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Abstract

This paper introduces an approach to analysing multivariate time series
(MVTS) data through progressive temporal abstraction of the data into
patterns characterizing behavior of the studied dynamic phenomenon. The
paper focuses on two core challenges: identifying basic behavior patterns of
individual attributes and examining the temporal relations between these
patterns across the range of attributes to derive higher-level abstractions of
multi-attribute behavior. The proposed approach combines existing meth-
ods for univariate pattern extraction, computation of temporal relations ac-
cording to the Allen’s time interval algebra, visual displays of the temporal
relations, and interactive query operations into a cohesive visual analytics
workflow. The paper describes application of the approach to real-world
examples of population mobility data during the COVID-19 pandemic and
characteristics of episodes in a football match, illustrating its versatility and
effectiveness in understanding composite patterns of interrelated attribute
behaviors in MVTS data.
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1. Introduction

Temporal abstraction means representing sequences of time-referenced
data items as unified entities called patterns [4]. To comprehend the under-
lying dynamics and interrelationships among various attributes within mul-
tivariate time series (MVTS), it is crucial to uncover and explore temporal
relations between patterns of individual attribute variations. Although nu-
merous methods exist to address specific tasks in abstracting and analyzing
MVTS, there is currently no overarching framework that consolidates these
tasks and their corresponding methods into a comprehensive analysis work-
flow. Such a framework would help researchers to synergistically use different
methods, leveraging the variety of existing techniques and enhancing their
understanding of dynamic phenomena.

This paper presents a framework that aims to bridge this gap by support-
ing progressive abstraction of MVTS, from defining relevant intervals with
basic behavioral patterns of individual attributes to exploring temporal rela-
tions between previously extracted patterns, which may differ in their levels
of abstraction. Our primary objective is not to replace existing methods
with new ones; instead, we show how to organize existing methods support-
ing different tasks into a cohesive visual analytics workflow [3]. We present
examples of computational and visualization techniques capable to support
different analysis steps, while the framework is conceptual and therefore al-
lows the use of any appropriate methods. Thus, analysts can choose the
types of patterns to search for, pick one of suitable existing methods that
can detect these patterns in time series, and choose or design a time-oriented
visualization technique that will show the positions of the detected patterns
along the time line. To visualize relationships between the patterns, analysts
may use node-link diagrams instead of matrices.

The proposed framework addresses two key problems: (a) identifying ba-
sic behavioral patterns of individual attributes, and (b) examining the tem-
poral relations between these patterns across multiple attributes to derive
higher-level abstractions. In this context, a basic pattern refers to an inter-
pretable symbol or expression representing a sequence of values for a single
variable, such as “increasing” or “decreasing” [28|. Deriving complex patterns
of joint behavior of multiple variables is particularly challenging, especially
when there are time lags between the starting points of individual behavior
patterns. Our framework is designed to visualize temporal relations with
lags, facilitating the comprehension of complex interactions among multiple



attributes.
The framework focuses on three main tasks:

e T1: Defining relevant intervals with basic patterns in univariate time
series

e T2: Deriving complex patterns by computing temporal relations be-
tween time intervals in multivariate time series

e T3: Exploring occurrence patterns of temporal relations through an
interactive visual interface.

For T1, we apply an algorithm to define relevant time intervals from
univariate time series using the geometric pattern extraction technique [30].
T2 can be fulfilled by using Allen’s interval algebra [1|. T3 is supported by
a visual exploration interface designed following B.Shneiderman’s mantra of
“Overview first, zoom and filter, then details-on-demand” [31].

We argue that these tasks serve as essential components in a compre-
hensive MVTS analysis workflow, demonstrating the cohesive nature of our
framework. Our framework accommodates various types of patterns and tem-
poral relationships, allowing analysts to apply existing methods for pattern
detection. Example of such methods include trend-based [18]| and state-based
techniques [20].

The rest of this paper is structured as follows. Section 2 discusses the
related work. Section 3 describes selected methods suitable for each task
using the example of the mobility data during the COVID-19 pandemic.
Section 4 demonstrates the effectiveness and versatility of our framework
by example of another application using football (soccer) data. Section 5
discusses the concept, approaches, and answered research questions, identifies
strengths and limitations, and proposes directions for future work. Finally,
Section 6 concludes our work.

2. Related Work

In this section, we review the literature related to the analysis of mul-
tivariate time series, temporal abstraction, and visualization techniques for
exploring temporal relations.



2.1. Multivariate Time Series Analysis

A variety of methods have been proposed for the analysis of multivari-
ate time series (MVTS) data. These methods can be broadly categorized
into statistical approaches (e.g., Granger causality [10|, vector autoregres-
sion [22]), machine learning techniques (e.g., recurrent neural networks [12],
Bayesian networks [26]), and matrix and tensor factorization methods [16].
While these approaches are effective in modeling and predicting various as-
pects of MVTS data, they often do not provide an intuitive understanding
of the temporal relations between different attributes.

