
makes a variable stochastically larger.

We say that FQ′′

X strictly stochastically dominates FQ′

X in first-order, denoted by FQ′

X ≺st

FQ′′

X , if FQ′′

X (x) ≤ FQ′

X (x) and in addition, FQ′′

X (x) < FQ′

X (x) for at least one x ∈ R. Alterna-
tively, FQ′

X ≺st FQ′′

X if and only if FQ′

X ⪯st FQ′′

X and EQ′
[h(X)] < EQ′′

[h(X)], for all strictly
increasing functions h such that the expectations exist.

Furthermore, we denote by FQ′

X ⪯cx FQ′′

X the convex ordering of FQ
′

X and FQ′′

X , that is if
EQ′

[h(X)]≤ EQ′′
[h(X)] for all convex functions h such that the expectations exist.

Through convex ordering of a random variable under different probability measures, the
volatility of the distribution can be compared. For more on stochastic orders see Kaas et al.
[52], Denuit et al. [32], Shaked and Shanthikumar [79].

In Proposition 4.4.1, we first consider the effect of a change in the stressed mean of X ,
that is, the parameter t in Problem (II). The distribution of X under the resulting measure
increases in stochastic dominance with respect to t.

Proposition 4.4.1. Let x̄ < t ′ < t ′′ < xn. Denote by w′,w′′ the solutions of Problem (II) with
t = t ′ and t = t ′′ respectively. Further, let Q′ and Q′′ be the probability measures induced by
w′,w′′ respectively. Then, FQ′

X ≺st FQ′′

X .

For example, if X is interpreted as a random variable representing losses, Proposition
4.4.1 implies that a stress on the mean of X can induce an overall stress in the entire loss
distribution. In particular, losses at the right tail of the distribution will be assigned higher
probability of occurrence.

We now investigate the role played in Problem (II) by the divergence function f in
determining the shape of the Radon-Nikodym derivative W , and in turn, the stressed prob-
ability measure Q, for a given change in the mean of X . In particular, as the new mean of
X is constrained, it is interesting to understand under what conditions the distribution of X
becomes more variable, that is increases in convex order, after a divergence f is replaced by
another function f̃ . See Chan et al. [26], Kaas et al. [52], Gupta and Aziz [47], Roch and
Valdez [73] for relevant applications of convex ordering in mathematical science, economics
and actuarial science.

Proposition 4.4.2. Let f , f̃ be divergence functions, such that f (u) = u2 − 1 leads to the
χ2-divergence and g̃ = ( f̃ ′)−1 is strictly convex. Denote by w, w̃ the solutions of Problem
(II), corresponding to f , f̃ respectively, for a given t ∈ (x̄,xn). Further, let Q and Q̃ be the
probability measures induced by w, w̃ respectively. Then, FQ

X ⪯cx F Q̃
X .

Proposition 4.4.2 implies that the stressed distribution of X , derived with a divergence
corresponding to a strictly convex g̃, dominates in convex order the stressed distribution of X
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under the χ2 divergence. In the former case, the stressed model induces higher probabilities
in both tails of the distribution, resulting in a higher variability, even though the stressed
mean is the same.

Example. To demonstrate the results in this section, we consider a random variable X that
follows a Log-Normal distribution with mean 150 and standard deviation 35. In Figure
4.1, we depict the effect on the distribution functions when different stresses are used. We
solve Problem (II) using the KL-divergence to obtain Radon-Nikodym derivatives. We use a
5%,10%,15% stress on the mean to induce a change of measure. On the left, we plot the
Radon-Nikodym derivatives obtained under each of the stresses and on the right, we plot
the corresponding stressed probability functions. We see that a stressed probability function
stochastically dominates the baseline function. Furthermore, as the stress t increases the
distribution of X is seen to stochastically increase, consistently with Proposition 4.4.1.

In Figure 4.2 we show similar figures to demonstrate stochastic dominance under varying
stresses this time using the χ2-divergence to solve Problem (II).

Fig. 4.1 Left: Radon-Nikodym derivatives of stressed models using KL-divergence. Right:
Stressed probability distributions of X under different stresses.

To demonstrate the convex order of the distribution functions under different probability
measures as in Proposition 4.4.2, we solve Problem (II) using different divergences but
for a fixed stressed mean, t. We let f̃ represent KL-divergence. Hence, a comparison
between the χ2- and KL-divergence is shown in Figure 4.3. On the left, we plot the Radon-
Nikodym derivatives obtained when Problem (II) is solved while minimising KL-divergence
and subsequently solved when χ2-divergence is minimised for a fixed t corresponding to
stressing the mean by 15%. On the right, we plot the empirical distribution functions under
the baseline (black) and stressed distribution under χ2- and KL-divergence (green, red resp).
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Fig. 4.2 Left: Radon-Nikodym derivatives of stressed models using χ2-divergence. Right:
Stressed probability distributions of X under different stresses.

The Radon-Nikodym derivative obtained using χ2 and KL-divergence intersect twice, while
the distribution functions cross each other once [79]. Therefore by using Proposition 4.4.2, we
have FQ

X ⪯cx F Q̃
X , where Q, Q̃ are the probability measures induced when χ2-, KL-divergence

is minimised in Problem (II) respectively. Hence, though the mean of the random variable is
kept fixed, the KL-divergence produces a more dispersed stressed probability distribution
than χ2-divergence implying that a change of divergence can result in greater fluctuations.

