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ChiNet: Deep Recurrent Convolutional Learning for

Multimodal Spacecraft Pose Estimation
Duarte Rondao, Nabil Aouf, and Mark A. Richardson

Abstract—This paper presents an innovative deep learning
pipeline which estimates the relative pose of a spacecraft by
incorporating the temporal information from a rendezvous se-
quence. It leverages the performance of long short-term memory
(LSTM) units in modelling sequences of data for the processing
of features extracted by a convolutional neural network (CNN)
backbone. Three distinct training strategies, which follow a
coarse-to-fine funnelled approach, are combined to facilitate
feature learning and improve end-to-end pose estimation by
regression. The capability of CNNs to autonomously ascertain
feature representations from images is exploited to fuse thermal
infrared data with electro-optical red-green-blue (RGB) inputs,
thus mitigating the effects of artifacts from imaging space objects
in the visible wavelength. Each contribution of the proposed
framework, dubbed ChiNet, is demonstrated on a synthetic
dataset, and the complete pipeline is validated on experimental
data.

I. INTRODUCTION

S
PACECRAFT relative pose estimation is the problem of

determining the rigid transformation between two space

bodies – one of which is controllable and carries the navigation

sensors – in terms of their relative position and attitude. This

is a requirement for close-range rendezvous (RV) which has

traditionally been solved using active sensors such as lidar [1];

the task is significantly hampered when the target is said to be

non-cooperative, i.e. it does not bear any supportive equipment

towards the RV [2].

Non-cooperative rendezvous (NCRV) operations involve

the management of large relative velocities and minimal

reaction times, justifying the need for autonomous operations

and redundant sensors. As such, compact and lightweight

passive digital cameras have become the cost-effective sensor

for the task. Accordingly, the last couple of decades have

focused on the development of robust image processing (IP)

and machine learning (ML) techniques to accurately estimate

the target’s six degree-of-freedom (DOF) pose from images

obtained aboard the chaser [3]. As the target is generally known

beforehand, the followed strategies often choose to solve the
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Fig. 1: Qualitative results of the proposed method on two

simulated NCRV sequences with Envisat from the Astos

dataset. ChiNet provides continuous and robust pose estimation

throughout the whole trajectories, explicitly taking into account

information from previous frames.

model-to-image registration problem, under which the pose is

retrieved via perspective-n-point (PnP [4]) and RANSAC-based

(random sample consensus [5]) methods from correspondences

between two-dimensional image features and three-dimensional

model points. The challenge lies in robustly retrieving these

correspondences in the face of hindering conditions such as

shadows and sun glare, tumbling targets, or unknown initial

poses. The former have been tackled in ground-based systems

through multimodal sensing, but the fusion of each wavelength

typically requires hand-crafted features, making its execution

challenging [6, 7].

On the other hand, it represents an area with the potential

of largely benefiting from DNN-based (deep neural network)

estimation methods. In particular, convolutional neural networks

(CNNs [8]) are naturally tailored to process such image inputs:

here, the IP task is shifted completely to the network, and the

effort becomes concentrated towards parameter optimisation

and data modelling, allowing for the generalisation of the model

to a wider swath of imaging conditions. The popularity of CNNs

permeated onto the field of spacecraft relative pose estimation

for rendezvous near the end of the past decade, mainly due

to the European Space Agency (ESA) Kelvins Satellite Pose
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Estimation Challenge (SPEC),1 where the vast majority (if not

all) of the competitors used DNN-based approaches. SPEC

benchmarked the participating algorithms on the Spacecraft

PosE Estimation Dataset (SPEED [9]), which consists of images

of the Tango satellite generated under unrelated randomised

poses. However, during an RV sequence, it is expected that the

pose of the observed target continually varies as the operation

progresses, i.e. the poses are correlated through time.

This paper proposes the adoption of a recurrent neural

network (RNN) module to process the features extracted by a

CNN front-end model and to exploit this temporal correlation

between acquired image frames in NCRV sequences. The

resulting deep recurrent convolutional neural network (DRCNN)

architecture, dubbed ChiNet,2 is shown to provide a smoother

and lower-error estimate of the 6-DOF pose when compared

to a single CNN (Fig. 1 illustrates qualitative results on two

NCRV sequences). Furthermore, ChiNet proposes a new three-

step training regimen to learn features in a coarse-to-fine

manner, which is inspired from traditional ML approaches.

Lastly, ChiNet also explores the impact of multimodal sensing

in the pose estimating by augmenting the number of input

channels to the network with images from a long wavelength

infrared (LWIR) camera, thus exploiting the natural ability

of CNNs to autonomously extract features from images. The

following contributions are proposed, to the best of the authors’

knowledge: 1) The work represents the first use of RNNs, in

particular long short-term memories (LSTMs), to tackle the

problem of spacecraft pose estimation for RV using 2D images

as the sole navigation input; 2) It is also the first to explore the

potential benefit of a multimodal sensor input for the task, in

particular in the visible and LWIR modalities, leveraging the

power of deep learning to formulate it as an optimal process

and surpassing the hurdles of classical approaches; and 3) A

multi-step optimisation approach to DNN training is devised to

facilitate the learning and reduce the overall estimation error.

The paper is organised as follows. Section II surveys the

literature to highlight pertinent related work. Section III thor-

oughly details the methodology of each proposed contribution.

Section IV presents the attained results. Lastly, Section V

shares the conclusions of the work.

II. RELATED WORK

This section briefly summarises the existing model-based liter-

ature on spacecraft pose estimation with monocular cameras,

i.e. when the target is known. It is broadly divided into two

categories: methods based on geometry and methods based on

learning (with a focus on DNNs).

A. Geometry-based Methods

These methods estimate the 4 × 4 relative pose matrix T =
Tct ∈ SE(3) (the Special Euclidean Group in three dimensions)

relating the target body-fixed reference frame
~
Ft to the camera

frame
~
Fc, which is attached to the chaser, from model points

1https://kelvins.esa.int/satellite-pose-estimation-challenge.
2Pronounced “kai-net”, the first term is an abbreviation of the Greek word
“chimera”, meaning “something made up of parts of things that are different
from each other”.

p(i) ∈ R
3 expressed in

~
Ft and their image plane projections

z(i) ∈ R
2 expressed in

~
Fc, which are related according to the

perspective projection model [4]:

z(i) = π

(

K
[

R t
]

[

p(i)

1

])

, (1)

where i ∈ {1, . . . , N} and the projective function

π(a) := a1:2/a3 has been defined. Here, R, t are the 3 × 3

attitude matrix and 3 × 1 position vector composing T , and K

is the 3 × 3 intrinsic camera matrix accounting for the focal

length f obtained a priori via calibration.

