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Abstract

The generalised linear model is a flexible predictive model for observational data that is widely

used in practice as it extends linear regression models to non-Gaussian data. In this paper we in-

troduce the concept of a properly defined generalised linear model by requiring the conditional

mean of the response variable to be properly mapped through the chosen link function and

the log-likelihood function to be concave. We provide a comprehensive classification of proper

generalised linear models for the Tweedie family and its popular subclasses under different

link function specifications. Our main theoretical findings show that most Tweedie generalised

linear models are not proper for canonical and log link functions, and identify a rich class

of proper Tweedie generalised linear models with power link functions. Using self-concordant

log-likelihoods and linearisation techniques, we provide novel algorithms for estimating sev-

eral special cases of proper and not proper Tweedie generalised linear models with power link

functions. The effectiveness of our methods is determined through an extensive numerical com-

parison of our estimates and those obtained using three built-in packages, MATLAB fitglm,

R glm2 and Python sm.GLM libraries, which are all implemented based on the standard It-

eratively Reweighted Least Squares method. Overall, we find that our algorithms consistently

outperform these benchmarks in terms of both accuracy and efficiency, the largest improvements

being documented for high-dimensional settings.
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1. Introduction

1.1. Literature Review and Main Goals

Generalised linear modelling (GLM) is a predictive model for observational data which creates a

bridge between statistics and machine/statistical learning. That is, GLM provides not only sta-

tistical goodness of fit evidence (Nelder and Wedderburn, 1972; McCullagh et al., 1989; Bickel

and Doksum, 2015) but also machine/statistical learning evidence such as feature/variable se-

lection (Kuo and Mallick, 1998; Hastie et al., 2001; Fouskakis, 2012).1

The basic GLM requires assumptions about two key quantities, the underlying parametric

distribution and the choice of link function (LF). The estimation procedure is based on an op-

timisation algorithm if the most common estimation method is chosen, i.e. maximum likelihood

estimation (MLE). The asymptotic theory of M-estimators requires a concave log-likelihood

function, which is the ideal setting so that efficient and stable estimates are obtained; the ex-

istence and uniqueness of the MLE estimator is an essential assumption that requires some

regularity conditions (Wedderburn, 1976; Mäkeläinen et al., 1981). Consequently, we introduce

the concept of a proper GLM which requires the conditional mean of the response variable

to be properly mapped through the chosen LF and for the log-likelihood function to be well-

defined and concave. Since the GLM literature typically relies on exponential dispersion models

(Jørgensen, 1987), our first main goal is to provide a classification of proper GLMs under this

modelling assumption for different LF specifications. This allows the modeller to reduce the

numerical issues and understand which combination of parametric family and LF would provide

the best possible setting for implementation purposes. The most common LFs belong to the

class of log or power functions, see e.g. McCullagh et al. (1989) and Bickel and Doksum (2015),

and thus the main focus will be on these choices.

The most popular algorithms for fitting exponential dispersion GLMs are Iteratively Reweighted

Least Squares (IRLS), Broyden-Fletcher-Goldfarb-Shanno (BFGS) and Limited-memory BFGS

(L-BFGS). IRLS is the standard algorithm which is reasonably scalable when the number of

covariates/features is smaller than the sample size. However, IRLS requires inverting the Hessian

matrix at every step, which is computationally challenging in non-sparse problems when either

the number of features/covariates or the sample size is small. A remedy for this is given by

either BFGS or L-BFGS, where the inverse of the Hessian is approximated so that it is feasible

to solve higher-dimensional GLM Regressions.2 The second main goal of the paper is to identify

viable alternative estimation algorithms to IRLS. Given that the underlying distribution of the

response variable is parametrised according to an exponential dispersion family, the MLE could

also be obtained via the vanilla Newton’s method, which by design is the same as IRLS if

the canonical LF is in place; the application of Newton’s method is also known as the Fisher

Scoring method in the GLM literature. Our aim is to improve this estimation method for both

1GLMs have been successfully implemented in different research fields. For example, in actuarial science
GLM applications include mortality modelling (Debón et al., 2008), default prediction (Breeden, 2016), cyber
risk modelling (Eling and Wirfs, 2019), insurance pricing (Delong et al., 2021), failure prediction modelling (van
Staden et al., 2022), etc.

2The standard benchmark for high-dimensional problems is to have the number of features/covariates greater
than 500, and these cases are typically implemented using penalised GLM. However, feature/variable selection is
beyond the scope of this paper.
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proper and not proper GLM settings, by making use of the mathematical properties of power

LFs. For convex problems, Netwon’s algorithm can be further refined if the objective function

is in addition self concordant (SC), i.e. a convex function whose third derivative is bounded

relative to the second derivative in the interior of its domain.3 This property allows defining

an augmented Newton’s method which requires a fewer number of iterations for convergence

to the optimal solution, see e.g. Boyd and Vandenberghe (2004) or Nesterov (2004) for further

details on SC and their fast convergence iterative methods. Since the log-likelihood associated

to special cases of Tweedie GLMs (e.g. Poisson and Gamma) equipped with some particular

power LF specifications is an SC function, we rely on this method for implementing them.4

For non-convex problems, which is typically the case for many exponential dispersion GLMs

(e.g. Inverse Gaussian with power LFs), the use of standard IRLS-type algorithms leads to

significant computational problems, as illustrated in the next subsection. In such cases, one

could either construct bespoke optimisation algorithms designed to tackle a specific problem or

rely on mainstream optimisation tools (e.g. generic interior-point methods) if the former are

not available. In this paper we also aim to identify tractable solutions for non-convex GLM

instances by exploring linearisation techniques, see e.g. Boyd et al. (2011).

1.2. Motivation and Contributions

The impact of using standard IRLS-based built-in packages on fitting not proper exponential

dispersion GLMs is illustrated in the following motivational example. Specifically, using syn-

thetic data, we compare the estimates of an Inverse Gaussian GLM based on the log LF, which

is an example of a not proper GLM due to the non-concavity of its log-likelihood function, ob-

tained with either MATLAB’s fitglm library or the non-linear optimisation solver provided by

MATLAB’s fmincon function. Figure 1 displays box plots of the ratio between the L1 distance

(from the true value) of the estimates obtained with the latter method and those computed

using MATLAB’s fitglm values. The results suggest that the fmincon-based estimation signif-

icantly outperforms the fitglm counterpart, especially for large size problems, which indicates

that IRLS is not designed to perform well for not proper GLM settings.

To summarize, for any GLM implementation, one should not only consider a proper framework,

but also construct bespoke algorithms to deal with the optimisation problem when possible.

Our contributions address both these fundamental issues. First, we provide a comprehensive

characterisation of proper MLE-based GLMs for a variety of exponential dispersion models,

including the Tweedie family and its well-known special cases, under various LF specifications.

Our main theoretical findings indicate that most of Tweedie generalised linear models are not

proper for canonical and log link functions, and identify a rich class of proper Tweedie gen-

3In a GLM context, a modified version of the SC property with a different control of the third derivative has
been used by Bach (2010) for analyzing the statistical properties of Logistic Regressions.

4We should note that the augmented Newton’s method for SC objective functions still requires the inverse
of the Hessian matrix, but in a much lower number of iterations, which reduces the computational time. If the
size of the GLM is large, then one may need compromises like those given by BFGS and L-BFGS algorithms
where the inverse of the Hessian is efficiently computed, although we do not recommend this choice unless the
augmented Newton’s method is overwhelmed by the size of the problem. In conclusion, the SC objective functions
are expected to bring an improvement to IRLS, and large sized problems could be combined with the Hessian
inverse approximations brought by L-BFGS or BFGS.
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eralised linear models with power link functions. Consequently, using the Tweedie family for

GLM implementation needs a careful approach, since, despite its very flexible parametrisation,

the non-standard (Tweedie) models may lead to serious computational issues. Second, for a few

standard Tweedie GLMs equipped with special cases of power LFs, we provide efficient and

accurate bespoke algorithms for solving high-dimensional problems which cannot be properly

tackled with standard IRLS-type methods. Specifically, we propose the Newton’s method for

Self-Concordant problems (NSC) for solving Poisson and Gamma Regressions and the Alternat-

ing Linearisation Methods (ALM) algorithm for Inverse Gaussian Regressions. We provide a

comprehensive comparison between these algorithms and those available in the standard built-in

GLM libraries from various software, such as, MATLAB fitglm, R glm2 and Python statsmod-

els sm.GLM . We find that our methods outperform these benchmarks in terms of both accuracy

and efficiency, the largest improvements being documented for high-dimensional problems.

The remainder of the paper is organized as follows. Section 2 introduces the notion of proper

GLMs for exponential dispersion models and reviews the LF candidates. Section 3 provides

a comprehensive classification of proper Tweedie GLMs and its subclasses. Section 4 intro-

duces the NSC and ALM algorithms for solving Poisson and Gamma, and Inverse Gaussian

Regressions, respectively. The numerical comparison between these algorithms and the stan-

dard built-in libraries from MATLAB, R and Python is illustrated in Section 5. Section 6

concludes the paper.
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Figure 1: Box plots of MATLAB fmincon vs fitglm for Inverse Gaussian GLM
Notes: This figure shows the box plots of the ratio between the L1 distance (from the true value) of the
MLE-based GLM solutions obtained with MATLAB’s fmincon function and the IRLS-based GLM solution
obtained with MATLAB’s fitglm library. Each box plot is constructed based on N = 500 simulations
according to the DGP scheme outlined in Appendix C, for different specifications for the number of
observations and the number of covariates. All GLMs are fitted with log LFs, i.e. a non-proper GLM.

2. Proper GLMs and LF candidates for exponential dispersion models

A univariate GLM setting assumes that the response variable Y , defined on Y ⊆ <, is explained

by covariates/features XXX defined on X ⊆ <d. Let {Pθ,φ : θ ∈ Θ ⊆ <, φ ∈ Φ ⊆ <} be the

parametric set of distributions for Y , which is assumed to be an exponential dispersion model
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characterised by the following probability density/mass function:5

log (fY (y; θ, φ)) =
θy − b(θ)
a(φ)

+ c(y, φ). (2.1)

Here, a(·), b(·) and c(·, ·) are real-valued functions defined on Φ, Θ and Y × Φ, respectively,

and φ is the dispersion parameter. When φ is fixed, (2.1) resembles an exponential family with

canonical parameter θ. Under standard regularity conditions, the mean and variance of Y are

E [Y ] = b′(θ) and Var [Y ] = a(φ)b′′(θ). (2.2)

The GLM consists of n independent r.v.’s (observations) Y1, · · · , Yn with Yi distributed accord-

ing to (2.1) with parameters θi and φ, and functions ai (φ) , b (θi) and c (yi, φ), and conditional

mean linked through a linear predictor ηi = xxx>i βββ via a real-valued function h, so that

E [Yi |XXXi = xxxi] = h
(
xxx>i βββ

)
. (2.3)

Here, xxxi is a d-dimensional vector of realized features/covariates for any i = 1, . . . , n.6

The inverse function of h, provided that it exists, is known as the link function (LF) and it is

denoted by g = h−1. The standard GLM literature differentiates the GLMs by the parametric

choice made in (2.1) and the preferred LF g. However, from the maximum likelihood estimation

(MLE) perspective, the function h is more relevant than g, and thus, the remaining results

are described in terms of the former. If the dispersion parameter φ is known (otherwise it is

estimated through the variance function from (2.2)), the MLE associated with the GLM defined

in Equations (2.1) and (2.3) is obtained by solving the following non-linear optimisation problem

β̂ββ = arg max
βββ∈<d

` (βββ) =
n∑
i=1

θiyi − b (θi)

ai (φ)
with θi =

(
b′−1 ◦ h

) (
xxx>i βββ

)
. (2.4)

Without loss of generality, we let ai (φ) = a (φ).7 The above optimisation problem is well-defined

and admits a (unique) solution if the functions a, b and h satisfy certain regularity conditions.

