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Monocular and binocular mechanisms detect modulations of dot density 
and dot contrast 
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A B S T R A C T   

Strong reciprocity has been demonstrated between (1) spatial modulations of dot density and modulations of dot 
luminance, and (2) modulations of dot density and modulations of dot contrast, in textures. The latter are much 
easier to detect when presented in phase with one another than when presented 180◦ out of phase, although out- 
of-phase modulations can also be detected given sufficient amplitude. This result supports the existence of two 
detection mechanisms: one that is excited by both density modulations and contrast modulations (quiescent 
when those modulations are presented 180◦ out of phase) and another that is relatively insensitive to either 
density modulations or contrast modulations (thus remaining stimulated regardless of phase angle). We inves-
tigate whether the mechanism responsible for detecting out-of-phase modulations depends on high-level com-
putations (downstream from the confluence of monocular signals) or whether both mechanisms are situated at 
the monocular level of visual processing. Specifically, density-modulated and/or contrast-modulated stimuli 
were presented monocularly (i.e., to the same eye) or dichoptically (i.e., to opposite eyes). Out-of-phase mod-
ulations of density were much easier to detect when presented dichoptically. A dichoptic advantage was also 
found for out-of-phase density and contrast modulations. These dichoptic advantages imply conscious access to a 
mechanism at the monocular level of processing. When density modulations were presented dichoptically, 180◦

out of phase, detection thresholds were highest. Consequently, a mechanism with binocular input must also 
contribute to the detection of these modulations. We describe a minimal, image-based model for these results 
that contains one monocular computation and one binocular computation.   

1. Introduction 

The research described in this paper has three somewhat disparate 
antecedents. The first is a series of demonstrations (Kolb & Braun, 1995; 
Morgan, Mason, & Solomon, 1997; Solomon & Morgan, 1999; Solomon, 
John, & Morgan, 2006) that the modulation of textural properties (local 
orientation, in particular) can remain visible in brief, “inverse-cyclo-
pean” displays. Such displays are inherently dichoptic. To qualify as 
inverse cyclopean (Julesz, 1971), the targets they contain must become 
invisible when the two eyes’ displays are superimposed outside the vi-
sual system (and thus presented dioptically rather than dichoptically; 
see Fig. 1). These demonstrations unambiguously imply that there is a 
mechanism sensitive to textural modulations present at the monocular 
level of visual processing. 

The second antecedent is Mulligan and MacLeod’s (1988) report of 
reciprocity between density and luminance in textures composed of 
dots. Spatial modulations of density and luminance were difficult to 

detect when more-dense regions coincided with less-bright regions. The 
third and final noteworthy antecedent to the present material was Sol-
omon and Morgan’s (2020) signal-detection model for detecting and 
discriminating modulations of blur from modulations of contrast. 

In an attempt to draw these latter two antecedents together, Morgan, 
MacLeod, and Solomon (2022) applied the model of Solomon and 
Morgan (2020) to the results of a summation experiment, in which 
modulations of dot density were presented both in phase and 180◦ out of 
phase with modulations of dot contrast. Although the model’s fit can be 
considered satisfactory, we must note that – unlike blur, which can be 
estimated by comparing high-frequency content with low-frequency 
content – there is no generally accepted mechanism by which density 
can be estimated independently from stimulus contrast. Consequently, 
some dissatisfaction with Solomon and Morgan’s model remained 
because it simply assigned arbitrary gains to different dimensions of 
modulation. 

Aside from its reliance on arbitrary gains, there is at least one notable 
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aspect of the model described by Morgan et al. (2022): it contains the 
minimum number of detection mechanisms required for qualitative 
consistency with their summation results. In the first of those results, 
Morgan et al. reported that detection thresholds for in-phase modula-
tions of dot density and dot contrast were 30 %–55 % lower than the 
thresholds for either modulation in isolation. This near-perfect sum-
mation is consistent with a single mechanism that is sensitive to both 
types of modulation. An additional mechanism, responding primarily to 
one or the other modulation, is implicated by the similarity between 
thresholds for out-of-phase modulations and those for either type of 
modulation in isolation. The model of Morgan et al. can be considered 
minimal, as it comprises these two mechanisms and no others. 

