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Purpose: To develop and validate a deep learning (DL) system for predicting each point on 

visual fields (VF) from disc and optical coherence tomography (OCT) imaging and derive a 

structure-function mapping.

Design: Retrospective, cross-sectional database study

Participants: 6437 patients undergoing routine care for glaucoma in three clinical sites in the 

UK.

Methods: OCT and infrared reflectance (IR) optic disc imaging was paired with the closest VF 

within 7 days. Efficient-Net B2 was used to train two single modality DL models to predict each 

of the 52 sensitivity points on the 24-2 VF pattern. A policy DL model was designed and trained to 

fuse the two model predictions.

Main Outcome Measures: Pointwise Mean Absolute Error (PMAE)

Results: A total of 5078 imaging to VF pairs were used as a held-out test set to measure the 

final performance. The improvement in PMAE with the policy model was 0.485 [0.438, 0.533] dB 

compared to the IR image of the disc alone and 0.060 [0.047, 0.073] dB compared to the OCT 

alone. The improvement with the policy fusion model was statistically significant (p < 0.0001). 

Occlusion masking shows that the DL models learned the correct structure function mapping in a 

data-driven, feature agnostic fashion.

Conclusions: The multimodal, policy DL model performed the best; it provided explainable 

maps of its confidence in fusing data from single modalities and provides a pathway for probing 

the structure-function relationship in glaucoma.

Abstract

We used a large, real-world dataset to train a multimodal interpretable deep learning method to 

predict visual field sensitivity values in patients with glaucoma.

Keywords

Diagnostic testing; Glaucoma; Perimetry; Posterior segment optical coherence tomography; Deep 
learning; Artificial intelligence; Structure-function; Perimetry; Glaucoma; Visual field; Optical 
coherence tomography

INTRODUCTION

Glaucoma is a disease of the optic nerve head (ONH) characterized by loss of retinal 

ganglion cells and their axons 1,2 This in turn can lead to progressive damage to the 

visual field (VF) with specific patterns determined by the arcuate trajectories followed 

by the axons as they enter the ONH3 In clinical practice, glaucomatous damage can 

be detected and monitored through functional and structural evaluations. VF tests are 

known for requiring strong cooperation from the patient and, as currently implemented, 

are affected by considerable test-retest variability, especially in people with advanced VF 

damage 4,5 Structural evaluations of the macular region and the ONH are often done with 

imaging devices, most commonly fundus cameras and Spectral Domain Optical Coherence 

Tomography (SD-OCT)6. The latter has the advantage of providing cross-sections of the 
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retina and of the ONH that allow precise evaluation of their layers. Structural damage from 

glaucoma often manifests itself as thinning of the retinal nerve fibre layer (RNFL, where the 

ganglion cell axons reside). Circumpapillary OCT (Cp-OCT) scans are a quick and common 

OCT scanning pattern that capture a circular OCT section around the ONH. In some devices, 

this is coupled with a two dimensional Scanning Laser Ophthalmoscopy (SLO) image of the 

ONH, often used to track eye movements during the acquisition.

Matching VF testing and structural data in glaucoma has proven problematic for several 

reasons. The first challenge is posed by the complex non-linear spatial mapping of SAP 

locations to the ONH. Although empirical maps exist 7–10 to describe average trajectories, 

these are often difficult to customize for individual patients 11–14 and become unreliable 

with increasing distance from the ONH15. Moreover, structural measurements are often 

affected by a strong measurement floor effect, whereby little change in structure is observed 

for large variations in function, especially for more advanced damage16. Previous work has 

shown the potential of machine learning techniques to model such a complex problem17. 

More recently, advancements in the field of Artificial Intelligence (AI) and deep learning 

(DL), especially for image analysis with the introduction of Convolutional Neural Networks 

(CNN), have reignited the interest around structure-function predictions in glaucoma 18–20. 

Recent attempts focused on predicting SAP sensitivity from segmented Cp-RNFL thickness 

profiles21–23. Although simple, such an approach relies on segmentations being available 

and correct. Moreover, it discards valuable information from OCT reflectivity. Finally, little 

effort has been put into predicting VF data from ONH planar pictures. Despite providing 

only limited direct quantitative data, these images are rich with contextual information, for 

example on the general shape of the ONH and the position of the blood vessels, that can be 

efficiently exploited by CNN architectures.