These constraints formalise the concept of a proper GLM and are summarised below.

Definition 2.1. The GLM defined in Equations (2.1) and (2.3) is said to be proper if the

following two conditions are satisfied:

C1. The conditional mean relationship from (2.3) is properly mapped, i.e. h : < → b′ (Θ) ⊆

5Although the univariate assumption for the response variable Y is not essential, it simplifies the exposition.
6Note that although the linear predictor suggests observing d covariates/features (since X ⊆ <d), in fact we

only assume d− 1 covariates as we impose xi,1 = 1 for any i = 1, . . . , n almost surely. This convention simplifies
the notation, so that the linear predictor becomes ηi = xxx>i βββ = β0 + β1xi,1 + . . .+ βd−1xi,d−1.

7A popular choice in the GLM literature is to consider ai (φ) = a (φ) /wi with a (φ) = φ and wi non-negative
fixed weights for all i = 1, . . . , n. Under this assumption, the non-linear optimisation from Equation (2.4) is
equivalent to solving a weighted MLE for a GLM where the response variable follows a canonical one-parameter
exponential family distribution. While this could simplify the estimation of βββ, and some bespoke model adequacy
is typically available to check whether the predefined weights wi are acceptable, in reality, this is more like a trial
error approach which is often resolved by relying on domain knowledge.
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Conv (Y) with b′ : Θ→ b′ (Θ) an injective function.8

C2. Assume that the likelihood function is well-defined in (2.4). The individual likelihood

contribution is a (strictly) concave function, i.e.{
sgn (a (φ)) ·

(
y ·
(
b′−1 ◦ h

)
(η)−

(
b ◦ b′−1 ◦ h

)
(η)
)

is (strictly) concave

in η on < for any given y ∈ Y,

where sgn is the signum function.

Condition C1 ensures that the GLM estimation is well-defined. More specifically, we require

the function b′ to be injective, so that it admits an inverse.9 Condition C2 implies that the

likelihood function ` defined in (2.4) is a concave function in η ∈ <, since the composition

of a concave function with an affine mapping is concave and the sum of concave functions is

also concave; in other words, (2.4) is a concave programming instance. Consequently, under

the constraints from Definition 2.1, the optimisation problem in (2.4) leads to solutions which

are global maximum (see e.g. Boyd and Vandenberghe (2004)). Note that the asymptotic

distribution of β̂ββ – like any M-estimator – requires Equation (2.4) to have a unique solution,

which is not always guaranteed. However, this condition is always satisfied if the function from

Condition C2 is strictly concave.10 Note that we exclude from our analysis the cases in which

n ≤ d or d/n → δ ∈ (0, 1) with n being large. The latter case leads to potentially biased M-

estimators and the asymptotic normality of such estimators may fail; see e.g. the discussions in

El Karoui et al. (2013) and Sur and Candès (2019) focused on Linear and Logistic Regressions.

The standard choice for solving (2.4) is to assume the function h satisfies

h (η) = b′ (η) , η ∈ <. (2.5)

Under the specification from (2.5), its equivalent LF g is known as the canonical LF. The

sufficient conditions for a proper canonical LF -based GLM are summarised in the lemma below.

Lemma 2.2. Let a GLM be equipped with its canonical LF. The MLE-based GLM is proper if

Θ = < and b is strictly convex (concave) on Θ provided that a (φ) > 0 (a (φ) < 0) for all φ ∈ Φ.

Although the canonical LF has useful mathematical/statistical properties, it does not always

satisfy the conditions from Lemma 2.2, and therefore leads to not proper GLMs. Below, we

8Note that Conv is the convex-hull of a set. In addition, Conv
(
Y
)

should be read as Y when Y is continuously
distributed, while the convex hull operator makes a difference when Y is a discrete random variable (see e.g.
Bernoulli and Poisson families).

9The function b′ is automatically surjective since the codomain coincides with its image b′ (Θ).
10The technical conditions for existence and uniqueness of the MLE estimate are well-known (see e.g. Wed-

derburn (1976) and Mäkeläinen et al. (1981)), and are standard in the literature, i.e. the log-likelihood function
is strictly concave and some boundary conditions are satisfied. The MLE solutions could be on the boundary
of the parameter space, which makes the estimation quite problematic, but we exclude such extreme cases from
our analysis. For example, the latter is observed in the Logistic Regression when there exists a hyperplane that
perfectly separates the ‘0’/‘1’ classes, which is also known as complete separation; this means that there is a
continuum of points on the boundary where the absolute maximum is attained (see e.g. Albert and Anderson
(1984)).
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briefly introduce two of the most popular alternative choices in the literature, namely the log

and power classes of LFs.11 The log LF is defined by taking

h(η) = eη, η ∈ <. (2.6)

Similar to the previous case, this choice may fail to produce a proper GLM in certain situations,

but a general classification as in Lemma 2.2 for such models is not available. Moreover, log LFs

has been further associated to computationally unstable MLE procedures, which leads us to

considering the following family of LFs which could address some of these issues due to their

appealing mathematical properties.12 The power LF is defined via the following expression

h (η) = ηγ , η ∈ < and γ ∈ <∗. (2.7)

Popular cases of power LFs used in numerical applications are the identity, square and square-

root functions which are obtained by taking γ = 1, 1/2 and 2 in (2.7), respectively. Furthermore,

the reciprocal versions of these cases (i.e reciprocal identity, reciprocal square and reciprocal

square-root) are obtained by letting γ = −1,−1/2 and −2, respectively.

Lemma 2.3 provides the sufficient conditions for C1 to be satisfied under the choice from (2.7).13

Lemma 2.3. Let a GLM with a power LF be chosen. Condition C1 in Definition 2.1 is satisfied

if either of the following conditions are satisfied:

(i) γ is a non-zero even integer and b′(Θ) = <+ ⊆ Conv
(
Y
)

such that b′ : Θ → <+ is an

injective mapping.

(ii) γ is an odd integer and b′ (Θ) = Conv
(
Y
)

= < such that b′ : Θ → < is an injective

mapping.

The above result helps us identify when a GLM is not proper due to Condition C1 violation.

For example, a direct consequence of Lemma 2.3 is that power LFs are not appropriate choices

for GLMs where the function b′ has a bounded image; this is the case of Logistic Regression

(see Appendix B.2 for more details).

One way to tackle the not proper GLM issue for power LFs is to consider restrictions and/or

modifications to these functions. For this purpose, we first introduce the class of half-power

LFs which corresponds to taking

h (η) =

{
ηγ , η > 0,

+∞, η ≤ 0,
(2.8)

11Note that both these functions are also canonical LFs for certain GLM cases. A detailed characterisation of
these LFs within the context of a proper GLM is provided in Section 3 for several well-known cases of exponential
dispersion models. Other classes of LFs such as probit and complementary log-log are introduced and discussed
in Appendix B.3 for Logistic Regressions.

12Generaly speaking, power LFs are useful for constructing convex optimisation algorithms for estimating
GLMs in an accurate and efficient way. Examples of such algorithms are provided in Section 4.

13Note that a general characterisation for Condition C2 cannot be provided for the power LF. The proofs of
Lemmas 2.2 and 2.3 follow immediately from Definition 2.1.
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with γ ∈ <∗.14 Finally, one can consider the negative versions of the power/half-power functions,

called negative power/negative half-power, respectively, which are obtained by multiplying h

from (2.7)/(2.8) by −1.

3. Special examples of GLMs and main results

This section provides a classification of proper MLE-based GLM for a variety of exponential

dispersion models and discusses the potential issues associated with the use of the different LFs

introduced in Section 2. Specifically, we focus on the more general Tweedie family, together

with three of its most popular special cases, namely the Poisson, Gamma and Inverse Gaussian

distributions.15 A summary of proper GLMs is provided at the end of the section.

3.1. Poisson Regression – Poisson family

We assume Y ∼ Poisson(θ) with probability mass function given by

log (fY (y; θ, φ)) = θy − eθ − log (y!) , (y, θ, φ) ∈ N×<× {1}.

The above expression is obtained as a special case of (2.1) by taking

a (φ) = φ = 1, b (θ) = eθ, c (y, φ) = − log (y!) .

In addition, b′ (Θ) = <∗+ and b′
−1

(µ) = log (µ). Proposition 3.1 provides a characterisation of a

proper Poisson Regression model according to our Definition 2.1.

Proposition 3.1. Assume that Y ∼ Poisson(θ). The Poisson GLM is proper if and only if

h : < → <∗+, and

−y log (h (η)) + h (η) is convex in η on < for any given y ∈ N. (3.1)

The Poisson canonical LF is the log function and this choice leads to a proper GLM due to

either Lemma 2.2 or Proposition 3.1. The power LF does not satisfy the conditions from

Proposition 3.1 unless γ = 2k with k ∈ N∗; specifically, Condition C1 does not hold unless γ

is a non-zero even integer, while Condition C2 requires γ ≥ 1. The half-power LF satisfies the

conditions stated in Proposition 3.1 for any γ ∈ [1,∞). Thus, the simplified Poisson regression

(i.e. φ = 1) with a proper half-power LF, obtained by taking any γ ≥ 1 in (2.8), leads to solving

β̂ββ = arg max
βββ∈<d

` (βββ) =
n∑
i=1

(
γ yi log

(
xxx>i βββ

)
−
(
xxx>i βββ

)γ)
. (3.2)

While these half-power LFs lead to proper GLMs that could be solved via a general convex

programming algorithm, the half-identity and half-square-root cases can be solved via a compu-

14Note that the special cases for γ that we considered for the standard power LFs are defined in the same way
for the half-power scenarios, e.g. we use the term reciprocal half-square-root for h following Equation (2.8) with
γ = −2.