The current project was designed to serve two purposes. We sought 
an image-based model that did not rely on arbitrary gains for density 
modulation and contrast modulation. Moreover, we wanted to satisfy 
our curiosity regarding the mechanisms subserving the detection of 
these modulations. If two modulations are detected more readily when 
presented dichoptically than when presented dioptically, at least one of 
those modulations must activate a mechanism with monocular input. 
Conversely, a mechanism with binocular input would be implicated if 
detection depended on the phase angle between dichoptically presented 
modulations. 

2. Methods 

Participants included two authors and two volunteers who were 
naïve with respect to the purpose of these experiments. All had normal 
or corrected-to-normal vision and no history of visual or vestibular 
sensory disorders. Participant KZ wore corrective contact lenses. The 
study was approved by City, University of London’s Optometry Pro-
portionate Review Research Ethics Committee. 

2.1. Stimuli 

Left and right eyes’ images were presented separately on the two 

Pentile OLED screens within a Rift CV1 head-mounted display (HMD; 
Oculus VR, LLC, Irvine, California, USA). Each screen had a refresh rate 
of 90 Hz and a resolution of 1080 x 1200 pixels, where each pixel had an 
angular subtense of 5.4 arcmin. The HMD was connected to an Oculus- 
ready PC system (Intel Core i7-6700K, 4 GHz, 16 GB RAM, Nvidia 
GeForce GTX 970 4 GB). Stimulus presentation was controlled using 
MATLAB with the Oculus VR library in Psychtoolbox (Brainard, 1997). 

Compound stimuli were created by placing dots on a notional 
checkerboard of 70 × 70 squares. Dots comprising one component were 
placed on the black squares, dots comprising the other component were 
placed on the red squares. A spatial modulation was applied to each 
component’s contrast or density by manipulating dot contrast c(x) or 
probability of placement p(x) in the horizontal dimension x, and then 
rotating the entire texture by ±45◦. The rotated texture was viewed 
through a notional, fixed, circular aperture with radius 15.7◦ of visual 
angle, which allowed a maximum of 70 dots along its diameter. A 
concentric white circle, with radius 22.2◦ of visual angle, remained 
visible throughout the experiment. Fig. 2 illustrates examples in which 
the two components were exposed to different eyes. In both examples, 
one component has a contrast modulation, the other has a density 
modulation. 

The profile of each dot matched that of a bivariate normal density 
having covariance matrix: 

Σ =

[
(1pixel)2 0

0 (1pixel)2

]

.

Its polarity was bright or dark with equal probability, determined 
independently from that of every other dot. For components having a 
contrast modulation, a dot was placed in each (notionally black or red) 
square with a fixed probability of 0.5. The peak Weber contrast of each 
dot was a sinusoidal function of position: 

c(x) = ±[1+mc cos(4πx + φ) ]/2  

In this expression x extends from –0.5 at the left edge of the aperture to 

Fig. 1. Dioptic (left), and dichoptic, inverse-cyclopean (right) displays.  
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0.5 at the right edge. Thus, there are two complete cycles of modulation. 
Unless otherwise constrained (see below), the spatial phase φ was 
selected at random from the set {0,90◦

, 180◦

,270◦

}. Modulation 
amplitude mc was determined by an adaptive staircase, described below 
(Experiment 2). 

For components having a density modulation, the peak Weber 
contrast of each dot was fixed at ±0.5. A dot was placed in each 
(notionally black or red) square with probability 

p(x) = [1+md cos(4πx + φ) ]/2  

Where the modulation amplitude md was determined by an adaptive 
staircase and the spatial phase φ was selected at random from the set 
{0,90◦

,180◦

, 270◦

}, unless otherwise constrained, as described below 
(Experiment 2). 