Fig. 4.3 Left: Radon-Nikodym derivatives of stressed models using χ2- and KL-divergence.
Right: Stressed probability distributions of X under χ2- and KL-divergence; Base probability
distribution shown in black.
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In Table 4.2, we display the standard deviation, Value-at-Risk and Expected Shortfall at
95% to corroborate our findings. We can see that while the stressed means are equal for both
divergences, the standard deviation for the KL-divergence is larger and has a higher impact
on the tail.

Table 4.2 Table of statistics of X under stressed probability measures for KL- and χ2-
divergence with respect to baseline probability when t is varied.

Base Stress 1 (5%) Stress 2 (10%) Stress 3 (15%)

KL χ2 KL χ2 KL χ2

Mean 150.06 157.56 157.56 165.06 165.06 172.56 172.56
Sd 35.04 37.76 36.86 40.58 37.10 43.45 36.18

VaR95% 213.07 225.86 224.19 239.55 232.30 253.02 239.39
ES95% 235.99 250.99 248.13 266.22 256.68 281.07 263.36

We note that in Chapter 2, the use of χ2-divergence in quantitative models when heavy-
tailed distributions were employed was motivated by the limitations encountered when
using KL-divergence. KL-divergence can effectively capture tail behaviour, but due to the
convex nature of the resulting Radon-Nikodym derivative, it is particularly susceptible to
extreme values. This can result in excessive weights on extreme states, which in turn can
lead to numerical instability. Consequently, the use of χ2-divergence offers a more balanced
approach as it is less sensitive to extreme values and can effectively capture tail behaviour
without placing excessive emphasis on tails.

4.5 Application to importance measurement

In this section, we aim to study the effect of using different divergence measures on impor-
tance rankings of inputs in a model. By understanding the influence of various inputs on the
output of a model, we can determine the relative importance of model inputs. This is done by
evaluating the change in the output caused as a result of modifying one input factor at a time.

4.5.1 Model specification

We borrow the example from Chapter 2 that was used as case study for an insurance portfolio.
Briefly, the insurance portfolio consists of inputs factors Z1,Z2,Z3,Z4 and the output is
denoted by Y . In our model, we take into account losses from two distinct lines of business,
Z1,Z2. Specifically, the distribution of Z1 follows a Log-normal distribution with mean
150 and standard deviation 35 while Z2 follows a Gamma distribution with mean 200 and
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standard deviation 20. We subject the two losses to a multiplicative (inflation) factor Z3

which follows a Log-normal distribution with mean 1.05 and standard deviation 0.05. Finally
Z4 represents the percentage of the recovery lost when the reinsurer defaults and follows a
Beta distribution with mean 0.1 and standard deviation 0.2. The total portfolio loss is given
by Y = L− (1−Z4)min{(L−d)+, l}, where L = (Z1 +Z2)Z3. The insurance company buys
reinsurance with a deductible d and limit l, with chosen values d = 380, l = 30. Furthermore,
we let Z1,Z2,Z3 to be independent with each other while Z4 is dependent on L through a
Gaussian copula with a correlation of 0.6. We use a Monte Carlo simulation to generate a
sample of 105 scenarios for (Z,Y ).

4.5.2 Methodology and results

We choose the family of α-divergences [9] listed in Table 4.1 to implement our approach.
The following steps are used to implement sensitivity analysis to determine the rankings of
input factors based on the evaluation of expected shortfall at 95% confidence level.

We choose a value of α for the divergence and a value for θ . We note here that the choice
of θ is at the discretion of the modeller and reflect for example the extent of perceived model
uncertainty. Constraining θ , we solve Problem (III) to maximise the mean of each input
factor Zi, i = 1, . . . ,4 individually. The Radon-Nikodym derivative obtained as a result of
maximising the mean of input Zi subject to a value of θ is denoted by W θ

Zi,α
, i= 1, . . . ,4. Using

the Radon-Nikodym derivatives obtained, we evaluate the expected shortfall of output Y at
95% confidence level. We rank the model inputs based on their impact on expected shortfall
of Y . In Figure 4.4, we show distortions of Y using W θ

Zi,α
, i = 1, . . . ,4;α = 1.5;θ = 0.5

against the baseline probability distribution. We see that the distortions are more pronounced
in Figures 4.4a and 4.4d especially near the tails. Therefore, we expect Z1,Z4 are more
influential inputs in the model.

We repeat the process for α = 1,1.5,2,2.5,3,3.5 to observe the changes in expected
shortfall in Y as α increases. We note here that α = 1 corresponds to KL-divergence and
α = 2 corresponds to the χ2-divergence. In Figure 4.5, we plot the expected shortfall of Y at
95% confidence level using weights W θ

Zi,α
for i = 1, . . . ,4;α = 1,1.5,2,2.5,3,3.5;θ = 0.5.

From Figure 4.5, we see that Z1 and Z4 have the greatest influence on Y as the expected
shortfall of Y is highest under W θ

Z1,α
,W θ

Z2,α
for all values of α . Z2 and Z3 have the least

impact on Y and the expected shortfall of Y under W θ
Z2,α and W θ

Z3,α
are fairly similar. We

observe that as the value of α increases, the expected shortfall decreases. The decrease is
more significant for Z1 followed by Z4. The sensitivities of Zi also converge to each other
as α increases. This is because the Radon-Nikodym derivative transitions from a convex
function to a concave function as α increases, leading to a less impactful weighting of tail
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(a) Distortion of Y using W 0.5
Z1,1.5 (b) Distortion of Y using W 0.5

Z2,1.5

(c) Distortion of Y using W 0.5
Z3,1.5 (d) Distortion of Y using W 0.5

Z4,1.5

Fig. 4.4 Distortions of Y using Radon-Nikodym derivatives W θ
Zi,α

for i = 1, . . . ,4;α =
1.5;θ = 0.5.

