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Exploiting nonlinearities 
through geometric engineering 
to enhance the auxetic behaviour 
in re‑entrant honeycomb 
metamaterials
Chetna Srivastava 1, Lalit Bhola 2, Vinyas Mahesh 3, P. J. Guruprasad 2, Nik Petrinic 4, 
Fabrizio Scarpa 5, Dineshkumar Harursampath 1 & Sathiskumar A. Ponnusami 3*

Classical approaches to enhance auxeticity quite often involve exploring or designing newer 
architectures. In this work, simple geometrical features at the member level are engineered to exploit 
non‑classical nonlinearities and improve the auxetic behaviour. The structural elements of the auxetic 
unit cell are here represented by thin strip‑like beams, or thin‑walled tubular beams. The resulting 
nonlinear stiffness enhances the auxeticity of the lattices, especially under large deformations. To 
quantify the influence of the proposed structural features on the resulting Poisson’s ratio, we use here 
variational asymptotic method (VAM) and geometrically exact beam theory. The numerical examples 
reveal that 2D re‑entrant type micro‑structures made of thin strips exhibit an improvement in terms 
of auxetic behaviour under compression. For the auxetic unit cell with thin circular tubes as members, 
Brazier’s effect associated with cross‑sectional ovalisation improves the auxetic behaviour under 
tension; the enhancement is even more significant for the 3D re‑entrant geometry. Thin strip‑based 
auxetic unit cells were additively manufactured and tested under compression to verify the numerical 
observations. The experimentally measured values of the negative Poisson’s ratio are in close 
agreement with the numerical results, revealing a 66% increase due to the nonlinearity. Simulation 
results showcase these alternative approaches to improve the auxetic behaviour through simple 
geometric engineering of the lattice ribs.

A negative value of Poisson’s ratio is physically counterintuitive for traditional engineering materials because a 
longitudinal extension is coupled with a contraction along the transverse/lateral direction in the case of conven-
tional materials. Auxetic metamaterials are designed with this unique mechanical  characteristic1. The peculiarity 
in their mechanical behaviour is attributed to the deformation mechanism of their microstructure. With recent 
advancements in additive  manufacturing2, different geometries of unit cells showing auxetic behaviour have been 
the subject of various analytical, numerical as well as experimental  investigations3–8.

The majority of the deformation mechanisms of auxetic metamaterials can be categorized into three major 
groups: the re-entrant, chiral and rotating rigid units. Since auxetic materials have been found to exhibit better 
indentation resistance, impact absorption and damage  tolerance9–13, the design of micro-structure geometries 
with a negative value of Poisson’s ratio have been the focus of a number of pioneering  works14– 22. Design of new 
architectures has been found to be the central framework in important works related to the design of architec-
tured materials with desired  properties23. For example, Fu et al.24 presented a novel 3D geometry of the micro-
structure, wherein neighbouring layers of tetrachiral honeycombs were interconnected by inclined rods. Javadi 
et al.25 used a combination of finite element method and genetic algorithm to design geometries with a given 
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value of Poisson’s ratio as a constraint, while Wang et al.26 performed design optimizations considering stiffness 
as a constraint to determine the minimum Poisson’s ratio attainable for tetra-petal auxetic structures. Harkati 
et al.27 presented a new auxetic honeycomb configuration with curved cell walls, while Zhang et al.28 designed 
metamaterials with re-entrant geometry and star-shaped nested cells. In addition to topology optimization, 
foams exhibiting auxetic behaviour have also been  fabricated19,29,30.

The characterization of auxetic materials involves determination of the effective elastic properties, i.e., Young’s 
modulus and Poisson’s ratio. Closed-form expressions for effective elastic properties in terms of geometric and 
material parameters have been previously derived by discretizing the geometry into beams and imposing suitable 
boundary conditions. Within the framework of small deformation theories such as the Euler–Bernoulli beam 
 model31–34, these expressions are independent of applied strain and stress. The properties of auxetic materials have 
previously also been determined using strain-based homogenization methods within the framework of linear 
 elasticity35– 37. A number of studies have been focused on the design of metamaterials using inverse homogeni-
zation, wherein an optimization problem is formulated to design materials with a target value of homogenized 
elastic  coefficients38,39.

There have been attempts to predict the mechanical behavior of auxetic honeycombs under large far-field 
stresses and the related non-linearity of their equivalent material behaviour using large deformation beam 
theories. Previously for the re-entrant geometry, the elastica theory has been used to represent the behaviour 
of the lattice beams; in that case, geometrically exact expressions for the curvature are adopted for the equilib-
rium equations to determine the variation of the Poisson’s ratio with applied  strains40,41. Gao et al.42 have used 
a similar methodology to determine strain-dependent mechanical behaviour for the double V geometry of the 
microstructure. Zhang et al.43 studied the behaviour of a series of auxetic geometries under large deformations, 
particularly focusing on their energy absorption characteristics.  Hu44 has identified the collapse behaviour of re-
entrant antitetrachiral honeycombs under large deformations, while Jianga et al.45 have determined the limiting 
strains for the auxetic behaviour in chiral and re-entrant geometries under large strains.

Most of the research reported in the open literature and related to using large deformation unit cell member 
models is limited to the analysis of the strain-dependent behaviour of the auxetic geometries. To the best of the 
authors’ knowledge, the one-dimensional non-linearity along the beam reference line or large deflections of 
the members constituting the auxetic frame has not been taken so far into account for shape optimization and 
topology-based design. In addition to the one-dimensional non-linearity attributed to large displacements and 
rotations, specific non-linear effects arise due to excessive warping of the cross-section, which are termed as 
non-classical non-linearities. Some well-known examples of these types of nonlinearities include the  trapeze46 
and the Brazier’s  effect47,48. The trapeze effect is a phenomenon wherein an extension-twist coupling arises in 
thin strips. The Brazier’s effect is characterized by a marked reduction of the bending stiffness of thin circular 
tubes with increasing magnitudes of the curvature.

In contrast to previous works wherein the improvement of the auxetic characteristics was driven by the design 
of new unit cell topologies, we propose here to exploit the non-classical geometric nonlinearities arising due to 
cross-sectional  warping46,47. To assess the effectiveness of using this approach, we modify the ribs of 2D and 3D 
re-entrant lattice metamaterials topologies to undergo the non-classical nonlinear behaviour and investigate the 
auxeticity of the metamaterials under large deformations.

In this paper, the methodology, the mathematical formulations and the geometrical configurations are 
described in "Numerical methodology". The experimental validation for the numerical methodology is summa-
rised in "Experimental methodology". Load versus Poisson’s ratios for the 2D and 3D re-entrant geometries and 
their parametric evaluations are presented in "Results and discussions", followed by conclusions in "Conclusions".

Numerical methodology
The microstructure configurations of the 2D and 3D re-entrant geometries have been discretized into beams with 
boundary conditions as per Wan et al.40 and Yang et al.49. The beams have cross-sections typical of thin strips 
and thin circular tubes. A parametric analysis has been carried out for different values of the model parameters, 
i.e., the rib-inclination angles, thickness-to-width ratios for thin strips and thickness-to-radius ratios for thin 
circular tubes, i.e., θ, t/b, and t/R respectively.

To account for the non-classical effects, the one-dimensional non-linear beam analysis should be coupled 
with a two-dimensional non-linear cross-section analysis. In contrast, conventional beam theories neglect the 
cross-sectional deformations or tend to impose certain kinematic assumptions, while reducing the actual three-
dimensional beam to a one-dimensional problem.  Hodges50,51 decoupled the original three-dimensional beam 
problem into two analyses, one related to a two-dimensional cross-section and the other to a one-dimensional 
non-linear beam, as shown in Fig. 1. This methodology accurately captures both the in-plane and out-of-plane 
warping of the cross-section. As shown in Fig. 1, the cross-sectional stiffness matrix obtained from the two-
dimensional analysis is a required input for the one-dimensional non-linear beam problem. As non-classical 
nonlinear effects become significant, the stiffness coefficients would vary as a function of the one-dimensional 
strains along the beam reference line. This leads to a double nonlinear problem, i.e., nonlinear both along the 
beam reference line and over the cross-section.

Previously, the methodology for determining the nonlinear stiffness coefficients in terms of one-dimensional 
strain measures for thin  strips46, as well as for circular  tubes47 has been developed. This method involves the 
identification of small parameters associated with problem geometry, and the minimization of strain energy w.r.t. 
the warping field after eliminating higher order terms from the functional using variational asymptotic method. 
The cross-sectional stiffness coefficients for thin strips and circular tubes have been adopted  from46,47, whereby 
the nonlinear stiffness coefficients are derived for an isotropic material in this work.
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In the case of re-entrant geometry, the hinging of thin buckled cell ribs provides the negative value of the 
Poisson’s ratio of re-entrant honeycombs at the macroscale. Wan et al.40 and Levy and  Goldfarb41 used therefore 
a large deflection model based on the elastica theory to determine the effective value of the Poisson’s ratio under 
large far-field stresses by considering only the deformation of the inclined member AB in Fig. 2. Since the unit 
cell is part of a larger continuum, the symmetry of the deformation is imposed by suppressing the rotations at the 
joints A and B, thereby implying that the inclined beam AB can be broken into two half cantilever beams (Fig. 2).

