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A B S T R A C T

Photoplethysmography (PPG) signals obtained from the skin’s surface offer valuable insights into blood volume
fluctuations. With the rising interest in continuous non-invasive physiological monitoring, PPG has garnered
significant attention. However, PPG signals are often affected by various forms of noise, impeding reliable
feature extraction. Robust data pre-processing approaches are vital for both retrospective and real-time analysis.
Existing denoising methods, including recent machine learning techniques, often suffer from implementation
challenges, computational inefficiency, and limited interpretability. Addressing this challenge, we propose
a novel PPG denoising algorithm. The algorithm was evaluated using a dataset representing approximately
81,015.99 min or 1360.27 h of PPG data collected from 31 patients. The evaluation involved the calculation
and analysis of five key metrics: Signal-to-Noise Ratio (SNR), Variance, Total Variation (TV), Shannon entropy,
and Instances-per-second (IPS). Our results demonstrate a notable increase in SNR after denoising, indicating
effective noise reduction while preserving signal content. Variance and TV values showed a reduction post-
denoising, suggesting smoother and less variable signals, validating the noise suppression efficacy. Additionally,
Shannon entropy exhibited a decrease after denoising, indicating successful noise reduction and enhanced
signal regularity. The nonparametric Wilcoxon signed-rank test (a = 0.05) was employed to assess the
statistical significance of the observed differences of these metrics before and after denoising. Furthermore,
the computational speed analysis revealed the EPDA’s potential for efficient processing of large datasets and
real-time applications. This comprehensive evaluation approach allows for a thorough understanding of the
EPDA’s effectiveness in denoising PPG data, fostering advancements in non-invasive physiological monitoring
and promoting the broader adoption of PPG-based healthcare technologies.
1. Introduction

Photoplethysmography (PPG) signals are non-invasive, cost-effective
optical signals, easily obtained from the skin’s surface using a light
source and photodetector. PPG signals capture information about blood
volume fluctuations by detecting variations in light absorption or
reflection, induced by changes in blood volume. The growing interest
in non-invasive physiological monitoring, coupled with the paradigm
shift in healthcare towards continuous and ubiquitous patient moni-
toring rather than exclusive in-hospital care has triggered a significant
surge in the adoption and exploration of PPG technology [1–3]. The
magnitude of this interest is underscored by the significant rise in
search results related to PPG over the past two decades which has seen
an increase of 2392.72%, as evidenced by our search results of the
terms ‘‘Photoplethysmography’’ or ‘‘Photoplethysmogram’’ in PubMed,
Europe PubMed Central and Scopus from 2000 to 2022, as illustrated
in Fig. 1.

This same trend has led to the proliferation of non-invasive medical
devices as well as consumer-oriented wearable devices such as smart-
watches and fitness trackers. Many of these devices use PPG technology
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to enable non-invasive and continuous monitoring of various physiolog-
ical markers, including heart rate, blood pressure, oxygen saturation,
and sleep patterns [3].

It seems reasonable to suggest that PPG-based monitoring has the
potential to disrupt healthcare. However, despite its promise, PPG
signals are inherently vulnerable to various forms of noise that can
distort the signal, posing challenges in obtaining reliable and accurate
information. Among the sources of noise are power line interference,
low and high-frequency noise, baseline drift, motion artifacts, and
saturation of the photodiode by light [4]. The prevalence of such
noise underscores the importance of data denoising approaches for both
retrospective and real-time signal processing and analysis. Addressing
these challenges, we present and evaluate a novel envelope-based de-
noising algorithm, hereafter referred to as the ‘‘Envelope PPG Denoising
Algorithm’’ (EPDA), designed to accomplish two objectives: (i) the
identification and removal of anomalous data while preserving the
indices of the removed data, and (ii) the assurance of computational
vailable online 8 November 2023
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Fig. 1. Bar chart depicting the annual number of articles indexed in PubMed from 2000 to 2022, using the keywords ‘‘Photoplethysmography’’ or ‘‘Photoplethysmogram’’.
efficiency, recognising the practical constraints of real-time processing
and resource utilisation.

We distinguish between two main approaches to denoising: (i)
anomaly detection denoising and (ii) filter-based denoising. Anomaly
detection denoising refers to methods that identify and eliminate un-
wanted anomalous data points or indexes within a dataset. On the other
hand, filter-based denoising involves modifying the frequency content
of a signal by selectively allowing or attenuating specific frequency
components.

Within these definitions, the EPDA is classified as an anomaly de-
tection denoising approach. Anomaly detection-based denoising proves
particularly valuable when dealing with continuously labelled datasets,
where maintaining synchronisation between the data and the label
source is crucial. This approach involves storing the indexes of anoma-
lous data, facilitating the removal of anomalous data points from both
the data being denoised and the corresponding indexes from the label
source, thus preserving data-label integrity.

There is a dearth in research focusing on non-filter based PPG
denoising. Recently there has been a rise in the use of machine learning
(ML) techniques for denoising. Lee et al. introduced a Bidirectional Re-
current Auto-Encoder (BRDAE) for PPG denoising, showcasing a 7.9 dB
improvement in signal-to-noise ratio for noise-augmented data during
validation [5]. Kwon et al. proposed a transformer-based deep gener-
ative model to eliminate noise within PPG signals [6]. Mohagheghian
et al. developed a convolutional autoencoder approach for noise reduc-
tion, reducing the average detected heart rate and root mean square
error (RMSE) by 45.74% and 23%, respectively, on arterial fibrilla-
tion and non-arterial fibrillation data [7]. Xu et al. created a motion
artifact removal Time-Delay Neural Network (TDNN) that uses the
signal envelope to normalise PPG signal amplitudes while preserv-
ing other waveform features such as dominant frequency and pulse
width [8]. There have also been alternative statistical approaches to
denoising. Lin et al. introduced a denoising method which charac-
terises the signal through the calculation of features using fiducial
points (onset, peak, and offset points) and employs adaptive thresholds
to classify and remove anomalous segments of the signal [9]. Dao
et al. presented a motion artifact detection algorithm that utilises
time–frequency spectral (TFS) features [10]. These TFS features help
distinguish between motion artifact-corrupted segments of data and
clean data segments. Substantial distinctions arise when comparing the
EPDA to other denoising algorithms. The EPDA, as a statistical ap-
proach, offers distinct advantages over ML methods, primarily in terms
2

of enhanced transparency and interpretability, aspects inherently em-
bedded within statistical methods but often lacking in ML approaches.
ML techniques for denoising often require a large amount of labelled
data for effective training, a resource that may not be readily accessible
or easily generated. Furthermore, certain denoising approaches attempt
to reconstruct noise-contaminated PPG data, potentially resulting in
the loss of important features present in the uncorrupted PPG signal.
Some algorithms within this domain exclusively target the capture of
HR (Heart Rate) and SpO2 (Oxygen Saturation) information, sidelining
the importance of preserving the signal’s morphology and amplitudes,
which may be of significance for other physiological markers [11,12].

