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ABSTRACT

This study explores the benefits of anti-transfer learning with qua-
ternion neural networks for robust, effective, and efficient speech
emotion recognition. Anti-transfer learning selectively promotes
task invariance through the introduction of a deep feature loss at
training time. It has been shown to improve the performance of
speech emotion recognition models by encouraging the indepen-
dence of emotion predictions from specific uttered words and char-
acteristics of the speaker’s voice. However, the improved accuracy
comes at a cost of increased computation time and memory require-
ments. In order to reduce the resource demand of anti-transfer, we
propose to exploit quaternion-valued processing. We design, imple-
ment, and evaluate the use of quaternion anti-transfer learning on
the basis of the VGG16 architecture and quaternion embeddings on
multiple datasets for different speech emotion recognition task se-
tups. The effectiveness of this approach depends on the layer where
it is applied, with early layers offering a good compromise between
performance gain and resource requirements. Our results show that
anti-transfer in the quaternion domain can enhance generalisation
while reducing the model’s demand for computation and memory.

1. INTRODUCTION

Research on automatic speech recognition reached near-human per-
formance in recent years, making it possible to confidently identify
which words are uttered even in audio signals with non-optimal
recording quality and for an extensive amount of languages [1].
Nevertheless, without the understanding of the speaker’s non-verbal
behavior this information is incomplete, and recognition of the emo-
tional intention helps provide a fuller account of the spoken com-
munication [2]. Emotion recognition can be ambiguous even for
humans, since it strongly depends, among other factors, on the con-
text, on the speaking style of a person, and on their cultural back-
ground [3]. Despite recent success with neural networks, speech
emotion recognition (SER) is still challenging due to the variability
of emotional expression, especially when generalization to unseen
speakers and contexts is required [4, 5].

Several different solutions have been proposed to make SER
models robust to unseen speakers and context. One approach is to
design signal representations for robustness. Among others, [6] pro-
pose a hard-coded audio feature, the ratio of a spectral flatness mea-
sure to a spectral center, to help models generalize to new speakers.
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[7] propose a Fourier-based voice quality feature, which, alongside
its derivatives, helps generalization to unseen speakers. [8] propose
feature extraction based on wavelet packet coefficient. Another ap-
proach is to use machine learning strategies to improve generalisa-
tion. [9] uses an ensemble of acoustic and linguistic models merged
through late fusion. [10] propose a cascade schema that progresses
from macro-categories of emotions gradually towards the discrimi-
nation of more specific emotions. [ |] proposes to fine-tune several
SER classifiers for specific speakers and to select the classifier to
use with a speaker recognition system. [12] applies a unsupervised
multi-source domain adaptation strategy to learn emotion features
independent from the speaker identity. [13] achieves a similar dis-
entangled emotion representation through adversarial training based
on a gradient reversal technique to remove speaker information.

This work is based on anti-transfer learning (AT), proposed in
[14], which is a supervised machine learning approach to selectively
promote task invariance in neural networks through a deep feature
loss, the anti-transfer loss (ATL). Minimizing ATL leads to the di-
vergence of the features developed in a specific layer of a CNN from
the features of a network with identical structure but pre-trained on
an orthogonal task, i.e., a task that should not influence the target
task. [14] demonstrates that AT can improve the performance of
models in different domains and tasks. In particular, it can improve
the invariance of SER models to the uttered words in the training
data and to characteristics of the speaker’s voice that can bias the
result, especially when using datasets with few actors and prede-
fined sentences. However, the improved accuracy comes at a cost
of increased computation time for training, on average 2.8 times
longer per epoch than without AT, and with an additional memory
demand of up to 100% [14].