2.2. Procedure 

Participants were seated in front of the table in a height-adjustable 
chair in a quiet, darkened room. They donned the HMD and were 
instructed to tighten the straps to secure it. The experimenter then asked 
the participant to confirm that the HMD was fitted comfortably, and the 
view of the test stimulus was in focus. Textured tape was attached to the 
response keys so that they could be identified haptically. On each trial, a 
contrast-modulated and/or density-modulated texture was presented for 
0.5 s, accompanied by an auditory click. The participant pressed a 
response key to indicate whether it was tilted leftward or rightward (i.e., 
rotated ±45◦ with respect to vertical). Guess rate – i.e., accuracy in the 
limit, as the modulation amplitude approaches zero – for this task is γ =

0.5. Lapse rates δ were estimated for each participant from a randomly 
selected subset of trials (10 % of the total), in which the adaptive 
staircase was ignored in favour of the maximum modulation amplitude. 

2.3. Experiment 1 

Experiment 1 was designed to determine thresholds for each 
component texture, when viewed monocularly, in isolation. A QUEST 
staircase (Watson & Pelli, 1983) converged on the modulation ampli-
tude required for participants to achieve 81 % accuracy in each of four 
conditions: left-eye contrast, right-eye contrast, left-eye density, and 
right-eye density. These conditions were randomly interleaved in a 
block of 200 trials, with each participant completing a minimum of two 
blocks. 

For our threshold estimates, we used the scale parameter α from the 
log-Weibull function, compressed to the range (γ,1 − δ), which best-fit 
the response frequencies in each condition. These maximum- 
likelihood fits were obtained with best-fitting (maximum likelihood) 
values of β for each participant in each condition. This parameter de-
termines the slope of the psychometric function. See Fig. A1 and 
Table A1 for further details. 

2.4. Experiment 2 

Experiment 2 was designed to determine performance with com-
pound textures, in which two monocularly exposed components (one on 
the notionally black squares and one on the notionally red squares) were 
presented at equal multiples of their thresholds, as determined in 
Experiment 1. A QUEST staircase converged on the multiple of threshold 
required for participants to achieve 81 % accuracy in each of 16 
conditions:  

1. Left-eye contrast and left-eye density out of phase  
2. Left-eye contrast and left-eye density in phase  
3. Right-eye contrast and right eye density out of phase  
4. Right-eye contrast and right-eye density in phase  
5. Left-eye contrast and right-eye density out of phase 

Fig. 2. Example stimuli showing how individual components (contrast: left; density: centre) at maximum modulation amplitude are combined in phase (top row) and 
out of phase (bottom row). 
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6. Left-eye contrast and right-eye density in phase  
7. Right-eye contrast and left-eye density out of phase  
8. Right-eye contrast and left-eye density in phase  
9. Right-eye contrast and right-eye contrast in phase  

10. Left-eye contrast and left-eye contrast in phase  
11. Right-eye density and right-eye density in phase  
12. Left-eye density and left-eye density in phase  
13. Right-eye contrast and left-eye contrast out of phase  
14. Right-eye contrast and left-eye contrast in phase  
15. Right-eye density and left-eye density out of phase  
16. Right-eye density and left-eye density in phase 

This list excludes the following 4 out of the total 20 logical combi-
nations of eye (left and/or right), modulation (contrast and/or density) 
and phase (in phase or out of phase):  

17. Right-eye contrast and right-eye contrast out of phase  
18. Left-eye contrast and left-eye contrast out of phase  
19. Right-eye density and right-eye density out of phase  
20. Left-eye density and left-eye density out of phase 

Although the modulations in excluded conditions 19 and 20 were 
necessarily invisible, the modulations in excluded conditions 17 and 18 
might not have been invisible. This is because each component modu-
lation was applied to a distinct set of dots. Participants JAS and KZ 
completed a total of 4 blocks of 400 trials each, resulting in a total of 100 
trials per condition. Participant RDS completed 2 blocks, for a total of 50 
trials per condition. Participant DVD completed 5 blocks, yielding 
100–150 trials per condition. 

3. Results 

Raw data and analyses thereof for each individual participant can be 
found in the Appendix (See Fig. A2). Mean threshold elevations across 
all 4 participants are illustrated at the top of Fig. 3. Each threshold 
elevation is the difference (in dB) between threshold for the compound 

modulation, as measured in Experiment 2, and threshold for each iso-
lated modulation, as measured in Experiment 1. Negative threshold el-
evations correspond to threshold reductions. 

