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ABSTRACT Staining of histological slides with Hematoxylin and Eosin is widely used in clinical
and laboratory settings as these dyes reveal nuclear structures as well as cytoplasm and collagen. For
cancer diagnosis, these slides are used to recognize tissues and morphological changes. Tissue semantic
segmentation is therefore important and at the same time a challenging and time-consuming task. This
paper describes a UNet-like deep learning architecture called DRD-UNet, which adds a novel processing
block called DRD (Dilation, Residual, and Dense block) to a UNet architecture. DRD is formed by the
combination of dilated convolutions (D), residual connections (R), and dense layers (D). DRD-UNet was
applied to the multi-class (tumor, stroma, inflammatory, necrosis, and other) semantic segmentation of
histological images from breast cancer samples stained with Hematoxylin and Eosin. The histological
images were released through the Breast Cancer Semantic Segmentation (BCSS) Challenge. DRD-UNet
outperformed the original UNet architecture and 15 other UNet-based architectures on the segmentation
of 12, 930 image patches extracted from regions of interest that ranged in size between 1036 × 1222 to
6813 × 7360 pixels. DRD-UNet obtained the best performance as measured with Jaccard similarity index,
Dice coefficient, in a per-class comparison and accuracy for overall segmentation.

INDEX TERMS UNet, deep learning architectures, histopathology, breast cancer, segmentation

I. INTRODUCTION

IMAGE segmentation has been one of the most important
tasks in computer vision, pattern recognition, and image

analysis. The essence of image segmentation consists of
assigning a label or class to each element of the image.
Labels can correspond to organs in medical imaging [1], or
human bodies in videos of surveillance [2]. A plethora of
segmentation approaches have been proposed through the
years; from traditional image processing techniques [3] and
more recently deep learning [4]. The fact that segmentation
algorithms continue to be published every year, illustrates
that it is a difficult problem, with many challenges yet to
be addressed [5], [6]. The use of deep learning architectures
has grown significantly in recent years [7], in part due to
the superior results that have been achieved in many areas,
medical image analysis being just one of them [8], [9].
Another reason for the popularity of deep learning is that

hand-crafted features and analysis are replaced by a learning
process that results from training with a large amount of la-
beled data [10]. Deep learning-based semantic segmentation
of biomedical images has grown dramatically since the first
publication of UNet by Ronneberger in 2015 [11]. Whilst the
standard UNet architecture, sometimes called vanilla UNet
[12], has been used in numerous applications, modifications
to the architecture have improved results [13]. However, it
is considered that there is still room for improvement [14],
[15], and any improvement would be welcome in medical
environments where decisions like diagnosis or treatment
could be influenced by the outcome of previous segmentation
or classification steps. Indeed, it has been observed that the
survival in cases of colon cancer can be predicted from
histology slides [16].

The probability of developing breast cancer in females
is the highest compared to that in any other organ at ap-
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proximately 12.4% [17]. Early detection through screening
programs is the best way to improve patient outcome and
reduce mortality [18]. As such, mortality has decreased
slightly since the 1970s [17], but breast cancer remains a
significant concern for females worldwide [19]; thus, any
improvement in treatment and diagnosis is to be pursued.
Mammography is the first tool for diagnosis of breast cancer,
and screening programs have shown significant reductions
in breast cancer mortality [20]. However, mammography has
limitations and harms, besides the radiation inherent in the
procedure, sensitivity and specificity are limited as compared
with magnetic resonance imaging [21], and most importantly,
its use can lead to over diagnosis, which is considered the
greatest harm of the technique [22]. Histopathology, or the
examination of tissues under a microscope, can provide suf-
ficient information to avoid over diagnosis and over treatment
of breast cancer [23]. Histopathology provides a huge amount
of information [16], and advances in molecular techniques,
bioinformatics, and image analysis can complementary in-
formation to reveal diagnosis, treatment, and survival [24]–
[26]. The development of whole slide imaging [27], which
scan slides and capture images at different resolutions, has
grown in popularity and provides huge datasets with a wealth
of information, and besides the disadvantage of capital
investment [28], there is the technical challenge of analysis
images that can comprise billions of pixels. To analyze these
large images, which can be part of even larger datasets,
computational approaches are thus required and can provide
new perspectives in clinical practice [29]–[38], like grading
tissue [39]–[42], or proliferation of tumors [43].

This work presents a UNet-like architecture, which pro-
vides a multi-class semantic segmentation breast cancer im-
ages stained with H&E. The main contributions of this paper
are the following:

1) A novel processing block called DRD, which is a
pyramid block with dilated convolutions, a residual
connection, and a dense layer is proposed. The addition
of this block improved the segmentation performance
of histological images.

