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Abstract: The analysis of residual life expectancy evolution at retirement age holds great importance
for life insurers and pension schemes. Over the last 30 years, numerous models for forecasting mor-
tality have been introduced, and those that allow us to predict the mortality of two or more related
populations simultaneously are particularly important. Indeed, these models, in addition to improv-
ing the forecasting accuracy overall, enable evaluation of the basis risk in index-based longevity
risk transfer deals. This paper implements and compares several model-averaging approaches in a
two-population context. These approaches generate predictions for life expectancy and the Gini index
by averaging the forecasts obtained using a set of two-population models. In order to evaluate the
eventual gain of model-averaging approaches for mortality forecasting, we quantitatively compare
their performance to that of the individual two-population models using a large sample of different
countries and periods. The results show that, overall, model-averaging approaches are superior both
in terms of mean absolute forecasting error and interval forecast accuracy.

Keywords: model averaging; mortality forecasting; two-population models; life expectancy;
Gini index

1. Introduction

In recent decades, as a consequence of life expectancy improvements and social and
behavioural changes that have taken place in various countries, pension funds, annuities,
and other insurance products that provide retirement income have become increasingly
important. However, since these products are subjected to longevity risk, which refers to
the systematic trend of mortality rates decreasing over time, it has become necessary to
find effective models for forecasting mortality rates. Notably, several models have been
developed to address this issue, including the Lee-Carter model (Lee and Carter 1992),
its extension the Renshaw-Haberman model (Renshaw and Haberman 2006), the Cairns-
Blake-Dowd model (Cairns et al. 2006) and its extensions—the M6, M7, and M8 models
(Cairns et al. 2009)—and the Plat model (Plat 2009). In all these models, the mortality rates
depend on two types of quantities: fixed parameters that represent the effect of age on
the mortality and stochastic factors that represent the effect of cohort year and calendar
year. All these quantities must be estimated using statistical techniques based on past data.
Finally, the mortality rates are forecasted, extrapolating the stochastic factors on the more
recent period. Originally, these models had been designed to forecast the mortality rates of
single populations. Later, they were implemented in a multi-population framework by Li
and Lee (2005). This class of models has become increasingly popular because it allows
researchers to work simultaneously with different populations that are to some extent
related (e.g., males and females in the same country or region), obtaining coherent forecasts;
see Dowd et al. (2011), Li (2013), Yang et al. (2016), Enchev et al. (2017), and Shang et al.
(2022). This means that these models are able to respect limitations and constraints that we
set such as the biological ones like the sex gap between the life expectancy of females and
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males. As an instance of practical application, we can refer to the longevity risk transfer
products where it is necessary to quantify the basis risk that is the systematic difference
between the population mortality and the pension fund mortality; see Villegas et al. (2017).

As researchers continue to make progress in developing single-population and multi-
population mortality forecasting models, there has also been a growing interest in model-
averaging approaches in recent years; see Shang et al. (2011), Shang (2012), and Benchimol
et al. (2016). The idea behind them is that forecasts are obtained by averaging models’
predictions using various weighting schemes. By adopting a model-averaging approach,
we can avoid some potential drawbacks of using single or multi-population mortality
forecasting models; see Hinne et al. (2020) and Benchimol et al. (2016). These models are
affected by a sort of over-confidence in that they assume the selected model is the only one
correct and will produce precise forecasts in any situation. This implies an all-or-nothing
mentality. They could lead to large-scale forecasting errors (outliers) and incoherence: in
the presence of new data (mortality rates of a different country, for instance), the selected
model may no longer be optimal among those studied. Indeed, the model accuracy, on
which optimal model selection depends, is heavily influenced by the dataset used in the
selection process.

This paper aims at introducing and comparing model-averaging approaches in a two-
population mortality forecasting context and quantitatively evaluating them, highlighting
their differences and comparing them to specific two-population models. We used truncated
life expectancy and the Gini index as metrics to capture the location and dispersion of the
residual lifetime distribution. Our main conclusions are that a simple, equally weighted
approach performs just as well as more sophisticated averaging approaches, and model-
averaging approaches are overall superior in terms of mean absolute forecasting error and
interval forecast accuracy to most common two-population models by considering a range
of combinations of test and training periods and countries.

The remainder of this paper is organised as follows. In Section 2, we revisit some
existing stochastic multi-population models in the literature with a particular focus on the
two-population case. In Section 3, model-averaging approaches applied to two-population
mortality forecasting are introduced from a theoretical point of view. In Section 4, we list
the datasets that we use in our practical examples. In Section 5, the procedure implemented
to obtain the quantitative results is described step-by-step. In Section 6, the results are
presented and discussed. Finally, in Section 7, we summarise the most important findings
of the previous sections and provide a future outlook.

2. Two-Population Mortality Models

Let us consider two populations, denoted by p = m, f , that represent males and
females of one specific country, and assume that for both of them, the force of mortality
is constant over each calendar year and age, so that the force of mortality coincides with
the central death rate m(p)

x,t . The number of deaths D(p)
x,t in population p, year t, and age x,

conditionally on the central death rate m(p)
x,t , is assumed to follow a Poisson distribution:

D(p)
x,t ∼ Po(N(p)

x,t m(p)
x,t ), (1)

where N(p)
x,t is the central exposure to risk. In order to forecast central death rates, several

models have been proposed in the last three decades following the original idea of Lee
and Carter (1992). In all these models, the natural logarithm of mortality rates m(p)

x,t , or of

probability of death q(p)
x,t ,1 is expressed as a function of two different types of quantities:

time-dependent stochastic factors and age-dependent parameters. A relevant selection of
these models is considered in this paper in their two-population form and summarised in
Table 1.2 More precisely, in any given population, the mortality rates of both females (m f

x,t)
and males (mm

x,t) are specified by one of the equations in 1–9 in Table 1. These models can
be broadly classified as follows: models where the age is treated as categorical (1, 2, 8, and
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9), as a quantitative variable (3–6) or hybrid (7); models which consider a cohort effect (2,
4, and 7) or not; models with a stochastic time factor common to both females and males
populations (8 and 9) or models where the dependence between sexes only stems from the
correlation in stochastic time factors; and models with one (1, 2, and 8), two (3, 4, 6, 7, and
9) or three stochastic time factors (5).

