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Abstract
Using a multi-stage stochastic programming method, we suggest an optimal lia-
bility-driven investment (LDI) strategy for a closed defined-benefit pension fund 
including real assets. The objective is to jointly optimize contribution, funding ratio, 
and buyout cost, subject to a constraint on downside risk in terms of expected short-
fall of assets relative to liabilities. Over a 10-year planning horizon, the optimal LDI 
strategy with a key-rate duration-matching bond portfolio outperforms the corre-
sponding strategy with a duration-convexity matching bond portfolio as well as a 
strategy with an aggregate bond index-tracking portfolio. When real assets are intro-
duced, the optimal LDI strategy includes significant investment in infrastructure and 
real estate, illiquidity notwithstanding. Nevertheless, delays in sales of real assets 
induced by illiquidity can increase downside risk.

Keywords Liability-driven investment · Pension fund · Real assets · Stochastic 
programming

Introduction

As financial markets have come to terms with the impact of Covid-19 and grad-
ual shutdown of large parts of the global economy, pension scheme managers have 
once again been reminded that they face a vast array of risks that can derail their 
investment strategies and, potentially, pose a serious threat to their commitments 
to scheme members. Since the Global Financial Crisis, more and more pension 
schemes have adopted a Liability Driven Investment (LDI) approach to managing 
the many risks that they face as they aim to fulfil their main goal, that is, to make all 
pension payments due to scheme members in full and on time.
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LDI is a holistic investment strategy applied not only to the asset side of the pen-
sion scheme balance sheet, but also to the liability side. It recognises that the optimal 
investment strategy for an investor with liability differs from conventional asset-only 
strategies. Ang et  al. (2013) and Sharpe and Tint (1990) incorporate liability and 
shortfall risks into a static mean-variance framework. Rudolf and Ziemba (2004) 
and Detemple and Rindisbacher (2008) solve a continuous-time dynamic portfolio 
problem with liability for a risk-averse pension manager, whose decisions are deter-
mined by maximizing the expected utility of funding ratios and contributions. They 
determine appropriate hedge instruments or dynamic strategies for optimally man-
aging a pension fund, but there is little comparison or demonstration of implementa-
ble bond strategies, in a practical setting.

As the record low yields of Treasury bonds continue after the quantitative easing 
policy triggered by the Global Financial Crisis, pension fund managers are search-
ing for alternative assets. To unload sponsors’ contribution burden, employing a 
simple liability-hedge strategy is not enough, and this is where growth assets come 
in. In particular, there is an increasing interest in real assets which can provide rela-
tively stable and inflation-linked cash flows and which also benefit from lower corre-
lation with traditional asset classes and pension liability (Hertrich 2013; Weber et al. 
2016). Pension asset allocation to real assets, such as real estate, private equity, and 
infrastructure increased by 17–23% from 6% over the last 20 years (Hodgson et al. 
2020). This investment, however, requires a long holding period to avoid potential 
losses caused by high joining and withdrawal fees; in other words, the illiquidity 
problem must be mitigated. The importance of real assets has grown, but there are 
no academic studies investigating the effect of real assets on the LDI framework.

In order to compare practical hedge portfolios and to investigate the effect of real 
assets, we apply a computational approach called multi-stage stochastic program-
ming (MSP) to a multi-period investment problem for a closed defined-benefit 
pension fund. Over a certain planning horizon, the objectives are as follows: (1) to 
increase and stabilise funding ratios; (2) to lower and limit contributions; and (3) 
to minimize buyout cost at the end of the planning period. Arguably, these objec-
tives comprehensively describe any LDI strategy. Given these objectives, we analyse 
the performance of three bond portfolios, namely an aggregate bond index-tracking 
portfolio, a duration-convexity matching portfolio, and a key-rate duration-matching 
portfolio, in the context of stochastic non-parallel shifting of Treasury and pension 
discount yield curves. Using a novel structure of linear liquidity penalty, we also 
examine the effect and role of four real asset classes: real estate, infrastructure, tim-
ber, and agriculture.1

Our multi-stage stochastic programming model allows us to investigate the 
benefits of an LDI approach to pension scheme management. Stochastic program-
ming is a mathematical framework for optimization problems with uncertainty in 
economic, financial, actuarial, and demographic variables (Barro et al. 2022; Con-
sigli et al. 2017; Birge and Louveaux 2011; Ziemba 2003), with recent theoretical 

1 MSCI (2022) classifies its real asset indices into five categories: commodities, agriculture, timber, 
infrastructure, and real estate. We do not include commodities here partly to simplify the optimization 
problem and partly to study less conventional real assets.



Liability‑driven investment for pension funds: stochastic… Page 3 of 32    12 

developments collected in Carpentier et al. (2015). Applications of stochastic pro-
gramming in an LDI context can be found in Georgiopoulos (2020), Duarte et al. 
(2017), Aro and Pennanen (2017), Geyer and Ziemba (2008), Hilli et  al. (2006), 
Kouwenberg (2001). They consistently show that investment strategies found by 
using stochastic programming are superior to any fixed-mix investment strategies. 
This is because these frameworks can deal with practical features such as com-
plex market dynamics and pension scheme regulations, that are an important part 
of defined-benefit pension planning. Practical constraints such as those relating to 
transaction costs, regulatory restrictions, and taxes can subsequently be included. 
Stochastic programming is also useful in personal retirement planning and in life-
cycle investment (Owadally et  al. 2021a; Owadally et  al. 2021; Kim et  al. 2020; 
Simsek et al. 2018; Consiglio et al. 2015; Konicz et al. 2015; Konicz and Mulvey 
2015, 2013).

The paper is organized as follows. In the next section, we describe the main 
objectives of a defined-benefit pension fund. Section 3 comprises a model of finan-
cial markets within a vector auto-regressive framework. Section  4 formulates an 
optimization problem under the MSP framework, and Sect.  5 presents numerical 
results and interpretations. We summarize our findings in the last section.

Objectives of a defined‑benefit pension fund

Funding ratio, contribution, and buyout cost

One of the main objectives when managing the investment portfolio of a defined-
benefit pension plan is to maintain full funded status. Let total asset and liability val-
ues at time t be denoted by At and Lt , respectively, so that At∕Lt is the funding ratio. 
The funding ratio is regularly monitored by pension regulators to secure the current 
and future benefits of pension members. The function below shows the expected 
utility of the funding ratio at time t, within an investment planning horizon (0, T]. 
The utility function u is concave, under the assumption of risk-aversion.