Equation (1) can be solved in closed form for N ≥ 4 using

a PnP [4] solver, while using RANSAC [5] to reject spurious

matches. Alternatively, it can be solved iteratively via robust

estimation [10]. Arguably, the biggest challenge resides in

matching z(i) to p(i).

Tracking by recursion [11] was initially adopted as a popular

solution in which 3D control points from a computer-aided

design (CAD) model of the target are projected onto the image

using the expected pose accompanied by a gradient-based scan

to locate the corresponding 2D feature. Initially limited to edge

features [12], the technique was later adapted to include other

features such as colours [13] and keypoints [14] at the expense

of requiring hardware acceleration to deal with complex models.

Conversely, tracking by detection entails an offline stage

where a database of target feature points, whose positions on

the surface are known, is built. Matching is then performed

using heuristics exploiting the grouping of local model features

and multiple hypotheses [15, 16]; the pose and correspon-

dence problems may also be solved concurrently at a higher

computational cost [17]. An alternative approach constructs

a database by discretising the 3D object into 2D keyframes

representing multiple viewpoints [18], and then using local

keypoint detectors and descriptors (e.g. SIFT [19], SURF [20],

or the more modern ORB [21]) to obtain the matches.

Both tracking by detection and by recursion have been

applied to spacecraft pose estimation in the LWIR [22, 23],

and to model-free estimation in general [24]. While the latter

leverages the increased repeatability of LWIR features with

respect to the visible band [25], the former applications do not

explicitly make use of such advantages, leaving a gap in the

literature for this modality.

B. Learning-based Methods

These methods also estimate the pose T but do not neces-

sarily make use of Eq. (1) or local features, instead exploring

patterns in training data to generalise towards previously unseen

query images. A coarser estimation of T can also be considered

in order to initialise tracking by recursion methods or to reduce

the search-space in tracking by detection.

Generally, global features (e.g. bags of keypoints, shapes, or

even raw images) have been preferred for combination with a

variety of ML techniques ranging from nearest neighbour search

[26] to unsupervised clustering [27], principal component

analysis [28], Bayesian classification [29], and deep learning

[30].



The recent prevalence of the latter with respect to the others

originated from SPEC in 2019. As reported by Kisantal et

al. [9], the majority of the participating teams used CNNs to

directly predict the relative pose of the target in an end-to-end,

regressive fashion from each raw image (e.g. [31]). The attitude

estimation was noted to be the most challenging, and was

improved in approaches which first included a target localisation

step (e.g. [32]). However, the best-performing entries, including

those who won 1st and 2nd places, followed instead an indirect

approach where the role of the CNN was relayed completely

towards the prediction of keypoints in the image, pre-selected

by the human-in-the-loop, which were then used with PnP to

recover the pose [33].

After SPEC, published DNN-based work has seldom con-

sidered actual rendezvous trajectories [34], continuing to focus

instead on individual greyscale images of SPEED [35–37]. In

either case, the proposed strategies consist in using a CNN

for keypoint detection for use with PnP. Additionally, the

contribution of modalities beyond the visible remains to be

fully investigated [38].

Contrary to the above examples, ground-based applications

have recently adopted the use of RNNs combined with features

extracted by CNN front-ends to model the intrinsic motion

dynamics from sequences of imaging data rather than individual

inputs [39, 40]; more specifically, these proposed LSTM-based

[41] DRCNNs for visual odometry (VO) to estimate a car’s

egomotion. Kechagias-Stamatis et al. [42] introduced DeepLO,

which followed the same philosophy for lidar-based relative

navigation with a non-cooperative space target. Lidar data was

preprocessed by quantisation and projection onto each plane

in the target body frame of reference, thus creating three 2D

depth images to be processed by a regular CNN.

III. METHODOLOGY

This section describes in detail the proposed DRCNN frame-

work for end-to-end spacecraft pose estimation. The CNN and

RNN modules are both described, as well as the multistage

optimisation strategy to train them.

A. System Architecture

The results from SPEC have shown promising results in

the use of CNNs for the task. However, the current literature

treats each incoming image as a separate input, thus ignoring

the intrinsic temporal correlation between them. Therefore,

the main focus here is the investigation of the feasibility of a

DRCNN for estimating the pose in rendezvous sequences. The

problem has been previously studied by Kechagias-Stamatis

et al. [42] for VO with lidar map inputs, but not for images.

Furthermore, VO is concerned with estimating the motion

between two time-consecutive images, but during an RV a

single acquired image contains enough information relating
~
Ft

to
~
Fc. This work recognises this as a requirement and as such

considers it for the DRCNN formulation.

The architecture of the proposed framework is schematically

depicted in Figure 2. The pipeline takes a four-dimensional red-

green-blue-thermal (RGBT) image formed from the channel-

wise concatenation of a visible image and a LWIR image.

This multimodal image is then processed by a CNN, whose

learned output features are modelled temporally (along the

vertical axis in the figure) with an RNN. Two fully connected

(FC) layers convert the output into position and attitude values

forming the 6-DOF pose. Note that, unlike in DeepVO or

DeepLO, ChiNet receives only a single target snapshot at

a time, thus predicting the complete relative pose for each

time-step τ = τκ. Additionally, since the front-end is fully

convolutional, the network is capable of receiving inputs of

arbitrary spatial dimensions (i.e. any width and height).

B. Deep Feature Extraction with Convolutions

CNN front-ends for feature extraction are typically chosen

to be large but powerful architectures, such as ResNet [43]

or Inception-v3 [44], and SPEC-admitted architectures were

no exception. On the other hand, these networks are also

characterised by elevated processing times and are potentially

prone to overfitting due to their high number of parameters.

