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Abstract11

A string is closed if it has length 1 or has a nonempty border without internal occurrences. In this12

paper we introduce the definition of a maximal closed substring (MCS), which is an occurrence of a13

closed substring that cannot be extended to the left nor to the right into a longer closed substring.14

MCSs with exponent at least 2 are commonly called runs; those with exponent smaller than 2,15

instead, are particular cases of maximal gapped repeats. We show that a string of length n contains16

O(n1.5) MCSs. We also provide an output-sensitive algorithm that, given a string of length n over a17

constant-size alphabet, locates all m MCSs the string contains in O(n log n + m) time.18
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1 Introduction26

The distinction between open and closed strings was introduced by the third author in [8] in27

the context of Sturmian words.28

A string is closed (or periodic-like [6]) if it has length 1 or it has a border that does not29

have internal occurrences (i.e., it occurs only as a prefix and as a suffix). Otherwise the30

string is open. For example, the strings a, abaab and ababa are closed, while ab and ababaab31

are open. In particular, every string whose exponent — the ratio between the length and the32

minimal period — is at least 2, is closed [1].33

In this paper, we consider occurrences of closed substrings in a string with the property34

that the substring cannot be extended to the left nor to the right into another closed35

substring. These are called the maximal closed substrings (MCS) of the string. For example,36

if S = abaabab, then the set of pairs of starting and ending positions of the MCSs of S is37

{(1, 1), (1, 3), (1, 6), (2, 2), (3, 4), (4, 8), (5, 5), (6, 6), (7, 7), (8, 8)}38

This notion encompasses that of a run (maximal repetition) which is a MCS with exponent39

2 or larger. It has been conjectured by Kolpakov and Kucherov [12] and then finally proved,40

after a long series of papers, by Bannai et al. [2], that a string of length n contains less than41

n runs.42
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On the other hand, maximal closed substrings with exponent smaller than 2 are particular43

cases of maximal gapped repeats [11]. An α-gapped repeat (α ≥ 1) in a string S is a substring44

uvu of S such that |uv| ≤ α|u|. It is maximal if the two occurrences of u in it cannot be45

extended simultaneously with the same letter to the right nor to the left. Gawrychowski et46

al. [10] proved that there are words that have Θ(αn) maximal α-gapped repeats.47

In this paper, we address the following problems:48

1. How many MCSs can a string of length n contain?49

2. What is the running time of an algorithm that, given a string S of length n, returns all50

the occurrences of MCSs in S?51

We show that:52

1. A string of length n contains O(n1.5) MCSs.53

2. There is an algorithm that, given a string of length n over a constant-size alphabet,54

locates all m MCSs the string contains in O(n log n + m) time.55

2 Preliminaries56

Let S = S[1..n] = S[1]S[2] · · · S[n] be a string of n letters drawn from an alphabet Σ of57

constant size. The length n of a string S is denoted |S|. The empty string has length 0. A58

prefix (resp. a suffix) of S is any string of the form S[1..i] (resp. S[i..n]) for some 1 ≤ i ≤ n.59

A substring of S is any string of the form S[i..j] for some 1 ≤ i ≤ j ≤ n. It is also commonly60

assumed that the empty string is a prefix, a suffix and a substring of any string.61

An integer p ≥ 1 is a period of S if S[i] = S[j] whenever i ≡ j (mod p). For example,62

the periods of S = aabaaba are 3, 6 and every n ≥ 7 = |S|.63

We recall the following classical result:64

▶ Lemma 1 (Periodicity Lemma (weak version) [9]). If a string S has periods p and q such65

that p + q ≤ |S|, then gcd(p, q) is also a period of S.66

Given a string S, we say that a string β ̸= S is a border of S if β is both a prefix and a67

suffix of S (we exclude the case β = S but we do consider the case |β| = 0). Note that if β is68

a border of S, then |S| − |β| is a period of S; conversely, if p ≤ |S| is a period of S, then S69

has a border of length |S| − p.70

The following well-known property of borders holds:71

▶ Property 2. If a string has two borders β and β′, with |β| < |β′|, then β is a border of β′.72