Table 1. Summary of multi-population models used. Here κ
(i,p)
t , i = 1, 2, 3, κt, and κ

(p)
t are time-

varying stochastic factors; γ
(p)
t−x are cohort-related stochastic factors; β

(i,p)
x , i = 1, 2, 3, and β

(2)
x are

age-specific parameters; x̄ = 1
m+1 ∑m

i=0 xi is the mean age over the population age range; σ̂2
x =

1
m+1 ∑m

i=0(xi − x̄)2 is the age variance; and finally x(p)
c is an arbitrary fixed age.

Model ln(m(p)
x,t )

1. Lee–Carter model (LC) β
(1,p)
x + β

(2,p)
x κ

(2,p)
t

2. Renshaw–Haberman model (RH) β
(1,p)
x + β

(2,p)
x κ

(2,p)
t + γ

(p)
t−x

3. Cairns–Blake–Dowd model (CBD) κ
(1,p)
t + κ

(2,p)
t (x − x̄)

4. CBD Model with a cohort effect (M6) κ
(1,p)
t + κ

(2,p)
t (x − x̄) + γ

(p)
t−x

5. CBD Model with quadratic and cohort effects (M7) κ
(1,p)
t + κ

(2,p)
t (x − x̄) + κ

(3,p)
t ((x − x̄)2 − σ̂2

x ) + γ
(p)
t−x

6. CBD Model with an age-dependent cohort effect (M8) κ
(1,p)
t + κ

(2,p)
t (x − x̄) + γ

(p)
t−x(x(p)

c − x)

7. Plat model (PLAT) β
(1,p)
x + κ

(1,p)
t + κ

(2,p)
t (x − x̄) + γ

(p)
t−x

8. Common Factor Model (CF) β
(1,p)
x + β

(2)
x κt

9. Augmented Common Factor Model (ACF) β
(1,p)
x + β

(2)
x κt + β

(2,p)
x κ

(2,p)
t

2.1. Model Estimation

The parameters of the models in Table 1 are usually estimated by maximizing the joint
Poisson log-likelihood:

ℓ = ∑
p

∑
x

∑
t

{
d(p)

x,t ln(N(p)
x,t m(p)

x,t )− N(p)
x,t m(p)

x,t − ln(d(p)
x,t !)

}
(2)

where d(p)
x,t are the observed deaths in population p, year t, and age x. The mortality rates

m(p)
x,t for each model can be obtained from the corresponding equations in Table 1. The

optimisation is performed using numerical algorithms. Note that for models 1–7, the
log-likelihood for each population can be maximised separately.

2.2. Stochastic Factor Assumptions

From Table 1, it can be seen that the models considered depend on a number of
stochastic factors. More precisely, each model contains a combination of (one or more of)
the following terms: population-specific time indices κ

(i,p)
t , common time index κt, and

population-specific cohort effects γ
(p)
t . Inspired by Li et al. (2015), for the time indices κ

(i,p)
t

(models 1–7, 9) we consider a combination of a random walk with drift and first-order
autoregression AR(1). The rationale of this choice is that there is a stable relation between
the period indices of males and females.

• κ
(i,m)
t = µ(i,m) + κ

(i,m)
t−1 + Z(i,m)

t , i = 1, 2, 3

• κ
(i, f )
t = κ

(i,m)
t + ϕ(i, f )(κ

(i, f )
t−1 − κ

(i,m)
t−1 ) + Z(i, f )

t , i = 1, 2, 3

where µ(i,m) are the drift parameters, ϕ(i, f ) are the autoregressive parameters, and (Z(i,p)
t )p=m, f

are normal iid innovations.
For the time index κt (models 8–9), we consider a random walk with drift:

• κt = µ + κt−1 + Zt,

where µ is the drift parameter, ϕ is the autoregressive parameter, and Zt are normal iid
innovations.
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Finally, for the cohort terms γ
(p)
t−x (models 2, 4–7), we consider a combination of

ARIMA(1, 1, 0) (see Villegas et al. (2017) and Dowd et al. (2010)) and first-order autoregres-
sion AR(1) (see Li et al. (2015)). Again, the rationale is that there is a stable relation between
the cohort effects of males and females.

• γ
(m)
u = (1 + ϕ(m))γ

(m)
u−1 − ϕ(m)γ

(m)
u−2 + Y(m)

u

• γ
( f )
u = γ

(m)
u + ϕ( f )(γ

( f )
u−1 − γ

(m)
u−1) + Y( f )

u

where ϕ(m) and ϕ( f ) are the autoregressive parameters of the process, while (Y(p)
u )p=m, f are

normal iid innovations.
In models 1–7, the dependence between female and male mortality is derived from

the autoregressive components. In model 8, the dependence is given by the shared time
index κt between female and male populations. In model 9, the dependence is derived by
both the shared time index and the autoregressive component.

3. Model-Averaging Approaches

Suppose we have historical data on mortality for the period [t0, ts], and we are in-
terested in forecasting some mortality metric on the period [ts+1, tn]. The purpose of
model-averaging approaches is to obtain forecasts of a given metric

U(p)
t = f ((m(p)

x,t )x=0,...,ω−1) (3)

that can be expressed as a function of mortality rates, where ω is the ultimate age, as an
average of the forecasted metrics obtained using L different models. Notice that in this
paper, we consider individual models listed in Table 1, and L = 9. As an example of the
metric U(p)

t , we can use the j-years survival probability j p
(p)
x,t = exp{−(m(p)

x,t + m(p)
x+1,t +

· · ·+ m(p)
x+j−1,t)}.

Let the metric of interest for the population p, in year t, and model l be

Û(p,l)
t = f ((m̂(p,l)

x,t )x=0,...,ω−1), l = 1, . . . , L (4)

where m̂(p,l)
x,t is the forecasted mortality rate at age x, for the population p, in year t, ob-

tained using model l. Following Fletcher (2018) and Shang (2012), the averaged metric is
calculated as

Û(p,average)
t = λ1Û(p,1)

t + · · ·+ λLÛ(p,L)
t (5)

where λL, . . . , λL are non-negative weights calculated based on the model-averaging ap-
proach considered dependently on the performance of the models in the validation period.
In this paper, we consider the following four model-averaging approaches:

• Equal weights (EW):

λEW
l =

1
L

, l = 1, . . . , L. (6)

This method is the most simple, as all models are assigned the same weight; see
Shang (2012). There is no penalisation or reward depending on the performance in the
validation period.