Our work tested the hypothesis that a hybrid DL method combining information from 

paired ONH and Cp-OCT images can not only improve the prediction of SAP sensitivity 

directly from structural data without segmentation but also lead to a fully AI-derived 

structure function mapping. We used a large clinical database acquired from routine 

glaucoma clinics to develop two separate DL sub-models, each able to provide an estimate 

of VF sensitivity from either OCT or infrared SLO images. A third policy DL model 

then combines the two predictions by evaluating feature vectors generated by the two 

sub-models. Compared to previous work21–23, our work focused on developing a model 

to predict VF sensitivity values from a combination of different imaging modalities in an 

agnostic fashion, particularly without any use of segmented OCT data.

METHODS

This study was conducted in accordance with the Declaration of Helsinki. This retrospective 

database study was approved by the Western Institutional Review Board and deemed to 

be non-human subjects research as only de-identified clinical and imaging data were used. 

A large database of anonymized clinical data was curated from three regionally different 

National Health Service glaucoma clinics in the United Kingdom. All data were recorded 

into an Electronic Medical Record (EMR) platform (Medisoft, v6, Leeds, UK). All VFs 

were done with a Humphrey Field Analyzer (HFA, Zeiss Meditec, Dublin, CA, USA) 
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was used to generate VFs. We included all Humphrey visual fields (HVF) performed with 

a Swedish interactive threshold algorithm (SITA) Standard/Fast or Full-threshold strategy 

using a 24-2 VF pattern with a false positive rate ≤ 15%, and that could be matched with a 

Cp-OCT scan (see later). We decided not to take false negative rates into account because 

of their strong relationship with the level of glaucoma damage24 and because, together with 

fixation losses, they have been shown to be poor predictors of test reliability25. A flowchart 

of the selection steps is shown in Figure 1. Particular care was taken to exclude eyes with 

VF defects that could likely be attributed to neurological damage. To this aim, we applied 

a detection method to identify vertical asymmetries in VF defects of each eye and the 

correspondence of the defect between overlapping regions of the VF from the two eyes, as 

these are typical features of VF defects from post-chiasmatic lesions (details provided in 

Supplemental Figure 1; available at http://www.aaojournal.org). Additionally, we carefully 

excluded patients that could have retinal diseases, by identifying patients who received 

intravitreal injections or were labeled in the EMR as having any other retinal or ocular 

diseases (Figure 1).

OCT scan patterns of the optic nerve from Heidelberg Spectralis (either OCT-1 or OCT-2) 

were identified in the database. Each HVF was linked to OCT scans performed within 7 

days. For the training set, we retained all possible pairs, because any variation in the data 

within such a short time interval could be attributed to test-retest variability; this effectively 

served as a form of data augmentation. For the validation and test sets, we only retained 

pairs with the OCT scan closest to the HVF, within the selected time-frame. The infrared 

reflectance (IR) image of the optic disc and the circular B-scan set at 3.5 mm were then 

preprocessed. For the disc IR image, the manually selected central point of the optic disc 

during acquisition by the photographer was used to crop a 260x260 pixel image at a native 

resolution as an eight-bit grayscale image. The circular OCT B-scan was resized to a 1:1 

aspect ratio and resized to 260x260 as an eight-bit grayscale image. Each of the paired 

HVFs was collapsed to a one-dimensional 54 element vector representing each sensitivity 

point on the 24-2 VF. Two blind spot locations (X = 15; Y = +/ 3 degrees for a right eye) 

were discarded from the 54 dimensional vector at the time of evaluation. The VF sensitivity 

values were clipped between 0 and 40 dB and normalized to be between 0 and 1. The upper 

bound was chosen as it is commonly considered the highest plausible dB value in visually 

healthy subjects in standard testing conditions26. The imaging data was normalized to be 

between 0 and 1. The data were partitioned into 60%, 20%, and 20% for training, validation 

and held-out test sets at the patient level, respectively.