In addition to benefit security, the pension fund manager should also consider con-
tribution stability, in order to provide budgetary certainty for the plan sponsor’s 
operating business. Another objective for the pension manager is therefore to main-
tain a sustainable level of contribution. We apply a convex disutility function d to 
contribution Ct at time t relative to a target contribution Ĉ . The expected disutility of 
the relative cost is as follows:

E

[

u

(

At

Lt

)]

�

[

d

(

Ct

Ĉ

)]

.
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In this research, we are concerned only with a closed defined-benefit pension 
scheme, which means that there are no new entrants to scheme membership. Many 
sponsors of this type of pension scheme are willing to contemplate buyout of their 
liabilities by an insurer because this makes their balance sheet less volatile. The 
final objective that we consider is to maintain the buyout cost close to a target level 
B̂ , which may be interpreted as a premium paid to an insurer because the insurer 
assumes the pension liabilities in exchange for the pension assets and the buyout 
premium. This objective is expressed as the expected disutility of a ratio of the final 
contribution CT to the target buyout cost B̂ at the terminal horizon T:

The objectives of the pension scheme manager and sponsor are formulated by maxi-
mizing the following expression:

The time preference parameter 0 < 𝛿 ≤ 1 controls the relative importance, to the 
scheme manager and sponsor, of earlier contributions and funding ratios over later 
contributions and funding ratios. The weighting factor 0 < 𝜆 < 1 balances the fund-
ing ratio objective and the contribution objective, related to benefit security and con-
tribution stability, respectively.

Figure 1 shows representative shapes of linearized utility and disutility func-
tions. The concave utility function in panel 1a consists of three piecewise lin-
ear segments or zones. By changing their marginal values, we can impose more 
concavity, i.e. preference for higher risk-aversion. Convexity changes in a similar 
fashion for the disutility function in panel 1b. The approximation of non-linear 
concave and convex functions by means of piecewise linear functions is also used 

�

[

d

(

CT

B̂

)]

.

(1)
T
∑

t=1

𝜆 𝛿t�
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u
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)]

−

T−1
∑
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(1 − 𝜆)𝛿t�

[

d
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Ĉ

)]

− (1 − 𝜆)𝛿T�

[

d

(
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.

Fig. 1  Piecewise linear utility and disutility functions



Liability‑driven investment for pension funds: stochastic… Page 5 of 32    12 

by Dempster and Medova (2011), Medova et al. (2008). This transforms the opti-
mization problem to a stochastic linear program.

Downside risk

Apart from the above-mentioned objectives, we constrain downside risk of the pen-
sion fund. We measure downside risk by means of the shortfall, which is the defi-
cit in the pension fund or the excess of liability over assets. The expected shortfall 
at level 1 − � measures the downside risk at time t. The shortfall is equal to dif-
ference between total liability and asset values, so our model does not allow any 
dynamic investment decision that causes the expected shortfall at level 1 − � below 
an expected shortfall target, ESTt;1−� . Following Rockafellar and Uryasev (2002), 
we add the following constraint to our optimization model.

where Lt − At and VaRt;1−� represent the shortfall and its value-at-risk at level 1 − � 
at time t, respectively.

Financial markets

Vector auto‑regressive model

When there is predictability in equity returns, a long-term investor such as a defined-
benefit pension fund manager allocates more pension wealth to equities (Barberis 
2000; Campbell et al. 2003). We use a vector auto-regressive (VAR) model to model 
predictability. Ferstl and Weissensteiner (2011) combine the VAR model with the 
Nelson-Siegel yield curve fitting function, as proposed by Boender et al. (2008). The 
Nelson-Siegel yield curve model is parsimonious and is known to reduce over-fit-
ting and to return better out-of-sample predictions than affine term structure models 
(Diebold and Li 2006). Owadally et al. (2021) use the Nelson-Siegel model for both 
nominal and real yield curves, but two different nominal yield curves are modelled 
here. The s-year Treasury spot rate at time t is given:

where �t =
[

�1,t, �2,t, �3,t
]� is a time-varying parameter and where the scaling param-

eter � is a constant. Parameters are estimated by fitting the model above to historical 
Treasury yield curve data.2 Pension liability valuation is based on a separate dis-
count curve. The pension discount yield curve is also defined with Nelson-Siegel 
discount rate y(�P

t
, s, �P) and with corresponding parameters �P

t
= [�P

1,t
, �P

2,t
, �P

3,t
]� and 

VaRt;1−� +
1

(1 − �)
E

[

[

Lt − At − VaRt;1−�

]+
]

≤ ESTt;1−� ,

(2)y(�t, s, �) = �1,t + (�2,t + �3,t)

(

1 − e−�s

�s

)

− �3,te
−�s,

2 https:// home. treas ury. gov/ policy- issues/ finan cing- the- gover nment/ inter est- rate- stati stics.

https://home.treasury.gov/policy-issues/financing-the-government/interest-rate-statistics
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�P . The parameters are estimated by using FTSE pension discount curve data.3 This 
discount curve is constructed from high-quality corporate bond yields, which are not 
merely level-shifted Treasury bond yields (Duffee 1998). The Nelson-Siegel param-
eters are then applied to a VAR model given by

where zt = [r1,t, r2,t,… ,�t, �1,t, �2,t, �3,t, �
P
1,t
, �P

2,t
, �P

3,t
]� . Here, ri,t is the realised log-

return of an asset (class or fund) i over one month ending at time t, and �t is inflation 
over the month to time t. In Eq. (3), Φ0 is a column vector, Φ1 is a matrix of the slope 
coefficients of the VAR model, and vt is a column vector of normal iid innovations.

Table 4 in Appendix 1 shows the coefficients of the VAR model based on histori-
cal monthly data from July 2008 to May 2019. The variables r1,t , r2,t , ...r6,t . denote, 
respectively, log-returns on S &P 500, Bloomberg-Barclays US Aggregate Bond, 
FTSE EPRA Nareit US, FTSE Global Core Infrastructure, S &P Global Timber and 
Forestry, NASDAQ AMX Global Agriculture. Compared to a similar model esti-
mated by Barberis (2000), our estimated model features slightly higher predictabil-
ity in equity returns ( R2 values are around 0.15 to 0.20) because lower interest rates 
coincide with higher equity returns in the data after the 2008 global financial crisis.

