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Abstract—Early open blockchain designs faced low through-
put, high latency, and prohibitive costs for setting up a full
node. New designs improve this with innovative mechanisms for
handling transactions and the blockchain state, often assuming
locality properties in the workload of transactions. Temporal
locality allows efficient space management such as light nodes
or snapshot-based bootstrap. Disjoint access parallelism, which
depends on spatial locality, enables parallel processing of non-
conflicting transactions. We analyze locality properties and their
interplay in the largest transactional workload available to date,
that of Ethereum. Our results show that, although transactions
generally display good locality, a minority of accounts are
responsible for caching- or parallelism-unfriendliness, calling for
specific identification and handling in future blockchain designs.

I. INTRODUCTION

Blockchain networks such as Cardano [1], Ethereum [34], or
Solana [35] attract considerable attention due to their capacity
to enable trust in large-scale, decentralized systems despite the
lack of mutual trust between participants. An open blockchain
allows any participant to join in building a globally-replicated
and eventually tamper-proof distributed ledger containing
transactions. Early blockchain designs introduced important
concepts enabling decentralization and robustness, such as
proof-of-work consensus in Bitcoin [27] or smart contracts in
Ethereum [34], enabling a large variety of applications over
blockchains such as for supply chains or digital health [18].

A significant body of work proposes new blockchain designs
that exploit the nature of the transaction workload in open
blockchains, to ensure higher decentralization [8], [9], [22],
[29], [37] (i.e., to make it easier and less costly to enter as
a new participant) and better performance [4], [5], [11], [14],
[15], [24], [25], [30], [32] (i.e., to support higher throughputs).
Common to these proposals is the exploitation of locality
properties in the workload of transactions.

Several designs exploit temporal locality in the pattern of
accesses to the ledger state when validating transactions and
executing smart contracts. These properties are of paramount
importance for the design of caches in computer systems,
following the working set model [13]. Light clients [9], such
as CoVer [8] or Subset nodes [29], exploit temporal locality
properties to allow nodes with only a subset of the ledger
state to participate in the network. Similarly, Fynn et al. [37]
or Ethanos [22] propose snapshotting mechanisms that allow
bootstrapping new full nodes with a previous state material-
ization, based on the assumption that incremental checkpoints
only include a relatively small subset of the entire ledger state.

Other approaches leverage the inherent disjoint-access par-
allelism (DAP) of transactions, i.e., transactions accessing

disjoint subsets of accounts. This is a form of spatial
(non)locality, allowing disjoint working sets that can be pro-
cessed in parallel. Forerunner [11], Block-STM [15], OptS-
mart [5], ParBlockchain [4], or the work of Dickerson et
al. [14] employ speculative execution on a single node to
speed up the processing of transactions; all assume that the
workload exhibits sufficient DAP. Other systems leverage dis-
tributed execution via sharding, where the load of processing
transactions is split between different sub-chains [32] or use
multiplexed consensus [24]. Dynamic assignment algorithms
for transactions (e.g., OptChain [28]) or accounts (e.g., Shard
Scheduler [25]) detect and exploit DAP while processing trans-
actions, assigning disjoint working sets to different shards.

Contributions and outline. We propose a thorough analysis
of the largest transactional workload to date, that of the
Ethereum [34] blockchain, with a focus on locality proper-
ties. Our study considers the historical evolution of locality
properties and other system-relevant characteristics over time,
from the early days of Ethereum until its recent switch to
proof-of-stake consensus (the “merge” [2]).

We provide a thorough evaluation of metrics of interest for
a transactional workload, which we formalize in a model (Sec-
tion II) and extend to allow historical analysis (Section III).
After a study of general metrics characterizing transactions
(Section IV), we present in-depth analysis of temporal locality
properties (Section V) and of DAP/spatial locality properties
(Section VI). We finally review related studies (Section VII)
and conclude (Section VIII).

II. BACKGROUND

We cover background material and provide a generic model
of an account-based blockchain (§II-A). Note that our focus
in this paper is in understanding the properties of a large
transactional workload, but not to focus on the specificities
of the Ethereum protocol. Therefore, we only briefly cover
Ethereum designs aspects that are relevant to our study (§II-B).