While certain research utilises the signal envelope this usage typi-
cally occurs as a step not central to the denoising itself. For instance,
it is has been employed as a preprocessing step for data normalisation
or for identifying fiducial points within noisy data [8,13]. To the best
of the authors’ knowledge, there is no existing denoising approach
that leverages the envelope difference (calculated as the absolute dif-
ference between the upper and lower envelope of the signal), as the
foundational basis for denoising. Another attribute of the EPDA, not
prevalent in many denoising approaches is the preservation of the
indices of identified anomalous data. This preservation becomes partic-
ularly valuable when dealing with synchronised labelled data. Existing
statistical approaches to denoising tend to incur large computational
costs through the calculation of spectral features, transformation of the
data or the calculation of morphological features for each pulse cycle.
We hypothesise that the EPDA through the efficient calculation of the
envelope difference and use of the envelope difference to characterise
the signal incurs a lower computational expense with respect to other
denoising approaches which becomes particularly important when con-
sidering the application of algorithms to large datasets retrospectively
or for real time use.

It therefore seems reasonable to suggest that the EPDA helps to ad-
dress a research gap in the development of easily implementable, com-
putationally efficient, and interpretable denoising approaches which
are data efficient and which can preserve the indexes of identified
anomalous data for use in synchronised, labelled datasets.

This paper introduces and evaluates the efficacy and computational
efficiency of the EPDA using a comprehensive dataset of PPG signals.
The EPDA is tailored towards the denoising of PPG signals where the
primary application is the extraction of temporal and morphological
features from the pulsatile AC component. We aim to encourage new
avenues in the domain of PPG data processing, helping to lead to the
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Fig. 2. PPG signal data with highlighted noise attributed to motion artifact and photodetector saturation. Visual aids emphasise the presence of noise within the window.
extraction of more accurate and reliable physiological measurements in
the context of PPG based monitoring.

2. Materials and methods

2.1. Data

The findings presented in this paper are predicated upon data
produced by an in-house, multi wavelength, near-infrared spectroscopy
(NIRS) optical sensor [14]. The core dataset is comprised of reflectance
PPG data obtained from 31 patients with traumatic brain injury (TBI).
The data was collected with the aim to investigate the affect of in-
tracranial pressure on the morphological features of PPG data. Within
this context, the research focused upon the 810 nm wavelength which
was selected because of the isobestic point where oxyhemoglobin and
deoxyhemoglobin exhibit the same absorption characteristics [15]. This
enabled the extraction of an optical signal independent of blood oxy-
genation and eliminating it as a confounding factor. Subsequently this
study focuses on the data collected from the 810 nm wavelength.

The sensor was affixed to the patient’s forehead below the hairline.
During the collection of the data, the patients were in hospital beds, the
majority of patients were sedated. The average age of the patients was
43.92 years, with a male-to-female ratio of 13:2. Data collection lasted,
on average, for 40.55 h (SD 9.63). The total length of the dataset is
0.486 billion instances, representing approximately 81,015.99 min or
1350.27 h.

2.1.1. Manifestation of noise
Within the data, two main sources of noise are hypothesised to be

present (i) motion artifacts, which are identified by irregular signal
morphology or high amplitude variance, and (ii) photodetector sat-
uration, characterised by areas with little or no amplitude variance
referred to as ‘‘flat lines’’. Fig. 2 illustrates the presence of suspected
motion artifacts and photodetector saturation within the dataset.

2.2. Envelope PPG denoising algorithm

The EPDA operates through a 6-step process: (i) the filtering and
calculation of the upper and lower envelopes of the signal, (ii) the
calculation of the envelope difference, (iii) the calculation of thresholds,
(iv) detection of anomalous indexes, (v) the calculation of segmentation
points, and (vi) the removal of identified anomalous data. In the initial
step, a fourth-order bandpass Butterworth filter with cutoff frequencies
3

set at 0.5 and 12 is applied to the data removing undesired frequency
components from the signal. Once the data has been filtered, the
upper and lower envelopes of the signal are calculated. To calculate
the envelopes, the peaks and troughs of the signal are detected using
Scipy’s ‘‘find peaks’’ function [16]. The ‘‘distance’’ input parameter
of the ‘‘find peaks’’ function is set to 20% of the total length of the
data window represented in seconds. This distance definition optimises
computational efficiency by reducing the number of detected peaks
and troughs. Consequently, fewer interpolation points are needed when
computing the envelopes whilst preserving the ability to effectively
characterise the anomalous regions of the signal. Once the peaks and
troughs are identified, linear interpolation is used to calculate the upper
and lower envelopes of the signal. Linear interpolation is preferred over
other methods, such as spline interpolation, due to its computational
efficiency. It estimates values by creating a straight line between two
adjacent data points, capturing the relationships between points, and
efficaciously representing anomalous segments of the data. The envelope
difference is obtained by taking the absolute difference between the
upper and lower envelopes. The envelope difference provides a sim-
plified representation of the signal while preserving and emphasising
significant changes in amplitude aiding in the characterisation of noise.
Fig. 3 visually demonstrates the detected peaks and troughs, as well
as the upper and lower envelopes, and the envelope difference. To
demonstrate the step wise progression of the EPDA, the same window
of data is used from Figs. 3 to 6.