2.2. Temporal Abstraction

Temporal abstraction involves transforming the raw data into higher-level
concepts that are easier to understand and interpret, thus creating interval-
based representations from time-stamped data [29] (i.e., basic temporal ab-
straction [28|), and abstracting intervals into other intervals with a higher
level of abstraction (i.e., complex temporal abstraction [28]). Techniques like
time series segmentation [14], time periodization [2|, motif discovery [27],
and frequent episode mining [24] have been used to identify meaningful pat-
terns in univariate and multivariate time series. Joint behavior of multiple
variables are also derived from basic patterns by using co-occurrence [19]
and simultaneity of different temporal patterns [30]. While these methods
are effective in extracting temporal patterns, they do not explicitly address
the problem of exploring and analyzing different types of temporal relations
between the identified patterns.

2.8. Visualization Techniques for Temporal Relations

Several visualization techniques have been proposed to explore temporal
relations in time series data. TimeMatrix [35] and TimeNotes [33] are ex-
amples of visualizations that present the temporal relations between events
in the form of a matrix. Moreover, co-occurrences of pairs of different ab-
stract patterns can be visualized by a network [30]. EventFlow [25] and
Outflow [34] are visual analytics tools that enable users to explore temporal
patterns in event sequences by providing interactive visualizations of event
data. Techniques have also been introduced for visually specifying, com-
bining, and querying complex temporal patterns [6]. Recent work supports
the validation of causal relationships by showing correlations between time
intervals in matrix [17| and network |7, 21]. An approach exists for inves-
tigating relationships between one or more time series within specified time
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frames [36]. However, these methods generally lack direct support for explor-
ing patterns of temporal relations that include time lags.

In summary, the related work highlights a large variety of methods and
techniques available for analyzing and visualizing multivariate time series
data and temporal relations. Our proposed framework distinguishes itself by
introducing an integrated workflow consisting of three tasks: identifying rel-
evant intervals containing patterns, deriving complex patterns by computing
temporal relations, and exploring occurrence patterns of temporal relations
through an interactive visual interface . We propose a selection of methods
that can be employed for each task but do not exclude the use of alternative
techniques.

3. Visual analytics approach

In this section, we present a workflow composed of methods suitable for
identifying time intervals with basic behavior patterns, computing temporal
relations between time intervals in multivariate time series, and revealing
patterns of joint behavior by visually presenting the relations between earlier
extracted patterns.

3.1. Essence of the approach

The key idea of our approach is to conduct a progressive abstraction pro-
cess from identifying basic patterns in univariate time series to discovering
higher-level patterns formed by temporal relations between the basic pat-
terns. This process is designed to simplify and distill complex multivariate
time series data into meaningful and interpretable components that can be
easily understood and analyzed. The workflow of the process is presented in
Figure 1.
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Figure 1: The workflow of the progressive abstraction process consists of three steps with
increasing the level of abstraction at each step.

We demonstrate our approach by utilizing time series of continuous daily
mobility indicators from Google Mobility Data [9].

3.2. Approach introduced by example

During the COVID-19 pandemic, measures were taken to curb infection
spread by restricting people’s movement. In mobility data, we observe tem-
poral relations between different mobility patterns that warrant attention.
When a lockdown measure is announced, for example, we can expect an
increase pattern in coming to workplaces to occur before an increase
pattern of staying at home since, many people may go to their offices to
prepare for remote work. The mobility patterns may differ among differ-
ent countries due to their varying policies against the pandemic. Here, our
interest is to visualize temporal relations between mobility patterns within
each country and to investigate the distributions of temporal relations across
countries.

Data description
Following the COVID-19 outbreak in February 2020 [9], Google began
publishing anonymized mobility data for six different categories of places:



retail and recreation, grocery and pharmacies, parks, transit stations,
workplaces, and residential from various regions. The data consists of
daily visitor counts to these categories, compared to baseline days prior to the
pandemic’s onset. Baseline days represent a normal value for each day of the
week, calculated as the median value over a five-week period from January

3rd to February 6th, 2020. The values in the published data are presented

as percentages of changes from these baseline values. For our analysis, we
utilize daily time series for 29 countries across Europe, collected between the

15th of February, 2020 and the 15th of October, 2022.

T1. Defining relevant intervals containing abstract patterns

The first step in our framework involves dividing a univariate time series
into a set of time intervals of varying lengths, each featuring a distinct pattern
of value variation (e.g., a trend). Analysts can define the pattern types
of interest and adjust thresholds for identifying them. In our example, we
consider a set of basic patterns that can be represented as trends and typically
labelled as increase, constancy, and decrease. To distinguish these trends,
we employ the algorithm by Shirato et al. [30], which treats a time series as
a graph of a function V (¢) in a Cartesian coordinate system. It determines a
peak or trough pattern by identifying the largest triangle in a time interval
[t1, 1] formed by points (t1, V (t1)), (¢, V(t')), and(ts, V (t2)), where t; <t <
to. In other words, the algorithm identifies a peak or trough point that forms
the largest triangle with the starting and ending points of a given interval
(Figure 2). If the area of the triangle is sufficiently large, the peak or trough
point is taken as a break point to divide the time series into two segments each
containing a simpler pattern of temporal variation that can be considered as
increase, decrease, or constancy.
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Figure 2: Illustration of the idea of the pattern detection algorithm [30]. The curve
portrays the evolution of values over time as a function V(¢). The algorithm identifies a
point (¢, V(t')) within an interval [¢1, ¢2] that forms the largest triangle with the points
(t1,V(t1)) and (t2, V(t2)). The point (¢',V(t')) is used to divide the time series in two
intervals. In this example, the first interval contains an increasing trend. Depending on a
threshold for the difference between the first and last values, the attribute behavior in the
second interval can be considered as a decreasing trend or as constancy.
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Figure 3: Dividing time intervals by iterative application of the largest triangle algo-
rithm [30]. In the initial iteration (top), the algorithm finds the peak or trough point that
forms the largest triangle in the time series, then segments the time interval at this iden-
tified time point. Subsequently, in the second iteration (bottom), the algorithm discovers
peak or trough points in the time intervals obtained in the first iteration. The iterative
process continues until the area of the largest triangle falls below a chosen threshold.