Figure  2a depicts the Treasury yield curve and pension discount curve at the 
steady state of the estimated VAR model. (Statistics for the variables at the steady 
state are shown in Table 5 in Appendix 1.) The yield and pension discount curves 
are upward-sloping, with the pension discount curve being at a higher level than the 
Treasury curve, capturing credit risk. In order to visualise the relationship between 
expected equity returns and the two yield curves, we simulate 10,000 values, plot 
expected equity returns versus short-term interest rates, and fit straight lines in 
Fig. 2b. The negative slope confirms the stylized fact that stock prices are expected 
to increase in a low short-term interest rate environment. Finally, Table 6 in Appen-
dix A summarises conditional mean, standard deviation, and correlation coefficient 

(3)zt = Φ0 + Φ1zt−1 + vt,

Fig. 2  Yield curves and expected equity returns

3 https:// www. soa. org/ secti ons/ retir ement/ ftse- pensi on- disco unt- curve/.

https://www.soa.org/sections/retirement/ftse-pension-discount-curve/
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values of the cumulative VAR variables over one year, starting from the steady state 
level presented in Table 5.

Asset pricing model

The set of financial assets is denoted by I ∈ {1, 2,… ,N} . Among these assets, the 
subset of real illiquid assets is denoted by R ⊂ I  . The real illiquid assets are prop-
erty, infrastructure, timber & forestry, and agriculture. Let Δt be the time interval 
between two consecutive times at which the portfolio is rebalanced; this may be one 
year or longer. Defining Ri,t as the gross return of asset i over Δt from time t − Δt to 
t, the price Si,t of asset i evolves according to the following, given the initial price of 
asset i:

For any given asset i whose returns are captured by our VAR model, the gross return 
is easily computed from the monthly log-returns given by Eq. (3).

Following Owadally et al. (2021a), the gross interest rate from time t − Δt to t on 
the cash account or T-bill (indexed using i = 7 ) is given by

In addition, we consider two dynamic bond portfolios which are notional liability-
hedging vehicles that are commonly used in practice: the first implements a dura-
tion-convexity matching strategy (Inglis et al. 2013) and the second follows a key-
rate duration-matching strategy (Tuckman 2002,  p. 133). The duration-convexity 
matching strategy involves immunization, that is rebalancing a bond portfolio such 
that the duration of the bond portfolio is equal to that of the pension liability, and 
the convexity of the bond portfolio is greater or equal to that of the pension liability. 
We assume that the returns on the duration-convexity matching fund at time t can be 
approximated by the returns on two zero-coupon bonds of maturities MS,t and ML,t , 
respectively, shorter and longer than the maturity of the pension liability. The exact 
maturities and the number �S,t and �L,t of units of these two bonds are chosen by 
matching their duration to the duration of the pension liability, and by selecting their 
convexity so as to be closest to, but greater than, the convexity of the pension liabil-
ity. The return on the duration-convexity matching fund from time t − Δt to time t is

Note that the duration-convexity matching fund may fail to replicate changes in the 
pension liability, especially when the pension discount curve shifts in a non-parallel 
way, as is well known from the theory of immunization.

We also construct a bond portfolio using the key-rate duration-matching strat-
egy, which is described in detail by Tuckman (2002, p. 133). This strategy is used 
by bond portfolio managers to cope with non-parallel shifts in the yield curve. 

(4)Si,t = Si,t−Δt ⋅ Ri,t.

(5)Ri,t = exp
[

Δt ⋅ y(�t−Δt,Δt, �)
]

.

(6)

RDC,t = �S,t ⋅ exp
[

MS,t ⋅ y
(

�P
t−Δt

,MS,t, �
P
)

−
(

MS,t − Δt
)

⋅ y
(

�P
t
,MS,t − Δt, �P

)]

+ �L,t ⋅ exp
[

ML,t ⋅ y
(

�P
t−Δt

,ML,t, �
P
)

−
(

ML,t − Δt
)

⋅ y
(

�P
t
,ML,t − Δt, �P

)]

.
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Pension payment cash flows are defined on a discrete timeline. Given a set of 
zero-coupon bond maturities {M1,t,… ,MK,t} at time t, we group the liability cash 
flows into baskets over the time intervals (�0, �1], (�1, �2],… , (�K−1, �K] such that 
the duration of each cash flow basket is close to the maturity of a corresponding 
zero-coupon bond. Then, the key-rate duration-matching fund is constructed by 
weighting the zero-coupon bonds by the present value of each basket, giving the 
number �k,t of units of k-year zero-coupon bond held in the fund. The return of 
this fund for time t − Δt to time t is

Optimization problem: multi‑stage stochastic programming

Based on the market model in Sect. 3, we generate a scenario tree and formulate 
a multi-stage stochastic programming problem. See Barro et al. (2022), Consigli 
et al. (2017), Carpentier et al. (2015), and Birge and Louveaux (2011) for more 
details on stochastic programming. Let N  be the set of all nodes in the tree, and 
Nt be the set of nodes at time t. The root node of the scenario tree is denoted 
by n0 . A notional example of a scenario tree appears in Fig. 3. For this pension 
portfolio problem, the end of the planning horizon at time T is the terminal stage. 
Thus, N0 = {n0} contains the root node only, NT is the set of leaf nodes, and 
N =

⋃

t∈[0,T] Nt . A non-root node n ≠ n0 will branch off a parent node, denoted by 
n− . A non-leaf node n ∉ NT has children nodes denoted by n+.

(7)

RKD,t =

K
∑

k=1

�k,t ⋅ exp
[

Mk,t ⋅ y
(

�P
t−Δt

,Mk,t, �
P
)

−
(

Mk,t − Δt
)

⋅ y
(

�P
t
,Mk,t − Δt, �P

)]

.

