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Abstract

Chronic wounds contribute to significant healthcare and economic burden

worldwide. Wound assessment remains challenging given its complex and

dynamic nature. The use of artificial intelligence (AI) and machine learning

methods in wound analysis is promising. Explainable modelling can help its

integration and acceptance in healthcare systems. We aim to develop an

explainable AI model for analysing vascular wound images among an Asian

population. Two thousand nine hundred and fifty-seven wound images from a

vascular wound image registry from a tertiary institution in Singapore were

utilized. The dataset was split into training, validation and test sets. Wound

images were classified into four types (neuroischaemic ulcer [NIU], surgical

site infections [SSI], venous leg ulcers [VLU], pressure ulcer [PU]), measured

with automatic estimation of width, length and depth and segmented into

18 wound and peri-wound features. Data pre-processing was performed using

oversampling and augmentation techniques. Convolutional and deep learning

models were utilized for model development. The model was evaluated with

accuracy, F1 score and receiver operating characteristic (ROC) curves. Explain-

ability methods were used to interpret AI decision reasoning. A web browser

application was developed to demonstrate results of the wound AI model with

explainability. After development, the model was tested on additional 15 476

unlabelled images to evaluate effectiveness. After the development on the

training and validation dataset, the model performance on unseen labelled

images in the test set achieved an AUROC of 0.99 for wound classification with
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mean accuracy of 95.9%. For wound measurements, the model achieved

AUROC of 0.97 with mean accuracy of 85.0% for depth classification, and

AUROC of 0.92 with mean accuracy of 87.1% for width and length determina-

tion. For wound segmentation, an AUROC of 0.95 and mean accuracy of 87.8%

was achieved. Testing on unlabelled images, the model confidence score for

wound classification was 82.8% with an explainability score of 60.6%. Confi-

dence score was 87.6% for depth classification with 68.0% explainability score,

while width and length measurement obtained 93.0% accuracy score with

76.6% explainability. Confidence score for wound segmentation was 83.9%,

while explainability was 72.1%. Using explainable AI models, we have devel-

oped an algorithm and application for analysis of vascular wound images from

an Asian population with accuracy and explainability. With further develop-

ment, it can be utilized as a clinical decision support system and integrated

into existing healthcare electronic systems.

KEYWORD S

artificial intelligence, computer-assisted image analysis, machine learning, vascular wounds,
wound imaging

Key Messages
• Vascular wounds assessment remains challenging given its complex and

dynamic nature; artificial intelligence and machine learning methods can
aid in wounds analysis.

• Utilizing 2957 Asian vascular wound images, machine learning models were
developed to analyse wound images. Explainability methods were used to
interpret artificial intelligence decision reasoning.

• The wound image analysis model classifies wound images with 95.9% accu-
racy (AUC 0.99), makes automatic estimated depth classification and wound
measurements with 85.0% (AUC 0.97) and 87.1% (AUC 0.92) accuracy,
respectively, and performs wound segmentation with 87.8% accuracy
(AUC 0.95).

• With further development, it can be utilized as a clinical decision support
system and integrated into existing healthcare electronic systems.

1 | INTRODUCTION

Chronic wounds contribute to a significant healthcare
and economic burden worldwide.1,2 This is no exception
in multi-ethnic Singapore, with mean cost per patient-
year in excess of US $3000 for an episode of diabetic foot
ulcer and more than US $30 000 for major amputation.2

The course of wound healing can have varying trajecto-
ries given the complex and dynamic nature of wound
care, and there can be significant variability in the assess-
ment and management across different healthcare profes-
sionals. Wound imaging remains a key component of
wound assessment.3 Multiple commercial wound imag-
ing systems are available and can be used as adjuncts in