The border array BS [1..n] of string S = S[1..n] is the integer array where BS [i] is the73

length of the longest border of S[1..i]. When the string S is clear from the context, we will74

simply write B instead of BS .75

For any 1 ≤ i ≤ n, let B1[i] = B[i] and Bj [i] = B[Bj−1[i]] for j ≥ 2. We set76

B+[i] = {|β| | β is a border of S[1..i]}.77

By Property 2, we have B+[i] = {Bj [i] | j ≥ 1}.78

For example, in the string S = aabaaaabaaba, we have B+[6] = {0, 1, 2}. Indeed, B[6] = 2,79

and B2[6] = B[2] = 1, while Bj [6] = 0 for j > 2.80

The OC array [5] OCS [1..n] of string S is a binary array where OCS [i] = 1 if S[1, i] is81

closed and OCS [i] = 0 otherwise. We also define the array PS where PS [i] is the length of the82

longest repeated prefix of S[1..i], that is, the longest prefix of S[1..i] that has at least two83

occurrences in S[1..i]. Again, if S is clear from the context, we omit the subscripts.84
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Let S be a string of length n. Since for every 1 ≤ i ≤ n, the longest repeated prefix vi85

of S[1..i] is the longest border of S[1..j], where j ≤ i is the ending position of the second86

occurrence of vi, we have that87

P[i] = max
1≤j≤i

B[j]. (1)88

▶ Lemma 3 ([7]). Let S be a string of length n. For every 1 ≤ i ≤ n, one has89

P[i] =
i∑

j=1
OC[j] − 1, (2)90

that is, P[i] is the rank of 1’s in OC[1..i] minus one.91

Proof. For every repeated prefix v of S, the second occurrence of v in S determines a92

closed prefix of S; conversely, every closed prefix of S of length greater than 1 ends where93

the second occurrence of a repeated prefix of S ends. Indeed, the length of the longest94

repeated prefix increases precisely in those positions in which we have a closed prefix. That95

is, P[i] = P[i − 1] + OC[i], for any 1 < i ≤ n, which, together with P[1] = 0 = OC[1] − 1,96

yields (2). ◀97

As a consequence of (1) and (2), if two strings have the same border array, then they have98

the same OC array, but the converse is not true in general (take for example aaba and aabb).99

The OC array of a string can be obtained from its P array by taking the differences of100

consecutive values, putting 1 in the first position (cf. [8]). Since the border array can be101

easily computed in linear time [13], it is possible to compute the OC array in linear time.102

▶ Example 4. The OC, B, and P arrays for S = aabaaaabaaba are shown in the following103

table:104

i 1 2 3 4 5 6 7 8 9 10 11 12
S a a b a a a a b a a b a

OC 1 1 0 0 1 0 0 1 1 1 0 0
B 0 1 0 1 2 2 2 3 4 5 3 4
P 0 1 1 1 2 2 2 3 4 5 5 5

105

3 A bound on the number of MCS106

The goal of this section is to prove our bound O(n1.5) in the number of MCSs in a string of107

length n. This will be derived from a bound on the number of runs in the OC array.108

In the next lemmas, we gather some structural results on the OC array.109

▶ Lemma 5 ([7, Remark 8]). If OC[i] = 1, then B[i] = P[i], and B[i − 1] = P[i − 1] (provided110

i > 1).111

▶ Lemma 6. For all i and k such that OC[i + 1..i + k + 1] = 0k1, if P[i] ≥ k then112

P[i] − k ∈ B+[i].113

Proof. By Lemma 3 and Lemma 5, P[i + k + 1] = P[i] + 1 is the length of the longest114

border of S at position i + k + 1. The assertion is then a consequence of the following simple115

observation: Let u, v and x be strings; if ux is a border of vx, then u is a border of v. In116

fact, letting v = S[1..i], and x = S[i + 1..i + k + 1], as B+[i + k + 1] > k, the longest border117

of vx can be written as ux for some u of length P[i] + 1 − k − 1 = P[i] − k. ◀118

CVIT 2016



23:4 Maximal Closed Substrings

▶ Lemma 7. For all i and k such that OC[i..i + k + 1] = 10k1, if P[i] ≥ k then P[i] − k ∈119

B+[P[i]].120

Proof. Immediate by Lemmas 5 and 6, as B[i] = P[i] and P[i] − k ∈ B+[i]. ◀121

▶ Lemma 8. If OC[i..i + k1 + k2 + t + 1] = 10k11t0k21 and k1, k2 > 0, then P[i] < k1 + k2.122