probabilities. To illustrate the changes in Radon-Nikodym derivatives as α is varied, we plot
in Figure 4.6 the Radon-Nikodym derivatives of Z1 obtained when Problem (III) is solved
for different values of α = 1.5,2,2.5 when θ = 0.5. For α = 1.5, the Radon-Nikodym
derivative is a convex function with increasing weights. At α = 2, we obtain a piece-wise
linear function and for α = 2.5, the Radon-Nikodym derivative becomes concave. Hence,
the weights increase less steeply as α increases, implying that larger realisations of Y are
assigned a weight which is less severe. As a result, the expected shortfall of Y decreases as α

increases.
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Fig. 4.5 ES95%(Y ) using Radon-Nikodym derivatives W θ
Zi,α

for i = 1, . . . ,4;α =
1,1.5,2,2.5,3,3.5;θ = 0.5.

Fig. 4.6 Radon-Nikodym derivatives W 0.5
Z1,1.5

,W 0.5
Z1,2,W

0.5
Z1,2.5

.

In Table 4.3, we show the mean, standard deviation, Value-at-Risk and Expected Shortfall
at 95% confidence level for model input factors under baseline model and under Radon-
Nikodym derivatives W 0.5

Zi,1.5. The displayed numbers corroborate our findings. However,
note that the impact on the standard deviation of Y is somewhat different to the impact on the
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expected shortfall, with Z4 being the most important risk factor with respect to the standard
deviation.

We note here that a stress does not always result in an increase in the standard deviation.
The impact of a stress depends on various factors, including the shape of the distribution.
Here, the standard deviations of Z2,Z3 do not change significantly. This could also be due
to a concentration of data points around the new mean. As a consequence, the spread or
variability of the distribution becomes smaller, leading to a lower standard deviation.

Table 4.3 Statistics of Y under corresponding W θ
Zi,α

for α = 1.5 and θ = 0.5.

Base W 0.5
Z1,1.5

W 0.5
Z2,1.5

W 0.5
Z3,1.5

W 0.5
Z4,1.5

Mean 361.64 393.50 379.07 375.96 384.57
Sd 39.42 44.84 38.49 39.88 48.33

VaR95% 428.48 480.07 451.58 449.41 472.39
ES95% 458.22 513.79 481.12 479.73 503.20

In Figure 4.7, we plot the expected shortfall of Y under W θ
Zi,α

when α = 1.5 and θ is
varied. We solve Problem (III) by varying θ from 0.5 to 2.5. We observe that the expected
shortfall of all Zi increases as θ increases. The expected shortfall increases more substantially
for Z1 as compared to other input factors owing to the fact that the tail statistics are more
sensitive for Z1. Hence, a larger divergence value induces higher stresses on the risk factors
which subsequently affects the output Y .
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Fig. 4.7 ES95%(Y ) under W θ
Zi,α

for α = 1.5 and θ = 0.1,0.5,1,1.5,2,2.5.

The above methodology could potentially introduce inconsistencies in the derivation of
stressed distributions. This is because adjusting the parameter α leads to different divergences
and hence the metric used (end the interpretation of θ ) is itself changing. We present an
alternate way of examining the impact of the parameter α. We choose a value of α and
we separately stress the mean of inputs by a factor of β in Problem (II) by setting X = Zi,

and t = (1+β )E(Zi), i = 1, . . . ,4. We repeat this process for α = 1,1.5,2,2.5,3,3.5 and
β = 5%,10%,15%. The Radon-Nikodym derivatives obtained as a result are denoted by
W β

Zi,α
. Then we evaluate the stressed expected shortfall of output Y at 95% confidence level.

In Figure 4.8a, we plot the expected shortfall of Y under W β

Z1,α
for varying values of

α and β . The baseline expected shortfall is represented by black points. As expected, for
all α values, the expected shortfall of Y increases with higher stress levels. However, as
α increases, the stressed expected shortfall of Y decreases, reflecting a lower emphasis
of the stress on the extreme tail. Subsequently, we plot the expected shortfall of Y under
W β

Zi,α
, i = 2,3,4. We find similar patterns in expected shortfall of Y when stressing the means

of Z2,Z3. Note though that for Z4 the change in α does not impact the stressed expected
shortfall of Y .
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(a) ES of Y using W β

Z1,α
(b) ES of Y using W β

Z2,α

(c) ES of Y using W β

Z3,α
(d) ES of Y using W β

Z4,α

Fig. 4.8 ES95%(Y ) under W β

Zi,α
for α = 1, . . . ,3.5 and β = 0.05,0.1,0.15.

4.6 Conclusion

We have provided a framework in a discrete setting to obtain stressed probability measures us-
ing a divergence minimisation problem under a moment constraint. We present a generalised
version of the problem as stated in Chapter 2 to consider a general f -divergence instead of
the χ2-divergence. We present results that characterise the Radon-Nikodym derivative based
on the shape of the derivative of the divergence and the existence of null weights.

We also present results that focus on stochastic comparisons when one parameter in
the problem is altered. Specifically, we show that there is a stochastic dominance between
distribution functions when two different stresses are used to solve the divergence minimi-
sation problem. The probability measure induced by a higher stress would stochastically



90 Characterising minimal divergence stresses for general f -divergences

dominate the measure induced by a lower stress. Additionally, we also show a convex
ordering of distribution functions when different divergences are used to solve the problem
for a particular stress, comparing a strictly convex divergence with the χ2-divergence.