A. Generic model

Our generic model focuses on accounts and transactions.

Accounts. The state of a ledger is a map between a set of ac-
counts A and their associated state. An account has a specific
address a ∈ A. There are two types of accounts: (1) externally
owned accounts (EOA) are under the responsibility of an
external user of the blockchain, who can request transfers or
the execution of smart contracts. (2) Smart contract accounts
(SCA) represent executable programs stored on the chain.



Transactions. Transactions are state mutations that result from
the transfer of assets and the execution of smart contracts. We
note T the set of all transactions and t a specific transaction.
T admits a total order, i.e., T = (t1, t2, . . . , tn, . . . , t|T |). The
effects of a transaction t deterministically depend on the state
of a number of accounts at the time of its execution, which we
denote as its read set t.read. The transaction t in turn mutates
the state of a number of accounts, forming its write set t.write.
The two sets may overlap.

We distinguish between four types of transactions. (1) A
transfer transaction is emitted by the owner of an EOA to
transfer an amount of cryptocurrency to another EOA or SCA
account. (2) A contract deployment transaction is emitted by
an EOA and installs a new smart contract. (3) An external
transaction is made by the owner of an EOA to an SCA (smart
contract) to trigger its execution. An external transaction can
in turn trigger an arbitrary number of (4) internal transactions.
In contrast with (1)–(3), internal transactions (4) are not
registered on the ledger but determined when executing or
validating external transactions, depending on the current state
A. An important implication is that the content registered in
the ledger is only a subset of T , the set of all transactions.

B. Ethereum

Ethereum [34] is the second largest blockchain after Bit-
coin [27], and the largest one supporting smart contracts. It
adopts the account-based model as defined in the previous
subsection. We use the content of the Ethereum ledger as
the data source for our analysis. The order of transactions in
T is the result of Ethereum’s consensus, which was based
on proof-of-work until the recent switch to proof-of-stake
(“the merge” [2]). We consider all transactions from the
beginning of Ethereum to the merge. This represents 1.7
Billion transactions involving 180 million different accounts
(177M EOAs and 3M SCAs). Proof-of-work was used over
the evaluated period., which can lead to forks and uncle blocks
(i.e., blocks part of discarded branches), but we consider only
the content of the longest chain.

In Ethereum, smart contracts may execute arbitrary code
compiled for the Ethereum Virtual Machine (EVM). To bound
execution times, the blockchain uses the principle of gas,
expressed in the embedded cryptocurrency. Gas is associated
with transactions and consumed by miners when validating
them. While this mechanism details are unimportant for our
study, the amount of gas associated to a transaction execution
is an interesting estimation of the amount of computation it
requires: each EVM instruction, and the transaction as a whole,
map to a specific amount of gas [7]. We note the amount of
gas for a transaction t as t.g, and the total of all spent gas for
the set of transactions T as T.g.

III. METHODOLOGY

We detail now how we structure and enable our analysis
of the Ethereum dataset. First, we present how we enrich the
base model of Section II with additional, calculated metrics
(§III-A). Then, we detail how we enable a time-based analysis

of the dataset via windowing and the associated model exten-
sion (§III-B). Finally, we present EthEx, our tool for efficient
collection and analysis of this massive dataset (§III-C).

A. Calculated metrics

The base model contains the set of transactions T and
the set of accounts A. Both are collected by re-executing
the content of the ledger. We enrich this base model with
additional information as follows.
Age-based metrics for accounts. We are interested in the
history of the use of each account by the sequence of transac-
tions. The history a.H = a.HR∪a.HW of an account a ∈ A is
the sequence of transactions where a is used in their read
or write sets, i.e., a.HR = {t ∈ T | a ∈ t.read} and
a.HW = {t ∈ T | a ∈ t.write}.

This history starts with the creation of the account. An
account starts to exist the first time it is used in the write set
of a transaction. We note it a.creation = min(i | ti ∈ a.HW);
its last use is a.last = max(i | ti ∈ a.H). The lifetime
of an account is the span of its use in transactions, i.e.,
a.lifetime = a.last− a.creation. Finally, the frequency of use
of the account over its lifetime is a.freq = |a.H|/a.lifetime.