To mitigate this, ChiNet adopts the Darknet-19 architecture

(backbone of the YOLO object detector [45]), with some

modifications (Fig. 2, centre). First, the 3 × 3 kernel size on

the first convolutional layer is replaced by a 7 × 7 one to

adapt to image inputs larger than 224 px × 224 px. Second

the network is modernised (bringing it closer to Darknet-53

[46]) by replacing all max pooling layers with a stride of 2

in the preceding convolution. Whereas the former is a fixed

operation, the latter is learned, which further contributes to the

adaptability of the network to the task at hand. In addition,

residual connections are introduced but only in the channel

expansion-contraction layers (green blocks in Fig. 2), thus

avoiding the need to add extra 1 × 1 convolutions to keep

the dimensions consistent. Lastly, a dropout layer [47] with

probability p = 0.2 is added to further prevent overfitting.

1) Optimal Low-Level Sensor Fusion: ChiNet preprocesses

images acquired separately by each camera via concatenation

along the channel dimension, forming a four-channel RGBT

image which the network takes as input. The first convolutional

layer entails a weighted sum of the pixels in each channel,

outputting new activation maps that effectively encompass the

fused information. This is equivalent to a pixel (or low-level)

fusion of the inputs resulting in a series of multimodal images

upon which feature extraction is to be performed. Furthermore,

these weights are not predefined but learned in the context

of the network training procedure, thus being optimal in the

sense of minimising the objective loss. This philosophy has

been previously explored in VO applications using traditional

IP techniques such as intensity level thresholding and discrete

wavelet transforms, showing promising results [48]. ChiNet’s

approach, however, bypasses the need of manually developing a

potentially sub-par weighting strategy to combine the multiple

input modalities.

C. Temporal Sequence Modelling with LSTMs

The features learned by the CNN are post-processed by

a deep RNN module that models the intrinsic temporal

correlations coming from an ordered sequence of image inputs.

This addition is expected to be beneficial to the problem of
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Fig. 2: ChiNet system overview. The proposed DRCNN architecture performs end-to-end spacecraft pose estimation from a

sequence of multimodal RGBT image inputs of arbitrary size.

FC + activation

Activation

Concatenation

Fig. 3: Block diagram of a LSTM recurrent memory unit. sigm
and tanh denote the sigmoid and hyperbolic tangent activation

functions, respectively; ⊙ and + denote element-wise product

and addition, respectively.

spacecraft pose estimation due to the inherent relative motion

dynamics entailed, and the estimate of the solution for the

current frame can benefit from the knowledge of previous

frames: even more than in ground-based applications, the

perceived motion of a space target during RV is not likely

to change abruptly but can be represented as a smooth function

of the previous states.

ChiNet’s recurrent feature post-processing module is based

on the LSTM architecture [41]. LSTMs were designed in

an attempt to combat vital flaws in the capability of vanilla

recurrent cells to model long sequences, as they suffered from

vanishing and exploding gradients. The LSTM’s ability to

learn long-term dependencies is owed to its gated design that

determines which sectors of the previous hidden state should

be kept or discarded in the current iteration. This is achieved

not only in combination with the current input, processed by

four different units, but also by a cell state which acts as an

“information motorway” that bypasses the cells. The LSTM

structure is illustrated in Figure 3.

The design of the RNN is schematically depicted in Figure

2 (right). The CNN features are fed to two stacked LSTM

layers with 1000 hidden states each; stacked LSTM layers have

been previously adopted for architectures such as DeepVO [40]

and DeepLO [42] and shown empirically to help in modelling

complex motion dynamics.

Unlike FC or convolutional layers, data normalisation in

LSTMs must be done internally due to the gated system

topology. Batchnorm would be impractical both in terms of

time and memory consumption since since this would require

fitting one layer per time-step and storing the statistics of each

one during training. In opposition, layer normalisation [49] is

instead employed by computing the mean and variance across

all the features of the i-th layer rather than across the batch

dimension.

A second nuanced aspect pertains to dropout, typically

applied as a binary mask to randomly nullify some of a

layer’s activations. In the case of LSTMs, however, stochasticity

should be applied in the recurrent loop. More than that: rather

than following a potentially naive dropout philosophy, ChiNet

employs zoneout [50], which was specifically designed for

RNNs. In zoneout, the values of the hidden state h(κ) and

memory cell c(κ) are randomly expected to either maintain

their previous value or are updated in the usual manner. The

modified LSTM equations thus become:









f̃ (κ)

ĩ(κ)

õ(κ)

g̃(κ)









= LN
(

W hh(κ−1); γ1, β1

)

+LN
(

W xx(κ); γ2, β2

)

,

(2)

(3)
c(κ) = dc,(κ) ⊙ c(κ−1) +

(

1− dc,(κ)
)

⊙
(

f (κ) ⊙ c(κ−1) + i(κ) ⊙ g(κ)
)

,

(4)
h(κ) = dh,(κ) ⊙ h(κ−1) +

(

1− dh,(κ)
)

⊙
(

o(κ) ⊙ tanh
{

LN
[

c(κ); γ3, β3

]})

,



where f , i,o, g are the forget, input, output, and modulation

gates, respectively; h is the hidden state; x is the input;

W h⊤

= [W hf⊤

W hi⊤ W ho⊤ W hg⊤

] is the recurrent

weights matrix; W x⊤

= [W xf⊤

W xi⊤ W xo⊤ W xg⊤

]
is the input weights matrix; f = sigm(f̃); i = sigm(ĩ);
o = sigm(õ); g = tanh(g̃); sigm is the sigmoid nonlinear

activation function; tanh is the hyperbolic tangent activation

function; LN denotes layer normalisation with scale γ and

offset β; dc,dh are the binary cell and hidden state zoneout

masks, respectively; 1 is a vector of ones of appropriate length;

the superscript (κ) denotes a variable at time-step τ = τκ; and

⊙ denotes an element-wise product operation.

Residual connections have also been implemented (see Fig. 2,

right), drawing inspiration from the CNN front-end itself.

During preliminary experiments, it was found that the addition

of residual connections to the LSTMs in ChiNet resulted in

faster training convergence and overall lower pose estimation

error.

D. Multistage Optimisation

Instead of pursuing an indirect approach (i.e. DNN to predict

keypoints followed by PnP), ChiNet provides an end-to-end,

direct method to retrieve the pose. The former has been shown

to produce the lowest error estimates in SPEC, suggesting that

the latter may be harder to train. To mitigate this and lower the

overall error in end-to-end approaches, a multistage, coarse-to-

fine approach is proposed and described in this section.