• Proportional weights (PW):

λPR
l =

1
gl

∑L
k=1

1
gk

, l = 1, . . . , L (7)

where gl = g(Û(p,l)
t , U(p,l)

t ; p = m, f ; t = ts − h + 1, . . . , ts) is a strictly positive perfor-
mance measure representing the performance of the model l in the validation period
[ts − h + 1, ts]; see Shang (2012). In this way, models that have poor performance in
the validation period are penalised with smaller weights.
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• Weights based on the the softmax function (SM):

λSM
l =

exp{−gl}
∑L

k=1 exp{−gk}
, l = 1, . . . , L. (8)

The concept is similar to the proportional weights model-averaging approach, but
here we penalise less the models with poor performance in the validation period and
reward less the models with good performance. See also Benchimol et al. (2016) for a
similar formulation.

• Weights based on trimming (TR):

λTR
l =

{
1
L̂

, if l is among the L̂ best models in the validation period,

0, otherwise,
(9)

where the best models are determined in terms of the measure gl ; see Samuels and
Sekkel (2017) and Shang (2012). With this method, we reward only the L̂ models that
have the best performance in the validation period, assigning the same weight ( 1

L̂
) for

each one of them. In the following, we set L̂ equal to 3.

In the remainder of this paper, for the definition of measure g used to evaluate the
models’ performance in the validation period, we adopt the mean absolute forecasting
error (MAFE)

MAFEl =
∑p=m, f ∑ts

t=ts−h+1 |Û
(p,l)
t − U(p,l)

t |
P · h

(10)

where ts−h+1 and ts are the first and last years of the validation period. Notice that
alternative measures could also have been considered. For example, one that also takes
into account the number of parameters in the model.

Finally, regarding the metric in (4), we choose the residual life expectancy at age 55 trun-
cated at age 90, which represents a location metric of mortality rates; see Dickson et al. (2019),

e̊55:35 ,t =
35

∑
j=1

j−1 p55,t(1 −
1
2

q55+j−1,t) (11)

and the Gini index, calculated between 55 and 89, that represents the dispersion of mortal-
ity rates

G55:35 ,t =
1

2e̊55:35 ,t

89

∑
x=55

89

∑
y=55

x−55|1q55,t y−55|1q55,t | x − y | . (12)

The Gini index is a metric that varies between the limits of 0 (perfect equality) and
1 (perfect inequality). For a length of life distribution, it is equal to zero if all individuals
die at the same age and equal to one if all people die at age 0 and one individual dies at
an infinitely old age. The choice of the Gini index as a metric representing the dispersion
of mortality depends on the fact that, unlike other metrics such as interquartile range,
variance, and standard deviation, it possesses all the desirable properties for an inequality
index: population-size independence, mean or scale independence, and transfer principle;
see Shkolnikov et al. (2003) for more details.

4. Data

In the following, we implement the multi-population models and the model-averaging
approaches with historical mortality data from ten pairs of populations, namely the female
and male populations of Australia, Canada, France, England and Wales, Italy, Japan,
Netherlands, Spain, Sweden, and the US. The choice of these countries depends on the
fact that they are developed with large populations, and their data are complete and easily
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obtainable in the Human Mortality Database (HMD). For these countries, we considered
the age range between 55 and 89 for the mortality rates. The reason for this choice derives
from the fact that most of the deaths are concentrated after the age of 55 years and that
after the age of 90 years, we have fewer data, especially for the older cohorts, so this could
lead to biased estimations of the models. Furthermore, we note that, at ages over 90, there
is evidence of age misstatements that may lead to biased estimates of mortality indices.
Moreover, this age range is the most relevant from an actuarial point of view; see Cairns
et al. (2006). Finally, concerning the periods considered, we have two cases: in the first
one, we have a 30-year rolling training period from 1950–1979 to 1975–2004 and a 15-year
rolling test period from 1980–1994 to 2005–2019 (last year for which the data are available
at the time of writing this paper); in the second one, we have a variable length training
period from 1966–2004 to 1985–2004 and a 15-year fixed test period 2005–2019.

5. Implementation
Step-By-Step Procedure

For a generic country, training period [t0, ts], and test period [ts + 1, tn] (see Figure 1),
we follow the steps listed below:

1. First stage

1.1 We fit the two-population models (LC, RH, CBD, PLAT, M6, M7, M8, CF, and
ACF) on the period [t0, ts − 10] (training period 1) using the StMoMo package;
see Villegas et al. (2018). Notice that this implies h, i.e., the length of the
validation period, is set equal to 10.

1.2 We simulate mortality rates for the period [ts − 9, ts] (validation period) using
the models fitted in 1.1.

1.3 We calculate the corresponding truncated life expectancy and Gini index for
each model as functions of the mortality rates obtained in 1.2 using Formu-
las (11) and (12).

1.4 We repeat steps 1.2 and 1.3 1000 times, and we obtain the forecasted truncated
life expectancy and Gini index as the average of these for each model.

1.5 We calculate the MAFE as the difference between forecasted truncated life ex-
pectancy and Gini index calculated in 1.4 and the historical ones (Formula (10))
for each model.

1.6 We calculate the weights of each model-averaging approach based on the
MAFEs calculated in 1.5 using Formulas (6)–(9).

2. Second stage

2.1 We repeat step 1.1 using the period [t0, ts] (training period 2) instead of [t0, ts − 10].
2.2 We repeat steps 1.2 and 1.3 using the period [ts + 1, tn] (test period) instead of

[ts − 9, ts].
2.3 We repeat step 2.2 10,000 times3 and we obtain the forecasted truncated average

life expectancy and Gini index as the average of these for each model.
2.4 For each model-averaging approach, we carry out 1 simulation from a multi-

nomial distribution with parameters equal to 10,000, 9, and the vector of the
weights obtained in 1.6. The result of this simulation will be a vector with 9
elements, which sum to 10,000, that represent the number of truncated life ex-
pectancy and Gini index trajectories that are considered in the model-averaging
approach from the 9 two-population models.

2.5 Using the results of the simulation at point 2.4 as parameters, we resample by
bootstrapping from the truncated life expectancy and Gini index trajectories
obtained in step 2.3, and we average them using Formula (5) obtaining the
forecasted truncated life expectancy and Gini index for all the model-averaging
approaches. Similarly, we take the 5th and 95th percentile to build the 90%
confidence forecasting intervals for the two metrics. See Figure 2 for an exam-
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ple of forecasted life expectancy and Gini index using the model-averaging
approach with equal weights.