The operation of finding the largest triangle is applied to a time series in
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an iterative manner as illustrated in Figure 3. Initially it is applied to the
whole time span of the time series [to, tj,s] (Figure 3, top). After finding the
vertex of the largest triangle (¢, V(¢')), the time step ¢’ is used for dividing
the entire time span into intervals [ty, '] and [t/,¢;.s]. The operation is then
applied to each of these two intervals, which can be, in turn, further divided
into sub-intervals (Figure 3, bottom). The decision whether a given interval
needs to be subdivided depends on the area of the largest triangle on this
interval. A large area implies the presence of a substantial peak or trough,
which is a composition of increasing and decreasing trend patterns. Hence,
the interval needs to be subdivided for obtaining simpler patterns. When
the triangle is small, it suggests that this fragment of the time series can be
treated as a simple trend pattern with inessential noise.

With an aim to obtain a set of elementary trends, namely increase,
constancy, and decrease, we recursively segment each time interval until
its pattern is sufficiently distinct, i.e., the largest triangle within the segment
is smaller than a threshold. A larger threshold allows for larger triangles,
representing more significant peaks or troughs, to exist within the segment,
resulting in fewer intervals as the partitioning process is less stringent. In
other words, increasing the threshold value leads to a coarser segmentation of
a time series and a higher level of abstraction, where segments are considered
as simple trends, and internal deviations are ignored. Figure 4 demonstrates
the effect of the threshold on the final division of a time series.

10
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Figure 4: Division of a time series into intervals using different thresholds for the size of
the largest triangle (top: threshold=0.5, middle: 1.0, bottom: 1.5). Each view consists
of a raw data series (bottom) and the resulting time intervals (top). Blue dotted lines
represent the recursions of the splitting process and bold purple lines represent the final
intervals while grey dotted lines represent the end of each interval. A larger threshold
indicates a greater tolerance for variations within the data, resulting in a coarser segmen-
tation that represents more pronounced trends. Conversely, a smaller threshold refines the
segmentation capturing subtler variation.

T2. Deriving complex patterns by computing temporal relations between time
intervals in multivariate time series

After identifying the time intervals containing basic patterns in each uni-
variate time series (Figure 5), we proceed to compute the temporal relations
between the time intervals across multiple attributes by employing a sub-
set of Allen’s interval algebra consisting of the relations before, after, and
overlap. We allow a certain margin of overlapping w to be present in the
before and after relation. Any relation where two intervals share a suf-
ficiently long (> w) period of simultaneous existence is considered as an
instance of the overlap relation. The threshold w is specified as percentage
of the duration of the shorter interval.

11
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Figure 5: A segment of an univariate time series from the mobility dataset distilled into
basic trend patterns. Colors denote the trend directions: orange for decreasing, grey for
constancy, and green for increasing. Opacity signifies the change rate, i.e., the amount
of change of the value divided by the interval length.

To identify relations, we employ the following algorithm. Firstly, for each
interval in one time series that contains a pattern (referred to as the reference
interval), the algorithm searches for its temporal neighbors in the other time
series. Two intervals are considered temporal neighbors if they either overlap
or if the temporal distance between the end of the earlier interval and the
start of the later interval does not exceed a predefined threshold, denoted as
0. If the neighboring interval overlaps with the reference interval by more
than a specified value of the threshold w, the relation is labeled as overlap.
Otherwise, if the neighbor starts earlier, the relation is labeled as before,
and if the neighbor starts later, the relation is labeled as after. Analysts
have the flexibility to adjust the parameters § and w based on their specific
requirements. In the provided examples, we have chosen ¢ to be 1 day and
w to be 20% of the shorter interval’s duration. Figure 6 demonstrates an
example of the relation after between two patterns.
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Figure 6: An example of a temporal relation between two trend patterns. The increasing
pattern in workplaces (bottom) is after the increasing pattern in retail and
recreation (top). As the two intervals overlap by less than the threshold w (bold hash
pattern in red), the relation is identified as after rather than overlap.

T3. FExploring occurrence patterns of temporal relations through an interac-
tive visual interface.

In this task, the objective of an analyst is to understand the occurrence
patterns of temporal relations by examining their frequency distributions.
This task is meant to be performed separately for each type of temporal
relation, i.e., before, after, or overlap. We shall call the relation that is
currently explored the target relation. This task is structured in accordance
with the Visual Information-Seeking Mantra of “overview first, zoom and
filter, then details-on-demand” [31].