15In addition, the Linear and Logistic Regression models are also illustrated in Section Appendix B though
we mention that only the Linear Regression is a special case of the Tweedie Regression.
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tationally efficient algorithm, as outlined in Section 4.1. Finally, note that the half-square-root

and the standard square-root LFs are closely related, but the latter does not satisfy (3.1) because

Condition C2 does not hold in this case. Essentially, the half-square-root case optimises the

strictly concave instance in (3.2) on the <d cone such that xxx>i βββ > 0 for all i = 1, . . . , n, while the

square-root solves a similar problem to (3.2) (where log
(
xxx>i βββ

)
is replaced by log

∣∣xxx>i βββ∣∣) on <d,
but its objective function is not concave on the entire feasibility set, namely <d. An analogous

differentiation between the half-identity and identity LFs can be formulated as well. Finally,

Condition C1 is not satisfied for any negative power LF or negative half-power LF, which are

not proper for Poisson GLM.

3.2. Gamma Regression – Gamma family

We assume Y ∼ Gamma(θ, φ) with probability distribution function given by

log (fY (y; θ, φ))=
θy+log (−θ)

φ
+

1−φ
φ

log (y)−log

(
φ

1
φΓ

(
1

φ

))
, (y, θ, φ) ∈ <∗+×<∗−×<∗+.

The above expression is obtained as a special case of (2.1) by taking

a (φ) = φ, b (θ) = − log (−θ) , c (y, φ) =
1− φ
φ

log (y)− log

(
φ

1
φΓ

(
1

φ

))
.

In addition, b′ (Θ) = <∗+ and b′
−1

(µ) = −µ−1. Proposition 3.2 provides a characterisation of a

proper Gamma Regression model according to our Definition 2.1.

Proposition 3.2. Assume that Y ∼ Gamma(θ, φ). The Gamma GLM is proper if and only if

h : < → <∗+, and

y

h(η)
+ log (h(η)) is convex in η on < for any given y ∈ <∗+. (3.3)

The canonical LF associated to the Gamma GLM is the reciprocal identity function. This

function does not satisfy the conditions stated in Lemma 2.2 or Proposition 3.2, since Condition

C1 does not hold, and therefore, unlike in the Poisson case, the canonical GLM is not proper.

A popular alternative for Gamma GLM is represented by the log LF; this choice satisfies the

conditions stated in Proposition 3.2 and is thus appropriate for Gamma GLM. As in Section 3.1,

we now discuss the impact of using power/half-power LFs in Gamma GLM. First, a power LF

does not satisfy the conditions from Proposition 3.2 unless γ = −2k, with k ∈ N∗; specifically,

Condition C1 does not hold unless γ is a non-zero even integer, while Condition C2 requires

γ ≤ −1. Second, one could find that half-power LFs always satisfy Condition C1, but Condition

C2 holds if and only if γ ≤ −1, leading to proper Gamma GLM in this case. Note that the

simplified Gamma GLM (i.e. φ = 1) with such proper half-power LF is equivalent to solving

β̂ββ = arg max
βββ∈<d

` (βββ) =

n∑
i=1

(
−γ log

(
xxx>i βββ

)
− yi

(
xxx>i βββ

)−γ)
, (3.4)

where γ ≤ −1. While half-power LFs with γ ≤ −1 lead to proper GLMs that could be solved via

a general convex programming algorithm, the half-reciprocal identity and half-reciprocal-square-
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root cases could be solved via a computationally efficient algorithm, as outlined in Section 4.1.

Finally, Condition C1 is not satisfied for any negative power LF or negative half-power LF,

which are not proper for Poisson GLM.

3.3. Inverse Gaussian Regression – Inverse Gaussian (IG) family

We assume Y ∼ IG(θ, φ) with probability distribution function given by

log (fY (y; θ, φ)) =
θy −

√
2θ

−1/φ
+

1

2

(
log

(
φ

2πy3

)
− φ

y

)
, (y, θ, φ) ∈ <∗+ ×<∗+ ×<∗+.

The above function is also a special case of (2.1) where

a (φ) = − 1

φ
, b (θ) =

√
2θ, c (y, φ) =

1

2

(
log

(
φ

2πy3

)
− φ

y

)
.

In addition, b′ (Θ) = <∗+ and b′
−1

(µ) =
1

2
µ−2. Proposition 3.3 provides the characterisation of

a proper Inverse Gaussian Regression model according to our Definition 2.1.

Proposition 3.3. Assume that Y ∼ IG(θ, φ). The Inverse Gaussian GLM is proper if and

only if h : < → <∗+, and

y

2h2(η)
− 1

h(η)
is convex in η on < for any given y ∈ <∗+ (3.5)

The canonical LF for the GLM based on the IG distribution is the reciprocal square function.

Similar to the Gamma scenario, this function does not satisfy the conditions stated in Lemma 2.2

or Proposition 3.3, namely Condition C1, and therefore, it is not a proper GLM. Under the

log LF assumption Condition C1 is satisfied, but Condition C2 is violated since (3.5) does not

hold. The effect of non-convexity is depicted in our motivational example from Figure 1.

As before, we also investigate the power and half-power LFs in the context of an IG GLM.

First, we notice that there is no power LF that satisfies the conditions in Proposition 3.3;

specifically, Condition C1 does not hold unless γ is a non-zero even integer, while Condition

C2 is satisfied if and only if γ ∈ [−1,−1/2]. Second, one could find that half-power LFs always

satisfy Condition C1, but Condition C2 holds if and only if γ ∈ [−1,−1/2], concluding that

half-power LF leads to a proper GLM only in this case. Given the previous findings, running

IG Regressions with power or half-power LFs would require a compromise. That is, the power

LF with γ = 2k, k ∈ Z∗ is the best possible choice so that constrained programming is avoided

(for proper IG GLM with half-power LFs such that γ ∈ [−1,−1/2] for which n linear inequality

constrains are needed), which is computationally undesirable for large samples. Such choice

require an efficient algorithm to solve the non-concave log-likelihood function optimisation. We

show how to achieve this in Section 4.2 for the reciprocal-square-root LF.

3.4. Main results on Tweedie Regression – Tweedie family

In this section we focus our analysis on a more general class of GLMs based on the Tweedie

family, which includes the previous distributions as special/limiting cases. As before, our main
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goal is to investigate if the Tweedie distribution leads to proper GLMs. Assume that Y ∼
Tweedie(θ, φ) with probability distribution function defined below

log (fY (y; θ, φ))) =
θy −Kp(θ)

φ
+ log

(
µ′φ ((−∞, y])

)
, (y, θ, φ) ∈ Y ×Θ×<∗+, (3.6)

where Θ ⊆ <, µφ is a Radon measure on Y ⊆ < and the function Kp is given by

Kp (θ) :=


α− 1

α

(
θ

α− 1

)α
, p ∈ (−∞, 0] ∪ (1,∞) \ {2},

eθ, p = 1,

− log (−θ) , p = 2,

with α =
p− 2

p− 1
. The expression from (3.6) is obtained as a special case of (2.1) by taking

a (φ) = φ, b (θ) = Kp (θ) , c (y, φ) = log
(
µ′φ ((−∞, y])

)
.

Moreover, the Poisson, Gamma and Inverse Gaussian families are obtained as special cases by

taking p = 1 with Y = N and Θ = <, p = 2 with Y = <∗+ and Θ = <∗−, and p = 3 with Y = <∗+
and Θ = <∗−, respectively.16

Without loss of generality we henceforth assume that p 6= {1, 2}, since these two cases have

already been investigated in Sections 3.1 and 3.2. Note that one should carefully choose Θ,Y and

p so that Kp(·) is well-defined on Θ. In this section, we assume that Θ ∈ {<,<∗,<∗+,<∗−}, and

thus, the function b′ is well-defined and bijective on Θ only under the three settings considered

in the theorem below. Extensions to subsets of these sets are obtainable at the expense of the

exposition, and for this reason, we proceed with this simplification.

We now provide a characterisation of proper Tweedie GLMs, where we exclude the previous

cases investigated in Sections 3.1 and 3.2 and Appendix B.1. First, we identify in Theorem 3.4

all possible settings under which Condition C1 from Definition 2.1 is satisfied.

Theorem 3.4. Let Y ∼ Tweedie(θ, φ) parameterised as in (3.6) with p ∈ (−∞, 0) ∪ (1, 2) ∪
(2,∞) (or equivalently, α ∈ (−∞, 2)\{0, 1}) such that Y,Θ ∈ {<,<∗,<∗+,<∗−}. Then, Condition

C1 is only satisfied for the following settings:

a) Θ = b′ (Θ) = <∗+ (or <+), Y ∈ {<∗+,<} (or Y ∈ {<+,<} ) and 1 < α < 2 (which is

equivalent to p < 0), with h : < → <∗+ (or h : < → <+);

b) Θ = <∗−, b′ (Θ) = <∗+, Y ∈ {<∗+,<+,<} and α ∈ (−∞, 1) \ {0} (which is equivalent to

p ∈ (1,∞) \ {2}), with h : < → <∗+;

c) Θ = <, b′ (Θ) = <∗+, Y ∈ {<∗+,<+,<∗}, α ∈ {−2l + 1 : l ∈ N∗}, with h : < → <∗+.

d) Θ = <, b′ (Θ) = <∗, Y ∈ {<∗,<}, α ∈ {−2l : l ∈ N∗}, with h : < → <∗.

Setting a) includes a pedantic reference on whether the response variable could or could not

include y = 0, and thus, we made a difference between the cases Θ = <∗+ and Θ = <+. Note

16Other notable examples are Gaussian (p = 0 with Y = Θ = <), Compound Poisson-Gamma (1 < p < 2 with
Y = Θ = <+) and Positive stable (p > 2 with Y = Θ = <+).
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that the generic Condition C1 in Definition 2.1 requires the range of E [Y ], namely b′(Θ), to be

a subset of Conv(Y), though a more practical condition would be b′(Θ) = Conv(Y), which we

assume henceforth. Setting c) is a subcase of setting b) from the implementation point of view,

since the modeller chooses the Tweedie models so that Y matches the data range of values.

However, our classification in Theorem 3.4 has to differentiate between models with different

parameter sets Θ. The next results focus on the validity of Condition C2 from Definition 2.1 for

the above Tweedie GLM settings under the LF specifications introduced in Section 2. The power

LF class, together with its restrictions/modifications, is investigated in Theorem 3.5 below.

Theorem 3.5. Let Y ∼ Tweedie(θ, φ) parameterised as in (3.6) with b′(Θ) = Y, for which

condition C1 is satisfied. Then, Condition C2 is not satisfied by settings a)–d), for any

(i) power LF, except for the following cases:

– setting b) with 0 < α < 1 and γ = −2k, for any k ∈ N∗, with (1− γ)α ≤ 1,

– setting b) with α < 0 and γ = 2k, for any k ∈ Z∗,

– setting c) and γ = 2k, for any k ∈ Z∗.