We use these metrics to relate accounts used in the read and
write sets to the characteristics of the accessed accounts, and
primarily determine whether assumptions on temporal locality
are validated in the data set.
Interaction graph. We are also interested in studying the
interactions between accounts via transactions. We define an
interaction graph IG where the set of vertices VIG = A,
the set of accounts. Undirected edges of this graph EIG ∈
A×A represent interactions between accounts, i.e., that they
have been accessed as part of the same transaction(s). We
note I(ai, aj) = {tx, ty, . . . , tz} the set of transactions in
which both ai and aj are involved, i.e., I(ai, aj) = {ti ∈
T | {ai, aj} ⊆ (ti.read∪ ti.write)}. The weight e(ai, aj).δ of
an edge e in IG is the number of common transactions, i.e.,
∀e(ai, aj) ∈ EIG , e(ai, aj).δ = |I(ai, aj)|.

B. Time analysis and windowing

We are interested not only in analyzing the Ethereum
workload as a whole, but also to study the evolution of
locality properties over the history of the workload. To study
this evolution, we partition the workload in a series W of
windows, consecutive in time, i.e., W = (w1, . . . , w|W |).
We choose to form these windows with a fixed number
of transactions, 1,000,000 by default. The first window
is w1(T ) = (t1, . . . , t1000000), the second is w2(T ) =
(t1000001, . . . , t2000000), and so on. Our approach contrasts
with previous work [6], [31], [36] using partitioning by win-
dows of blocks. This choice of using windows of blocks would
go, in fact, against our will to study the nature of the transac-
tion workload as is, i.e., not as it was specifically processed by
Ethereum but as it could be processed by alternative designs
(for instance, using parallel execution [25], [30], [32]). Relying
on blocks would result in highly heterogeneous windows, and
be a source of bias, as we illustrate in Figure 1. Figure 1a
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(b) Cumulated amount of gas.

Fig. 1: Observed metrics when considering groups of 10,000
successive blocks. The amount of transactions and their com-
plexity varies significantly over successive groups, making this
discretization ill-suited for studying transaction history.

(y1 axis) plots the proportion of empty blocks for windows
of 10,000 blocks (i.e., with 13,000,000 blocks we obtain
1,300 such windows), while Figure 1a (y2 axis) plots their
number of transactions and Figure 1b present their cumulative
amount of gas. We observe that the number of empty blocks
is significant in the early history of the transaction workload,
and never reaches 0%. The number of transactions per group
of blocks fluctuates greatly, which can be explained by the
variation in the number of internal transactions, which is
capped by a maximal amount of gas allowed in a block, itself
evolving with updates to the protocol.
Enriched model and windowing. We note wi(·) the value of
a metric over the ith window; wi(T ) is a set of 1 million
transactions and wi(A) is the set of accounts that appear
at least once in the read and write sets of transactions in
wi(T ). The interaction graph over a window wi(IG) uses as
vertices wi(A); edges follow the earlier definition using only
transactions in wi(T ). The gas cost of all transactions in a
window is defined as wi(T.g) =

∑
tx∈|wi(T )| tx.g.

The subset of the history of an account in window wi is
wi(a.H) = {t ∈ a.H | t ∈ wi(T )}. Age-based metrics cannot
be derived from the direct application of their global definition
to such a window of transactions (e.g., wi(a.creation) would
be the first use of the account in this window, which has
nothing to do with its creation).

We define as W (·) the windowed-versions of these metrics
to analyze at a coarser grain the lifetime characteristics of
accounts. W (·) metrics always return a window identifier.
As a result, W (a.creation) = min(i | wi(a.H ̸= ∅)),
W (a.last) = max(i | wi(a.H ̸= ∅)), and W (a.lifetime) =
W (a.last) − W (a.creation). The frequency of use is also
modified accordingly, to reflect the frequency of windows that
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Fig. 2: Evolution of the distribution of transaction types.

include a transaction involving that account over its lifetime,
also expressed as a number of windows: W (a.frequency) =
(|{i | wi(a.H) ̸= ∅}|)/(W (a.lifetime)).