2.6 We calculate the MAFE as the difference between the forecasted truncated life
expectancy and the Gini index calculated in 2.3 and 2.5 with the observed ones.
Similarly, we compare the confidence forecasting intervals of the two metrics
with the observed values in order to obtain the interval forecast accuracy
that represents the proportion of times in which the observed truncated life
expectancy and Gini index fall within the respective prediction intervals.

Figure 1. An illustration of the training, validation, and test periods to train and evaluate the models.

Figure 2. Example of forecasted truncated life expectancy and Gini index, the respective 90%
prediction intervals, and the observed values of the two metrics (points). Training period: 1950–1979.
Test period: 1980–1994. Country: England and Wales. Model-averaging approach: equal weights.

6. Results

Following Shang (2012), in order to evaluate the performance of each model, we must
consider the goodness of both point and interval forecasts. For the first one, we consider
the mean absolute forecasting error (MAFE; see Formula (10)), while for the second one, the
interval forecast accuracy, here defined as the proportion of cases in which the observed life
expectancy or Gini index falls within the 90% confidence forecasting interval, is considered.
In Figure 3, we can find boxplots summarising the mean absolute forecasting errors for life
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expectancy and the Gini index obtained by all the models and model-averaging approaches
previously mentioned in the rolling test period case. Figure 4 shows, for the rolling test
period case, which is the best model, i.e., the one with the lowest MAFE, by period, country,
and metric. Figures 5 and 6 have the same content as Figures 3 and 4 respectively, but for the
fixed test period case. Finally, Tables 2–5 and 6–9 report the interval forecast accuracy of the
models by period, country, and metric, respectively, for rolling and fixed test period cases.

Figure 3. Summary of the MAFEs by model. Results for individual models and corresponding
weighted average. Rolling test period case.
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Figure 4. Model with the lowest MAFE by period and country. Results for individual models and
model-averaging approaches. Rolling test period case.

Figure 5. Cont.



Risks 2024, 12, 60 10 of 17

Figure 5. Summary of the MAFEs by model. Results for individual models and corresponding
weighted average. Fixed test period case.

Figure 6. Model with the lowest MAFE by period and country. Results for individual models and
model-averaging approaches. Fixed test period case.
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Table 2. Interval forecast accuracy by period. Proportion of cases in which the observed life expectancy
falls in the forecasting interval. Dark shades of green and red signify higher interval forecast accuracy,
whereas lighter shades denote lower interval forecast accuracy. Rolling test period case.

Training Period Test Period LC CBD M6 M7 M8 PLAT RH CF ACF MA E.W MA PR.W MA S.M MA TR
1950–1979 1980–1994 83% 84% 95% 84% 77% 95% 71% 82% 91% 100% 98% 100% 96%
1951–1980 1981–1995 82% 89% 95% 83% 81% 91% 71% 81% 86% 99% 98% 99% 96%
1952–1981 1982–1996 83% 87% 90% 79% 81% 88% 72% 81% 86% 99% 98% 99% 97%
1953–1982 1983–1997 81% 84% 91% 83% 79% 86% 81% 84% 84% 99% 98% 98% 96%
1954–1983 1984–1998 75% 81% 87% 75% 76% 82% 77% 77% 79% 98% 97% 97% 95%
1955–1984 1985–1999 86% 87% 92% 83% 84% 92% 87% 88% 86% 99% 98% 99% 97%
1956–1985 1986–2000 80% 82% 83% 77% 80% 78% 86% 75% 76% 98% 98% 98% 95%
1957–1986 1987–2001 81% 82% 85% 80% 80% 84% 88% 77% 76% 98% 97% 98% 96%
1958–1987 1988–2002 82% 83% 87% 77% 83% 82% 92% 82% 80% 98% 97% 98% 95%
1959–1988 1989–2003 79% 80% 76% 74% 81% 74% 90% 75% 75% 96% 95% 96% 92%
1960–1989 1990–2004 78% 84% 85% 76% 80% 80% 95% 77% 74% 97% 97% 97% 91%
1961–1990 1991–2005 86% 88% 79% 75% 89% 82% 89% 81% 81% 97% 97% 97% 96%
1962–1991 1992–2006 85% 89% 81% 75% 85% 82% 87% 79% 78% 96% 97% 97% 96%
1963–1992 1993–2007 86% 85% 79% 75% 83% 81% 84% 76% 82% 98% 97% 97% 90%
1964–1993 1994–2008 76% 79% 61% 59% 83% 63% 86% 66% 73% 91% 92% 92% 86%
1965–1994 1995–2009 84% 86% 70% 70% 82% 75% 87% 71% 81% 99% 99% 99% 95%
1966–1995 1996–2010 82% 85% 60% 60% 84% 65% 90% 70% 76% 97% 97% 97% 87%
1967–1996 1997–2011 81% 82% 61% 60% 81% 66% 90% 67% 76% 97% 98% 98% 96%
1968–1997 1998–2012 85% 81% 60% 62% 79% 72% 89% 70% 79% 98% 98% 98% 93%
1969–1998 1999–2013 82% 79% 53% 59% 74% 66% 88% 68% 76% 96% 95% 96% 89%
1970–1999 2000–2014 74% 75% 33% 41% 73% 54% 86% 61% 73% 94% 95% 95% 88%
1971–2000 2001–2015 88% 83% 45% 59% 77% 68% 72% 65% 80% 96% 94% 96% 91%
1972–2001 2002–2016 90% 86% 49% 70% 79% 68% 62% 64% 86% 98% 98% 98% 94%
1973–2002 2003–2017 87% 82% 35% 63% 74% 67% 70% 62% 85% 95% 94% 95% 78%
1974–2003 2004–2018 75% 82% 25% 52% 68% 56% 61% 59% 79% 92% 90% 92% 82%
1975–2004 2005–2019 90% 77% 51% 83% 77% 83% 41% 68% 87% 99% 99% 98% 95%

Average 82% 83% 70% 71% 80% 76% 81% 73% 80% 97% 97% 97% 93%

Table 3. Interval forecast accuracy by country. Proportion of cases in which the observed life
expectancy falls in the forecasting interval. Dark shades of green and red signify higher interval
forecast accuracy, whereas lighter shades denote lower interval forecast accuracy. Rolling test
period case.