The EPDA incorporates two distinct functions to effectively detect
different types of noise. One function targets the identification of
motion artifacts, while the other focuses on detecting flat line segments
in the data. For motion artifact detection, the EPDA dynamically estab-
lishes upper and lower thresholds based on the interquartile range of
the data. The thresholds are calculated using the Eqs. (1) and (2)

𝒖𝒑𝒑𝒆𝒓 = 75th 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 + (𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ∗ 𝑖𝑛𝑡𝑒𝑟𝑞𝑢𝑎𝑟𝑡𝑖𝑙𝑒 𝑟𝑎𝑛𝑔𝑒) (1)

𝒍𝒐𝒘𝒆𝒓 = 25th 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 − (𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ∗ 𝑖𝑛𝑡𝑒𝑟𝑞𝑢𝑎𝑟𝑡𝑖𝑙𝑒 𝑟𝑎𝑛𝑔𝑒) (2)

The IQR is robust to outliers and provides a measure of the spread
of data that is less influenced by extreme values than measures like the
standard deviation. By using the IQR, we ensure that our thresholds
are based on the central 50% of the data, making them less sensitive to
outliers and more representative of the typical data distribution. The
choice of percentiles, specifically the 25th (lower quartile) and 75th
(upper quartile) percentiles, is a common approach in statistics. These
percentiles divide the data into quartiles, with the IQR representing the
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Fig. 3. Figure with two subplots: The top subplot displays the raw data, peaks, troughs, median of the raw data, and upper and lower envelope. The bottom subplot illustrates
the envelope difference, median of the envelope difference, and upper and lower thresholds.
Fig. 4. Figure with two subplots: The left subplot shows the results of the optimised anomaly detection approach (count: 28). The right subplot displays the results of the
unoptimised anomaly detection approach (count: 1540). A 5400% difference between the two approaches.
spread of the middle 50% of the data. By setting the lower threshold
at the 25th percentile and the upper threshold at the 75th percentile,
we are effectively capturing the central range of data where most
observations are expected to fall. This ensures that our thresholds are
meaningful and relevant to the majority of data points. By introducing
a user-defined threshold multiplier we aim to enable flexibility and
adaptability in the anomaly detection process. By multiplying the IQR
with the user-defined threshold value, we enable users to adjust the
strictness of the thresholds according to their specific needs. A higher
multiplier makes the thresholds more stringent, while a lower mul-
tiplier makes them more permissive. This parameter allows users to
fine-tune the sensitivity of the algorithm to anomalies.

The user can define the threshold value, with a default value of 2
(within this study, the default value of 2 was maintained across patient
data). When detecting flat line segments, both the line height threshold
and line temporal threshold are user-defined. The line height threshold
determines the minimum required amplitude to be considered a flat
4

line, while the line temporal threshold specifies the duration for which
data must remain below the amplitude threshold to be identified as
a flat line. Thus, if a segment of data remains below the amplitude
threshold for a duration equal to or longer than the temporal threshold,
it is identified as a flat line.

Within the function for motion artifact detection, all instances
where a slope change occurs within the envelope difference is calcu-
lated. Any instance of data with a slope change that exceeds the upper
threshold or falls below the lower threshold is identified as an anomaly.
Pseudocode 1 outlines the motion artifact anomaly detection algorithm.

In order to increase the computational efficiency of the denoising
algorithm the motion artifact detection ensures that not all instances
of data between the first and last threshold crossing points are defined
as an anomaly. Instead, only instances of data where a slope change
occurs within this range are considered anomalies. This logic minimises
unnecessary iterations when calculating the segmentation points for
each detected anomaly and substantially reduces the computational
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Pseudocode 1 Motion artifact detection
1: slope_change_indexes ← empty list ⊳ Initialise an empty list to store

slope change indexes
2: for 𝑖 ← 1 to length(envelope_difference) − 1 do
3: diff_prev ← envelope_difference[𝑖] − envelope_difference[𝑖 − 1]
4: diff_next ← envelope_difference[𝑖 + 1] − envelope_difference[𝑖]
5: if (diff_prev ≥ 0 and diff_next < 0) or (diff_prev < 0 and diff_next ≥ 0)

then
6: slope_change_indexes.append(𝑖) ⊳ Add current index to the list
7: end if
8: end for
9: anomalies ← empty list ⊳ Initialise an empty list to store anomalies

10: for index in slope_change_indexes do
11: if envelope_difference[index] > Upper Threshold or

envelope_difference[index] < Lower Threshold then
12: anomalies.append(index)
3: end if
4: end for

expense of the algorithm. Fig. 4 depicts the difference between the
two approaches of detecting anomalies which amounts to a 5400%
difference between approaches for the example data.

The logic for the detection of flat line segments of the data can be
divided into two steps. The first step involves applying the user-defined
line height threshold and representing the data as 0 s and 1 s. Values
in the envelope difference that exceed the line height threshold are set
o 1. All values less than the line height threshold are set to 0. This
epresentation allows for the simple characterisation of the start and
nd points of potential flat line segments in the data. Once the data is
epresented as 0 s and 1 s, flat line segments are identified using the
lgorithm described in Pseudocode 2.

Pseudocode 2 Flat line detection
1: flat_line_segments ← empty list ⊳ Defining a list to store the flat line

segments of the signal
2: diffs ← list ⊳ A list containing the differences between adjacent elements

in envelope_difference
3: line_height_threshold ← float ⊳ A user defined height threshold
4: line_temporal_threshold ← float ⊳ A user defined temporal threshold
5: height_detection ← where(abs(data_chunk_filt) <

line_height_threshold, 0, 1) ⊳ Representing the data as either 0 or 1
6: segment_indices ← find_non_zero_segments(diffs) ⊳ The indices in diffs

where the difference between adjacent elements is non-zero
7: segment_indices ← [0] + segment_indices + [length(height_detection)] ⊳

Concatenate the segment indices with the start and end indices
8: for 𝑖 ← 0 to length(segment_indices) − 1 step 2 do
9: start_index ← segment_indices[𝑖]

10: end_index ← segment_indices[𝑖 + 1] − 1
11: if not any(height_detection[start_index ∶ end_index]) then ⊳ If all

height_detection values between start_index and end_index are zeros
12: if (end_index− start_index+ 1) ≥ (𝑓𝑠× 𝑙𝑖𝑛𝑒_𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) then

⊳ Check if the candidate segment meets the temporal threshold
13: if start_index < 0 then
14: start_index ← 0
15: end if
16: if end_index > length(envelope_difference) then
17: end_index ← length(envelope_difference) − 1
18: end if
19: flat_line_segments.append((start_index, end_index))
20: end if
21: end if
22: end for

The flat line detection code searches for 1 s within the augmented
ata which indicate the possible start and end points of flat line
egments. If the distance between a start and end point is ≥ to the user

defined line temporal threshold, the segment is identified as a flat line.
5

The output of the flat line detection code is a list of indexes representing
the start and end indexes of the flat line segments in the data.