Proof. By contradiction. Assume P[i] ≥ k1 + k2. Then by Lemma 7 we have P[i] − k1 ∈123

B+[P[i]], which implies that k1 is a period of S[1..P[i]]. Similarly, k2 is a period of S[1..P[i]+t]124

and then of S[1..P[i] + 1] and S[1..P[i]], since P[i] ≥ k2. By the Periodicity Lemma 1 we125

know that K = gcd(k1, k2) is also a period of S[1..P[i]]. Note that k1 − k2 is divisible by K.126

Furthermore, S[i + 1] ̸= S[i + 1 + k1] because OC[i + 1] is not 1. By Lemma 6, we have127

P[i] + 1 − k1 ∈ B+[i + 1], which implies S[i + 1] = S[P[i] + 1 − k1].128

However, S[i + 1 + k1] = S[P[i] + 1] = S[P[i] + 1 − k2] = S[P[i] + 1 − k2 − (k1 − k2)] =129

S[P[i] + 1 − k1] = S[i + 1], which is a contradiction. ◀130

▶ Theorem 9. Let S be a string of length n. Then the number of runs in its OC array is131

O(
√

n).132

Proof. Let OCS = 1t10k1 · · · 1tm0km , where km ≥ 0 and all other exponents are positive. By133

Lemma 8, we have for 1 < i < m,134

ki−1 + ki ≥
i−1∑
r=1

tr ≥ i − 1 .135

This implies136

n =
m∑

i=1
(ti + ki) ≥ m +

⌊ m−1
2 ⌋∑

j=1
(k2j−1 + k2j) ≥ m +

⌊ m−1
2 ⌋∑

j=1
(2j − 1) = m +

⌊
m − 1

2

⌋2
137

so that n = Ω(m2) and then m = O(
√

n). ◀138

The bound in the previous proposition is tight. Indeed, there exists a binary string whose139

OC array is
∏

k>0 10k. Actually, the string is uniquely determined by its OC array and can140

be defined by u = a
∏

k>0 u[k]u[1..k] = abaaabbabababaa · · · .141

The following proposition is a direct consequence of the definition of MCS. Essentially, it142

says that we can check if S[i..j] is a MCS by looking at the OC array of the suffixes starting143

at position i and i − 1.144

▶ Proposition 10. Let S be a string of length n. If S[i..j] is a MCS, then OCS[i..n][j −145

i + 1] = 1 and either j − i + 1 = n or OCS[i..n][j − i + 2] = 0. Moreover, either i = 1 or146

OCS[i−1..n][j − i + 2] = 0.147

▶ Example 11. Let S = aabaaaabaaba. The OC arrays of the first few suffixes of S are148

displayed below.149

S a a b a a a a b a a b a

OCS[1..n] 1 1 0 0 1 0 0 1 1 1 0 0
OCS[2..n] 1 0 1 0 0 0 1 1 1 0 0
OCS[3..n] 1 0 0 0 0 1 1 1 0 0
OCS[4..n] 1 1 1 1 0 0 0 0 0
OCS[5..n] 1 1 1 0 0 0 0 0
OCS[6..n] 1 1 0 0 1 1 1

150
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One can check for instance that S[4..7] is a MCS, because the 4 = (7 − 4 + 1)th entry of151

OCS[4..n] is a 1 which does not have another 1 on its right nor on top of it (i.e., in the OC152

array of the previous suffix). Similarly, S[6..12] is a MCS because the last entry of OCS[6..n]153

is 1 with a 0 on top.154

As a consequence of the previous proposition, the number of MCSs in S is bounded from155

above by the total number of runs of 1s in all the OC arrays of the suffixes of S.156

From Theorem 9, we therefore have a bound of O(n
√

n) on the number of MCSs in a157

string of length n.158

4 An algorithm for locating all MCS159

In the previous section, we saw that one can locate all MCSs of S by looking at the OC160

arrays of all suffixes of S. However, since the OC array of a string of length n requires Ω(n)161

time to be constructed, this yields an algorithm that needs Ω(n2) time to locate all MCSs.162

We now describe an algorithm for computing all the maximal closed substrings in a string163

S of length n. For simplicity of exposition we assume that S is on a binary alphabet {a, b},164

however the algorithm is easily adapted for strings on any constant-sized alphabet. The165

running time is asymptotically bounded by n log n plus the total number of MCSs in S.166

