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Abstract

Automatic understanding and analysis of groups has attracted increasing at-
tention in the vision and multimedia communities in recent years. However,
little attention has been paid to the automatic analysis of the non-verbal be-
haviors and how this can be utilized for analysis of group membership, i.e.,
recognizing which group each individual is part of. This paper presents a
novel Support Vector Machine (SVM) based Deep Specific Recognition Model
(DeepSRM) that is learned based on a generic recognition model. The generic
recognition model refers to the model trained with data across different condi-
tions, i.e., when people are watching movies of different types. Although the
generic recognition model can provide a baseline for the recognition model
trained for each specific condition, the different behaviors people exhibit in
different conditions limit the recognition performance of the generic model.
Therefore, the specific recognition model is proposed for each condition sep-
arately and built on top of the generic recognition model. A number of
experiments are conducted using a database aiming to study group analysis
while each group (i.e., four participants together) were watching a number
of long movie segments. Our experimental results show that the proposed
deep specific recognition model (44%) outperforms the generic recognition
model (26%). The recognition of group membership also indicates that the
non-verbal behaviors of individuals within a group share commonalities.

Keywords: Non-verbal behavior analysis, Group membership, Automatic
group analysis, Deep learning
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1. INTRODUCTION

Automatic analysis of a group of people has received much attention in
computer vision community for different research purposes. Gallagher and
Chen (2009) propose a framework to predict ages and genders of individu-
als in group images. Ibrahim et al. (2015) focus on group activity recog-
nition. More recently, other research fields, including emotion recognition,
have also started to shift their focus from individual to group settings Mou
et al. (2016a, 2015). Research works focusing on the analysis of social di-
mensions, such as engagement and rapport in group settings have also been
reported in Leite et al. (2015) and Hagad et al. (2011). Zhang and Hung
(2016) and Vascon et al. (2016) propose frameworks for F-formation detec-
tion in group conversations. Most of the aforementioned works analyze what
is happening within the group. Only recently, works on automatic analysis
of the relationship between the members of different groups have emerged.
Abdon Miranda-Correa et al. (2017) predict whether a person is being alone
or in a group utilizing neuro-physiological signals.

In this paper we investigate the prediction of group membership for each
individual, using non-verbal behaviors, when they are part of a group of four
participants sitting together and watching four movies. We form four groups,
each of which contains four participants, with no overlaps between the group
members (sixteen participants in total). Even though they are performing
the same task, individuals in different groups may behave very distinctly due
to differences in group composition and dynamics. According to research in
cognitive and behavioral science Barsade (2002), individuals in a particular
group tend to affect the behaviors of each other, i.e., mimic one another or
exhibit similarities in non-verbal behaviors. Such shared behaviors within the
group, and possible differences between different groups, allow the automatic
recognition of group membership Mou et al. (2016b).

Towards this direction, we propose a novel approach to the group mem-
bership recognition problem by introducing a novel specific recognition model
that is built on the top of a generic recognition model. In the proposed frame-
work the data at hand consists of recordings (videos) of different groups
watching different types of movies. We define four different conditions as
people are watching four different types of movies, namely, “horror”, “com-
edy”, “action”, and “adventure”, as shown in Table 1. The generic recogni-

2

Image and Vision Computing Journal, Elsevier, 2018, accepted for publication.   
The published paper can be found at https://doi.org/10.1016/j.imavis.2018.09.005 
© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license, 
http://creativecommons.org/licenses/by-nc-nd/4.0/



Table 1: The stimuli video clips extracted from different films that are used in the paper.
The video IDs are stated in parentheses and are used to refer to the videos in the rest of
the paper; the corresponding conditions and video durations (in minutes) are also listed.

Movie Condition Duration
Descent (N1) Horror 23:35
Mr. Bean (P1) Comedy 18:43
Batman the Dark Knight (B1) Action 23:30
Up (U1) Adventure 14:06

tion model, that was proposed in our previous work Mou et al. (2017), allows
the group membership recognition across all different conditions. However,
since group members may behave distinctly in different conditions (e.g., while
watching horror movies vs. comedies), the performance of generic recognition
model may be significantly limited. Addressing the membership recognition
problem with an independent recognition model, i.e., using solely the data
from the same condition, becomes very challenging due to the limited num-
ber of samples available from each video. Moreover, when the group members
are in different conditions, they may react differently; however, they are still
part of the same setting performing the same task (i.e., sitting in front of
the screen watching movies), which allows them to share some common be-
havioral characteristics. In light of these, we hypothesize that the generic
recognition model can provide a useful baseline for the optimization of the
specific recognition model. Therefore, we propose a specific recognition model
for each condition specifically, but we learn it on the top of the generic recog-
nition model.