Once any motion artifacts and flat line segments are detected and
their indexes recorded, suitable segmentation points are calculated for
each identified anomaly. These segmentation points are determined
based on the indexes where the envelope difference and the median of
the envelope difference intersect or closely align. Once these indexes
have been calculated the segmentation points for each anomaly is
derived. The result of the segmentation code is a list of indexes that rep-
resent the start and end points of anomalous data. In the motion artifact
detection algorithm, the crucial step of only considering instances of
data that surpass a threshold and are indexes where slope change occurs
as anomalies plays a significant role in the calculation of segmentation
points. By focusing only on the instances where the slope change
exceeds the threshold, the algorithm can highlight potential areas of
interest, which are most likely to contain anomalies caused by motion
artifacts. This approach reduces the number of iterations required and
eliminates the computation of redundant segmentation indexes for the
same identified anomaly. As a result, the computational complexity
of the algorithm is significantly reduced. The algorithm can process
the data more efficiently, leading to faster anomaly detection. This
optimisation is important when dealing with large datasets, real-time
processing, or resource-constrained environments, as it helps improve
the overall performance of the motion artifact detection process.

Before removing the index ranges between the calculated segmen-
tation points for each anomaly, the algorithm combines adjacent ‘‘seg-
mentation sections’’ that are in close proximity to create larger seg-
mentation sections. This process serves two purposes, it: (i) reduces the
computational complexity of the algorithm by minimising the number
of segmentation sections that need to be iterated, and (ii) incorporates
potential data instances between segmentation sections that may not
have been explicitly identified as anomalies but exhibit poor morpho-
logical quality. Once the anomalous regions of the data have been
removed, the data is filtered using a lowpass 2nd order butterworth
filter with a cutoff frequency of 10 hz. Fig. 6 present the data before
and after denoising.

2.3. Algorithm evaluation

To evaluate the performance of the EPDA, an assessment was con-
ducted using a PPG dataset comprised of approximately 81,015.99 min
or 1360.27 h of data collected from 31 patients. In the absence of
a ‘‘clean’’ reference dataset, the evaluation was carried out through
the calculation and analysis of 5 metrics. These included: (i) Signal-to-
noise Ratio (SNR), (ii) Variance, (iii) Total Variation (TV), (iv) Shannon
entropy, and Instances-per-second (IPS)

SNR is used to quantify the strength of the signal relative to noise
through the ratio of the power of the signal to the power of the noise.
Throughout the data collection process, the patients were situated in
hospital beds, the majority of patients were sedated. Given this, the
patients remained predominantly motionless during data collection,
occasionally being repositioned by nursing staff. As a result of this
environment, it was inferred that the primary sources of noise within
the data were likely to be of higher frequency outside of the typical
frequency bands of the PPG. Given this context and the absence of a
standardised method to calculate the SNR a cutoff frequency of 10 Hz
was deemed appropriate in order to isolate the morphology of the PPG
using a lowpass filter and to isolate higher frequency noises using a
highpass filter. When calculating the SNR of the data, the signal was
filtered using a 2nd order, lowpass butterworth filter with a cutoff
frequency of 10 Hz. The noise within the signal was isolated using a
2nd order, highpass butterworth filter with a cutoff frequency of 10 Hz.
The SNR equation:

SNR =
𝑃signal (3)

𝑃noise
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Fig. 5. Figure with two subplots: The top subplot presents the raw data, including peaks, troughs, median values, upper and lower envelopes, anomalies, and calculated segmentation
points. The bottom subplot illustrates the envelope difference, median difference, upper and lower thresholds, along with anomalies and calculated segmentation points.
Fig. 6. Figure with two subplots: The top subplot presents the raw data. The bottom subplot illustrates the denoised data.
Where 𝑃signal is the power of the signal, calculated as the mean of the
squared signal and 𝑃noise is the power of the noise within the signal,
calculated as the mean of the squared isolated noise. A higher SNR
value indicates a stronger, more distinguishable signal compared to
noise, whereas a lower SNR value indicates that the signal is relatively
weak compared to the noise. A desirable outcome after denoising would
be the increase in SNR, indicating effective removal or reduction of
noise while retaining signal content.

Variance captures the spread or dispersion of data points around the
mean, reflecting the average squared difference of each data point from
the mean value, formally represented as:

Var(𝑋) = 1
𝑁

𝑁
∑

𝑖=1
(𝑥𝑖 − �̄�)2 (4)

Where N represents the total number of data points in the dataset
and 𝑥 represents each individual data point in the dataset. TV measures
6

the overall variations in signal intensity across the entire duration by
summing the absolute differences between adjacent data points:

TV =
𝑁−1
∑

𝑖=1

|

|

𝑥𝑖+1 − 𝑥𝑖|| (5)

Where N represents the total number of data points in the dataset
and 𝑥 represents each individual data point in the dataset. We hypoth-
esise that a reduction in variance and TV values before and after de-
noising signify smoother and less variable signals, indicating efficacious
noise suppression and enhanced signal regularity.

Shannon entropy characterises the complexity or randomness of a
signal by quantifying the average information required to describe the
signal’s values:

𝐻(𝑋) = −
∞
𝑓 (𝑥) log2(𝑓 (𝑥)) 𝑑𝑥 (6)
∫−∞
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Fig. 7. Figure with two subplots: The top subplot presents the raw data of an entire patient. The bottom subplot illustrates the denoised data.
Where 𝑓 (𝑥) denotes the probability density function (PDF) of the
continuous random variable 𝑥, log2(𝑓 (𝑥)) represents the logarithm base
2 of the probability density function. A higher Shannon entropy value
indicates greater complexity or randomness, while a lower value sug-
gests more predictability or regularity. We posit that a decrease in
Shannon entropy post-denoising indicates successful noise reduction.

These 4 metrics, which can be calculated without a ‘‘clean’’ ref-
erence dataset, capture the dispersion, randomness and strength of a
signal and thereby provide a credible means to evaluate the efficacy
of a denoising algorithm. To assess the statistical significance of the
differences in metrics calculated before and after denoising, a statistical
testing approach was employed. Firstly, the normality of the calculated
metrics was evaluated using the Shapiro–Wilk test. If the data in both
groups exhibited a normal distribution (p > 0.05), a parametric paired
t-test (𝑎 = 0.05) was chosen for further analysis. In cases where one
or both groups displayed a non-normal distribution (p > 0.05), the
non-parametric Wilcoxon signed-rank test (𝑎 = 0.05) was opted for.
This dual testing strategy ensured a robust assessment of the statistical
significance of the observed differences in metrics. The choice of para-
metric or non-parametric test was based on the underlying distribution
of the data, enhancing the reliability and validity of the statistical
analysis.

