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Is the VIX just volatility? The devil is in the (de)tails

Laura Ballottaa

27th January 2024

The year 2023 was a year of anniversaries interestingly connected to each other: 50 years since

the publication of the celebrated Black and Scholes (1973) option pricing formula, 30 years since

the introduction of the VIX index, and 20 years since the release of its new design (see Cboe,

2023, for details).

The Black-Scholes formula postulates constant volatility; however, as this assumption is clearly

not satisfied in real financial markets, traders delta hedging their option books still have to come

to terms with the volatility risk that the hedge itself is exposed to. The initial version of the

VIX index that the CBOE introduced in 1993 aimed at measuring an average Black-Scholes 30

days ahead implied volatility extracted from ATM options on the S&P100 index. In the attempt

to transform the VIX into a potential instrument for trading and hedging volatility, in 2003 the

focus has been shifted on OTM options on the S&P500. The claim in the Cboe (2023) White

Paper is in fact to provide an ‘estimate of the expected volatility’ of a weighted portfolio of these

OTM options. An interesting account of the changes and the motivations behind is offered by

Carr and Wu (2006).

However, this redesign poses the question: is the VIX about volatility only? As the saying

goes, the devil is in the details.

In its current definition, the VIX index is given by

V̄ (0,∆T ) = 100×

√√√√ 2

∆T
er∆T

∑
i

∆Ki

K2
i

O(Ki)−
1

∆T

(
FS(0,∆T )

K0
− 1

)2

,

where r is the risk free interest rate to expiration, O(Ki) is the mid price of OTM call and put

options on the S&P500 with strike Ki and time to maturity ∆T fixed at 30 days, FS(0,∆T )

is the forward index level derived from index option prices, K0 is the largest available strike

below or equal to the forward index level, and ∆Ki is the interval between strikes computed as

(Ki+1−Ki−1)/2. As the VIX by construction is based on market quotes of options, its calculation

does not depend on any model.

In the last 20 years though the VIX market has developed significantly with the introduction

of VIX futures and VIX options, which nowadays are sought after for hedging purposes, and are

therefore very liquid. These developments meant amongst other things that the VIX cannot be

model independent any longer: the need of a consistent model for the pricing of these futures
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and options implies that a suitable model should be deployed. This latter task becomes more

challenging once we realise that the VIX is a derivative in its own right, as its value depends

intrinsically on the S&P500 index.

Attention has been devoted over the last few years to the so-called joint calibration problem,

which indicates precisely the problem of capturing with one model, and in a consistent manner

the implied volatilities of options on the S&P500 index and the VIX index, and the price of

VIX futures, see for example Gatheral et al. (2020), Guyon (2020), Guyon and Lekeufack (2023),

Abi Jaber et al. (2023) and Ballotta et al. (2023) just to mention a few of the contributions to

this topic.

The fact that the VIX is a derivative on the S&P500 index (rather than on the options on

the S&P500 index) is shown clearly by means of the log-contract and an application of the static

replication formula, which follows from the Breeden and Litzenberger (1978) framework (see also

Carr and Madan, 2001, and references therein). In the case of a contingent claim with payoff

function g(S(T )), this formula reads

E
(
e−rT g(S(T ))

)
= g(FS(0, T ))e

−rT +

∫ FS(0,T )

0
g′′(K)P (K)dK +

∫ ∞

FS(0,T )
g′′(K)C(K)dK, (1)

with P (K) and C(K) denoting the prices of put and call options respectively. An application of

equation (1) to the log-contract with payoff at maturity T given by g(S(T )) = ln (S(T )/FS(0, T ))

returns the so-called log-strip formula

E
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A few steps of maths (involving integration, the put-call parity and the Taylor expansion up to

the second order of the log function, see for example Ballotta et al., 2023), and the recognition

that a continuum of strikes is in reality not available in the market lead to expressing the price

of the log-contract as

E
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e−rT ln
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)
≃ −
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By comparing equation (2) with the Cboe definition of the VIX index, we can deduce that

V̄ (0,∆T ) = 100×

√
− 2

∆T
E
(
ln

S(∆T )

FS(0,∆T )

)
, (3)

where it is understood that the equality holds up to the approximations highlighted above.