Two separate DL models were then trained using an EfficientNet B2 architecture 27, one 

for the disc and one for the OCT. EfficientNet is designed for a specific input resolution 

and optimized by a scaling method that uniformly scales each dimension of depth, width 

and resolution with a fixed set of coefficients. The input resolution for EfficientNet B2 

is 260x260 pixels. EfficientNet has been shown to achieve better performance compared 

to other well-known CNN architectures such as ResNet and DenseNet with a smaller 

amount of parameters27. For comparison, we report the prediction performance of our 

model with different architectures in Supplemental Table 2 and 3 (available at http://

www.aaojournal.org). The batch size was set to 32, NAdam was used as the optimizer28, 

and the initial learning-rate was set to 5x10−3. The last layer of the model had 54 nodes 
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corresponding to the 54 VF sensitivity points on the 24-2. Our dataset was imbalanced; 

the majority of VF sensitivity values were around 30 dB, which caused the model to 

fail to learn patterns of advanced VF loss. To overcome this limitation, we employed the 

sensitivity-weighted mean square error for the loss function

mean((1/(1 + α × yTrue)) × (yTrue − yPred)2)

where yTrue is 1 × 54 true sensitivities and yPred is 1 × 54 predicted sensitivities and 

the mean was calculated over samples in the same training batch. In this case α is a 

hyperparameter that controls how strongly the model weighs lower sensitivities. We used α 
= 2 for our training. The MAE reported for the test dataset was calculated without applying 

any sensitivity-weights.

A policy deep learning model was then constructed to take the feature maps from both 

models and combine using a 1x1 convolutional layer after concatenation of the feature maps. 

For each training sample, we generated our target of a binary 54 element vector where each 

location was labeled as 0 for the disc prediction being closer to the true (observed) HVF and 

1 for OCT prediction being closer to true (observed) HVF. The output of the policy network 

was a 54 dimensional vector where each element was a floating point value from 0 to 1, 

where 0 represents an absolute preference for the disc model prediction and 1 represents an 

absolute preference for the OCT model prediction at each VF location. Since this value was 

generated by a sigmoid function, we chose 0.5 as the threshold to decide between adopting 

the prediction from the disc or OCT model. Because the policy network used a final fully 

connected layer, it was able to learn the relevant spatial patterns and correlations between 

the feature maps of the two base models.. We used the same training settings (learning rate, 

optimizer, and batch size) as for the base models, with a weighted binary cross-entropy loss 

function. el. A network diagram of the complete end-to-end multimodal DLdeep learning 

model is shown in Supplemental Figure 2 (available at http://www.aaojournal.org), along 

with a detailed description of the loss function for the policy network.

To visualize the trained model predictions, a mean-occlusion mask was iteratively applied to 

each pixel position and the change in the predicted VF sensitivities was quantified. Videos of 

the occlusion affecting the HVF were generated by iterating the occlusion over each position 

as a separate frame. The heatmap describing magnitude of each difference was projected 

back onto the 24-2 to determine the occlusion locations that led to the greatest change in the 

predicted HVF (Supplemental Clips 1 and 2; available at http://www.aaojournal.org). The 

final performance of the disc, OCT, and multimodal policy DL models was assessed in the 

final held-out test set at the end of the study. Pointwise mean absolute error (PMAE) and 

standard deviation (STD) were assessed by taking the mean of the absolute difference for 

each sensitivity point between the predicted VF and the true clinical VF.

RESULTS

Clinical data, imaging data, and HVF data were extracted for a total of 24,248 patients. 

After applying inclusion and exclusion criteria, the total number of eligible study patients 

was 6,437 (11,025 eyes). A flow chart of the patient selection process is shown in Figure 
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1. The training, validation, and held-out test set contained 11,417 HVF-OCT pairs for 3,725 

patients, 4,845 pairs for 1,323 patients, and 5,078 pairs for 1,389 patients, respectively. Note 

that each VF could be paired with multiple OCTs in the training set, but only with the 

closest OCT for the validation and test sets. Descriptive statistics for the three mutually 

exclusive sets of patients are shown in Table 1.