The tip deflection for the cantilever beams along the horizontal and vertical directions Ux and Uy under 
the applied load Px are determined for the different values of the rib-inclination angles θ . The Poisson’s ratio is 
evaluated as per Eq. (1), wherein Lcosθ and (H − Lsinθ) are the horizontal and vertical projections respectively 
of the undeformed beam:

The definition of Poisson’s ratio is instantaneous and not incremental as indicated in Eq. (1). Within the 
framework of the linear beam theories for small deflections, the value of the Poisson’s ratio is independent of 
the applied stress or strain field, and Eq. (1), is reduced to the following form:

(1)vyx = −
ǫy

ǫx
= −

UyLcosθ

Ux(H − Lsinθ)

Figure 1.  Methodology for beam analysis adopted in this work (ref. Hodges et al.50,51).
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Figure 2.  2D re-entrant geometry with the inclination angle of the ribs θ, the length of inclined member L and 
height of vertical member H . Half-length cantilever beam model for the 2D re-entrant  geometry40: the inclined 
member AB is split into two half-length cantilever beams, i.e., AO and OB . The tip deflections in the horizontal 
and vertical directions for the cantilever beam are Ux and Uy , respectively. The tip load on the cantilever beam is 
determined from the applied far-field stress, i.e., σx.
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In Eq. (2), k is the slenderness ratio of the inclined member AB and α is the ratio of the length of the vertical 
strut to the inclined strut, i.e., H/L . Similarly, Yang et al.49 formulated analytical expressions for the Poisson’s ratio 
and the effective Young’s modulus for the 3D re-entrant geometry shown in Fig. 3. Under the effect of applied 
far-field stresses in the vertical z direction, the inclined members deform symmetrically. Hence, from symme-
try considerations, Yang et al.49 determined the value of the Poisson’s ratio from the deformed configuration of 
the inclined member O1B and the vertical member O1O

′
1 as shown in Fig. 3, while restricting the rotations at 

the joint O1 . The value of the Poisson’s ratio in the z direction, i.e., vxz for the three-dimensional geometry has 
been determined from the deformations of the inclined and vertical struts as per the following equation:

where, H, L and θ are the model parameters shown in Fig. 3, �x1 and �z1 are the horizontal and vertical tip 
deflections for the half-length cantilever beam representing the inclined members of length L, and �z2 is the 
vertical deflection for the member O1O

′
1 . When using small deformations, Eq. (3) is reduced to the following 

form, wherein �z2 is neglected:

In Eq. (4), k is the slenderness ratio of the inclined member O1B . For slender struts, the Poisson’s ratio for 
two-dimensional re-entrant geometry was shown to vary significantly with the applied  stress40. The deviation 
from the strain-independent value of Poisson’s ratio determined as per Eq. (2) was primarily attributed to large 
deformations, which have been previously accounted for using the elastica theory by Wan et al.40 and Levy and 
 Goldfarb41, however, the results were obtained considering physically unrealistic values of tip deflection angles 
as inputs. In contrast to formulations previously presented, the geometrically-exact beam theory presented in 
“Geometrically exact beam theory” is used here to determine the deflections of the struts under large loads.

Cross‑sectional analysis
The mathematical formulations in the following sections have been adopted from the asymptotic theory pre-
sented in previous  works46,47. The asymptotic theory has been adapted to thin structural members for the auxetic 

(2)vyx =
(3− k2)sinθ

[α − sinθ][3+ k2tan2θ ]

(3)vxz = −
2�x1(H − Lcosθ)

(2�z1 +�z2)Lsinθ

(4)vxz =
(12− k2)cosθ(α − cosθ)

[k2sin2θ + 12cos2θ ]

'O1

O1

F/4

'O1

O1

A

'A

B

H

L
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Figure 3.  3D re-entrant geometry with the rib-inclination angle θ, length of inclined member L and height 
of vertical member H . The half-length cantilever beam model for the 3D re-entrant  geometry49: the inclined 
member is split into two half-length cantilever beams. The tip deflections in the horizontal and vertical 
directions for the cantilever beam are �x1 and �z1 , respectively. The tip load on the cantilever beam is 
determined from the applied far-field stress σz.
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configurations in Figs. 2 and 3. The material for the frame is assumed to be linear elastic and isotropic and the 
members constituting the frame are assumed to be thin strips (“Strip-based structural member”) and circular 
tubes (“Tubular geometry”):

Strip‑based structural member:
A strip is a thin rectangular member for which the thickness is significantly smaller than the width, as shown in 
Fig. 4. As indicated in Fig. 4, the length of the beam is L , the width of the strip is b and the thickness of the strip 
is t  . The variational method involves constrained minimization of the strain energy functional. Smallness of 
certain parameters allows for the elimination of higher-order terms in the energy with respect to these param-
eters. A preliminary analysis is performed considering only the zeroth order terms, followed by a more refined 
analysis taking into consideration the first order terms as well. For each strip, the small parameters which can 
be clearly identified are the thickness-to-width ratio, i.e., δt =

(

t
b

)

 , width to length ratio, i.e., δb =
(

b
L

)

  and 
width times pretwist per unit length, i.e., δk = ak1.

Equation (5) is the expression for one-dimensional strain energy, i.e., U1D , in terms of the one-dimensional 
strains along the beam reference line, i.e., extension, twist, and bending curvature, i.e., ϒ11 , κ1 , and κ2/κ3 respec-
tively, wherein Sl , Sln and Sn are the coefficient matrices (ref. Eqs. A.9, A.10 and A.11). The details of the math-
ematical formulations for the strain energy have been summarised in “Appendix A”46.

The linear and non-linear terms in the expression for one-dimensional strain energy can be combined to 
obtain the equivalent stiffness matrix, i.e.:

where, for an isotropic material with Young’s modulus E, Poisson’s ratio ν, and pretwist along the reference line 
k1 = 0 , equivalent stiffness matrix, Seq is:

In accordance with the flow chart presented in Fig. 1, the cross-sectional stiffness matrix Seq is a required input 
for one-dimensional nonlinear beam analysis. However, since the terms of the stiffness matrix are functions of 
one-dimensional moment strains along the beam reference line, the stiffness matrix is updated after each load 
increment. Further, from the equivalent cross-sectional matrix obtained, we can infer that the second diagonal 
term which corresponds to torsional rigidity increases as the moment strain κ1 increases with or without pre-
twist. This phenomenon is recognized as the well-known non-physical nonlinearity, i.e., the so-called trapeze 
effect. In addition, the third diagonal term, corresponding to bending stiffness increases as well with increasing 
moment strains, i.e., κ2 . The effect of the nonlinearity arising due to the smallness of the parameter δt can be 
suppressed by replacing Seq with Sl , for which the stiffness coefficients are constants.

(5)U1D =
1

2
ǫTl [Sl]ǫl + ǫTl [Sln]ǫn +

1

2
ǫTn [Sn]ǫn

U1D =
1

2
ǫTl

[

Seq
]

ǫl

Seq =











Ebt Eb3t
24

κ1 0 0
Eb3t
24

κ1
Eb3t

6(1+ν)
+ Eb5t

320
κ21 0 0

0 0 Ebt3

12
+ Eb5tv2

720
κ22 + Eb5tv

360
κ21 − Eb7

2520t κ
2
3 0

0 0 0 Eb3t
12











Figure 4.  Thin strip with geometric parameters: length of member L , width b and thickness t  : Undeformed 
and deformed configurations of the cross-section, position vector to a material point on the undeformed 
cross-section, i.e.r̂  is expressed in terms of measure numbers along the orthonormal triad of bi vectors, and 
the position vector to a material point on the deformed cross-section, i.e. ̂R is expressed in terms of measure 
numbers along the orthonormal triad of Bi vectors.
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Additionally, the zeroth order solution for shell out of plane warping (along b3 direction in Fig. 4) of thin 
isotropic strip  from46 for ( κ1 = 0, κ3 = 0) is of the following form when bending, i.e., κ2 is predominant:

where, x2 is measured along the width direction for the thin strip (i.e. along b2 direction). From Eq. (6), it can 
be inferred that the deformed shape of the cross-section would be parabolic.

Tubular geometry
A thin circular tube is shown in Fig. 5 for which the small parameters that can be identified are the ratio of 
thickness to the radius, i.e., δh =

(

t
R

)

 and the ratio of radius to the length of the tube, i.e., δR =
(

R
L

)

 . The one-
dimensional strain energy obtained after integration along the circumference of the tube is expressed as follows 
(ref. “Appendix B”):

where

Hence, the cross-sectional stiffness matrix, Seq is obtained to be of the following form:

From the stiffness matrix in Eq. (10), one can infer that the diagonal terms corresponding to moment strain 
κ2 and κ3 decrease as the magnitude of the curvatures increases. This phenomenon is known as Brazier’s effect, 
which is a well-known non-physical non-linearity.