Finally, we define two metrics allowing to study, from
the perspective of a given window wi, the relative history
of accounts accessed in wi. The age of an account from
the perspective of wi denotes how recently (i.e., how many
past windows ago) the account was created: wi(a.age) =
i − W (a.creation). We also define the last use metric to
measure how recently (in number of windows) an account
a was used for the last time. This metric would typically be
used for cache management policies such as Least-Recently-
Used (LRU). By convention, the last use metric is 0 for a
newly created account: wi(a.last use) = max(j < i | a ∈
wj(A)) if ∃ j < i | a ∈ wj(A), and 0 otherwise.

C. EthEx analysis tool

We implemented EthEx, a tool for the analysis and char-
acterization of the Ethereum transaction workload.1 EthEx
builds the information forming our model, including calculated
metrics, both for the global and windowed information, on the
basis of set of transactions resulting from the validation of the
ledger by the Go Ethereum (geth) client [3]. The collection
and validation/replay of the chain data (about 1.2 TiB and 1.9
Billion transactions) takes about 3 days and results in a dataset
for geth of about 2 TB. EthEx interfaces with geth to build
the model, using parallel computation (about 3 hours with 16
threads). The complete, enriched model takes about 600 GB of
storage, which we can process linearly to extract the metrics
of interest that we present in the rest of the paper.

IV. ANALYSIS: GENERAL METRICS

We initiate the study by making general observations on
the workload, not directly linked to locality but helping to
understand the nature of the transactional workload.
Types of transactions. We first investigate the distribution
of the types of transactions and its evolution over time. In
total, T contains 1.3 Billion transactions, with 42% of transfer,
7% of external, 49% of internal, and 2% of deployment
transactions. Figure 2 presents the evolution of this distribution
over windows. We observe that transfer transactions dominate
the early history, where they represent more than 80% of
transactions, to gradually become marginal (around 20% close

1We intend to release our tool as well as all material allowing the
reproducibility of our results, together with the final version of this paper.
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(a) Average size of the accessed state in each window wi,∑
t∈wi(T ) |t.read ∪ t.write|/|wi(T )|.
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(b) Average gas of transactions in each window wi,∑
t∈wi(T ) t.g/|wi(T )|.

Fig. 3: Evolution of the accessed state size and computational
complexity, for internal and external transactions.

to the merge). Transactions linked with smart contracts have
become dominant. We observe, however, that this is mostly a
result of a steadily increasing number of internal transactions;
the number of external transactions is quite stable.

Transactions complexity. The complexity of transactions can
be expressed as the size of their accessed state and as their
computational requirements. The former is reflected by the
number of accounts they access, i.e., for a transaction t,
|t.read ∪ t.write|. The latter can be approximated by the
amount t.g of gas its execution requires. We focus here on
internal and external transactions. Figures 3a and 3b present
the average state size and average computational complexity
and its evolution over time for these two categories. We make
the following observations. The number of accounts accessed
by internal transactions is significantly higher than the number
of accounts accessed by external ones, with about a x4
difference between the two–note the logarithmic y axis scale
in Figure 3a. This number increased over time for both types
of transactions. In contrast, the computational complexity of
individual transactions is relatively stable over time, with
internal transactions spending roughly two times as many com-
putational steps as external ones, with no notable long-term
trends. The progressive dominance of internal transactions
(Figure 2) shows, however, that each external transactions
triggers increasingly more internal ones. Our observation is
that transaction complexity significantly increased over time,
both considered from the point of view of individual ones for
the cumulated work associated with each external transaction.

V. TEMPORAL LOCALITY

We study in this section the temporal locality of the work-
load. We follow the traditional working set model [13]. Instead
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(a) Unique accounts used in each window wi, i.e., |wi(A)|, for
externally-owned accounts (EOA) and smart contract accounts (SCA).
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(b) Evolution of the number of account creations per window wi,
i.e., |{

∑
a ∈ A | W (a.creation) = i}| for EOA and SCA accounts.

Fig. 4: Evolution of the working set size (accessed accounts)
and new state size (created accounts).

of memory pages, we consider accesses to individual accounts.
Instead of time intervals, that would depend on a specific
consensus protocol, we consider windows of transactions.