T3.1 Overview: Matrix visualization of occurrence patterns

To begin our exploration, we first introduce a matrix visualization that
aids in understanding the occurrence patterns of temporal relationships. An
example is demonstrated in Fig. 7. Each cell in the matrix represents the
frequency of the target relation (before in Fig. 7) occurring between two
patterns across different attributes. In this matrix, rows and columns are
divided by dashed lines into three blocks corresponding to the increase, con-
stancy, and decrease patterns. Within these blocks, the rows and columns
correspond to the different attributes. The color intensity of a cell indicates
the frequency of the target temporal relation: darker shades represent more
frequent occurrences, while lighter ones signify fewer.

13
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Figure 7: Relation occurrences matrix: FEach cell represents the frequency of the target
relation (before in this example) between two patterns across various attributes. The ma-
trix rows and columns are divided into three blocks corresponding to increase, constancy,
and decrease patterns. Darker shades indicate more frequent occurrences, while lighter
ones signify fewer.

The investigation is done using a display with multiple matrices (Fig-
ure 8), i.e., we apply the “small multiples” technique considered by Edward
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Tufte as the best design solution for a wide range of problems (32, p.67|. In
accordance with the Jacques Bertin’s concept of an image as “the meaningful
visual form, perceptible in the minimum instant of vision” [5, p.11|, each
matrix can be perceived holistically as a single object. This allows for an
at-a-glance comparison between matrices, without involving minute details.

The multi-matrix display in Figure 8 visualizes the occurrence patterns for
the before relation for each country. Initial observation of these matrices
reveals certain similarities, such as comparable white crossing lines in the
Czech Republic, Hungary, Luxembourg, Slovenia, and Slovakia.

=A’I; ; IIBE5 i -BG3 i h-CZ3 E !DE; E ==DIT E -EEE E I—'ESE 3
bl e
L U

0 15

Figure 8: Grid of matrix views for 29 European countries. Each matrix within the grid
represents the occurrences of the before relation for each pair of patterns within the
respective country.

For more effective comparison, the user can set the multi-matrix view to
show normalized deviations from the average (Figure 9). Within these matri-
ces, each matrix cell displays the difference between a normalized occurrence
value for a given country and the average normalized value for correspond-
ing pair of patterns across all countries. The normalized occurrence value is

15



computed as the ratio of the occurrence count of a specific pattern pair to
the total number of occurrences of the target relation within the matrix. We
can represent this concept with the following formula:

dlff = NO‘/refmeigh,rel,c - ANO‘/refmeigh,rel (1)

where ref and neigh mean a pair of a reference interval and its neighbor,
rel means a relation, and ¢ means a country.

The Normalized Occurrence Value (or NOV) is calculated by dividing
the count of occurrences for each pattern pair by the total occurrences of the
target relation in the matrix:

NOV. o COuntref,neigh,rel,c 9
ref,neigh,rel,c — ( )
totalOccurrences, .

The Average Normalized Occurrence Value (or ANOV) is the average of
the NOVs across all countries:

Zc NOV;"@f,neigh,rel,c

ANOV;‘ef,neigh,rel - N

(3)

In this formula, N is the total number of countries.
Differences are shown through diverging colors, making similarities in
occurrence patterns more readily observable.

16
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Figure 9: A multi-matrix view of the relations between mobility trends for 29 European
countries. Each matrix illustrates the deviation of the normalized frequencies of the rela-
tion occurrences from the average of the normalized frequencies for the before relation.
These differences are expressed using diverging colors.

For an overview of the similarity relationships between countries, analysts
can apply dimensionality reduction to the set of matrices. We recommend us-
ing a dimensionality reduction algorithm from the class known as neighbour
embedding algorithms, which give priority to preserving local neighborhoods
at the cost of higher distortion of longer distances between embedded data
items. Hence, highly similar items (i.e., neighbors in the multidimensional
space) receive close positions in the low-dimensional projection space. One
of such algorithms is t-SNE [23|, which we use in our example. In Figure 10,
t-SNE was utilized with two different values of the parameter perplexity,
5 and 25. This parameter approximately defines the number of neighbours
to be considered when placing points in the projection space. Since it is not
known in advance how many neighbours, in terms of similarity of the relation
occurrence distribution, a country may have, it is reasonable to consider pro-
jections obtained with smaller and larger values of the perplexity parameter.

17



In our example, both projections exhibit clusters of countries with similar
matrices, for example, the aforementioned five countries (i.e., the Czech Re-
public, Hungary, Luxembourg, Slovenia, and Slovakia), as well as the Baltic
countries (i.e., Lithuania, Latvia, and Estonia). We do not observe significant
difference between the results obtained with the two perplexity values.

_t-SNE (perplexity = 5) SNE (perplexity = 25)

1\
Ik

]

Figure 10: t-SNE projections of the set of countries obtained with perplexity values of 5
(left) and 25 (right), based on the similarity between the matrices of the normalized occur-
rence frequencies of the before relation. The projection provides a spatial representation
of the similarities.