Stage 1

The objective of Stage 1 is to emulate the benefits of transfer

learning [51], in which the network is pre-trained on a set of

tasks involving a large dataset and then used to initialise a

same-sized network to solve the purported task that generally

has fewer training examples. Transfer learning is advantageous

for CNNs as these normally entail millions of parameters and

thus may converge towards a suboptimal solution if the training

data is not diverse enough.

A subset of 1000 object categories of ImageNet [52] is the

typical go-to choice for pre-trained networks. However, the

data is composed of red-green-blue (RGB) images and thus

cannot be expanded for use with multimodal data. As such,

a strategy to pre-train a CNN by artificially augmenting the

number of samples based only on the actual training dataset is

proposed.

This stage bypasses the RNN and the two FC layers are

connected directly to the CNN’s output. The procedure thus

aims to first train the CNN on a simpler task to learn coarse

features in terms of a discretised pose representation. The

Special Orthogonal Group in three dimensions SO(3), or simply

the attitude space, is divided into a spherical grid of discrete

azimuth and elevation steps, centred on the target, of fixed

radius, i.e. a 2-sphere S2, or viewsphere. Each square on the grid

then represents an attitude class ai ∈ YS2 , i = {1, . . . ,KS2}
with KS2 possible classes depending on the square size. For

the sake of succinctness, the reader is directed to Rondao et

al. [29] for further details on the viewsphere. The position

component is estimated in terms of the relative depth ‖t‖, thus

maximising the joint conditional probability:

θ∗(S1) = argmax
θ(S1)

p
(

‖t(κ)‖,a(i,κ)
∣

∣

∣
I
(κ);θ(S1)

)

, (5)

where θ(S1) are the CNN parameters learned in Stage 1, a(i)

is the one-hot vector encoding of ai, and I is the image input.

Note that thus far the learning depends only on each individual

input at time τ = τκ, not yet exploiting the temporal correlation

in the data.

Sequential images from an RV training sequence are prepro-

cessed as follows. 1) First, the attitude space is discretised into

the set YS2 with KS2 classes as mentioned above, discarding

any unrepresented class. 2) Define a number NS2 of desired

observations per attitude class. 3) Similarly, Kt bins are defined

for the relative position t, selecting the edges according to

the minimum and maximum values observed in the dataset,

thus creating the set Yt. 4) For each attitude class ac ∈ YS2 :

4-a) identify the subset Y
′

t ⊆ Yt of K ′

t depth bins that

contain at least one observation; 4-b) randomly sample NS2/K ′

t

observations with attitude label ac equally for each of the K ′

t

depth bins according to the position ground truth. Oversample

if necessary.

The resulting Stage 1 dataset will have a total of NS2 ·KS2

observations with equal representation. For the present appli-

cation, NS2 was chosen such that NS2 ·KS2 = 10 000. It was

found that having balanced attitude classes was paramount

to prevent overfitting. To increase data variance in the case

of oversampling, an online data augmentation pipeline was

implemented, both in terms of visual filtering and small

perturbations to the pose.

The loss is formulated as a multi-task learning problem

with the attitude component represented by a cross-entropy

function and the position component by a regression function,

respectively, for each observation i:

L
(S1)
S2 = −

∑

i

K
S2

∑

c=1

a(i)c log
(

â(i)c

)

, (6)

L
(S1)
t =

∑

i

‖t(i) − t̂(i)‖

‖t(i)‖
, (7)

where â(i) = [ â
(i)
1 . . . â

(i)
K

S2
]⊤ is the predicted attitude class

encoding, and t̂(i) ∈ R
3 is the predicted position. In VO, the

multi-task loss is typically achieved via linear combination of

each component using manually tuned weights; however, as

shown by Kendall et al. [53], this is a sub-optimal approach.

Instead, ChiNet models each weight {σS2 , σt} as learnable task-

specific variances of a Boltzmann distribution and a Gaussian

distribution, respectively, yielding the combined loss:

L
(S1) =

1

2
L

(S1)
S2 exp (−2σ̂S2) + L

(S1)
t exp (−2σ̂t) + σ̂S2 + σ̂t.

(8)



The reader is directed to Kendall et al. [53] for the details on

the derivation3 of Eq. (8).

Stage 2

Stage 2 represents ChiNet’s nominal training phase of

the whole structure, using the normal, non-modified dataset.

The full DRCNN pipeline is trained to maximise the con-

ditional probability of a series of time-sequential poses

{T (1), . . . ,T (κ)} ∈ SE(3) given a sequence of RGBT images,

i.e.:

θ∗(S2) = argmax
θ(S2)

p
(

T (1), . . . ,T (κ)
∣

∣

∣
I
(1), . . . , I(κ);θ(S2)

)

,

(9)

where the CNN weights are initialised with the results of

Stage 1. Special care must be taken for the representation of

the attitude to ensure it remains a member of some group

isomorphic to SO(3). A common approach is to admit the unit

quaternion representation q (e.g. [31, 54]) due to the lack of

singularities. However, this representation is not continuous

due to its antipodal ambiguity (i.e. q = −q), which has been

shown to introduce learning difficulties into the DNN and

higher convergence errors.

Instead, ChiNet employs the 6D attitude representation

r ∈ R
6 proposed by Zhou et al. [55] which admits a continuous

mapping R
6 ← SO(3). The transform r 7→ R entails reshaping

r into a 3 × 2 matrix followed by Gram-Schmidt orthogonal-

isation;4 the inverse transform thus consists in removing the

right-most column of R. This approach is similar to directly

estimating the 9 parameters of R followed by incorporation of

the orthogonalisation procedure inside the network, except with

the major advantage of not having to estimate 3 superfluous

parameters.

The Stage 2 loss is a combined loss based on the L2 norm

regression of r and t:

L
(S2)
r =

T
∑

κ=1

‖r̂(κ) − r(κ)‖, L
(S2)
t =

T
∑

κ=1

‖t̂(κ) − t(κ)‖, (10)

L
(S2) = L

(S2)
r exp (−2σ̂r) + L

(S2)
t exp (−2σ̂t) + 2 (σ̂r + σ̂t) ,

(11)

where Eq. (11) is derived similarly to Eq. (8) for two Gaussian

distributions, and the temporal component has been highlighted

in terms of the training sequence length T . Training very long

sequences involves high memory requirements, so a truncated

backpropagation through time (BPTT) procedure is adopted

instead. This entails unfolding the sequence for a predefined

number of time-steps T smaller than the full sequence length

T̃ , performing one training iteration, and then moving on

to the next partition. In order to keep continuity while still

allowing the network to learn long sequences, ChiNet follows

3Despite Eq. (7) not strictly representing the L2 component of a Gaussian
PDF due to the division by ‖t(i)‖, the formulation of Eq. (8) yields good
results in practice.