The training curves for the three DL models are provided in Supplemental Figure 3 

(available at http://www.aaojournal.org). The final PMAE of the DL model using the IR 

SLO image of the disc alone was 3.62 dB (95% CI: 3.54 to 3.68 dB). The PMAE of the 

single modality DL model using the OCT alone was slightly better at 3.19 dB (95% CI: 3.13 

to 3.25 dB). The best performing model was the policy fusion DL model that combined the 

predictions from the OCT and disc sub-models with a PMAE of 3.13 dB (95% CI: 3.07 to 

3.19 dB). The details are shown in Table S4. When tested with a paired t-test, all pairwise 

comparisons of PMAE were highly statistically significant (all p < 0.000001). The paired 

difference in PMAE between the OCT sub-model and the policy fusion DL model was 

0.060 dB (95% CI: 0.047 to 0.073 dB). The paired difference in PMAE between the disc 

sub-model and the policy fusion DL model was 0.485 [0.438, 0.533] dB. Clinical examples 

of the policy DL model are shown in Figure 2 with interpretability plots of the policy model 

displaying the confidence in choosing the model output from disc or OCT. Failure examples 

where the model predictions deviated from the clinical HVF are shown in Supplemental 

Figure 4 (available at http://www.aaojournal.org).

To fairly assess the final model performance across the full range of sensitivities, the 

pointwise error was plotted for each sensitivity threshold from 0 to 36 dB in the held-

out test set (Figure 3). In order to probe the structure-function mapping learned by 

the model, a mean-occlusion mask was iteratively applied to each pixel position on the 

disc and OCT, thereby measuring the effect on HVF predictions. Video clips of the 

perturbation experiments are shown in Supplemental Clips 1 and 2 (available at http://

www.aaojournal.org) for the disc and OCT respectively for one example patient with 

apparently healthy disc/OCT and HVF. A remapping of the areas leading to the largest 

magnitude change for both models is shown as heatmaps in Figure 4B (for the disc SLO), 

Figure 4C (for the OCT), and Figure 4D (for the Policy). The structure-function mapping 

for the whole held-out test set is reported in Figure 5 for the Cp-RNFL. The map was 

built by plotting the distribution of the circumpapillary angles at which the highest peak 

of the heat-map was located, in polar coordinates. The map was also compared with 

previously reported structure-function maps based on anatomical data 9,10,14,15,29. Because 

high myopia can negatively affect imaging and, therefore, predictions, we identified 21 

HVF-imaging pairs from 14 eyes labeled as high myopia in the EMR. As expected, the 

performance was generally worse, but confirmed the improvement brought by the policy 

network (Supplementary material).

We demonstrated that the policy network implicitly optimizes the multimodal architecture 

accuracy, by explicitly learning to choose between single modality networks. However, it is 

not clear on what basis the policy network makes such a choice. The observation that the 

preference of the policy network appeared to be influenced by the quality of each image 

raises an interesting question: is the policy choice linked with the actual superiority on the 
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prediction performance of the two models? To answer this question, we added several levels 

of noise to either SLO or OCT to degrade its performance on one of these models, and 

then observed how that affected the policy choice. As the level of noise on SLO increased 

and as the prediction performance from the SLO network degraded (PMAE: from 3.62 to 

4.61), the policy network adopted the prediction from OCT model more (Policy choice: 

from 63.6% to 67.7%). On the contrary, it trusted the prediction from the SLO model more 

(Policy choice: 63.6% to 50.4%) as the level of noise on OCT increased and the prediction 

performance from OCT network degraded (PMAE: from 3.19 to 8.84). Throughout the 

experiments, our policy network kept a stable performance (PMAE: from 3.13 to 3.16 with 

noise on SLO, PMAE: from 3.16 to 3.23 with noise on OCT). The detailed results are shown 

in Supplemental Figure 5 (available at http://www.aaojournal.org).

DISCUSSION

Our work demonstrates an end-to-end DL approach for accurately predicting pointwise 

24-2 HVF threshold sensitivities from the combination of the IR SLO ONH image and the 

Cp-OCT B-scan image. In addition, we found that the structure-function relationship that 

was learned directly from the imaging data in a fully agnostic, data-driven manner falls 

within prior manually derived efforts. In the present study we aimed to develop and validate 

a multi-modal deep learning model, and we have demonstrated differences in model results 

with statistical significance. Demonstrating clinically meaningful improvements with this 

model would be the subject of a different study design.

