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Leveraging information between multiple
population groups and traits improves
fine-mapping resolution

Feng Zhou 1, Opeyemi Soremekun2, Tinashe Chikowore 3,4,5,6,
Segun Fatumo 2,7, Inês Barroso 8, Andrew P. Morris 9 &
Jennifer L. Asimit 1

Statistical fine-mapping helps to pinpoint likely causal variants underlying
genetic association signals. Its resolution can be improved by (i) leveraging
information between traits; and (ii) exploiting differences in linkage dis-
equilibrium structure between diverse population groups. Using association
summary statistics, MGflashfm jointly fine-maps signals from multiple traits
and population groups; MGfm uses an analogous framework to analyse each
trait separately. We also provide a practical approach to fine-mapping with
out-of-sample reference panels. In simulation studies we show thatMGflashfm
andMGfm are well-calibrated and that the mean proportion of causal variants
with PP >0.80 is above 0.75 (MGflashfm) and 0.70 (MGfm). In our analysis of
four lipids traits across five population groups, MGflashfm gives amedian 99%
credible set reduction of 10.5% overMGfm.MGflashfm andMGfmonly require
summary level data, making them very useful fine-mapping tools in consortia
efforts where individual-level data cannot be shared.

Many genetic associations have been identified through genome-wide
association studies (GWAS)1, but little is known about the underlying
mechanisms that drive such associations. Translation of these findings
into new therapeutic targets or revealing new biological insights for
diseases is aided by statistical fine-mapping. Fine-mapping identifies
potential causal variants that underlie the genetic associationswith the
aim of reducing the number of genetic variants for follow-up in
downstream functional validation experiments2,3.

In genetic studies, we often group people based on genetic simi-
larity, to avoid problems of structure in the data that could lead to
false-positives. Exploiting differences in linkage disequilibrium (LD)
across different genetically similar groups ascertained from diverse
populations could lead to improvements infine-mapping resolution4–6.

We use the term “group” to refer to a genetically similar group of
individuals, which may be from one or more cohorts/studies that
contribute to a GWAS, either based on a single-study or meta-analysis.
There are two main approaches to multi-group fine-mapping: (i)
approaches that assume a single causal variant and account for het-
erogeneity in allelic effects betweenGWAS7,8; (ii) approaches that allow
for multiple causal variants at a locus and use LD from each group to
model joint effects of variants, either assuming homogeneous effects
between GWAS9 or allowing heterogeneous effects10.

Approaches that assume a single causal variant have the advan-
tage of not needing LD information to model joint variant effects and
they include variants that are present in at least one of the groups. This
can lead to an imbalance in sample sizes for each variant, such that
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variants present in larger groups tend to be favoured, even though
they may not be present in all groups. In contrast, current approaches
that allow for multiple causal variants only consider variants that are
present in all of the groups, but this could exclude an increasing
number of variants when population diversity between groups is high
and as the number of groups increases. For example, when GWAS are
ascertained from diverse populations, some variants may be common
or low-frequency in some groups, and monomorphic in others. In
current multiple causal variant approaches, such variants would be
removed from all groups, but this may potentially impact the multi-
SNP model. That is, in an attempt to account for trait variability
explained by the missing causal variant(s), several non-causal variants
may be added into the multi-SNP model, giving spurious results.

Among the many reported genetic associations, examples of
pleiotropy, where a gene affects several phenotypes, are widespread,
possibly due to a shared variant affecting a pathway involved in mul-
tiple related traits and diseases11. When multiple traits have signals in
the same region, colocalisation is often used to assess the evidence
that two (ormore) traits share the same causal variant (and sometimes
identifies the variant). However, fine-mapping aims to identify causal
variants, which may or may not be shared across traits, but it takes
advantage of the correlation among traits to improve localisation.
Colocalisation methods often make simplifying assumptions of at
most one causal variant and uncorrelated traits. For example, mcoloc12

does not consider correlations between traits because it requires that
all traits are measured in distinct datasets of unrelated individuals. In
addition, colocalisation methods are designed for only a single
population group.

Multi-trait fine-mapping methods that leverage information
between correlated traits could improve fine-mapping resolution, as
biologically related traits often share causal variants13. Few multi-trait
fine-mapping methods exist due to the computational challenge of
many possible combinations of models (allowing multiple causal var-
iants) between traits. One approach is to reduce the search space of
joint causal variantmodels between traits by assuming that traits share
all causal variants, allowing for different effect sizes, as in
fastPAINTOR14. Alternatively, flashfm13 jointly fine-maps multiple traits
without the restriction of shared causal variants between traits; it
shares information between traits by upweighting prior probabilities
for joint trait models that have a shared causal variant. Flashfm gains
computational efficiency in two ways: (i) partitioning the joint Bayes’
factor into marginal components that depend only on the individual
trait datasets, avoiding the need to storemany jointmodel results; and
(ii) reducing the search space of joint models by learning from single-
trait fine-mapping results.

For fine-mapping methods that allow multiple causal variants, LD
information is needed for each group. It is ideal to have access to the
genotype data of theGWAS for each group as a sourceof LD, but this is
often not possible. A practical alternative is to use a reference panel
(RP) for each group, such that the RP closely matches the group. Each
group-specific RP may either be a subset of the GWAS of the group,
suchas a cohort that contributed to themeta-analysis, or external, out-
of-sample data that are from genetically similar groups. The 1000
Genomes data is an easily accessible source of genotype data, pro-
viding RPs that are classified as African, European, East Asian, South
Asian, and Admixed American, based on their genetic similarities, with
average sample size of 50015, but its use with large GWAS may have
issues16.

In this work, we provide a practical strategy for using the 1000
Genomes data with GWAS summary statistics, advocating for a parsi-
monious model (a model with few causal variants) when using any of
the available summary-level fine-mapping methods. Our dynamic
algorithm adjusts the maximum number of causal variants, as learned
by the data. Exploiting information frommultiple traits and groups,we

introduce a multi-group multi-trait fine-mapping approach,
MGflashfm, and an analogous framework for multi-group fine-map-
ping of a single-trait (MGfm). Both approaches allow multiple causal
variants and include variants that appear in at least one group, rather
than using the intersection of variants across groups. In simulation
studies, we compare MGflashfm and MGfm with current multi-group
fine-mapping approaches that allow multiple causal variants,
PAINTOR9 and msCAVIAR10, and also with a multi-trait fine-mapping
method, mvSUSIE17. We fine-map genetic associations among four
lipids traits in five different genetically similar groups from the Global
Lipids Genetics Consortium (GLGC)18 using MGflashfm and MGfm and
compare their 99% credible sets in terms of size and variant posterior
probabilities (PP); functional annotations of variants with PP >0.90 are
also provided.