the assessment and monitoring of chronic wounds.4

These include computer applications, mobile applications
and specialized imaging devices. Current wound imaging
solutions are limited in their ability to provide wound
assessment beyond their physical characteristics such as
the size, depth and appearance, which can limit their
utility beyond a tool for documentation. Some solutions
can also be costly to implement with the need for special-
ized equipment and can be difficult to tailor to specific
patient populations depending on how the programme is
developed. Artificial intelligence (AI) in healthcare has
seen increasing interest and development5 across multi-
ple fields including machine vision for image-based diag-
nosis such as in mammography,6 endoscopy7 and many
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more. The use of AI and machine learning is a promising
tool to deliver individualized and data-driven outcomes in
wound care.8,9 By modelling on large datasets, AI and
machine learning methods have the potential to provide
individualized with increased efficiency,10 with convoluted
neural networks (CNNs) methods showing promise in
wound segmentation.11,12 The use of explainable AI (XAI)
modelling can also help with its integration and acceptance
in healthcare systems,13 helping to address the ‘black-box’
nature of AI algorithms. Currently, there are no trained and
validated AI models for the analysis of vascular wound
images. Thus, we aim to develop an AI model for analysing
Asian vascular wound images with explainability.

2 | METHODS

We utilized 2957 wound images from a vascular wound
image registry from a tertiary institution in Singapore to
train, validate and test our AI model. The wound image
registry is a prospective database of wound images taken
during both inpatient and outpatient wound care sessions
on mobile phone devices between 2017 and 2020 as part of
routine clinical wound photo-documentation of vascular
wounds. Of the 2957 images, a total of 2549 images were
used for wound classification, comprising 1212 (47.7%)
VLU, 1002 (39.5%) NIU, 203 (8.0%) SSI and 122 (4.8%)
PU. For depth measurement, 1366 depth annotated images
were used, out of which 544 (39.8%) were dermal layer
wounds, 520 (38.1%) epidermal layer wounds and
302 (22.1%) deep wounds. For width and length measure-
ments, 1096 images with rulers were used to obtain the
number of pixels per centimetre (ppcm) out of the rulers
to train the model to predict the scale in ppcm. Finally, for
wound segmentation, 973 annotated segmented images
were used. Wound location, depth and segmentation
annotation were performed by a clinician (Vascular sur-
geon) or qualified wound nurse using a wound image
annotator application (AITIS Image Annotator Version
1.1.1.0, 2021). Figure 1A, B demonstrate the AITIS wound
annotator application. Image annotation components are
as listed in Table 1, with 18 features used for wound seg-
mentation. Additional 15 476 unlabelled images from the
wounds registry were then subsequently utilized for the
model effectiveness and confidence. This study was
approved by our institution domain-specific review board
(DSRB Ref 2020/01062) and AI committee approval.

2.1 | Data pre-processing

All models were trained using oversampling techniques14

to ensure classes that were less frequent in the dataset had

enough representation compared to the other classes so
that the model did not overfit. Other tools tested and used
during the development process were CutMix,15 mixup16

and swin transformer.17,18 CutMix allows the model to
generalize better and have better object localization capa-
bility by randomly replacing a patch from an image with a
patch from the training dataset. Mixup generates a
weighted combination of random image pairs from train-
ing images to improve generalization. An object detection
model (YOLO) was used to detect the wound region of
interest (ROI), removing unnecessary background.19

Images were pre-processed using augmentation tech-
niques such as rotation, vertical and horizontal flip and
image sharpening. This ensures that the model accuracy
was independent of camera position and rotation (rota-
tions, vertical and horizontal flips), as well as camera res-
olution (sharpening).

2.2 | Model development

The image dataset was divided into training, validation and
test sets of 80%, 10% and 10% respectively. Figure 2 illus-
trates the process of model development using the training-
validation-testing framework. In the training phase, the
model is first trained on the training dataset using different
parameters and features. In the validation phase, the
model's hyperparameters are further finetuned and evalu-
ated on the validation dataset and the best one is chosen
based on the validation statistics, accuracy and F1 scores. In
the testing phase, the final model is then evaluated on the
unseen data of the test dataset. This process generates the
final statistics which determine the accuracy of the model.