(ii) half-power LF, except for the following cases:

– setting a) with 1 < α < 2 and α−1
α ≤ γ ≤ α− 1,

– setting b) with 0 < α < 1 and α−1
α ≤ γ ≤ α− 1,

– setting b) with α < 0 and γ ≤ α− 1 or α−1
α ≤ γ,

– setting c) with α ∈ {−2l + 1 : l ∈ N∗} and γ ≤ α− 1 or α−1
α ≤ γ.

(iii) negative power or negative half-power LF.

We notice that the above results are in agreement with our previous findings. For example, one

could recover our discussion from Section 3.3 on proper IG GLMs, which is a special case of

Theorem 3.5 if we take p = 3 (or equivalently α = 1/2), where we found that proper IG GLMs

with half-power LF are achieved if and only if γ ∈ [−1,−1/2]. In addition, Theorem 3.5 provides

necessary and sufficient conditions for proper GLMs under other distributional assumptions.

For example, Tweedie GLMs based on Positive stable distributions (i.e. p > 2 or equivalently

0 < α < 1) are proper only for power LFs with γ = −2k, k ∈ N∗, with (1 − γ)α ≤ 1 and

half-power LFs with α−1
α ≤ γ ≤ α − 1. Similarly, the Compund Poisson-Gamma GLM (i.e.

1 < p < 2 or equivalently α < 0) is proper only for power LFs with γ = 2k, k ∈ Z∗ or half-

power LFs with γ ≤ α − 1 or α−1
α ≤ γ. A complete summary of proper Tweedie GLMs is

illustrated in Table 1 of Section 3.5.

Note that if p ∈ (−∞, 0] ∪ (1,∞) \ {2}, which is equivalent to α ∈ (−∞, 2] \ {0, 1}, then the

simplified Tweedie regression (i.e. φ = 1) with LF h is equivalent to solving

β̂ββ = arg max
βββ∈<d

` (βββ) =
n∑
i=1

(
yi(α− 1)

(
h
(
xxx>i βββ

)) 1
α−1 − α− 1

α

(
h
(
xxx>i βββ

)) α
α−1

)
. (3.7)

12



A few comments on (3.7) would help understanding the issues with deploying Tweedie GLMs.

First , one may discard Condition C2 at the expense of losing all useful properties of the M-

estimators (MLE is only a special case), such as the asymptotic distribution, which questions

the asymptotic bias and variance of these estimators. If that is the case, one can only hope

for the numerical optimisation to behave well, but this is possible from case to case, and one

would need to perform extensive numerical implementations to check whether the optimisation

algorithm shows a reasonable performance for specific choices of (α,Y, h). Such compromise

is done in Algorithm 2 for solving (4.5), where α = 1
2 as p = 3, Y = <+, and reciprocal

square-root LF; one could recover (4.5) from (3.7) for this particular choice of (α,Y, h). Second ,

there are other parametrisations other than the one in Algorithm 2 for which Condition C2

is not satisfied while all other regularity conditions in Definition 2.1 hold. In these instances,

one has to rely on non-convex optimisation, but more importantly, has to accept that some

(possibly all) statistical properties of the MLE estimator may not hold. The modeller needs to

identify stable computational methods (as in Algorithm 2) instead of assuming that the general

purpose GLM solvers are indeed computationally stable. Finally, we notice that the proper

GLMs identified in Theorem 3.5 (ii) require solving a constrained optimisation problem on the

convex cone
{
βββ ∈ <d : xxx>i βββ ≥ 0, i = 1, . . . , n

}
. Unfortunately, this is computationally expensive

for large values of n, which is a negative attribute. These optimisations could be solved via

convex programming and not via off-the-shelf GLM packages that relies on IRLS which cannot

be adapted when such constraints are needed.

The classification of proper Tweedie GLMs based on canonical and log LF is illustrated below.

Theorem 3.6. Let Y ∼ Tweedie(θ, φ) parameterised as in (3.6) with b′(Θ) = Y, for which

condition C1 is satisfied. Then, Condition C2 is not satisfied by settings a)–d), for any

(i) canonical LF.

(ii) log LF, except for setting b) with α < 0 or setting c).

Thereom 3.6 shows that there are no proper Tweedie GLMs if the canonical LF is chosen. In

addition, we notice that the Compound Poisson-Gamma GLM is proper for any log LF.

3.5. Summary results

Table 1 summarises our findings discussed in Section 3 and Appendix B. First, we recall that the

canonical LFs, which are the standard choices in all built-in GLM implementations (available

in MATLAB, Python, R, etc.), lead to not proper Tweedie GLMs, except for the Gaussian and

Poisson cases. Second, log LFs tend to have the similar limitations to canonical LFs for Tweedie

modelling. Third, the power and half-power LFs allow more flexibility than log LFs to GLM

modelling when proper GLM are sought.

4. Alternative algorithms for GLMs with power LFs

The goal of this section is to not only provide efficient methods for solving high-dimensional

problems while addressing the potential numerical issues in the optimisation stage, but to also

create tractable models for dealing with non-convex instances, which cannot be tackled with

13



Table 1: Summary of proper GLMs and violations of Conditions C1 and C2

Regression model LF Predictor
(
ŷ = h

(
xxx>β̂ββ

))
Violations

Gaussian/Linear identity (canonical) xxx>β̂ββ No

logit (canonical)
(

1 + exp
(
−xxx>β̂ββ

))−1
No

Logistic probit Φ
(
xxx>β̂ββ

)
No

complementary log-log 1− exp
(
− exp

(
−xxx>β̂ββ

))
No

log (canonical) exp
(
xxx>β̂ββ

)
No

Poisson power
(
xxx>β̂ββ

)γ
No, if γ = 2k, k ∈ N∗

half-power
(
xxx>β̂ββ

)γ
· I{xxx>β̂ββ>0} No, if γ ≥ 1

reciprocal identity (canonical)
(
xxx>β̂ββ

)−1
C1

log exp
(
xxx>β̂ββ

)
No

Gamma power
(
xxx>β̂ββ

)γ
No, if γ = −2k, k ∈ N∗

half-power
(
xxx>β̂ββ

)γ
· I{xxx>β̂ββ>0} No, if γ ≤ −1

reciprocal square (canonical)
(
xxx>β̂ββ

)−1/2
C1

log exp
(
xxx>β̂ββ

)
C2

Inverse Gaussian power
(
xxx>β̂ββ

)γ
C1, if γ 6= 2k, k ∈ Z∗, and

C2, if γ /∈ [−1,−1/2]

half-power
(
xxx>β̂ββ

)γ
· I{xxx>β̂ββ>0} No, if γ ∈ [−1,−1/2]

Tweedie (except of canonical
(

(1− p) · xxx>β̂ββ
)1/(1−p)

see Theorem 3.6

some of the above log exp
(
xxx>β̂ββ

)
see Theorem 3.6

special cases: power or negative power
(
xxx>β̂ββ

)γ
or −

(
xxx>β̂ββ

)γ
, γ ∈ <∗ see Theorem 3.5

Gaussian, Poisson half-power
(
xxx>β̂ββ

)γ
· I{xxx>β̂ββ>0}, γ ∈ <

∗ see Theorem 3.5

and Gamma) negative half-power −
(
xxx>β̂ββ

)γ
· I{xxx>β̂ββ>0}, γ ∈ <

∗ see Theorem 3.5

Notes: This table presents a summary of proper GLMs equipped with the LFs discussed in Section 3 and
Appendix B, and the potential violations of Conditions C1 and C2 from Definition 2.1 associated with these
regressions. Φ stands for the N (0, 1) cumulative distribution functionand IA represents the indicator function
for set A.

standard built-in GLM algorithms. In this sense, we introduce the Newton’s method for Self-

Concordant problems (NSC) for Poisson and Gamma regressions equipped with some bespoke

half-power LFs, and the Alternating Linearisation Method (ALM) for solving Inverse Gaussian

regressions based on the reciprocal-square-root LF.17

4.1. The NSC algorithm for Poisson and Gamma Regressions

The explicit structure of such self-concordant functions allows defining a refined Newton’s

method which is generally more efficient due to a reduced number of iterations.18 First, we

introduce the definition of a self-concordant function, which was first provided by Nesterov

(2004), although a simplified version is provided in Boyd and Vandenberghe (2004), which we

follow in this paper.

17This is also known as inverse-square-root LF, but we avoid referring to ‘inverse’ since the GLM uses the
inverse of a function to identify the functional estimator h with the LF g.

18For further details on SC problems and their fast convergence iterative methods, see Boyd and Vandenberghe
(2004); Nesterov (2004).

14



Definition 4.1. Let f : Ω → < be a closed convex function19 where Ω = dom (f) is an

open set in <d and f ∈ C3 (dom (f)). The function f is self-concordant on Ω if the function

g (t) := f (uuu+ tvvv) satisfies |g′′′ (t)| ≤ 2 (g′′ (t))3/2 for any t ∈ dom (g) ⊆ <, uuu ∈ dom (f), and

vvv ∈ <d such that uuu+ tvvv ∈ dom (f).

Note that the constant 2 in Definition 4.1, see |g′′′ (t)| ≤ 2 (g′′ (t))3/2, is chosen for convenience

and helps to identify an explicit upper bound for the total number of iterations required by the

Newton’s method for SC functions. If constant 2 is replaced by M , i.e. |g′′′ (t)| ≤M (g′′ (t))3/2,

then we say that its equivalent function f is SC with constant M ; e.g., if f is SC with constant

M , then it is not difficult to show that f̃ (·) := M2

4 f (·) is SC with constant 2.

We explore the Poisson and Gamma Regressions based on some special choices of half-power

LFs by solving (3.2) and (3.4), since the associated negative log-likelihoods are not only convex

(actually strictly convex in those two cases), but also self-concordant. This is illustrated in

Theorem 4.2 below, where the half-identity and half-square-root LFs for Poisson Regression are

explored in Theorem 4.2 a), while the half-reciprocal identity and half-reciprocal-square-root LFs

for Gamma Regression are explored in Theorem 4.2 b).