We found a distinct dichoptic advantage for out-of-phase (but 
equally visible) modulations of density and contrast. That is, threshold 
was lower [6.0 dB ± 1.5 dB; t(3) = 7.97, p = 0.002] when the two 
components were presented to different eyes than when they were 
presented to the same eye. The results also indicate a dichoptic advan-
tage for detecting two out-of-phase density modulations. (Were those 
modulations presented to the same eye, they would have been invisible.) 
Consequently, the results strongly imply the existence of at least one 
mechanism sensitive to density modulations at the monocular level of 
processing. 

Our results also contain evidence for an effect of phase angle [5.0 dB 
± 3.5 dB; t(3) = 2.86, p = 0.032] on thresholds for dichoptic Density +
Density compounds. This suggests a mechanism that receives input from 
both eyes. No effect of phase angle would be expected if it received 
merely monocular input. 

Note that there was no significant threshold elevation (positive or 
negative) for monocular compounds when their two component mod-
ulations were presented in phase with one another. Prima facie this may 
seem inconsistent with the reduction in threshold for in-phase modu-
lations of contrast and density reported by Morgan et al. (2022). How-
ever, Morgan et al. applied contrast and density modulations to a single 
set of dots. Dichoptic stimulation in the current experiment, on the other 
hand, necessitates modulation of different dots in the two eyes. Fair 
comparison, therefore, likewise necessitates component modulations of 
different dots in our monocular conditions. The lack of significant 
threshold elevation (positive or negative) in these conditions means that 
a modulation’s detectability remained unaffected after doubling the 
product between density and contrast at both its peak and its trough. 
This final result can be considered consistent with Weber’s Law. 

4. An image-based model for detecting modulations of dot 
density and dot contrast 

Although the model described by Morgan et al. (2022) can be 
modified to produce data similar to those collected in these dichoptic 
experiments, it cannot explain how density modulations become 
partially disentangled from contrast modulations. One potential process 
is described below: an expansive nonlinearity applied to each dot can 
disproportionately increase the impact of higher contrasts, whereas a 
compressive nonlinearity can reduce the difference between impacts of 
high-contrast and low-contrast dots, thereby creating a signal largely 
based on dot density. Although, for simplicity, both mechanisms in the 
model employ power-function nonlinearities, we placed no constraints 
on their exponents, whose values were allowed to vary independently 
when fitting the model to data. 

Inputs to the model were stimuli similar to those described in the 
Methods section. However, circular apertures were not used, and image 
orientations were horizontal or vertical, rather than ±45◦. The full im-
aging pipeline is shown in Fig. 4. In the monocular channel, trans-
formations are applied separately to the image in each eye. In the other, 
binocular channel, summation of the two eyes’ images is computed 
before the following transformations. First, full-wave rectification is 
applied to each pixel’s Weber contrast (Weber contrasts are approxi-
mately proportional to the output from a high-pass, linear filter; Dakin, 
Tibber, Greenwood, Kingdom, & Morgan, 2011). Next, a pointwise, non- 
linear transformation is applied to each rectified stimulus. To get a 
phase-independent visual signal, we use quadrature pairs. Dot products 
between the full-wave rectified, transduced stimulus and quadrature 
pairs that are perpendicular to each other (one pair tuned to horizontal 
targets, the other tuned to vertical targets) are computed. To obtain 
Weber’s Law, each dot product is normalised by the sum of a small 
constant and the dot products between these outputs and full-wave 
rectified versions of the quadrature pairs. For steep psychometric 