Explainability

The whole process simultaneously provides three distinct outputs (prediction from OCT, 

prediction from SLO of the disc, and policy-based fusion of the two results), with each 

producing directly interpretable results (HVF sensitivity maps). Importantly, the policy 

model is able to selectively choose between predictions from the two sub-models, thereby 

improving, for example, the spatial localization of deep defects (Figure 2B). The preference 

of the policy network appeared to be influenced by the quality of each image. Therefore, 

the policy model seems adept at working with real-world data, which might include a 

preponderance of artifactual image quality in OCT/SLO scans. The policy network still has 

the potential to fail if both the SLO and the OCT image are affected by artifacts or poor 

quality. We explored these aspects more in detail in the Supplementary Material (available 

at http://www.aaojournal.org) by simulating different amounts of noise for either the OCT or 

the disc image.

Structure-Function Mapping

Our structure-function mapping was agnostically learned by the two sub-models from 

the data alone. Remarkably, the OCT-based mapping yielded results in agreement with 

other mapping schemes based on anatomical features of the RNFL bundles9,10,14,15,29. In 

Figure 5, we represent the structure-function mapping for the Cp-OCT scans in the test 

set by plotting the angle at which the peak of each heatmap (see Figure 4 C) was found 

around the ONH. Our technique indicated some spread in the distribution of the peaks, 

suggesting adaptive mapping based on individual features of the Cp-RNFL scans. In many 
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of the locations, this matched the inter-individual variability observed by Jansonius et al.29 

Inevitably, some of the variability is due to measurement noise, as evident by the larger 

spread in the distribution for the temporal VF locations, where perimetric defects are less 

commonly detected 30,31. One notable difference is the mapping of the macular locations, 

which in our model are shifted more towards the superior and inferior poles of the ONH 

(Figure 5) compared with Jansonius et al.29 This is another important line of evidence to 

support the novelty of our technique because Jansonius et al.29 did not account for the retinal 

ganglion cell displacement in the macular region 32,33 A similar difference was recently 

reported by Turpin and McKendrick14, whose model is also reported in Figure 5 as a 

comparison.

From the example in Figure 4B, the heatmap for the SLO predictions is mostly focused on 

the neuroretinal rim for the inferior hemifield; however, it appears more widespread for the 

location in the superior hemifield. Similarly, the heatmap produced for the Cp-OCT scans 

mainly focused on the RNFL (example in Figure 4C). This suggests that our technique 

learns the image features relevant for prediction without the need for segmentation, which 

is noteworthy. The disc heatmap commonly indicates some relevance of image features 

beyond the optic disc suggesting a role of the reflectivity patterns induced by the loss of 

RNFL34. In the heatmaps, the most frequent location of the blind spot (X = 15; Y = −3 

degrees) was rendered inactive during the training, meaning that the network learned that 

the sensitivity at this point could not be predicted by any information present in the image. 

This is inconsequential for our results (both blind spot locations were excluded from our 

analyses) but provided us with the chance of confirming that the models were able to learn 

meaningful spatial features from the data.

Comparison with Previous Work

Others have used DL methods to predict global VF metrics 35,36 but few have attempted 

pointwise predictions of the VF. Park et al.19 and Hashimoto et al.18 used fully segmented 

OCT thickness maps. Mariottoni et al. also predicted pointwise VF sensitivities agnostically 

from peripapillary OCT RNFL thickness profiles21. However, such an approach not only 

requires an accurate segmentation to be available in the first place, but also disregards 

other information contained in the OCT image that might inform prediction, such as the 

reflectivity of the RNFL34,37. Fewer attempts have instead been made to utilize optic disc 

images to predict VF data.38 Interestingly, our data indicate the existence of additional 

information gained by combining the two imaging modalities. The error profile of our 

prediction stratified by sensitivity was similar to previous publications,21 in that the error 

greatly increased below 15 dB. This could be linked to the high level of VF noise at low 

sensitivities,4, which imposes a lower bound on the achievable predictive performance, and 

by the previously mentioned floor effect in the structural data16. Such a feature is clearly 

demonstrated by the positive bias at lower sensitivities (Figure 3). Notably, non-linear 

methods have proven more successful than linear models at overcoming this issue 17,18,21,39, 

but the problem persists in all these attempts.
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Practical Implications and Future Directions

VF estimation from imaging allows the conversion of the information contained in 

OCT/SLO structural data into a more clinically meaningful format. For example, it could 

allow for structural data to be seamlessly integrated into analyses of VF progression40 

or into the VF test itself41–43 This could expedite perimetry or reduce between-visit 

measurement variability when following a patient over time. The latter is appealing because 

this might improve the power to detect disease progression in a trial, and this is the subject 

of our future work.