T3.2 Zoom, Filter, and details-on-demand
A. Selecting a matriz of interest and a pair of patterns

The subsequent step encompasses zooming and filtering, permitting ana-
lysts to narrow down their analysis to a particular matrix of interest (“filter”),
which is shown in a larger format (“zoom”) to facilitate focusing on specific
patterns and their temporal relations. Analysts can then choose a target
temporal relation, and the frequency of the selected relation between each
pair of patterns will be shown (“details-on-demand”). In our illustrations, the
analyst chooses the before relation to explore the frequencies of neighboring
patterns that occur prior to reference patterns.

Taking Malta as an example (Figure 11, left), the matrix visualization
shows the frequencies of the relation occurrences for different pattern pairs
over the period between February 15, 2020 and June 15, 2021 (i.e., in first half

18



of the time span of the available data set, including the beginning of the pan-
demic). We observe that decreasing patterns of different attributes often pre-
cede increasing patterns of other attributes. For instance, we observe a large
number of instances where a decreasing trend in retail and recreation
precedes an upswing in parks, transit stations, and workplaces (Fig—
ure 11, left, block 1). Similarly, decreasing patterns in these three categories
of places often precede an increase in retail and recreation. On the
other hand, there are fewer instances of an increasing pattern in retail and
recreation preceding a decrease in these place categories (Figure 11, left,
block 2). Likewise, the matrix for Italy shown on the right of Figure 11
also displays similar patterns but includes another category of place, namely
grocery and pharmacy (Figure 11, right, block 1).

"AMT (relation: before) [period: before 2021-06-15 ] LT (relation: before) [period: before 2021-06-15 ]

Neighbor Neighbor

=i
increasing

Reference
constancy

Reference

ansit_statons.

:| ®) i { p
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Figure 11: Matrix visualizations of the occurrence frequencies of the temporal relation
before between trend patterns of different attributes for Malta (left) and Italy (right).

Notably, Italy has higher frequencies of the before relation between de-
creasing trends in transit stations and increasing trends in workplaces
and vice versa, indicating a different pattern of mobility in Malta (Figure 11,
left, block 3 and right, block 2) as compared to Italy (Figure 11).

These matrix visualizations serve to observe and compare the overall fre-
quency distribution of temporal relations between different patterns across
various contexts or regions, providing initial insights for further detailed anal-
ysis.
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B. Density chart grid view for temporal relation distributions

To exhibit the distributions of temporal relations between different ab-
stract patterns, we utilize a grid view of density charts. Differently from
the matrix view, which shows information for a chosen target relation, the
grid view presents information for a chosen reference pattern. For each other
pattern, there is a density chart representing the distribution of the relative
(with respect to the reference pattern) times of occurrence of this other pat-
tern. The chart includes two density plots, one for the before relation (blue)
and another for the after relation (red). The overlap relation is intention-
ally excluded from this visualization due to its significantly higher frequency,
which decreases the visibility of the distributions of the other relations. It is
worth noting that our provides the flexibility to exclude any relation, allowing
for a more focused examination of the other specific relations. The density
charts are arranged in a grid with rows corresponding to the attributes and
columns to the different patterns, i.e., increase, constancy, and decrease.

Figure 12 illustrates the grid view. The figure includes two grids rep-
resenting data from two time periods: before and after the 15th of June,
2021 (midpoint of the available data). The reference pattern is the increase
of the attribute workplaces. In each grid view, the rows correspond to
six attributes (retail and recreation, grocery and pharmacies, parks,
transit station, workplaces, and residential) and columns to three
trend patterns (increase, constancy, and decrease), resulting in a total of
18 grid cells. The cells in all but one rows contain density charts showing the
distributions of the relative times of the occurrences of the neighboring pat-
terns with respect to the reference pattern. The row of the attribute whose
pattern is chosen as the reference is empty, because only relations between
patterns of distinct attributes are considered in our framework.

20



workplaces, increasing, 11T (before 2021-06-15)

workplaces, increasing, 11T (After 2021-06-15)

increasing (112) constancy (18) decreasing (94) HJner ing (46) 'y (21) decreasing (46)
= i b = ; ]
£ f ; 8 ; 3
I~ : d 2
g i i g
] : : 8
® O\ QL ®
2 ] ] 2 ‘
& _ﬁk_ R & ; ;
Z ; : i ; s
£ £
8 5
H B
T ol : F o] s i
= i = H i
5 ; 3 : :
= e ~ = —_— B o
£ 3 % "5 H . = T % = 7 % & T % & s %
workplaces, increasing, ¥=SE (before 2021-06-15) workplaces, increasing, ¥=SE (After 2021-06-15)
-increasing (67) constancy (11) decreasing (57) -increasing (67) tancy (17) decreasing (68)
3 i i 1 f |
E e ) O 2 N _ AN
2 i i 2|
g | g
8 i i g i
EIN S SN Y, N ), N
aond ) -
: _AL y/\ /N A
E] i ' E] A
a ‘ H (=4 H B
E % &( \ E ﬂ(\
= Vo oV - — i
8 i 8
g § o
£ £
8 5
B B
S f f f g ;
3 i ; i ; |

Figure 12: Grid views of density charts for the distributions of the neighbors’ relative
times for the increase pattern of workplaces in Italy (top) and Sweden (bottom). The
grids on the left include the data from the time period before 15/06/2021, and the grids on
the right show the relation distributions after this date. Colors denote different temporal
relations: blue for before and red for after.
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Comparison of relations of the increase in the visits to workplaces between
Italy and Sweden

In this case study, we focus on the relations of the increase pattern
in visiting workplaces with different trend patterns of the other attributes
occurring in the temporal neighborhood of the reference pattern defined using
a temporal threshold of 6 = 1 day. We compare the distributions of the
neighboring patterns for Italy and Sweden. We segment the data into two
subsets based on whether they fall before or after a chosen midpoint date
June 15, 2021, for comparative analysis of two time periods.