Fig. 3  A notional example of a 
scenario tree with a root node n

0
 

capturing initial conditions
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Cash balance constraints

Equations (8) and (9) below control cash inflows and outflows. The notation trans-
fers straightforwardly from bearing a time t subscript to a node n subscript. For 
example, Cn represents the contribution paid into the pension fund at node n. Fur-
thermore, Xbuy

i,n
 and Xsell

i,n
 are the number of units of asset i, priced at Si,n , that are 

bought and sold, respectively, at node n, while �s
i
 and �u

i
 indicate a percentage sell-

ing fee and upfront fee, respectively, for each asset i. For example, if the manager 
decides to sell some units of a real asset, then she pays a ‘penalty’ of �s

i
= 7.5% . 

The pension payment Pn at node n is a static cash flow before buyout. At the buyout 
stage ( n ∈ NT ), Vi,n is pre-scheduled selling transaction of a real asset i ∈ R , and Bn 
is the discounted value of projected pension payments based on Treasury yields.

Asset inventory constraints

Equation (10) below tracks the number Xi,n of units of asset i held at node n. The 
percentage management fee for asset i is denoted by �m

i
 . Now, a real illiquid asset 

is subject to a steep liquidity penalty if the asset is sold immediately. Further-
more, full liquidation may not be practical immediately and we capture this by 
allowing for decisions to sell various units of the real asset in a deferred manner, 
over the next three time steps.

Thus, a decision is made at node n to sell Xsell
i,n

 units of asset i immediately, as 
well as Xsell

i,n,n+
 units at the next time step, Xsell

i,n,n++
 after two time steps, and simi-

larly for Xsell
i,n,n+++

 , see Fig. 4. For non-real assets, e.g. stocks and bonds, there is no 
deferred liquidity penalty and Xsell

i,n,n+
,Xsell

i,n,n++
 , and Xsell

i,n,n+++
 are set to zero.

(8)Cn +
∑

i∈
Xsell
i,n Si,n

(

1 − �s
i
)

+
∑

i∈
Vi,n =

∑

i∈
Xbuy
i,n Si,n

(

1 + �u
i
)

+ Pn for n ∈  ⧵T ,

(9)Cn +
∑

i∈I

Xsell
i,n

Si,n
(

1 − �s
i

)

+
∑

i∈R

Vi,n = Bn for n ∈ NT .

(10)
Xi,n = Xi,n−

(

1 − �m
i

)

+ X
buy

i,n
−
(

Xsell
i,n

+ Xsell
i,n,n+

+ Xsell
i,n,n++

+ Xsell
i,n,n+++

)

for n ∈ N,

Fig. 4  Deferred selling matrix for transactions in illiquid real assets
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Figure 5 shows the deferred liquidity penalty over time, highest at 7.5% when liq-
uidating a real asset immediately, but decreasing linearly all the way to 0% if the sale 
is delayed by three time steps. The pension fund manager can choose, at time t, cor-
responding to node n, how many units of an illiquid real asset to sell over the next 
time steps. The matrix in Fig. 4 shows the schedule of delayed transactions of real 
asset i at future nodes n+ , n++ , and n+++ . To secure the scheduled selling amounts, 
we utilise an account Xsch

i,n
 in Eq. (11).

At node n, the selling value Vi,n ≥ 0 for pre-scheduled transactions of a real asset i is 
as follows:

where the early redemption penalties �s
i,1

 , �s
i,2

 , and �s
i,3

 are 5.0%, 2.5%, and 0.0%, 
respectively. These should be contrasted to the immediate redemption penalty �s

i
 in 

Eqs. (8) and (9) of 7.5%. These values are depicted in Fig. 5.

Variable constraints

No short-selling is allowed as enforced in Eq. (13) below.4 Equations (14) and (15) 
mean that, at the end of the planning horizon, the pension portfolio is not allowed to 
buy more assets, and only allowed to sell holding assets to make a buyout deal.

(11)Xsch
i,n

=
(

Xsell
i,n,n+

+ Xsell
i,n,n++

+ Xsell
i,n,n+++

)

+
(

Xsell
i,n−,n+

+ Xsell
i,n−,n++

)

+ Xsell
i,n−−,n+

(12)
Vi,n = Xsell

i,n−,n
Si,n

(

1 − �s
i,1

)

+ Xsell
i,n−−,n

Si,n

(

1 − �s
i,2

)

+ Xsell
i,n−−−,n

Si,n

(

1 − �s
i,3

)

,

(13)
Cn,Xi,n,X

buy

i,n
,Xsell

i,n
,Xsell

i,n,m
,Xsch

i,n
≥ 0 for n ∈ N ⧵NT and m ∈ {n+, n++, n+++},

Fig. 5  Deferred liquidity penalty 
faced when deciding, at time t, 
to sell an illiquid real asset at 
times t,t + 1,t + 2,t + 3 in the 
future

4 In order to avoid highly speculative positions, most developed countries strictly regulate the investment 
of DB pension funds. Borrowing and short-selling may be constrained, e.g. both are prohibited in Italy 
(OECD 2022). If short-selling is allowed, it is likely to be used for short-term tactical investment pur-
poses rather than long-term strategy.
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Other constraints

The total asset value An ≥ 0 of the pension fund before rebalancing satisfies Eq. 
(16).

where �m
i
 indicates management fee for asset i. Also, an auxiliary Eq. (17) calcu-

lates the total asset value Ãn after contribution, benefit payment, and rebalancing the 
portfolio.

Numerical results: simulations

We consider a benchmark case, in which the initial funding ratio of the pension port-
folio is 85% before making contribution and pension payment. 60% of the pension 
fund wealth is invested in equities, and the rest is invested in an aggregate bond 
index-tracking fund. We begin with the case where we impose fixed contributions at 
a rate of 13% of the initial deficit for seven years.5 Other parameter values are given 
in Table 1.

In order to test the optimal investment strategy of the multi-stage stochastic pro-
gramming model described in the previous section, we design a 10-year rolling hori-
zon simulation (Kouwenberg 2001). At each simulated point every year, we solve 
the stochastic optimization problem and implement the initial solution. The gener-
ated scenario tree at each time step is based on the simulated point. This is then 
rolled forward to the next time step and the optimization is performed similarly. 
This is a form of receding horizon control, also known as model predictive control 
(Kwon and Han 2006).