Geometrically exact beam theory
The cross-sectional nonlinear stiffness matrices obtained in "Cross-sectional analysis" are used as inputs for the 
nonlinear one-dimensional analysis along the beam reference line. The equations for one-dimensional beam 
analysis are derived from extended Hamilton’s  principle52:

(6)wo
3 =

(

12x22 − b2
)

vκ2

24

(7)U1D =
1

2

�

ϒ11 κ1 κ2 κ3
�









2πRt 0 0 0

0 EtπR3

(1+v) 0 0

0 0 S22 0

0 0 0 S33















ϒ11

κ1
κ2
κ3







(8)S22 =
πR3Et

(1− v2)

[

1−
9(Rκ2)

2

12(t/R)2 + 10(Rκ2)
2

]

(9)S33 =
πR3Et

(1− v2)

[

1−
9(Rκ3)

2

12(t/R)2 + 10(Rκ3)
2

]

(10)Seq =













2πRt 0 0 0

0 EtπR3

(1+v) 0 0

0 0 πR3Et
(1−v2)

�
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9(Rκ2)

2
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2

�

0
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�

1−
9(Rκ3)

2
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2

�













(11)
∫ t2

t1

∫ L

0

[δ(T − U)+ δW] = δA

L

t

R

b3

b3

b1

b2
a3

b2

a2

Figure 5.  Thin circular tube with geometric parameters: length L , radius R and thickness t  . Position vector to 
a material point on the undeformed cross-section, i.e., r̂  is expressed in terms of measure numbers along the 
orthonormal triad of bi vectors. For the curvilinear coordinate system is a1 coincides with b1 and a2 and a3 are 
along the tangential and radial directions respectively.
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where T is the kinetic energy per unit length, U is the strain energy per unit length, W is the virtual work done 
by the applied loads per unit length, and A is the virtual action at the ends of the beam. For a static problem 
considered here, the kinetic energy term is eliminated. The mathematical formulations for the Euler–Lagrange 
equations and the finite element formulation have been summarised in “Appendix C”. The one-dimensional 
strains determined from Eq. C.17 at a given load increment are used to determine the updated cross-sectional 
stiffness matrix in “Strip-based structural member” and “Tubular geometry” for the next load step. The iterative 
nonlinear analysis procedure is summarised in Fig. 6.

Experimental methodology
In order to validate the behaviour of the geometry as predicted by the numerical methodology (Fig. 6), the 
2D re-entrant configurations made of thin strips were fabricated and tested. The procedure for the specimen 
preparation, test procedure and test response has been summarised in "Specimen geometry and preparation", 
"Quasi-steady compressive test for auxetic unit cells" and "Quasi-steady compression test response" respectively. 
It is emphasised here that the objective of the current work is not to conduct comprehensive experimental 
evaluation, but rather verify the proposed ideas and the numerical results by testing one of the selected auxetic 
configurations.

The experimental validation was limited to thin strips due to certain limitations of the multi-step additive 
manufacturing process available for hollow tubular member (ref. “Tubular geometry”). Single-step additive 
manufacturing techniques are primarily used to fabricate hollow-walled polymeric lattices. In contrast, multi-
step additive manufacturing approaches were predominantly used to fabricate metal and ceramic hollow-walled 
lattices. Manufacturing difficulties regarding geometric precision were reported for additive manufacturing of 
hollow-walled auxetics. Additive manufacturing of such tubular structure would lead into warping and disloca-
tion during the fabrication process. Mitigating these issues would necessitate the incorporation of reinforcing 
materials, as reported  in53. A recent review article discusses the characteristics of hollow-walled lattices while 
highlighting the manufacturing difficulties and their unique deformation  characteristics54. A section is devoted 
in this review  article54 to the ovalisation of hollow-walled lattices, i.e., Brazier’s effect (“Tubular geometry”) and 
suggests further research.

Specimen geometry and preparation
The 3D printed specimen is shown in Fig. 7 and the geometric parameters for the unit cell are listed in Table 1. 
The material used for printing the specimen is ABS plastic for which the elastic modulus, i.e., E = 2.2 GPa and 
the Poisson’s ratio is ν = 0.37 55.

A 3D printing technique based on the fused deposition method (FDM) is used to fabricate the auxetic unit cell 
specimens. The FDM printer used is a Flash Forge Guider II printer with ABS filament. The printing parameters 
and filament material were kept constant to reduce the deviation in the fabricated specimens. The printer setting 
for the fabrication process is provided in Table 2.

The printed specimens were cleaned through hot air jet cleaning to remove excess material ribbons during 
the printing process. A digital vernier caliper was used to measure the dimensions of the fabricated sample and 
the dimensions were compared with the designed structure with dimensions provided in Table 1. The dimension 
was the same as the designed geometry, which indicated the accuracy of the 3D printer.

Quasi‑steady compressive test for auxetic unit cells
The mechanical properties of the auxetic unit cells under compression loading were tested using a 3kN load cell 
Instron UTM machine (Instron 6800 series). Figure 8 shows the experimental setup of a re-entrant sample. The 
tests were performed by placing the specimen on a fixed wooden platen attached to the circular platen of the 
testing machine. The displacement rate was set at a constant value of 0.0333 mm/sec to observe a quasi-steady 
mechanical response.

Figure 6.  Nonlinear beam analysis procedure.
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The deformation of specimens in all experimental tests was captured and recorded using a digital cam-
era. The deformed specimen’s images (frames) were then captured at a rate of 30 frames per second. The instan-
taneous change in the axial and lateral displacements of the traced geometry was calculated using MATLAB. 
The average distance between the top and bottom plates was taken as the axial displacement. At the same time, 
the average displacement between the left and right structural columns was taken as the lateral displacement. 
The accurate axial and lateral deformation was calculated accordingly, in which at each image (i), the preceded 
image (i − 1) was used as a reference. Poisson’s ratio was calculated till the corner of the re-entrant unit cell came 
in contact with each other.

Quasi‑steady compression test response
The experimental response for the 2D re-entrant auxetic structure is shown in Fig. 9. The response of the structure 
under compression load can be divided into two parts represented by (1) no internal contact, and (2) internal 
contact. The compression loading causes an inward contraction of the auxetic cell leading to a lateral deforma-
tion of inclined walls.

Due to the internal contraction of the cell, the wall corners come in contact with the horizontal wall lead-
ing to contact-related forces. The inclined walls are subjected to both bending moment and axial compression 
simultaneously leading to a buckled deformation response . The deformation response due to internal wall 
rotation and movement is not symmetric in nature, as shown in Fig. 9d. This can be caused due to the rotation 
of boundary corners during the compressive loading of the auxetic structure under UTM. For the purpose of 
comparison with the numerical results, the compression response of the specimen in the region with no internal 
contact was considered.

Results and discussions
In this section, the effective elastic properties of the 2D and 3D re-entrant type geometries are presented as a 
function of applied loads. As emphasised in "Numerical methodology", the members constituting the auxetic 
microstructure are assumed to be thin strips and circular tubes. This allows the investigation of the influence 
of non-classical non-linearities. Simulations also reveal, quantitatively, the improvement achieved in auxetic 
behaviour for the geometries under large deformations.

For the 2D re-entrant geometry, the in-plane Poisson’s ratio, i.e., vyx is presented as a function of applied far-
field horizontal load, i.e., Px . Similarly, for the 3D re-entrant geometry, the variation of Poisson’s ratio along the 
vertical direction, i.e., vxz is shown w.r.t. the load along the vertical direction, i.e., Pz . The rib-inclination angle for 
the re-entrant type geometry of the micro-structure significantly affects the macro-scale behaviour. Hence, the 
variation of Poisson’s ratio with applied far-field stresses was determined for different values of rib-inclination 

Figure 7.  3D printed specimen.

Table 1.  Geometric parameters.

Geometric parameters

θ(◦) H (mm) L (mm) b (mm) t (mm)

30 160 80 20 0.6

Table 2.  Printer settings considered for the re-entrant auxetic structure for experiments.

Parameters Filament diameter Nozzle diameter Nozzle temperature Printing speed Layer height Infill density

Specifications 1.75 mm 0.3 mm 240 °C 50 mm/s 0.16 100%
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angles for a thorough parametric evaluation. For the 2D as well as 3D re-entrant type geometry, the ratio of the 
length of the vertical members to the inclined members, i.e., H/L was taken as 2, and the material for the aux-
etic frame was assumed to be ABS plastic, for which E = 2.2 GPa and ν = 0.37. The value of Poisson’s ratio under 
small deformation, as determined from Eq. (2) for the 2D re-entrant geometry and Eq. (4) for the 3D re-entrant 
geometry are summarized, for reference, in Tables 3, 4 and 5 for the geometric parameters considered in this 
study for numerical simulations.