In Ttaly (Figure 12, top), more occurrences of the reference pattern in
neighborhoods of other patterns are noted before the midpoint date than
afterwards. This suggests that the increase pattern of workplaces was
more prominent at the early stages of the pandemic. Given that Italy imple-
mented lockdown measures relatively early [13], this observation aligns with
the expectation that people’s mobility would have been significantly affected
by these measures. In contrast, Sweden (Figure 12, bottom), known for
not imposing any form of lockdown [13], exhibits fewer occurrences of the
reference pattern in relation to others before the midpoint date than after it.

Upon closer inspection, we find that the same pattern before the midpoint
in Italy has more relations with the decrease pattern of transit station
than its counterpart in Sweden, implying different mobility patterns in these
countries.

4. Case study: Team behaviours in football

In this section, we present another case study using data from professional
football (or soccer) matches. Understanding collective movements is crucial
for interpreting tactical behaviors in football. For example, the team that has
gained the ball possession tends to extend its width while the team without
possession tends to get more compact [8]. Revealing temporal relations be-
tween such kinds of trends of different attributes can enhance understanding
of the data. For example, an increase in average velocity (i.e., average
speed of players on both teams) before an increase in goal distance (i.e.,
distance between a team’s own goal and the mean position of the outfield
players on that team, excluding the goalkeeper) implies a quick attack such
as a counter-attack.
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Data description

We use continuous time series of the teams’ collective movements com-
puted from players’ positions. We have data from two matches, labeled as
BB and BN, in which the same home team, denoted as D, competes against
two distinct opponents, referred to as O. One match can be divided into four
subsets of game episodes distinguished by two factors: the stage of the match
(either the first half or the second half) and the team possessing the ball, i.e.,
D or O. Each half contains around 67500 timesteps (i.e., 45 minutes given
that the raw data has a sampling rate of 25 Hz). For each team and each time
step, we compute team width (horizontal distance between the leftmost and
rightmost players on a team excluding the goalkeeper), team depth (vertical
distance between the frontmost and rearmost players on a team excluding
the goalkeeper), and goal distance (distance between a team’s own goal
and the mean position of the players on that team excluding the goalkeeper).
The attributes of the two teams are distinguished by the prefixes home and
away in the attribute names, for example, home width and away width As
there exists strong correlation between the average velocities of the players
of the two teams, we compute average velocity on both teams (excluding
the goalkeepers).

Comparative analysis of team strategies in first and second halves of the BB
match

In defining temporal neighborhoods and identifying relations, we use the
threshold values ¢ = 25 frames (i.e., 1 second) and w = 0.3; see section 3.2,
task T2.

Figure 13 enables a comparative study of relation occurrence patterns
under eight situations, i.e., two matches, the first and second halves of each
match, and different teams (D and O) in possession of the ball. Similarly to
Section 3, each cell within these matrices displays the occurrence frequency
of the relation before between the corresponding pattern pairs across all
attributes.
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half First Second
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Figure 13: A 2 x4 grid of matrix views. The matrices in the top row correspond to the
first match (BB) and those in the bottom row to the second match (BN). Each matrix
within the row represents the occurrences of the before relation for each pair of patterns
in a distinct subset of game episodes: the first or the second half of a match and the team
D or O in possession of the ball.

Upon initial observation, we identify remarkable similarities in the pat-
terns of relation occurrence in the subsets of episodes in both matches when
team D is in control of the ball, i.e., the matrices with labels that end with
-D, such as BB-first-D. These patterns are also similar to the pattern of rela-
tions when team O is in possession in match BN, evident in both BN-first-O
and BN-second-O. There is higher similarity between the matrices BB-first-
O, BN-first-D, and BN-second-D, which indicates that the team D behaved
in the match BN similarly to the behavior of their opponents in the first
half of the match BB. In the first half of the match BB, team D had lower
relation frequencies than team O, whereas in the second half the frequencies
were nearly equal.

The apparent differences between the absolute frequencies can be ex-
plained by the differences in the total duration of the ball possession between
the teams. Therefore, to reveal possible differences in team tactics, it makes
sense to transform the absolute frequencies to normalized values, as in Fig. 9.

The normalized deviations from the average, as depicted in Figure 14,
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enhance the visibility of certain patterns of occurrences, although some sim-
ilarities with the matrices in Figure 13 still persist. Specifically, a distinct
difference in color (blue and yellow) for the top-left vertical line between the
BN-second-D and the BN-first-D matrices can be observed. However, this
difference is merely expressed by color intensity in Figure 13.