This paper is an extended version of our previous work Mou et al. (2017).
In Mou et al. (2017), we proposed a two-phase learning framework to solve
the group membership recognition problem, where we first trained a generic
recognition model using all videos across all conditions and, then optimized
the specific recognition model for each specific condition based on the opti-
mization results obtained from the generic recognition model. Different from
the aforementioned paper, in this work we unify the generic recognition model
and the specific recognition model under a single deep framework. Specifi-
cally, in this work we optimize the generic recognition model and the specific
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recognition model jointly. In this way, the framework is converted to an end-
to-end structure, which is easier for both training and testing. Furthermore,
we conduct new experiments with a larger dataset. In the rest of the paper,
we refer to the specific recognition model (as presented in our previous work
Mou et al. (2017)) as the two-phase Specific Recognition Model (SRM) and
to the proposed Deep Specific Recognition Model as the DeepSRM.

The rest of the paper is organized as follows. The related works are
reviewed in Section 2; the proposed framework is presented in Section 3;
the experiments and results are presented and discussed in Section 4; and
conclusions and future work are discussed in Section 5.

2. Related Work

Analysis of group-related phenomena has been studied for a long time
across various disciplines, such as psychology and computer science Goette
et al. (2006); Smith et al. (2007); Allen et al. (2017); Sanchez-Cortes et al.
(2012); Girard et al. (2017). It has applications in very diverse areas, such as
human-robot interaction Leite et al. (2015), security Saxena et al. (2008), and
marketing analysis Eberl (2010). In these works group is defined as consisting
of at least two members. However, at times dyads is separated as one category
as dyads often form and dissolve more easily than groups, and people show
different behaviors and experience different emotions in dyads than in groups
Reiter-Palmon et al. (2017). Group dynamics encompasses those behaviors
and psychological processes that occur within a group (intragroup dynamics)
or between groups (intergroup dynamics) Lehmann-Willenbrock et al. (2017).
Therefore, analysis in group settings is more difficult than that in individual
settings due to the complex dynamics.

We will review the literature of group analysis from data, features and
methodologies. In addition, representative works on group analysis using
non-verbal cues are illustrated in Table 2.

Data for group analysis. Sanchez-Cortes et al. (2012) collected the
Emergent LEAder corpus (ELEA) database to analyze the emergent leader-
ship phenomenon, where the participants were asked to participate in a win-
ter survival task. The dataset consists of 40 meetings (i.e., 28 four-person
meetings and 12 three-person meetings). All groups were newly formed,
namely, composed of unacquainted people in each group. Leite et al. (2015)
collected a dataset for engagement analysis in group settings, where three
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Table 2: Representative works on group analysis.
Reference Analyzed

Phenom-
ena

Individual
or group
level

Number of
images or
frames

Data
Type

Data Source Features

Celiktutan
et al. (2017)

Engagement
& person-
ality

Individual
level

15,300
seconds

Dynamic
videos

Experiments Nonverbal-
audio &
visual &
physio-
logical
signals

Girard et al.
(2017)

Facial
action unit

Individual
level

172,800 Dynamic
videos

Experiments Face
features

Mou et al.
(2016b,a)

Emotion Individual
level

144,000 Dynamic
videos

Experiments Face &
body

Dhall et al.
(2015a),
Huang et al.
(2015)

Emotion Group
level

3,134 Static
images

Web Face &
scene

Dhall et al.
(2015b)

Emotion Group
level

504 Static
images

Web Face &
scene

Mou et al.
(2015)

Emotion Group
level

250 Static
images

Web Face,
body &
context

Leite et al.
(2015)

Engagement Individual
level

6,348
seconds

Dynamic
videos

Experiments Audio,
face,
body &
context

Gallagher
and Chen
(2009)

Age &
gender

Individual
level

5,080 Static
images

Web Context

Hung and
Gatica-Perez
(2010)

Group
cohesion

Group
level

14,400
seconds

Dynamic
videos

Experiments Audio &
visual
activity

Our work Group
Member-
ship

Group
level

1,792,575
(71,703
seconds)