The retrospective nature of the database introduces potential bias and confounders. In 

addition, the database was derived from a single region and may reflect regional differences 

in patient population and/or practice patterns. We plan to prospectively evaluate and validate 

this DLdeep learning policy model in a clinical trial setting in the future to determine 

its generalizability. Moreover, our evaluation of the performance was based on MAE 

for comparison with other studies. However, this might not be the best metric to assess 

performance for clinical applications. Future developments will seek to build a normative 

dataset for our predictions, so that the performance in detecting VF defects (i.e. significant 

deviation from normality) could be assessed. By their nature, DL approaches behave as 

“black-boxes”, and our method is no exception. However, we have made a conscious effort 

to make our results more interpretable by using a policy model and occlusion experiments.

Moreover, as with many other ML and DL strategies, our method is specific to one condition 

(i.e. glaucoma), one VF pattern (24-2), and one imaging modality (SLO/Cp-OCT obtained 

with a Spectralis SD-OCT) and would not directly generalize to different contexts. One 

important aspect is that we did not perform any quality assessment of the images. This 

choice was partially due to the impossibility of establishing simple clear-cut parameters of 

image quality other than visual inspection. Moreover, one of the goals with our policy-based 

fusion network was to implement a strategy to maximally exploit the available information 

from two imaging resources, including cases when either one was noisy or of poor quality. 

Finally, this allowed us to test our algorithm on images that would be reflective of those 

acquired in standard clinical settings.

In our work we focussed on modeling HVF sensitivity and not any derived metric, such as 

Pattern Deviation (PD), Total Deviation (TD) or related probability maps. Our choice was 

partially influenced by the lack of TD and PD values in our dataset. However, modeling 

HVF sensitivity allowed us to use a metric that was more directly related to image features, 

better capturing the effect of factors like eccentricity and aging. We believe this had 

an important impact on our structure-function mapping and on the performance of the 

algorithm. Moreover, predicting sensitivity values would allow us to calculate all derived 

metrics, but the opposite would not be possible. This makes our choice the most flexible for 

future applications. Obviously, calculating derived metric would require a normative dataset 

of imaging-predicted HVFs, not yet available to us. However, we show a proof of concept by 

calculating the TD and PD probability maps for a few examples using the functions available 

in the visualFields package for R44 It is important to note that these are only illustrative 

examples. Moreover, TD and PD maps derived a posteriori from predicted sensitivities 
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might not necessarily be consistent with the original and could differ from the output of an 

algorithm trained to predict the same maps directly.

In conclusion, we demonstrate the ability of DL models to predict VF pointwise sensitivities 

agnostically from Cp-OCT scans and IR SLO images of the disc, further improving 

predictions with a policy-based fusion of the two results. The DL models generate structure-

function maps compatible with established anatomical features and are able to capture the 

functional consequence of relevant structural changes in glaucoma. Ubiquitously obtained 

IR/OCT data may contain information beyond conventional segmentation that could be used 

to better determine visual function and detect progression in patients with glaucoma.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations and Acronyms:

AI artificial intelligence

CI confidence interval

CNN convolutional neural networks

Cp-OCT circumpapillary optical coherence tomography

Cp-RNFL circumpapillary retinal nerve fiber layer

DL deep learning

F female

FP false positive

FT full threshold

HFA Humphrey Field Analyzer

HVF Humphrey visual field

I inferior

IR infrared reflectance
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IVT intravitreal

M male

MAE mean absolute error

MD mean deviation

N nasal

OCT optical coherence tomography

ONH optic nerve head

PMAE pointwise mean absolute error

PSD pattern standard deviation

RNFL retinal nerve fiber layer

S superior

SAP standard automated perimetry

SD-OCT spectral domain optical coherence tomography

SITA Swedish interactive threshold algorithm

SLO scanning laser ophthalmoscopy

STD standard deviation

T temporal

VF visual field
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Figure 1. 
Flowchart of the selection process from the full dataset of VF tests. FP = false positive; FT 

