

City Research Online

City, University of London Institutional Repository

Citation: Campbell, P. & Callaghan, T. (2022). Acceptability of home-based visual field testing for glaucoma monitoring: Accuracy and reliability data. Paper presented at the 24th international meeting of the Imaging and Perimetry Society, 10-13 Aug 2022, Berkeley, California..

This is the presentation version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/32071/

Link to published version:

Copyright: City Research Online aims to make research outputs of City, University of London available to a wider audience. Copyright and Moral Rights remain with the author(s) and/or copyright holders. URLs from City Research Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. City Research Online: <u>http://openaccess.city.ac.uk/</u> <u>publications@city.ac.uk</u>

Adherence, accuracy, and reliability of home-based visual field testing for glaucoma monitoring

Peter Campbell Tamsin Callaghan Pete Jones David Edgar David Crabb

Optometry and Visual Sciences School of Health Sciences

Financial disclosures

This work is supported by:

- •Glaucoma UK/INTERNATIONAL GLAUCOMA ASSOCIATION Research Award
- •An earlier project grant from Fight for Sight charity
- •UK Research and Innovation Grant

Visual Field testing

Icare[®] HOME tonometer

B C Chauhan, 1 D F Garway-Heath, 2 F J Goñi, 3 L Rossetti, 4 B Bengtsson, 5 A C Viswanathan, 2 A Heijl 5

Home visual field testing

- Tablet-based devices and head mounted displays have been developed
- They have been shown to approximate conventional SAP perimetry (HVF)

Melbourne Rapid Field Test

Vingrys, A.J., et al, 2016. Validation of a tablet as a tangent perimeter. *TVST*, *5*(4)

A. Head-mounted (i-H) type

Kimura, T et al ., 2019. Comparison of head-mounted perimeter (imo[®]) and Humphrey Field Analyzer. Clinical Ophthalmology

Eyecatcher®

- Since 2013 we have developed Eyecatcher[®]
- Designed to perform hospital grade visual field assessments at home

- "ZEST-like" thresholding algorithm, a central fixation cross, and a button press response.
- 4 x 6 grid corresponding to the central 24 locations of a standard 24-2 perimetric grid (±15° horizontal; ±9° vertical).

STUDY AIMS

 Are glaucoma patients willing to comply with a home-testing regime (adherence)?

 Do home perimeters continue to produce high quality VF data when operated at home, unsupervised (accuracy)?

- 2 x HFA (24-2 SITA Fast) per eye
- Eyecatcher VF test both eyes at home
- 2 x HFA (24-2 SITA Fast) per eye and semi-structured interview

- 20 glaucoma participants (median MD =-8.9dB)
- Adherence (percentage of tests completed) = 98.3%.

Repeatability of Eyecatcher[®] 2.0

Good concordance between individual VF locations

• Pearson Correlation; r = 0.86, P \ll 0.001

Eyecatcher[®] 2.0 Accuracy

 Strong association (p<0.0001) between
Eyecatcher (mean of 6 tests) and HFA (mean of 4 tests)

*Pearson Correlation; P < 0.001]

What we found

- Participants showed excellent adherence for home monitoring
- Data from 6 home-monitoring tests were in good agreement with 4 SAP tests conducted in clinic (accuracy).
- Home-monitoring of VFs is viable for some patients.

Jones, P.R., et al., (2021) Glaucoma home monitoring using a tablet-based visual field test (Eyecatcher) *AJO*

Eyecatcher 3.0[®]

- Inexpensive (~£400) smartglasses, connected to an ordinary android smartphone
- Designed to address our findings and practical limitations highlighted

Eyecatcher 3.0[®] VF Test

- Monocular test
- Participants press the phone screen (or clicker) when they see a flash of light

Eyecatcher 3.0[®]

Limitations

Paracentral vision was assessed

How representative are participants of wider glaucoma community?

Who would benefit from home monitoring?

Eyecatcher®

 Currently being evaluated as a home-monitoring for children with glaucoma and as a glaucoma case-finding tool in sub-Saharan Africa

Thank you

UK Research

and Innovation

Our participants

@crabblab

THE COLLEGE OF

OPTOMETRISTS

 \mathbf{O}

FIGHT

FOR SIGHT

The Eye Research Charity

Reference

Jones, P.R., et al., (2021) Glaucoma home monitoring using a tablet-based visual field test (Eyecatcher): an assessment of accuracy and adherence over 6 months. *American journal of ophthalmology*, 223, pp.42-52

www.eyecatchervision.com