Lastly, we demonstrate the robustness of rankings of input factors using sensitivity
measures when different divergences are used. We observe consistent importance rankings
of input factors when α-divergence with different α values is used. Nonetheless, using a
divergence with higher α , makes the respective impacts of stressing different input factors
less pronounced.

4.7 Appendix: Proofs

Proposition (4.3.1). The result is obvious for t = x̄. Assume by contradiction that, for some
x̄ < t < xn, the solution w∗ is not strictly positive. We distinguish two cases, depending on
the number of positive terms in w∗.

Suppose there is a single positive term w∗
j > 0 and w∗

i = 0 for i ̸= j. By the constraints of
Problem (II), it must be the case that w∗

j = 1/p j,x j = t and 1 < j < n. Fix then l,k such that
1 ≤ h < j < k ≤ n and define, for all ε ≥ 0, w(ε) by

wh(ε) = ε, wi(ε) = w∗
i = 0 for all i ̸= h, j,k,

and w j(ε),wk(ε) as the unique solution of

n

∑
i=1

piwi(ε) = 1,
n

∑
i=1

piwi(ε)xi = t.

Note that w j(ε) = A1+B1ε and wk(ε) = B2ε with B2 =
ph(x j − xh)

pk(xk − x j)
> 0. As w(0) = w∗,

there exists ε0 such that w j(ε) > 0 for all 0 ≤ ε < ε0 and the vector w(ε) is feasible for
Problem (II).

Define now F(ε) = ∑
n
i=1 pi f (wi(ε)) the f -divergence corresponding to the weights w(ε),

and note that F(0) = ∑
n
i=1 pi f (w∗

i ). A straightforward calculation gives, for ε > 0,

F ′(ε) = ph f ′(ε)+ p j f ′(w j(ε))B1 + pk f ′(wk(ε))B2.

As ε → 0,w j(ε)→w∗
j = 1/p j > 0 and wk(ε)→ 0. Since B2 > 0, it follows that F ′(0+)=

limε↓0 F ′(ε) =−∞, contradicting the optimality of w∗.
Suppose now there are at least two positive terms w∗

j1 > 0,w∗
j2 > 0 for some 1 ≤ j1 <

j2 ≤ n. Let h be such that w∗
h = 0. The proof follows similarly to the previous case. For all
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ε ≥ 0, define w(ε) by

wh(ε) = ε, wi(ε) = w∗
i for all i ̸= h, j1, j2,

and w j1(ε),w j2(ε) as the unique solution of

n

∑
i=1

piwi(ε) = 1,
n

∑
i=1

piwi(ε)xi = t.

Note that w j1(ε) = A1+B1ε , w j2(ε) = A2+B2ε for some A1, A2, B2, B2 ∈R. As w(0) = w∗,
there exists ε0 > 0 such that for all 0 ≤ ε < ε0, w j1(ε)> 0, w j2(ε)> 0, and the vector w(ε)

is feasible for problem (II).
Define now F(ε) = ∑

n
i=1 pi f (wi(ε)) and note that F(0) = ∑

n
i=1 pi f (w∗

i ). A straightfor-
ward calculation gives, for ε > 0,

F ′(ε) = ph f ′(ε)+ p j1B1 f ′(w j1(ε))+ p j2B2 f ′(w j2(ε)).

As ε → 0,w j1(ε)→w∗
j1 > 0,w j2(ε)→w∗

j2 > 0, and it follows that F ′(0+)= limε↓0 F ′(ε)=

−∞, contradicting the optimality of w∗.

Proposition (4.3.2). Recall that the KKT conditions are necessary and sufficient for optimal-
ity of a candidate solution w∗.

We use the method of contradiction to prove λ2 > 0. Let us suppose λ2 ≤ 0. Consider
1 ≤ h < j ≤ n and assume w∗

j > 0. We have

ph f ′(w∗
h) = phλ1 + phλ2xh +µh

≥ phλ1 + phλ2xh (µh ≥ 0)

≥ ph(λ1 +λ2x j) (λ2 ≤ 0,xh < x j)

= ph f ′(w∗
j) (µ j = 0)

so that w∗
h ≥ w∗

j . The same conclusion clearly holds if w∗
j = 0 and, necessarily, f ′(0) is finite.

This implies that there is a counter-monotonic relationship between X and W ∗ as the w∗
i are

non-increasing in i, contradicting the assumption that t > x̄: by Chebyshev’s Sum Inequality,

t =
n

∑
i=1

pixiw∗
i ≤

n

∑
i=1

piw∗
i

n

∑
i=1

pixi = x̄.
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Hence, we conclude that λ2 > 0. To check that the weights are non-decreasing, consider
1 ≤ h < j ≤ n with w∗

h > 0. Proceeding similarly as before,

p j f ′(w∗
j) = p jλ1 + p jλ2x j +µ j

≥ p jλ1 + p jλ2x j

> p j(λ1 +λ2xh)

= p j f ′(w∗
h).

Hence, w∗
h ≤ w∗

j . The same conclusion clearly holds if w∗
h = 0. This implies that wi is

non-decreasing with i.