In the Black-Scholes model, the stock price follows a geometric Brownian motion, consequently

the straightforward application of equation (3) returns

V̄ (0,∆T ) = 100× σ,

in other words, the VIX becomes the volatility of the log-returns σ, which could be extracted of

course from option prices. However, as in the Black-Scholes model the implied volatility would

be the same across all strikes, the information provided by OTM contracts would be lost.
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And what would this information be? By their nature, option prices could be interpreted as

the financial quantification of the probability mass in the tails of the distribution of the stock

price, or equivalently of the log-returns. In other words, one might say that OTM calls and puts

offer a view on the skewness and excess kurtosis of the underlying distribution; these are also the

statistics which are reflected in the smile/smirk shape of the implied volatility, as illustrated for

example by Ballotta (2023).

In a more general setting based on a Lévy process L(t), the stock price under the risk neutral

measure is

S(t) = S(0) exp
(
(r − φ(−i)) t+ L(t)

)
with r representing the risk free rate of interest, and φ(u) denoting the characteristic exponent of

L(t), i.e. E [exp (iuL(t))] = exp (φ(u)t). The resulting value of the VIX based on equation (3) is

V̄ (0,∆T ) = 100×
√

2 (φ(−i)− E (L(1))). (4)

(We note that the case of the formula under the Black-Scholes model can be recovered from

equation (4) as a special case in which L(t) is a standard Brownian motion rescaled by a volatility

parameter σ, so that φ(u) = −σ2u2/2.)

Under necessary integrability conditions which are satisfied by all Lévy processes commonly

used in finance, the Lévy-Khintchine formula implies that

φ(u) = iuE (L(1))− u2

2
σ2 +

∫
R

(
eiux − 1− iux

)
ν(dx), (5)

in which σ is as usual the diffusion coefficient, i.e. the rescaling constant of the standard Brownian

motion, and ν(·) is the Lévy measure governing the discontinuous part of the process L(t) (see

Eberlein and Kallsen, 2019, Chap. 2, for full details). This component in particular provides the

‘DNA’ of the discontinuous part of L(t), telling us whether this is Hyperbolic (Eberlein and Keller,

1995), Normal inverse Gaussian (Barndorff-Nielsen, 1997), Variance Gamma (Madan et al., 1998),

or anything else. This component is also responsible for the generation of skewness and excess

kurtosis in the distribution, as the Brownian motion has zero higher order cumulants cn(·), n > 2.

Indeed, repeated differentiation of the characteristic exponent shows that

Var(L(1)) = σ2 +

∫
R
x2ν(dx),

c3(L(1)) =

∫
R
x3ν(dx),

c4(L(1)) =

∫
R
x4ν(dx),

from which it follows that the index of skewness is

sk(L(1)) =
c3(L(1))

Var(L(1))3/2
,

and the index of excess kurtosis is

ek(L(1)) =
c4(L(1))

Var(L(1))2
.
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An appropriate substitution of equation (5) into equation (4) returns

V̄ (0,∆T ) = 100×

√
σ2 + 2

∫
R
(ex − 1− x) ν(dx).

In virtue of the Taylor expansion of the exponential function, the above is equivalent to

V̄ (0,∆T ) = 100×
√
Var(L(1)) +

1

3
c3(L(1)) +

1

12
c4(L(1)) + · · ·,

which shows that the VIX is much more than just (implied) volatility: it also contains higher

order cumulants, and therefore (albeit indirectly) skewness and excess kurtosis.

In light of the above, the following considerations are in order. Firstly, the label ‘fear index’

attributed to the VIX stands to reason: fear - in the financial market - cannot be just volatility.

Fear has also to do with high probabilities of significant market movements in the ‘wrong’ direction.

But this is another way of speaking of tails of the distributions.

Secondly, it is common in the literature to associate the square of the VIX with the variance

swap rate up to an ‘error term’, or better a correction, for the jumps (see Carr and Wu, 2006 and

Carr and Wu, 2009). However, according to the above derivation, this correction for the jumps is

not an error term, and it is not about ‘jumps’ per se. It is really all about the distribution, tails

of the distribution to be precise.

So, do these higher order cumulants matter? To illustrate the point, we consider the case of

the CGMY model of Carr et al. (2002) calibrated to market quotes of options on the S&P500

with 30 days to maturity. The CGMY model has characteristic exponent

φ(u) = CΓ(−Y )((G+ iu)Y −GY + (M − iu)Y −MY ),

from which it follows that

Var(L(t)) = CΓ(2− Y )(MY−2 +GY−2)t,

c3(L(t)) = CΓ(3− Y )(MY−3 −GY−3)t,

c4(L(t)) = CΓ(4− Y )(MY−4 +GY−4)t.