Scenario tree generation follows the method described by Owadally et  al. 
(2021a). Scenario trees are arbitrage-free. We use the approach of Høyland and Wal-
lace (2001) to sequentially generate sub-trees by matching their first four conditional 
moments in order to construct one large scenario tree. We also validate no-arbitrage 

(14)Cn,Xi,n,X
sell
i,n

≥ 0 for n ∈ NT ,

(15)X
buy

i,n
,Xsch

i,n
= 0 for n ∈ NT ,

(16)An =
∑

i∈I

Xi,n−Si,n
(

1 − �m
i

)

+
∑

i∈R

Xsch
i,n−

Si,n
(

1 − �m
i

)

for n ∈ N,

(17)Ãn =
∑

i∈I

Xi,nSi,n +
∑

i∈R

Xsch
i,n

Si,n for n ∈ N.

5 The pension regulations in many developed countries require DB pension plan sponsors to follow a 
contribution schedule when the funding ratio is below a certain level. In accordance with the US Pension 
Protection Act 2006, the DB pension sponsor should retain a contribution schedule within seven years if 
the funding ratio is between 60% and 100%.
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opportunities and no-arbitrage bound among investment assets (Klaassen 2022; 
Geyer et al. 2014). To reduce computation time, the number of stages of each sce-
nario tree is limited to five. Stages of increasing lengths are used with the time peri-
ods of the first two stages fixed at one year. Numerical results in this section are 
from 1,000 simulation paths over a 10-year planning horizon, i.e. 10,000 simulation 
points.

Bond portfolio choice

The most important decision for managing a defined-benefit pension fund is to 
choose a suitable liability-hedging vehicle or strategy. We consider three possible 
bond portfolios for this purpose: an Aggregate Bond index-tracker, a Duration-Con-
vexity matching portfolio, and a Key-Rate Duration-matching portfolio. These were 
described in Sect. 3.2.

Table 2 shows the tracking error of each bond portfolio. This measure is calcu-
lated as the sample standard deviation (volatility) of the difference between annual 
changes in the pension liability and the value of the bond portfolio over a 10-year 

Table 1  Parameter values for the benchmark case

Financial market parameters

i = {1, 2,… , 10} { Equities (1), Aggregate bonds (2), 
US real estate (3), Global infrastruc-
ture (4), Global timber (5), Global 
agriculture (6), T-bills (7), Duration 
convexity matching portfolio (8), Key-
rate duration-matching portfolio (9), 
Liability (10) }

{S
1,0
, S

2,0
,… , S

10,0
} {1, 1,… , 1}

(�u

i
,�s

i
,�m

i
) (0, 0, 0) for i = 7

(0.005, 0.005, 0.025) for 
i ∈ {1, 2, 8, 9, 10}

(�u

i
,�m

i
) (0.05, 0.025) for i ∈ {3, 4, 5, 6}

(�s

i
,�s

i,1
,�s

i,2
,�s

i,3
) (0.075, 0.050, 0.025, 0) for i ∈ {3, 4, 5, 6}

z
0
=

⎡

⎢

⎢

⎢

⎣

r
1,0
, r

2,0
, r

3,0
, r

4,0
,

r
5,0
, r

6,0
, �

0
, �

1,0
,

�
2,0
, �

3,0
, �P

1,0
, �P

2,0
,

�P
3,0

⎤

⎥

⎥

⎥

⎦

�
⎡

⎢

⎢

⎢

⎣

0.0073, 0.0034, 0.0037, 0.0068,

0.0003, − 0.0014, 0.0012, 0.0379,

−0.0330, − 0.0307, 0.0019, 0.0076,

0.1503

⎤

⎥

⎥

⎥

⎦

�

Investor’s preferences Initial portfolio

   � 0.2 L
0

$ 607.80 million
   � 0.8187 A

0
0.85L

0

   T 10 years V
i,0

0 for i ∈ R

   Ĉ 0.13(L
0
− A

0
)

   B̂ 0.3E[B
T
− L

T
]

   EST
t;1−� 0.9E[L

t
] with � = 0.95
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planning horizon. A tracking error of zero would mean that the assets and the liabili-
ties tracked each other perfectly over the planning horizon. The “Aggregate Bonds” 
index-tracking portfolio presents the highest tracking error. The “Key-Rate Dura-
tion” portfolio achieves the lowest tracking error.6

This clearly shows that adopting a bond strategy which hedges the unrewarded 
interest rate risk inherent in the liability can lead to a dramatic reduction in fund-
ing volatility, compared with the more passive approach like the “Aggregate Bonds” 
strategy.

Results without real assets

In order to investigate the effects of the different bond portfolios on optimal asset 
allocations, we limit the investment universe to T-bills, equities, and one of the 
three bond portfolios. Figure 6 shows the average optimal asset allocations over the 
10-year planning horizon. Panel 6a “Liability” shows the average asset allocation 
when the bond portfolio is replaced with a hypothetical financial asset which per-
fectly matches the pension liability cash flows. This is introduced purely for com-
parative purposes. It is evident by visual inspection that the “Key-Rate Duration” 
matching strategy in panel 6d of Fig. 6 has the closest asset allocation shape to the 
hypothetical perfect case in panel 6a. The “Aggregate Bonds” index-tracking strat-
egy in panel 6b and the “Duration Convexity” matching strategy in panel 6c both 
assign less wealth to the bond portfolio than the “Key-Rate Duration” strategy, 
because these two cases provide poorer hedges to the pension liability, as demon-
strated by the tracking errors in Table 2.

It is also clear from Fig. 6 that there is a gradual decline in the allocation to equi-
ties. With the “Aggregate Bonds” strategy in Fig.  6b, at the start of the planning 
period, the investor allocates 77.6% on average to equities; by the end of the plan-
ning period the expected allocation to equities falls to 50.3%. The scheme is de-
risking dynamically over time. The same holds for the Duration-Convexity matching 
strategy in panel 6c and for Key-Rate Duration-Matching in panel 6d. The average 
allocation to equities gradually reduces and the fixed income asset class increases.

We now compare the performance of the different liability-hedging strategies by 
investigating funding ratios, buyout cost, and risk measures, such as shortfall value-
at-risk and expected shortfall. Figure 7 shows probabilities that the funding ratio at 
the end of each year is greater than 0.9, which is the lower point of a target range 
between 0.9 and 1.1. The key-rate duration-matching portfolio produces the closest 
probabilities over time to those of the hypothetical perfect liability-hedging asset. 
The aggregate bond index-tracking strategy consistently incurs the lowest probabili-
ties, except in the first year.