Dynamic
videos

Experiments Body
features
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children were interacting with two robots. Seven groups of data were col-
lected in total and the average interaction time of each group is 4 minutes
and 36 seconds. Celiktutan et al. (2017) collected a Multimodal Human-
Human-Robot Interactions (MHHRI) dataset for engagement and personal-
ity investigation in human-human dyadic interaction and human-robot inter-
actions (two people interact with a humanoid robot). 18 people participated
in the recording and 12 independent interaction sessions were recorded with
different sensors, e.g., first-vision cameras, Kinet depth sensors and physio-
logical sensors, which resulted in around 4 hours 15 minutes recordings. For
automatic group emotion analysis, the first dataset was HAPPEI collected
by Dhall et al. (2015a) from Flickr by using key words that describe groups
and events. 2,886 images were collected and all images were annotated with
a group-level happy intensity. In addition, 8,500 faces were manually anno-
tated for face level happiness intensity by 4 human annotators. After that,
Dhall et al. (2015b) collected a GAFF database, which extended the HAPPEI
database from positive affect only Dhall et al. (2015a) to other emotion cate-
gories (i.e., positive, neutral and negative) of a group of people. In a further
step, Mou et al. (2015) collected a new database, i.e., MultiEmoVA, which
were annotated along both arousal (i.e., high, medium and low) and valence
(i.e., positive, neutral and negative) dimension.

Features for group analysis. Non-verbal behaviors are very impor-
tant cues for group analysis Barsade (2002). The most frequently used
non-verbal behaviors include gaze patterns, body motion, head movements,
and facial expressions Sanchez-Cortes et al. (2012); Avci and Aran (2014).
Sanchez-Cortes et al. (2012) used nonverbal behaviors (both audio and vi-
sual modalities) to automatically identify emergent leaders in small group
scenarios. Avci and Aran (2014) studied the relationship of a group’s per-
formance with the interaction between group members and the individuals’
personality traits using the audio and visual nonverbal behaviors. Hung and
Gatica-Perez (2010) did group cohesion estimation by utilizing audio, visual,
and audio-visual cues, such as activity of each person and motion informa-
tion. Dhall et al. (2015b) and Mou et al. (2015) utilized nonverbal features
including face, body and context features to analyze the group-level affect
displayed by a group of people on the image. Mou et al. (2016b) analyzed
the affect of individuals and group membership by using the face and body
cues and reported that body behaviors showed better performance for group
membership recognition. Consequently, in this work we focus on using body
behaviors for group membership analysis and recognition.
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Methodologies for group analysis. Group analysis can be reviewed
under two different ways, i.e., individual-level analysis and group-level anal-
ysis. Individual-level analysis refers to behavior analysis of each individual
member of the group, while group-level analysis refers to the collective anal-
ysis of the whole group. An important issue for analysis in group settings
is whether the analysis should be at group-level or individual level Reiter-
Palmon et al. (2017). Trust is typically in individual-level Reiter-Palmon
et al. (2017), while cohesion is in group-level. However, emotion analysis can
be both in individual-level Sariyanidi et al. (2015) and group-level Barsade
and Gibson (1998). In terms of individual-level analysis, Gallagher and Chen
(2009) proposed a framework to recognize the attributes of individuals from
group images, i.e., age and gender. Mou et al. (2016b) proposed a framework
for individual affect analysis in group videos along arousal and valence. Leite
et al. (2015) studied the individual engagement estimation in group settings
in the context of human-robot interaction. Celiktutan et al. (2017) investi-
gated the individual personality and engagement in dyadic interaction and
human-robot interactions. Hagad et al. (2011) automatically predicted the
individual rapport in dyadic interactions based on posture and congruence.
In light of group-level analysis, a large number of works focus on group-
level analysis. For example, Salas et al. (2015) studied group cohesion and
Smith et al. (2007) studied group emotion from a social psychological per-
spective. Pioneering works on the study of automatic group-level emotion
analyzed the overall affect displayed by the whole group Dhall et al. (2012,
2015a,b); Mou et al. (2015); Huang et al. (2015). In addition, some previ-
ous works on group-level analysis focused on group activity recognition Lan
et al. (2012a,b). However, to the best of our knowledge, there are no existing
works focusing on automatic recognition of group membership.

3. Proposed framework

In this work, we propose a novel framework for the recognition of group
membership in group videos by analyzing body behaviors. The framework is
illustrated in Fig. 1. We present a novel deep learning based specific recog-
nition model built upon a generic recognition model. The Deep Specific
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Recognition Model (DeepSRM) is shown in Eq. 1.