For this example, we consider two observation dates reflecting two very different periods in the

financial markets. The first date is March 18th 2020, when the VIX reached its historical high at

85.47 (and closed at 76.45) reflecting the significant uncertainty which followed the announcement

on March 11th 2020 in which WHO declared the coronavirus (COVID-19) outbreak a global

pandemic. The second date is June 21st 2023 and represents a period of relatively low values for

the VIX: on this date in particular the VIX reached a high at 13.89 and closed at 13.20. The

usual filters have been applied to the dataset, as well as SVI (see Gatheral and Jacquier, 2014,

for full details).

We also calibrate the Black-Scholes model to the same dataset. The resulting implied volatil-

ities are illustrated in Figure 1. Please note that the y−axis scale in the top two plots is very

different. The calibrated parameters are reported in Table 1, together with the corresponding

implied volatility root mean squared error (IVRMSE), average absolute error in prices (APE),

4



Figure 1: Implied volatilities from the CGMY model and the Black-Scholes model. Top panels: implied
volatilities extracted from options with 30 days to maturity on the S&P500 observed on 18/03/2020 and
21/06/2023 (source: optionsdx). Bottom panels: CGMY model calibration errors.

18 March 2020 21 June 2023

Table 1: Calibration of the CGMY model and the Black-Scholes model to options with 30 days to maturity
on the S&P500 observed on 18/03/2020 and 21/06/2023 (source: optionsdx). Calibrated model parameters,
statistics of the calibrated distributions and value of the VIX from the log-contract (equation (4)).

18/03/2020 – VIX close price: 76.45; high price: 85.47

Calibrated parameters IV RMSE APE Price std.dev.(L(1)) sk(L(1)) ek(L(1)) VIX formula

(C,G,M, Y ) 4.7303 2.3336 19.0884 0.1987 0.0040 0.0236 0.9897 -0.7605 0.9253 88.8666
σ 0.5887 0.1590 1.7254 0.5887 0.0000 0.0000 58.8739

21/03/2023 – VIX close price: 13.20; high price: 13.89

Calibrated parameters IV RMSE APE Price std.dev.(L(1)) sk(L(1)) ek(L(1)) VIX formula
(C,G,M, Y ) 0.9056 9.4954 41.5846 0.3669 0.0035 0.0627 0.1498 -1.0322 1.9600 14.6139
σ 0.1943 0.0797 2.9699 0.1943 0.0000 0.0000 19.4276

standard deviation, skewness and excess kurtosis of the calibrated (unit-time) distributions. Fi-

nally, we also report the values of the VIX returned by formula (4).
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The value of the VIX generated by equation (4) for the CGMY model is not the same as the

market quote, which is also a reflection of the different methodology with which the VIX is com-

puted in reality (see the Cboe, 2023, White Paper for full details); nevertheless it is considerably

closer than the estimate that the Black-Scholes model can generate. By looking at the calibrated

value of the standard deviation, we can appreciate the contribution of the higher order cumulants

in ‘correcting’ the square root of the log-contract (rescaled) price towards the quoted value of the

VIX index. Thus, higher order cumulants do matter as they capture the smirk of the market

implied volatility, especially the ATM skew.

The above example highlights a few points for consideration. The first one concerns the

approximation in equation (3). As previously pointed out, the practical use of this result is to

connect the VIX directly to the S&P500 index as a way of providing a grounded platform for

the pricing of VIX derivatives. The validity of equation (3) depends on the calibrated model for

the underlying, as well as the data used for the purpose. As the previous example shows, an

excellent calibration performance might not lead to an exact match to the actual market value

of the index. It is worth noticing that in this experiment we have calibrated to the same dataset

also other models, such as the Variance Gamma, the Normal inverse Gaussian, the Hyperbolic

and the Heston (1993) model, with very similar results. As mentioned above the discrepancy in

values is due to the different methodology, and of course the different dataset. In addition, we

have to bear in mind that equation (3) holds up to a few approximations.

Finally, admittedly the CGMY and the Black-Scholes models are relatively simple, especially

the Black-Scholes one, as they do not allow for a dynamic of the VIX index which is sufficiently

sophisticated for the pricing of VIX derivatives. This of course can be amended by moving to

more realistic processes which allow for the S&P500/VIX joint calibration, such as for example

time changed Lévy processes investigated in Ballotta et al. (2023).

What we learn from the analysis in this note is that the conditional dynamic of these processes

needs to contain a non-Gaussian component capable of capturing skewness and excess kurtosis.

The ‘jump-induced error term’ (Carr and Wu, 2006) is not an error term and is not about jumps:

it speaks of distributions and their tails. Indeed, it is what lies in these tails that the market has

to fear.
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