For the 2D and the 3D geometries, as the applied loads gradually increase and the effect of non-linearity 
becomes more pronounced, the value of Poisson’s ratio deviates significantly from the values tabulated in Tables 3, 
4 and 5. This deviation from the values for elastic constants as determined from the stress-independent analytical 
expressions is attributed to large deflections as well as the cross-sectional warping of the members constituting the 
auxetic frame. Specifically, to quantify the influence of non-classical non-linearity arising due to cross-sectional 
warping of the ligaments, on the effective Poisson’s ratio, the following parameter η is introduced:

In Eq. (12), vNL is the Poisson’s ratio determined as per Eqs. (1) and  (3) for the geometries by considering the 
variational asymptotic method-based formulations for the non-linear cross-sectional stiffness matrices presented 
in “Numerical methodology”. For both thin strip and thin circular tube cases considered, the cross-sectional 
matrices account for the nonlinear variations of bending and torsional stiffness of the members with 1-D strains 
along the beam reference line of the half-length cantilever (see Fig. 2 and 3). vL is the value of Poisson’s ratio 
determined considering cross-sections with equivalent bending stiffness (i.e., square for thin strips and circular 
for thin tubes).

In the following sections, the variation of the Poisson’s ratio w.r.t the applied loads has been presented for thin 
strips ("Strip-based structural member:") and circular tubes ("Tubular geometry"). The value of the quantifying 
parameters, i.e., η as determined for different geometric parameters has been indicated in the plots to highlight 
the observed improvement in the auxetic behaviour.

(12)η = |
vNL − vL

vL
| × 100%

Movable Wooden Platen

Fixed Wooden Platen

Figure 8.  Test setup.
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Strip‑based structural member
Numerical results
The dimensions of the strip were taken such that the ratio of the thickness to the width of the strip, i.e., δt is 
sufficiently small. Hence, the influence of non-linearity on the auxetic behaviour of the re-entrant geometry 
is evaluated considering δt = 0.02, 0.025 and 0.03 associated with different rib inclination angles, i.e., θ = 20°, 
30°, 40° and 50°. For the 2D re-entrant geometry, the variation of the Poisson’s ratio against the applied load, 
i.e., νyx vs. Px is plotted in Fig. 10a–d. It is significant to mention that under large loads the members of the 
auxetic frame would come into contact due to internal contraction of the cell as shown in the test response for 

Figure 9.  Results of the quasi-steady compression test of 2D re-entrant auxetic structure with photographs 
taken during the test at various moving head displacements[(a)–(d)], and (e) force–displacement response for 
the test configuration.
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the configurations in "Experimental methodology". Since the present work does not take into consideration 
the subsequent change in auxetic behaviour, the variation of Poisson’s ratio is plotted over the range of applied 
loads for which the internal collision between the members is not evident. The values for Poisson’s ratio, i.e., vyx 
for the 2D re-entrant geometry are plotted considering the members constituting the auxetic frame to have a 
thin rectangular cross-section (thin strips), as well as for members with a square cross-section with equivalent 

Table 3.  Elastic Properties for 2D re-entrant geometry constituted of thin strips.

Model parameters Small Deformation Theory GEBT

θ (°) H (mm) L (mm) b (mm) t (mm) vyx vL vNL η (%)

20 160 80 10 0.2 −1.55 −0.244 −0.5 107

0.25 −1.55 −0.249 −0.46 84

0.3 −1.55 −0.279 −0.452 61

30 160 80 10 0.2 −1 −0.24 −0.423 76

0.25 −1 −0.305 −0.437 43

0.3 −1 −0.338 −0.439 29

40 160 80 10 0.2 −0.672 −0.306 −0.382 25

0.25 −0.672 −0.333 −0.385 15

0.3 −0.672 −0.351 −0.387 10

50 160 80 10 0.2 −0.437 −0.28 −0.298 6.5

0.25 −0.437 −0.292 −0.303 3.7

0.3 −0.437 −0.297 −0.305 2.5

Table 4.  Elastic properties for 2D re-entrant geometry constituted of thin circular tubes.

Model parameters  Small Deformation Theory GEBT

θ (°) H (mm) L (mm) R (mm) t (mm) vyx vL vNL η (%)

30 160 80 5 0.2 −0.915 −1.18 −1.01 17

0.3 −0.915 −1.17 −1.04 12

0.4 −0.915 −1.12 −1.05 6

40 160 80 5 0.2 −0.637 −0.82 −0.70 16

0.3 −0.636 −0.81 −0.73 11

0.4 −0.638 −0.77 −0.74 5.2

50 160 80 5 0.2 −0.421 −0.57 −0.47 15.8

0.3 −0.421 −0.54 −0.48 10.2

0.4 −0.421 −0.54 −0.50 5

60 160 80 5 0.2 −0.246 −0.32 −0.28 14

0.3 −0.247 −0.33 −0.29 7

0.4 −0.247 −0.31 −0.297 3

Table 5.  Elastic properties for 3D re-entrant geometry constituted of thin circular tubes.

Model parameters Small Deformation Theory GEBT

θ (°) H (mm) L (mm) R (mm) t (mm) vxz vL vNL η  (%)

30 160 80 5 0.2 −3.451 −3.72 −4.24 14

0.3 −3.459 −3.79 −4.07 7.5

0.4 −3.468 −3.81 −3.97 4.2

40 160 80 5 0.2 −2.111 −2.33 −2.82 21

0.3 −2.119 −2.39 −2.70 12.6

0.4 −2.117 −2.43 −2.59 6.6

50 160 80 5 0.2 −1.404 −1.57 −1.92 22

0.3 −1.404 −1.61 −1.83 13.2

0.4 −1.407 −1.64 −1.74 6

60 160 80 5 0.2 −0.955 −1.08 −1.35 24

0.3 −0.956 −1.12 −1.28 13.6

0.4 −0.957 −1.14 −1.22 6.4
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bending stiffness to the strips. Considering a linear cross-sectional stiffness matrix for the equivalent square 
cross-section as the geometry deforms under in-plane compression, Poisson’s ratio, i.e., vL varies significantly 
from the values predicted by small deformation theory, i.e., Eq. (2) and becomes increasingly less negative as 
shown in Fig. 10a–d, hence implying that the auxetic behaviour for the geometry undergoes progressive degra-
dation under large deformation. For a square cross-section, since cross-sectional warping is not significant, the 
deviation from the values predicted by the load-independent analytical formulations for the Poisson’s ratio, i.e., 
values tabulated in Table 3, is primarily attributed only to one-dimensional nonlinearity along the beam refer-
ence line or large deflections of the members constituting the auxetic frame. This behaviour for the geometry 
predicted by the geometrically exact beam theory for equivalent square cross-section was compared with results 
from the elastica model presented by Wan et al.40 for the 2D re-entrant geometry for similar model parameters 
as shown in Fig. 10a–d. Since, the elastica model, similar to the assumptions of Euler–Bernoulli beam theory 
neglects cross-sectional warping, the values agree well.

For thin strips accounting for the cross-sectional warping, i.e., considering the non-linear cross sectional 
stiffness matrix, wherein the terms of the stiffness matrix vary with one-dimensional strains along the beam 
reference line, in Fig. 10a–d it is observed that over the same range of applied loads, the value of Poisson’s ratio, 
i.e., vNL  is more negative compared to vL . This implies that the auxetic behaviour improves significantly, which 
is also captured by the value of the parameter η, which increases up to 107%, for t/b = 0.02 and rib-inclination 
angle, i.e., θ = 20° (ref. Table 3). This implies that the non-classical non-linear effect becomes significant and 
enhances the auxetic behaviour.

Further from Fig. 10a–d, it can be inferred that the value of the quantifying parameter η is higher for lower 
values of δt  i.e., t/b. Specifically, the non-linear effect is attributed to the increasing magnitude of the bending 
stiffness corresponding to curvature κ2(κ1 = 0, κ3 = 0) (ref. “Strip-based structural member”):

Figure 10.  Variation of Poisson’s ratio, i.e., vyx with applied far-field compressive load in the horizontal 
direction, i.e., Px for different rib inclination angles: (a )θ = 20◦ , (b) θ = 30◦ , (c) θ = 40◦ and (d) θ = 50◦ . 
Variation of Poisson’s ratio with applied far-field stress is determined for different values of thickness to width 
ratio of the strips, i.e., [t/b = 0.02, 0.025, 0.03] . The results are validated with plots for Poisson’s ratio determined 
from the elastica model presented by Wan et al.40. The plots for linear cross-sectional stiffness matrix are shown 
by dashed lines and the plots for non-linear cross-sectional stiffness matrix are shown by solid lines.
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Equation (13) for the bending stiffness can be reframed as follows:

It can be inferred from Eq. (14), that relative increase in the cross-sectional stiffness term corresponding to 
κ2 due to non-linearity, i.e., [S22]NL

[S22]L
 is inversely related to δt . Figure 11a shows the variation of relative increase in 

the value of bending stiffness, i.e., [S22]NL
[S22]L

 with the curvature, i.e., κ2 and Fig. 11b shows the variation of the ratio 
with δt . From Fig. 11 it can be inferred that for higher values of δt the ratio converges to 1, i.e., the linear theory, 
wherein the bending stiffness is assumed to be constant and only large deformations of the inclined members 
influences the load dependent behaviour for the geometry, similar to the elastica model given by Wan et al.40. 
Figure 11a also shows the shape of the warped cross-section (ref. Eq. 6), wherein δ is the relative deformation 
between the central (i.e., x2 = 0) and extreme positions (i.e., x2 = b/2) along the width of the cross-section (ref 
Fig. 4).