The computational speed of the EPDA was assessed by recording the
run time of the algorithm on each data sample. From this a 5th metric,
instances-per-second was derived which gives a representation of the
speed of the EPDA. The analysis of the algorithm’s speed enables an
assessment of the EPDA’s suitability for big datasets and real-time ap-
plications. This evaluation approach allows for a holistic understanding
of the denoising algorithm’s effectiveness.

3. Results

Fig. 7 provides a representative example of the complete dataset for
one patient, both before and after denoising. Upon visual inspection,
the data after denoising exhibits reduced extreme amplitude variations,
which are believed to be associated with motion artifacts. Additionally,
the range and dispersion of data following denoising appear narrower,
suggesting a more uniform distribution. These observations suggest that
the denoising process effectively mitigates motion-related artifacts and
7

leads to a more consistent and refined dataset
Table 1 provides an overview of the EPDA’s impact on various met-
rics, namely the SNR, variance, total variation, and entropy, for each
patient. The data includes measurements before and after denoising,
along with the computation time of the denoising algorithm and the
derived metric IPS.

Examining the results, we observe the affects of the denoising
algorithm on the data. The SNR indicates an average improvement from
53.3 (SD: 8.62) to 74.69 (SD: 7.63) after denoising. This represents
a 40.16% increase in SNR suggesting that denoising has significantly
enhanced the signal power, leading to a more accurate representation
of underlying information.

Moreover, the variance, total variation, and entropy, which respec-
tively capture the amount of variability, structural complexity, and
information content in the data, exhibit a reduction of approximately
45.59%, 85.84%, and 2.16% on average after denoising. This signifies
a successful reduction in unwanted noise and random fluctuations in
the data.

The observed reduction of approximately 85.84% in total variation
after denoising indicates a success in simplifying the data distribution
and eliminating unnecessary variations.

Motion artifacts often introduce irregularities into the data usually
manifesting within the signal as large amplitude variance. The decrease
in total variation observed in our results suggests that the EPDA has
effectively reduced the impact of motion artifacts, leading to a more
uniform and smoother representation of the data. Motion artifacts
which cause sudden changes in the amplitude of the data lead to higher
values of total variation. When these artifacts are successfully removed,
the abrupt changes caused by the motion artifacts are replaced with
smoother transitions, resulting in a reduction in total variation.

To assess the impact of denoising on the calculated metrics, a sta-
tistical analysis was conducted. The normality of the data distribution
for each metric was first evaluated using the Shapiro–Wilk test. The
results revealed that the data of the SNR was normally distributed
with a 𝑝-value of 0.057 and 0.055 for the ‘‘before denoising’’ and
‘‘after denoising’’ groups respectively. The data of the remaining 3
metrics was found to be non-normally distributed. Therefore a non-
parametric Wilcoxon signed-rank test was chosen to determine if there
were significant differences in all 4 metrics before and after denoising,

using a significance level of 0.05. By using a single non-parametric test



Biomedical Signal Processing and Control 88 (2024) 105693G.R.E. Bradley and P.A. Kyriacou

9
e
a
e

t
a
a
c
p
d

t
o
s
t
s
s

4

r
v
t

Table 1
Table presenting the Signal-to-noise Ratio (SNR), Variance, Total variation and entropy of the data for each patient before and after denoising. The table also includes the
computation time of the algorithm for each patient and the derived metric Instances-per-second.

Patient SNR before SNR after Variance
before

Variance
after

Total
variation
before

Total
variation
after

Entropy
before

Entropy after Computation
time (s)

Instances per
second

1 31.189 65.903 0.048 0.013 140 773.859 10 909.716 16.527 16.352 36.899 411 135.192
2 47.007 65.737 0.386 0.235 21 739.31 4100.025 16.506 16.2 37.388 411 730.976
3 46.194 72.751 0.051 0.046 37 075.196 5405.411 15.734 15.601 16.071 425 686.583
4 61.008 78.478 0.343 0.084 9166.518 3364.145 16.16 15.897 31.84 339 511.046
5 48.193 66.293 2.982 0.601 71 059.79 6086.925 16.032 15.444 31.152 422 664.52
6 60.696 73.918 1.036 0.795 23 131.757 5004.932 16.575 16.194 41.182 409 219.627
7 41.05 67.459 0.423 0.256 192 933.432 19 756.286 16.689 16.501 43.945 417 796.334
8 54.202 73.708 0.324 0.277 10 639.948 1929.227 15.449 15.312 14.546 417 460.696
9 62.55 83.328 0.16 0.163 17 511.129 7775.109 16.695 16.588 45.844 400 679.008
10 44.915 72.867 0.445 0.394 83 002.505 18 462.602 16.642 16.458 38.469 449 186.729
11 50.319 68.012 1.405 0.553 72 820.156 10 622.558 16.592 15.763 36.006 479 913.608
12 44.613 69.338 1.009 0.551 171 845.39 14 079.652 16.568 16.259 38.774 441 844.878
13 59.473 77.376 0.656 0.57 35 550.527 6366.344 16.553 16.337 39.746 403 186.178
14 56.559 72.382 1.719 0.956 31 979.635 4606.092 16.558 16.004 47.846 359 541.675
15 51.393 67.601 1.497 0.885 36 806.149 10 484.826 16.54 16.289 47.248 364 712.38
16 45.931 62.772 2.355 0.702 144 723.747 14 598.065 16.459 15.975 36.288 476 012.512
17 55.117 74.773 0.57 0.153 17 258.795 3767.316 16.646 16.381 47.626 379 509.037
18 62.904 84.446 0.026 0.026 17 806.375 4194.915 16.639 16.512 43.365 390 169.125
19 66.553 89.476 0.015 0.009 6909.931 1307.428 16.614 15.562 40.313 407 831.278
20 61.429 91.887 0.016 0.008 28 334.381 1578.581 16.668 16.268 42.294 410 127.987
21 54.656 72.106 0.299 0.292 34 702.886 11 940.3 16.625 16.376 38.504 448 506.658
22 43.825 71.005 0.215 0.185 192 317.583 16 779.758 16.652 16.501 40.587 425 845.848
23 62.883 88.807 0.015 0.012 18 877.106 2112.399 16.659 16.128 37.575 457 268.441
24 51.973 70.694 0.356 0.159 29 089.716 4875.059 16.633 15.723 45.736 372 933.237
25 40.743 67.083 0.022 0.022 280 400.591 13 161.378 16.598 16.038 34.196 473 043.35
26 62.51 74.459 0.223 0.208 35 619.511 23 093.016 16.628 16.257 30.057 559 857.53
27 60.102 75.865 0.351 0.327 13 403.344 7517.603 16.169 15.973 25.66 417 419.782
28 59.835 86.582 0.027 0.021 18 288.607 3848.823 16.663 16.535 42.04 410 817.225
29 44.86 73.132 0.505 0.498 63 663.937 5187.896 15.949 15.612 19.78 438 663.051
30 59.41 76.07 0.122 0.085 31 772.232 20 243.942 16.656 16.476 46.778 371 073.191
31 60.352 80.996 0.717 0.879 28 295.027 8401.34 16.826 16.344 43.524 483 475.432
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for all the metrics, despite the normality of one we ensure consistency
across the analysis. Allowing for a reliable comparison of the denois-
ing effect across all the metrics while accommodating potential data
non-normality.