LC CBD M6 M7 M8 PLAT RH CF ACF MA E.W MA PR.W MA S.M MA TR
AUSTRALIA 90% 94% 82% 95% 96% 84% 91% 92% 91% 99% 99% 99% 97%
CANADA 61% 62% 49% 78% 59% 54% 58% 62% 52% 99% 96% 99% 78%
ENGLAND AND WALES 74% 75% 78% 69% 71% 70% 89% 63% 75% 99% 99% 99% 99%
FRANCE 97% 96% 34% 63% 89% 80% 88% 87% 97% 100% 99% 100% 97%
ITALY 84% 88% 70% 59% 88% 76% 83% 88% 85% 97% 97% 98% 95%
JAPAN 99% 87% 87% 62% 75% 96% 80% 50% 99% 100% 100% 100% 96%
NETHERLANDS 56% 61% 77% 71% 57% 76% 80% 67% 58% 86% 87% 87% 86%
SPAIN 98% 98% 85% 70% 95% 94% 95% 88% 99% 100% 100% 100% 95%
SWEDEN 73% 80% 62% 42% 78% 65% 71% 69% 66% 91% 88% 90% 84%
USA 91% 92% 71% 96% 89% 67% 71% 67% 80% 100% 100% 100% 98%
Average 82% 83% 70% 71% 80% 76% 81% 73% 80% 97% 97% 97% 93%

Table 4. Interval forecast accuracy by period. Proportion of cases in which the observed Gini index
falls in the forecasting interval. Dark shades of green and red signify higher interval forecast accuracy,
whereas lighter shades denote lower interval forecast accuracy. Rolling test period case.

Training Period Test Period LC CBD M6 M7 M8 PLAT RH CF ACF MA E.W MA PR.W MA S.M MA TR
1950–1979 1980–1994 92% 81% 97% 96% 74% 95% 79% 90% 91% 100% 100% 100% 98%
1951–1980 1981–1995 89% 88% 97% 96% 74% 95% 79% 86% 86% 99% 99% 99% 99%
1952–1981 1982–1996 90% 82% 92% 93% 73% 94% 79% 85% 86% 99% 99% 99% 97%
1953–1982 1983–1997 89% 77% 97% 98% 71% 93% 86% 88% 87% 99% 99% 100% 98%
1954–1983 1984–1998 81% 76% 87% 86% 68% 96% 83% 80% 76% 98% 97% 97% 95%
1955–1984 1985–1999 92% 83% 94% 96% 73% 100% 89% 90% 89% 100% 100% 100% 99%
1956–1985 1986–2000 85% 78% 85% 95% 72% 97% 87% 78% 78% 98% 97% 98% 93%
1957–1986 1987–2001 86% 79% 85% 95% 69% 98% 90% 81% 78% 99% 99% 99% 97%
1958–1987 1988–2002 86% 79% 91% 95% 66% 98% 92% 86% 81% 99% 98% 98% 96%
1959–1988 1989–2003 84% 79% 82% 91% 72% 95% 90% 77% 74% 96% 96% 96% 94%
1960–1989 1990–2004 84% 75% 87% 93% 61% 97% 94% 79% 76% 99% 99% 99% 94%
1961–1990 1991–2005 90% 84% 85% 93% 68% 95% 88% 75% 84% 98% 98% 98% 96%
1962–1991 1992–2006 87% 83% 88% 93% 63% 93% 84% 75% 81% 98% 98% 98% 95%
1963–1992 1993–2007 84% 81% 85% 90% 58% 89% 82% 74% 76% 95% 94% 95% 91%
1964–1993 1994–2008 78% 82% 69% 81% 63% 91% 87% 68% 67% 95% 95% 96% 90%
1965–1994 1995–2009 90% 83% 79% 96% 62% 93% 83% 74% 78% 99% 99% 99% 96%
1966–1995 1996–2010 82% 83% 69% 87% 64% 93% 89% 75% 68% 100% 99% 100% 94%
1967–1996 1997–2011 85% 81% 71% 86% 63% 92% 88% 71% 69% 99% 98% 99% 95%
1968–1997 1998–2012 86% 81% 70% 86% 59% 90% 84% 74% 77% 99% 98% 99% 96%
1969–1998 1999–2013 84% 78% 64% 81% 59% 91% 86% 69% 72% 97% 97% 97% 95%
1970–1999 2000–2014 74% 81% 42% 67% 63% 88% 87% 59% 58% 97% 96% 97% 90%
1971–2000 2001–2015 86% 82% 58% 87% 66% 86% 72% 66% 73% 97% 96% 97% 91%
1972–2001 2002–2016 89% 80% 60% 91% 67% 85% 58% 67% 83% 100% 100% 100% 91%
1973–2002 2003–2017 82% 79% 49% 85% 68% 89% 70% 60% 76% 95% 95% 95% 85%
1974–2003 2004–2018 73% 86% 38% 69% 63% 86% 64% 55% 67% 95% 95% 95% 83%
1975–2004 2005–2019 89% 72% 61% 95% 64% 72% 40% 73% 84% 100% 100% 100% 93%

Average 85% 81% 76% 89% 66% 92% 81% 75% 77% 98% 98% 98% 94%
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Table 5. Interval forecast accuracy by country. Proportion of cases in which the observed Gini index
falls in the forecasting interval. Dark shades of green and red signify higher interval forecast accuracy,
whereas lighter shades denote lower interval forecast accuracy. Rolling test period case.