4This happens only at inference time and is not needed for training.

the approach in [39] whereby the training is carried out with

a sliding window over the sequence, where consistency is

established by appropriately initialising the LSTMs’s hidden

states with those computed in the previous iteration.

Stage 3

The final training stage consists in a geometric refinement

of the output from Stage 2, following the reprojection of 3D

model points using the ground truth and predicted relative pose

first proposed by Kendall et al. [56] for camera pose estimation

in urban scenarios:

θ∗(S3) = argmax
θ(S3)

p
(

T (1), . . . ,T (κ)
∣

∣

∣
I
(1), . . . , I(κ),P;θ(S3)

)

,

(12)

where P = {p(1), . . . ,p(N)} is a manually selected set of

N ≥ 4 target model points expressed in
~
Ft. The loss is

straightforwardly defined as:

L
(S3) =

T
∑

κ=1

N
∑

i=1

∥

∥

∥
z(i,κ) − π

(

K,T ,p(i)
)∥

∥

∥
, (13)

where Zκ = {z(1,κ), . . . , z(N,κ)} is the set of projected

keypoints corresponding to P at time τ = τκ, and π follows

from Eq. (1). Similarly to Stage 2, the 6D attitude representation

is used. Eq. (13) thus learns the pose implicitly via the

minimisation of the reprojection error, which naturally balances

the contributions of the position and attitude branches, and

does not require defining explicit weights unlike Stages 1 and

2. This is advantageous for datasets in which the position

depth has a high variance, since each contribution is weighed

differently due to parallax, as reported in [56]. On the other

hand, the loss formulation requires a good initialisation of

the parameters θ(S3) to converge, hence why it is used as a

refinement stage.

IV. EXPERIMENTAL RESULTS

In this section, the performance of the proposed end-to-

end DRCNN pipeline is evaluated on both synthetic and

experimental data.

A. Synthetic Dataset

1) Description: The framework is initially validated on the

Astos dataset, consisting of 14 different rendezvous trajectories

with the failed satellite Envisat, featuring three distinct guidance

profiles (GPs), three tumbling modes, and two approach

vectors. The images are synthetically generated using the

Astos Camera Simulator5 with emulated visible and thermal

cameras of characteristics expressed in Table I. The visible

and LWIR images are aligned and resized to a resolution

of 640 px × 512 px for both training and testing. The reader

is directed to Rondao et al. [25] for details on the chosen

Envisat orbital parameters and image generation. Figure 4a

illustrates the three considered GPs of the chaser expressed

in the target’s local-vertical-local-horizontal (LVLH) frame

5https://www.astos.de/products/camsim.



TABLE I: Simulated camera parameters for the Astos dataset.

Parameter Unit Visible LWIR

Camera [-] mvBlueFOX-MLC 202b FLIR Tau2

Frame rate [Hz] 10 10

Focal length [mm] 5 13

Sensor width [mm] 4.8 10.875

Sensor height [mm] 3.6 8.7

Bit depth [-] 24 8

(a) Relative trajectory shapes

(b) Relative rotational states

(c) ASTOS/13,
‖t‖ = 100 m

(d) ASTOS/13,
‖t‖ = 75 m

(e) ASTOS/13,
‖t‖ = 50 m

Fig. 4: Characteristics of the synthetic Astos dataset.

~
Fo [1]. Figure 4b depicts the considered rotational states for

Envisat; a note is made relative to tumbling profile (TP) 3,

in which the spin axis is configured at a 45 deg angle with

H-bar but is simultaneously fixed in the inertial frame. Since

Envisat’s orbit is approximately circular, this results in the spin

axis demonstrating an axial precession with period equal to

the orbital period, or 3.59 deg min−1. Apart from the guidance

and tumbling profiles, additional variation is added via the

approach vector (see Tab. II), where the V-bar case features

a black, deep-space background, and the R-bar case contains

Earth in the field of view (FOV). Lastly, Figures. 4c–4e display

uncropped frames of one Astos dataset sequence following

GP1 at different relative ranges, to illustrate the apparent size

of the target with respect to the FOV.

2) Training and Testing: A train-test split is performed on

the Astos dataset according to Table II, where one half of the

sequences are used for training and the other half for testing.

TABLE II: Sequence key for the Astos dataset.

Sequence GP TP Approach

Vector

Selection Length (s)

00 1 1 V-bar Train 125

01 1 1 R-bar Test 125

02 1 2 V-bar Test 125

03 1 2 R-bar Train 125

04 1 3 V-bar Train 125

05 1 3 R-bar Test 125

06 2 1 V-bar Test 309

07 2 1 R-bar Train 309

08 2 2 V-bar Train 216

09 2 2 R-bar Test 216

10 2 3 V-bar Test 216

11 2 3 R-bar Train 216

12 3 1 N/A Train 200

13 3 2 N/A Test 200

The split was performed so that the network is trained at

least once on each GP and TP, but the tests include different

combinations thereof.

The sequences are further partitioned for training according

to randomly sampled lengths of {64, 128, 256, 512} seconds.

Clark et al.’s [39] method is used to train the RNN module

whereby each sequence is fed to the network according to a

sliding window. In the present experiments, a window length

of 8 frames with a stride of 4 was utilised.

Image augmentation is performed online (i.e. during training)

on the data in terms of image processing (e.g. random

brightness and contrast, Gaussian blur and noise, random pixel

dropout, etc.) and camera perturbations by manipulating the

image according to a homography computed through a pure

rotation.

Stages 1 and 2 are trained for 100 epochs with a cyclical

learning rate decay of 5 cycles, whereas Stage 3 is trained

for 66 epochs with early stopping and a step learning rate

decay every 9 epochs. Stage 1 samples the dataset for a total

of 10 000 images. The CNN and RNN modules are trained

separately, but sequentially. The Adam optimiser [57] is used.