Proposition (4.3.3). Consider a sequence of mean stresses (th) with x̄ < th < xn and such that
th ↑ xn. For each h, let w∗(h) be the optimal solution of Problem (II) with t = th. In particular
w∗(h) is feasible for Problem (II), so (w∗(h)) is a bounded sequence and there exists a
converging sub-sequence, denoted again (w∗(h)) for simplicity, such that w∗(h)→ w∗ as
h →+∞ for some w∗ in Rn. Taking the limit in the constraints of Problem (II) one gets

n

∑
i=1

piw∗
i = 1,

n

∑
i=1

piw∗
i xi = xn,

from which it follows that w∗
i = 0 for i < n and w∗

n =
1
pn

> 0.
Since each solution w∗(h) is strictly positive, it satisfies the equation

f ′(w∗
i (h)) = λ1(h)+λ2(h)xi, i = 1, . . . ,n,

where λ1(h),λ2(h)> 0 are for all h, the corresponding KKT multipliers. Taking the limit as
h →+∞ in the last expression, one finds that

λ1(h)+λ2(h)xi → f ′(0), for i < n (i)

λ1(h)+λ2(h)xn → f ′(1/pn). (ii)

If f ′(0)<+∞ then, from (i), for all 1 ≤ i < j < n,

λ2(h)(x j − xi)→ 0 as h →+∞,
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so that λ2(h)→ 0. From (i) and (ii) it now follows that for 1 ≤ i < n,

λ2(h)(xn − xi)→ f ′(1/pn)− f ′(0)> 0,

a contradiction.

Lemma (4.3.1). If f ′(0) =−∞, by Proposition 4.3.1 w∗
i > 0 for all i and by (KKT II),

f ′(w∗
i ) = λ1 +λ2xi.

So w∗
i = g(λ1 +λ2xi) and the result follows.

Assume now that f ′(0)>−∞. If w∗
i > 0 then

f ′(w∗
i ) = λ1 +λ2xi > f ′(0)

so that w∗
i = g(λ1 +λ2xi) and the conclusion follows. If w∗

i = 0 then by (KKT II),

pi f ′(w∗
i ) = piλ1 + piλ2xi +µi ≥ piλ1 + piλ2xi.

Hence, f ′(w∗
i ) = f ′(0)≥ λ1 +λ2xi so that w∗

i = g(max( f ′(0),λ1 +λ2xi)) = 0.

Proposition (4.3.4). The KKT conditions for Problem (III) are as follows: if v is optimal for
Problem (III), there exists multipliers η1,η2 and εi, i = 1, . . . ,n such that

η2 pi f ′(vi) =−η1 pi − pixi − εi, viεi = 0,

η2

(
∑

i
pi f (vi)−θ

)
= 0, εi ≥ 0,

∑
i

pivi = 1, η2 ≤ 0,

∑
i

pi f (vi)≤ θ , vi ≥ 0.

(KKT III)

It can be confirmed that if w∗ is the unique solution of Problem (II), it satisfies (KKT III)

with θ = θ ∗ := ∑ pi f (w∗
i ) after setting η∗

2 =− 1
λ2

,η∗
1 =

λ1

λ2
and ε∗i =

µi

λ2
, where λ1,λ2 and

µi are the Lagrangian multipliers of Problem (II), see (KKT II). As III is a convex problem,
w∗ solves Problem (III).

Conversely, if v∗ solves Problem (III) for some θ ≥ f (1), then v∗ satisfies (KKT III)
and it can be verified that it satisfies (KKT II) with t = t∗ := ∑ piv∗i xi after setting λ1 =
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−η1

η2
,λ2 =

−1
η2

,µi =
−εi

η2
where η1,η2 and εi are the Lagrangian multipliers of Problem (III).

Hence v∗ is optimal for Problem (II).

The next Theorem follows directly from standard results; for detail see Kaas et al.
[52], Denuit et al. [32], Shaked and Shanthikumar [79], Karlin and Novikoff [53]. We add
a proof in the interest of completeness, because the case of strict stochastic dominance is
usually not explicitly covered.

Remark 4.7.1. Note that in the proof of Theorem 4.7.1, we use throughout the fact that if
two measures Q′, Q′′ corresponding to Radon-Nikodym derivative weights w′, w′′ are not
identical, there exists some i, j such that w′

i > w′′
i and w′

j < w′′
j . Furthermore if the conditions

of Theorem 4.7.1(2) are satisfied, then within each of the ranges of indices considered, there
will be at least one index where the stated inequalities is strict.

Theorem 4.7.1. Consider two probabilities Q′, Q′′, with corresponding Radon-Nikodym
derivatives, w′, w′′.

1. Assume there is an i∗ ∈ {1, . . . ,n−1} such that for each i ≤ i∗, it holds that w′
i ≥ w′′

i

and for each i > i∗, it holds that w′
i ≤ w′′

i . Then FQ
′

X ⪯st FQ
′′

X . If in addition Q′ ̸= Q′′,

then FQ
′

X ≺st FQ
′′

X .

2. Let EQ′ [X ] = EQ′′ [X ] and assume there are i∗, i∗∗ with 1 ≤ i∗ < i∗∗ < n such that

• for each i ≤ i∗, it holds that w′
i ≤ w′′

i ;

• for each i∗ < i ≤ i∗∗, it holds that w′
i ≥ w′′

i ;

• for each i > i∗∗, it holds that w′
i ≤ w′′

i .

Then FQ
′

X ⪯cx FQ
′′

X .

Proof. 1. For all x ≤ x∗i :

FQ′

X (x) = ∑
i:xi≤x

w′
i pi ≥ ∑

i:xi≤x
w′′

i pi = FQ′′

X (x).

Similarly, for all x > x∗i :

FQ′

X (x) = 1− ∑
i:xi>x

w′
i pi ≥ 1− ∑

i:xi>x
w′′

i pi = FQ′′

X (x).
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This proves the first-order stochastic dominance.

If in addition Q′ ̸= Q′′, there exists j ≤ i∗ such that w′
j > w′′

j then

FQ′

X (x j) = ∑
i≤ j

w′
i pi > ∑

i≤ j
w′′

i pi = FQ′′

X (x j).