Pdeep-specific : min
w0,b0

wj ,bj ,j=1,...,4

λ

2
‖w0‖2 + +

4∑
j=1

(µj
2
‖wj‖2 +

νj
2
‖wj −w0‖2

)

+
1

`

∑̀
i=1

L(w0, b0; (xi, zi)) +
1

`t

4∑
j=1

 ∑
(xit,zit)∈Xt

L(wj, bj; (xit, zit))

 ,

(1)

we denote this training set as X = {(xi, zi), i = 1, . . . , `}, where xi denotes
the feature representation of the i-th training sample and zi, the correspond-
ing ground truth label, being equal to +1 if the sample belongs to the re-
spective class, or −1 otherwise. Where Xt = {(xit, zit), it = 1, . . . , `t} is a
subset of the original training set, w0, b0, wj, bj are the optimization pa-
rameters (for the generic and the j-th specific model, respectively), λ, µj,
and νj, j = 1, . . . , 4 are regularization hyper-parameters, and L denotes the
hinge-loss.

The generic recognition model uses all data across all conditions (i.e.,
“horror”, “comedy”, “action”, and “adventure”), shown as the generic SVM
layer in Fig. 1. The details of the generic recognition model is illustrated in
section 3.1. The specific recognition model is specific to one specific condition,
i.e., “horror”, “comedy”, “action”, or “adventure”, which (1) utilizes data
from only one specific condition, (2) is built based on the generic recognition
model and (3) is trained jointly with the generic recognition model. The de-
tails of the specific recognition model is illustrated in section 3.2. As the data
across different conditions are all under the same scenario, that is, sitting in
front of the screen watching movies, we hypothesize that the two recognition
models share some common knowledge and therefore the generic recognition
model can provide a baseline for optimizing the specific recognition model.

In our previous work Mou et al. (2017), the generic recognition model and
the various specific recognition models were trained separately. Specifically,
we first trained a generic recognition model, obtaining an optimal value of
the parameter w0, and then we trained a set of specific recognition models
based on the optimized generic recognition model. In this paper, we propose a
novel end-to-end approach to train the generic recognition model and all the
specific recognition models simultaneously, simplifying the whole procedure
significantly.
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Speci�c

SVM Layer

Generic

SVM Layer

Input

Input Video Fisher Vectors SVM Layers

Figure 1: An illustration of the proposed framework. It consists of three parts, i.e., input,
representations, and prediction. The prediction part contains SVM layers, both generic
SVM layer and the specific SVM layers. In this way, we learn the generic recognition model
in generic SVM layer and learn the specific recognition model in specific SVM layer. For
the specific recognition model, as we have four different conditions, we have n = 4 specific
problems and optimize them based on the optimized weight, w0, obtained from the generic
recognition model. More details of the computation of the loss can refer to Fig. 2.

3.1. The Generic Recognition Model

In our case, a certain condition is a certain movie. The generic recognition
model is not taking the different conditions into consideration, but use all of
the available training samples across all conditions. If we remove the terms
related to the j-th specific condition from Eq. 1, it becomes the generic
recognition model, illustrated in Eq. 2. The generic optimization problem,
which we denote as Pgeneric, can be cast as follows:

Pgeneric : min
w0,b0

λ

2
‖w0‖2 +

1

`

∑̀
i=1

L(w0, b0; (xi, zi)), (2)

For solving the above optimization problem we use a SGD algorithm and
we arrive at the optimal solution (w0, b0), which describes the separating
hyperplane H0 : w0

>x + b0 = 0. Then, we use the optimal w0 to construct
the set of specific recognition models, as described below.
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Specific
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Specific
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Figure 2: Illustration of the computation of the loss.

3.2. The Specific Recognition Model

A specific recognition model is specific to a certain condition, i.e., “hor-
ror”, “comedy”, “action”, or “adventure”, which is denoted by j in equation
3. Each specific recognition model is built using the outputs obtained from
the generic recognition model. That is, we use the value for w0 from Eq. 2
in order to construct the specific optimization problem. The j-th condition
is denoted as Pjspecific and cast as follows

Pjspecific : min
wj ,bj

µj
2
‖wj‖2 +

νj
2
‖wj −w0‖2

+
1

`t

∑
(xi,zi)∈Xt

L(wj, bj; (xi, zi)), j = 1, . . . , 4
(3)

where Xt is a subset of the original training set, µj and νj are regularization
parameters, and L denotes the hinge-loss. The term

νj
2
‖wj − w0‖2 is used

to bias wj to be close to w0. The method of solving Pjspecific is proposed in
Mou et al. (2017), and attached to the appendix.

As shown in the above optimization problem, besides the standard regu-
larization scheme, where we try to constrain the norms of wj and w0 so as
to prevent overfitting, we also add the term

νj
2
‖wj − w0‖2 so as to bias wj

to be close to w0, for all j = 1, . . . , 4.