Figure  8 shows the cumulative buyout probability, i.e. the probability that the 
total value of the pension fund is greater than 70% of the buyout cost plus liabil-
ity value, so that the sponsor is willing to pay 30% of the buyout cost on top of 

6 We are grateful to a reviewer for suggesting that the key-rate duration strategy nests the duration-con-
vexity strategy and the former will therefore have a tracking error no worse than the latter. This is also 
observed later in Figs. 7 and 8 in terms of the performance of these strategies.
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the pension fund. On a course towards the buyout at year 10, the aggregate bonds 
and duration-convexity matching portfolios are initially more likely than the key-
rate duration-matching portfolio to lead to successful buyout. However, by year 10, 
the key-rate duration-matching portfolio outperforms the other two strategies and 
achieves a higher probability of buyout.

In addition, we present sample statistics of the buyout cost with the three different 
bond portfolios in Table 3. The average and median cost with the key-rate duration-
matching portfolio is 5% to 25% lower compared to the duration-convexity matching 

Table 2  Tracking errors of three bond portfolios

a Based on 10,000 returns with 1000 simulated scenarios over 10 years

Liability-hedging strategy Aggregate bonds Duration convexity Key-rate duration

Tracking  errora 0.1607 0.0083 0.0069

Fig. 6  Average optimal portfolio allocations with different types of bond portfolios in the absence of real 
assets
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portfolio and the aggregate bond index-tracking portfolio. It also exhibits the lowest 
cost volatility.

In Fig.  9, we examine downside risk measures: the value-at-risk of shortfall, 
and the expected shortfall. (Recall that the shortfall is the pension fund deficit or 
the excess of liability over assets.) These risk measures are constrained as shown 
in Sect.  2.2. The key-rate duration-matching portfolio delivers the lowest values 
of value-at-risk and expected shortfall. Interestingly, the optimal solution with the 
aggregate bond index-tracking strategy exhibits increasing downside risk over time, 
while the other strategies exhibit decreasing or stable downside risk after year 1.

The optimal LDI portfolio is stochastic and dynamic. To acquire greater intuition 
as to its structure and evolution, we perform a linear regression of simulated optimal 
LDI portfolios, with key-rate duration-matching, on various explanatory variables. 
This shows that the optimal LDI portfolio is highly sensitive to the long-term and 
short-term pension discount rates, but much less so to equity returns. This analysis 
is set out in B.

Effects of real assets

In the absence of real assets, we find that the key-rate duration-matching bond port-
folio is the best hedge vehicle to achieve the three objectives, subject to the down-
side risk constraint, as described in the preceding section. In this section, we now 
reintroduce the full asset universe with the three liability-hedging strategies and we 
investigate the effects of real assets on optimal asset allocations, objectives, and risk 
measures. To capture illiquidity, the linear penalty rule featured in Fig. 5 is imple-
mented in the model as the constraint given by Eq. (12). We consider four real asset 

Fig. 7  Probability of funding ratio in excess of 0.9 with LDI under various bond strategies in the absence 
of real assets
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classes: US real estate, global infrastructure, global timber, and global agriculture, 
with and without the linear penalty rule.

Real assets as a diversifying asset class

Figure  10 shows average asset allocations from the numerical results using the 
receding horizon control method. In the top two panels, the aggregate bond index-
tracker bond portfolio is used, without real assets (panel 10a) and with real assets 
(panel 10b). In the bottom two panels, the key-rate duration-matching bond portfolio 
is used, again without and with real assets. The left panels of Fig.  10 are repro-
duced from Fig. 6, for convenience. Comparing the left and right panels in Fig. 10, 
we observe that, when real assets are available, significant investments are made in 
infrastructure and real estate at the expense of equity investment, on average. This is 
true both with the aggregate bond portfolio and with the key-rate duration-matching 
bond portfolio, but it is more notable in the former, presumably because a poorer 

Fig. 8  Cumulative buyout probability with LDI under various bond strategies in the absence of real 
assets

Table 3  Buyout cost at the end of Year 10 with LDI under various bond strategies in the absence of real 
assets

a Scaled by initial wealth

Asset class Liability Aggregate bonds Duration convexity Key-rate duration

Average†a 0.3676 0.5643 0.4032 0.3592
Mediana 0.2813 0.5121 0.3268 0.2652
Standard deviation 0.3148 0.3760 0.3242 0.3141
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hedge to the pension liability is achieved with an aggregate bonds passive strategy 
than with key-rate duration-matching.

Figure 10 suggests that real assets play a role in diversifying overall allocations 
away from equities over the 10-year period. Table 6 in Appendix 1 shows that the 
risk-reward profile for equities, real estate, and infrastructure are comparable. The 
mean and standard deviation of gross annual returns for equities are 8.75% and 
16.43% resp., while for real estate they are 4.5%, 28.96% resp., and for infrastructure 
they are 8.12%, 13.67% resp. Figure 11a presents the Sharpe ratios, using the gross 
annual returns, over the years and for different asset classes: equities and infrastruc-
ture are notably similar in their risk-adjusted return. More importantly, Table 6 in 
Appendix 1 shows that the correlation coefficient of these returns with the long-term 
pension discount rate �P

1,t
 is positive and of a similar size: 40.79%, 38.14%, 43.82% 

for equities, real estate, and infrastructure. Figure  11b explores these correlations 
over time. Infrastructure and equity are similarly correlated to the short and long-
term pension discount rates, especially at the start. The correlation between infra-
structure and long-term rates falls in later years making infrastructure a more valu-
able diversifying asset class, relative to pension liabilities, than equity.

The illiquidity of real assets

Real assets are illiquid. This means that either a hefty discount is incurred upon 
immediate liquidation, or sales have to be delayed. We have modelled illiquidity 
using the deferred liquidity penalty as depicted in Fig. 5. That is, an immediate sales 
fee of 7.5% of the value of the real asset is paid when it is sold straightaway, but the 
pension fund manager can also defer the sale and incur a lower selling fee (5.0%, 
2.5%, 0.0% if deferring by 1 year, 2 years, and 3 years, respectively, as per Fig. 5). 
This should be compared with a sales fee of 0.5% for stocks and bonds and 0% for 

Fig. 9  Downside risk measures
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T-bills, as stated in Table 1. It is noteworthy that, in the right-hand panels of Fig. 10, 
real assets represent a significant portion of the optimal LDI pension portfolio in 
spite of the illiquidity and transaction costs.