Fig. 3. Detection thresholds (mean ± 1 SD, N = 4) for 2-component dot tex-
tures. Thresholds are expressed as multiples of the corresponding thresholds for 
isolated components, in dB (i.e., where 6 dB corresponds to a factor of 2). Our 
image-based model can produce threshold elevations (bottom) similar to those 
derived from atheoretical Weibull fits (top), including i) dichoptic advantages 
in the out-of-phase conditions, ii) an effect of phase angle when two density 
modulations are presented dichoptically, and iii) zero threshold elevation when 
component modulations are presented in phase to the same eye. 
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Fig. 4. Imaging pipeline. Left-eye and right-eye images are matrices of Weber contrast. In this example, images contain dichoptic, out-of-phase modulations of 
density (left eye) and contrast (right eye), 9 dB above participant JAS’s detection thresholds for each eye’s modulation in isolation. Image resolution (210 × 210) is 
somewhat smaller than that used in the actual experiment. The binocular channel receives the sum of the two eyes’ images. At the first stage of processing, images 
undergo pointwise, nonlinear, full-wave rectification, adhering to a power law with exponents p and r in the monocular and binocular channels, respectively. (When 
drawn around a bold-face character denoting a matrix, vertical bars signify a pointwise or element-by-element transformation, whose result is a matrix of the same 
size.) The model’s 5 free parameters appear in red. At the second stage of processing, each signal is matched with two quadrature pairs of sinusoidal templates. At the 
third stage, each of these matches (a dot product) is normalized by something like contrast energy. Specifically, we use the sum of a small constant (z = 10− 8) to 
prevent divide-by-zero errors and the dot products between the rectified stimuli and similarly rectified versions of the quadrature pairs. This normalization produces 
near-zero monocular threshold elevations. At the fourth stage of processing, each signal undergoes another (expansive) nonlinear transformation. This expansion (a 
power law, with exponent q > 1) produces steep psychometric functions. At the fifth stage of processing, signals in the monocular and binocular channels are 
combined linearly to produce deterministic, scalar values. At the sixth stage, an independent sample of zero-mean, Gaussian noise is added to each channel. Its 
variance is σ2. The ellipse represents 1 standard deviation of the noise in every direction around this example’s mean in the plane of all possible monocular and 
binocular signals. A criterion line segregates the plane of all possible signals into those favouring horizontal and those vertical horizontal targets. The gradient of this 
criterion (a) effectively determines the relative weight of monocular and binocular signals in the decision process. For this example, we use parameter values fit to the 
data from participant JAS (p = 3.6, r = 0.44, q = 2.0, σ = 0.0037, and a = –0.07). (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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functions (see Table A1), expansive transduction is applied to each 
normalized dot product. Next, a comparison (subtraction) between the 
two sums of each quadrature pair is carried out for each of the channels. 
An independent sample of zero-mean, Gaussian noise is then added. The 
relative weight of monocular and binocular signals in the decision 
process is determined by the gradient of a criterion line that segregates 
the plane of all possible monocular and binocular signals into those fa-
voring horizontal targets and those favoring vertical targets. 

For each depth of modulation selected by the QUEST staircases (see 
Methods) in each of the 20 conditions in Experiments 1 and 2, we 
calculated the model’s predicted accuracy using 10 randomly generated 
stimuli. Mathematica’s FindMinimum routine converged upon the 
parameter values that maximised the joint likelihood of a participant’s 
actual accuracies, given the model’s predictions.1 This optimisation 
routine was repeated with the results from each participant. Model code 
and fitting details can be found in the Supplementary Material. 

Fig. 3 (bottom) shows mean threshold elevation predicted by the 
model for all participants in each condition and Table 1 contains best- 
fitting parameter values and log likelihood for each participant. 

For all four participants, best fits were obtained when the monocu-
larly driven mechanism employed an expansive point-wise nonlinearity 
(p ≫ 1). Consequently, modulations of dot contrast had a greater impact 
on monocular signals than modulations of dot density. For all four ob-
servers, best fits were obtained when the binocularly driven mechanism 
employed a compressive point-wise nonlinearity (r ≪ 1). Consequently, 
modulations of dot density had a greater impact on binocular signals 
than modulations of dot contrast. 