BB-first-D BB-first-O BB-second-D BB-second-O
BN-first-D BN-first-0O BN-second-D BN-second-0O

Difference in Occurrence Ratio

-0.5% 0.0% 05%

Figure 14: A 2 x4 grid of matrix views. The matrices in the top row correspond to the first
match (BB), while those in the bottom row correspond to the second match (BN). Each
matrix within the row illustrates the difference between the average of normalized occur-
rences of the before relation for each pair of patterns and the corresponding normalized
value. Diverging colors are used to represent these differences. Each matrix corresponds to
a distinct subset of game episodes, either the first or second half of a match, and whether
the team D or O in possession of the ball.

To compare two halves of one match, analysts can subtract the normal-
ized occurrence values of the second half from those of the first half to iden-
tify which pair of patterns appears more frequently in each half. Figure 15
demonstrates the result of this operation for the ball possession of O in the
match BB.
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Figure 15: The matrix represents the difference in normalized occurrence values of the
neighbor patterns preceding the reference patterns between the first and second halves of
match BB when team O possesses the ball. The values are calculated by subtracting the
occurrence frequencies in second half from those in the first half. Red indicates a higher

frequency of occurrences in the first half while blue signifies more occurrences in the second
half.

The increase pattern of away distance followed by the decrease pat-
tern of home distance indicates that the away team is moving further away
from their own goal (1 in Figure 15), suggesting an offensive strategy, while

26



the home team is moving closer to their goal, suggesting a defensive strategy.
This pattern is more noticeable in the first half, concurring with the match
report’s statement that the away team initiated a strong offensive from the
start of the game [15].

Similarly, we observe the increase pattern of home distance followed
by the decrease pattern of away depth (2 in Figure 15), suggesting that
the home team advances before the away team becomes more compact. We
also observe that the decrease pattern of away distance preceding the
increase pattern of home distance is more prevalent in the second half
(3 in Figure 15), suggesting that the away team adopts a more defensive
posture while the home team defends more aggressively. This suggests that
the home team is preparing for an aggressive strategy, potentially anticipating
a turnover or looking to exploit any gaps in the away team’s formation, while
the away team is playing compact. The increased prevalence of this pattern
in the second half suggests an offensive shift of strategy by the home team,
aligning with the match report that mentioned that the home team exerting
considerable pressure on the away team’s defense [15].

Density charts: Changes in behaviour between first and second halves

In this section, we use grids of density plots for a more detailed investi-
gation of the temporal relations between patterns of different attributes. To
compare two halves of a football match, we juxtapose two grids representing
the corresponding data. Each grid comprises seven attributes (home depth,
away depth, home width, away width, home distance, away distance,
and average velocity) and three trend patterns (increase, constancy,
and decrease), resulting in a total of 21 grid cells.

First, we focus on the increase pattern in average velocity. We ob-
serve a generally higher number of various neighboring patterns in the first
half (Figure 16, top-left) compared to the second half (Figure 16, top-right),
which may be a consequence of the higher number of occurrences o the
increase pattern of average velocity during the first half.
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Figure 16: Comparison of two grid views from the first half (left) and second half (right) of
a football game, with the reference attribute average velocity and pattern increasing
(top) and with the reference attribute home distance and pattern increasing (bottom).
In each grid, three density plots depict the distributions of the relative times of the neigh-
boring patterns compared to the reference patterns, with blue representing the before
relation, grey representing the overlap relation, and red representing the after relation.
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This seems logical since players typically experience less fatigue in the
first half, enabling them to change speed more frequently. We also observe
less obvious differences, such as much higher frequencies of the decrease
of away depth and increase of away width occurring before the increase
of textcolorblueaverage velocity in the first half than compared to the
second half (1 in Figure 16). The increase of away distance after the
increase of average velocity is also observed more often in the first half (2
in Figure 16, top). These indicate that the first half included a larger number
of active attacks by the away team in which they moved with increasing
velocity towards the opponent’s goal. To prepare the attack, the team tended
to increase the width (i.e., across the pitch) while decreasing the distances
between the lines, i.e., the team’s depth. The second half had prominently
higher frequencies of the decrease of home depth, home width, and away
distance before the increase in the average velocity (3 in Figure 16, top).
This indicates that the away team was often retreating to their goal before
the increase of the average velocity and, at the same time, the home team
was getting more compact, which usually happens in preparation to an attack
of the opponents.

Next, we examine the relations of the increase pattern in home distance
(Figure 16, bottom). It is apparent that this pattern has numerous relations
with the decrease pattern of away distance as a neighboring pattern, par-
ticularly during transitions of ball possession, as observed earlier by Shirato
et al. [30]. However, we can verify that in the first half, there are more neigh-
boring patterns of the decrease of away distance preceding the reference
pattern than those succeeding it (1 in Figure 16, bottom). In contrast, during
the second half, we observe more of the same neighboring patterns following
the reference pattern than those preceding it (2 in Figure 16, bottom). These
observations suggest that the away team tends to move more quickly in the
first half, while the reverse occurs in the second half. This implies that the
home team has greater control over the match in the first half compared to
the second half.

5. Discussion

In this study, we developed a framework for analysis of multivariate time
series (MVTS) data. The framework includes abstraction of value sequences
into instances of basic variation patterns and exploration of temporal rela-
tions between these pattern instances across different variables.
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Our framework has several strengths. As its core, it offers flexibility and
generality to meet a wide range of data analysis needs in MVTS.