In order to reduce the resource demand of AT, we propose to
use quaternion information processing, which is increasingly popu-
lar strategy to significantly reduce model parameters while enhanc-
ing or maintaining the model’s performance [15, 16]. Quaternion
information processing allows to exploit inter-channel correlations
in neural networks by using the Hamilton product instead of the
dot product, which reduces trainable parameters by up to 75% com-
pared to the real-valued counterparts [16, 17], as further explained
in the next section. In particular, we apply anti-transfer learning
to quaternion-valued CNNs (QCNNs) and quaternion embeddings
generated with RH-Emo, as described in [18]. This technique ex-
tracts quaternion embeddings enriched with emotion-related infor-
mation, that enable performing SER tasks with quaternion neural
network. Therefore, we develop AT for RH-Emo QCNNs to main-
tain the benefits of AT while reducing the model’s demand for mem-
ory and computation time.
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Figure 1: Block diagram of a QCNN network with RH-Emo feature extractor and anti-transfer learning applied to SER classification.

2. METHOD

As introduced in [14], the anti-transfer loss Lat is defined as the
squared cosine similarity of the vectorized Gram matrices Gy and
Gp, multiplied by a scalar weighting coefficient 5. G and G,
computed by the Gram product of the feature maps of a currently
trained layer (G;) with a corresponding layer (G)), that has been
pre-trained on an orthogonal task:

G, - Gy )2

_ 1
GG M

EATZﬂ(

The Lat term is added to the loss function during training. The
total objective function Lro7 that we minimize per datapoint is:

Lror = — Zti log(pi) + Z Lars )

i=1 SESAT

where n is the number of classes, t; is 1 if ¢ is the true class and 0
otherwise, p; is the predicted probability of class i, Sar is the set
of convolution layers where anti-transfer is computed, and L a7 is
the anti-transfer loss computed for convolution layer s. This loss
function is applied in the training of the target model, while for the
pre-trained feature extractors, L 475 is not used.

This approach has been applied only to real-valued CNNS, yet,
and the objective of this research is to apply the anti-transfer learn-
ing principle to quaternion-valued CNNs.

We left the original anti-transfer loss definition unchanged, as
it is already compatible with feature maps that are generated by
quaternion-valued convolution layers for the following reasons. In
the first instance, quaternion convolution layers have the same out-
put shape as corresponding real-valued convolution layers. How-
ever, in quaternion convolution layers, kernels are aggregated in
groups of 4, where each group uses 1/4 of the sub-matrices (chan-
nels) to build its kernels. E.g., a real-valued convolution layer that
has 4 input and 4 output channels contains 4 kernels shaped as

4 channels X timedim X featuresdim, i.e., it contains a to-
tal of 16 sub-matrices shaped as time dim X featuresdim. An
equivalent quaternion-valued convolution layer contains only 4 dif-
ferent sub-matrices in total, all kernels are made with the same sub-
matrices, but in each kernel, they have a different ordering along
the channel dimension [16]. Despite their quadral organization, the
output matrices of a quaternion convolution layer can be treated as
real-valued matrices, because each channel contains unique infor-
mation.

We use the Gram matrix in order to compare all possible chan-
nel combinations in the ATL, limiting the impact of possible chan-
nel permutations. For this, we calculate the Gram matrix on the
quaternion components as real numbers. By doing this, we treat cor-
relations within the quaternion axes in the same way as correlations
between components of different quaternions which is justified by
the unique information contained on each axis.

Figure 1 shows a block diagram of a QCNN with anti-transfer
learning. The input magnitude spectrogram is first propagated
through a pre-trained RH-Emo network, that generates quaternion
embeddings to feed into both the pre-trained feature extractor and
the network being currently trained. The anti-transfer loss is then
computed exactly as for real-valued CNNs, as described above.

3. EVALUATION

We evaluate the properties of anti-transfer learning applied to qua-
ternion-valued CNNs for SER tasks. Our aim is to compare AT
performed in the real and quaternion domains to each other and to
the same real and quaternion networks without any AT applied.