As a consequence of increasing cross-sectional stiffness the deformation of the inclined member is reduced, 
thereby increasing the range of load over which auxetic behaviour is retained. Figure 12 also shows the deformed 
configuration for the tested specimen in "Experimental methodology", from the numerical simulations at dif-
ferent magnitudes of applied loads ( Px = 1.45, 1, 0.7 and 0.2 N). On comparing the deformed configuration for 
thin strips and for equivalent square cross-section, it is inferred that the deformation of the inclined members 

(13)[S22]NL =
Ebt3

12

[

1+
b2v2

60(t/b)2
κ22

]

(14)
[S22]NL

[S22]L
=

[

1+
b2v2

60(t/b)2
κ22

]

Figure 11.  (a) Variation of relative increase in the value of bending stiffness, i.e., [S22]NL
[S22]L

 with the curvature, 
i.e., κ2 and shape of the deformed cross-section for thin strip (b = 10 mm, v = 0.37 ref. Eq. 6). (b) Variation 
of relative increase in the value of bending stiffness with δt . Increase in the cross-sectional stiffness term 
corresponding to κ2 due to non linearity is inversely related to δt.

Figure 12.  Deformed configuration for 2D re-entrant geometry (H/L = 2, θ = 30◦,L = 8 cm,δt = 0.03) at 
different magnitudes of applied loads ( Px = 1.45,1,0.7 and 0.2 N) for thin strip and equivalent square cross-
section. The increase in the cross-sectional stiffness delays internal contact between the cell walls of the unit cell.
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is significantly reduced by the non-linear effect when compared with the geometry constituted of members 
with equivalent square cross-sections. This phenomenon also delays the onset of internal contact between the 
cell members, thereby increasing the range of applied load over which the geometry exhibits auxetic behaviour. 
Additionally, it is also observed that the effect of non-linearity, and thereby the associated improvement in 
auxetic behaviour is relatively more pronounced for lower values of the rib-inclination angles. For higher values 
of rib-inclination angles, the internal collision of the members initiates at relatively lower values of the loads 
due to reduced spacing between the cell walls, thereby limiting the effect of non-linearity arising due to cross-
sectional warping.

It is also significant to mention here that the analysis in this work is limited to a single unit cell and with 
reference to the half-length cantilever beam model for the re-entrant geometry given by Wan et al. 40, the joint 
rotations are suppressed in the proposed framework, to impose periodic boundary conditions on the geometry, 
in order to represent a continuum environment. Although the non-linear effect is governed by cross-sectional 
warping of the thin strip, warping itself is symmetric (ref. Fig. 11a), affected by in-plane bending of the inclined 
members, i.e., κ2 and is independent of the boundary conditions at the joints as can be inferred from Eq. (6). 
Hence, although the numerical model in the present work, is limited to a single unit cell, it is expected that the 
non-linear effect would be significant for a larger representative volume as well.

Traditionally, re-entrant honeycombs are constructed with filleted corners to minimize localised stress con-
centrations. The current formulation does not directly account for added stiffness of the connected region due 
to the fillet, however the framework can be extended to capture variation of cross-sectional stiffness along the 
length of the inclined members due to the added material at joints. In such a scenario, added material at the 
joint coupled with non-linearity exhibited by thin strips would potentially improve auxetic behaviour further.

Experimental verification
The behaviour of the 2D re-entrant geometry constituted of thin strips was validated with the experimental results 
as shown in Fig. 13. The dimensions of the test specimen are tabulated in Table 2. The experimental validation 
for the numerical methodology and the associated improvement in auxetic behaviour is limited to the range of 
loads for which the internal contact between the members of the unit cell is not observed, i.e., the no contact 
region of the plot in Fig. 9. Figure 13a, b show the comparison between the load vs longitudinal (x-direction) 
and lateral (y-direction) displacement plots as predicted by the numerical methodology (Fig. 6) and the experi-
mental results ("Experimental methodology"). Figure 13c also shows the lateral displacement plotted against the 
longitudinal displacement. The experimental and numerical values of displacements are in reasonable agree-
ment with an upper bound of 20% on the deviation. Further, Fig. 13d shows the comparison between the load 
vs Poisson’s ratio behaviour. The numerical results are also plotted for the 2D re-entrant geometry constituted 
of members with a square cross-section of equivalent bending stiffness to highlight the improvement in auxetic 
behaviour. From the comparison, it is inferred that the numerical results for the thin strip agree reasonably well 
with the experimental response, and the non-linearity arising due to cross-sectional warping for the thin strip 
improves auxetic behaviour significantly. With reference to Eq. (6), the shape of the warped cross-section is 
parabolic, however the maximum value of δ < 1 mm (ref. Fig. 11a) for the tested geometry, and hence could not 
be measured due to the limitations of the available experimental setup, however, the effect of increased bending 
stiffness due to the deformed shape of the cross-section is captured by the significant reduction in the deforma-
tions when compared with the results from linear theory, wherein, the terms of the stiffness matrix are assumed 
to be curvature independent constants. It is also highlighted here, that the warping is within the plane of the 
geometry, and out of the plane of the thin strip. The numerical plot indicates that the value of the quantifying 
parameter η increases up to 66% for the tested configuration (ref. Table 6). The experimental results for the tested 
configuration also capture the non-linear behaviour, and align well with the numerical predictions. Figure 13d 
also shows the error bar on the measured value of Poisson’s ratio. The deviation between numerical and experi-
mental results is attributed to the difference in the applied boundary conditions on the numerical model and 
the tested specimen, i.e., the boundary conditions are different for the present experimental set-up, in the sense 
that it is not periodic but resembling a displacement-driven hard boundary conditions with one end fixed and 
the other end being displaced (Fig. 8). Hence, comparison of the experimental results with the numerical results 
is not one-to-one. However, the results of the numerical work would resemble the larger RVE system due to the 
periodic boundary conditions applied to the model in the current work.

Tubular geometry
The dimensions of the circular tube were taken such that the ratio of the thickness to the radius of the circular 
tube i.e., the parameter δh is sufficiently small. The influence of the ovalisation induced non-linearity on the aux-
etic behaviour is investigated considering δh = 0.04, 0.06 and 0.08 in association with the rib-inclination angles 
θ = 30°, 40°, 50° and  60° for the 2D re-entrant geometry and 3D re-entrant geometry. Figure 14a–d show the 
variation of the Poisson’s ratio, i.e., vyx with applied far-field tensile load, i.e., Px for the 2D re-entrant geometry 
and Fig. 15a–d show the variation of the Poisson’s ratio vxz with applied far-field compressive load, i.e., Pz for 
the 3D re-entrant geometry. The variation of Poisson’s ratio, i.e., vyx and vxz is plotted considering the mem-
bers constituting the auxetic frame to have a thin tubular cross-section, as well as for members with a circular 
cross-section with equivalent bending stiffness to the thin tubes. For the circular cross-section with equivalent 
bending stiffness, the cross-sectional warping is negligible, thereby implying that the bending stiffness ( S22/S33 
ref. "Numerical methodology") would not vary with curvature. In this case, the Poisson’s ratio, i.e., vL becomes 
increasingly more negative under tensile loads in the horizontal direction, i.e., Px as shown in Fig. 14a–d for the 
2D re-entrant geometry and under compressive loads in the vertical direction, i.e., Pz  for 3D re-entrant geometry 
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as shown in Fig. 15a–d. The results indicate an improvement in auxetic behaviour for both geometries under 
the considered loading conditions.

As discussed in "Strip-based structural member:", for the equivalent circular cross-section, the deviation from 
the values predicted by small deformation theory (Tables 4 and 5) is attributed only to the one-dimensional non-
linearity along the beam reference line of the inclined members. This behaviour predicted by the geometrically 
exact beam theory for constant cross-sectional stiffness of the members is validated with the results from the elas-
tica model for similar geometric  parameters40,41. The deviation in the values predicted by the elastica model and 
the geometrically exact beam theory is within an upper bound of 10%, and is attributed to the axial deformation 
of the half-length cantilever beam in Figs. 2 and 3, which is neglected in the formulations of the elastica theory.