2) Sixteen UNet-like architectures were objectively com-
pared with the original UNet used as a baseline. The
architecture here proposed, DRD-UNet outperformed
all other architectures/

II. RELATED WORK
Pyramids [44], [45] and quad trees [46] have been used for
decades as multiresolution tools that allow the analysis of
images at distinct levels of detail. The underlying concept
of these techniques is to combine the values of neighboring
pixels and subsampling to create a new image, or level of the
pyramid, which is smaller in size than the previous one and
whose values correspond to a neighborhood in a lower level
and the filter or kernel applied. In this way, decisions that are
taken at higher levels of the pyramid will have information
of larger and larger neighborhoods of pixels. One of the first

attempts to use these schemes for visual pattern recognition
was the Neocognitron proposed by Fukushima [47]. A few
years later Le Cun and Bengio extended the approach by
extending the features through a series of convolutions, thus
creating the widely popular convolutional networks [48].
Deconvolutional Neural Networks (DCNN) [49] perform an
inverse convolutional model by an upsampling process thus
increasing the resolution of the output, extensively used in
segmentation tasks; the precursor of DCNN is the Neocogni-
tron proposed by Fukushima. A fully Convolutional Network
(FCN) is the first example of a deconvolutional model, for
example, [50] incorporated a dense prediction layer, and a
fully connected Conditional Random Field.

Convolution with an extended kernel dilation is also
known as Atrous convolution [51] and it has been proved for
the segmentation of objects at multiple scales, as well as for
weakly supervised semantic segmentation [52].

UNet has been widely used for segmentation in medical
imaging, and several modifications and improvements have
been proposed [53], [54]. One of the first modifications of
UNet was the addition of residual blocks [55] for liver lesion
segmentation. ResUNet uses a UNet with residual connec-
tions at encoders and decoders and achieved first place in
the liver tumor segmentation challenge in 2017. RMS UNet
added a residual block with dilated section convolutions
[55], [56] and demonstrated high accuracy over different
publicly available datasets. Even a recent generative adver-
sarial network (GAN) with a dense UNet-based segmentor
and a radiomics discriminator for liver lesion segmentation
[57] have been proposed. In brain segmentation, the stack
Multi-Connection Simple Reducing Net (SMCSRNET) [58]
formed with stacked coder-encoder blocks improved seg-
mentation with less training time, using a reduced parameters
model. MH-UNet [59], a multi-scaled network is formed
with dense and residual blocks and as a result, it is used
for multi-organ segmentation. MI-UNet [60] uses a proce-
dure called brain parcellation to generate an input to UNet
for brain stroke segmentation under MRI. Spatial weighted
UNet is used for 3D CT brain images [61] with residual-
inception blocks densely connected that reduces trainable
parameters over the MRI dataset. A Purified and Residual
UNet or P-ResUNet [62] is based on a Dilated Pyramid
Block (DPB) and was used for brain tissue segmentation.
This block consists of dilations of distances D = 1, 2, 3
in parallel. For retinal vessel segmentation, the images re-
quire enhanced contrast for accurate vessel detection and
approaches based on Residual attention and supervised UNet
have been proposed [63]–[65]. The network MI-UNet [66],
which consists of two connected MI-UNets connected into
one S-UNet has been used for Brain Stroke Lesions. For
nuclei and cell segmentation, RIC-UNet [67], a network
with the mechanism residual blocks, multi-scale, and chan-
nel attention mechanism demonstrated superior performance
over traditional methods. Residual-dense blocks have been
explored also at the bottleneck connection to form D-UNet
for lung vessel segmentation [68]. Segmentation of breast
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tumor cancer has been also explored by different UNet ar-
chitectures, the ResUNet [69] estimates volumetric measure-
ment of breast cancer on magnetic resonance imaging. An
architecture called Connected-UNets using two UNets and
additional modified skip connections showed better visual
results in segmenting the mass lesions over mammograms
[70]. Also, generative networks have been explored, RDA-
UNET-WGAN [71] employs a Residual-Dilated-Attention-
Gate-UNet as the generator network. The UNet3+, a full-
scale skip connections and deep supervision framework, has
also been employed for 6 different architecture segmentation
models [72].

(a) (b)

(c)

FIGURE 1: Illustration of the histological images and an-
notations. (a) One representative histological image stained
with Hematoxylin and Eosin (H&E) from the Breast Cancer
Semantic Segmentation (BCSS) Challenge. (b) A rectan-
gular region of interest is denoted by overlaid colors that
correspond to labels of interest for this work: tumor (red),
stroma (green), inflammatory (purple), necrosis (blue), and
other (gray). (c) A zoom of the of the region of interest with
additional yellow lines that indicate patches of size 256× 256,
which will be extracted for the training and validation of the
proposed DRD-UNet and other architectures.

III. MATERIALS AND METHODS
A. MATERIALS
The datasets used in this paper were obtained from the Breast
Cancer Semantic Segmentation (BCSS) Challenge [73],
which is publicly available through the Grand Challenges
website (https://bcsegmentation.grand-challenge.org/).