The final pipeline uses a dropout probability of 0.2, and hidden

and cell states zoneout factors of 0.15 for both.

The DRCNN is implemented from the ground up on

MATLAB version R2019b. The pipeline is trained on a

NVIDIA® Turing® V100 Tensor Core graphics processing

unit (GPU) with a minibatch size of 128.

3) Evaluation: The test results are presented in terms of

the position and attitude error metrics, respectively:

δt̃ := ‖t̂− t‖, (14)

δq̃ := 2 arccos
(

q̂−1 ⊗ q
)

4
, (15)

where •̂ denotes the estimated quantity, ⊗ denotes quaternion

multiplication, and the subscript “4” refers to the scalar element

of the quaternion. Additionally, the position error is also

assessed in terms of the relative range:

δt̃r :=
δt̃

‖t‖
. (16)



Fig. 5: Comparison of estimated position and attitude errors

over time in terms of training stages used for ASTOS/06. The

position error is presented in both unnormalised and normalised

scales. All models are trained on a CNN taking RGB inputs.

(S2-100) Stage 2 trained for 100 epochs. (S2-200) Stage 2

trained for 200 epochs. (S1,S2) Stage 1 and Stage 2. (S1,S2,S3)

Stage 1, Stage 2, and Stage 3.

(a) S2-100 (b) S2-200

(c) S1,S2 (d) S1,S2,S3

Fig. 6: Effect of multistage optimisation illustrated on

ASTOS/06 at time τ = 59.4 s. Each stage progressively

improves the pose estimate in the presence of spurious

reflections, as shown by the model reprojection in green. See

Fig. 5 for key.

For succinctness, the ASTOS/06 sequence is used as a

representative case study, where the errors are plotted as

a function of time, whereas the results for the remaining

sequences are summarised for the complete pipeline in terms

of their mean and median statistics. Since for this sequence

the relative distance is constant (see Fig. 4), δt̃r is illustrated

by adding a second vertical axis to the position error plots.

Evaluation of Multistage Optimisation

To assess each contribution in the proposed multistage

optimisation scheme, the CNN module on its own is first

considered, and trained according to four different schemes:

1) Stage 2 only for 100 epochs [S2-100]; 2) Stage 2 only for

200 epochs [S2-200]; 3) Stages 1 and 2 [S1,S2]; and 4) Stages

1, 2, and 3 [S1,S2,S3]. The RNN is not considered for this

test.

Figure 5 depicts the results of the benchmark on the baseline.

From the overall shape of the plot lines, the periodicity of the

tumbling motion can be clearly discerned. An initial period

Fig. 7: Comparison of estimated position and attitude errors

over time in terms of recurrence for ASTOS/06, benchmarking

the plain CNN against the complete DRCNN, both trained

on Stages 1 and 2. The position error is presented in both

unnormalised and normalised scales. “Classical” refers to the

algorithm in [29]. “SLAB Baseline” refers to the algorithm in

[58]. All models are trained on RGB inputs.

approximately covering the interval τ ∈ [0 ; 60[ s is first noted,

during which the target performs slightly over half a revolution

and the errors are overall higher, culminating in a local peak at

which the solar array reflects Earth’s rim (see Fig. 6). It is then

followed by a second period covering τ = [60 ; 103[ s where

the main body (also known as “bus”) comes back into view

and both shadows and reflections are minimised, hence driving

down the errors. This pattern is repeated twice more throughout

the plot as the target performs a total of three revolutions.

Regarding the position error, the S1,S2 strategy is essentially

on par with S2-100 and S2-200 for the first period, and performs

better than both on the second period. Notably, the benefit of

the dual-stage training can be observed specifically at times

τ = {60, 160, 260} s, where a mitigation of the error spikes

is seen. Training on the three stages (S1,S2,S3) reduces these

peaks even further.

The gains of adopting the proposed method become clearer

looking at the attitude error plot. S2-100 exhibits the higher

error throughout, followed by S2-200. The dual-stage S1,S2

approach further reduces the error, except for peaks at

{45,147,250} s, where it is comparable to the previous mode;

this corresponds to the segments where the target nearly

completes half a revolution and the solar array begins to cover

the main bus. The triple-stage approach can be seen to provide

the steadiest performance. It is also noted that the highest error

peaks for the attitude correspond to those identified for the

position, which S1,S2,S3 mitigates, but does not completely

eliminate.

Evaluation of Recurrent Module

In this section, the performance of the CNN is compared

to the complete DRCNN; Figure 7 plots the estimation results

over time, where the training regime consisted of S1,S2, and

RGB inputs are considered. The DRCNN is successful in

overwhelmingly mitigating the localised position error peaks,

which correspond to points in the trajectory where the solar

array reflections are most intense or it occludes the main



bus, as mentioned in the previous section. This is due to the

LSTM states taking into account the preceding images, thus

preventing sudden jumps in the solution. The mean position

error is reduced approximately by half, bringing the mean

range-normalised error to approximately 1.40 %.

The mean values for the attitude errors, however, are slightly

worse for the RNN-based architecture. Overall, an increase of

0.5 deg–1 deg in the mean error and 1 deg in the median error

is observed. It can be argued that this is an acceptable loss in

performance given the benefit seen for the position estimation.

However, the pipeline could instead be modified to output an

attitude estimate from the CNN alone while processing the

position with the RNN. This is left as future work.

To compare the proposed approach with an indirect for-

mulation, Stanford’s Space Rendezvous Laboratory (SLAB)

CNN [58] was trained on the same Astos dataset split and

benchmarked on this trajectory. As reported in [9], it was

the baseline contribution of the SPEC authors, being only

surpassed by three other entries. Therefore, it is considered a

representative algorithm for the class of indirect approaches. It

consists of two subnetworks: an object detector and a keypoint

regressor. As expected, the error profiles are noisy since there

are no temporal constraints applied. In particular, it oscillates

more than ChiNet’s CNN profile, suggesting that depending on

two subnetworks introduces an additional error source. More

importantly, the SLAB baseline solution “blows up” around

the three periods highlighted previously (see the analysis of

Fig. 5), reaching errors as high as 340 m for the position and

180 deg for the attitude. These correspond to frames where

the number of visible keypoints is minimal, highlighting the

disadvantages of this type of approach in such situations.