For model training and validation, convolutional models
with pretrained weights from the ImageNet dataset were
used.20 The wound segmentation models were pretrained on
a subset of COCO train2017, on the 20 categories present in
the Pascal VOC dataset.21,22 Although the ImageNet and
COCO train2017 datasets have very different classes
(e.g. horses, cats, dogs, planes, boats, cars, etc.), the weights
of these models have been trained to recognize real-life
images, so we utilized those weights using transfer learning
for our own purposes and classes.23 Models used during the
development process include different versions of DenseNet,
MobileNet and ResNet for classification24–26 (wound type
and measurements) and DeepLab, FPN or U-Net for
segmentation.27–29

2.3 | Model evaluation

Model effectiveness was evaluated using accuracy, F1 score
and area under receiver operating characteristic (AUROC)

LO ET AL. 3
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curves. The correct wound image samples were determined
by a vascular surgeon and trained wound care specialist
nurse, that is, ‘ground-truth’. Accuracy is defined as the
ratio between correctly classified samples and total number
of samples in the evaluation dataset. F1 score is defined as
the harmonic mean of the precision and recall.

Accuracy¼ TPþTN
TPþFPþTNþFN

F1 score¼ 2� precision� recall
precisionþ recall

¼ 2�TP
2X TPþFNþFN

2.4 | Model application and
explainability

After the model was developed, it was then tested on an
additional 15, 476 unlabelled images to evaluate model
confidence and explainability. The confidence score is
obtained from the predicted class probabilities of the
model output, while the explainability score is obtained
by determining the attention the model pays to wound
area compared to the rest of the image while making its
prediction. GradCAM (gradient-weighted class activation
mapping),30 LIME (local interpretable model-agnostic

FIGURE 1 (A, B) Wound

image annotation using

annotator software, specifying

wound location, depth and

segmentation.

4 LO ET AL.
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explanations)31 and SHAP (Shapley Additive ExPlana-
tions32 were tested as viable explainability methods, with
SHAP used as the preferable explainability method.
Figure 3 demonstrates the evaluation of wound image

explainability using SHAP. The equation for the deriva-
tion of the explainability score is in Appendix A. The
higher the explainability score the more certainty that
the model is looking into the wound area to make its
prediction.

A web browser application was then developed to
demonstrate results of the wound AI model with explain-
ability. The application allows the end-user to upload
images locally and presents to the user results of wound
classification, wound measurements and wound segmen-
tation with accuracy of the model results and confidence
of explainability.

3 | RESULTS

During model development in the training and validation
phase, different deep learning models were tested, and
the best wound classification model obtained an overall
96.3% accuracy with an F1 score of 0.96. The measure-
ments model obtained 92.6% accuracy and F1 score of
0.93 for depth and 87.8% accuracy for width and length
estimation. The segmentation model obtained an 88.7%
in pixel accuracy. After development on the training and
validation dataset, the model was tested for performance
on unseen labelled images in the test dataset and
achieved an average AUROC of 0.99 for wound classifica-
tion with a mean accuracy of 95.9%. For wound measure-
ments, the model achieved an average AUROC of 0.97
with a mean accuracy of 85.0% for depth classification,
and average AUROC of 0.92 with a mean accuracy of
87.1% for width and length determination. For wound
segmentation, an average AUROC of 0.95 and accuracy
of 87.8% was obtained.

Figure 4A–D demonstrates the ROC curves for model
prediction for wound classifications, wound measure-
ment and wound segmentation respectively. To further
evaluate the model after its development, we tested the
model on 15 476 unlabelled images and evaluated the
model confidence and explainability scores in prediction.
The model confidence score for wound classification was
86.8%, 94.9%, 75.2% and 66.6% for NIU, SSI, VLU and
PU, respectively, with mean confidence of 82.8%, while
explainability score was 54.7%, 76.6%, 39.0% and 73.0%
respectively. Measurement of width and length obtained
a 93.0% confidence score with 76.6% explainability, with
depth confidence score of 75.9%, 93.3% and 61.4% for
deep, dermal and epidermal layers, respectively, and
explainability score of 90.3%, 67.8% and 23.7% respec-
tively. Segmentation confidence score was 83.9% on aver-
age for the 18 classes, while the explainability score was
72.1%. Table 2 demonstrates a summary of model devel-
opment results. Table 3 demonstrates the model results

FIGURE 2 Flow diagram of model development.

TABLE 1 Wound image annotation categories and features.