Temporal locality is the property that recently-accessed data
is likely to be accessed again in the near future. Popular
cache management strategies rely on this property, e.g., using
Least-Recently-Used replacement policies. In the context of
blockchains, temporal locality is assumed by designs for light
clients [8], [9], [29] and for speeding up the bootstrap of new
nodes using snapshotting techniques [22], [37]. These designs
rely, indeed, on the fact that state accesses are more likely to
target a subset of recently-accessed accounts.

Working set size and account creations. We start by observ-
ing the size of the working set and its evolution over time. The
size of the working set over a window wi is the number of
unique accounts accessed by its transactions, and is plotted in
Figure 4a, distinguishing between EOA and SCA accounts. We
observe a one order-of-magnitude (OOM) difference between
the number of EOA accounts and the number of SCA accounts
accessed in each window. We contrast the stability we observe
in the working set size with our previous observation that
internal and external transactions came to dominate the work-
load in later windows; the complexity of individual calls to
smart contracts has increased while these calls access similar
numbers of accounts.

We observe the number of accounts creations in each
window in Figure 4b. This figure uses a logarithmic scale for
the ordinates, for the sake of comparison with Figure 4a. We
report in the following text the ratio between the number of
accounts accessed and the number of accounts created.

We observe that between 19% and 25% of EAO accounts
and between 15% and 23% of SCA accounts accessed in each
window are created in that window, implying a high degree of
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(a) CDF of accounts lifetime, i.e., W (a.lifetime).
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(b) Scatter plot linking accounts’ lifetime W (a.lifetime) (in win-
dows) and their volume of transactions. We consider a subset of
100,000 random accounts. We plot all points for accounts with ≥25
transactions (red dots, “heavy hitters”), while we plot only 1% of the
points for accounts with fewer transactions (black dots).

Fig. 5: Distribution of accounts lifetimes, and interplay be-
tween lifetimes and numbers of transactions.

volatility. Over the complete chain, 22% of transactions issued
by EOA accounts are from new accounts (19% for SCAs).
Volatility impacts temporal locality, as the working set under-
goes significant changes for every window. An incremental
snapshot mechanism would, for instance, require saving this
new state; a caching mechanism would have to avoid that new
content evince warm content likely to be accessed again.

Lifetimes and activity. We now study the lifetime of accounts
expressed as a number of windows, i.e., W (a.lifetime) for
an account a. The cumulative distribution function (CDF) of
these lifetimes is represented by Figure 5a. First, we observe
that 19% of all accounts are involved in a single window.
In fact, 18% of the accounts are even involved in a single
transaction, i.e., they are used once and never again. Second,
we observe that the median lifetime is quite long, at about
260 windows in a dataset formed of 700 such windows.
Lifetimes are, in fact, distributed almost uniformly between
short-lived and long-lived accounts, spanning all intermediate
values. While the lifetime of an account indicates how spread
in time this account has been used, it does not shed light on
how frequently the account was used. A frequently-accessed
account over a short time period has, indeed, a good temporal
locality. An account accessed sporadically over a long period
of time has, conversely, poor temporal locality. We relate the
two metrics in the scatter plot of Figure 5b. Note that to
favor visual clarity the figure presents a subset of the data, as
detailed in its caption. First, we can observe that accounts with
long lifetimes are not necessarily very active, and the other
way around. Second, long-lived accounts exist for different
volumes of transactions. Accounts represented as black dots
at the top-left of the graph have poor temporal locality, as
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(a) Distribution of the age (in windows) of accounts accessed in
window wi, i.e., ∀a ∈ wi(A), wi(a.age).
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(b) Distribution of the last use (in windows) of accounts accessed in
window wi, i.e., ∀a ∈ wi(A), wi(a.last use).