The dataset was extracted from 151 formalin-fixed
paraffin-embedded tissues stained with hematoxylin and
eosin (H&E), all with histologically-confirmed breast can-
cer and are part of The Cancer Genome Atlas Program
(https://portal.gdc.cancer.gov). Whole-slide images (WSIs)
were acquired at a magnifications of 40× (n = 138) and 20×
(n = 13). Then, regions of interest (ROI) were selected from
the WSIs and manually annotated by pathologists, pathology
residents, and medical students through a crowd-sourcing
process as described in [73]. Figure 1.a,b illustrates the
selection of an ROI from a WSI, and annotations associated

TABLE 1: Principal characteristics of the images from the
Breast Cancer Semantic Segmentation Challenge (BCSS)
dataset.

Description Parameter
Number of images 151
Magnification 40×, 20×
Maximum image size 6813 × 7360 pixels
Minimum image size 1036 × 1222 pixels
Mean ROI 1.18 mm2

39e6 pixel2

Tissue Classes 22

TABLE 2: Principal characteristics of the patches that
were extracted from the images.

Description Parameter
Patch size 256 × 256 pixels
Image resize 1/4
Data Augmentation Rotation +90,+180, flip

up/down, flip left/right
Total pairs of image/label
patches

12,930

Training set 10,736
Validation set 2,194
Test set 15 ROI images
Tissue classes 5

to the ROI. The maximum and minimum image sizes are
6813×7360 and 1036×1222 pixels, respectively. The mean
ROI size was 39e6 pixels, which correspond to 1.18 mm2. A
summary of the features of this data set is presented in Table
1.

From the ROI images, 136 were selected to perform the
training of the architectures and fifteen were used as a
separate test set. Then, from the 136 ROIs 12, 930 non-
overlapping pairs of data and label patches of dimensions
256 × 256 pixels were generated as illustrated in Figure 1.c.
The main characteristics of the patches are shown in Table ??.

The manual annotation of the tissue contained 22 different
tissue classes (tumor, stroma, inflammatory, necrosis, glan-
dular secretions, blood, fat, plasma cells, other immune in-
filtrate, mucoid material, normal acinus or duct, lymphatics,
undetermined, nerve, skin, blood vessels, etc.), of which the
first four classes (tumor, stroma, inflammatory, necrosis) con-
tained the majority of pixels. All other classes were merged
in a single category called other following the instructions of
the BCSS Challenge. After the merger, the proportions of the
five classes were tumor 0.3964, stroma 0.3598, inflammatory
0.1031, necrosis 0.0660, other 0.0747. These proportions
suggest a moderate class imbalance and as such, no measures
to compensate the class imbalance were taken.

A 3D tensor structure (a cube) was used to represent the
ground-truth (GT), i.e., the expected output of a segmented
image. This structure has the same size, in terms of pixels, as
its corresponding input image, and consists of five channels
in depth, which mark the presence of a pathology each pixel.
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B. METHODS

Experimental modifications to UNet architecture were sys-
tematically evaluated on segmentation of the BCSS dataset.
The modifications focused on two operations: dilated con-
volutions (Figure 2.a) and residual connections (Figure 3.a).
Convolution is a fundamental operation that traverses an
image and extracts the values of a neighborhood of pixels,
normally contiguous, but it is possible to dilate by a factor of
n and thus cover a larger area as illustrated in Figures 2.b and
2.c. These dilated convolutions are sometimes called Atrous
convolutions [56] and produce an increase in the receptive
field. The essence of residual connections, also known as skip
connections, is to add the output of a processing block with
the input of that block. In terms of branches, these would go
in parallel as opposed to a single sequential process as illus-
trated in Figure 3.a. Residual connections were introduced at
the computer vision and pattern recognition (CVPR) 2016
conference [74], and have been demonstrated to minimize
training errors, overfitting, and vanishing gradient effects
[55].

1) UNet architecture

The UNet [11] is a convolutional neural network, which was
proposed for semantic segmentation. It is a purely convolu-
tional model, with neither perceptrons nor other type of train-
able units, and it is an autoencoder-like architecture (AE).
Following the traditional AE model, the UNet compresses its
input image with a cascade of encoding blocks composed of
convolutional and maxpooling layers. Later, using a cascade
of decoding blocks, composed of upsampling and convolu-
tional layers, it decodes the compressed representation of the
input and performs the prediction of its output. As required
in deep learning, all convolutions are followed by non-linear
ReLU activation functions and a pixel-wise softmax activa-
tion function at the output of the network. As shown in Figure
4, by using as many decoding blocks as there are encoding
blocks, the UNet model describes a ‘U’ shape, hence its
name. The key feature of the UNet is that it makes use of
residual connections that concatenate the output of the i-th
encoding block with its corresponding decoding counterpart.
These residual connections serve two purposes, they mitigate
the possibility of encountering vanishing gradient effects, and
they increase the chance of exploiting visual patterns that
might prove relevant for prediction but that could have been
overlooked by the encoding process [11].