3.1. Experimental Setup

In this study, we used 3 popular SER datasets: the Interactive Emo-
tional Dyadic Motion Capture Database IEMOCAP) [19], the Ry-
erson Audio Visual Database of Emotional Speech and Song [20]
(RAVDESS) and the Toronto Emotional Speech Set [21] (TESS).
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We chose IEMOCAP because it is among the most frequently used
SER datasets and also contains improvised material. On the other
hand, the others include systematic variation (same words repeated
with different emotions and from different speakers), which makes
them suitable for studying the specific benefits of AT.

We apply 4 preprocessing stages, as in [18]: we cut signals
into non-overlapping frames of 4-seconds length, we compute the
STFT using 16ms sliding windows with 50% overlap, we discard
the phase information and we zero-pad all matrices to a shape of 512
x 128. In addition to this, we normalize the magnitudes to range O to
1 for the quaternion-valued networks (as required by RH-Emo) and
to 0 mean and unity standard deviation for real-valued networks,
which helps convergence.

For the quaternion networks, we keep the same architecture as
for the real-valued ones and use equivalent quaternion-valued con-
volution and fully connected layers instead of the real-valued op-
erations. There is an exception in the final layer of the networks,
which are real-valued also in the QCNNSs. For the real-valued net-
works, we use the magnitudes-only spectra as input, while for the
quaternion networks we use a trainable RH-Emo network to gener-
ate embeddings. RH-Emo is pre-trained on a dual target of predict-
ing IEMOCAP emotion labels and auto-encoding.

‘We use the standard Pytorch implementation of the VGG16 net-
work [22] from the torchvision library'. In the quternion networks,
we remove the adaptive average pooling layer between the convo-
lutional feature extractor and the dense classifier section. This layer
serves to reduce the feature extractor output shape to a fixed input
shape of the classifier. When the RH-emo embeddings are used as
input, however, the feature map is smaller than the classifier input.
Removing the adaptive pooling layer and reducing the classifier in-
put thus prevents the generation of redundant output in the adaptive
layer and reduces the number of network parameters.

For all experiments, we used the ADAM optimizer, a learning
rate of 0.00001, and a batch size of 20 samples. We apply early
stopping with a patience of 20 epochs on the validation loss and we
split the training, validation, and test sub-sets with approximately
70%, 20%, and 10% of the data, respectively.

We configured the experimental setup in order to show the dif-
ference between using AT on real and on quaternion-valued CNNs
with embedding input, as well as the difference between using AT
or not for the same network architectures. To this extent, we have
paid attention to performing all experiments with the exact same
configuration in order to isolate the features we want to highlight.
This makes our results non-comparable with published state-of-the-
art results for the same datasets, as those are obtained with more
complex setups that are different for each dataset [23, 24, 25] and
recreating them would make it more difficult to isolate and under-
stand the properties of our approach.

We perform AT with two orthogonal tasks: Word Recognition
and Speaker Recognition, as in the SER experiments of [14]. We
expect that invariance to the spoken words can improve the model’s
performance in cases where text and speech emotion do not align
(such as sarcasm or irony), while invariance to the speaker would
help disentangling predictions from specific speech styles and thus
improve generalization to unseen speakers. For the first orthogonal
task, we pre-trained the network on the Librispeech [26] dataset,
where we extracted single-word segments of 1000 different classes
(i.e. words).