3.3. Feature Extraction

3.3.1. Low-level Feature Extraction

Some previous works showed that body features outperform facial features
for group membership recognition Mou et al. (2016b); therefore, we use the
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HOF

t 
t+1 

t+L-1 

(a) Dense trajectories (b) HOF feature extraction 

Figure 3: Illustration of the approach to extract the body HOF feature. (a) Dense trajec-
tory detection results. (b) Dense trajectory is in the spatial scale over L frames. Motion
information over a local neighborhood of N ×N pixels along the each trajectory point are
extracted. In order to embed the structure information, the local volume is subdivided
into a spatio-temporal grid of size nτ × nσ. Based on Wang et al. (2013), nτ = 3, nσ = 2
and L = 15.

body features in this work. In order to extract person-based representations,
we first apply a person detector. Constrained by our experimental setups -
a fixed number of people in the video and a static camera, we use an ad-hoc
scheme that is to equally divide the frame in four parts. In order to avoid the
overlap between the participants that are neighboring each other, we leave
a space between every two neighbors. The space size is equal to the average
size of the faces across all videos, i.e., 64. Then, dense trajectories Wang
et al. (2013) are extracted and, subsequently, Histograms of Optical Flow
(HOF) descriptors are obtained around each trajectory. HOF descriptors
are computed in the spatio-temporal volume aligned with the trajectories as
shown in Fig. 3. HOF orientations are quantized into eight bins with full
orientations. An additional zero bin is added for pixels with optical flow
magnitudes lower than the threshold (i.e., nine bins in total). Thus, the final
descriptor size is 108 with the trajectory length L = 15 frames. More details
on this procedure can be found in Wang et al. (2013).
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Group 1 in condition 2, watching “comedy” movie

Group 4 in condition 3, watching “action” movie

Group 2 in condition 1, watching “horror” movie

Group 3 in condition 4, watching “adventure” movie

Figure 4: Representative frames from the database under different conditions.

3.3.2. Fisher Vector Encoding

Fisher Vector (FV) encoding Sánchez et al. (2013) has been widely used in
computer vision problems, such as action recognition Wang et al. (2013) and
depression analysis Jain et al. (2014); Dhall and Goecke (2015). It encodes
both the first and the second-order statistics between the low-level (local)
video/image descriptors and a Gaussian Mixture Model (GMM). To reduce
the dimensionality, Principal Component Analysis (PCA) is first applied to
the HOF descriptors. A GMM is then fitted to HOF descriptors. The number
of Gaussians is set to K = 256 and a subset of 256000 descriptors is randomly
sampled to fit a GMM. Subsequently, each clip is represented by a (2D+1)K-
dimensional Fisher Vector, where D is the dimensionality of the descriptor
after performing PCA. We obtain the Fisher Vectors (FV) from body HOF
descriptors.

4. Experiments and analysis

4.1. Data

Experiments are conducted using a database collected to study group
analysis from multimodal cues while each group (i.e., four participants) were
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watching a number of long movie segments Abdon Miranda-Correa et al.
(2017). They were arranged into four groups with four participants in each
group watching all of the four videos listed in Table 1 together. Videos were
recorded at 1280 × 720 resolution, 25fps. Four representative frames from
the database are shown in Fig. 4. Here we use two sub-datasets from the
full database, namely Data-I and Data-II, which are different in terms of the
number of samples and the method of getting the small clips from the long
videos.

Data-I. It includes data from three groups (eleven subjects) with record-
ings in four different conditions (N1, P1, B1 and U1 movies, see Table 1). As
a result, there were eleven subjects from eleven recordings in total. During
each recording, each group watched one movie. From each recording, we used
the last 10-seconds clips extracted every 2 minutes. The number of short clips
from each recording varies with the length of the movies, i.e., 12 clips for N1
and B1, 9 clips for P1, and 7 clips for U1. Therefore, the total number of clips
we used in the experiments is (12×4×3)+(12×4×3)+(9×4×3)+(7×4×3) =
480.

Data-II. This dataset contains data from four groups (with sixteen par-
ticipants, 8 females and 8 males) with recordings under four different con-
ditions (N1, P1, B1 and U1 movies, see Table 1). As a result, there were
sixteen subjects from fifteen recordings in total, that is 2 groups (12 sub-
jects) with recordings from 4 movies (N1, P1, B1 and U1), 1 group (3 sub-
jects) with recordings from 4 movies and 1 group (4 subjects) with record-
ings from 3 movies (B1, N1 and P1). During each recording, each group
watched one movie. Each recording was segmented into 20-seconds clips
with no overlap between the clips. Each clip was used as a single sam-
ple. The number of short clips from each recording varies with the length
of the movies, i.e., 70 clips for N1 and B1, 56 clips for P1, and 42 clips
for U1. Therefore, the total number of clips we used in the experiments is
(70× 4× 4) + (70× 4× 4) + (56× 4× 3) + (42× 4× 4) = 3584.