2) UNet Modifications

The UNet architecture was systematically modified through
different architectures, illustrated in Figure 5 and Table 3.
The first five architectures implemented in this work were
done with the inclusion of the residual connections [55]. The
residual connection was evaluated at the input layer of the
encoder (ResUNet-i), at all layers of the encoder (ResUNet-
e), and at all layers of the encoder and decoder (ResUNet). A
modified ResUNet with added batch normalization after the

(a) (b) (c)

(d) (e)

FIGURE 2: Illustration of dilated convolutions (Atrous
Convolution) of different sizes and representation as
blocks. (a) Dilation D = 1. (b) Dilation D = 2. (c) Dilation
D = 4. (d) The operation Dn = CONV+BN+ReLU with a
Dilation D = n. (e) A dilated pyramid block (DPB) with 3
parallel convolutions with dilations of D = 1, 2, 3 [62].

convolutional layer was evaluated in ResUNet-BN. Notice
that the original UNet does not include the BN layer.

Inception blocks with standard convolutions of size 3x3
were modified to include dilated convolutions of size 2 and
4 as illustrated in Figure 2.a -2.c. Next, different convolution
dilations were evaluated by using the DPB block at the input
layer of the encoder (DPB3-i), at all layers of the encoder
(DPB3-e), at all layers of the encoder and decoder (DPB3-a),
and with dilation of D = 5 at the input layer of the encoder
(DPB5-i). Combinations of residual connections and Atrous
convolutions were also evaluated. Dilations of size D = 3
at the input layer of the encoder with residual connection
over all the layers of both the encoder and decoder (DPB3-
i+Res), and a combination with an input dilation D = 4
(DPB4i+Res). A ResUNet-a block as presented by [75], used
for the segmentation of remote sense data with dilations up
to size D = 31, was evaluated at the encoder. Dilation in
series was also evaluated at the input (Series-i) and at the
encoder and decoder blocks (Series-e/d). RMS-UNet [56]
combines residual connections and Atrous convolution with
D = 2, 4 inserted in the residual connection (Figure 3.c).
This configuration achieves high performance with minimal
loss and low computational cost and was also evaluated in
RMS-UNet. Finally, a Dilation DPB3 block, residual and
dense block (DRD) as seen in Figure 3.d, is proposed, and
evaluated in this work.
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(a) (b)

(c) (d)

(e)
FIGURE 3: Basic blocks inserted into the original UNet.
(a) Residual block adds input with convolution blocks. (b)
Dense block, which combines both channels with a con-
catenation operation. (c) RMS-UNet, a Residual block with
convolution dilations of size D = 2, 4. (d) Our proposal, a
block integrated with a DPB3 + Residual + Dense (DRD). (e)
ResUNet-a, which includes several parallel convolutions with
dilations D = 1, 3, 15, 31 as proposed by [75].

3) Hyper-parameter exploration

Hyper-parameters were explored on the baseline UNet and
then were maintained for all the other architectures. Batch
size was evaluated between 1 and 16 and the best results
were provided by a mini-batch of size 8. Three optimizers
were evaluated: stochastic gradient descent with momen-
tum (sgdm), root mean square propagation (rmsprop), and
adaptive moment estimation (adam). Adam provided the best
results. Training scenarios of 5, 10 and 30 epochs were
evaluated, and 10 epochs were chosen as it provided good

FIGURE 4: The UNet architecture as proposed by Ron-
neberger [11]. It consists of encoder-decoder sections and
contains a series of downsampling steps (encoder) obtained
by convolutions and downsampling operations, and then up-
sampling steps (decoder) formed by upsampling plus convo-
lution operations.

results at a fraction of the time. The loss function employed
was the Cross Entropy for k Mutually Exclusive Classes [76].
The same hyper-parameters were used for all subsequent
variations of the UNet architecture.

4) Implementation Details

All the programming was performed in a computer with
processor Intel core i7-7700k, 16 GB RAM, and CPU at
4.20 GHz with an Intel graphics P4000 GPU. The plat-
form used was Matlab® version 2023a (The MathworksTM,
Natick, MA, USA) with the deep learning toolbox. The
code is publicly available in the GitHub repository:
https://github.com/mauOrtRuiz/DRD-UNet.

5) Performance Estimation

To assess the performance of the architectures proposed in
this work, pixels were classified into four categories: True
Positive (TP ), True Negative (TN ), False Positive (FP )
and False Negative (FN ) when compared against the ground
truth as illustrated in in Figure 6. Where these have been cal-
culated in a per− class basis, the sub-index i has been used,
i.e., TPi. From these, the following pixel-wise, class-wise
metrics were calculated: Dice coefficient, Jaccard similarity
index (also known as intersection over union), specificity, and
sensitivity as follows.