Finally, the peformance is compared against the classic

ML-based algorithm developed by the authors in [29] (herein

referred to as “classical”), which uses a combination of IP-

based feature detection and description techniques in the visible

modality, robust optimisation, and Kalman filtering. For the

position benchmark, the classical solution reaches a maximum

error of 2.5 m only and exhibits fewer fluctuations compared to

the CNN. However, the mean error of the former (δt̃r = 3.59 %)

is 2.14 percent points higher than the latter’s. The DRCNN

benchmark curve stays below both throughout virtually the

whole sequence. Regarding the attitude benchmark, however,

the deep learning-based solutions display lower robustness

compared to the classical method, which sees a decrease in

the mean error by 1.28 deg and 2.36 deg with respect to the

CNN and DRCNN, respectively.

Evaluation of Multimodal Inputs

In this section, the influence of augmenting the RGB input

produced by regular camera with an image in the LWIR,

thus creating a four channel multimodal RGBT input, is

assessed. Two models are trained for comparison, one with

inputs exclusively on the visible modality, and another with

multimodal inputs. Both models are trained on Stages 1 and 2.

Again, the RNN is not considered for this test so as to separate

the effect of each contribution. The results are depicted in

Figure 8.

Fig. 8: Comparison of estimated position and attitude errors

over time in terms of imaging modality for ASTOS/06,

benchmarking RGB inputs against the multimodal RGBT. The

position error is presented in both unnormalised and normalised

scales. All models are trained on a CNN and Stages 1 and 2.

TABLE III: Summary of position and attitude error statistics

on all Astos dataset rendezvous test sequences for the complete

DRCNN pipeline, trained on Stages 1, 2, and 3. All tests use

multimodal RGBT inputs. “SD” denotes standard deviation.

Sequence
δt̃ (m) δt̃r (-) δq̃ (deg)

Mean SD Median Mean SD Median Mean SD Median

01 3.45 1.75 3.51 0.0455 0.0222 0.0472 7.49 6.89 4.80

02 4.05 1.49 4.23 0.0583 0.0210 0.0616 8.67 10.46 4.53

05 3.09 1.79 3.12 0.0465 0.0329 0.0455 14.12 15.46 8.63

06 0.24 0.14 0.23 0.0048 0.0027 0.0046 1.85 0.70 1.80

09 0.33 0.39 0.24 0.0065 0.0075 0.0048 2.09 2.10 1.26

10 0.67 0.36 0.63 0.0133 0.0070 0.0125 10.61 6.92 9.02

13 0.29 0.25 0.21 0.0058 0.0049 0.0041 3.52 2.25 2.77

The contribution of the multimodality can be seen imme-

diately from the figure, where the plots of both position and

attitude errors in time exhibit more stability for RGBT inputs

compared to RGB inputs. Notably, not only are the reflection-

induced peaks mitigated, but the errors corresponding to the

approximate first half of the tumbling period are as well.

Overall, the mean position error is reduced in almost 80 %

by using multimodal inputs, granting a mean range-normalised

position error below 0.5 %, compared to 2.5 % for visible only.

The mean attitude error is halved, becoming slightly lower

than 1 deg.

Summary of Performance

Table III compiles the error statistics for the performance

of the complete multimodal DRCNN framework on the entire

Astos test dataset. The performance on the nominal sample

sequence is plotted for comparison with the previous sections.

For completeness, the results on ASTOS/02 are also graphed

against time to evaluate ChiNet’s behaviour on a sub-optimal

case. Both plots are juxtaposed in Figure 9. Lastly, results on

ASTOS/06 are illustrated qualitatively in Figure 1a (Fig. 1b

showcases those on ASTOS/13).

Beginning with ASTOS/06, it can be seen that ChiNet

provides an estimate of the position with an error bound at

0.6 m, scoring on average a mean δt̃r = 0.49 %. The classical

solution [29], on the other hand, reached maximum values of

2.5 m (refer again to the red curve in Fig. 7). For this trajectory,

ChiNet presents an improvement of around 2.2 percentage



Fig. 9: Estimated position and attitude errors over time for the

complete multimodal DRCNN on two trajectories. (Left) Good

fit. (Right) Challenging fit.

points in terms of mean range-normalised position error. The

classical solution performs better in terms of mean attitude

error (0.78 deg). Still, ChiNet produces a solution not exceeding

2 deg in error.

Considering the remaining sequences within GP2 (fixed

relative range), it can be seen that the quality of the solution

degrades as more challenging rotation modes are considered.

The estimation of the attitude appears to be more affected by

this factor. For mode TP2 (two-axis rotation), the pose errors

are comparable to TP1, even despite the benchmark of the

former being performed on an R-bar approach vector (i.e. with

Earth in the FOV). Mode TP3 (precession) experiences by far

the largest degradation, with the mean attitude error exceeding

10.5 deg. On sequences featuring this rotation mode, the edge

of the solar array leaves the FOV for a considerable amount

of time, which could explain the higher error.

Overall, GP1 trajectories (forced translation) exhibits reduced

performance when compared to GP2. For this profile, ChiNet

produces estimates of the position with mean δt̃r not exceeding

5.5 %. The mean attitude error is less affected by the change in

guidance profile, being 1.5–4 × higher with respect to GP2. This

was expected since the network sees far more examples of the

relative pose at a distance of 50 m than at larger distances. The

drop in performance can be noted from the benchmark curves

of ASTOS/02. This sequence exhibit the highest position

estimation errors in the test set, oscillating between 3–9 % in

relative units throughout most of the sequence, before greatly

decreasing towards the end when the target-chaser distance

nears 50 m. Interestingly, the error is also lower during the first

tenth of the trajectory, which could be explained by the initial

attitude configuration (and resultant projection of the object

on the FOV) facilitating the position estimation.

Indeed, a position-attitude coupling can be ascertained

since ASTOS/02 shares the same TP with ASTOS/09 but a

different GP, and showcases a transient attitude error reaching

∼40 deg. Nevertheless, it is noted that, once past the peak

at time τ = ∼6 s, the attitude estimate begins to converge,

TABLE IV: Sequence key for the City dataset.