The Wilcoxon signed-rank test which compares the distribution of
the differences between paired observations suggests that there was a
significant difference in the SNR (𝑝-value = 9.313225746154785𝑒 − 10),
variance (𝑝-value = 9.955838322639465𝑒−07), total variation (𝑝-value =
.313225746154785𝑒 − 10) and entropy (𝑝-value = 9.313225746154785
−10) before and after denoising. Showing a significant difference in
ll 4 metrics. Fig. 8 contains the boxplots representing the values for
ach of the metrics before and after denoising.

In addition to the analysis and interpretation of the 4 metrics,
he IPS was also calculated for each patient’s data. The calculated
verage IPS value across patients amounted to 421,833.003, signifying
substantive computational speed. This IPS can be presented as pro-

essing 70.3 min of data per second which suggests the EPDA may have
otential for real-time applications and scenarios necessitating efficient
ata processing such as large retrospective studies.

This metric, when considered in conjunction with the analysis of
he four other evaluation metrics, provides a comprehensive assessment
f the algorithm’s overall effectiveness. These findings demonstrate
ignificant improvements in SNR, variance, total variation, and en-
ropy metrics following denoising, as supported by both statistical
ummary of the results, statistical testing through the use of Wilcoxon
igned-rank test and visual analysis of the boxplots.

. Discussion

The evaluation of denoising algorithms in the absence of clean
eference data is challenging. In our evaluation through the use of SNR,
ariance, total variance, entropy and IPS we have endeavoured to cap-
ure the dispersion, randomness and strength of the signal before and
8

r

fter denoising in addition to its computation speed to help evaluate
he EPDA and its utility.

While searching for applicable evaluation metrics we noted that
here is a dearth of research which focuses on PPG denoising eval-
ation, with some work on the quality assessment of pulses through
he use of a number of signal quality indexes [17–19]. These indices
nclude, skewness, kurtosis and perfusion index (PI). We suggest that
hese indices while they appear to be credible for the assessment of
ndividual PPG pulses may not directly capture the impact of denoising.

e propose that while skewness, which measures data asymmetry,
nd kurtosis, which measures peakedness or flatness, are relevant for
haracterising the morphology of individual PPG pulses, they may not
ffer meaningful insights into the effectiveness of denoising methods.
enoising techniques aim to reduce noise in the PPG signal, but their

uccess may not always be easily interpretable using skewness and
urtosis alone. For instance, if a dataset contains substantial high-
mplitude noise at the beginning, causing overall skewing, and this
oise is successfully removed by denoising, it might appear as if the de-
oising was effective based on the restoration of symmetry. Conversely,
f noise is distributed evenly throughout the dataset, denoising might
ffectively reduce the noise without significantly impacting the overall
kewness. As a result, skewness and, similarly, kurtosis do not appear to
e reliable indices for evaluating the efficacy of denoising algorithms.

Motion artifacts in PPG signals can introduce high-amplitude vari-
nce, leading to fluctuations in the signal that are not related to
hanges in perfusion. We posit that these motion-related fluctuations
ay artificially increase the amplitude of the PPG waveform, positively

iasing the calculations of perfusion index (PI). PI is often calculated as
he ratio of the pulsatile blood flow to the non-pulsatile blood flow, and
otion artifacts can falsely elevate the pulsatile component, resulting in

n inflated PI value. Therefore, when evaluating denoising algorithms
n PPG datasets containing motion artifacts, denoising can effectively

emove the noise and reduce the artificially inflated amplitude variance
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Fig. 8. Figure with four subplots, each subplot contains 2 boxplots representing the values for the signal-to-noise ratio, variance, total variation and entropy of the data before
and denoising.
caused by motion, leading to a counterintuitive reduction in PI. This
reduction may be misinterpreted as a deterioration in the signal quality,
while in fact, it reflects the removal of motion artifacts and the restora-
tion of a more accurate representation of the underlying physiological
information.

The ability of the EPDA to return the indexes of identified anoma-
lous data is important when dealing with two datasets that are syn-
chronously collected. In scenarios where two datasets are collected
simultaneously for purposes such as implementing supervised pre-
dictive modelling, maintaining temporal synchronicity between the
datasets is crucial to ensure the production of reliable and accurate
results. The EPDA’s capability to identify and provide the indexes of
anomalous data allows users to remove the corresponding indexes in
the second dataset. By doing so, the temporal synchronicity between
the two datasets is preserved. This is particularly useful when using
PPG data to predict physiological biomarkers and constructing labelled
datasets for supervised learning tasks to help insure the accuracy and
reliability of the results obtained.

Our proposed algorithm demonstrates potential although we ac-
knowledge there are avenues for improvement. One of these is the
implementation of a sliding window approach. The sliding window
approach in place of a fixed window size may provide the calculation of
more contextually relevant thresholds by considering short-term fluctu-
ations within each window. This is likely to facilitate the algorithm’s
ability to changes in signal characteristics and morphological quality
resulting in a more robust approach.