Dice coefficient =
2TPi

2TPi + FPi + FNi
, (1)

Jaccard Similarity Index =
TPi

TPi + FPi + FNi
, (2)

Sensitivity =
TPi

TPi + FNi
, (3)

Specificity =
TNi

TNi + FPi
. (4)
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TABLE 3: Details of the experimental design. A traditional UNet was used as a baseline model, and a series of modifications
of the encoder and decoder were applied (ablation studies). All models were trained in the same way: mini-batch of size 8, 10
epochs with a random shuffle of images at every epoch, initial learning rate of 1e-3, adaptive moment estimation optimization
algorithm. Columns 2-6 indicate: total number of trainable parameters in millions, number of layers, brief description, figure if
applicable and reference if applicable respectively.

Model Param. Layers Description of the modifications over UNet Fig. Ref.
UNet-3 7.69 46 Original UNet architecture of depth 3. 4 [11]
(baseline)
ResUNet-i 7.84 62 Residual block inserted at the input of UNet. 3.a
ResUNet-e 8.65 66 Residual block inserted at all layers of the encoder, shown in light green 5.a
ResUNet 15.28 75 Residual UNet with residual blocks at encoder and decoder, shown in

green
5.a [55]

ResUNet-BN 15.28 89 Residual UNet with extra batch normalization (BN) layer, original UNet
by Ronneberger does not include BN operation

P-ResUNet 15.36 96 Purified ResUNet with dilation blocks at the encoder 2.e [62]
DPB3-i 7.99 62 DPB3 block at the input of the encoder 2.e
DPB3-e 10.09 74 DPB3 block at all layers of the encoder 2.e
DPB3-a 21.41 107 DPB3 block at encoder and decoder [62]
DPB5-i 8.29 74 DPB5 block is similar as DPB3 with dilations of D = 1, 3, 5 at the input

of the encoder
2.e

DPB3-i+Res 11.82 80 DPB3 block at the first layer of the encoder and Residual block at all
layers of the encoder and decoder

DPB4-i+Res 11.94 86 DPB4 block is similar to DPB3 with dilations D = 1, 2, 4 at the first
layer of the encoder and Residual Block at all layers of the encoder and
decoder

ResUNet-a 13.88 119 Residual block with dilated convolution up to D = 31 inserted at all
layers of the encoder

3.e [75]

Series-i 7.84 60 Dilations D = 1, 2, 3; in series at the first layer of the encoder 5.b
Series-e/d 10.93 75 Dilations with D = 1, 2, 3; in series at all layers of the encoder 5.c
RMS-UNet 14.03 85 Residual UNet block with dilations D = 2, 4 at all layers of the encoder 3.c [56]
DRD-UNet 15.40 130 A DPB3 block + Residual block + Dense block at all layers of the

encoder
3.d

In addition, overall accuracy (i.e., not on a per-class basis)
was calculated as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
. (5)

IV. RESULTS AND ABLATION ANALYSIS
From the 12, 930 pairs of image and label patches, 10, 736
were used to train the architectures previously described and
2, 194 were used for validation. Figure 7 shows the training
and validation loss curves of the architectures that have
been published and DRD-UNet. Then, the trained models
were used to perform semantic segmentation of fifteen ROIs,
which had been selected as the test set. The performance of
each architecture was measured as described previously. The
results for Dice, Jaccard and Accuracy are presented in Table
4, the results for Sensitivity and Specificity are presented in
Table 5. Results of the semantic segmentation of selected
regions of the images are presented in Figures 8 and 9 for
all architectures.

The sixteen models presented in this work are the result
of a series of investigations that correspond to a study of
ablation by themselves, as they incrementally incorporate

variants into the base model. Therefore, we analyze our
results from such an ablation perspective.

First, we can notice that adding residual connections (Re-
sUNet) increases the number of parameters but seems to
reduce the overall performance, except for class "Inflamma-
tory" where the performance increases. This behavior holds
regardless of the section of the UNet where the residual
connections are placed. Additionally, notice that Batch Nor-
malization (ResUNet-BN) seems to have random impact,
sometimes increasing and sometimes lowering the perfor-
mance, although just marginally.

The performance rises for classes "stroma" and "necro-
sis" when the dilated convolution operation is added to the
architecture (P-ResUNet). This shows that residual connec-
tions with dilated convolutions are a suitable combination.
Moreover, when the dilated convolution is used as part of
the DPB module, it has a null contribution, except for class
"necrosis". Such results show that the dilated convolution by
itself brings little contribution, as opposed to its combination
with the residual connections.

Regarding the architectures where the dilation of the con-
volutions is increased gradually (Series and RMS), it seems
that also these architectures improve and lower the perfor-
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TABLE 4: Performance of sixteen deep learning architectures and the proposed DRD-UNet described in Table 3. Per-
class performance is measured with Jaccard Similarity Index and Dice coefficient, Per-image performance is measured in
Accuracy. Best results are highlighted in bold.