4.2. Experiments

4.2.1. Implementation details

The network is implemented using Theano Theano Development Team
(2016) and Lasagne Dieleman et al. (2015) libraries. All the parameters of
the network, i.e., for the generic SVM layer and the four specific SVM layers
(see Fig. 1), are learned using the standard back-propagation technique.
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Table 3: Data-I tested on both SRM and DeepSRM with group membership recognition
results obtained using different models, the proposed specific recognition model, generic
recognition model and independent recognition model. The average recognition accuracy of
all subjects obtained from leave-one-subject-out cross-validation and statistical significance
test (p-value) obtained for comparisons with chance level = 33% are also provided. ACC
refers to recognition accuracy.

Different Models Acc (p-value)
chance level = 33%
SRM

Acc (p-value)
chance level = 33%
DeepSRM

Generic recognition model
(ν →∞)

34% (p=0.42) 34% (p=0.58)

Independent recognition
model (ν = 0)

33% (p=0.45) 33% (p=0.52)

Specific recognition model 42% (p<0.05) 40% (p<0.05)

4.2.2. Experimental setup

We used both Data-I and Data-II to test our models. On one hand, we
compared the proposed specific recognition model with two other models,
(1) the generic recognition model that trained across all different conditions
and (2) the independent recognition model that trained directly in each spe-
cific condition. We also compared this new framework (DeepRSM) to the
framework proposed in our previous work Mou et al. (2017) (we refer this
two-phase specific recognition model in the rest of the paper as SRM).

In order to avoid subject-dependency problem, group membership recog-
nition models were trained by applying leave-one-subject-out cross-validation.
Leave-one-subject-out refers to, in each fold, using eleven subjects for training-
validation and the remaining one subject for testing. Each time the param-
eters of the model were optimized over the training-validation samples. The
experimental results of the membership recognition were evaluated by the
recognition accuracy. In addition, we performed statistical significance anal-
ysis to see the significance of the results obtained.

4.2.3. Experimental results and analysis

The recognition results in terms of recognition accuracy by applying leave-
one-subject-out cross-validation are shown in Table 3 and Table 4. From both
Table 3 and 4, we can clearly see that the proposed specific recognition model
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Table 4: Data-II tested on both SRM and DeepSRM with group membership recognition
results obtained using different models, the proposed specific recognition model, generic
recognition model and independent recognition model. The average recognition accuracy of
all subjects obtained from leave-one-subject-out cross-validation and statistical significance
test (p-value) obtained for comparisons with chance level = 25% are also provided. ACC
refers to recognition accuracy.

Different Models Acc (p-value)
chance level=25%
SRM

Acc (p-value)
chance level=25%
DeepSRM

Generic recognition model
(ν →∞)

26% (p=0.79) 26% (p=0.50)

Independent recognition
model (ν = 0)

30% (p=0.09) 30% (p=0.07)

Specific recognition model 38% (p<0.05) 44% (p<0.05)

outperforms the other two models in terms of recognition accuracy under
both SRM and DeepSRM setups. Recognition accuracy of 43% is obtained
for the specific recognition model with Data-I tested on two-phase SRM, while
34% and 33% are obtained from generic recognition model and independent
recognition model respectively. A recognition accuracy of 40% is obtained for
the specific recognition model with Data-I tested on DeepSRM, while 34% and
33% are obtained from generic recognition model and independent recognition
model respectively. A recognition accuracy of 38% is obtained for the specific
recognition model with Data-II tested on two-phase SRM, while 26% and
30% are obtained from generic recognition model and independent recognition
model respectively. A recognition accuracy of 44% is obtained for the specific
recognition model with Data-I tested on two-phase SRM, while 26% and
30% are obtained from generic recognition model and independent recognition
model respectively. We also perform a t-test to see the statistical significance,
which is also listed in Table 3 and 4. The statistical significance tests show
that the results obtained with the proposed specific recognition model are
significantly better than chance level, but not for generic recognition model
and independent recognition model.