Results
Multi-group fine-mapping conceptual framework
To enable summary statistics-based fine-mapping across multiple
traits and multiple groups we developed MGflashfm, extending the
framework of flashfm13 multi-trait fine-mapping. For each trait, flashfm
outputs the top SNPmodels and the model posterior probability (PP),
adjusted for information from the other traits. This means flashfm
results can be used comparably to those from single-trait fine-map-
ping, but with an expectation of greater precision.

We extend flashfm to multiple groups by taking advantage of the
independence between the groups, which are assumed to have no
sample overlap. The GWAS for each group may be based on a single
studyor ameta-analysis ofmultiple cohorts that aregenetically similar.
We developed MGflashfm to allow for up to six groups, therefore we
recommend that studies having a similar LD pattern aremeta-analysed
prior to use. MGflashfm allows for variants that are not present in all
groups, serving two purposes: (i) it retains causal variants thatmay not
be observed in all groups because of low-frequency or being mono-
morphic, and so are group-specific causal variants; and (ii) it retains
variants that are causal in multiple groups, but do not pass quality
control in all groups.

To account for the group-specific LD patterns that are needed to
fit multi-SNP models, we first use flashfm within each group. This
estimation of joint SNP effects requires the GWAS summary statistics
from each trait within each group and the group-specific LD (Fig. 1a;
Methods). Therefore, the group-specific LD patterns are accounted
for during the flashfm stage, and this results in trait-adjusted model
PP within each group. We then obtain multi-trait multi-group model
posterior probabilities by making use of the independence between
the groups (Fig. 1a; Methods; Supplementary Methods). This differs
from our flashfm multi-trait PP structure, where we account for
correlations between traits in the multi-trait BF. The joint prior
probability in MGflashfm also has a different form to that of flashfm.
In flashfm, the joint prior is essentially the product of the marginal
priors with an upweighting when there is overlap of variants between
the models. The joint prior probability in MGflashfm is set under the
assumption that the groups share at least one causal variant, so it is
non-zero only when there is overlap between at least one pair of
groups and does not include any up-weighting (Methods; Supple-
mentary Methods).

In addition to the above differences in frameworks of flashfm and
MGflashfm, they also differ in their final output. Flashfm leverages
information between traits to output trait-specificmodel (and variant)
PPs adjusted by the other traits. In contrast, MGflashfm uses the
flashfm trait-specific PPs from each group and, for each trait, finds the
multi-groupmodel PP (mgPP) that a set of variants C consists of causal
variants amongst the groups; the multi-group marginal PP (mgMPP)
gives the PP that a variant is causal for a subset of the groups (Fig. 1a,
Methods; Supplementary Methods).
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As in flashfm, rather than considering all model combinations, we
reduce the model space by setting a cumulative posterior probability
threshold (e.g. cpp = 0.99). For each trait within each group,weuse the
multi-trait (MGflashfm) or single-trait (MGfm) fine-mapping results to
order themodels by PP and retain those for which the sumof their PPs
first passes above0.99. Thesemodels are then assessed inmulti-group
fine-mapping.

Both MGflashfm and MGfm output summaries that give, for each
trait, the set of variants in the credible set (99%default), and for eachof
these variants (i) themulti-groupmarginal posterior probability of the
variant being causal (mgMPP); (ii) the proportion of groups that con-
tain the variant; (iii) the names of the groups that contain the variant;
and (iv) the pooled MAF among the groups that contain the variant.
These details help to identify variants that may be group-specific or
present in a subset of the groups. If there are no overlapping variants
between the models of any pair of groups, then the joint prior is zero
for all models and the message “Insufficient evidence of shared causal
variants between groups.” is displayed as output for that trait.

MGflashfm, MGfm - fast, well-calibrated multi-group
approaches
Toassess the calibration ofmulti-group approaches, we use simulations
to approximate the coverage at confidence level 99%—the probability
that a 99% credible set (CS99) from eachmethod will capture all causal
variants (Methods). We simulated three genetically similar groups from
three different populations, based on groups previously defined in
1000 Genomes15. As per recommendations in the National Academies
Press19, we label these groups as “African-like”, “East Asian-like” and
“European-like”, and for brevity, we use “AFR”, “EAS” and “EUR”.

First, in 2-trait, 2-group simulations, we considered two sets of
simulations: (i) EUR-AFR; (ii) EUR-EAS. We compared MGflashfm
(multi-trait, multi-group) with three single-trait multi-group approa-
ches: MGfm, PAINTOR9 and msCAVIAR10 for a region with ~330 var-
iants.We also compare the single-groupmulti-trait (flashfm) results for
each group, denoted (i) flashfm-EUR and flashfm-AFR; (ii) flashfm-EUR
and flashfm-EAS, according to the group label used for simulations
(Methods).

Fig. 1 | Schematic diagrams of multi-group fine-mapping. Diagrams are shown
for two groups and two traits, and themethods are available for atmost six groups
and six traits. a In MGflashfm (multi-group multi-trait fine-mapping), multi-SNP
models for each trait are first constructed within each group, using appropriate LD
for the group. Within each group, multi-trait fine-mapping then leverages infor-
mation between the traits while making use of group-specific LD. Trait-adjusted
model PPs within each group are then jointly assessed across groups; b In MGfm

(multi-group single-trait fine-mapping), multi-SNP models for each trait are first
constructed within each group, using the group-specific LD. Then, in parallel, trait
models within each group are jointly assessed across groups, independently of the
other trait. For both MGfm and MGflashfm, the final output for each trait is the
credible set variants, as well as the multi-group marginal PP (mgMPP) of each
variant being causal, as well as other variant-specific details.
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We also considered two-group (EUR-AFR and EUR-EAS) and three-
group (EUR-EAS-AFR) simulations in a larger, more realistic-sized
region of 1610 variants. For two traits over two groups, MGflashfm,
MGfm and PAINTOR are relatively quick to produce results, regardless
of the number of variants in a region (Supplementary Table 1). The run
times for MGflashfm include sequentially running FLASHFMwithJAM
(wrapper for running JAM single-trait fine-mapping (with parallelisa-
tion for traits) with flashfm) on each group, followed by the multi-
group stage. Run times for MGfm include running JAM in parallel
across groups, followed by the multi-group stage; as each trait is run
independently, we use themaximum computational time amongst the
traits. In the 1610 variant regions, the median computational times are
684 s, 395 s, and 1753 s for MGflashfm, MGfm, and PAINTOR, respec-
tively; after 10 h, msCAVIAR was unable to run to completion. So, we
do not include msCAVIAR in our comparisons for this larger, more
realistic-sized region. As for MGfm, PAINTOR and msCAVIAR are not
multi-trait methods, so the computational times are taken as the
maximum computational time for Traits 1 and 2.