If instead there exists j > i∗ such that w′
j < w′′

j then

FQ′

X (x j−1) = 1−∑
i≥ j

w′
i pi > 1−∑

i≥ j
w′′

i pi = FQ′′

X (x j−1).

Therefore, strict stochastic dominance holds.

2. To prove FQ
′

X ⪯cx FQ
′′

X , it is enough to show that EQ′
[X − x]+ ≤ EQ′′

[X − x]+ for all
x ∈ R, see Denuit et al. [32]. Note that

EQ′
([X − x]+) = ∑

xi>x
piw′

i(xi − x),

A similar expression holds for EQ′′
([X − x]+).

We now show that G(x)≤ 0 for all x ∈ R, where

G(x) = ∑
xi>x

pi(w′
i −w′′

i )(xi − x) = ∑
xi>x

pi(w′
i −w′′

i )xi − x ∑
xi>x

pi(w′
i −w′′

i ). (iii)

We first check that G(x j)≤ 0 for all j = 1, . . . ,n−1. Letting ∆xh = xh−xh−1, we have

G(x j) = ∑
i> j

pi(w′
i −w′′

i )(xi − x j)

= ∑
i> j

pi(w′
i −w′′

i ) ∑
j<h≤i

∆xh

= ∑
i
1i> j pi(w′

i −w′′
i )∑

h
1 j<h1h≤i∆xh

= ∑
h
1 j<h∆xh ∑

i
1i> j1i≥h pi(w′

i −w′′
i )

= ∑
h> j

∆xhKh, (iv)

where Kh = ∑i≥h pi(w′
i −w′′

i ).
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Note that
Kh = ph(w′

h −w′′
h)+Kh+1,

hence Kh is increasing in h on (1, . . . , i∗) and (i∗∗, . . . ,n) and decreasing in h on
(i∗+1, . . . , i∗∗−1). Further,

K1 = ∑
i≥1

pi(w′
i −w′′

i ) = 0,

so that Kh ≥ 0 for 1 ≤ h ≤ i∗. Similarly,

Kn = pn(w′
n −w′′

n)≤ 0

for i∗∗ ≤ h ≤ n.

Therefore, there exists h∗ ∈ (i∗+1, i∗∗−1) such that Kh ≥ 0 for h ≤ h∗ and Kh ≤ 0 for
h > h∗.

From (iv), it follows that G(x j) = ∆x j+1K j+1 +G(x j+1). Hence, G(x j) is decreasing
for j ∈ (1,h∗ − 1) and increasing for j ∈ (h∗,n). From the assumption EQ′

(X) =

EQ′′
(X) it follows that G(x1) = G(xn) = 0, which implies that G(x j)≤ 0 for all j.

Finally, we can state that G(x)≤ 0 for all x from (iii) and G(x) is linear in [xi,xi+1].

Proposition (4.4.1). First we show λ ′′
2 > λ ′

2.
Let λ

′
1,λ2

′ and λ1
′′,λ2

′′ be the corresponding Lagrangian multipliers for Problem (II)
when t = t ′, t = t ′′ respectively.

The proof starts by contradiction. We assume λ2
′′ ≤ λ2

′ i.e., λ2
′′ = λ2

′ or λ2
′′ < λ2

′.
If λ2

′′ = λ2
′, then either λ1

′ = λ1
′′ which is not possible as t ′′ > t ′ or λ1

′ ̸= λ1
′′ which is

also not feasible as one of w′,w′′ would dominate the other.
If λ2

′′ < λ2
′, we prove that FQ′

X ⪰ FQ′′

X which is inconsistent with t ′′ > t ′.
Recall from Lemma (4.3.1),

wi
′ = g(max( f ′(0),λ1

′+λ2
′xi))

and
wi

′′ = g(max( f ′(0),λ1
′′+λ2

′′xi))

where g = ( f ′)−1. Note that there must be at least one i such that wi
′ < wi

′′. We show that
for any such i, it holds w j

′ ≤ w j
′′ for all j < i.

We consider 4 cases here:
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(i) f ′(0)≥ λ1
′+λ2

′xi, f ′(0)≥ λ1
′′+λ2

′′xi,

(ii) f ′(0)< λ
′
1 +λ2

′xi, f ′(0)≥ λ1
′′+λ2

′′xi,

(iii) f ′(0)≥ λ1
′+λ2

′xi, f ′(0)< λ1
′′+λ2

′′xi,

(iv) f ′(0)< λ1
′+λ2

′xi, f ′(0)< λ1
′′+λ2

′′xi.

We reject the possibility of having cases (i) and (ii) as they violate the assumption
wi

′ < wi
′′.

Case (iii):
We get wi

′ = 0 < wi
′′ = g(λ1

′′+λ2
′′xi). For j < i, we have x j < xi. Hence, λ1

′+λ2
′x j <

λ1
′+λ2

′xi ≤ f
′
(0) since λ2

′ > 0, hence w j
′ = 0. Therefore, w j

′ ≤ w j
′′ for any j < i.

Case (iv):
We have g(λ1

′+λ2
′xi) = wi

′ < wi
′′ = g(λ1

′′+λ2
′′xi) .

=⇒ λ1
′+λ2

′xi < λ1
′′+λ2

′′xi ⇐⇒ (λ1
′′−λ1

′)+(λ2
′′−λ2

′)xi > 0.
Now, for j < i,x j < xi and since λ2

′ > λ2
′′,

(λ1
′′−λ1

′)+(λ2
′′−λ2

′)x j > (λ1
′′−λ1

′)+(λ2
′′−λ2

′)xi > 0 =⇒ w j
′ ≤ w j

′′.