Category Feature

Wound type Neuroischaemic ulcer (NIU)

Surgical site infections (SSI)

Venous leg ulcers (VLU)

Pressure ulcer (PU)

Anatomical location
of wound

Right or Left

Thigh/Knee/Calf/Foot

Medial/Lateral

Anterior/Posterior

Malleolus/Ankle/Heel/Midfoot/
Forefoot/Toes

Dorsum/Plantar

Wound
measurements

Width/Length (in centimetres to 1
decimal point)

Measurements: Width/Length (in
centimetres to 1 decimal point)

Depth: Epidermal, Dermal, Deep

Wound
segmentation (18
features)

Area of Interest: Wound Boundary,
Periwound Perimeter, Wound
Perimeter

Wound Bed Characteristics:
Epithelialization, Granulation,
Hypergranulation, Necrotic Slough,
Eschar, Others

Peri-wound Characteristics:
Oedematous, Erythematous,
Maceration, Excoriation, Other
Unbroken Skin, Other Broken Skin,
Healthy Skin

Nail characteristics: Healthy, Damaged

LO ET AL. 5
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after testing on unlabelled images. Figures 5, 6 and 7
demonstrate the interface from the web browser applica-
tion developed for clinical application.

4 | DISCUSSION

Wound care remains an important global healthcare
problem. Wound care starts with accurate wound assess-
ment and documentation,33 and wound characteristics

have been shown to predict eventual wound outcomes.34

Wound classification is a critical first step in assessing
severity, healing potential and determining the correct
treatment across all wound types.33 Wound evaluation
has traditionally relied on visual assessment by a trained
clinician or wound care specialist. Imaging technologies
can help to provide measurements of the optical proper-
ties of wound components, which can be analysed and
interpreted to assess wound severity, healing potential
and progress in a rapid, objective and non-invasive

FIGURE 3 Demonstration

of model explainability using

SHAP. SHAP: Shapley Additive

exPlanations.

FIGURE 4 (A) Receiver

operating characteristic curve

for model performance on

wound classification.

(B) Receiver operating

characteristic curve for model

performance on wound depth

classification. C-stat: C-statistics.

(C) Receiver operating

characteristic curve for model

performance on wound width

and length measurement.

(D) Receiver operating

characteristic curve for model

performance on wound

segmentation. C-stat,

C-statistics; NIU,

neuroischaemic ulcer; PU,

pressure ulcer; SSI, surgical site

infection; VLU, venous leg ulcer.
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manner. Previous studies have reported the use of AI in
wound assessment11,12,35,36 but are limited by data size
and applicability outside their population set. By training

our model with a large number of wound images from a
multi-ethnic population, this enhances its applicability in
wound care in the tropics.

TABLE 2 Summary of model results on the validation (development) and test (final model) datasets. AUROC: area under receiver

operating characteristic curve.

Accuracy (%) F1 Score AUROC

Validation (model development) statistics Classification 96.3 0.96

Measurement (depth) 92.6 0.93

Measurement (width and length) 87.8

Wound segmentation 88.7

Test (final model) statistics Classification 95.9 0.99

Measurement (depth) 85.0 0.97

Measurement (width and length) 87.1 0.92

Wound segmentation 87.8 0.95

TABLE 3 Summary of model results on unlabelled images.

Confidence score (%) Explainability score (%)

Wound classification Overall, Mean 82.8 60.6

NIU 86.8 54.7

SSI 94.9 76.6

VLU 75.2 39.0

PU 66.6 73.0

Measurement (depth) Overall, Mean 87.6 68.0

Deep 75.9 90.3

Dermal 93.3 67.8

Epidermal 61.4 23.7

Measurement (width and length) 93.0 76.6

Wound segmentation 83.9 72.1

Abbreviations: NIU, neuroischaemic ulcer; PU, pressure ulcer; SSI, surgical site infection; VLU, venous leg ulcer.

FIGURE 5 Demonstration

of Wound App showing model

results, accuracy and

explainability across domains of

wound classification,

measurement and segmentation.

LO ET AL. 7
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FIGURE 6 Demonstration

of Wound App showing model

explainability in domains of

classification, wound

measurement and segmentation.

FIGURE 7 Further demonstration of Wound App showing model explainability in domains of classification, wound measurement and

segmentation.