LC CBD M6 M7 M8 PLAT RH CF ACF MA E.W MA PR.W MA S.M MA TR
AUSTRALIA 93% 97% 83% 99% 95% 89% 90% 90% 85% 100% 100% 100% 97%
CANADA 69% 51% 61% 78% 38% 80% 55% 67% 57% 100% 98% 100% 82%
ENGLAND AND WALES 83% 75% 78% 84% 84% 94% 88% 64% 67% 100% 100% 100% 96%
FRANCE 94% 89% 42% 92% 68% 97% 86% 86% 92% 100% 100% 100% 97%
ITALY 88% 95% 84% 91% 78% 95% 82% 87% 79% 99% 99% 99% 98%
JAPAN 93% 83% 89% 96% 56% 98% 84% 46% 88% 100% 100% 100% 100%
NETHERLANDS 59% 56% 80% 83% 47% 91% 82% 75% 66% 91% 90% 91% 85%
SPAIN 98% 98% 88% 92% 71% 97% 95% 91% 97% 100% 100% 100% 100%
SWEDEN 81% 82% 78% 79% 59% 89% 80% 75% 66% 93% 92% 93% 89%
USA 93% 82% 79% 98% 67% 89% 70% 72% 78% 99% 99% 99% 95%
Average 85% 81% 76% 89% 66% 92% 81% 75% 77% 98% 98% 98% 94%

Table 6. Interval forecast accuracy by period. Proportion of cases in which the observed life expectancy
falls in the forecasting interval. Dark shades of green and red signify higher interval forecast accuracy,
whereas lighter shades denote lower interval forecast accuracy. Fixed test period case.

Training Period Test Period LC CBD M6 M7 M8 PLAT RH CF ACF MA E.W MA PR.W MA S.M MA TR
1966–2004 2005–2019 91% 84% 48% 62% 83% 78% 62% 69% 84% 98% 99% 97% 93%
1967–2004 2005–2019 91% 84% 49% 63% 82% 77% 59% 70% 85% 97% 99% 98% 93%
1968–2004 2005–2019 91% 82% 52% 67% 80% 79% 55% 71% 88% 96% 97% 97% 92%
1969–2004 2005–2019 90% 81% 52% 72% 79% 80% 54% 71% 88% 97% 99% 99% 93%
1970–2004 2005–2019 91% 81% 50% 70% 79% 79% 50% 70% 88% 98% 99% 98% 94%
1971–2004 2005–2019 91% 80% 49% 75% 79% 79% 47% 69% 88% 99% 99% 99% 94%
1972–2004 2005–2019 91% 80% 47% 75% 78% 78% 45% 66% 87% 99% 99% 99% 93%
1973–2004 2005–2019 91% 78% 50% 78% 77% 81% 43% 68% 88% 98% 99% 98% 89%
1974–2004 2005–2019 91% 79% 51% 81% 78% 82% 44% 68% 88% 99% 98% 98% 90%
1975–2004 2005–2019 90% 77% 50% 83% 78% 84% 40% 69% 87% 97% 99% 99% 94%
1976–2004 2005–2019 90% 78% 52% 86% 78% 85% 39% 70% 88% 99% 98% 98% 95%
1977–2004 2005–2019 91% 79% 49% 85% 77% 84% 40% 72% 89% 96% 98% 97% 94%
1978–2004 2005–2019 90% 79% 51% 87% 78% 85% 37% 75% 90% 97% 98% 97% 96%
1979–2004 2005–2019 90% 81% 49% 89% 78% 84% 37% 76% 90% 97% 98% 98% 94%
1980–2004 2005–2019 89% 79% 52% 89% 77% 85% 35% 73% 88% 98% 98% 97% 99%
1981–2004 2005–2019 89% 79% 53% 91% 77% 85% 35% 74% 88% 98% 98% 98% 100%
1982–2004 2005–2019 89% 80% 56% 90% 78% 84% 36% 75% 88% 98% 98% 98% 98%
1983–2004 2005–2019 86% 80% 57% 90% 77% 82% 33% 76% 86% 99% 99% 99% 95%
1984–2004 2005–2019 86% 82% 57% 93% 78% 86% 34% 76% 87% 99% 99% 99% 97%
1985–2004 2005–2019 82% 78% 62% 93% 80% 85% 34% 75% 85% 99% 99% 99% 94%

Average 90% 80% 52% 81% 79% 82% 43% 72% 87% 98% 98% 98% 94%

Table 7. Interval forecast accuracy by country. Proportion of cases in which the observed life ex-
pectancy falls in the forecasting interval. Dark shades of green and red signify higher interval forecast
accuracy, whereas lighter shades denote lower interval forecast accuracy. Fixed test period case.

LC CBD M6 M7 M8 PLAT RH CF ACF MA E.W MA PR.W MA S.M MA TR
Australia 96% 100% 71% 100% 100% 98% 37% 95% 99% 100% 100% 100% 97%
Canada 85% 87% 28% 94% 84% 52% 30% 32% 65% 99% 98% 99% 84%
England and Wales 99% 100% 66% 100% 98% 79% 32% 64% 96% 100% 100% 100% 100%
France 90% 54% 18% 89% 64% 97% 33% 98% 92% 100% 100% 100% 99%
Italy 91% 73% 87% 96% 69% 93% 24% 97% 95% 100% 100% 100% 83%
Japan 99% 48% 58% 73% 50% 100% 53% 60% 100% 100% 100% 100% 100%
Netherlands 55% 62% 47% 45% 58% 50% 80% 48% 51% 80% 87% 82% 97%
Spain 100% 90% 39% 65% 77% 93% 99% 84% 100% 100% 100% 100% 92%
Sweden 100% 100% 52% 81% 100% 89% 21% 93% 99% 100% 100% 100% 100%
USA 82% 88% 48% 66% 87% 71% 21% 46% 79% 100% 100% 100% 92%
Average 90% 80% 52% 81% 79% 82% 43% 72% 87% 98% 98% 98% 94%

Table 8. Interval forecast accuracy by period. Proportion of cases in which the observed Gini index
falls in the forecasting interval. Dark shades of green and red signify higher interval forecast accuracy,
whereas lighter shades denote lower interval forecast accuracy. Fixed test period case.

Training Period Test Period LC CBD M6 M7 M8 PLAT RH CF ACF MA E.W MA PR.W MA S.M MA TR
1966–2004 2005–2019 91% 80% 60% 88% 64% 85% 62% 73% 87% 99% 100% 99% 93%
1967–2004 2005–2019 91% 78% 62% 91% 67% 85% 61% 73% 87% 99% 100% 99% 93%
1968–2004 2005–2019 91% 75% 63% 91% 59% 80% 56% 73% 87% 99% 100% 99% 94%
1969–2004 2005–2019 91% 74% 62% 92% 62% 80% 56% 73% 87% 99% 100% 99% 91%
1970–2004 2005–2019 91% 76% 61% 92% 62% 81% 51% 72% 87% 99% 99% 99% 91%
1971–2004 2005–2019 90% 74% 60% 93% 62% 82% 50% 73% 87% 99% 100% 99% 92%
1972–2004 2005–2019 91% 76% 57% 93% 60% 77% 47% 72% 88% 100% 100% 100% 93%
1973–2004 2005–2019 90% 71% 61% 93% 61% 75% 43% 72% 85% 99% 99% 99% 94%
1974–2004 2005–2019 90% 72% 60% 94% 60% 73% 44% 73% 85% 100% 100% 100% 96%
1975–2004 2005–2019 89% 73% 60% 95% 66% 73% 41% 73% 84% 100% 100% 100% 93%
1976–2004 2005–2019 89% 75% 60% 94% 62% 68% 40% 74% 84% 100% 100% 100% 94%
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Table 8. Cont.