It may be argued that the deferred liquidity penalty structure reduces the overall 
envelope of transaction costs on real assets by enabling deferral, and that this may 
therefore encourage purchase of real assets. To investigate this further, we compare 
the average optimal portfolio allocations with the deferred penalty (top two panels 
of Fig. 12) with the average optimal portfolios when there is only an immediate pen-
alty of 7.5% and no deferral (bottom two panels of Fig. 12). The top two panels of 
Fig. 12 are reproduced from Fig. 10 for convenience and ease of comparison. We 
observe less average investment in real assets in the bottom panels of Fig. 12 com-
pared to the top panels: the overall liquidity penalty is higher when sales cannot 
be delayed in exchange for lower sales fees. We also notice that, in the later years 
of LDI with key-rate duration-matching (panels 12b and d of Fig 12), the average 
investment in real assets is not markedly different whether real asset sales can be 

Fig. 10  Average optimal portfolio allocations with and without real assets. When real assets are avail-
able, a deferred liquidity penalty is incurred as described in Fig. 5
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deferred with lower selling fees or not. This confirms that real assets have a part to 
play in liability-driven investment despite their illiquidity.

Risk and buyout with real assets

The illiquidity of real assets introduces a delay in investment decisions. When it is 
possible to defer the sales of real assets and achieve a lower transaction cost, buy 
and sell decisions concerning real assets must be made in advance. This is indeed 
observed in Fig. 12: in the top panels, average investment in real assets is made ear-
lier than in the bottom panels. Illiquidity may therefore compel managers to make 
buy and sell decisions of real assets in advance and this could introduce sub-opti-
mality and greater risk, compared to a situation where these assets were fully liquid.

Figures 13, 14, and 15 below extend Figs. 7, 8, and 9 in Sect. 5.2 and illus-
trate risk in our optimal LDI pension fund investment, with and without real asset 
investment, and with either an aggregate bond index-tracker portfolio or the key-
rate duration-matching bond portfolio. Furthermore, we also allow for both an 
immediate liquidity penalty or a deferred liquidity penalty. We make the follow-
ing observations: 

(1) LDI with the key-rate duration-matching bond portfolio is less risky than with 
the aggregate bond portfolio, whether real assets are available or not, especially 
in the later years. This is consistent with the results of Sect. 5.2 when real assets 
were absent, as shown in Figs. 7, 8, and 9.

(2) When LDI includes real assets, and they are illiquid with a 7.5% liquidity pen-
alty fee for selling immediately and no lower fees for deferred sales (“no linear 
penalty”), risk reduces compared to the situation where real assets are excluded. 
This risk reduction is not substantial but it is noteworthy that it occurs despite 
the selling fee for real assets being 15 times greater than for stocks and bonds.

Fig. 11  Risk-adjusted returns and return correlation coefficients for different asset classes
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(3) When LDI includes real assets, and their illiquidity means that the pension fund 
manager makes trading decisions on real assets in advance (i.e. sales may be 
deferred so as to take advantage of lower sales fees later under the “linear liquid-
ity penalty” fee structure), risk is higher than when real assets are absent. This 
is because of the lag created by illiquidity between decisions and transactions, 
as explained above.

In conjunction with point (5.3) above, we conclude therefore that risk may or may 
not increase when real assets are held, depending on the precise effects of illiquidity. 
It must be reiterated that, in terms of the overall pension fund objectives, it is opti-
mal to hold real assets when they are available, as demonstrated in Figs. 10 and 12.

Fig. 12  Average optimal portfolio allocations with real assets. In the top two panels, we assume that real 
asset sales can be delayed subject to a “deferred liquidity penalty” as per Fig. 5. In the bottom two pan-
els, lower sales fees are not available if sales are deferred (“immediate liquidity penalty”)



Liability‑driven investment for pension funds: stochastic… Page 21 of 32    12 

Conclusion

We construct an optimal liability-driven investment (LDI) model for a defined-ben-
efit pension scheme which is closed to new entrants. The pension fund invests in 
traditional liquid asset classes (Treasury bills, Treasury bonds, stocks) as well as 
real illiquid assets (infrastructure, real estate, forestry & timber, and agriculture). 

Fig. 13  Probability of funding Ratio in excess of 0.9 with and without real assets, and with two differ-
ent bond strategies (aggregate bond index-tracking, key-rate duration-matching). “Linear penalty” means 
that lower sales fees are available if real asset sales are delayed (deferred liquidity penalty as per Fig. 5). 
“No linear penalty” means that lower sales fees are not available if sales are deferred

Fig. 14  Cumulative buyout probability with and without real assets, and with two different bond strat-
egies (aggregate bond index-tracking, key-rate duration-matching). “Linear penalty” means that lower 
sales fees are available if real asset sales are delayed (deferred liquidity penalty as per Fig. 5). “No linear 
penalty” means that lower sales fees are not available if sales are deferred
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We assume that the pension scheme manager and sponsor seek to maximize funding 
ratios and minimize contributions over time, as well as minimize the buyout cost 
after 10 years. We formulate a time-additive objective function where risk prefer-
ences are piecewise linearized. Practical constraints such as no short-selling and a 
maximum amount of downside risk in terms of the pension fund deficit are incor-
porated. The stochastic asset universe is governed by a vector auto-regressive model 
including returns on all asset classes as well as Treasury bond yields and pension 
discount rates.

The model is solved numerically using the methodology of multi-stage stochas-
tic programming. This is a flexible computational approach which can cope with a 
large number of state variables (several asset classes) and linear constraints (such as 
downside risk constraints). In particular, it enables us to model transaction costs and 
investment management fees. Real assets are relatively illiquid and we capture this 
by means of a deferred liquidity penalty structure: fees are high if an immediate sale 
is sought but they slide down linearly to zero if the sale is delayed.