In our simulations, the causal variants for each trait are the same
across groups, but causal variants are not restricted to being the same
across traits; effect size for each causal variant is the same across
groups. For each configuration of causal variants, we denote causal
variants by upper case letters to show which variants are shared
between traits andmultiple letters indicatemultiple causal variants for
a trait. For example, Trait 1 has causal configuration AD, which indi-
cates two causal variants A and D; this configuration for Trait 1 is the
same for all groups. When there are at least two causal variants, we
select one variant A such that it is common (MAF >0.05) in AFR (for
EUR-AFR and EUR-EAS-AFR) and EAS (for EUR-EAS) and low-frequency
in EUR (for EUR-AFR and EUR-EAS-AFR) and EAS (for EUR-EAS-AFR)
(Methods).

In both 2-group and 3-group settings, and for equal and unequal
sample sizes,MGflashfm, andMGfmare consistentlywell-calibrated, as
are independent flashfm analyses within each group (Fig. 2, Supple-
mentary Fig. 1). PAINTOR has a lower than expected coverage in all but
two settings (EUR-AFR equal sample sizes and EUR-AFR single causal
variant), with aminimum coverage of 0.577 (3 groups, unequal sample
sizes). Others have also highlighted low coverage of credible sets from
PAINTOR7. When there are unequal sample sizes, msCAVIAR only
meets the expected coverage when there is a single causal variant; it is
only well-calibrated for multiple causal variants when there are equal
sample sizes among groups.

Next, we examined the false discovery rate (FDR), defined as the
mean proportion of non-causal variants having PP above a certain
threshold (e.g. 0.5, 0.9), and the power, defined as the mean propor-
tion of causal variants having PP above a certain threshold (e.g. 0.5,
0.9). For 2-trait simulations, where traits each have two causal variants,
of which one is shared (T1: AD, T2: AC), we compared power and FDR
within two (EUR-AFR, EUR-EAS) and three (EUR-EAS-AFR) ancestries
with unequal sample sizes (90,000–10,000;
90,000–40,000–10,000). There is a general pattern of highest power
for MGflashfm and MGfm, and similarly high powers for the group-
specific flashfm and PAINTOR (Supplementary Fig. 2). The power and
FDR formsCAVIAR are consistently0, so not included in the plots. This
is due to msCAVIAR’s uniformly low PP for causal variants, with the
mean PP for causal variants near 0.3. The FDR of MGflashfm, MGfm,
and thegroup-specificflashfmare similarly lowat PP threshold0.9, but
PAINTOR has very high FDR, of similar magnitude to its power (Sup-
plementary Fig. 3).

Since PAINTOR and msCAVIAR were not well-calibrated or com-
putationally feasible, we focus on flashfm, MGflashfm, and MGfm in
the following comparisons of prioritisation and resolution. To assess
prioritisation of the causal variants, we examine the distribution of the
minimumMPP (marginal posterior probability that a variant is causal)
of the causal variants. This indicates the frequency that both causal

variants have MPP above a threshold. For example, MGflashfm is the
only method that assigns MPP >0.75 to both causal variants, in all
settings (Fig. 3a, Supplementary Fig. 4a). When there are no shared
causal variants (trait 1: AD, trait 2: C), MGflashfm and MGfm have very
similar results—this is expected since flashfm gives similar results to
single-trait fine-mapping in the absence of shared causal variants.
Having a shared causal variant between traits (trait 1: AD, trait 2: AC),
there is a clear improvement in prioritisation of both causal variants by
MGflashfm over MGfm.

We measure resolution by considering the number of variants in
the CS99 (i.e. size of sets) constructed from MGflashfm and MGfm
(Methods).When Traits 1 and 2 each have two causal variants, of which
one is shared, the CS99 constructed from MGflashfm are significantly
smaller (significance level 0.05) than those from MGfm; one-sided
paired t-tests for each trait in each simulation setting yield p-values
between 7.8 × 10−9 and 2.6 × 10−3. For simulations where there are no
shared causal variants between traits, the resolution gain ofMGflashfm
over MGfm is not as striking, which is expected (Fig. 3b, Supplemen-
tary Fig. 4b). With no shared causal variants, the MGflashfm CS99 are
also smaller than those from MGfm for all traits and settings
(all p value < 0.025), except for Trait 1 under EUR-EAS (p value = 0.5). In
3-group simulations, MGflashfm is also found to have the highest
precision and resolution (Supplementary Fig. 5); for each trait and
setting MGflashfm CS99 were significantly smaller than MGfm with
p values between 2.2 × 10−16 and 0.01.

Next, we include comparisons with a newmulti-trait fine-mapping
method, mvSUSIE17, for each population group to confirm the advan-
tages of multi-group multi-trait fine-mapping with MGflashfm. We
simulate two traits (each with two causal variants, of which one is
shared, i.e. T1: AD, T2: AC) for EUR-AFR with sample sizes of 90,000
and 10,000, using the region of 1610 variants and compare power and
FDR for MGflashfm, MGfm, flashfm-EUR, flashfm-AFR, mvSUSIE-EUR,
and mvSUSIE-AFR. We note that mvSUSIE returns cross-trait PIP
(posterior inclusion probability) and does not return trait-specific PIP
that would be analogous to the MPP of the flashfm methods. To infer
which variants affect particular traits, mvSUSIE outputs the lfsr
(local false sign rate) for each variant under each trait; like p-values,
small values indicate an impact on the trait and we use lfsr thresholds
of 0.01 and 0.1, as there is no clear mapping between the two types of
thresholds. We use MPP threshold 0.9 and find that MGflashfm and
MGfm have the highest power, whilst the multi-trait methods flashfm
and mvSUSIE have similar power (Fig. 4). The FDR are generally simi-
larly low for all methods, but slightly higher for mvSUSIE-EUR and
lowest for flashfm-AFR (Fig. 4); there are longer LD blocks within EUR
than in AFR.