Training Period Test Period LC CBD M6 M7 M8 PLAT RH CF ACF MA E.W MA PR.W MA S.M MA TR
1977–2004 2005–2019 88% 73% 59% 92% 64% 72% 38% 73% 83% 99% 99% 99% 91%
1978–2004 2005–2019 88% 72% 61% 91% 67% 70% 36% 75% 82% 99% 99% 99% 93%
1979–2004 2005–2019 88% 75% 56% 91% 70% 73% 37% 74% 83% 99% 99% 99% 92%
1980–2004 2005–2019 88% 72% 60% 89% 67% 69% 35% 74% 83% 99% 99% 99% 94%
1981–2004 2005–2019 88% 74% 61% 89% 68% 71% 35% 74% 82% 99% 99% 99% 93%
1982–2004 2005–2019 88% 75% 60% 90% 71% 71% 36% 74% 83% 99% 100% 99% 95%
1983–2004 2005–2019 84% 71% 62% 85% 71% 66% 35% 71% 78% 98% 97% 98% 88%
1984–2004 2005–2019 85% 73% 62% 90% 73% 68% 38% 72% 80% 99% 99% 99% 93%
1985–2004 2005–2019 81% 71% 66% 88% 68% 62% 37% 70% 77% 98% 98% 98% 86%

Average 89% 74% 61% 91% 65% 74% 44% 73% 84% 99% 99% 99% 93%

Table 9. Interval forecast accuracy by country. Proportion of cases in which the observed Gini index
falls in the forecasting interval. Dark shades of green and red signify higher interval forecast accuracy,
whereas lighter shades denote lower interval forecast accuracy. Fixed test period case.

LC CBD M6 M7 M8 PLAT RH CF ACF MA E.W MA PR.W MA S.M MA TR
AUSTRALIA 99% 100% 77% 100% 84% 32% 37% 96% 97% 100% 100% 100% 75%
CANADA 64% 95% 48% 82% 91% 69% 29% 46% 42% 100% 100% 100% 81%
ENGLAND AND WALES 99% 100% 58% 100% 97% 79% 33% 70% 96% 100% 100% 100% 100%
FRANCE 93% 23% 27% 97% 49% 87% 31% 97% 91% 100% 100% 100% 96%
ITALY 84% 54% 96% 93% 50% 43% 22% 85% 81% 97% 98% 98% 89%
JAPAN 99% 37% 84% 84% 27% 96% 67% 46% 98% 99% 100% 99% 99%
NETHERLANDS 52% 72% 53% 64% 74% 100% 81% 50% 45% 96% 97% 96% 86%
SPAIN 98% 87% 50% 96% 50% 92% 95% 89% 96% 99% 100% 100% 99%
SWEDEN 100% 94% 62% 98% 58% 74% 21% 93% 99% 100% 100% 100% 100%
USA 100% 79% 53% 96% 74% 69% 25% 57% 96% 100% 100% 100% 100%
Average 89% 74% 61% 91% 65% 74% 44% 73% 84% 99% 99% 99% 93%

6.1. Rolling Test Period

Observing Figure 3, we can generally say that the best results, in terms of MAFE, are
given by the model-averaging approaches based on equal and proportional weights and on
the softmax function. They all present a median MAFE lower than 0.4 and 0.006, respectively,
for life expectancy and the Gini index. The RH model is the third-best model (after model-
averaging approaches with equal weights and with weights based on the softmax function) for
life expectancy (but with weak performance for the Gini index), while the PLAT model is the
best for the Gini index (but has weak performance for life expectancy). The model-averaging
approach based on trimming has good overall performance as well. Indeed, it is overcome in
terms of median MAFE only by the RH model for life expectancy and the PLAT model for the
Gini index. Among the other models, good results are given by the CBD model regarding life
expectancy and by the CF model for the Gini index. The worst results here are found in the
M7 model for life expectancy and the M6 and M8 models for the Gini index. Other models,
such as LC and ACF, do not show remarkable results.

Figure 4 shows the model with the lowest MAFE by country and period. The RH
model has the highest number of best performances for both life expectancy and the Gini
index (34% and 26%),4 followed by the CBD model (17% and 17%). It is interesting to
notice how here the M7 model is the third-best model for life expectancy, despite it being
the worst one in terms of median MAFE, and the M6 model is the third-best for the Gini
index, despite being the second-worst one in terms of median MAFE. Focusing on the
model-averaging approaches, it can be noted that they are seldom the best ones. Among
them, the trimming averaging approach has the highest proportion of winning cases (7%
and 8%). These results, even if they appear to contradict those in Figure 3, are easily
explained. Indeed, model-averaging approaches have solid performance (ranking in the
top five positions in terms of lowest MAFE) across all countries, periods, and metrics. On
the contrary, individual models that are the best for specific combinations of countries and
periods, such as M7 for life expectancy and M6 for the Gini index, are overall among the
worst, as shown in Figure 3. Consequently, the advantage of model averaging is striking,
in particular when several countries must be considered and models must be updated on
different training periods.

Tables 2–5 show the interval forecast accuracy results. As happened for the median
MAFE analysis, the model-averaging approaches based on equal and proportional weights
and on the softmax function are the best ones, with an interval forecast accuracy of 97% for
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the life expectancy and 98% for the Gini index. They are followed by the model-averaging
approach based on trimming (93% and 94%). Among the other models, we have that the
RH model has an interval forecast accuracy of 81% for the life expectancy (lower than the
LC and CBD models), and the PLAT model has an interval forecast accuracy of 92% for
the Gini index (the highest outside the model-averaging approaches, followed by M7 and
LC models).