Sequence GP Initial
dist. (m)

Final dist.
(m)

Rotation
(rev)

Length (s)

00 Fixed 3.8 3.8 2 120

01 Fixed 1.1 1.1 2 120

02 Translation 3.8 1.1 0.5 30

03 Translation 3.8 2 0.5 30

Fig. 10: Sample images from the City dataset (cropped for

visualisation purposes). (Top row) Visible modality. (Bottom

row) LWIR modality.

reaching a steady state error at τ = ∼45 s which is comparable

to the other good fits. Despite being a challenging fit, ChiNet’s

modular approach prevents the solution from fully diverging. In

terms of mean values for ASTOS/02, ChiNet’s δt̃r = 5.47 %

is approximately 2.7 percent points higher than the output of

the classical algorithm. The mean attitude error higher by a

factor of 3.4 ×.

B. Experimental Dataset

1) Description: Lastly, the performance of the complete

ChiNet pipeline is assessed on real data acquired from the

Autonomous Systems and Machine Intelligence Laboratory

(ASMIL) at City, University of London (herein referred to

as “City dataset”). This test provides insight on how well the

deep learning framework can adapt to data captured by actual

sensors, and to the sources of error a laboratory setup brings

(e.g. camera calibration; ground truth measurement; camera

misalignments; camera synchronisation; sensor noise). It also

evaluates how the network fares against previously unseen

motion when trained on reduced amounts of data.

The City dataset consists of a multimodal collection of

four rendezvous sequences with a 1:4 scale mock-up of the

Jason-1 satellite. The mock-up rotates along its vertical axis at a

constant rate of 6 deg s−1. Despite having a different form factor,

Jason-1 is similar to Envisat in terms of components (i.e. main

bus coated in multi-layer insulation [MLI], thermal radiators,

solar array, radiometric instruments). In total, four trajectory

types are considered. Table IV summarises the characteristics

of each sequence, and Figure 10 shows some sample images

from the dataset in each modality.

Trajectories are acquired for simulation of both sunlight and

eclipse conditions. On the visible spectrum, this is controlled

respectively by aiming a floodlight directly at the target, or by

aiming it at a nearby wall, creating a dimly lit environment.

On the LWIR spectrum, the model’s temperature is controlled

by internal resistor heaters in the main bus and by an external

heater. The thermal signature of the model is made to coarsely

match that of Envisat in both illumination conditions. Images



Fig. 11: Validation setup of the ASMIL at City, University of

London.

Fig. 12: Estimated position and attitude errors over time on the

CITY/03 laboratory test rendezvous sequences. The model is

trained on the full DRCNN pipeline with multimodal RGBT

inputs and on Stages 1, 2, and 3.

are acquired at a resolution of 744 px × 490 px and frequency

of 10 Hz (software synchronised). The visible and thermal

cameras are aligned and set up in a stereo configuration with a

very short baseline to minimise disparity. The ground truth is

recorded with a six-camera OptiTrack motion capture system.

Using the ground truth and the CAD model of the target, the

background is digitally masked out to simulate a deep space

background. Figure 10 depicts some sample frames of the

dataset, whereas Figure 11 showcases the experiment setup at

ASMIL.

2) Training and Testing: The methodology follows analo-

gously from Section IV-A. The pipeline is trained on CITY/00,

CITY/01, and CITY/02, and is evaluated on CITY/03.

Figure 12 illustrates the evolution in time of the position

and attitude estimation errors for the test sequence CITY/03.

Figure 13 qualitatively illustrates these results. It can be

observed that the position error is bounded at 35 cm throughout

the trajectory, except for the initial transient period. The mean

and median error are shown to be approximately half of that,

which corresponds to a figure below 6.5 % of range. The

attitude error is kept below 10 deg for the first 85 % of the

Fig. 13: Qualitative pose estimation performance on frames of

the CITY/03 laboratory test rendezvous sequences.

sequence, demonstrating that the network is mostly able to

separate the translational motion from the rotational one; a

degradation of the estimate is observed during the last 4 s, when

the target reaches a rotation of 180 deg around the spin axis

and the error peaks at about 20 deg, which can be explained by

the fact that the training data is biased towards an observation

of that specific attitude for larger relative distances. The mean

error is approximately 5.5 deg (resp. 3.97 deg median).

V. CONCLUSION

This paper presented ChiNet: a contribution towards deep

learning-based, end-to-end, multimodal spacecraft pose estima-

tion for orbital NCRV. The proposed method employs a CNN as

a front-end feature extractor and applies an LSTM-based RNN

back-end to model the temporal relationship between incoming

frames from an optical camera. Furthermore, RGB images are

augmented with those captured in the LWIR band, granting a

feature-rich input beyond the visible. The full pipeline is trained

according to an innovative multistage optimisation scheme that

categorises the learning process in a coarse to fine fashion.

Each of the proposed contributions was individually tested on

realistic synthetic data. The addition of the coarse training stage

was demonstrated to mitigate spikes in the pose estimation

errors originating from sharp reflections of both Earth and

sunlight on the solar array. Including the keypoint-based

refinement stage improved the average position and attitude

errors. The recurrent module eliminated sharp jumps in the

estimate of the position, reducing the mean error by half. The

inclusion of multimodal RGBT image inputs was shown to

improve the mean position error in nearly 80 % and to reduce

the mean attitude error in half.

Overall, ChiNet was shown to generalise well to unseen

trajectories, benchmarking a mean range-normalised position

error of 2.5 % per average trajectory and a mean attitude

estimation error of 6.9 deg per average trajectory on the

sequences of the Astos dataset. The simplest case was shown to

be comparable to the classical solution developed in [29], even

surpassing it in terms of position estimation performance. In

contrast, the solution generated from an indirect-based network

was shown to blow up under the same conditions. Challenging

cases were identified for which sub-optimal fits were attained,



showing room for improvement, but the proposed methodology

was demonstrated to avoid divergence nonetheless. The pipeline

required no localisation or segmentation preprocessing to

produce an accurate solution. Lastly, the proposed work

was benchmarked on experimental data, demonstrating the

capability of the network to learn novel situations under a

reduced training regime.

Future work might investigate the robustness of the frame-

work towards non-nominal illumination conditions. Another

potential avenue to investigate could be tackling the problem

of bridging the domain gap in the context of spacecraft pose

estimation via adaptation or randomisation, whereby a deep

network is trained with synthetic images and tested on real data,

as the latter are typically scarce prior to the actual mission,

but the former can be generated in large quantities.
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