The new multi-group methods, MGflashfm and MGfm are avail-
able for up to six groups; MGflashfm is available for up to six traits.
SinceMGfmdoes not include the extra step ofmulti-traitfine-mapping
within each group, it tends to be slightly faster than MGflashfm. We
also note that time ismeasured forMGfmby taking themaximum time
between the two traits. Varying the number of groups for two traits,
the median MGflashfm computational time ranges from 684 s for two
groups to 1090 s for five groups, while they range from 395 s to 623 s
for MGfm (Supplementary Table 2). As MGfm is run on single traits,
when we vary the number of traits for two groups we onlymeasure the
computational time for MGflashfm; the MGflashfm times range from
684 s to 1214 s for two to four traits (Supplementary Table 3).

Exclusion of causal variant retains calibration of MGflashfm
Wealso investigated the behaviour ofMGflashfmwhen a causal variant
is excluded from one of two groups. Consequently, this causal variant
is removed frommulti-group analysis with PAINTOR5 andmsCAVIAR10,
but retained inMGflashfm andMGfm. For the groups EUR and AFR, we
simulate two traits, where causal variants for each trait are the same
across EUR and AFR. In EUR and AFR, Trait 1 has two causal variants
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labelled A and D, and Trait 2 has two causal variants A and C; the traits
share one causal variant, A. We select causal variant A such that it has
MAF <0.01 in EUR and MAF >0.01 in AFR, and assume that it fails
quality control in EUR. The C andD variants are selected such that they
have MAF >0.05 in both EUR and AFR groups (Methods). In this set-
ting, as expected, flashfm fine-mapping of EUR is only able to capture a
single causal variant in its CS99, whereas the CS99 fromflashfmof AFR
is well-calibrated to capture both causal variants (Supplementary
Table 4), as are MGfm and MGflashfm.

Out-of-sample LD helps fine-map signals from GWAS
summary data
It has been shown that FINEMAP, with maximum number of causal
variants set to ten, tends to givemultiple false positives with an out-of-
sample reference panel that is “small” relative to the GWAS sample
size16. More recently, the use of small, out-of-sample RPs in fine map-
ping was extensively explored in simulation studies, indicating a
noticeable improvement when the true number of causal variants is
specified, rather than a generous upper bound20. Building on the
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Fig. 2 | Flashfm, MGflashfm and MGfm, are well-calibrated. Coverage is mea-
sured as theprobability that all causal variants are captured by the 99% credible set,
estimated over 300 replications. Data are presented as the proportion of replica-
tions in which the 99% credible set contains all causal variants ± SEM, where SEM is
the standard proportion error bound of a 95% confidence interval based on 300
observations. Flashfm-EUR, flashfm-EAS and flashfm-AFR are multi-trait (single-
group) fine-mapping for the indicated group and are well-calibrated in all settings,
as are MGflashfm and MGfm. PAINTOR and msCAVIAR are not well-calibrated for
unequal sample sizes, though msCAVIAR is well-calibrated in the single causal
variant setting. aCoverage results fromEUR-AFRsimulations.Withineachpanel the

three simulation settings are shown as either having equal sample sizes of 10k each
or sample sizes of 90kEURand 10kAFR, and either two causal variants for each trait
with one shared (trait 1: AD, trait 2: AC) or non-overlapping causal variants and one
trait having a single causal variant (trait 1: AD, trait 2: C); any pair of causal variants
have r2 < 0.5. b Coverage results from EUR-EAS-AFR simulations with equal sample
sizes of 10k each or 90k EUR, 40k EAS, and 10k AFR. In both settings each trait has
two causal variants (trait 1: AD, trait 2: AC). The A variant has 0.005 <MAF<0.05 in
EUR and EAS groups, but MAF>0.05 in the AFR group, and the C and D variants
have MAF>0.05 in all groups.
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simulation study results of Zou et al. 20, we propose a practical
approach to fine-mapping that enables prioritisation of causal variants
based on GWAS summary statistics when in-sample LD information is
unavailable (Methods). We demonstrate its utility on GWAS summary
statistics for four lipids traits in five groups, as made available by the
Global Lipids Genetics Consortium (GLGC)18.

GLGC performed a multi-group genome-wide meta-analysis of
lipid levels in 1.65 million people. Their multi-group meta-analysis
included five genetically similar groups that are labelled by continent.
For consistency, we have kept the same group labels as those
published18: admixed African or African (AFR, N = 99,432, 6.0% of the
sample); East Asian (EAS, N = 146,492, 8.9%); European (EUR,

N = 1,320,016, 79.8%);Hispanic (HIS,N = 48,057, 2.9%); and SouthAsian
(SAS, N = 40,963, 2.5%). We consider four of their five blood lipids
traits: low-density lipoprotein cholesterol (LDL), high-density lipo-
protein cholesterol (HDL), triglycerides (TG), and total cholesterol
(TC); non-high-density lipoprotein cholesterol (nonHDL-C) is excluded
due to its higher number of missing variants in any given region,
compared to the other four traits.

In our fine-mapping of signals in the GLGC lipid traits18 from five
groups, eachgroupwith agenetically similar 1000Genomesgroup as a
RP, and a maximum of 10 causal variants, we observed the previously
flagged pattern16,20 (i.e. a large causal model with high PP with single-
trait fine-mapping approaches, such as FINEMAP21 and JAM22). To

10k−10k

AD−AC

90k−10k

AD−AC

90k−10k

AD−C

1 2 1 2 1 2

0.00

0.25

0.50

0.75

1.00

Trait

m
in

 M
P

P

Method flashfm−EUR flashfm−AFR MGfm MGflashfm

(a)

10k−10k

AD−AC

90k−10k

AD−AC

90k−10k

AD−C

E
U

R
−

A
F

R

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
0

20

40

60

MGfm

M
G

fla
sh

fm

Trait T1 T2

(b)