The inspiration for our approach is an algorithms for finding maximal pairs under gap167

constraints due to Brodal, Lyngsø, Pedersen, and Stoye [3]. The central data structure is the168

suffix tree of the input string, which we now define.169

▶ Definition 12 (Suffix tree). The suffix tree T (S) of the string S is the compressed trie of170

all suffixes of S. Each leaf in T (S) represents a suffix S[i..n] of S and is annotated with171

the index i. We refer to the set of indices stored at the leaves in the subtree rooted at node172

v as the leaf-list of v and denote it LL(v). Each edge in T (S) is labelled with a nonempty173

substring of S such that the path from the root to the leaf annotated with index i spells the174

suffix S[i..n]. We refer to the substring of S spelled by the path from the root to node v as175

the path-label of v and denote it L(v).176

At a high level, our algorithm for finding MCSs processes the suffix tree (which is a177

binary tree, for binary strings) in a bottom-up traversal. At each node the leaf lists of the178

(two, for a binary string) children are intersected. For each element in the leaf list of the179

smaller child, the successor in the leaf list of the larger child is found. Note that because180

the element from the smaller child and its successor in the larger child come from different181

subtrees, they represent a pair occurrences of substring L(v) that are right-maximal. To182

ensure left maximality, we must take care to only output pairs that have different preceding183

characters. We explain how to achieve this below.184

Essential to our algorithm are properties of AVL trees that allow their efficient merging,185

and the so-called “smaller-half trick” applicable to binary trees. These proprieties are186

captured in the following lemmas.187

▶ Lemma 13 (Brown and Tarjan [4]). Two AVL trees of size at most n and m can be merged188

in time O(log
(

n+m
n

)
).189

CVIT 2016



23:6 Maximal Closed Substrings

▶ Lemma 14 (Brodal et al. [3], Lemma 3.3). Let T be an arbitrary binary tree with n leaves.190

The sum over all internal nodes v in T of terms that are O(log
(

n1+n2
n1

)
), where n1 and n2191

are the n1 numbers of leaves in the subtrees rooted at the two children of v, is O(n log n).192

As stated above, our algorithm traverses the suffix tree bottom up. At a generic step in193

the traversal, we are at an internal node v of the suffix tree. Let the two children of node v194

be vℓ and vr (recall the tree is a binary suffix tree, so every internal node has two children).195

The leaf lists of each child of v are maintained in two AVL trees — note, there are two AVL196

trees for each of the two children, two for vℓ and two for vr. For a given child, say vr, one197

of the two AVL trees contains positions where L(vr) is preceded by an a symbol, and the198

other AVL tree contains positions where L(vr) is preceded by a b symbol in S. Call these199

the a-tree and b-tree, respectively.200

Without loss of generality, let vr be the smaller of v’s children. We want to search for201

the successor of each of the elements of vr’s a-tree amongst the elements vℓ’s b-tree, and,202

similarly the elements of vr’s b-tree with the elements from vℓ’s a-tree. Observe that the203

resulting pairs of elements represent a pair of occurrences of L(v) that are both right and left204

maximal: they have different preceding characters and so will be left maximal, and they are205

siblings in the suffix tree and so will be right maximal. These are candidate MCSs. What206

remains is to discard pairs that are not consecutive occurrences of L(v), to arrive at the207

MCSs. Discarding is easy if we process the elements of each of LL(vr) in order (which is208

in turn easy because they are stored in AVL trees). To see this, consider two consecutive209

candidates that have the same right border position (a successor found in LL(vℓ)). The first210

of these candidates can clearly be discarded because there is an occurrence of L(v) (from211

LL(vr)) in between the two borders, preventing it from being an MCS. Because we only212

compute a successor for each of the elements of the smaller of v’s children, by Lemma 14 the213

total time for all successor searches will be O(n log n) (and discarding clearly does not add214

to this time). After this, the AVL trees of the smaller child are merged with the larger child.215

Thus, by Lemmas 13 and 14, the overall processing is bounded by O(n log n) in addition216

to the number of MCSs that are found.217

The above approach is easily generalized from strings on binary alphabets to those on218

any alphabet of constant size by replacing nodes of the suffix tree having degree d > 2 with219

binary trees of height log d. This does not increase the height of the suffix tree asymptotically220

and so preserves the runtime stated above. It would be interesting to design algorithms for221

general alphabets, and we leave this as an open problem.222
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