A limitation of the study is the calculation of SNR without a ‘‘clean’’
reference and in the absence of a standardised approach the SNR cal-
culations of this study were predicated on a cutoff frequency of 10 Hz
under the assumption that due to the sedated or low motion state of the
patients during data collection the majority of noise present within the
data would be of higher frequency outside of the expected frequency
band of the PPG. Consequently, the proposed SNR calculation is suit-
able when comparing what is expected to be within a normal PPG
frequency range to higher-frequency noise. Which although may be
suitable for our dataset but may not be generalisable. We suggest that
future studies should be conducted to validate the EPDA on different
datasets with a greater presence of noise within the PPG frequency
band. The collection of bilateral PPG signals, with body movement
9

added on one side could be collected to introduce motion artifacts into
the signal and offer a reliable reference for SNR calculations.

The denoising of PPG signals plays a pivotal role in advancing non-
invasive physiological monitoring. In our research, we have introduced
our novel ‘‘Envelope PPG denoising algorithm’’ designed to accomplish
the dual objectives of identifying and removing anomalous data while
ensuring computational efficiency. Our research contributes to the
advancement of PPG signal processing and its application in diverse
healthcare domains, ultimately enhancing the potential for accurate
patient monitoring.

5. Conclusion

This study aims to contribute to the field of PPG signal denoising,
acknowledging its importance in the context of non-invasive physiolog-
ical monitoring. Our investigation has focused on the development and
evaluation of our ‘‘Envelope PPG Denoising Algorithm’’. Our approach
has been shown to be efficacious in the denoising of PPG data, reporting
significant differences in the SNR, variance, total variation and entropy
after denoising. The IPS of the EPDA was calculated as 421,833.003,
which can be represented as processing 70.3 min of data per second.

Our research has contributed a denoising algorithm, the EPDA, to
the field of PPG signal processing. Our work augments the potential
for non-invasive accurate patient monitoring across various healthcare
domains, ultimately helping to improve the impact of non-invasive
monitoring technologies, such as wearables, in enhancing patient care
and wellbeing. Moving forward, we suggest continued research in this
area, with a focus on refining denoising algorithms and in particular
the detection and mitigation of motion artifact to help unlock the full
potential of PPG technology in modern healthcare practices.

CRediT authorship contribution statement

George R.E. Bradley: Conceptualization, Methodology, Software,
Formal analysis, Investigation, Data curation, Writing – original draft,
Writing – review & editing, Visualization. Panayiotis A. Kyriacou:
Conceptualization, Investigation, Resources, Data curation, Writing –
review & editing, Supervision, Project administration, Funding acquisi-
tion.



Biomedical Signal Processing and Control 88 (2024) 105693G.R.E. Bradley and P.A. Kyriacou
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The data that has been used is confidential.

Acknowledgement

The George Daniels Educational Trust - George Daniels Doctoral
Studentship.

References

[1] Amy V. Creaser, et al., The acceptability, feasibility, and effectiveness of wearable
activity trackers for increasing physical activity in children and adolescents: A
systematic review, Int. J. Environ. Res. Public Health 18 (12) (2021).

[2] Denisse Castaneda, et al., A review on wearable photoplethysmography sensors
and their potential future applications in health care, Int. J. Biosens Bioelectron
4 (4) (2018) 195–202.

[3] Panicos A. Kyriacou, John Allen, Photoplethysmography: Technology, Signal
Analysis and Applications, Academic Press, San Diego, CA, 2021.

[4] Elisa Mejía-Mejía, et al., 4 - photoplethysmography signal processing and
synthesis, in: John Allen, Panicos Kyriacou (Eds.), Photoplethysmogra-
phy, Academic Press, 2022, pp. 69–146, http://dx.doi.org/10.1016/B978-0-
12-823374-0.00015-3, URL https://www.sciencedirect.com/science/article/pii/
B9780128233740000153.

[5] Joonnyong Lee, et al., Bidirectional recurrent Auto-Encoder for photo-
plethysmogram denoising, IEEE J. Biomed. Health Inform. 23 (6) (2018)
2375–2385.

[6] Ju Hyeok Kwon, et al., Preeminently robust neural PPG denoiser, Sensors (Basel)
22 (6) (2022).

[7] Fahimeh Mohagheghian, et al., Noise reduction in photoplethysmography sig-
nals using a convolutional denoising autoencoder with unconventional training
scheme, IEEE Trans. Biomed. Eng. PP (2023).
10
[8] Ke Xu, Xinyu Jiang, Wei Chen, Photoplethysmography motion artifacts removal
based on signal-noise interaction modeling utilizing envelope filtering and time-
delay neural network, IEEE Sens. J. 20 (7) (2020) 3732–3744, http://dx.doi.org/
10.1109/JSEN.2019.2960370.

[9] Wan-Hua Lin, et al., A characteristic filtering method for pulse wave signal
quality assessment, in: 2019 41st Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, EMBC, 2019, pp. 603–606, http:
//dx.doi.org/10.1109/EMBC.2019.8856811.

[10] Duy Dao, et al., A robust motion artifact detection algorithm for accurate de-
tection of heart rates from photoplethysmographic signals using Time-Frequency
spectral features, IEEE J. Biomed. Health Inform 21 (5) (2016) 1242–1253.

[11] M. Raghu Ram, et al., Computation of SpO2 using non-parametric spectral
estimation methods from wavelet based motion artifact reduced PPG signals, in:
2011 International Conference on Signal Processing, Communication, Computing
and Networking Technologies, 2011, pp. 776–780, http://dx.doi.org/10.1109/
ICSCCN.2011.6024656.

[12] M. Raghu Ram, et al., A novel approach for motion artifact reduction in PPG
signals based on AS-LMS adaptive filter, IEEE Trans. Instrum. Meas. 61 (5) (2012)
1445–1457, http://dx.doi.org/10.1109/TIM.2011.2175832.

[13] Manuel Merino-Monge, et al., Heartbeat detector from ECG and PPG signals
based on wavelet transform and upper envelopes, Phys. Eng. Sci. Med. 46 (2)
(2023) 597–608.

[14] Maria Roldan, Panicos A. Kyriacou, A non-invasive optical multimodal
photoplethysmography-near infrared spectroscopy sensor for measuring intracra-
nial pressure and cerebral oxygenation in traumatic brain injury, Appl. Sci.
13 (8) (2023) http://dx.doi.org/10.3390/app13085211, URL https://www.mdpi.
com/2076-3417/13/8/5211.