For thin tubular cross-section, considering the non-linear cross-sectional stiffness matrix presented in 
"Numerical methodology", the value of Poisson’s ratio, i.e., vNL  was observed to become progressively more 
negative compared to vL over the same range of applied tensile load for different rib-inclination angles. This, in 
turn, implies that the auxetic behaviour improves as the non-classical non-linear effect, specifically the Brazier’s 
effect becomes significant. The improvement in auxetic behaviour here is attributed to the decreasing bending 
stiffness as the curvature increases. This phenomenon is shown in Fig. 16b, wherein the cross-sectional bend-
ing stiffness for a section at the root of the half-length cantilever beam (H/L = 2, θ = 300 , L = 8 cm, δh = 0.06) is 

Figure 13.  Comparison of numerical and experimental results for 2D re-entrant geometry : (a) load vs 
longitudinal displacement ( Px vs 4Ux ). (b) Load vs lateral displacement ( Px vs 4Uy ). (c) Lateral vs longitudinal 
displacement ( 4Uy vs 4Ux ). (d) Variation of Poisson’s ratio, i.e. vyx with applied far-field compressive load in the 
horizontal direction, i.e. Px for the test specimen (ref. Table 2: , θ = 30◦ , ,H/L = 2).

Table 6.  Comparison of numerical and experimental results for 2D strip-based geometry.

Model parameters Linear Load GEBT Experiment

H (mm) L (mm) b (mm) t (mm) vyx Px(N) vL vNL n % vexp %Error

30 160 80 20 0.6 -1 1.485 -0.31 -0.52 66 -0.63 21
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plotted w.r.t. the applied tensile load, i.e., Px . From Fig. 16b it is inferred that there is a significant reduction in the 
bending stiffness of thin tubes as compared to an equivalent circular cross-section. The effect of decreasing bend-
ing stiffness on the behaviour of the geometry is also captured by the deformed configuration of the geometry.

On comparing the deformed configuration of the geometry for thin tubes and for circular cross-sections with 
equivalent bending stiffness, it is inferred that as a consequence of the progressive reduction in bending stiff-
ness with curvature, the thin tubes exhibit increased deformation, thereby resulting in higher negative values of 
Poisson’s ratio. The improvement in the auxetic behaviour is captured by the increasing values of the parameter 
η, which increases up to 17% for t/R = 0.04 and θ = 300  for the 2D re-entrant geometry. From the plots, it is 
observed that the effect of non-linearity is relatively more pronounced for lower values of the parameter t/R. 
Further for the 3D re-entrant geometry, considering the linear cross-sectional stiffness matrix, the value of Pois-
son’s ratio becomes more negative under compressive far-field stress in the vertical direction, i.e., Pz as shown in 
Fig. 15a–d. As in the case of the 2D re-entrant geometry, the deviation from the load -independent values from 
the small deformation theory for circular cross-section is attributed to one-dimensional non-linearity along the 
beam reference line of the inclined members. This behaviour for the 3D geometry under compression is validated 
with results from the elastica  theory49. Accounting for the non-linear effects due to cross-sectional warping, the 
value of Poisson’s ratio vNL was observed to be more negative compared to vL over the same range of applied com-
pressive load, thereby indicating that the auxetic behaviour improves as a consequence of non-linearity. For the 
3D re-entrant geometry, the value of the parameter was observed to increase to 24% for θ = 300 and t/R = 0.04.

Figure 14.  Variation of Poisson’s ratio, i.e., vyx with applied load in the horizontal direction, i.e., Px for different 
rib inclination angles: (a) θ = 30◦ , (b) θ = 40◦, (c) θ = 50◦ and (d) θ = 60◦ . Variation of Poisson’s ratio with 
applied far-field stress is determined for different values of thickness to the radius of the circular tubes, i.e., 
[t/R = 0.04, 0.06, 0.08] . The results are validated with plots for Poisson’s ratio determined from the elastica 
model presented by Wan et al.40. The plots for linear cross-sectional stiffness matrix are shown by dashed lines 
and the plots for non-linear cross-sectional stiffness matrix are shown by solid lines.
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Conclusions
In this article, non-classical non-linear effects have been exploited through simple geometric engineering to 
improve the auxetic behaviour for the 2D and 3D re-entrant geometries under large deformations. The vari-
ational asymptotic two-dimensional cross-sectional analysis and geometrically exact beam theory were employed 
to determine the influence of such non-classical non-linearities on the variation of Poisson’s ratio with applied 
far-field stresses for different values of rib-inclination angles. Parametric evaluation dealing with the effect of 
rib-inclination angles, the ratio of the thickness to width for the strips and thickness to radius for the circular 
tubes on the auxeticity of the geometry has been presented.

• The numerical results suggest that the auxetic behaviour of the 2D re-entrant geometry with thin strips 
constituting the micro-structure, exhibited an improvement under compressive stress. This phenomenon 
is attributed to a progressive increase in stiffness constants corresponding to curvature due to which, the 
deformation of the inclined members undergoes significant reduction, allowing the geometry to retain aux-
etic behaviour over a larger range of applied stress. The numerical results indicated an improvement of up 
to 107% in the value of Poisson’s ratio.

• For the 2D re-entrant geometry under tensile stress, Poisson’s ratio becomes more negative for the unit cell 
constituted of thin circular tubes as the Brazier’s effect becomes significant, i.e., as the bending stiffness 
decreases with increasing curvature, enhancing the auxetic behaviour by up to 17%.

• For the 3D re-entrant geometry under far-field stresses in the z-direction, Brazier’s effect significantly 
improved the auxetic behaviour under compression, by up to 24%

Figure 15.  Variation of Poisson’s ratio, i.e., vxz with applied load in the vertical direction, i.e., Pz for different 
rib inclination angles: (a) θ = 30◦ , (b) θ = 40◦, (c) θ = 50◦ and (d) θ = 60◦ . Variation of Poisson’s ratio with 
applied far-field stress is determined for different values of thickness to the radius of the circular tubes, i.e., 
[t/R = 0.04, 0.06, 0.08] . The results are validated with plots for Poisson’s ratio determined from the elastica 
model presented by Yang et al.49. The plots for linear cross-sectional stiffness matrix are shown by dashed lines 
and the plots for non-linear cross-sectional stiffness matrix are shown by solid lines.
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With such simple geometric feature engineering at the member level of an auxetic microstructure, the results 
have shown a potential path to achieve enhanced auxetic behaviour across the existing range of auxetic con-
figurations. It is also important to highlight that while exploiting such nonlinearities significantly increased the 
negative value of Poisson’s ratio, the overall stiffness decreases due to the very nature of the thin-walled members 
of the auxetic geometries considered.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on 
reasonable request.

Received: 26 April 2023; Accepted: 14 November 2023

References
 1. Kolken, H. M. A. & Zadpoor, A. A. Auxetic mechanical metamaterials. RSC Adv. 7(9), 5111–5129. https:// doi. org/ 10. 1039/ C6RA2 

7333E (2017).
 2. Joseph, A., Mahesh, V. & Harursampath, D. On the application of additive manufacturing methods for auxetic structures: A review. 

Adv. Manuf. 9(3), 342–368. https:// doi. org/ 10. 1007/ s40436- 021- 00357-y (2021).
 3. Smith, C. W., Grima, J. & Evans, K. A novel mechanism for generating auxetic behavior in reticulated foams: missing rib foam 

model. Acta Mater. 48(17), 4349–4356. https:// doi. org/ 10. 1016/ S1359- 6454(00) 00269-X (2000).
 4. Koudelka, P., Jirousek, O., Fıla, T. & Doktor, T. Compressive properties of auxetic structures produced with direct 3D printing. 

Mater. Tehnol. 50(06), 311–317 (2016). https:// doi. org/ 10. 17222/ mit. 2014. 204.
 5. Liu, W., Li, H., Yang, Z., Zhang, J. & Ge, X. In-plane elastic properties of a 2D chiral cellular structure with V-shaped wings. Eng. 

Struct. 210, 110384. https:// doi. org/ 10. 1016/j. engst ruct. 2020. 110384 (2020).
 6. Scarpa, F., Panayiotou, P. & Tomlinson, G. Numerical and experimental uniaxial loading on in-plane auxetic honeycombs. J. Strain 

Anal. Eng. Des. 35(5), 383–388. https:// doi. org/ 10. 1243/ 03093 24001 514152 (2000).
 7. Tang, C., Li, L., Wang, L., Herencia, V. Z. & Ren, J. Numerical and experimental studies on the deformation of missing-rib and 

mixed structures under compression. Phys. Status Solidi (B) 257(10), 2000150. https:// doi. org/ 10. 1002/ pssb. 20200 0150 (2020).
 8. Shokri Rad, M., Ahmad, Z. & Alias, A. Computational approach in formulating mechanical characteristics of 3D star honeycomb 

auxetic structure. Adv. Mater. Sci. Eng. 2015, 1–11. https:// doi. org/ 10. 1155/ 2015/ 650769 (2015).
 9. Remennikov, A. et al. Development and performance evaluation of large-scale auxetic protective systems for localized impulsive 

loads. Int. J. Protect. Struct. 10, 390–417. https:// doi. org/ 10. 1177/ 20414 19619 858087 (2019).
 10. Qi, C., Jiang, F., Yu, C. & Yang, S. In-plane crushing response of tetra-chiral honeycombs. Int. J. Impact Eng 130, 247–265. https:// 

doi. org/ 10. 1016/j. ijimp eng. 2019. 04. 019 (2019).
 11. Li, C., Shen, H.-S. & Wang, H. Full-scale finite element modeling and nonlinear bending analysis of sandwich plates with function-

ally graded auxetic 3D lattice core. J. Sandwich Struct. Mater. 23(7), 13–3138. https:// doi. org/ 10. 1177/ 10996 36220 924657 (2021).
 12. Dutta, S., Menon, H. G., Hariprasad, M., Krishnan, A. & Shankar, B. Study of auxetic beams under bending: A finite element 

approach. Mater. Today Proc. 46, 9782–9787. https:// doi. org/ 10. 1016/j. matpr. 2020. 10. 479 (2021).
 13. Li, T., Chen, Y., Hu, X., Li, Y. & Wang, L. Exploiting negative Poisson’s ratio to design 3D-printed composites with enhanced 

mechanical properties. Mater. Des. 142, 247–258. https:// doi. org/ 10. 1016/j. matdes. 2018. 01. 034 (2018).
 14. Fozdar, D. Y., Soman, P., Lee, J. W., Han, L.-H. & Chen, S. Three-dimensional polymer constructs exhibiting a tunable negative 

Poisson’s ratio. Adv. Funct. Mater. 21, 2712–2720. https:// doi. org/ 10. 1002/ adfm. 20100 2022 (2011).