Jaccard Similarity Index Dice coefficient Accuracy
architectures Other Tumor Stroma Inflammatory Necrosis Other Tumor Stroma Inflammatory Necrosis
UNet 3 0.33±0.29 0.73±0.10 0.60±0.17 0.61±0.21 0.15±0.23 0.43±0.33 0.84±0.08 0.73±0.16 0.73±0.22 0.20±0.31 0.80±0.05
ResUNet-i 0.29±0.27 0.70±0.12 0.51±0.20 0.48±0.22 0.14±0.22 0.39±0.32 0.82±0.09 0.65±0.20 0.62±0.23 0.20±0.29 0.73±0.01
ResUNet-e 0.28±0.23 0.70±0.13 0.61±0.16 0.68±0.10 0.19±0.28 0.40±0.29 0.82±0.09 0.74±0.16 0.80±0.07 0.24±0.35 0.78±0.06
ResUNet 0.31±0.27 0.73±0.12 0.59±0.17 0.62±0.18 0.16±0.25 0.41±0.32 0.84±0.09 0.72±0.16 0.75±0.16 0.22±0.33 0.79±0.06
ResUNet-BN 0.27±0.23 0.72±0.13 0.59±0.17 0.61±0.19 0.16±0.27 0.38±0.29 0.83±0.09 0.73±0.16 0.73±0.21 0.20±0.34 0.79±0.05
P-ResUNet 0.30±0.25 0.67±0.18 0.60±0.17 0.62±0.19 0.17±0.26 0.41±0.30 0.79±0.15 0.74±0.16 0.74±0.22 0.22±0.33 0.78±0.07
DPB3-i 0.31±0.25 0.71±0.14 0.60±0.16 0.62±0.19 0.19±0.28 0.42±0.30 0.82±0.11 0.74±0.16 0.74±0.22 0.25±0.35 0.79±0.06
DPB3-e 0.30±0.28 0.73±0.14 0.59±0.18 0.61±0.15 0.15±0.25 0.40±0.33 0.83±0.10 0.73±0.17 0.75±0.12 0.20±0.31 0.78±0.07
DPB3-a 0.31±0.29 0.73±0.15 0.62±0.19 0.62±0.20 0.23±0.31 0.41±0.32 0.84±0.12 0.74±0.19 0.74±0.22 0.29±0.38 0.81±0.06
DPB5-i 0.31±0.25 0.75±0.10 0.59±0.17 0.65±0.12 0.20±0.30 0.42±0.31 0.85±0.07 0.72±0.16 0.78±0.10 0.25±0.36 0.80±0.05
DPB3-i+Res 0.32±0.28 0.66±0.19 0.60±0.16 0.59±0.20 0.21±0.30 0.43±0.33 0.78±0.16 0.73±0.17 0.72±0.21 0.26±0.37 0.78±0.06
DPB4-i+Res 0.26±0.25 0.72±0.13 0.48±0.19 0.53±0.17 0.11±0.19 0.36±0.30 0.83±0.10 0.62±0.20 0.68±0.15 0.16±0.25 0.72±0.11
ResUNet-a 0.31±0.26 0.73±0.14 0.60±0.17 0.60±0.23 0.16±0.25 0.42±0.31 0.84±0.11 0.74±0.17 0.71±0.25 0.21±0.32 0.80±0.07
Series-i 0.28±0.27 0.73±0.13 0.48±0.19 0.57±0.20 0.10±0.17 0.37±0.32 0.84±0.09 0.63±0.20 0.70±0.19 0.15±0.24 0.72±0.11
Series-e/d 0.32±0.28 0.70±0.16 0.61±0.16 0.62±0.20 0.20±0.29 0.42±0.33 0.81±0.13 0.74±0.16 0.74±0.22 0.25±0.36 0.79±0.07
RMS-UNet 0.30±0.25 0.74±0.12 0.60±0.17 0.63±0.20 0.20±0.28 0.40±0.30 0.85±0.08 0.74±0.16 0.75±0.22 0.25±0.35 0.80±0.05
DRD-UNet 0.34±0.28 0.75±0.11 0.62±0.17 0.64±0.20 0.18±0.27 0.44±0.33 0.85±0.08 0.75±0.16 0.75±0.22 0.24±0.35 0.81±0.05

TABLE 5: Performance of sixteen deep learning architectures and the proposed DRD-UNet described in Table 3. Per-
class performance is measured with Sensitivity and Specificity. Accuracy is repeated from Table 4 for convenience. Best results
are highlighted in bold.