'https://github.com/pytorch/vision/blob/main/
torchvision/models/vgg.py
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Table 1: Results for different combinations of dataset, network type,
and anti-transfer type. AT L. shows the layer where AT is applied.
Rnd-s and Act-s are accuracy with random and actor split
Arch. |Method | AT Type| Params |AT L.|Rnd-s|Act-s
Real / 1.6 x 108] / [62.8758.29
Real-AT | Single S [1.6 x 108 | 11,10 | 72.86 |59.27
Real-AT | Single W|1.6 x 108| 1,11 |70.09 |59.35
Real-AT | Dual SW|1.6 x 10%| 11,9 | 73.04 |60.41
IEMOCAP | Real-AT [Dual WS|1.6 x 10°| 8,8 |71.07 |59.67
Quat / 1x107 | / | 7111578
Quat-AT| Single S | 1 x 107 | 11,12 | 72.23 |58.37
Quat-AT|Single W| 1 x 107 | 2,13 |73.57 |57.97
Quat-AT |Dual SW| 1 x 107 | 5,12 | 71.25 |58.46
Quat-AT |Dual WS| 1 x 107 | 4,9 |72.14|58.62
Real / 1.6 x 108 / [41.06] 45.0
Real-AT | Single S [1.6 x 10%| 2,9 |49.56 |46.67
Real-AT | Single W|[1.6 x 10%| 9,1 |42.89|41.67
Real-AT |Dual SW|1.6 x 10%| 2,2 |45.56 |40.62
RAVDESS | Real-AT | Dual WS |1.6 x 10%| 1,9 |46.22 |43.75
Quat / 1x107 | / |49.85(36.67
Quat-AT| Single S | 1 x 107 | 2,2 [57.11 |51.67
Quat-AT|Single W| 1 x 107 | 12,13 |55.11 |48.33
Quat-AT |Dual SW| 1 x 107 | 3,2 |57.78 | 55.0
Quat-AT |Dual WS| 1 x 107 | 11,2 | 60.44 [46.67
Real / 1.6 x 108] 7 [97.62[14.29
Real-AT | Single S 1.6 x 108| 3,4 |99.64|13.29
Real-AT |Single W |1.6 x 108| 3,4 |99.64(26.43
Real-AT | Dual SW|1.6 x 10%| 3,2 |100.0 | 21.0
TESs |Real-AT |Dual WS|1.6 x 10°| 3,6 |100.0 |25.57
Quat / 1x107 | / |97.62(13.86
Quat-AT| Single S | 1 x 107 | 1,11 | 97.86 |19.43
Quat-AT|Single W| 1 x 107 | 11,4 | 98.57 |18.29
Quat-AT |Dual SW| 1 x 107 | 2,11 | 98.93| 19.0
Quat-AT |Dual WS| 1 x 107 | 9,3 |97.86|18.29

3.2. Experimental Results

Table 1 shows our performance results for [IEMOCAP, RAVDESS
and TESS. We compare real and quaternion-valued networks with-
out AT and with AT applied in different recognition tasks: Single
S:Single AT, speaker recognition, Single W: Single AT, word recog-
nition, Dual SW: Dual AT first speaker, then word recognition, Dual
WS Dual AT first word, then speaker recognition.

In Dual AT we train a model with anti-transfer for one orthogo-
nal task and using the result of that training to initialize the weights
of a new model, which is then trained with anti-transfer on the sec-
ond orthogonal task [14]. We use the same AT layer on both or-
thogonal tasks when we perform dual AT. The table exposes the test
accuracy obtained by splitting the training, validation and test set
randomly (Rnd-s column) and actor-wise ((Act-s column). While
in the first split setting the samples recorded from all actors appear
in all sets, in the latter setting the models are tested on speakers un-
seen during the training stage, and therefore better show the model’s
generalization capabilities. In each case, we select the AT layer that
gives the best validation accuracy (even though we report the test
accuracy). Column “AT L.” lists the layers that provide the reported
Rnd-s and Act-s results, respectively.
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3.2.1. Effect of anti-transfer

In general, the experimental results we obtained demonstrate that
AT can be successfully applied to quaternion-valued neural net-
works, even though the average accuracy performance improvement
is higher for real-valued ones. This further supports the foundation
of AT, showing that it is not restricted to the real-valued networks
presented in [14]. AT provides a consistent improvement both for
real and quaternion-valued networks. However, among the cases
considered in this study, there is not a single best approach overall.
For all datasets, the best test accuracy result is provided by a net-
work where AT is applied. AT provides an average improvement
of 3.66 percentage points (pp) for real-valued networks and of 2.6
pp for quaternion-valued networks. Single AT achieves an average
improvement of 3.12 pp, whereas the improvement for dual AT is of
3.15 pp. In the random split configuration the average improvement
is 3.82 pp, instead on the actor-wise split setup it is limited to 2.45
pp. AT has a different impact on each dataset, providing an average
performance boost of 3.01 pp, 2.62 pp and 3.77 pp for IEMOCAP,
RAVDESS and TESS, respectively. Furthermore, the 2 different or-
thogonal tasks used to pre-train the AT classifiers also have different
impact on the models’ performance: speaker recognition boosts the
average test accuracy by 2.93 pp and word recognition by 3.33 pp.
In this setup, it could be expected that the RH-Emo pre-training on
IEMOCAP gives an advantage in the RAVDESS and TESS case,
because additional data is used. At least for TESS, this does not
appear in the data.