Figure 16.  (a) Deformed configuration for 2D re-entrant geometry (H/L = 2, , θ = 30◦ , L = 8 cm and 
, δh = 0.06 ) under tensile applied load ( Px = 90 N) for thin tube and equivalent circular cross-section and (b) 
cross-sectional bending stiffness (kNmm2) plotted as a function of the applied load Px.

https://doi.org/10.1039/C6RA27333E
https://doi.org/10.1039/C6RA27333E
https://doi.org/10.1007/s40436-021-00357-y
https://doi.org/10.1016/S1359-6454(00)00269-X
https://doi.org/10.17222/mit.2014.204
https://doi.org/10.1016/j.engstruct.2020.110384
https://doi.org/10.1243/0309324001514152
https://doi.org/10.1002/pssb.202000150
https://doi.org/10.1155/2015/650769
https://doi.org/10.1177/2041419619858087
https://doi.org/10.1016/j.ijimpeng.2019.04.019
https://doi.org/10.1016/j.ijimpeng.2019.04.019
https://doi.org/10.1177/1099636220924657
https://doi.org/10.1016/j.matpr.2020.10.479
https://doi.org/10.1016/j.matdes.2018.01.034
https://doi.org/10.1002/adfm.201002022


19

Vol.:(0123456789)

Scientific Reports |        (2023) 13:20915  | https://doi.org/10.1038/s41598-023-47525-7

www.nature.com/scientificreports/

 15. Peng, X.-L. & Bargmann, S. A novel hybrid-honeycomb structure: Enhanced stiffness, tunable auxeticity and negative thermal 
expansion. Int. J. Mech. Sci. 190, 106021. https:// doi. org/ 10. 1016/j. ijmec sci. 2020. 106021 (2021).

 16. Wei, L., Zhao, X., Yu, Q. & Zhu, G. A novel star auxetic honeycomb with enhanced in-plane crushing strength. Thin‑Wall. Struct. 
149, 106623. https:// doi. org/ 10. 1016/j. tws. 2020. 106623 (2020).

 17. Elipe, J. C. A. & Lantada, A. D. Comparative study of auxetic geometries by means of computer-aided design and engineering. 
Smart Mater. Struct. 21(10), 105004. https:// doi. org/ 10. 1088/ 0964- 1726/ 21/ 10/ 105004 (2012).

 18. Grima, J. N., Gatt, R., Alderson, A. & Evans, K. On the potential of connected stars as auxetic systems. Mol. Simul. 31(13), 925–935. 
https:// doi. org/ 10. 1080/ 08927 02050 04011 39 (2005).

 19. Jiang, W. et al. Manufacturing, characteristics and applications of auxetic foams: A state-of-the-art review. Compos. B Eng. 235, 
109733. https:// doi. org/ 10. 1016/j. compo sitesb. 2022. 10973 34 (2022).

 20. Gatt, R. et al. Hierarchical auxetic mechanical metamaterials. Sci. Rep. 5, 8395. https:// doi. org/ 10. 1038/ srep0 8395 (2015).
 21. Eghbali, P. et al. Study in circular auxetic structures for efficiency enhancement in piezoelectric vibration energy harvesting. Sci. 

Rep. 10, 16338. https:// doi. org/ 10. 1038/ s41598- 020- 73425-1 (2020).
 22. Wang, H. et al. Modulation of multi-directional auxeticity in hybrid origami metamaterials. Appl. Mat. Today 20, 100715. https:// 

doi. org/ 10. 1016/j. apmt. 2020. 100715 (2020).
 23. Sigmund, O. Topology optimization: A tool for the tailoring of structures and materials. Philos. Trans. R. Soc. A Math. Phys. Eng. 

Sci. 358, 211–227. https:// doi. org/ 10. 1098/ rsta. 2000. 0528 (2000).
 24. Fu, M., Liu, F. & Hu, L. A novel category of 3D chiral material with negative Poisson’s ratio. Compos. Sci. Technol. 160, 111–118. 

https:// doi. org/ 10. 1016/j. comps citech. 2018. 03. 017 (2018).
 25. Javadi, A., Faramarzi, A. & Farmani, R. Design and optimization of microstructure of auxetic materials. Eng. Comput. 29, 260–276. 

https:// doi. org/ 10. 1108/ 02644 40121 12123 98 (2012).
 26. Wang, Z.-P., Poh, L. H., Zhu, Y., Dirrenberger, J. & Forest, S. Systematic design of tetra-petals auxetic structures with stiffness 

constraint. Mater. Des. 170, 107669. https:// doi. org/ 10. 1016/j. matdes. 2019. 107669 (2019).
 27. Harkati, A. et al. In-plane elastic constants of a new curved cell walls honeycomb concept. Thin‑Wall. Struct. 149, 106613. https:// 

doi. org/ 10. 1016/j. tws. 2020. 106613 (2020).
 28. Zhang, W., Zhao, S., Sun, R., Scarpa, F. & Wang, J. In-plane mechanical behavior of a new star-re-entrant hierarchical metamaterial. 

Polymers https:// doi. org/ 10. 3390/ polym 11071 132 (2021).
 29. Zhang, Q. et al. Large stiffness thermoformed open cell foams with auxeticity. Appl. Mater. Today 20, 100775. https:// doi. org/ 10. 

1016/j. apmt. 2020. 100775 (2020).
 30. Bianchi, M., Scarpa, F. & Smith, C. Shape memory behaviour in auxetic foams: Mechanical properties. Acta Mater. 58(3), 858–865. 

https:// doi. org/ 10. 1016/j. actam at. 2009. 09. 063 (2010).
 31. Gatt, R. et al. A realistic generic model for anti-tetrachiral systems. Phys. Status Solidi (B) https:// doi. org/ 10. 1002/ pssb. 20138 4246 

(2013).
 32. Mousanezhad, D. et al. Elastic properties of chiral, anti-chiral, and hierarchical honeycombs: A simple energy-based approach. 

Theor. Appl. Mech. Lett. 6(2), 81–96. https:// doi. org/ 10. 1016/j. taml. 2016. 02. 004 (2016).
 33. Tabacu, S., Negrea, R. F. & Negrea, D. Experimental, numerical and analytical investigation of 2D tetra-anti-chiral structure under 

compressive loads. Thin‑Wall. Struct. 155, 106929. https:// doi. org/ 10. 1016/j. tws. 2020. 106929 (2020).
 34. Mukhopadhyay, T. & Adhikari, S. Effective in-plane elastic properties of auxetic honeycombs with spatial irregularity. Mechanics 

of Materials 95, 204–222. https:// doi. org/ 10. 1016/j. mechm at. 2016. 01. 009 (2016).
 35. Wang, T., Wang, L., Ma, Z. & Hulbert, G. M. Elastic analysis of auxetic cellular structure consisting of re-entrant hexagonal cells 

using a strain-based expansion homogenization method. Mater. Des. 160, 284–293. https:// doi. org/ 10. 1016/j. matdes. 2018. 09. 013 
(2018).

 36. Theocaris, P., Stavroulakis, G. & Panagiotopoulos, P. Negative Poisson’s ratios in composites with star-shaped inclusions: A numeri-
cal homogenization approach. Arch. Appl. Mech. 67(4), 274–286. https:// doi. org/ 10. 1007/ s0041 90050 117 (1997).

 37. Srivastava, C. et al. Effective Mechanical Properties of Auxetic Materials: Numerical Predictions Using Variational Asymptotic 
Method Based Homogenization Abstract. J. Appl. Mechan 90(11). https:// doi. org/ 10. 1115/1. 40628 45 (2023).

 38. Nika, G. & Constantinescu, A. Design of multi-layer materials using inverse homogenization and a level set method. Comput. 
Methods Appl. Mech. Eng. 346, 388–409. https:// doi. org/ 10. 1016/j. cma. 2018. 11. 029 (2019).