Fig. 3 | MGflashfmhas the highest gains in prioritisation and resolution among
calibratedmethods.For EUR-AFR simulations, three simulation settings are shown
as either having equal sample sizes of 10k each or sample sizes of 90k EUR and 10k
AFR, and either two causal variants for each trait with one shared (trait 1: AD, trait 2:
AC) or non-overlapping causal variants and one trait having a single causal variant
(trait 1: AD, trait 2: C); any pair of causal variants have r2 < 0.5 and there are 300
replications within each setting. a Distribution of the minimum MPP of causal

variants for each trait via violin plots; the median is given by the centre line, upper
and lower quartiles are the box limits, whiskers are atmost 1.5× interquartile range,
and width indicates the frequency. This indicates that MGflashfm is best at prior-
itising causal variants when the traits share a causal variant or similar performance
to MGfm when no sharing. b Comparison of the sizes of 99% credible sets from
MGflashfm and MGfm. This suggests that MGflashfm tends to have better resolu-
tion than MGfm.
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encourage parsimonious modelling of causal variants and minimise
false positives that tend to occur with a generous upper limit, we have
modified our extended version of JAM that is in the flashfm R
package13, so that the maximum number of causal variants is adjusted
according to the data (Methods).

Using our modified JAM algorithm (JAMdynamic in our
MGflashfm R package) with a dynamic upper bound for the number
of causal variants, we fine-mapped signals in 50 regions that had
signals for multiple traits in at least two groups, using the appro-
priate 1000 Genomes RP. Within each group, the favoured model
(highest PP) had more than one causal variant for 49% (EUR), 17%
(EAS), 11% (AFR), 6% (HIS) and4% (SAS) of the trait-region results; 30%
of the favoured EUR models had two causal variants (Fig. 5, Supple-
mentary Data 1.1).

Shared and distinct lipids variants prioritised across groups
We used MGflashfm and MGfm to fine-map signals among HDL, LDL,
TG, and TC in the five groups. MGflashfm tends to produce smaller
CS99 than MGfm (Fig. 6, Supplementary Data 1.2). Considering the
CS99 constructed for all traits, the median CS99 size reduction of
MGflashfm compared to MGfm is 10.5%; by trait, the median reduc-
tions are 21.1% (TG), 12.8% (LDL), 8.16% (TC), and 7.69% (HDL). Both
MGflashfm and MGfm prioritise 19 variants (mgMPP >0.90; multi-
groupmarginal posterior probability of a variant being causal) that are
missense, stop-gained or splice variants; 63% (12/19) of these variants
are not identified by any of the GLGC fine-mapping analyses (Supple-
mentary Data 1.3). We provide details of all MGflashfm or MGfm
prioritised variants, including nearest genes, functional annotations,
contributing population groups, as well as whether they were also
prioritised by eachGLGC analysis (Supplementary Data 1.3). Among all
traits, MGflashfm prioritised 185 unique variants, of which 77% are new
compared to any of the GLGC analyses (EUR, AFR, multi-group); 168
variants are prioritised by MGfm (Supplementary Data 1.4).

We highlight two regions where MGflashfm, and sometimes
MGfm, prioritise variants as causal, where the variant was also identi-
fied by previous fine-mapping and/or has functional annotations that
increase the plausibility of it being causal. Among these regions, we
also find likely causal variants that appear to be jointly causal within
groups and/or variants that are non-monomorphic in a subset of
groups. Such variants cannot be detected by current multi-group
approaches that restrict analysis to variants appearing in all groups,
nor by methods that assume a single causal variant.

In fine-mapping LDL and TC signals in 1:55405647–55605647
(PCSK9, USP24) MGflashfm and MGfm prioritise a missense variant,
rs28362263, which is only polymorphic in AFR and HIS (pooled
MAF =0.050), and not previously prioritised by GLGC (Supplementary
Data 1.3). Stop-gain variant rs28362286 is only polymorphic in AFR
(MAF= 0.00798) and is prioritised byMGflashfm andMGfm, as well as
the GLGC AFR analysis, but not by the GLGC multi-group analysis.
Missense variant rs11591147, present only in EUR and HIS groups
(pooledMAF =0.0122), is prioritisedbyMGflashfmandMGfm. It is also
the only variant in the GLGCCS99 for EUR and formulti-group and has
been prioritised in previous fine-mapping analyses for LDL, TC, and
Apolipoprotein B levels in UK Biobank23.

In a region harbouring APOB (2:21131524-21331524), fine-mapping
signals from the four lipids traits, MGflashfm and MGfm favour the
same missense variant as prioritised by GLGC (EUR, AFR, and multi-
group) for HDL: rs676210 (Supplementary Data 1.3); for HDL in UK
Biobank it had PP =0.95723. Only polymorphic in EAS, 3’ UTR variant
rs57825321 is newly prioritised for LDL and TC by MGflashfm and
MGfm. In agreement with the GLGC multi-group fine-mapping effort,
upstream gene variant rs934197 is prioritised for LDL by both
MGflashfm and MGfm; for TC it has MGfm mgMPP = 0.348, which
increases to 0.944 by leveraging information between traits in
MGflashfm. Not prioritised by GLGC, missense variant rs533617
(deleterious SIFT prediction; EUR, HIS, SAS, pooled MAF =0.0281) is
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Fig. 4 | MGflashfmhas the highest power and low FDR. For EUR-AFR simulations
of two traits, results are summarised for sample sizes of 90k EUR and 10k AFR,
where there are two causal variants for each trait with one shared (trait 1: AD, trait 2:
AC); any pair of causal variants have r2 < 0.5 and there are 300 replications within
each setting. The mean power and mean FDR are shown for each method, as
indicated by the top of each bar; the distribution of the power and FDR estimates

over the 300 replications is shownby violin plots, wherewidth indicates frequency.
Power and FDR for the flashfm family of methods are calculated using a MPP
threshold of 0.9, and for mvSUSIE lfsr thresholds of 0.1 and 0.01 are used. The
power is highest forMGflashfm, followed byMGfm, then the group-specific flashfm
and mvSUSIE methods. FDR is relatively low and similar amongst all methods,
though lowest for flashfm-AFR and highest for mvSUSIE-EUR.
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prioritised by MGfm andMGflashfm and has been previously found to
have PP = 1 for LDL23,24 and for TC23 in UK Biobank.