Fig. 6: Evolution of the distributions of locality metrics
represented as quartiles (25th, 50th, 75th perc. and max.).

they are accessed sporadically and over a long period of time.
Accounts represented as red dots at the bottom-right are, in
contrast, good candidates for locality: they are accessed often
over a short period of time. If we take as a reference the point
(25 transactions, lifetime of 200 windows), we observe that the
100,000 accounts considered are distributed as follows: 22%
are in the top-left corner, 68% in the bottom-left corner, 2% in
the top-right corner, and 8% in the bottom-right corner. This
means that, using this reference point, about 76% of accounts
should have good temporal locality of access, while the
remaining 24% may have bad temporal locality of access, with
the 2% of accounts in the top-right corner potentially being
the most impacting for solutions assuming locality (note that
while we select an arbitrary reference point, conclusions are
similar using other choices). To assess this impact, however,
it is necessary to also study the temporal component of these
accesses. A frequently accessed account with a long timespan
may, indeed, have a different locality impact depending on
whether it is accessed in bursts or regularly throughout its
existence. We study these properties next.

Evolution of temporal locality metrics. We now focus on
the evolution of metrics of interest for temporal locality over
the different windows of the dataset. We report in Figure 6 the
evolution of distributions for different metrics, as the evolution
of quartiles for these metrics over subsequent windows.

First, we study the spread of accesses to older or newer
data over time, i.e., whether transactions in each window tend
to access accounts created in the recent or in the distant past.
Figure 6a presents the evolution of the distribution of ages, for
accounts accessed by transactions in each window. The age of
an account in a window wi ranges from 0, for an account
created during wi, and i for an account created in w1. We
observe that such accounts created in the first window w1
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Fig. 7: Correlation between the number of windows in which
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(
∑
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each column and row. The red lines demarcate the accounts
we select as the cache-unfriendly (CUA) set.

continue to be used until the end of the dataset, explaining the
linear progression for the maximum of the distribution. The
median tends, however, to stabilize around about 100 windows,
while the 75th percentile of the distribution (Q3) increases
steadily, although sub-linearly. As a result, while half of the
accesses are for relatively recent data, the spread of use in
terms of creation time increases. This is not necessarily a sign
of low temporal locality, as the age of an account does not
reflect whether the account was accessed recently or not.

To study the temporal proximity of accesses to accounts
across windows, we leverage the wi(a.last use) metric, pre-
sented in Figure 6b. This metric represents the most recent use
of the account outside of the considered window, unless this
account is part of the 15% to 25% new accounts in this window
(as discussed earlier in Figure 4b), in which case the metric
value is 0. We observe that locality properties are clearly
present in this case, with 75% (Q3) of accounts being accessed
20 to 30 windows ago, with no significant variations in time,
and a median below 10 windows. The max remains i, the
window identifier, in conformance with the max in Figure 6a,
but accesses to very old data are only a minority.

Correlating account usage and temporal behavior. We
finally study the correlation between the temporal behavior
of accounts (i.e., how recently was an account previously
accessed) and the number of windows in which these accounts
are used. Figure 7 presents this correlation for different ranges
of (1) the number of windows in which each account a is
accessed (one or multiple times) and (2) the average value of
the a.last use over these windows (i.e., the average number

of windows in which the account was previously used before
being first used in some window), which we refer in the
following as ALU. A high ALU relates to poor temporal
locality of access, while the number of accesses correlates
with the weight of each account in degrading locality.

Consistently with our previous observations, 19.2% of ac-
counts are used in a single window. A majority of accounts
(71.8% - 19.2% = 52.6%) accessed over 2 or more windows
have excellent temporal locality, with an ALU between 0 and
0.5, i.e., mostly accesses repeated in adjacent windows. Over-
all, accounts with an ALU of less than 3, and therefore good
temporal locality, represent 81.4% of all accounts. Accounts
with an ALU greater than 10 represent 12.1% of the dataset.
Of these, almost half (48% of the last column) have 2 or 3
accesses only, making their individual impact limited.

We calculate the Pearson correlation between the relative
proportion of each cell in its column (ALU) on the one hand,
and its relative position in its line (uses), respectively, ignoring
the bottom column for single-use accounts. The obtained
correlation factor is negative with -0.06, denoting a very small
inverse correlation between the distribution of the two metrics,
i.e., higher ALU tend to relate to a distribution shifting to
lower number of uses, although only marginally.

Accounts that have poor temporal locality and more than a
few uses are those that impact the most locality of accesses.
If a system design for a blockchain employs a cache, these
are the most likely to cause cache misses due to repeated but
distant accesses. We select a subset of all accounts (10.3%
of them) as the set of “cache-unfriendly” accounts, or CUA.
Our intent is to compare the characteristics of these accounts
with poor temporal locality properties with the characteristics
of accounts impacting spatial locality properties that we study
in the next section.