 39. Sigmund, O. Materials with prescribed constitutive parameters: An inverse homogenization problem. Int. J. Solids Struct. 31(17), 
2313–2329. https:// doi. org/ 10. 1016/ 0020- 7683(94) 90154-6 (1994).

 40. Wan, H., Ohtaki, H., Kotosaka, S. & Hu, G. A study of negative Poisson’s ratios in auxetic honeycombs based on a large deflection 
model. Eur. J. Mech. A/Solids 23(1), 95–106. https:// doi. org/ 10. 1016/j. eurom echsol. 2003. 10. 006 (2004).

 41. Levy, O., Krylov, S. & Goldfarb, I. Design considerations for negative Poisson ratio structures under large deflection for MEMS 
applications. Smart Mater. Struct. 15, 1459–1466. https:// doi. org/ 10. 1088/ 0964- 1726/ 15/5/ 035 (2006).

 42. Gao, Q. et al. Theoretical, numerical and experimental analysis of three-dimensional double-v honeycomb. Mater. Des. 139, 
380–391. https:// doi. org/ 10. 1016/j. matdes. 2017. 11. 024 (2018).

 43. Zhang, J., Lu, G. & You, Z. Large deformation and energy absorption of additively manufactured auxetic materials and structures: 
A review. Compos. Part B Eng. 201, 108340. https:// doi. org/ 10. 1016/j. compo sitesb. 2020. 108340 (2020).

 44. Hu, L., Luo, Z., Zhang, Z., Lian, M. & Huang, L. Mechanical property of re-entrant anti-trichiral honeycombs under large deforma-
tion. Compos. Part B Eng. 163, 107–120. https:// doi. org/ 10. 1016/j. compo sitesb. 2018. 11. 010 (2019).

 45. Jiang, Y., Rudra, B., Shim, J. & Li, Y. Limiting strain for auxeticity under large compressive deformation: Chiral vs. re-entrant cel-
lular solids. Int. J. Solids Struct. 162, 87–95. https:// doi. org/ 10. 1016/j. ijsol str. 2018. 11. 035 (2019).

 46. Hodges, D. H., Harursampath, D., Volovoi, V. V. & Cesnik, C. E. Non-classical effects in non-linear analysis of pretwisted anisotropic 
strips. Int. J. Non‑Linear Mech. 34(2), 259–277. https:// doi. org/ 10. 1016/ S0020- 7462(98) 00023-7 (1999).

 47. Harursampath, D. & Hodges, D. H. Asymptotic analysis of the non-linear behavior of long anisotropic tubes. Int. J. Non‑linear 
Mech. 34(6), 1003–1018. https:// doi. org/ 10. 1016/ S0020- 7462(98) 00070-5 (1999).

 48. Ponnusami, S. A., Gupta, M. & Harursampath, D. Asymptotic modeling of nonlinear bending and buckling behavior of carbon 
nanotubes. AIAA J. 57(10), 4132–4140. https:// doi. org/ 10. 2514/1. J0575 64 (2019).

 49. Yang, L., Harrysson, O., West, H. & Cormier, D. Mechanical properties of 3D re-entrant honeycomb auxetic structures realized 
via additive manufacturing. Int. J. Solids Struct. 69–70, 475–490. https:// doi. org/ 10. 1016/j. ijsol str. 2015. 05. 005 (2015).

 50. Hodges, D. Nonlinear Compos. Beam Theory https:// doi. org/ 10. 2514/4. 866821 (2006).
 51. Yu, W., Hodges, D., Hong, X. & Volovoi, V. Validation of the variational asymptotic beam sectional analysis. AIAA J. 40, 2105–2112. 

https:// doi. org/ 10. 2514/2. 1545 (2002).
 52. Yu, W. & Blair, M. GEBT: A general-purpose nonlinear analysis tool for composite beams. Compos. Struct. 94, 2677–2689. https:// 

doi. org/ 10. 1016/j. comps truct. 2012. 04. 007 (2012).
 53. Günaydın, K., Rea, C. & Kazanci, Z. Energy absorption enhancement of additively manufactured hexagonal and re-entrant (auxetic) 

lattice structures by using multi-material reinforcements. Addit. Manuf. 59, 103076 (2022). https:// doi. org/ 10. 1016/j. addma. 2022. 
103076

 54. Noronha, J., Qian, M., Leary, M., Kyriakou, E. & Brandt, M. Hollow-walled lattice materials by additive manufacturing: Design, 
manufacture, properties, applications and challenges. Curr. Opin. Solid State Mater. Sci. 25(5), 100940. https:// doi. org/ 10. 1016/j. 
cossms. 2021. 100940 (2021).

https://doi.org/10.1016/j.ijmecsci.2020.106021
https://doi.org/10.1016/j.tws.2020.106623
https://doi.org/10.1088/0964-1726/21/10/105004
https://doi.org/10.1080/08927020500401139
https://doi.org/10.1016/j.compositesb.2022.1097334
https://doi.org/10.1038/srep08395
https://doi.org/10.1038/s41598-020-73425-1
https://doi.org/10.1016/j.apmt.2020.100715
https://doi.org/10.1016/j.apmt.2020.100715
https://doi.org/10.1098/rsta.2000.0528
https://doi.org/10.1016/j.compscitech.2018.03.017
https://doi.org/10.1108/02644401211212398
https://doi.org/10.1016/j.matdes.2019.107669
https://doi.org/10.1016/j.tws.2020.106613
https://doi.org/10.1016/j.tws.2020.106613
https://doi.org/10.3390/polym11071132
https://doi.org/10.1016/j.apmt.2020.100775
https://doi.org/10.1016/j.apmt.2020.100775
https://doi.org/10.1016/j.actamat.2009.09.063
https://doi.org/10.1002/pssb.201384246
https://doi.org/10.1016/j.taml.2016.02.004
https://doi.org/10.1016/j.tws.2020.106929
https://doi.org/10.1016/j.mechmat.2016.01.009
https://doi.org/10.1016/j.matdes.2018.09.013
https://doi.org/10.1007/s004190050117
https://doi.org/10.1115/1.4062845
https://doi.org/10.1016/j.cma.2018.11.029
https://doi.org/10.1016/0020-7683(94)90154-6
https://doi.org/10.1016/j.euromechsol.2003.10.006
https://doi.org/10.1088/0964-1726/15/5/035
https://doi.org/10.1016/j.matdes.2017.11.024
https://doi.org/10.1016/j.compositesb.2020.108340
https://doi.org/10.1016/j.compositesb.2018.11.010
https://doi.org/10.1016/j.ijsolstr.2018.11.035
https://doi.org/10.1016/S0020-7462(98)00023-7
https://doi.org/10.1016/S0020-7462(98)00070-5
https://doi.org/10.2514/1.J057564
https://doi.org/10.1016/j.ijsolstr.2015.05.005
https://doi.org/10.2514/4.866821
https://doi.org/10.2514/2.1545
https://doi.org/10.1016/j.compstruct.2012.04.007
https://doi.org/10.1016/j.compstruct.2012.04.007
https://doi.org/10.1016/j.addma.2022.103076
https://doi.org/10.1016/j.addma.2022.103076
https://doi.org/10.1016/j.cossms.2021.100940
https://doi.org/10.1016/j.cossms.2021.100940


20

Vol:.(1234567890)

Scientific Reports |        (2023) 13:20915  | https://doi.org/10.1038/s41598-023-47525-7

www.nature.com/scientificreports/

 55. Li, J. et al. Tensile Behavior of Acrylonitrile Butadiene Styrene at Different Temperatures. Adv. Poly. Technol. 2020, 1–10, https:// 
doi. org/ 10. 1155/ 2020/ 89465 91 (2020).

Author contributions
C.S. planned and executed the research and wrote the original draft paper; S.A.P. conceived and planned the 
research; L.B. fabricated the samples, conducted the experiments and contributed to writing the experimental 
section; S.A.P., P.J.G. and D.H. supervised C.S and L.B. V.M., F.S. and N.P. were involved in the analysis of results 
and discussions; S.A.P., P.J.G., V.M., and F.S. proofread, reviewed and edited the manuscript.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 023- 47525-7.

Correspondence and requests for materials should be addressed to S.A.P.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2023

https://doi.org/10.1155/2020/8946591
https://doi.org/10.1155/2020/8946591
https://doi.org/10.1038/s41598-023-47525-7
https://doi.org/10.1038/s41598-023-47525-7
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Exploiting nonlinearities through geometric engineering to enhance the auxetic behaviour in re-entrant honeycomb metamaterials
	Numerical methodology
	Cross-sectional analysis
	Strip-based structural member:
	Tubular geometry

	Geometrically exact beam theory

	Experimental methodology
	Specimen geometry and preparation
	Quasi-steady compressive test for auxetic unit cells
	Quasi-steady compression test response

	Results and discussions
	Strip-based structural member
	Numerical results
	Experimental verification

	Tubular geometry

	Conclusions
	References