In the following, we report other findings from the tables and figures mentioned
above, focusing particularly on the analysis by country, period, and metric considered. In
Figure 4, we notice how the best model changes over time due to changes in mortality
trends, such as the slowing down in mortality improvements observed in several developed
countries since 2010; see Djeundje et al. (2022). Similar behaviour can also be noticed in
Tables 2 and 4 for the forecast interval accuracy. In this regard, the evolution of the RH
model’s performance is enlightening. Indeed, it goes from being the best model for life
expectancy in most periods considered to becoming the second-worst in the last test period
(see Figure 5). This fact strengthens the motivation to choose a model-averaging approach
that considers all or several models over a single model.

In Figure 4 and Tables 3 and 5, we observe how most individual models have a good
performance in terms of interval forecast accuracy and number of cases with the lowest
MAFE, for at least one country. However, there are also countries where these models
show poor performance, with low interval forecast accuracy and no cases in which they are
the best. This is a consequence of the fact that each country has a specific mortality trend,
which is fitted better by certain models than others. On the other hand, model-averaging
approaches have more robust results with good performance in all the countries.

In conclusion, observing Tables 2–5 and Figures 3 and 4, we see how the performance
of the models varies substantially based on whether we consider life expectancy or the Gini
index, while for the model-averaging approaches there are no large-scale variations. This
means that the latter are more robust even regarding the choice of the metric considered.

6.2. Fixed Test Period

Observing Figure 5, we see how, similarly to what happened with the rolling test
period case, the model-averaging approaches based on equal and proportional weights
and on the softmax function have the best results in terms of MAFE. They all present a
median MAFE lower than 0.2 and 0.004 for life expectancy and the Gini index, respectively.
Furthermore, notable performance in terms of median MAFE is obtained with the LC
model for both the Gini index and life expectancy, while here the RH model is among the
worst for life expectancy, and the Plat model is now overcome by other models regarding
the Gini index. The model-averaging approach based on trimming has a higher MAFE,
and it is outperformed by other models such as CBD and ACF for life expectancy and
M7 and ACF for the Gini index. Indeed, the trimming based averaging approach heavily
relies on the RH (for life expectancy) and PLAT (for Gini index) models, which have poor
performance in the test period considered.

Figure 6 shows the model with the lowest MAFE by period and country. The RH
model still has the highest number of best performances for life expectancy (16%),5 while
the M7 model has the highest number for the Gini index (23%). All the model-averaging
approaches here have good performance; indeed, they globally account for 40% for life ex-
pectancy and 37% for the Gini index, with the model-averaging approach with proportional
weights showing the best results in both cases (12% and 17%). Other remarkable results are
obtained with the CBD and M7 models for life expectancy, and the PLAT model regarding
the Gini index. As in the rolling period case, the apparent discrepancy between between
some results in Figure 5 and those in Figure 6 is explained by the superior robustness of the
averaging approaches over the individual models.

Tables 6–9 show the proportion of cases in which the observed metrics fall in the
forecasting intervals. As was the case for the rolling test period case, the model-averaging
approaches based on equal and proportional weights and on the softmax function have the
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highest interval forecast accuracy, with 98% for life expectancy and 99% for the Gini index.
They are followed by the model-averaging approach based on trimming (94% and 93%).
Among the other models, we find that the LC (90%) and ACF (87%) models show good
results for life expectancy, while the M7 (91%) and LC (89%) models show good results for
the Gini index. The RH model here is the worst model for life expectancy forecast accuracy
as well as the Gini index (43% and 44%), while the PLAT model performance decreases for
the Gini index (from 92% to 74%). This is an additional demonstration that it is not always
optimal to rely on models that performed well previously.

To conclude, in Tables 6–9 and Figures 5 and 6, we notice that, compared with the
rolling test period case, there is less variability in the models’ performance by training
period as the test period remains fixed. A similar remark can be made with respect to the
results by life expectancy and the Gini index. Instead, regarding the results by country, we
observe how the performance variability remains, with many individual models performing
well in some countries and badly in others. In contrast, the model-averaging approaches,
except for the one based on trimming that is slightly weaker, show good results in all the
countries considered.

7. Conclusions

In this paper, we compared the forecast performance of existing two-population
models with those of four different model-averaging approaches. We considered ten
countries and 46 different combinations of training and test periods, using truncated
life expectancy and the Gini index as metrics. Our results show that model-averaging
approaches outperformed the individual models, achieving superior results both in terms
of MAFE (difference between the forecasted central truncated life expectancy and Gini
index and the observed ones) and interval forecast accuracy (proportion of cases in which
the observed values fall within the prediction interval). Among the model-averaging
approaches, the best results are given by the ones with equal weights, proportional weights,
and weights based on the the softmax function, while the one based on trimming shows a
poorer performance, although it is still better than many individual models. The fact that
the model-averaging approach based on trimming produces a higher MAFE on average is
likely to be a consequence of changes in mortality trends: the models that perform well in
the validation period do not necessarily perform equally well in the test period due to the
speed up or slow down in the mortality improvements over the years. Finally, a further
advantage of model-averaging approaches is that, while the performance of individual
models is heavily affected by the choice of the metric (life expectancy or the Gini index),
country, and period, the performance of the model-averaging approaches is shown to be
more robust concerning this choice.

In terms of extensions of this research, a straightforward development could be con-
sidering multi-population models that simultaneously consider three or more populations
rather than just two-population models. Furthermore, alternative measures of mean abso-
lute forecasting error and interval forecast accuracy could be considered for comparing the
goodness of forecasts of model-averaging approaches and traditional models.
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Notes
1 Probabilities of death qx can be calculated from the corresponding mortality rates mx by using the relation qx = mx/(1 + 1

2 mx),
and vice versa, mx = qx/(1 − 1

2 qx).
2 For consistency, we use the Poisson distribution assumption coupled with the log-link function and mortality rates for models

such as M6, M7, and M8, which usually are presented under a binomial assumption coupled with the logit-link function and
probabilities of death.

3 We carry out more simulations than in the first stage since here we consider the interval forecast accuracy in addition to the MAFE.
4 These percentages have been calculated as the ratio of the number of cases in which each model is the best over the total number

of cases considered (260).
5 These percentages have been calculated as the ratio of the number of cases in which each model is the best over the total number

of cases considered (200).
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