Theorem 4.2. Let {(yi,xxxi) : 1 ≤ i ≤ n} be a sample of size n drawn from (Y,XXX), where

XXX = (X1, X2, . . . , Xd) with d ≥ 1 and define Ω :=
n⋃
i=1

{
βββ ∈ <d : xxx>i βββ > 0

}
. The following

statements hold:

a) The MLE-based Poisson GLM equipped with the half-power LF from (2.8) with either

γ = 2 (and γ = 1) is self-concordant, and it leads to an optimisation problem with a

self-concordant objective function fP (f̌P ) on Ω, where

min
βββ∈Ω

fP (βββ) :=

n∑
i=1

(
1

2

(
xxx>i βββ

)2
− yi log

(
xxx>i βββ

))
, (4.1)

min
βββ∈Ω

f̌P (βββ) :=

n∑
i=1

(
xxx>i βββ − yi log

(
xxx>i βββ

))
. (4.2)

b) The MLE-based Gamma GLM equipped with the half-power LF from (2.8) with γ = −2

(and γ = −1) is self-concordant, and it leads to an optimisation problem with a self-

concordant objective function fG (f̌G) on Ω, where

min
βββ∈Ω

fG (βββ) :=
n∑
i=1

(
yi
2

(
xxx>i βββ

)2
− log

(
xxx>i βββ

))
, (4.3)

min
βββ∈Ω

f̌G (βββ) :=
n∑
i=1

(
yi · xxx>i βββ − log

(
xxx>i βββ

))
. (4.4)

As previously mentioned, the constant of an SC function does not have any impact in the actual

iterative algorithm, and could change only the upper bound of the total number of steps (that

19A function f : A ⊆ <d → B is closed convex if f is convex and closed on A, where f is closed if for any
α ∈ <, {xxx ∈ dom(f) : f (xxx) ≤ α} is a closed set.
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is in an explicit form for SC functions; for details, see the Newton’s step in Algorithm 1). One

may show that a tighter bound could be obtained for (4.1) and (4.2), i.e. the objective function

is SC with constant MP and M̌P , respectively, where

MP = M̌P := 2 max
1≤i≤n

{
y
−1/2
i I{yi>0} + I{yi=0}

}
,

which satisfies MP ≤ 2. However, no tighter bound (tighter than 2) is possible for the Gamma

GLMs in either (4.3) and (4.4).

Theorem 4.2 allows us to use the standard SC algorithm which is detailed in (Nesterov, 2004;

Boyd and Vandenberghe, 2004), and is provided here as Algorithm 1.

Algorithm 1: Standard SC algorithm for solving (4.1) and (4.3)

Result: zzz(k∗) which approximates zzz∗, the global optimum of min
zzz∈Ω

f(zzz) with f (·) being

SC on Ω, where k∗ is the termination step.

Choose zzz(0) ∈ dom (f), ε > 0, and λ∗ ∈
(

0, λ̃
)

where λ̃ = 3−
√

5
2 ;

Let ∇f (·) and ∇2f (·) be the gradient and Hessian, respectively, of f on Ω;

Define the step/search direction function ∆ (·) :=
[
∇2f (·)

]−1∇f (·) on Ω;

Define λf (·) :=
(
∇f (·)>

[
∇2f (·)

]−1∇f (·)
)1/2

on Ω;

Step 1: Damped phase

(i) If λf
(
zzz(0)

)
< λ∗ go to Step 2;

(ii) While λf
(
zzz(k)

)
≥ λ∗ do zzz(k+1) = zzz(k) − 1

1 + λf
(
zzz(k)

)∆
(
zzz(k)

)
for all k ≥ 0;

Step 2: Newton (or quadratically convergence) phase
While λf

(
zzz(k)

)
> ε do zzz(k+1) = zzz(k) −∆

(
zzz(k)

)
for all k ≥ k∗DP , where k∗DP is the

termination step in Step 1.

This algorithm can be viewed as a modification of the Newton’s method and consists of two

phases that help reducing the number of iterations. More specifically, Step 1, called the damped

phase, guarantees that f
(
zzz(k)

)
− f

(
zzz(k+1)

)
≥ ω (λ∗) and in turn, the number of iterations in

Step 1, denoted by NDP , is bounded with

NDP ≤
f
(
zzz(0)

)
− f (zzz∗)

ω(λ∗)
, where ω(λ) := λ− log (1 + λ) on <+.

This represents the advantage of Algorithm 1 as compared to relying only on the Newton’s

method, see Theorem 4.1.10 of Nesterov (2004) or Section 9.6.4 of Boyd and Vandenberghe

(2004) for further details on this issue.20 The total number of iterations in Step 2 is log2 log2 (1/ε)

if an accuracy of f
(
zzz(k∗)

)
− f (zzz∗) ≤ ε is sought. The latter bound is very small, e.g., 4.32 and

5.82 for ε = 10−6 and ε = 10−17, respectively. Note that ε = 10−17 is the MATLAB machine

20More formal convergence measures for Step 1 that are compared to the equivalent convergence measures of
the standard Newton’s method are available in Theorems 4.1.11 and 4.1.12 of Nesterov (2004).
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epsilon, which is the top end tolerance level benchmark in MATLAB.

Remark 4.3. Inverting the Hessian is often challenging, and an alternative solution to com-

puting the step/search direction, i.e computing ∆ (zzz) :=
[
∇2f (zzz)

]−1∇f (zzz) for a given zzz, is to

solve ∇2f (zzz) ttt = ∇f (zzz) in ttt, which is a linear system of equations. If we denote by t∗f (zzz) the

latter solution, we have ∆
(
zzz(k)

)
= t∗f

(
zzz(k)

)
and

λf

(
zzz(k)

)
=

√
∇f

(
zzz(k)

)> [∇2f
(
zzz(k)

)]−1∇f
(
zzz(k)

)
=

√
∇f

(
zzz(k)

)>
t∗f
(
zzz(k)

)
.

4.2. The ALM algorithm for the Inverse Gaussian Regression

We showed in Section 3.3 that the Inverse Gaussian Regression model is not proper for any

power LF. However, it is still possible to create a tractable model for this parametric family

for a particular power LF. Indeed, we assume a reciprocal-square-root LF (i.e. power LF from

(2.7) with γ = −2) which satisfies Condition C1 but not Condition C2 of Definition 2.1. This

choice leads to solving the following (non-linear) optimisation problem:

min
βββ∈Ω

fIG (βββ) =

n∑
i=1

(
yi
2

(
xxx>i βββ

)4
−
(
xxx>i βββ

)2
)
. (4.5)

The advantage of using the reciprocal-square-root LF is that (4.5) has a tractable solution via

the Alternating Linearisation Method (ALM), see e.g. Boyd et al. (2011) for further details.

More specifically, the variable β can be split into two variables, so that the ALM reformulation

of (4.5) is given by:

min
(zzz,ttt)∈<d×<d

G (zzz, ttt) =
n∑
i=1

(
yi
2

(
xxx>i zzz

)2 (
xxx>i ttt

)2
−
(
xxx>i zzz

)(
xxx>i ttt

))
so that zzz = ttt. (4.6)

The iterative algorithm that efficiently solves (4.6) is given as Algorithm 2 and is an Alternating

Linearisation Method with backtracking (ALM-bktr), i.e. a bespoke ALM algorithm. This algo-

rithm provides an approximation for βββ∗, which denotes a local optimum of (4.5), by generating

two sequences {zzzs : s ≥ 0} and {ttts : s ≥ 0} such that zzzs → βββ∗ and/or ttts → βββ∗. The main idea is

to solve a two-block variant of (4.6), which is a convex quadratic programming (QP) instance in

zzz for any given ttt that could be efficiently solved, and the same holds if zzz and ttt are interchanged.

The ALM algorithm relies on replacing the function G by their linearisation and an additional

regularization factor in order to obtain an approximation to the initial objective function fIG

from (4.5). Thus, we define the following functions

H1 (zzz, ttt;µ) := G (zzz, ttt) + 〈G2 (ttt, ttt) , zzz − ttt〉+
1

2µ
‖zzz − ttt‖22,

H2 (zzz, ttt;µ) := G (zzz, ttt) + 〈G1 (zzz,zzz) , ttt− zzz〉+
1

2µ
‖zzz − ttt‖22,
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where ‖·‖2 is the L2 norm on <d, µ is a positive constant, and G1 and G2 are the partial

derivatives of G given below:

G1 (zzz, ttt) :=
∂G

∂zzz
=

n∑
i=1

(
yi

(
xxx>i zzz

)(
xxx>i ttt

)2
−
(
xxx>i ttt

))
xxxi,

G2 (zzz, ttt) :=
∂G

∂ttt
=

n∑
i=1

(
yi

(
xxx>i zzz

)2 (
xxx>i ttt

)
−
(
xxx>i zzz

))
xxxi.

Algorithm 2 for solving (4.5), and therefore (4.6), is described below.21

Algorithm 2: Standard ALM algorithm for solving (4.5)

Result: (zzzs∗ , ttts∗) that approximates βββ∗, a local optimum of (4.5), where s∗ is the
termination step.

Choose µ1,0 = µ2,0 = µ0 > 0, b ∈ (0, 1), and zzz0 = ttt0 ∈ <d;
for s ∈ {0, 1, . . .} do

zzzs+1 := arg min
zzz∈<d

H1(zzz, ttts;µ1,s);

if fIG (zzzs+1) ≤ H1 (zzzs+1, ttts;µ1,s) then
choose µ1,s+1 ≥ µ1,s;

else
find the lowest n1,s ≥ 1 such that fIG (uuu1,s) ≤ H1

(
uuu1,s, ttts;µ

∗
1,s

)
, where

µ∗1,s = µ1,sb
n1,s and uuu1,s := arg min

zzz∈<d
H1

(
zzz, ttts;µ

∗
1,s

)
;

µ1,s+1 := µ∗1,s/b and zzzs+1 := uuu1,s;

end
ttts+1 := arg min

ttt∈<d
H2 (zzzs+1, ttt;µ2,s);

if fIG (ttts+1) ≤ H2 (zzzs+1, ttts+1;µ2,s) then
choose µ2,s+1 ≥ µ2,s;

else
find the lowest n2,s ≥ 1 such that fIG (uuu2,s) ≤ H2

(
zzzs+1,uuu2,s;µ

∗
2,s

)
, where

µ∗2,s = µ2,sb
n2,s and uuu2,s := arg min

ttt∈<d
H2

(
zzzs+1, ttt;µ

∗
2,s

)
;

µ2,s+1 := µ∗2,s/b and ttts+1 := uuu2,s;

end

end

5. Numerical Examples and Analyses

This section presents several numerical experiments to determine the efficiency and accuracy

of the proposed algorithms, and investigates to what extent they can improve the standard

built-in GLM libraries from various software. Specifically, we implement the NSC Algorithm 1

introduced in Section 4.1 for the Poisson (with half-square-root LF) and Gamma Regressions

21The algorithm stops whenever
∑ |zzzs+1−ttts+1|

|zzzs+1|
reaches the user’s defined value (e.g. the default value in our

numerical examples is taken to be 10−4 to balance the speed and precision with other benchmark algorithms).
Once the process is stopped, we use zzzs+1 (or ttts+1) if H1 is smaller (or larger) than H2.