We also compared the performance obtained with the specific recognition
model between the two-phase SRM and the DeepSRM. As we tested the
models using different data and the chance levels are different, it is difficult to
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Figure 5: The recognition accuracy obtained from the proposed specific recognition model
divided by the chance level for all different setups, i.e., Data-I tested on two-phase SRM and
DeepSRM models respectively as well as Data-II tested on two-phase SRM and DeepSRM
models respectively.

compare them directly. Therefore, we divided the recognition accuracy by the
corresponding chance level and the results are illustrated in Fig. 5. From Fig.
5, we can see that the DeepSRM tested with Data-II performs better than
two-phase SRM, while for Data-I two-phase SRM performs better than the
DeepSRM. It is possibly because that compared to the non-deep framework,
i.e., two-phase SRM, more parameters are learned at once while training the
deep neural network, therefore, more data is needed to train the DeepSRM.
In our experiments, in Data-I, there are 480 samples, while in Data-II, there
are 3,584 samples, which is more than 7 times as many as Data-I. We can
see that the best performance is obtained from the deep framework tested
with Data-II, which outperforms the two-phase framework while tested with
both Data-I and Data-II. In addition, the deep framework can be trained
more easily compared to the non-deep framework, which needs to be trained
by two steps, first generic recognition model and then specific recognition
model. However, the deep framework can be trained in one step, which can
simplify the problem in terms of implementation but provide better results.
The computational cost for training two-phase SRM and DeepSRM models
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in terms of time is 28570 seconds and 4050 seconds for Data-II respectively
while implementing on a computer with with 32G RAM and Intel Core i7-
4790S CPU. Although the cost is much lower for DeepSRM, we have to bear
in mind that they are not directly comparable as DeepSRM has been trained
in a GPU mode, a Titan X GPU used.

The recognition accuracy of different subjects is illustrated in Table 5.
The corresponding subject can be found in Fig. 6 based on the subject ID.
From Table 5, we can see that the recognition accuracy of the group mem-
bership varies among different subjects. For example, the membership of
subjects 1, 3, 4 and 16 is better recognized than that of subjects 8 and 9.
For subject 8, we can see from Fig. 6 (b) that subject 8 showed a very dif-
ferent behavior from the other group members. Specifically, we can see that
subjects 6, and 7 seemed to be very happy or excited and tend to move a lot,
but not subject 8. Thus, in this case, it is difficult to recognize the group
membership of subject 8, which also causes difficulties in membership recog-
nition of the other group members. The results could be due to the fact that
she did not like this movie. Therefore, in order to improve the recognition
accuracy of the group membership, in addition to the performance obtained
for each participant in the video, it is also helpful to have some contextual
information, such as the movie preference of each subject. In addition, in
group 3, subjects 10, 11 and 12 were friends and classmates prior to partic-
ipating in the experiments. However, subject 9 is new to this group and in
this case, he was possibly sharing less non-verbal cues with the other three
group members. Considering this, data should be collected with people that
are unacquainted prior to attending the recording as has been done in Girard
et al. (2017). Table 6 shows the average recognition accuracy under different
conditions/movies. From this table, we can see that the performance varies
among different movies. The results for Mr. Beans movie are the best and
this is possibly due to Mr. Beans being a comedy, i.e., it can easily induce
positive affect in different subjects, which is consistent with the findings of
Bhullar (2012) that the more positive our mood, the more likely are to be
susceptible to the happiness of others. Table 6 shows the average recognition
accuracy under different conditions/movies. From this table, we can see that
the performance varies among different movies. Mr. Beans presents the best
result, it is possibly because that Mr. Beans is a comedy and can easily
induce the positive affect for different subjects, which is consistent with the
findings of Bhullar (2012) that the more positive our mood, the more likely
are we to be susceptible to the happiness of others.
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Table 5: The accuracy of group membership recognition of each subject

subject ID 1 2 3 4 5 6 7 8
Accuracy 0.82 0.30 0.71 0.63 0.28 0.30 0.31 0.21
subject ID 9 10 11 12 13 14 15 16
Accuracy 0.16 0.43 0.40 0.52 0.50 0.37 0.35 0.82

Table 6: The average recognition accuracy under different conditions, i.e., while people
are watching different movies

Movie Descent Mr. Bean Batman Up
Accuracy 0.37 0.56 0.41 0.41

          (a) Group 1 

          (c) Group 3

     (b) Group 2

      (d) Group 4

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 7 Subject 8Subject 6

Subject 9     Subject 10        Subject 11      Subject 12 Subject 13 Subject 14    Subject 15 Subject 16

Figure 6: Four illustrative frames from four groups of data and the ID of each subject.
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5. Conclusions and future work

In this paper, we propose a novel specific recognition model that is learned
jointly with a generic recognition model for the problem of group member-
ship recognition, using non-verbal behaviors of each group’s member, under
different conditions, i.e., when people are watching different types of movies
(i.e., “horror”, “comedy”, “action”, and “adventure”). The generic recogni-
tion model is trained using all data across conditions, which allows for group
membership recognition across all different conditions. However, since group
members may behave distinctly in different conditions, the performance of
generic recognition model is limited. To address this, we propose a specific
recognition model for each specific condition built on the top of the generic
recognition model, so as to use the generic recognition model to provide a
baseline. We conduct a set of experiments for group membership recognition
on two datasets that include different groups, with each group comprising
four participants watching affective stimuli.