[15] J.M. Murkin, M. Arango, Near-infrared spectroscopy as an index of brain and
tissue oxygenation, Br. J. Anaesth. 103 (2009) i3–i13.

[16] Pauli Virtanen, et al., SciPy 1.0: Fundamental algorithms for scientific computing
in python, Nature Methods 17 (2020) 261–272, http://dx.doi.org/10.1038/
s41592-019-0686-2.

[17] Mantas Rinkevičius, et al., Influence of photoplethysmogram signal quality on
pulse arrival time during polysomnography, Sensors (Basel) 23 (4) (2023).

[18] Mohamed Elgendi, Optimal signal quality index for photoplethysmogram signals,
Bioengineering (Basel) 3 (4) (2016).

[19] G.D. Clifford, et al., Signal quality indices and data fusion for determining clinical
acceptability of electrocardiograms, Physiol. Meas. 33 (9) (2012) 1419–1433.

http://refhub.elsevier.com/S1746-8094(23)01126-6/sb1
http://refhub.elsevier.com/S1746-8094(23)01126-6/sb1
http://refhub.elsevier.com/S1746-8094(23)01126-6/sb1
http://refhub.elsevier.com/S1746-8094(23)01126-6/sb1
http://refhub.elsevier.com/S1746-8094(23)01126-6/sb1
http://refhub.elsevier.com/S1746-8094(23)01126-6/sb2
http://refhub.elsevier.com/S1746-8094(23)01126-6/sb2
http://refhub.elsevier.com/S1746-8094(23)01126-6/sb2
http://refhub.elsevier.com/S1746-8094(23)01126-6/sb2
http://refhub.elsevier.com/S1746-8094(23)01126-6/sb2
http://refhub.elsevier.com/S1746-8094(23)01126-6/sb3
http://refhub.elsevier.com/S1746-8094(23)01126-6/sb3
http://refhub.elsevier.com/S1746-8094(23)01126-6/sb3
http://dx.doi.org/10.1016/B978-0-12-823374-0.00015-3
http://dx.doi.org/10.1016/B978-0-12-823374-0.00015-3
http://dx.doi.org/10.1016/B978-0-12-823374-0.00015-3
https://www.sciencedirect.com/science/article/pii/B9780128233740000153
https://www.sciencedirect.com/science/article/pii/B9780128233740000153
https://www.sciencedirect.com/science/article/pii/B9780128233740000153
http://refhub.elsevier.com/S1746-8094(23)01126-6/sb5
http://refhub.elsevier.com/S1746-8094(23)01126-6/sb5
http://refhub.elsevier.com/S1746-8094(23)01126-6/sb5
http://refhub.elsevier.com/S1746-8094(23)01126-6/sb5
http://refhub.elsevier.com/S1746-8094(23)01126-6/sb5
http://refhub.elsevier.com/S1746-8094(23)01126-6/sb6
http://refhub.elsevier.com/S1746-8094(23)01126-6/sb6
http://refhub.elsevier.com/S1746-8094(23)01126-6/sb6
http://refhub.elsevier.com/S1746-8094(23)01126-6/sb7
http://refhub.elsevier.com/S1746-8094(23)01126-6/sb7
http://refhub.elsevier.com/S1746-8094(23)01126-6/sb7
http://refhub.elsevier.com/S1746-8094(23)01126-6/sb7
http://refhub.elsevier.com/S1746-8094(23)01126-6/sb7
http://dx.doi.org/10.1109/JSEN.2019.2960370
http://dx.doi.org/10.1109/JSEN.2019.2960370
http://dx.doi.org/10.1109/JSEN.2019.2960370
http://dx.doi.org/10.1109/EMBC.2019.8856811
http://dx.doi.org/10.1109/EMBC.2019.8856811
http://dx.doi.org/10.1109/EMBC.2019.8856811
http://refhub.elsevier.com/S1746-8094(23)01126-6/sb10
http://refhub.elsevier.com/S1746-8094(23)01126-6/sb10
http://refhub.elsevier.com/S1746-8094(23)01126-6/sb10
http://refhub.elsevier.com/S1746-8094(23)01126-6/sb10
http://refhub.elsevier.com/S1746-8094(23)01126-6/sb10
http://dx.doi.org/10.1109/ICSCCN.2011.6024656
http://dx.doi.org/10.1109/ICSCCN.2011.6024656
http://dx.doi.org/10.1109/ICSCCN.2011.6024656
http://dx.doi.org/10.1109/TIM.2011.2175832
http://refhub.elsevier.com/S1746-8094(23)01126-6/sb13
http://refhub.elsevier.com/S1746-8094(23)01126-6/sb13
http://refhub.elsevier.com/S1746-8094(23)01126-6/sb13
http://refhub.elsevier.com/S1746-8094(23)01126-6/sb13
http://refhub.elsevier.com/S1746-8094(23)01126-6/sb13
http://dx.doi.org/10.3390/app13085211
https://www.mdpi.com/2076-3417/13/8/5211
https://www.mdpi.com/2076-3417/13/8/5211
https://www.mdpi.com/2076-3417/13/8/5211
http://refhub.elsevier.com/S1746-8094(23)01126-6/sb15
http://refhub.elsevier.com/S1746-8094(23)01126-6/sb15
http://refhub.elsevier.com/S1746-8094(23)01126-6/sb15
http://dx.doi.org/10.1038/s41592-019-0686-2
http://dx.doi.org/10.1038/s41592-019-0686-2
http://dx.doi.org/10.1038/s41592-019-0686-2
http://refhub.elsevier.com/S1746-8094(23)01126-6/sb17
http://refhub.elsevier.com/S1746-8094(23)01126-6/sb17
http://refhub.elsevier.com/S1746-8094(23)01126-6/sb17
http://refhub.elsevier.com/S1746-8094(23)01126-6/sb18
http://refhub.elsevier.com/S1746-8094(23)01126-6/sb18
http://refhub.elsevier.com/S1746-8094(23)01126-6/sb18
http://refhub.elsevier.com/S1746-8094(23)01126-6/sb19
http://refhub.elsevier.com/S1746-8094(23)01126-6/sb19
http://refhub.elsevier.com/S1746-8094(23)01126-6/sb19

	Opening the envelope: Efficient envelope-based PPG denoising algorithm
	Introduction
	Materials and Methods
	Data
	Manifestation of noise

	Envelope PPG denoising algorithm
	Algorithm evaluation

	Results
	Discussion
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgement
	References