One of the things to notice in Fig. 2 (bottom) is that the model pre-
dicts no threshold elevation (positive or negative) for monocular com-
pounds when their two component modulations were presented in phase 
with one another. Without a normalization stage the model would have 
been incapable of producing this result, consistent with Weber’s Law for 
contrast energy and thus density. Another thing to notice is that, 
whereas the model predicts a large effect of phase angle on dichoptic 
Density + Density compounds, it doesn’t predict a large effect of phase 
angle on dichoptic Contrast + Contrast compounds. This difference can 
be attributed directly to the difference in power-function exponents. In 
the binocular channel, the exponent is compressive, emphasizing the 
impact of density modulations over contrast modulations. In the 
monocular channel, we have the reverse: an expansive exponent, 
emphasizing the impact of contrast modulations over density modula-
tions. One final thing to notice is that the model predicts a large 
dichoptic advantage for out-of-phase compounds of Contrast + Density. 
Without a monocular channel, this dichoptic advantage would have 
been impossible. 

Although the model has proven to be quite successful in producing 

results qualitatively similar to those of our human participants, it is far 
from perfect. Perhaps the largest quantitative discrepancy occurred in 
the Dichoptic Density + Density condition. Best fits were obtained when 
the model predicted 3.4 dB or more threshold elevation for each 
observer. However, threshold elevation in this condition proved signif-
icant for only one of our four observers (RDS, see Fig. A2). 

5. Discussion 

From our empirical findings, we can safely draw two general con-
clusions. 1) Dichoptic advantages for detecting 180◦ out-of-phase 
modulations of dot contrast and/or dot density imply that there must 
be at least one mechanism sensitive to these modulations at the 
monocular level of visual processing. 2) The relative ease with which in- 
phase, dichoptic modulations of density can be detected, as compared 
with 180◦ out-of-phase, dichoptic modulations, implies at least one 
mechanism sensitive to these modulations at the binocular level of vi-
sual processing. 

Given these constraints, we have assembled a relatively simple, 
image-based model capable of producing data similar to those from our 
human participants. As with the model envisioned by Durgin and Proffitt 
(1996), ours employs different non-linearities for dissociating signals 
similar to contrast energy from signals similar to texture density. 
Furthermore, our model incorporates their proposal that both of these 
signals act as input to a texture-discrimination process. 

Whereas Durgin and Proffitt (1996) noted that a (compressive) non- 
linearity could produce visual signals commensurate with texture den-
sity, Zavitz and Baker (2013, 2014) actually constructed an image-based 
model, wherein this compression subserved texture segregation on the 
basis of density as well as the influence of density on the visibility of 
other textural differences. Conversely, Morgan, Raphael, Tibber, and 
Dakin (2014) described an image-based model of density discrimina-
tion, in which the influence of contrast variability was minimized with a 
simple, compressive transformation of (unsigned) image contrast. 

One notable aspect of our model’s simplicity is the similarity be-
tween its monocular and binocular mechanisms. The only difference 
between these mechanisms, other than the fact that monocular mecha-
nisms get input from one eye and binocular mechanisms get input from 
two eyes, lies in the value of the exponent defining the power-function 
related input to output. Indeed, it might be worth noting that these 
two exponents, a third parameter describing the relative weight of 
monocular and binocular signals in the decision process, and a fourth 
parameter defining the performance-limiting noise were the only free 
parameters in an even simpler model which proved incapable of pro-
ducing data consistent with Weber’s Law for density. 

It should be noted that, although our data are consistent with We-
ber’s Law for density (i.e., a threshold elevation equal to 0 for in-phase, 
monocular, density + density compounds), we must refrain from 
accepting this null hypothesis, especially considering evidence to the 
contrary, such as that collected by Burgess and Barlow (1983), who used 
a very different psychophysical paradigm (participants were required to 
detect the boundary of a bi-partite field). Nonetheless, to produce data 
similar to those from our human participants, our otherwise relatively 
simple model was forced to incorporate computations at least approxi-
mately consistent with Weber’s Law. Given the fact that nonlinear 
transduction had already been incorporated into both our model’s 
mechanisms, we opted for divisive inhibition (Foley, 1994). 

Although successful in producing near-zero threshold elevations for 
in-phase, monocular, compound modulations, one inescapable by- 
product of divisive inhibition is a flattening of the psychometric func-
tion of probability correct vs. log modulation depth. Consequently, one 
final, additional stage of signal processing was required for the model to 
produce psychometric functions that weren’t implausibly shallow. The 
simplest such computation seemed to be a late-stage, expansive non- 
linearity. Again, we opted for a power-function, whose exponent 
became the fifth (of five) free parameters in the image-based model that 

Table 1 
Parameter values maximizing the likelihood of the model fit to the psychometric 
functions.  