Discussion
Our proposed approaches, MGflashfm and MGfm, for multi-group
fine-mapping of signals among quantitative traits, offer a compre-
hensive approach to prioritising causal variants that are shared
amongst all or a subset of groups. This removes the common restric-
tion of multi-group methods that allow for multiple causal variants:
that all variants must appear in all groups. This restriction becomes
increasingly prohibitive as the number of studies and/or study diver-
sity increases.

As with other methods that make use of GWAS summary statis-
tics, care is needed in selecting an appropriate reference panel for LD
information to model joint effects of variants within each genetically
similar group. It is ideal to have access to in-sample LD, but this is
often difficult to obtain when analysing previously published GWAS
summary statistics. We provide a practical approach to fine-mapping
with an out-of-sample LD source such as the 1000Genomes Project15,
by taking advantage of previous extensive simulation results. Such
results show that for multiple causal variant fine-mapping methods
with out-of-sample LD: (i) generous upper bound of maximum
number of causal variants tends to result in false positives that “fill”
the available slots for variants in the model16,20; (ii) the correct
number of causal variants as the upper bound tends to make fine-
mapping results more robust20.

In our quality control of GWAS summary statistics, within each
genetically similar group, we removed any variants that were not
measured in at least 80% of the individuals of that group. This was
donewithin each group, independently of the others, sinceMGflashfm

andMGfmdo not require the intersection of variants across groups, as
formulti-groupmethodsmsCAVIAR10 and PAINTOR9. It is possible that
variantswith allele codings A/Tor G/C that haveMAFnear 0.5, and also
an effect on the traits, may lead to unstable results. This is due to the
possibility that the strand may be mismatched, but this cannot be
detected because of the similarity in frequencies of both alleles. We do
not remove such variants, as it is possible to haveMAF near 0.5 in one
group, but not other groups, and err on the side of not excludingmore
variants than necessary. However, there is the risk that the strand may
be wrong in the group with MAF near 0.5, so caution is needed when
interpreting results that prioritise such variants.

We have integrated our dynamic version of JAM22 single-trait fine-
mapping with MGflashfm and MGfm, for convenient use in wrapper
functions MGFLASHFMwithJAM and MGFMwithJAM. On the
MGflashfm GitHub page (https://jennasimit.github.io/MGflashfm/), we
also provide guidance for how to integrate FINEMAP21 with thesemulti-
group methods. Our R functions are flexible, so that any single-trait
fine-mapping method that outputs model PP may be integrated with
flashfm13, MGflashfm, and MGfm.

Currently the prior probabilities in MGflashfm and MGfm do not
account for functional annotation, and we examine functional anno-
tation of the credible set variants. These methods may further refine
credible sets by incorporating functional annotation into the prior
probabilities as has been done for PAINTOR9 and PolyFun25.

Methods
Multi-group fine-mapping framework
The first stage leverages information between traits in the samegroup,
while accounting for group-specific LD, resulting in group-specific
trait-adjusted model PPs for each trait (Fig. 1a).
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We show (Supplementary Methods) that, for a particular trait, the
multi-group multi-trait joint model Bayes factor (BF) is given by

BF ð1,2Þ
M1 ,M2

=BF ð1Þ
M1

N1

N

� �m1
2

BF ð2Þ
M2

N2

N

� �m2
2 ð1Þ

where, for k = 1,2, BF ðkÞ
Mk

denotes the trait-adjusted BF for trait modelMk

in group k,mk is the number of variants in modelMk, Nk is the sample
size (or effective sample size) for the trait in group k, and N =N1 +N2.
For group k, the trait-adjusted BF incorporates its group-specific LD
when estimating the joint effects of multi-SNP models. In this way, the
different LD structures are considered within the multi-trait stage
within each group, and are then used to obtain multi-group
BFs, BF ð1,2Þ

M1 ,M2
.

Since the MGflashfm BF takes advantage of the independence
between groups, it has broad similarity to mcoloc12 which assumes
independent traits and sets the joint BF as the product of themarginal
trait BFs. However, mcoloc builds on the Wakefield approximate BF26,
which assumes a single causal variant and requires specification of the
variance of the normal prior for the effect estimates. In contrast,
flashfm andMGflashfm build on the Bayesian Information Criterion BF
approximation,whichallowsmultiple causal variants27. For example, in
the derivation of flashfm, we show that, without loss of generality,
assuming mean 0 for a single trait y, the log(BF) for a modelM withm
causal variants X has the form

logðABFM Þ= � N
2

ðy� X β̂ÞT ðy� X β̂Þ
yTy

0
@

1
A�m

2
logðNÞ ð2Þ

where β̂ is the vector of maximum likelihood estimates for the effects.
We note that in our calculation of the model BFs within each

group, the GWAS summary statistics and group-specific LD are used
when estimating the joint effects in the multi-SNP models for each

trait. As these BF estimates depend on the GWAS summary statistics
within each group, they will be correct at the sameMAF thresholds for
inclusion of variants in the GWAS. In general, for larger samples
(≥10,000) we recommend using this approximation for variants with
MAF ≥0.001, and for smaller samples to use MAF ≥0.005.

At the multi-group stage, the prior probability for a joint multi-
group model of one trait is different from the flashfm prior used for a
joint multi-trait model of a single group, where priors are up-weighted
when variants between models overlap. In the 2-group setting, a nat-
ural joint prior probability for anm1-SNP group 1modelM1with anm2-
SNP group 2 model M2 is p

ð1,2Þ
m1 ,m2

=pm1
pm2

, where pm1
and pm2

are prior
probabilities of an m1-SNP model and m2-SNP model, respectively.
Assuming that the groups share at least one causal variant, we add the
restriction that the joint prior is only non-zero when the models
overlap, so that the multi-group joint prior is

pð1,2Þ
m1 ,m2

=pm1
pm2

1fM1 \M2 ≠+gτm1 ,m2
ð3Þ

where τm1 ,m2
is a correction factor given by

τm1 ,m2
=

n

m2

� �

n

m2

� �
� n�m1

m2

� � ð4Þ

with n being the total number of variants in the region; τm1 ,m2
ensures

that the total joint prior probability of anm1-SNPgroup 1modelwith an
m2-SNP group 2 model in the reduced search space is anchored to
remain the same as in the full model search space (Supplementary
Methods). For three groups, the multi-group joint prior is