Practical liability-driven investment (LDI) for pension funds uses one of a num-
ber of bond portfolio strategies. Our results show that an optimal LDI portfolio 
with the key-rate duration-matching bond strategy is superior to both a duration-
convexity matching bond strategy and an aggregate bond index-tracker strategy. The 
key-rate duration-matching bond portfolio consists of zero-coupon bonds of various 
maturities which are matched, by duration, to pension liability cash flows grouped 
into bins or baskets. By contrast, the duration-convexity matching strategy seeks to 
immunize all of the pension liability, and we show that it has a higher tracking error 

Fig. 15  Downside risk measures with and without real assets, and with two different bond strategies 
(aggregate bond index-tracking, key-rate duration-matching). “Linear penalty” means that lower sales 
fees are available if real asset sales are delayed (deferred liquidity penalty as per Fig. 5). “No linear pen-
alty” means that lower sales fees are not available if sales are deferred
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than the key-rate duration-matching strategy. On average in the optimal LDI portfo-
lio, equity investment declines while investment in the key-rate duration-matching 
bond portfolio increases, so that de-risking occurs. In the absence of real assets, we 
fit a linear regression to simulated optimal LDI strategies and demonstrate that the 
optimal LDI portfolio is highly sensitive to both the front and back ends of the pen-
sion discount curve, but much less so to equity returns.

When real assets are available, we show that the optimal LDI portfolio involves 
significant investment in these real assets, partially displacing equities. In par-
ticular, infrastructure and real estate enhance diversification in the LDI portfolio. 
Real asset investment is illiquid but our results hold despite assuming that selling 
real assets attracts a fee 15 times greater than when selling liquid assets such as 
stocks. If real asset sales are delayed because of their illiquidity, investment in real 
assets is brought forward on average in the optimal LDI portfolio. The lag between 
investment decisions and transactions caused by illiquidity creates higher downside 
risk, but it remains optimal to hold real assets in terms of the overall pension fund 
objectives.

Our model has limitations which require further study. The linear illiquidity pen-
alty rule in Fig. 5 may not fully explain the illiquidity characteristics of real assets, 
although it represents an attempt to describe realistic deferred illiquid asset sales. 
Our numerical results are also based on the VAR parameters estimated with the data 
from 2008 to 2019. Longer periods as well as periods in different market regimes 
should be considered. As shown in Owadally et al. (2021), the numerical optimiza-
tion is sensitive to VAR parameter estimates. An in-sample versus out-of-sample 
analysis would also test the robustness of the model to different market conditions. 
In order to avoid a heavy computational burden, the scenario trees used in our study 
are sparse so that optimal solutions are approximations. Recent stochastic program-
ming techniques, such as approximate dynamic programming and stochastic dual 
dynamic programming, are being developed to overcome this issue for multi-period 
investment problems (Lee et  al. 2023). Future work will address some of these 
issues.

Appendix 1: Estimation result of the VAR model

See Tables 4, 5, and 6.
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Appendix 2: OLS regression results

The optimal asset allocation for the representative scheme is stochastic and involves 
a computational solution. The model finds the optimal allocation of scheme assets 
each year, given the scheme’s funding position at the end of each year and given the 
competing objectives of the pension scheme manager and sponsor. To demonstrate 
the intuition behind the optimal decisions, we perform a linear regression of the 
optimal asset allocation on the following explanatory variables: year, funding ratio, 
long-term discount rate, short-term discount rate, equity return, as well as various 
product terms; see Eq. (18). Table 7 shows the ordinary least square results, and the 
third column ignores variables which are not statistically significant.

Table 7  Regression coefficients, 
with standard error in 
parentheses, for full regression 
(OLS1) and for a regression on 
statistically significant variables 
only (OLS2)

OLS1 OLS2

Constant 0.1939 0.1957
(12.1063) (15.0132)

Year 0.0111 0.0109
(4.0772) (5.1293)

Log(Funding Ratio) 0.4262 0.4303
(11.5299) (12.1438)

Long-term Discount Rate – 6.5750 – 6.8914
(– 25.3419) (– 61.2195)

Short-term Discount Rate 16.5241 16.4598
(22.2005) (24.8891)

Equity Return 0.3221 0.3198
(5.4192) (12.0595)

Year × Log(Funding Ratio) – 0.0472 – 0.0479
(– 8.9825) (– 9.5402)

Year × Long-term Discount Rate – 0.0603
(– 1.3423)

Year × Short-term Discount Rate – 0.5119 – 0.5024
(– 4.0207) (– 4.6023)

Year × Equity Return – 0.0003
(– 0.0311)

Number of observations 9,000 9,000
R
2 0.4273 0.4272

F statistics 745.2953 957.8508
p value 0 0
Error Variance Estimate 0.1220 0.1220
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In Fig. 16, we illustrate the sensitivity of these key variables to the optimal allo-
cation in the case where the key-rate duration-matching bond portfolio is used. It 
is important to note that the allocation to the de-risking portfolio ranges from 20 
to 40% throughout the planning period and that the bars in Fig. 16 are not cumu-
lative, but instead represent sensitivities to these key variables. From Fig.  16, we 
observe that there is a time-varying effect of these explanatory variables on the opti-
mal allocation to the de-risking portfolio change. For example, the optimal alloca-
tion changes by about 4% at the start of year 2 if there is a ten-percentage points 
increase (+ 10%p) in the funding ratio. However, the allocation sensitivity to the 
funding ratio decreases over time as the pension scheme becomes better funded on 
average and as the optimal investment in the de-risking portfolios increases on aver-
age. Overall, Fig. 16 shows that falling long-term interest rates should be associated 
with increasing allocations to the key-rate duration-matching portfolio. The opposite 
is true for a rise in short-term rates. This is because, as presented in Fig. 2b, lower 
short-term interest rates make equity investment more attractive and investment in 
bonds less attractive.

We can also see that it requires a much larger percentage increase in equity returns 
to change the allocation to the key-rate duration-matching portfolio. In other words, 
a one percentage point increase in the value of equities has only a small impact on 
the optimal allocation to the key-rate duration-matching portfolio. This particular 
result confirms how important interest rates are to the optimal asset allocation of 

(18)
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Fig. 16  Change in allocation to key-rate duration-matching portfolio for percentage changes in various 
explanatory variables
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a pension scheme, when the pension liability is taken into consideration. Note that 
the linear regression performed here is of an indicative nature only: the relationship 
between the explanatory variables and the optimal portfolio allocation dynamics is 
more complex and the impact of the variables will also be correlated.
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