The experimental results show that the proposed specific recognition model
outperforms the compared approaches, i.e., generic recognition model and in-
dependent recognition model, as shown in our previous work Mou et al. (2017).
However, compared to Mou et al. (2017), the newly proposed DeepSRM can
be trained at once by learning both the generic recognition model and all the
specific recognition models simultaneously, rather than learning them sepa-
rately. In this way, the framework for DeepSRM is simplified, while at the
same time its performance is improved when there is sufficient data. On the
other hand, as group membership can be recognized using non-verbal behav-
iors (i.e., body behaviors), our results indicate that individuals affect each
other’s behaviors within a group and their nonverbal behaviors share com-
monalities. Our results also show that capitalizing on shared information in
a generic recognition problem is important for learning the specific problem
at hand, and this optimization approach can be possibly transferred to other
recognition domains.

Despite the promising results obtained in the experiments, analysis of
group membership remains a challenging problem. As the future work, we
plan to experiment with other feature representation. It is also important to
use different contextual information to assist the recognition process, such as
personality, movie preference, and the personal relationships between group
members. In addition, we also plan to apply this learning approach to other
recognition problems.
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8. APPENDIX

For solving Pjspecific, as proposed in Mou et al. (2017), we use a variant of
the Pegasos SGD algorithm. That is, the proposed algorithm receives two
parameters as input: (1) the number of iterations, T , and (2) the number of

examples to be used for calculating sub-gradients, k. Initially, we set w
(1)
j to

any vector whose norm is at most 1/
√
νj and b

(1)
j = 0. On the t-th iteration,

we randomly choose a subset of X , of cardinality k, i.e., Xt ⊆ X , where
|Xt| = k and set the learning rate to ηt = 1

νjt
. We approximate the objective

function of Pjspecific with

Pjspecific : J (wj, bj) =
µj
2
‖wj‖2 +

νj
2
‖wj −w0‖2

+
1

k

∑
(xi,zi)∈Xt

L(wj, bj; (xi, zi)), j = 1, . . . , 4.
(4)

The update rules are given as follows

w
(t+1)
j ← w

(t)
j −

ηt
k

∂J
∂wj

, b
(t+1)
j ← b

(t)
j −

ηt
k

∂J
∂bj

,
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where the first derivatives of J with respect to wj and bj are given respec-
tively as

∂J
∂wj

= µjwj + νj(wj −w0) +
1

k

∑
(xi,zi)∈Xt

∂L
∂wj

(5)

and
∂J
∂bj

=
1

k

∑
(xi,zi)∈Xt

∂L
∂bj

. (6)

The first derivatives of the hinge loss with respect to wj and bj are given
respectively as

∂L
∂wj

=

{
−zixi if 1 > zi(w

>
j xi + bj),

0 if 1 < zi(w
>
j xi + bj).

(7)

and
∂L
∂bj

=

{
−zi if 1 > zi(w

>
j xi + bj),

0 if 1 < zi(w
>
j xi + bj).

(8)

Finally, we project w
(t+1)
j onto the ball of radius 1/

√
νj, i.e., the set B =

{wj : ‖wj‖ ≤ 1/
√
νj}. The output of the algorithm is the pair of w

(T+1)
j ,

b
(T+1)
j .

Once the optimal values of the parameters wj and bj are learned, an
unseen testing datum, xt, can be classified to one of the two classes according
to the sign of the (signed) distance between xt and the separating hyperplane.
That is, the predicted label of xt is computed as yt = sgn(dt), where dt =
w>
j xt + bj. The posterior class probability, i.e, a probabilistic degree of

confidence that the testing sample belongs to the class to which it has been
classified, can be calculated using the Platt scaling algorithm Platt et al.
(1999) for fitting a sigmoid function, S(dt) = 1/(1 + eσAdt+σB). The scaling
parameters σA, σB are obtained by applying the Platt scaling approach after
solving the generic recognition model. Platt scaling is a well-known technique
that has been shown to be particularly effective for max-margin methods
such as SVMs (e.g., see Chang and Lin (2011)) for evaluating a sample’s
class membership at the testing phase.
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