Let i∗ = max{i : wi
′ < wi

′′}< n, then for i ≤ i∗,wi
′ ≤ wi

′′ and for i > i∗,wi
′ ≥ wi

′′. This
follows from part 1 of Theorem 4.7.1.

=⇒ FQ′

X ⪰ FQ′′

X contradicting the assumption EQ′
(X) = t ′ < t ′′ = EQ′′

(X).
Hence, we conclude that λ2

′′ > λ2
′.

Now, we prove that FQ′′

X ⪰ FQ′

X . Note that there is at least one i such that wi
′′ > wi

′. We
show that for any such i, we have w j

′′ > w j
′ for all j > i. We consider the same four cases as

above. Again, cases (i), (ii) are not feasible.
Case (iii): f ′(0)≥ λ1

′+λ2
′xi, f ′(0)< λ1

′′+λ2
′′xi

From above, we get (λ1
′′−λ1

′)+(λ2
′′−λ2

′)xi > 0.
Hence (λ1

′′−λ1
′)+(λ2

′′−λ2
′)x j > (λ1

′′−λ1
′)+(λ2

′′−λ2
′)xi > 0.

It follows that λ1
′′+λ2

′′x j > λ1
′+λ2

′x j =⇒ w j
′′= g(λ1

′′+λ2
′′x j)≥ g(max{ f

′
(0),λ1

′+

λ2
′x j}) = w j

′.

Case (iv): f ′(0)< λ1
′+λ2

′xi, f ′(0)< λ1
′′+λ2

′′xi.
w

′
i = g(λ1

′+λ2
′xi)< g(λ1

′′+λ2
′′xi) = w′′

i.
From above, we get λ1

′′+λ2
′′xi > λ1

′+λ2
′xi.

It follows that for j > i,x j > xi =⇒ λ1
′′+λ2

′′x j > λ1
′′+λ2

′′xi.
Hence, (λ1

′′−λ1
′)+(λ2

′′−λ2
′)x j > (λ1

′′−λ1
′)+(λ2

′′−λ2
′)xi > 0. We conclude that

w j
′′ > w j

′.
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Let i∗ = min{i : wi
′′ > wi

′}> 1.
Hence, for i < i∗,wi

′′ ≤ wi
′ and for i ≥ i∗,wi

′′ ≥ wi
′ implying FQ′′

X ⪰ FQ′

X .
In addition, given that λ ′′

2 ̸= λ ′
2, it follows that the corresponding Radon-Nikodym

derivatives can not be identical. Hence, strict stochastic ordering holds FQ′′

X ≻ FQ′

X .

Proposition (4.4.2). We know that the solution of Problem (II) for χ2-divergence obtained
in [62] is of the form wi = max(0,λ1 +λ2xi) where λ1,λ2 are the KKT multipliers. Further,
using Lemma (4.3.1), w̃i = g̃(max( f̃ ′(0), λ̃1 + λ̃2xi)) where λ̃1, λ̃2 are the corresponding
KKT multipliers when the f̃ -divergence is used to solve Problem (II). Define the con-
tinuous functions W (x) = max(0,λ1 +λ2x), W̃ (x) = g̃(max( f̃ ′(0), λ̃1 + λ̃2x)). Denote by
β = sup{x|W (x) = 0} the last point where W is 0.

To prove FQ
X ⪯cx F Q̃

X , we consider two cases here.
Case (a): Let f̃ ′(0) =−∞. Then, w̃i = g̃(λ̃1 + λ̃2xi).

First, we show that it is not possible for there to be a i∗, such that wi ≤ (≥) w∗
i for i ≤ i∗

and wi ≥ (≤) w∗
i for i > i∗. If such an i∗ did exist, then we would have by Theorem 4.7.1.1

strict stochastic dominance between FQ
X and F Q̃

X , implying inequality of the mean of X under
the two measures, which is a contradiction.

Second, we show that Theorem 4.7.1.2 applies. To do this we consider the functions
W ,W̃ . Note that W̃ (x) = g̃(λ̃1 + λ̃2x) is strictly convex as λ̃2 > 0. We now show that the
functions W (x),W̃ (x) cross no more than twice. By f̃ ′(0) =−∞, it holds that W̃ (x)> 0 for
all x. Hence, W ,W̃ cannot intersect at a point x ≤ β . Now assume that there exist z1,z2,z3

with β < z1 < z2 < z3 such that W (zi) = W̃ (zi), i = 1,2,3. We select a λ ∗ ∈ (0,1) such that
z2 = λ ∗z1 +(1−λ ∗)z3. Then, we obtain the contradiction:

W̃ (z2)< λ
∗W̃ (z1)+(1−λ

∗)W̃ (z3)

= λ
∗W (z1)+(1−λ

∗)W (z3)

= W (z2),

where the inequality results from the strict convexity of W̃ and the second equality from the
linearity of W (x) for x > β . Therefore, there will be β < z1 < z2 such that

W̃ (x)≥ W (x) for x ≤ z1,

W̃ (x)≤ W (x) for z1 < x < z2,

W̃ (x)≥ W (x) for x ≥ z2.

Since the wi and w̃i are points on the curves W and W̃ respectively, it follows that the
sequence of differences wi − w̃i cannot change sign more times than the functions W and
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W̃ cross. Hence, the differences wi − w̃i change sign at most twice. We know that they
cannot change sign only once (contradicting equality of means) or not change sign at all
(contradicting the w, w̃ being Radon-Nikodym densities). Hence, we find ourselves in the
scenario of Theorem 4.7.1.2 and FQ

X ⪯cx F Q̃
X holds.