18



(with half-reciprocal-square-root LF), and the ALM Algorithm 2 introduced in Section 4.2 for

solving Inverse Gaussian Regressions (with reciprocal-square-root LF).

For each specification of the number of observations n and number of covariates d, we synthet-

ically construct N data generating processes (henceforth called DGP) and perform the above

GLM estimations using both algorithms.22 The effectiveness of our methods is determined

by comparing our estimates with the “true” regression coefficients βββk, for any k = 1, . . . , N ,

obtained by using three standard built-in packages: MATLAB fitglm, R glm2 and Python

statsmodels sm.GLM libraries.23 To assess the accuracy of Algorithms 1 and 2 relative to

these benchmarks we consider two performance indicators. First, we compute the Absolute

Error Ratio (AER) and its mean (MAER), defined as:

MAER =
1

N

N∑
k=1

AERk with AERk =
AE

(
β̂ββ
alg

k

)
AE

(
β̂ββ
benchmark

k

) , k = 1, . . . , N, (5.1)

Here, the Absolute Error (AE) associated to each estimator β̂ββk is defined by the L1-norm:

AE
(
β̂ββk

)
=

d∑
j=1

|β̂k,j − βtruek,j |, (5.2)

where βtruek,j is the jth component of the kth simulated “true” regression coefficient according

to the DGP scheme outlined in Appendix C, and β̂algk,j and β̂benchmarkk,j are their corresponding

estimated values obtained with Algorithms 1 and 2, and the three software benchmark pack-

ages, respectively. The performance of our approach is further evaluated by computing the

log-likelihood ratio statistics, which compare the GLM with the saturated model. Thus, we

introduce below the Deviance Ratio (DR) and its mean (MDR):

MDR =
1

N

N∑
k=1

DRk with DRk =
D
(
β̂ββ
alg

k

)
D
(
β̂ββ
benchmark

k

) , k = 1, . . . , N. (5.3)

Here, the Deviance (D) of each GLM is defined by:

D
(
β̂ββk

)
= −2φ

(
`
(
β̂ββk

)
− `s

)
, (5.4)

where `
(
β̂ββk

)
is the log-likelihood function corresponding to the fitted GLM for the kth simulated

DGP scenario, while `s is the maximum value of the log-likelihood of the saturated model that

is computed using the same function as in (2.4) with θi = b′−1 (yi). Explicit expressions for the

22Note that unlike in the theoretical presentation, d represents here the number of covariates excluding the
trivial one corresponding to the intercept β0, so that the full matrix of explanatory variables is obtained by
adding the n-dimensional unit vector to XXX. Details on the DGP simulation are illustrated in Appendix C.

23We remark that all three softwares rely on the Iteratively Reweighted Least Squares (IRLS) method to
estimate the regression coefficients. Generally speaking, R glm2 provides an improvement over the standard R
glm package by using the step-halving approach in order to improve the convergence properties of IRLS (see e.g.
Marschner (2011)).
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deviance of all GLMs considered in our numerical experiments are provided in Appendix D.

Note that an MAER or MDR value smaller than 1 indicates that our approach is more accurate

on average than the benchmark with respect to the corresponding performance measure.

The efficiency of our algorithms relative to their benchmarks is also investigated by reporting

the Mean Computational Time Ratio (MCTR) introduced as:

MCTR =
1

N

N∑
k=1

CTRk with CTRk =
CT

(
β̂ββ
alg

k

)
CT

(
β̂ββ
benchmark

k

) , k = 1, . . . , N. (5.5)

Here, CT
(
β̂ββ
alg1

k

)
and CT

(
β̂ββ
benchmark

k

)
are the Algorithm 1 and benchmark computational

times recorded for the kth simulated DGP scenario, respectively. It follows that our algorithms

are are faster on average whenever MCTR < 1.24 For a consistent and fair comparison of the

computational time efficiency, all benchmarks have been implemented using their corresponding

default starting values.and the same specifications in the optimisation procedure, i.e. maximum

number of iterations = 10, 000 and tolerance level = 10−6. Since Algorithms 1 and 2 are coded

in MATLAB, we use the MATLAB fitglm starting values for our estimations.

The performance indicators MAER and MDR (both in bold), and MCTR are computed based

on N = 500 replicates. Note that Algorithms 1 and 2 always converge within a very reasonable

number of iterations, which is not the case for the three benchmarks. Therefore, the number

of replicates (out of 500 simulations) for which the optimisation problem (associated to the

benchmarks) do not converge within the allocated maximum number of iterations is illustrated

as #NaN in our tables. Consequently, these cases are discarded from the computation of

our performance indicators so that the benchmarks’ performance are computed in the most

advantageous possible to those benchmarks.

Table 2 presents the results for the Poisson GLM regression. We first notice that in terms of

accuracy, Algorithm 1 consistently outperforms both MATLAB fitglm and Python sm.GLM

libraries for all cases considered. The improvements relative to Python sm.GLM are quite sig-

nificant with respect to both MAER and MDR with the largest augmentations being noticed

for larger scale settings when the ratio between the sample size and the number of covari-

ates/features decreases; for example, when n/d = 5, the improvements for both indicators are

on average of around 15%, 37% and 53% for n = 100, 500 and 1, 000, respectively. The MAER

and MDR for the MATLAB fitglm benchmark are closer to 1, but unlike in the previous case,

there are many scenarios when the fitglm MLE does not convergence. This typically happens

for the bigger scale problems, as it is the case when n = 1, 000 and d = 200 (our largest setting)

where convergence was not achieved in half of the cases. Unlike the MATLAB and Python

libraries, R glm2 seems to perform very similarly to our Algorithm 1 for the Poisson GLM,

the MAER/MDR values being typically slightly above/below 1. The MCTR values indicate

that Algorithm 1 is always more efficient than both Python sm.GLM and MATLAB fitglm,

with the largest improvements observed for small dimension settings. The smallest differences

in runtime happen when n = 1, 000 and d = 50, when our algorithm is five and seven times

24Note that for streamline purposes we only report the MCTR values for Algorithm 1.
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faster then the aforementioned benchmarks, respectively. However, while R glm2 is also slower

when n = 100 then our Algorithm 1, it becomes more efficient for larger values of n.

Table 2: MAER, MCTR and MDR for Poisson GLM

n = 100 n = 500 n = 1,000

d = 5 d = 10 d = 20 d = 25 d = 50 d = 100 d = 50 d = 100 d = 200

MATLAB MAER 0.9730 0.9620 0.9523 0.9685 0.9721 0.9713 0.9758 0.9782 0.9816
fitglm MDR 0.9947 0.9935 0.9883 0.9977 0.9986 0.9970 0.9998 1.0002 1.0021

MCTR 0.0134 0.0169 0.0272 0.0630 0.0625 0.0762 0.1446 0.1012 0.1069

#NaN 16 32 58 37 67 182 46 87 256

Python MAER 0.9393 0.8998 0.8431 0.9002 0.8463 0.6227 0.8838 0.8131 0.4723
sm.GLM MDR 0.9177 0.8972 0.8518 0.9093 0.8553 0.6268 0.8915 0.8166 0.4721

MCTR 0.0065 0.0082 0.0129 0.0551 0.0531 0.0340 0.2016 0.1022 0.0531

#NaN 0 0 0 0 0 0 0 0 0

R MAER 0.9999 0.9967 1.0014 1.0082 1.0085 1.0161 1.0087 1.0168 1.0376
glm2 MDR 0.9579 0.9708 0.9858 0.9832 0.9882 0.9950 0.9870 0.9911 1.0057

MCTR 0.2553 0.2815 0.5043 1.5819 1.5695 1.0513 3.3093 2.0093 1.3328

#NaN 0 0 0 0 0 0 0 0 0

Notes: This table reports the Mean Absolute Error Ratio (MAER), Mean Deviance Ratio (MDR)
and Mean Computational Time Ratio (MCTR) of Algorithm 1 from Section 4.1 relative to its benchmarks,
MATLAB fitglm, Python sm.GLM and R glm2, for the Poisson GLM equipped with the half-power LF from
(2.8) with γ = 2. These indicators are computed based on the MLE values obtained from N = 500 simulations
according to the DGP scheme outlined in Appendix C, for different specifications for the number of observations
n and number of covariates d. The number of replicates (out of 500 simulations) that the benchmarks cannot
converge is shown as #NaN. All benchmarks are implemented using the same starting values with a maximum
of 10, 000 iterations and 10−6 tolerance level.

The Gamma GLM results are illustrated in Table 3. First we notice that Algorithm 1 con-

sistently outperforms all benchmarks in terms of both accuracy and efficiency. Unlike in the

Poisson case, our method performs significantly better than R glm2 with respect to both ac-

curacy indicators, with an average improvement ranging from 40% − 77% and 40% − 68% for

MAER and MDR, respectively, when n = 1, 000. We further notice a reverse situation regard-

ing the MATLAB fitglm and Python sm.glm GLM libraries when comparing to the results

from Table 2. Specifically, on the one hand, the MLE procedure from Python sm.glm does

not converge in many instances, but when it converges, the estimates are very close to those

obtained via Algorithm 1. On the other hand, despite always converging, the MATLAB fitglm

optimisation produces MAER and MDR values which are significantly lower than 1, with the

lowest values recorded when n = 1, 000. The reported average computational times favours

again our methodology; the only MCTR values greater than 1 are spotted for the larger scale

settings for R glm2, which provided inaccurate estimates in all these cases.

In summary, based on our DGP for Poisson and Gamma GLMs, we can argue that overall, our

Algorithm 1 provides the most accurate and efficient estimation approach relative to the three

benchmarks, while R glm2 is the second best, generally speaking being more stable than the
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Python sm.GLM and MATLAB fitglm counterparts.25

Table 3: MAER, MCTR and MDR for Gamma GLM

n = 100 n = 500 n = 1,000

d = 5 d = 10 d = 20 d = 25 d = 50 d = 100 d = 50 d = 100 d = 200

MATLAB MAER 0.9216 0.9449 0.9722 0.6554 0.7141 0.8469 0.5547 0.5734 0.7167
fitglm MDR 0.9534 0.9511 0.9687 0.6713 0.6753 0.8061 0.5065 0.4424 0.6202

MCTR 0.0579 0.0270 0.0404 0.2549 0.1142 0.0995 0.5530 0.1991 0.1954

#NaN 0 0 0 0 0 0 0 0 0

Python MAER 0.9831 0.9930 0.9989 0.9962 0.9999 1.0000 0.9932 1.0000 1.0000
sm.GLM MDR 0.9953 0.9980 1.0000 0.9998 1.0000 1.0000 0.9997 1.0000 1.0000

MCTR 0.0700 0.2049 0.2314 1.6705 0.9847 0.5505 3.7401 2.0635 0.8492

#NaN 78 55 21 406 268 124 471 373 206

R MAER 0.9450 0.9608 0.9850 0.5843 0.7216 0.8928 0.4018 0.5434 0.7679
glm2 MDR 0.9496 0.9621 0.9878 0.5887 0.6859 0.8585 0.3944 0.4643 0.6840

MCTR 0.2945 0.5550 0.5101 6.5451 3.4493 1.6073 12.2574 5.1892 1.5737

#NaN 0 0 0 0 0 0 0 0 0

Notes: This table reports the Mean Absolute Error Ratio (MAER), Mean Deviance Ratio (MDR)
and Mean Computational Time Ratio (MCTR) of Algorithm 1 from Section 4.1 relative to its benchmarks,
MATLAB fitglm, Python sm.GLM and R glm2, for the Gamma GLM equipped with the half-power LF
from (2.8) with γ = −2. These indicators are computed based on the MLE values obtained from N = 500
simulations according to the DGP scheme outlined in Appendix C, for different specifications for the number
of observations n and number of covariates d. The number of replicates (out of 500 simulations) that the
benchmarks cannot converge is shown as #NaN. All benchmarks are implemented using the same starting values
with a maximum of 10, 000 iterations and 10−6 tolerance level.