8 LO ET AL.
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Our model performed well in the task of wound clas-
sification with a mean accuracy of 95.9%. This is compa-
rable with other wound image classification deep
learning models, with mean accuracy values which range
between 73.0% and 97.1%.37,38 Width and length mea-
surements were also accurate with the mean accuracy of
87.1%, while depth accuracy was 85.0%. Wound measure-
ments achieved a mean accuracy of 87.8%. These results
likely reflect the difference in dataset numbers, with the
largest number of images utilized for wound classifica-
tions and are likely to be improved further with a larger
dataset. AUROC results of 0.99 for wound classification,
0.97 for wound depth measurements, 0.92 for width and
length measurements and 0.95 for wound segmentation
were achieved, reflecting the model's discriminative
ability as a classifier. Similar results have been obtained
in other machine learning models with large datasets,
with AUROC of up to 0.96 indicating strong model
performance.39

Evaluating the model on unlabelled images returns
the predicted class probabilities in each category, instead
of traditional accuracy metrics which would require a
labelled ‘ground-truth’ to determine the true positive and
negative rates. This evaluation allows an estimate of the
model performance on a separate, unseen image set. This
is further augmented by the explainability score, which
provides a measure of determining the attention the
model pays to a wound area compared with the rest of
the image while making its prediction. The overall confi-
dence score for wound classification was 82.8%, with the
highest confidence for SSI at 94.9% and lowest for PU at
66.6%. Although the images are unclassified, this differ-
ence is likely due to the high numbers of post-surgical
wounds and low numbers of PU in the dataset, which
comprises vascular wound images. This similar finding is
found with epidermal wounds with the lowest confidence
score at 61.4%, again likely due to the lower numbers in a
vascular wound image dataset which mostly consists of
dermal and deep wounds. Establishing the model confi-
dence scores can also help define a threshold score to
accept or reject classifications, which need further clini-
cal studies to determine the level of confidence a model
is required to provide to either make a correct clinical
decision or avoid clinical error. Future improvements
include utilizing this additional dataset to increase the
number of annotated images in our original model devel-
opment image set, which would require further time and
resources. Given that the wound classification task had
attained 95.9% accuracy, this could be used to further
improve wound measurement and wound segmentation
performance.

Interpreting XAI remains a challenge in healthcare
applications,40 and its adoption into clinical practice

presently presents technological, ethical and medicolegal
challenges.41 Deep learning neural networks are con-
nected via many nonlinear intertwined relations and
often considered a ‘black box’ which can be difficult to
interpret and trust.42 XAI methods are useful to explain
AI-based decision making process, especially in medical
decision making which is inherently high risk and to
increase trust in both the clinician and patient.43 XAI
methods can be developed with either intrinsic or post
hoc methods,44 with LIME and SHAP being popular
explainable AI techniques, particularly in the field of
computer vision and deep learning.45,46 We utilized
SHAP in our study, as it provided a more accurate expla-
nation of the model's prediction by measuring the contri-
bution of each individual pixel to a feature in the image.
Utilizing XAI in model evaluation can also help in model
troubleshooting and improvement.47 Insufficient data
remain a significant limitation in model performance. If
a low explainability score is encountered, it could mean
that the model is not able to identify specific features to
derive its prediction. This could either be due to a lack of
samples in the dataset, or there could be other features in
the image not yet defined and the model is looking at
other areas to make its prediction. Categories with poor
explainability score in our testing include that for predict-
ing NIU (54.7%), VLU (39.0%) and depth measurement
for epidermal wounds (23.7%). While the poor explain-
ability score can be accounted for by lack of images in
the category, the same cannot be said for those in NIU
and VLU which form the majority of wound images in
a vascular wound image dataset, but more likely due to
specific features the model looks at to derive its
predictions.