= full-threshold; IVT = intravitreal; SITA = Swedish interactive threshold algorithm; VF = 

visual field.
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Figure 2. 
Prediction examples from the test set. The top of each panel reports the disc and OCT 

images used for predictions alongside the ground- truth HVF. The bottom of each panel 

shows, in order, the predictions from the two sub-models, the choice score of the policy 

network for each location, and the final prediction of the policy network. A, Both sub-

models predict a similar location of the defect, but the OCT to HVF is more accurate in 

predicting the magnitude of glaucoma damage; the policy network correctly selects this 

prediction for the superior hemifield. B, the prediction from either individual sub-model is 
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wrong, showing either little damage or diffused advanced loss; however, the policy network 

correctly selects predictions for each location to obtain a result very close to the ground 

truth, better characterizing the spared paracentral VF. HVF = Humphrey visual field; I = 

inferior; N = nasal; OCT = optical coherence tomography;

S = superior; T = temporal.
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Figure 3. 
A,) Predictions from the two sub-models and the policy network for each level of sensitivity. 

The diagonal line indicates perfect agreement. B,) Relationship between the prediction Mean 

Absolute Error (MAE) from the two sub-models and the final average choice from the policy 

network. Higher MAE in the disc to HVF model is generally associated with a preference 

for the OCT to HVF model and vice-versa. The diagonal line indicates equivalent MAE. 

HVF = Humphrey visual field; MAE = mean absolute error; OCT = optical coherence 

tomography.
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Figure 4. 
A,) Process for generating heatmaps for the disc SLO and OCT models. We first took the 

difference in prediction between ‘with’ and ‘without’ occlusion at each occlusion location 

(Step1), computed the distribution of magnitude of the difference over occlusion locations 

(Step2), and projected the distribution back to 2 dimensional image space to obtain a 

heatmap (Step3). According to the location of the perturbation in the predicted VF, the 

magnitude of changes reflects where the network focuses on during the predictions. B, 

Heatmap for one patient-generated example based on our disc SLO. C, Heatmap for one 
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patient-generated example based on the OCT model. The perturbation processes of the 

corresponding example patient are also shown in Supplemental Clips 1 and 2 (available at 

http://www.aaojournal.org). D, Heatmap for one patient-generated example from the policy 

network obtained by occluding the disc SLO. E, Heatmap for one patient-generated example 

from the policy network obtained by occluding the OCT image. OCT = optical coherence 

tomography;

SLO = scanning laser ophthalmoscopy; VF = visual field.
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Figure 5. 
Structure-function mapping for the OCT to HVF model generated from the heatmaps for the 

test set for each testing point in the 24-2 VF pattern shown on polar coordinates. The map 

was built by plotting the distribution of the circumpapillary angles at which the highest peak 

of the heatmap was located. Other mapping schemes are reported for comparison. HVF = 

Humphrey visual field; I = inferior; N = nasal; OCT = optical coherence tomography; S = 

superior; T = temporal.
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Table 1.

Descriptive Statistics of the Selected Sample. Continuous variables are reported as median [interquartile 

range].

Training set Test set Validation set

# Patients 4,786 1,585 1,541

# Eyes 8,883 2,902 2,840

# Visual fields 22,866 7,370 7,411

# OCT scans 21,963 7,042 7,110

Quality index (dB) 25 [22, 28] 25 [22, 27] 25 [22, 27.25]

MD (dB) −1.71 [−4.39, −0.23] −1.65 [−4.27, −0.18] −1.63 [−4.25, −0.19]

PSD (dB) 2.07 [1.57, 4.44] 2.06 [1.57, 4.24] 2.1 [1.56, 4.34]

FP (%) 1 [0, 4] 1 [0, 4] 1 [0, 5]

Sex (F / M) 2,492 / 2,294 791 / 794 743 / 798

Baseline age (years) 71 [62, 78] 71 [62, 79] 70 [62, 78]

Average IOP (mmHg) 17.5 [15, 20.25] 17.6 [15, 20.2] 17.33 [14.83, 20]

Cataract surgery (Yes / No) 989 / 7,894 314 / 2,588 324 / 2,516

F = female; FP = false positive; IOP = intraocular pressure; M = male; MD = mean deviation; OCT = optical coherence tomography; PSD = pattern 
standard deviation.
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