VI. SPATIAL LOCALITY, DISJOINT ACCESS PARALLELISM

We study the spatial locality of the transaction workload.
Spatial locality refers to the property that elements of the
data set, accounts in our case, are co-accessed together by
identifiable sets of transactions within a defined time period.
A corollary of spatial locality is the exhibition by the dataset
(or the lack thereof) of natural Disjoint Access Parallelism,
or DAP for short. When, within a defined time frame, subsets
of operations (transactions) access disjoint subsets of elements
(accounts) without accessing accounts from the other subsets,
then each such subset can be processed independently. This
natural propensity to parallel execution can be exploited by
blockchain designs to speed up the processing of transactions,
either at the level of a single node through speculative ex-
ecution [4], [5], [11], [14], [15] or at the level of multiple
nodes by forming independent committees (shards) [24], [32]
processing disjoint subsets of transactions.

The question we wish to answer is whether each window
of transactions exhibits DAP. For this, we propose to use a
clustering algorithm, specifically METIS [38]. This algorithm
solves the k-way graph partitioning problem: it splits a graph
G = (V,E) of |V | = n vertices into k subsets V1, V2, . . . , Vk
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(a) Size of partitions for k = 16 and k = 64.

0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0
Windows of 1,000,000 transactions

0

10

20

30

Pr
op

or
tio

n 
(%

) 
 

64 - clusters
16 - clusters

    

(b) Proportion of transactions in wi(T ) corresponding to at least one
cross-partition edge for k = 16 and k = 64.

Fig. 8: Results of clustering each wi(IG) using METIS.

such that for any pair (i, j) | i ̸= j, Vi ∩Vj = ∅. METIS aims
to balance the size of partitions. In addition, it minimizes the
sum of the weights of the edges from E that “cross” between
different partitions.

In our model, IG is the interaction graph where edges’
weights represent the number of transactions jointly accessing
two accounts. Edges between partitions of the graph wi(IG)
represent interdependencies between these partitions in this
window wi. A high number, or combined weights, of such
edges indicates a less independent transaction workload (less
DAP). In sharded blockchain designs [25], [28], [32], transac-
tions accessing state from a single partition are called intra-
shard transactions, while transactions accessing state from
at least two partitions are called cross-shard transactions.
Cross-shard transactions typically require costlier coordination
between shard committees and impair parallelism and through-
put. The DAP property of the workload is necessary, but
not sufficient to ensure parallel execution by minimizing the
number of cross-shard transactions. Indeed, clustering provides
us with an upper bound of DAP based on a omniscient, com-
plete knowledge: identifying at runtime independent subsets
of transactions is a much more difficult problem [25], [28].

Clustering windows of transactions. We first evaluate
whether METIS is able to partition each graph wi(IG) in
equally-sized partitions (i.e., with each containing a similar
number of vertices/accounts). We use two values of k, k = 16
and k = 64. Figure 8a confirms this with an average cluster
size that is stable over different windows. In fact, the maxi-
mum difference we observe between the size of two clusters
is never higher than 52 accounts (with k = 16), indicating
excellent load balancing.

Figure 8b represents the evolution of the proportion of trans-
actions involving at least one inter-partition edge. We observe
that the number of such transactions has been constantly on
the rise, independently of the value of k. This means that
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Fig. 9: CDF of the number of transactions requiring inter-
partition accesses associated with each account. The verti-
cal red line demarcates the selection point for parallelism-
unfriendly accounts.