Commercial systems are available with good inter-
rated reliability, but often require the use of proprietary
equipment or software. Examples include Tissue Analyt-
ics (Net Health Systems Inc, Florida, USA) for venous leg
ulcer measurement, which requires the use of green dot
and video capture to analyse the wound,48 and Woun-
dAide (Konica Minolta Inc, Tokyo, Japan) which requires
use of dedicated infrared device.49 The CARES4-
WOUNDS (Tetsuyu, Singapore) system for monitoring
diabetic foot ulcers requires a dedicated sensor or a spe-
cific smartphone model.50 The images from our dataset
consisted of wound images taken by medical personnel
for photo documentation during clinical practice, with
significant variation in the device used for image capture,
lighting conditions, photo angles, image size and quality.
This mimics real-world scenarios better where there may
be multiple members involved in wound care in different
locations, making standardization of the wound image
capture device and conditions difficult. Using AI methods
in our study, this eliminates the need for device

LO ET AL. 9
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standardization and the need for a ruler to make wound
measurements. This increases its versatility in use in a
variety of clinical scenarios, such as in the community or
home-based care.

The clinical utility of an AI-enhanced wound image
application is manifold. Wound care and diabetic foot
ulcer care often involve multidisciplinary teams and
multi-disciplinary care shown to improve limb-related
outcomes and cost savings.51 By having a standardized
imaging tool trained on images from the same patient
population, it enables the end-user to make wound
assessments more confidently and consistently and
improve communication between healthcare profes-
sionals. This can also be used when patients transit from
tertiary care to primary care and vice versa. Patient-
centred remote wound care monitoring is also a possible
application.52 The model can also aid in wounds educa-
tion and quality improvement, by serving as a platform
to enable patients and caregivers to have the confidence
to monitor their wound progress and for training medical
staff who may have less experience in wound care man-
agement. The use of XAI also helps clinicians understand
how the model derives its conclusion and improves trust
in the model. It is not designed as a replacement for clini-
cian decision making but as a decision support system
and tool for wound care education. Future works to
improve the utility of the model include: First, as the cur-
rent application is web-browser based, future steps would
include integration into the hospital electronic medical
record for ease of use. Next, the model can be tested on a
separate external cohort for external validation. Third,
the imaging system can be utilized as part of a multi-
modal analysis including patient clinical characteristics
and clinical text notes to provide a holistic predictive
model for wound healing assessment.

5 | CONCLUSION

Using explainable AI models, we have developed an algo-
rithm and application for analysis of wound images from
an Asian cohort with accuracy and explainability. It can
be applied for wound classification, automatic estimation
of width, length and depth, as well as wound segmenta-
tion. With further data and development, it can be uti-
lized as a clinical decision support system and integrated
into existing healthcare electronic systems. Other applica-
tions include use for wound care education and as a
patient empowerment tool to improve confidence in
wound assessment.
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APPENDIX 1: Derivation of explainability score.

The explainability score was obtained using two segmen-
tation models: segmentation level 1 (wound, periwound
perimeter, wound perimeter and background) and level
2 (using 18 different wound segmentation classes).

Segmentation level 1 provides the basic regions of the
wound image. Each one is assigned a weight based on its
closeness to the wounded tissues as shown in the image below
where the brighter the pixel on the image the closest it is to a
wound. It goes from 0.3 (background) to 1 (wounded tissue).

Segmentation level 2 provides the different regions
of the image to analyse, and each one is given a SHAP
value according to its contribution to the total outcome
of the model. If a region contributes positively to pre-
dict the final class, then the SHAP value is positive
(green). If a region contributes negatively to predict the
final class, then the SHAP value is negative (red). The
greater (or smaller) the SHAP value the more (or less)
contribution to the final class prediction. The figure
below demonstrates SHAP values associated with each
segmentation region of a wound:
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Each pixel is then associated with a SHAP value and
a value representing its closeness to the wound. We
define the following variables:

Each of these variables represent:
T is the sumof all SHAP values raised to the power of four.
fneg is the fraction of pixels with negative SHAP values

weighted by the closeness of each pixel to the wound.
ƒpos is the fraction of pixels with positive SHAP values

weighted by the closeness of each pixel to the wound.
In the end, the explainability score is determined by:

This score penalizes negative SHAP values (regions
not contribution to the output) and increases if the SHAP
values are positive, taking into consideration the close-

ness of those SHAP values to the wound. Positive SHAP
values closer to the wound are more favourable than
other SHAP values not closer to the wound. This ensures
the model is looking at the right places and that the
attention is on the wound and not in other non-related
regions.
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