We next turn our attention to the implementation results of the ALM Algorithm 2 for solving

Inverse Gaussian Regressions based on the reciprocal-square-root LF. The benchmark chosen

in our analysis is the MATLAB fitglm package and we only focus on the accuracy of our

methodology. Figure 2 illustrates the box plots of the MATLAB fitglm-based AER and DR

for the same values of n and d as in the previous tables. First, we notice (in all nine cases)

that the AER indicators are more or less symmetrically distributed around 1, with a median

value smaller (but closer) to 1, suggesting that our Algorithm 2 slightly outperforms MATLAB

fitglm relative to this performance measure. However, our method performs much better in

terms of the deviance measure, as almost all DR values are below 1, with the most significant

differences being documented for larger dimension problems and the smallest n/d ratio (i.e.

n/d = 5). Furthermore, for each value of n, we notice a decreasing trend in the median of

DRs as the number of covariates increases. These observations are consistent with the previous

findings on Algorithm 1 regarding the significant improvements in accuracy for bigger datasets.

25Note that these conclusions are drawn solely based on our DGP and a limited number of experiments, so
further implementations may be needed to further investigate this problem.
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Figure 2: Absolute Error Ratio (AER) and Deviance Ratio (DR) for Inverse Gaussian
GLM based on MATLAB fitglm.
Notes: This figure shows the box plots of Absolute Error Ratio (AER) in left panel and Deviance Ratio
(DR) in right panel of Algorithm 2 from Section 4.2 relative to the MATLAB fitglm benchmark for the
Inverse Gaussian GLM based on the reciprocal-square-root LF. Each box plot is constructed using AERs
and DRs computed based on MLE values obtained from N = 500 simulations according to the DGP scheme
outlined in Appendix C, for different specifications for the number of observations n and the number of
covariates d. All implementations use the same starting value with a maximum of 10, 000 iterations and
10−6 tolerance level.

6. Conclusions

This paper makes two important contributions to the GLM literature. First, we provide a

general characterisation of proper GLMs for various exponential dispersion models, including

the Tweedie family. The main finding is that although most Tweedie GLMs are not proper for

canonical and log LFs, a rich class of proper Tweedie GLMs can be identified for power LFs.

Second, we propose specialized optimisation algorithms for implementing several instances of

Tweedie GLMs under power LFs. These algorithms outperform standard methods in terms

of accuracy and efficiency, particularly in high-dimensional scenarios, as demonstrated via a

thorough comparison with existing libraries like MATLAB fitglm, R glm2, and Python sm.GLM.

23



References

Albert, A. and J. A. Anderson (1984). On the existence of maximum likelihood estimates in

logistic regression models. Biometrika 71 (1), 1–10.

Bach, F. (2010). Self-concordant analysis for logistic regression. Electronic Journal of Statis-

tics 4 (none), 384 – 414.

Bickel, P. J. and K. A. Doksum (2015). Mathematical Statistics: Basic Ideas and Selected

Topics, Volume I. Second ed., Chapman and Hall/CRC.

Boyd, S. and L. Vandenberghe (2004). Convex optimization. Cambridge university press.

Boyd, S. P., N. Parikh, E. Chu, B. Peleato, and J. Eckstein (2011). Distributed optimization

and statistical learning via the alternating direction method of multipliers. Foundations and

Trends in Machine Learning 3 (1), 1–122.

Breeden, J. L. (2016). Incorporating lifecycle and environment in loan-level forecasts and stress

tests. European Journal of Operational Research 255 (2), 649–658.

Debón, A., F. Montes, and F. Puig (2008). Modelling and forecasting mortality in spain.

European Journal of Operational Research 189 (3), 624–637.
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Appendix A. Proofs

Appendix A.1. Proof of Propositions 3.1-3.3

The proofs follow easily by verifying the conditions in Definition 2.1 for the Poisson, Gamma

and Inverse Gaussian families, respectively.

Appendix A.2. Proof of Theorem 3.4

The identification of the three classes of Tweedie GLM that are well-defined is not difficult, and

thus, we only outline some arguments without further details that are quite obvious. Clearly,

b′(θ) =
(
θ/(α− 1)

)α−1
for all θ ∈ <. Since α < 2, then setting a) is readily true and we require

α ∈ (1, 2), which is equivalent to p < 0, whenever Θ ∈ {<∗+,<+}. Setting b) is the mirror case

of setting a), and the proof is very similar. Settings c) and d) are similar to the previous ones,

and the analysis depends if α− 1 is an odd or even negative integer.

Appendix A.3. Proof of Theorem 3.5

First, we investigate parts (i) and (iii) (the negative power LF case) together, and therefore

assume only power or negative power LFs. Condition C2 requires

y(α− 1)
(
h(η)

) 1
α−1 − α− 1

α

(
h(η)

) α
α−1 to be concave in η on < for all y ∈ Y. (A.1)

Setting a) is first justified, but only for power LFs since the image of h is <∗+, and in turn,

γ = 2k, k ∈ Z∗. Denote a1 = y (α− 1), a2 = 1−α
α and γ′ = 1

α−1 . Equation (A.1) is equivalent to

ξ (η; y) := a1η
γγ′ + a2η

γ(γ′+1) is concave in η on < for all y ∈ Y. (A.2)

Note that Y = <∗+ is assumed. Since 1 < α < 2 and y > 0, then a1 > 0 and a2 < 0, and in

turn, (A.2) holds if and only if γγ′ ∈ [0, 1] and γ(γ′ + 1) /∈ (0, 1). This is equivalent to having

γ ≥ 0, γγ′ ≤ 1 and γ(γ′ + 1) ≥ 1, since γ′ > 1 in this case, which is further equivalent to
α−1
α ≤ γ ≤ α − 1. The latter cannot hold since α − 1 ∈ (0, 1), α − 1 − α−1

α ∈ (0, 1/2) and

γ = 2k, k ∈ Z∗, which concludes that no proper GLM model is possible for setting a).

Setting b) is now justified, but only for power LFs since the image of h is <∗+, and thus,

γ = 2k, k ∈ Z∗. We split this in two subcases, setting b1) and setting b2) for 0 < α < 1 and

α < 0, respectively.

Setting b1) holds if and only if γγ′ /∈ (0, 1) and γ(γ′ + 1) ∈ [0, 1], since a1 < 0 and a2 > 0,

which is equivalent to having γ ≤ 0, γγ′ ≥ 1 and γ(γ′ + 1) ≥ 1 as γ′ < −1, and in turn,
α−1
α ≤ γ ≤ α − 1. The later is true if and only if γ = −2k for any k ∈ N∗ and (1 − γ)α ≤ 1

since 0 < α < 1, which concludes setting b1).

Setting b2) implies that a1, a2 < 0 and γ′ ∈ (−1, 0). Therefore, setting b2) holds if and only

if γγ′ /∈ (0, 1) and γ(γ′ + 1) /∈ (0, 1), which is equivalent to having γ ≥ 0 and γ(γ′ + 1) ≥ 1 or

γ ≤ 0 and γγ′ ≥ 1, and in turn, α−1
α ≤ γ or γ ≤ α− 1 must hold, which concludes setting b2).

Setting c) is similar to setting b2), and we thus skip its proof. Setting d) requires for power

and negative power LFs to having γ′ ∈ Z so that the likelihood function is well-defined in (2.4)

(and thus, in (A.1)), but also γ to be an odd integer so that the image of h is <∗. These do
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not hold since γ′ ∈ (−1, 0), which justifies our claim for setting d). This concludes parts (i) and

(iii) (the negative power LF case).

The proof of parts (ii) and (iii) (the negative half-power LF case) follows in a similar way, with

one small difference. That is, half-power LFs require γ ∈ <∗ instead of γ = 2k, k ∈ Z∗, but

everything else does not significantly change. For these reasons, we do not provide additional

details on this proof.

Appendix A.4. Proof of Theorem 3.6

We first show part (i), and assume canonical LFs. Note first h(η) = b′(η) =
(
η/(α − 1)

)α−1
,

which implies that α ∈ Z\{1}. This implies that amongst settings a)–c), only setting b2), which

was introduced in Appendix A.3, might hold while all other settings are clearly infeasible. The

image of h is <∗+ and therefore, α is an odd negative integer, which is a power LF with an

odd parameter γ. This contradicts our findings in the proof of part (i) from Theorem 3.4 for

setting b2), and concludes that no canonical LF leads to proper GLM in settings a)–c). Setting

d) requires α to be an even negative integer and γ′ ∈ Z as explained in the previous proof,

which are infeasible conditions. Thus, no canonical LF leads to proper GLM in setting d). This

concludes part (i).

We now show part (ii) and assume log LFs. Using the same notations as in Appendix A.3,

Equation (A.1) is equivalent to

ξ (η; y) := a1e
ηγ′ + a2e

η(γ′+1) is concave in η on < for all y ∈ Y, (A.3)

which requires a1, a2 ≤ 0 due to the convexity property of eηγ in η on <, for any γ ∈ <. The

latter explains that only setting b2) is feasible amongst settings a)–c). Setting d) is infeasible

since the the image of h is <∗, which is impossible for a log LF. The proof is now complete.

Appendix A.5. Proof of Theorem 4.2

We proceed by showing part a), but only for (4.1), since (4.2) could be argued similarly. Let

fi,P (βββ) =

(
1

2

(
xxx>i βββ

)2
− yi log

(
xxx>i βββ

))
for all 1 ≤ i ≤ n, (A.4)

so that fP (βββ) =
n∑
i=1

fi,P (βββ). First, we show that fP is a closed convex function on Ω. From

(A.4), fi,P is convex (and therefore, continuous) on Ω, and since dom (fP ) = Ω is an open set

and lim
βββ→βββ0

fi,P (βββ) = ∞ for all βββ0 ∈ ∂ dom (fP ), it follows that fi,P is closed convex on Ω. The

closed convex property of fP follows from the fact that it is a sum of closed convex functions.