pð1,2,3Þ
m1m2m3

=pm1
pm2

pm3
1fM1 \M2 ≠+or M1 \M3 ≠+or M2 \M3

≠+gτm1m2m3

ð5Þ
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Fig. 6 |MGflashfmgenerallygives smaller credible sets thanMGfmforGLGC lipids.For eachof the 50 regions, theCS99 for a given trait is constructed fromMGflashfm
and MGfm. Most of the CS99 sizes from MGflashfm are smaller than those from MGfm.
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With combinatorial arguments used to derive τm1m2m3
and this is

extended in a similar manner for four, five and six groups.
It follows that the multi-group multi-trait joint model PP for two

groups is given by

PPð1,2Þ
M1 ,M2

=PPð1Þ
M1

N1

N

� �m1
2

PPð2Þ
M2

N2

N

� �m2
2

1fM1 \M2≠+gτm1 ,m2
ð6Þ

where PPð1Þ
M1

is the flashfm trait-adjusted PP formodelM1 in group 1 and
PPð2Þ

M2
is the flashfm trait-adjusted PP for model M2 in group 2. It is

similarly defined for more than two groups (Supplementary Methods).
We also use this same framework forMGfm by setting PPð1Þ

M1
as the

single-trait PP for model M1 in group 1 and PPð2Þ
M2

as the single-trait PP
for model M2 in group 2 (Fig. 1b).

In flashfm, we obtain marginal model PPs for each trait by fixing
each trait and summing over the joint trait PPs for that trait. For
example, when there are two traits, the PP for modelMi of trait 1 is the
sumover all joint PP for eachof themodels for trait 2withmodelMi for
trait 1. For MGflashfm, after obtaining the multi-group multi-trait joint
model PP PPð1,2Þ

M1M2
, as above, we calculate the multi-group model PP

(mgPP) for each trait that gives the PP for a set of variants C, consisting
of variants in a multi-group model. This encompasses all group 1-
group 2models that share at least one variant and C is the collection of
all variants in these models. So, themgPP for a set C is the sum over all
combinations of group 1 and group 2 models that share at least one
variant and the union of variants is C (Supplementary Methods):

mgPPC =
X

i,j2SPP
ð1,2Þ
ij ; S= fði, jÞ:Mð1Þ

i ∪Mð2Þ
j =C,Mð1Þ

i \Mð2Þ
j ≠+g ð7Þ

Finally, for variant s, multi-group MPPs are found from

mgMPPs =
X

C:s2CPPC ð8Þ

Multi-trait simulations for multiple groups
We selected APOE, at 19:45300000-45500000, as a focus region for
our simulations because it contains several genetic associations for
cardiometabolic related traits. Haplotypes were simulated with
HAPGEN228 using 1000 Genomes Phase 3 reference panels15: CEU+TSI
for European (EUR), LWK+ YRI for African (AFR), and CHB+ JPT for
East Asian (EAS) genetically similar groups. In our simulations that
involve comparisons of msCAVIAR, we reduce our region to
19:45386029-45439498; msCAVIAR was unable to run to completion
for the larger region within 10 h.

In our 2-group simulations we consider both EUR-AFR and EUR-
EAS settings with equal sample sizes between groups (as a baseline
comparison) and the more realistic setting where the EUR group has a
larger sample size of 90,000 and the second group has 10,000 indi-
viduals. In 3-group simulations, we set sample sizes of 90,000, 40,000
and 10,000, for EUR, EAS and AFR groups, respectively.

We simulatedbetweenone and three causal variants for each trait,
and in some settings traits shared some (not all) causal variant(s). In
2-group simulations, traits with at least two causal variants had one
variant that was randomly selected such that it had 0.001 <MAF <0.05
in EUR and MAF >0.05 in AFR/EAS; for 3-group simulations it had
0.001 <MAF<0.05 in both EUR and EAS groups andMAF >0.05 in the
AFR group. All other causal variants were randomly selected such that
they had MAF >0.05 in all groups included in the simulation. Within
each group, any pair of causal variants satisfied r2 < 0.5 and each
common variant (MAF >0.05) had r2 > 0.6 with at least six other var-
iants in the region. Causal effects were randomly selected from a
Uniform distribution with minimum 0.01 and maximum 0.6 and each
variant had the same effect size across groups.

In 2-group simulations for two traits with two causal variants, of
which one is shared, we also compare all flashfm methods with the

multi-trait method, mvSUSIE17. In our implementation of mvSUSIE we
used the canonical prior and followed the author’s suggestion of
estimating the residual variance using the variants with absolute Z
score below 2 for all traits; we also set coverage to 0.99.

For M traits, the measurement for trait k of individual j, ykj, is
obtained from

ykj =
Xmk

i = 1
βikxij + εkj ð9Þ

where xij is the number of alternative alleles of variant i for individual j
(i.e. genotype score), βik is the effect of causal variant i for trait k,mk is
the number of causal variants for trait k, and εkj is the kth element of
the jth multivariate Normal distributed error variable withmean0 and
covarianceΣ, which is the covariancematrix of theM traits; we set each
trait variance to 0.2 and each trait correlation to 0.4 (covar-
iance is 0.08).

All variants that appear in each group with MAF >0.001 are car-
ried forward for analysis by PAINTOR and msCAVIAR. Variants that
appearwithMAF >0.001 in at least one group are considered inMGfm
and MGflashfm.

We also investigate the setting where a causal variant is excluded
from analysis, possibly due to the variant not passing quality control in
one of the groups. In two-group (EUR-AFR) two-trait simulations we
use similar settings as above,where the two traits share a causal variant
A and each has a distinct second causal variant C or D. The C and D
variants are selected such that they have MAF>0.05 in both EUR and
AFR groups. The A variant is selected to have MAF<0.01 in EUR and
MAF >0.01 in AFR. After simulating the traits from the causal variants,
as above, the A causal variant is removed from the EUR group, before
multi-group fine-mappingwithMGfm andMGflashfm, assuming that it
failed quality control in the EURgroup.We examined the settingwhere
the AFR sample size is 10,000 and the EUR sample size is 90,000 and
used 200 replications.