Sensitivity Specificity Accuracy
architectures Other Tumor Stroma Inflammatory Necrosis Other Tumor Stroma Inflammatory Necrosis
UNet 3 0.42±0.31 0.94±0.06 0.62±0.20 0.51±0.25 0.55±0.14 0.98±0.02 0.72±0.18 0.88±0.11 0.99±0.00 0.97±0.04 0.80±0.05
ResUNet-i 0.44±0.31 0.88±0.12 0.73±0.14 0.70±0.18 0.71±0.12 0.98±0.01 0.83±0.13 0.86±0.10 0.98±0.01 0.98±0.02 0.73±0.01
ResUNet-e 0.44±0.31 0.88±0.12 0.73±0.14 0.70±0.18 0.71±0.12 0.98±0.01 0.83±0.13 0.86±0.10 0.98±0.01 0.98±0.02 0.78±0.06
ResUNet 0.45±0.32 0.88±0.12 0.73±0.14 0.73±0.22 0.56±0.17 0.98±0.01 0.83±0.14 0.87±0.08 0.97±0.01 0.99±0.00 0.79±0.06
ResUNet-BN 0.56±0.33 0.82±0.14 0.71±0.14 0.87±0.08 0.54±0.32 0.96±0.03 0.89±0.10 0.88±0.06 0.95±0.04 0.99±0.00 0.79±0.05
P-ResUNet 0.48±0.32 0.76±0.21 0.77±0.13 0.83±0.09 0.69±0.15 0.97±0.01 0.91±0.10 0.83±0.10 0.96±0.03 0.97±0.02 0.78±0.07
DPB3-i 0.42±0.30 0.80±0.17 0.78±0.12 0.81±0.11 0.65±0.12 0.98±0.00 0.90±0.09 0.83±0.09 0.96±0.02 0.98±0.01 0.79±0.06
DPB3-e 0.42±0.31 0.86±0.14 0.74±0.15 0.70±0.18 0.74±0.12 0.98±0.01 0.86±0.11 0.86±0.09 0.98±0.01 0.96±0.04 0.78±0.07
DPB3-a 0.36±0.30 0.84±0.17 0.75±0.16 0.86±0.10 0.71±0.15 0.99±0.00 0.87±0.17 0.87±0.07 0.95±0.04 0.98±0.01 0.81±0.06
DPB5-i 0.44±0.33 0.87±0.10 0.71±0.15 0.80±0.17 0.78±0.19 0.98±0.01 0.85±0.14 0.88±0.06 0.96±0.03 0.97±0.02 0.80±0.05
DPB3-i+Res 0.43±0.32 0.72±0.21 0.76±0.13 0.91±0.06 0.69±0.10 0.98±0.01 0.93±0.07 0.82±0.10 0.93±0.06 0.98±0.01 0.78±0.06
DPB4-i+Res 0.39±0.32 0.90±0.12 0.60±0.21 0.55±0.18 0.71±0.13 0.98±0.01 0.80±0.15 0.86±0.13 0.99±0.00 0.93±0.06 0.72±0.11
ResUNet-a 0.44±0.33 0.84±0.15 0.76±0.13 0.81±0.21 0.59±0.18 0.42±0.01 0.88±0.12 0.85±0.10 0.96±0.03 0.98±0.01 0.80±0.07
Series-i 0.32±0.30 0.91±0.11 0.59±0.19 0.61±0.23 0.77±0.09 0.99±0.00 0.81±0.13 0.88±0.11 0.99±0.01 0.91±0.06 0.72±0.11
Series-e/d 0.45±0.31 0.77±0.19 0.78±0.12 0.85±0.11 0.71±0.17 0.98±0.01 0.92±0.07 0.83±0.10 0.96±0.03 0.97±0.02 0.79±0.07
RMS-UNet 0.48±0.32 0.84±0.12 0.72±0.13 0.87±0.08 0.79±0.15 0.97±0.02 0.90±0.08 0.88±0.06 0.96±0.03 0.97±0.01 0.80±0.05
DRD-UNet 0.43±0.32 0.87±0.11 0.76±0.13 0.83±0.11 0.71±0.14 0.98±0.00 0.88±0.10 0.88±0.06 0.96±0.03 0.98±0.01 0.81±0.05

mance depending on particular classes but fail to remain
consistently better for all cases. It is only the integration of
all variants that make a robust architecture (DRD-UNet) that
achieves the highest performance for three classes, as well as
on average for all five classes.

In terms of Sensitivity and Specificity, the best results
were distributed among the architectures, and in several
cases, there were draws between several architectures (DRD-
UNet, ResUNet-BN, DPB5-i, Series-i) like the specificity for
stroma. For necrosis, the specificity results were remarkably
close between the best with the best (ResUNet, ResUNet-
BN) at 0.99 and DRD-UNet 0.98. Similarly, the specificity
for Other of DRD-UNet was 0.98 while DPB3-a was 0.99.

Figures 8 and 9 illustrate the semantic segmentation
results with selected sections of the images that contain a
representative region of each of the five classes in each
column and rows correspond to the architectures. TP are
labeled in white; TN are labeled in black; FP are labeled in
green, and FN are labeled in pink. The best results of DRD-
UNet are visible in the smaller green and pink regions for

tumor, stroma and other, which correspond to the values of
Jaccard and Dice shown in Table 4. For inflammatory and
necrosis, the areas are slightly higher than other architectures,
but since tumor and inflammatory are the most common
classes, these are the ones that have a greater impact on the
overall accuracy giving DRD-UNet an advantage.