We have performed further experiments where we pretrain on
IEMOCAP and apply transfer learning by weight initialization to
our RAVDESS and TESS baselines and found that the impact of
RH-Emo pretraining does not change the overall picture: quater-
nion AT provides similar accuracy to real-valued networks and sig-
nificantly improves efficiency.

3.2.2. Per-layer AT performance

Figure 2 shows the average test accuracy using AT at different layers
in our networks with different setups: random vs actor split, speaker
vs word recognition AT pre-training, and real vs quaternion-valued
networks. The 5 colored lines indicate the combination of orthogo-
nal task and train/test split types adopted. Each point in these lines
shows the average test accuracy obtained for a specific AT layer
among all corpora and the green dotted line draws the mean value
among all visible lines.

The Figure shows that the impact of AT is different for different
setups and convolution layers. AT does not provide a performance
improvement in all cases, confirming the importance of AT layer
selection (see [14]). Nevertheless, real and quaternion networks ex-
hibit a similar trend with an drop in performance for AT in the mid-
dle layers. On real-valued networks the random split configuration
shows the highest and more consistent improvement, whereas for
quaternion networks the actor-split setup, which is more relevant in
practive, provides the greatest improvement. These improvements
do not always indicate that a quaternion network gives the best over-
all performance, because of the different baselines and the fact that
the model selection is based on the validation set while Figure 2
shows test set results. Taking into account that AT in the earlier lay-
ers need less resources, the results show that the early layers (layer
2 in particular) offer a good trade-off between performance gain and
resource requirement for QCNNSs.

October 22-25, 2023, New Paltz, NY
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Figure 2: Test accuracy for different AT layers in different setups.

3.2.3. Resource demand

We see a significant reduction in both memory requirements and
training times when using quaternion-valued networks. Quaternion-
valued VGG16 networks reduce training times on average by 80.5%
and memory demand by 53.7%, compared to real-valued networks.

The deeper is the AT layer, the higher are the average training
time and memory demand, both for real and quaternion-valued net-
works. This is exacerbated by VGG16’s structure with an increasing
number of channels, resulting in larger Gram matrices.

We observe that the quaternion setup without AT has a worse
generalisation to new speakers (Act-s) than the real-valued vari-
ant. However, applying AT always more than compensates for that.
Testing for the optimal layer can be an expensive strategy at train-
ing time. However, QCNN and RH-Emo with AT applied to early
layers appears to be a good heuristic, as it provides a good trade-off
between reducing computational cost at both train and run time with
performance improvement.

4. CONCLUSIONS

In this paper, we propose a novel approach to exploit the bene-
fits of QCNNs with RH-Emo embeddings to reduce the impact of
anti-transfer learning on resource demand. This method retains
most anti-transfer benefits, while requiring a fraction of memory
and computation time. The experimental results demonstrate that
AT can be successfully applied to RH-Emo QCNNSs, obtaining a
significant improvement in the test accuracy performance for SER
tasks. The combination of AT and QCNNs fed with RH-Emo em-
beddings saves a significant amount of resources: up to 80.5% of
the training time and up to 53.7% of memory, making this approach
a relevant option to exploit the disentanglement properties of AT
in scenarios with restricted resources. Further work will focus on
extending the proposed method to other tasks and other network
architectures.
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