Case (b): Let f̃ ′(0)>−∞.
Define β̃ = sup{x|W̃ (x) = 0} as the first point where W̃ is positive. If W̃ (x1)> 0 ⇐⇒

β̃ < x1, then the argument is identical to the case (a).
Consider now the situation that β̃ ≥ x1, such that w̃i = 0 for xi ≤ β̃ . If β < β̃ , then for

x > β , the functions W ,W̃ can only cross once, as W is linear in that range. Hence the
sequence wi − w̃i changes sign at most once. This in turn contradicts with the assumption
that w, w̃ are Radon-Nikodym derivatives leading to EQ[X ] = EQ̃[X ].

Consequently β > β̃ . If there are any xi ≤ β̃ , the corresponding weights will be wi =

w̃i = 0. Such points do not impact the change in sign of the sequence wi − w̃i and hence can
be ignored in the application of Theorem 4.7.1. For xi > β̃ , we find ourselves once more in a
similar situation as case (a), such that FQ

X ⪯cx F Q̃
X holds.





Chapter 5

Conclusion and future work

5.1 Summary

The overarching goal of this thesis was to develop a computationally effective sensitivity
approach that can be applied to simulation models in insurance and risk management. We
present a reverse and forward sensitivity approach where the discrepancy between the
baseline probability distribution and the alternate probability distribution is evaluated using
f -divergences. This difference is determined by subjecting the expectation of the output to a
stress. Constraining the value of the divergence, the forward analysis is conducted involving
stressing model input factors. The χ2-divergence was explicitly used in Chapter 2 to derive
alternate probability distributions. Our contribution falls within the domain of optimisation
problems where f -divergences are minimised to produce alternative probability measures.
While the sensitivity analysis approach we present in this thesis builds upon reverse sensitivity
testing introduced in Pesenti et al. [67], we add another layer by interlinking both reverse
and forward sensitivity analyses in a consistent manner. The interlinking of the two analyses
provides a more comprehensive understanding of the relation between model inputs and
output. The sensitivity analysis approach developed in Chapter 2 was applied specifically
to determine the rankings of model inputs of a simple insurance portfolio model and later
applied in Chapter 3 to test for the effects of model and parameter uncertainty in Solvency
II Standard model for non-life premium and reserve sub-module. Further, the optimisation
problem was generalised to accommodate a broader class of f -divergences. This allows a
modeller the freedom to choose between various f -divergences and to make appropriate
comparisons without being limited to one specific f -divergence. By understanding the
attributes of solutions obtained using different divergences, an analyst can make better
informed choices.
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5.2 Future Work

There are several possible extensions of the research presented in this thesis. The first
would be to extend the research presented in Chapter 4. In Chapter 4, some conditions
were presented to investigate stochastic dominance and convex ordering among different
divergences. However, further conditions can be explored to establish convex ordering
between two divergences such that one is more convex than the other.

One can also establish conditions on model components that detect (in)consistent rank-
ings among input factors when reverse and forward sensitivity approaches are used. An
inconsistency in the rankings is referred to as a dissonance by Cooke and van Noortwijk
[28]. The reverse and forward approaches were interlinked so as to detect any dissonance
that may surface and it is important to detect anomalies as the critical points of importance in
a sensitivity analysis may differ.

Another potential area for future research in the application of sensitivity analysis ap-
proach is to address problems involving multiple constraints in a finite space. I have so far
only dealt with optimisation problems where f -divergences have been minimised subject to
a constraint only on one moment. One can generalise the optimisation problem further, such
that f -divergences are minimised subject to multiple moment constraints. This would open
up several potential avenues for a more comprehensive understanding of model uncertainty.
Plausible scenarios can be constructed where moments of several input factors are simulta-
neously modified providing a more thorough assessment of the interactions between inputs
and output. Alternatively, several moments of a single factor could be stressed. Karush-
Kuhn-Tucker conditions [61] can be used to obtain the characterisation of the solution for
the Radon-Nikodym derivative for optimisation problems with multiple constraints. While a
full analytical solution will not be feasible for such a general optimisation problem however,
partial theoretical results can be developed which would allow for an easy implementation of
a sensitivity analysis using Monte-Carlo simulation and reduce the computational cost to an
extent.

Further, robust optimisation can be used as a tool to investigate more deeply the relation-
ship between sensitivity and model uncertainty. While our sensitivity analysis methodology
shares some parallels with robust optimisation, there are notable differences. In robust
optimisation, a set of probability measures is considered, and decision-making is based on
the worst-case scenario. An example of this approach can be observed in optimal decision
making with maxmin preferences, as demonstrated by Gilboa and Schmeidler [43]. In such
cases, uncertainty is often defined as a ball around the probability distribution P, utilizing a
specific distance metric. In contrast, our approach involves explicitly deriving the probability
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measures, which introduces a predefined distortion to our model. By explicitly deriving the
probability measures, we can gain insights into the uncertainties present in the system.

Defining an appropriate uncertainty region for a robust optimisation problem is important
and Ben-Tal et al. [11] has constructed uncertainty regions for various f -divergences. The
uncertainty set would be finite if the optimisation problem is subjected to a finite number of
constraints but, in general, it can be infinite and therefore literature on general theory of robust
optimisations would need to be considered to solve such kind of problems. Formulating robust
optimisation problems that concurrently address model uncertainty and stress testing would
be a key output for such a strand of research. Papers that can be considered for optimisation
problems in the context of robust optimisation are Ben-Tal et al. [12, 11], Bertsimas et al.
[15], Lam [56].
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