Its flexibility emerges from the proposed approach to pattern extraction.
The framework does not require to pre-define pattern duration, i.e., the
length of the time interval containing a pattern. This provides flexibility
for finding pattern instances of variable duration and adapting to data with
diverse properties, such as sampling rate, rate of changes, and amplitudes of
changes.

On the other hand, the generality of our framework manifests in its abil-
ity to handle different types of temporal patterns. While our pilot studies
focused on extracting basic trend patterns for their easy interpretability, the
framework is not limited to these. It is capable of extending to any other
types of temporal patterns depending on the character of studied changes
and the analysis goals. For example, there may be pattern types reflecting
states, such as high, medium, and low values. Moreover, patterns may be
composed of values of categorical attributes.

Our framework can be extended, offering additional or alternative meth-
ods for pattern definition and extraction. This accommodates the diverse
needs of analysts, who may opt to sketch a pattern, use an interface like
Time Searcher [11] to define the pattern, or even define composite patterns
built of basic patterns like a peak followed by a trough. The system, in re-
sponse, identifies patterns similar to the sketch or template provided, opening
a door to more customized and insightful analysis.

Another aspect of extensibility comes in the form of temporal relations
considered in the analysis. While we used a subset consisting of three rela-
tions, before, overlap, and other, other relations from the Allen’s algebra of
time intervals can also be considered in the analysis.

We have demonstrated the application of our framework in two distinct
use cases: exploring mobility patterns during the COVID-19 pandemic and
analyzing team behaviors in professional football matches. In both cases, our
framework was able to provide valuable insights into the temporal relations
between different patterns of attribute variation.

In the COVID-19 mobility data case, our framework was able to identify
and visualize temporal relations between different mobility patterns within
each country and to investigate the distributions of temporal relations across
countries. This analysis revealed interesting patterns, such as the increase
in workplace mobility preceding an increase in residential mobility, likely
due to people preparing for remote work during lockdowns. Moreover, the
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framework was able to highlight differences in mobility patterns between
countries, reflecting the varying policies against the pandemic.

In the football data case, our framework was able to identify and visualize
temporal relations between different team behaviors. For example, it was able
to detect a change in team behavior between the first and second halves of a
match, which aligned with the match report.

Despite its strengths, our framework also has some limitations. It requires
a number of thresholds and parameters to adjust (e.g., w, d, and perplexity),
which could potentially confuse analysts and require sensitivity analysis. In
terms of trend patterns, the results may not be expressive enough as it does
not consider a combination of univariate temporal patterns such as peaks and
troughs. For temporal relations, our framework does not provide a holistic
understanding of pairwise relations, as it only calculates the distribution.
The importance of relations is thus expressed only through frequency.

A major limitation is that the framework does not scale well to the num-
bers of attributes, pattern types, and types of relations. A possible approach
to alleviate this is to develop a guiding system that suggests potentially in-
teresting selections to explore. During the analysis, the analyst can interac-
tively construct a knowledge graph or several graphs for different conditions
or classes of situations, such as fast attack or gradual approach in football.
A knowledge graph contains pattern types of different abstraction levels and
relations between them, including temporal and hierarchical.

We also foresee several potential improvements and directions for future
work to enhance our framework. For trend patterns, one possible direction
is to construct combined univariate patterns from basic patterns, thus in-
creasing expressiveness of the results. For temporal relations, future work
could incorporate approaches capable of dealing with multiple pairwise re-
lations, such as a network-based approach where nodes represent temporal
patterns and edges represent relations between them. This could provide a
more holistic understanding of the relations and allow for the identification
of important nodes using graph centrality measures.

An important consideration is the accessibility and user-friendliness of
any tools developed to support this framework. Our primary objective was
the development and validation of the framework itself, while the prototype
tools we implemented served mainly as proof of concept. These tools were
not optimized for end-user adoption and would require further user-centered
design for broad accessibility. Conceptually, our framework is simple enough
to understand to understand and adopt without specialized technical skills.
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However, the practical implementation of the framework for end-users would
necessitate domain-specific enhancements to facilitate its use. Our proof-of-
concept implementation has demonstrated the types of analyses possible with
the framework, but further development is needed to make these operations
user-friendly in specific domains of application.

6. Conclusion

This paper presented a framework that unifies various methods for the
abstraction of multivariate time series (MVTS) data. The unification is
achieved by integrating these different methods into a cohesive workflow,
which allows to understand dynamic phenomena through the lens of temporal
relations, the identification of basic behavior patterns and the examination
of temporal relations among these patterns. Our framework is designed to
identify basic behavior patterns and examine the temporal relations among
these patterns, taking into account temporal lags and varying duration of the
patterns. This feature enhances the understanding of complex interactions
among multiple attributes, making the framework valuable for analysts.

The effectiveness and versatility of our framework were demonstrated
through its application to mobility data during the COVID-19 pandemic and
football (soccer) data. Despite its strengths, the framework has some limi-
tations, such as the need for further enrichment to handle intricate variable
interactions and the integration of more complex patterns. These limitations
provide avenues for future work.

In conclusion, our framework offers an approach to abstracting MVTS,
with a focus on understanding temporal relations. By integrating various
methods into a single workflow, it enables analysts to effectively explore and
comprehend complex temporal relations in MVTS data.
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