Participant p r q σ a ln L 

JAS  3.6  0.44  2.0  0.0037  − 0.07  − 1118.2 
KZ  2.2  0.22  1.8  0.0064  − 0.33  − 1110.7 
RDS  2.2  0.24  1.3  0.0414  − 0.39  − 666.0 
DVD  4.0  0.64  1.2  0.0488  − 0.22  − 1038.9  

1 A 2020 MacBook Pro with Apple’s M1 microprocessor was capable of 
computing expected accuracy for a given stimulus in approximately 0.03 s. 
Thus, given one set of parameter values, it could calculate the joint likelihood of 
one participant’s actual accuracies in approximately 14 min (7 min for RDS). 
For each participant, several days were required for FindMinimum to converge 
(within a specified accuracy of two decimal places) on the five parameter values 
maximising this joint likelihood. 
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we describe as ‘minimal’, even if it has 6 distinct processing stages (see 
Fig. 4)! 

Interocular transfer (and the lack thereof) of adaptation to textures 
having various densities and contrast energies allowed Durgin (2001) to 
infer a monocular mechanism sensitive to contrast energy and a binoc-
ular mechanism sensitive to density. Our results confirm and extend 
these findings. Whereas the possibility of monocular gain-control cir-
cuits precludes safe inferences regarding conscious access to monocular 
signals from incomplete interocular transfer of adaptation-induced 
sensitivity changes (Georgeson, Lerner, & Kingdom, 2023), such in-
ferences can be made from the dichoptic advantages reported here. 
These advantages imply that the texture-segregation processes receive 
input from neurons with monocular (or otherwise unbalanced) input. 
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Appendix

Fig. A1. Reductions in goodness-of-fit. The Weibull distribution was separately fit to 48 psychometric functions (12 conditions/observer × 4 participants) of 
probability correct vs. log modulation depth. Maximum, joint (base-10) log likelihood was –423. Fixing the Weibull shape parameter β caused likelihoods to fall by 
the amounts indicated. The reduction in likelihood was minimal when β was fixed at the value of 2.09. Note that ΔAIC = − 94 + 26.50ln100 = 28.1, providing 
“essentially no support” (Burnham & Anderson, 2003, p. 70) for the nested model with a fixed value for β. Neither allowing β to vary with participant (but not 
condition) nor condition (but not participant) helps (ΔAIC = 23.9 and ΔAIC = 20.6, respectively). 
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Fig. A2. Detection thresholds for 2-component dot textures. Thresholds are expressed as multiples of the corresponding thresholds for isolated components, in dB. 
Error bars contain 95% credible intervals.  
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Table A1 
Best-fitting (maximum likelihood) values of β for each participant in each condition. Values at the end of each row and/or column are best-fitting values for all 
participants and/or conditions.   

JAS KZ RDS DVD All 

1-component contrast  3.41  2.02  2.80  1.98  2.38 
1-component density  2.03  1.25  1.77  1.74  1.84 
Monocular contrast + contrast in phase  2.72  2.04  1.31  1.47  1.81 
Dichoptic contrast + contrast in phase  1.59  3.09  4.62  3.43  2.22 
Monocular density + density in phase  1.61  2.41  1.79  2.01  1.90 
Dichoptic density + density in phase  3.21  3.74  5.95  3.01  3.65 
Monocular contrast + density in phase  2.80  2.70  3.16  1.80  2.23 
Dichoptic contrast + density in phase  1.88  1.25  4.43  2.59  2.45 
Monocular contrast + density out of phase  2.46  2.53  1.36  1.20  1.87 
Dichoptic contrast + density out of phase  3.18  5.41  5.34  1.16  1.99 
Dichoptic contrast + contrast out of phase  1.12  3.20  1.93  2.72  1.75 
Dichoptic density + density out of phase  2.08  1.98  6.06  4.68  3.38 
All conditions  2.21  2.59  2.01  1.81  2.09   
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