Unit Cache-unfriendly Parallelism-
unfriendly Overlap

Accounts Number 3184863 3184863 612759
Avg. lifetime Windows 26.7 3.4 15.1

Avg. transactions Transactions 7.5 12.4 8.7
Avg. frequency Ratio 0.44 0.63 0.52
Avg. last use Windows 27.1 1.2 7.3

TABLE I: Characteristics of CUA, PUA, and their overlap.

the DAP of the transactional workload has been degrading
regularly: with 64 clusters, about 30% of transactions must
access accounts across more than 1 partition. In other words,
it is impossible for a perfect sharding scheme using omniscient
knowledge of upcoming partitions (a very strong assumption
that blockchain designs cannot make, as transactions are
submitted by clients as a dynamic stream), to avoid that up
to 30% of transactions require cross-shard coordination (25%
with k = 16). This is consistent with observations made by
the authors of OptChain [28].
Identifying parallelism-unfriendly accounts. We wish to
identify if some accounts play a significant role in reducing
DAP. Figure 9 presents the cumulative distribution of the
number of transactions involving accesses across partitions,
cumulated for each account (i.e., the sum of the weights
of edges from an account a to any account in a different
partition than a). We consider the entire graph IG . We can
see that the impact of accounts on DAP is highly unbalanced.
64% of accounts are, in fact, never involved in inter-partition
transactions. Out of these, we observe that 92% are involved
in 5 transactions or less, hence being a majority of low-
activity accounts. The remaining 8% of these accounts are
involved in 20 transactions or less, with the notable exception
of 146 accounts with high transaction volume, but always with
accounts located in the same partition. 83% of accounts overall
are involved in less than 10 inter-partition transactions. We
observe that accounts with 6 to 10 such transactions are more
long-lived accounts with a value of wi(a.last use) in the range
[3,34]. The remaining 17% of accounts with 11 or more inter-
partition transactions are those that impact the most DAP.
Comparing cache- and parallelism-unfriendly accounts.
Our final observation is to compare the nature of accounts
negatively impacting temporal locality (i.e., cache-unfriendly
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accounts or CUA) and the nature of accounts negatively im-
pacting spatial locality and DAP. We call the latter parallelism-
unfriendly accounts or PUA. To compare sets of the same
size, we select the top 10.3% of accounts with the most inter-
partition transactions in the PUA set. Table I presents the char-
acteristics of the two set, as well as their overlap, representing
only 19.7% of the accounts. A first observation is, therefore,
that the set of accounts impacting both types of locality are
quite different. We also observe that CUA are more long-lived
and accessed more sporadically than PUA, the latter having a
higher frequency and a higher number of transactions overall.
The identification of both types of accounts, for instance by a
mechanism applying specific treatment (e.g., using a specific
cache management policy aware of the existence of CUA, or
using a sharding strategy that processes PUA separately) may
need to identify them separately.

VII. RELATED WORK

We review the literature on blockchain measurements and
group them by general topics.
Network Analysis. Multiple studies focused on the network-
ing aspects of the Ethereum Network. They analyze the
behavior of the network [26], communication patterns [23],
or specificities of network peers [31]. Some papers use graph
theory to analyze the evaluation of transaction patterns in the
network [6], [12] or explore the characteristics of transactions
and their impact on network performance [33]. In contrast, our
paper focuses on the on-chain interaction between accounts
through transactions without covering the network aspect.
Sharding and On-chain Data Analysis. Another group of
work explores on-chain data exploration focusing on generic
transactions [10] or smart contract interactions [21]. Hu et
al. [19] use machine learning techniques to analyze transaction
patterns and identify potential security risks. Ethereum trans-
action datasets have also been used to improve the allocation
protocols in sharded designs [32] in terms of efficiency [16] or
security [17]. Additionally, BlockSci [20] proposes a tool for
analyzing blockchain data that can be used to gain insights into
the behavior of Ethereum and other blockchains. Our study
takes a broader approach, correlates temporal and spatial data,
and provides insight useful for other types of improvement,
such as light nodes.

VIII. CONCLUSION

We presented an analysis of the Ethereum transaction work-
load in light of its locality properties, both temporal and
spatial. In the both cases, we identified that while most of the
accounts and transactions exhibit good locality properties, a
subset of accounts impair this locality significantly. The set of
accounts is largely different from one locality type to the other.
We believe our results could be a first step towards differen-
tiated treatment of such accounts (and related transactions) in
new blockchain designs, be it towards better decentralization
and cheaper node bootstrap, or for efficient parallel processing.
As we intend to release EthEx open source, we also hope
that the tool will prove useful for blockchain scientists and

practitioners to further study the characteristics of the massive
Ethereum transaction dataset.
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