V. DISCUSSION

The addition of the proposed DRD block into DRD-UNet
provided better results of Jaccard, Dice, and Accuracy in
the fifteen images of the BCSS challenge. Whilst the set is
relatively small, the results are encouraging and are worth
considering in future experimentation. It can be noted the
importance of dilated convolutions to increase the receptive
field and we proposed the purified DPB3 [62] block with an
Atrous convolution of dilation D = 1, 2, 3. Experimentation
revealed there was no significant improvement after adding
several residual blocks in different UNet levels. Under the
assumption that we can extend performance by adding a
deeper layer, a dense block was proposed after the residual.
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(a)

(b)

(c)

FIGURE 5: Illustration of the modifications over the orig-
inal UNet architecture. (a) Input encoders (blocks shaded
in light green) and decoders (blocks shaded in darker green)
were replaced by the corresponding block under study. (b)
Atrous Convolution at input encoder up to D = 3 in series
were inserted. (c) Atrous Convolution in series was inserted
at every encoder.

The reduction of training loss indicates a rapid computational
convergence in terms of training time. Further work can be
done to evaluate this operation over different datasets and
other types of cancers and stainings.

Our analysis was performed on a single dataset that con-
tained only triple-negative breast cancer cases. Whilst this
is a limitation in the diversity of cancer cases, we consider
that for the purposes of comparing a series of architectures,

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIGURE 6: Illustration of calculation of performance met-
rics with a synthetic image with 4 classes. (a) Ground
truth. The classes are denoted by different shades and num-
bers next to them (the numbers are not part of the image).
(b) Estimated image. (c) Ground truth and estimated images
overlaid. True Positives (TP) are white, True Negatives (TN)
are black, False Positives (FP) are dark gray, False Negatives
(FN) are bright gray. (d) Illustration of overall accuracy; pixels
correctly estimated are shown in white and incorrect are
shown in black. (e-h) Illustration of per-class TP, TN, FP, FN.
Notice the FN in class 3 and the FP in class 4.

the conclusions in terms of performance should still be
valid. However, further studies to confirm the performance
of DRD-UNet with larger datasets and with other cancers
would be useful to demonstrate the capabilities of the archi-
tecture. A closely related observation is that all the images
were stained with H&E. Further experimentation with other
stainings should be done to explore the capabilities of the ar-
chitectures here compared. Second, in some cases the differ-
ences in performance are quite small. Indeed, for specificity
several implementations provided exactly the same metrics
or varied only by 0.01. Third, in this work we focused on the
accuracy of the semantic segmentation provided by sixteen
architectures derived from the original UNet. Further work
could consider the segmentation and classification, not of
tissue regions, but of specific cells (e.g., Tumor Infiltrating
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

FIGURE 7: Comparison of training loss and validation loss curves for the architectures that have been published UNet-
3 [11], ResUNet-BN [55], P-ResUNet [62], ResUNet-a [75], RMS-UNet [56], and DRD-UNet (ours). (a-f) correspond to training
loss curves, (g-l) correspond to validation loss curves. For all cases, the training loss is shown in blue with transparency and
a weighted average thicker black line is overlaid. DRD-UNet shows a rapid decrease in training loss, similar to RMS-UNet and
there is no indication of overfitting in the validation curves. The case with slowest decrease is ResUNet-a, which ends above
UNet-3. ResUNet-BN shows a fast decrease in the training, with probably the lowest values, but on the validation, there is an
increase, which suggest some overfitting.

Lymphocytes [77], [78] ), or nuclei (e.g., [79]–[82] ), which
can provide further information to analyze cancer datasets.
Further, by using the nuclei as a starting point, it is possible
then determine the extent of cell and from there isolate and
analyze other structures like extracellular matrix [83].

VI. CONCLUSION
In this work, we presented a UNet-like architecture, called
DRD-UNet (Dilation, Residual, and Dense block). DRD-
UNet was used to perform semantic segmentation of a multi-
class breast cancer image dataset provided by the Breast
Cancer Semantic Segmentation Challenge. DRD-UNet was
compared systematically against the basic UNet architecture
and fifteen variations and provided the best results in terms of
overall accuracy and Dice coefficient and Jaccard similarity
index for three (tumor, stroma, other) of the five classes.
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FIGURE 8: Semantic segmentation results of five different classes with the first 8 models evaluated. The first row shows
the original images that focus on a region where each class is present. Second row shows the classes overlaid with colors:
necrosis (dark purple), inflammatory (light purple), stroma (green), tumor (red), and other (gray label). Rows 3 to 10 are the
results of the first 8 models. TP are labeled in white; TN are labeled in black; FP are labeled in green, and FN are labeled in pink.
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FIGURE 9: Semantic segmentation results of five different classes with models 9 to 17. The first row shows the original
images with the classes overlaid with colors: necrosis (dark purple), inflammatory (light purple), stroma (green), tumor (red), and
other (gray label). Rows 2 to 10 are the results of the evaluated models. TP are labeled in white; TN are labeled in black; FP are
labeled in green, and FN are labeled in pink.
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