We next prove that fP is self-concordant on Ω. For any t ∈ <, uuu ∈ Ω and vvv ∈ <d, such

that uuu + tvvv ∈ Ω, we define the function gi,P (t) = fi,P (uuu+ tvvv), or any i = 1, . . . , n, and let

gP (t) =
n∑
i=1

gi,P (t). Next, we show that

∣∣g′′′i,P (t)
∣∣ ≤ 2

(
g′′i,P (t)

)3/2
. (A.5)
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Note that

g′′i,P (t) =
(
xxx>i vvv

)2
+

yi
(
xxx>i vvv

)2(
xxx>i uuu+ txxx>i vvv

)2 and g′′′i,P (t) = −
2yi
(
xxx>i vvv

)3(
xxx>i uuu+ txxx>i vvv

)3 .
Clearly, (A.5) holds whenever xxx>i vvv = 0, and thus, we further assume that xxx>i vvv 6= 0. Now,

∣∣g′′′i,P (t)
∣∣ (g′′i,P (t)

)−3/2
= 2yi

(
yi +

(
xxx>i uuu+ txxx>i vvv

)2
)−3/2

≤ 2,

since yi ≤ y3/2
i ≤ (yi + εi)

3/2 for any non-negative integer yi and any εi ≥ 0 (recall that yi ∈ N
as the sampling distribution is Poisson). The self-concordant property of fP follows from

∣∣g′′′P (t)
∣∣= ∣∣∣∣∣

n∑
i=1

g′′′i,P (t)

∣∣∣∣∣ ≤
n∑
i=1

∣∣g′′′i,P (t)
∣∣ ≤ 2

n∑
i=1

(
g′′i,P (t)

)3/2 ≤ 2

(
n∑
i=1

g′′i,P (t)

)3/2

=2
(
g′′P (t)

)3/2
.

Note that the first inequality follows from the triangle inequality, the second from (A.5), and the

last one from the fact that the p-norm on <n, ||xxx||p :=

(
n∑
i=1

|xi|p
)1/p

is a decreasing function

in p on <∗+ for any x ∈ <n, and thus, ||xxx||1 ≤ ||xxx||2/3. This completes the proof for part a).

The proof of part b) follows in a similar way, and thus, we only provide the main steps. As

before, we only show (4.3) since its proof is very similar to the proof of (4.4). We denote

fi,G (βββ) =

(
yi
2

(
xxx>i βββ

)2
− log

(
xxx>i βββ

))
for all 1 ≤ i ≤ n,

so that fG (βββ) =
n∑
i=1

fi,G (βββ). Following the same arguments as in part a), we may show that fG

is a closed convex function on Ω. The proof that fG is self-concordant on Ω follows in a similar

way by defining the function gi,G(t) = fi,G (uuu+ tvvv) and gG(t) =
n∑
i=1

gi,G(t) for any t ∈ <, uuu ∈ Ω

and vvv ∈ <d, such that uuu+ tvvv ∈ Ω, and showing that
∣∣∣g′′′i,G(t)

∣∣∣ ≤ 2
(
g′′i,G(t)

)3/2
. The second and

third order derivatives of gi,G are given by

g′′i,G(t) = yi

(
xxx>i vvv

)2
+

(
xxx>i vvv

)2(
xxx>i uuu+ txxx>i vvv

)2 and g′′′i,G(t) = −
2
(
xxx>i vvv

)3(
xxx>i uuu+ txxx>i vvv

)3 .
Clearly, the required inequality holds if xxx>i vvv = 0, and thus, xxx>i vvv 6= 0 is further assumed. Now,

∣∣g′′′i,G(t)
∣∣ (g′′i,G(t)

)−3/2
= 2

(
yi

(
xxx>i uuu+ txxx>i vvv

)2
+ 1

)−3/2

≤ 2,

since (1 + yiεi)
−3/2 ≤ 1 for any yi > 0 and εi ≥ 0 (recall that yi ∈ <∗+ as the sampling

distribution is Gamma). This completes the proof.
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Appendix B. Other special cases of GLMs

Appendix B.1. Linear Regression – Gaussian family

Assume that Y ∼ N(θ, φ2) with probability distribution function given by

log (fY (y; θ, φ)) =
θy − θ2

2

φ
− 1

2

(
y2

φ
+ log(2πφ)

)
, (y, θ, φ) ∈ < × <× <∗+.

The above pdf is obtained as a special case of (2.1) by taking

a (φ) = φ, b (θ) =
θ2

2
, c (y, φ) = −1

2

(
y2

φ
+ log(2πφ)

)
.

In addition, b′ (Θ) = < and b′
−1

(µ) = µ. Proposition Appendix B.1 provides a characterisation

of the LFs under which the Gaussian GLM is properly defined according to Definition 2.1.

Proposition Appendix B.1. Assume that Y ∼ N(θ, φ2). The Gaussian GLM is proper if

and only if h : < → < and

−yh(η) +
h2(η)

2
is convex in η on < for any given y ∈ <. (B.1)

Proof. The proof follows from verifying conditions C1 and C2 from Definition 2.1.

Corollary Appendix B.2 identifies the only class of LFs which satisfies Equation (B.1).

Corollary Appendix B.2. The Gaussian GLM is proper if and only if the LF is linear.

Proof. Since any convex real function defined on a finite open set I is continuous with non-

decreasing left (and right) derivatives, then (B.1) implies that

h′+ (η1)h (η1)− yh′+ (η1) ≤ h′+ (η2)h (η2)− yh′+ (η2) for all y ∈ <, (B.2)

and any reals η1 < η2 from I, where h′+ is the right derivative of h. Assume now that h

is not linear on <, and thus, not linear on I. Then, there exists η1 < η2 from I such that

h′+ (η2) − h′+ (η1) 6= 0. The latter contradicts (B.2), and in turn, we must have h linear on <,

and no other possible LF leads to a MLE-based Gaussian GLM.

The canonical LF for Gaussian GLMs is the identity function. Corollary Appendix B.2 implies

the canonical LF leads to a proper GLM and it is the only power function with this property.

Appendix B.2. Logistic Regression – Bernoulli family

Assume that Y ∼ Bernoulli(θ) with probability mass function given by

log (fY (y; θ, φ)) = θy − log
(

1 + eθ
)

with (y, θ, φ) ∈ {0, 1} × < × {1}.

The above function is obtained as a special case of (2.1) by taking

a (φ) = 1, b (θ) = log
(

1 + eθ
)
, c (y, φ) = 0.
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In addition, b′ (Θ) = (0, 1) and b′
−1

(µ) = log µ
1−µ . Proposition Appendix B.3 provides a brief

characterisation of a proper Logistic regression model.

Proposition Appendix B.3. Assume that Y ∼ Bernoulli(θ). The Bernoulli GLM is proper

if and only if h : < → (0, 1), and

y log (h(η)) + (1−y) log (1−h(η)) is concave in η on < for any given y = {0, 1}. (B.3)

Proof. The proof follows easily by verifying the conditions C1 and C2 from Definition 2.1.

A direct consequence of the above is that the MLE-based Bernoulli GLM is proper if and only

if h(η) and h(1− η) are log-concave functions26 on <. Three standard choices for h have been

proposed for this family in the literature, and all of them lead to proper GLMs:

(i) logit LF, which corresponds to having h(η) = 1
1+e−η , which is also the Bernoulli canonical

LF that satisfies the conditions in Proposition 2.2 since b is strictly convex on <.

(ii) probit LF, which corresponds to having h(η) = Φ(η), where Φ is the cdf of a standard

Gaussian random variable. In this case, it is not difficult to show that h satisfies the

characterisation from Proposition Appendix B.3.

(iii) complementary log-log LF, which corresponds to having h(η) = 1 − exp (− exp (−η)). It

is not difficult to show that h satisfies the conditions in Proposition Appendix B.3.

Finally, it is clear that no power LF satisfies the conditions in Proposition Appendix B.3.

Appendix C. Data Generation Process

This section briefly outlines the DGPs for the Poisson, Gamma and Inverse Gaussian GLMs.

• Step 1: Generate the matrix of covariatesXXX = {Xi,j}n,di=1,j=1, from a Gaussian distribution

with mean µ and unit standard deviation, Xi,j ∼ N (µ, 1). Note that for each GLM, we

let µ to be a function of d, such that the expected value of the response variable is within

reasonable bounds in order to avoid exaggerating the parameter values when generating

YYY in Step 3, which typically affect the estimation procedure for the benchmarks.27

• Step 2: Generate the regression coefficient βββ = {βj}dj=0 by setting βj = j/d.

• Step 3: For any i = 1, . . . , n, let θi = β0 +
d∑
j=1

βjxi,j and generate the response

variable YYY = {Yi}ni=1 by simulating each Yi from Poisson
(
θ2
i

)
for the Poisson GLM,

Gamma
(
θ2
i , 1
)

for the Gamma GLM and IG
(
θ−2
i , 1

)
for the Inverse Gaussian GLM.

Appendix D. Deviance for Poisson, Gamma and Inverse Gaussian GLMs

• Poisson GLM with half-square-root LF

D
(
β̂ββ
)

=
n∑
i=1

(
4yi log

(√
yi

xxx>i β̂ββ

)
+ 2

((
xxx>i β̂ββ

)2
− yi

))
· I
xxx>i β̂ββ>0

+ 0 · I
xxx>i β̂ββ=yi=0

+∞ · Ielse

26A function f : A→ B is log-concave on A if log (f (αx+ (1− α)y)) ≥ α log (f(x)) + (1− α) log (f(y)) for all
x, y ∈ A and 0 < α < 1.

27Note that in such cases all standard benchmarks fail to converge in most scenarios.
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• Gamma GLM with half-reciprocal-square-root LF

D
(
β̂ββ
)

=

n∑
i=1

(
2yi

((
xxx>i β̂ββ

)2
− y−1

i

)
− 2 log (yi)− 4 log

(
xxx>i β̂ββ

))
· I
xxx>i β̂ββ>0

+∞ · I
xxx>i β̂ββ≤0

• Inverse Gaussian GLM with reciprocal-square root LF

D
(
β̂ββ
)

= φ2
n∑
i=1

(
yi

((
xxx>i β̂ββ

)4
− y−2

i

)
− 2

((
xxx>i β̂ββ

)2
− y−1

i

))
· I
xxx>i β̂ββ>0

+∞ · I
xxx>i β̂ββ≤0
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