Credible sets and calibration
For each trait, we construct 99% multi-group credible sets. First,
models are sorted by decreasing PP and thenmodels are selected from
the sorted list until the cumulative sum of their PPs first exceeds 0.99.
The unique variants from the selected models form the 99% credible
set. As multi-group model PPs are evaluated for each configuration of
trait models that have at least one overlapping variant, these credible
sets tend to contain variants with high PP, but also variants with very
low PP that can be viewed as noise. For this reason, credible sets from
MGflashfmandMGfm tend to be larger than those from flashfm (multi-
trait single-groupfine-mapping), and arenot comparable to them;only
MGflashfm and MGfm credible set sizes are compared to each other.
Instead, evidence of causality (MPP) for causal variants is compared
between methods, as well as power and FDR.

To assess calibration of each method, a 99% credible set is con-
structed for each of the 300 replications in a simulation setting. Cov-
erage is defined as the probability that all causal variants are contained
within a credible set; a 99% credible set has expected coverage 0.99.
Therefore, for each trait, we estimate the coverage by the proportion
of simulation replications in which the 99% credible set contains all
causal variants of the trait.

Practical fine-mapping for broader use with out-of-sample LD
Rather than starting at a guess for the number of causal variants, the
extended JAM algorithm first considers only single-SNP models and
the null model. If the result is a single model with PP = 1 or no con-
vergence, then the upper bound on causal variants is incremented to
two. This gradual increment of the upper bound is continued until
there is convergence of results and there is not a single model that
carries all of the PP support. If the RP is a poor match for the GWAS
data, this incremental procedure could continue to an unreasonably
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large number, so we set a default maximum possible upper bound of
15, that users may adjust to their prior knowledge. This algorithm is
built into the updated FLASHFMwithJAMd function in theMGflashfmR
package; it is available for single-trait fine-mapping in the function
JAMdynamic, and called within both MGFMwithJAM and
MGFLASHFMwithJAM.

When the RP is from in-sample data, we recommend changing the
default start value for the maximum number of causal variants from 1
to 10, or to use the originalflashfm algorithm in the flashfmRpackage;
FLASHFMwithJAM is robust to a generous upper bound on the max-
imum number of causal variants, so we recommend to keep this flex-
ibility, when possible.

Fine-mapping associations in four lipids traits in five groups
Lipids GWAS summary statistics from five genetically similar groups
have been made available by the Global Lipids Genetics Consortium
(GLGC), after a multi-group genome-wide meta-analysis of lipid levels
in 1.65 million people18. Their multi-group GWAS included the follow-
ingfive genetically similar groups,with the followingpredefined labels:
admixed African or African (AFR, N = 99,432, 6.0% of the sample); East
Asian (EAS, N = 146,492, 8.9%); European (EUR, N = 1,320,016, 79.8%);
Hispanic (HIS, N = 48,057, 2.9%); and South Asian (SAS, N = 40,963,
2.5%). We consider four of their five blood lipids traits: low-density
lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol
(HDL), triglycerides (TG), and total cholesterol (TC); non-high-density
lipoprotein cholesterol (nonHDL-C) is excluded due to its higher
number ofmissing variants in any given region, compared to the other
four traits.

For each group, we approximated the trait genetic correlation
between each pair of lipids. This was done by constructing LD scores29

from the most genetically similar 1000 Genomes, phase 3 reference
panel15 and using these LD scores with the group-specific GWAS sum-
mary statistics in a robust genetic correlation approximation
approach30.

We constructed 50 regions for multi-group multi-trait fine-
mapping, selected based on group-specific GWAS results from the
GLGC analysis18. In particular, we highlighted loci where multiple
traits had signals in multiple groups. The start point of our region
was taken as the minimum base-pair position of the index variants
shifted downwards by 100 kb and the end point was taken as the
maximumbase-pair position of the index variants shifted upwards by
100 kb; this resulted in regions with lengths varying from 200 kb to
nearly 400 kb.

Before fine-mapping, we excluded all non-biallelic variants from
each group and within each group we only retained variants with
MAF >0.005. We selected a trait formulti-group fine-mapping if it had
a genome-wide significant signal (i.e.p < 5 × 10−8) in at least twogroups.
As our primary focus is multi-trait multi-group fine-mapping, only
regionswith at least two traits thatpass this criteria are carried forward
for fine-mapping. Among the traits that passed our criteria for fine-
mapping, within each group we kept variants that were in at least 80%
of that group’s individuals for all selected traits. The effect alleles in the
GWAS of each group were compared to the closest matching 1000
Genomes data, and flipped if necessary; if the alleles did notmatch and
flipping was not possible, the variant was removed.

Within each group, we first ran flashfm with JAM using the 1000
Genomes super-populations as reference panels: AFR (N = 661), EAS
(N = 504), EUR (N = 503), SAS (N = 489), HIS (N = 347). We then pro-
ceeded with MGfm and MGflashfm. We provide the most severe con-
sequence of variants that have mgMPP>0.90 by either method, using
the Ensembl Variant Effect Predictor (VEP)31.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The GLGC lipids traits GWAS summary statistics from five genetically
similar groups are freely available from http://csg.sph.umich.edu/
willer/public/glgc-lipids2021/results/ancestry_specific/. Reference
panels for LD and LD scores were generated from the 1000 Genomes
data available at https://ctg.cncr.nl/software/MAGMA/ref_data/. The
detailed data results of ourmulti-groupmulti-trait fine-mapping GLGC
results are given in Supplementary Data 1. For ease of access, they are
also deposited in a FigShare public data repository (https://doi.org/10.
6084/m9.figshare.2326670332). Positions are given according to hg19/
build 37.

Code availability
Our proposed multi-group fine-mapping methods, MGflashfm and
MGfm, are freely available as an R library at https://jennasimit.github.
io/MGflashfm/ (https://doi.org/10.5281/zenodo.797453533). This library
also includes updated versions of expanded JAM and flashfm that have
dynamic selection of the maximum number of causal variants, as
learned fromthedata. Customcode for the analysisof theGLGCdata is
available at https://github.com/fz-cambridge/MGflashfm-GLGC-
analysis (https://doi.org/10.5281/zenodo.1003453634). Trait genetic
correlations were estimated using LD scores (v1.0.1, https://github.
com/bulik/ldsc) together with MTAR (http://www.github.com/
baolinwu/MTAR). We simulated genotype data with hapgen2 (http://
mathgen.stats.ox.ac.uk/genetics_software/hapgen/hapgen2.html).
The annotation tool we used is Ensembl VEP GRCh37 (https://grch37.
ensembl.org/info/docs/tools/vep/index.html).
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